xref: /openbmc/linux/fs/ceph/mds_client.c (revision 150116bc)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9 
10 #include "super.h"
11 #include "mds_client.h"
12 
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19 
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44 
45 struct ceph_reconnect_state {
46 	int nr_caps;
47 	struct ceph_pagelist *pagelist;
48 	bool flock;
49 };
50 
51 static void __wake_requests(struct ceph_mds_client *mdsc,
52 			    struct list_head *head);
53 
54 static const struct ceph_connection_operations mds_con_ops;
55 
56 
57 /*
58  * mds reply parsing
59  */
60 
61 /*
62  * parse individual inode info
63  */
64 static int parse_reply_info_in(void **p, void *end,
65 			       struct ceph_mds_reply_info_in *info,
66 			       int features)
67 {
68 	int err = -EIO;
69 
70 	info->in = *p;
71 	*p += sizeof(struct ceph_mds_reply_inode) +
72 		sizeof(*info->in->fragtree.splits) *
73 		le32_to_cpu(info->in->fragtree.nsplits);
74 
75 	ceph_decode_32_safe(p, end, info->symlink_len, bad);
76 	ceph_decode_need(p, end, info->symlink_len, bad);
77 	info->symlink = *p;
78 	*p += info->symlink_len;
79 
80 	if (features & CEPH_FEATURE_DIRLAYOUTHASH)
81 		ceph_decode_copy_safe(p, end, &info->dir_layout,
82 				      sizeof(info->dir_layout), bad);
83 	else
84 		memset(&info->dir_layout, 0, sizeof(info->dir_layout));
85 
86 	ceph_decode_32_safe(p, end, info->xattr_len, bad);
87 	ceph_decode_need(p, end, info->xattr_len, bad);
88 	info->xattr_data = *p;
89 	*p += info->xattr_len;
90 	return 0;
91 bad:
92 	return err;
93 }
94 
95 /*
96  * parse a normal reply, which may contain a (dir+)dentry and/or a
97  * target inode.
98  */
99 static int parse_reply_info_trace(void **p, void *end,
100 				  struct ceph_mds_reply_info_parsed *info,
101 				  int features)
102 {
103 	int err;
104 
105 	if (info->head->is_dentry) {
106 		err = parse_reply_info_in(p, end, &info->diri, features);
107 		if (err < 0)
108 			goto out_bad;
109 
110 		if (unlikely(*p + sizeof(*info->dirfrag) > end))
111 			goto bad;
112 		info->dirfrag = *p;
113 		*p += sizeof(*info->dirfrag) +
114 			sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
115 		if (unlikely(*p > end))
116 			goto bad;
117 
118 		ceph_decode_32_safe(p, end, info->dname_len, bad);
119 		ceph_decode_need(p, end, info->dname_len, bad);
120 		info->dname = *p;
121 		*p += info->dname_len;
122 		info->dlease = *p;
123 		*p += sizeof(*info->dlease);
124 	}
125 
126 	if (info->head->is_target) {
127 		err = parse_reply_info_in(p, end, &info->targeti, features);
128 		if (err < 0)
129 			goto out_bad;
130 	}
131 
132 	if (unlikely(*p != end))
133 		goto bad;
134 	return 0;
135 
136 bad:
137 	err = -EIO;
138 out_bad:
139 	pr_err("problem parsing mds trace %d\n", err);
140 	return err;
141 }
142 
143 /*
144  * parse readdir results
145  */
146 static int parse_reply_info_dir(void **p, void *end,
147 				struct ceph_mds_reply_info_parsed *info,
148 				int features)
149 {
150 	u32 num, i = 0;
151 	int err;
152 
153 	info->dir_dir = *p;
154 	if (*p + sizeof(*info->dir_dir) > end)
155 		goto bad;
156 	*p += sizeof(*info->dir_dir) +
157 		sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
158 	if (*p > end)
159 		goto bad;
160 
161 	ceph_decode_need(p, end, sizeof(num) + 2, bad);
162 	num = ceph_decode_32(p);
163 	info->dir_end = ceph_decode_8(p);
164 	info->dir_complete = ceph_decode_8(p);
165 	if (num == 0)
166 		goto done;
167 
168 	/* alloc large array */
169 	info->dir_nr = num;
170 	info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
171 			       sizeof(*info->dir_dname) +
172 			       sizeof(*info->dir_dname_len) +
173 			       sizeof(*info->dir_dlease),
174 			       GFP_NOFS);
175 	if (info->dir_in == NULL) {
176 		err = -ENOMEM;
177 		goto out_bad;
178 	}
179 	info->dir_dname = (void *)(info->dir_in + num);
180 	info->dir_dname_len = (void *)(info->dir_dname + num);
181 	info->dir_dlease = (void *)(info->dir_dname_len + num);
182 
183 	while (num) {
184 		/* dentry */
185 		ceph_decode_need(p, end, sizeof(u32)*2, bad);
186 		info->dir_dname_len[i] = ceph_decode_32(p);
187 		ceph_decode_need(p, end, info->dir_dname_len[i], bad);
188 		info->dir_dname[i] = *p;
189 		*p += info->dir_dname_len[i];
190 		dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
191 		     info->dir_dname[i]);
192 		info->dir_dlease[i] = *p;
193 		*p += sizeof(struct ceph_mds_reply_lease);
194 
195 		/* inode */
196 		err = parse_reply_info_in(p, end, &info->dir_in[i], features);
197 		if (err < 0)
198 			goto out_bad;
199 		i++;
200 		num--;
201 	}
202 
203 done:
204 	if (*p != end)
205 		goto bad;
206 	return 0;
207 
208 bad:
209 	err = -EIO;
210 out_bad:
211 	pr_err("problem parsing dir contents %d\n", err);
212 	return err;
213 }
214 
215 /*
216  * parse fcntl F_GETLK results
217  */
218 static int parse_reply_info_filelock(void **p, void *end,
219 				     struct ceph_mds_reply_info_parsed *info,
220 				     int features)
221 {
222 	if (*p + sizeof(*info->filelock_reply) > end)
223 		goto bad;
224 
225 	info->filelock_reply = *p;
226 	*p += sizeof(*info->filelock_reply);
227 
228 	if (unlikely(*p != end))
229 		goto bad;
230 	return 0;
231 
232 bad:
233 	return -EIO;
234 }
235 
236 /*
237  * parse create results
238  */
239 static int parse_reply_info_create(void **p, void *end,
240 				  struct ceph_mds_reply_info_parsed *info,
241 				  int features)
242 {
243 	if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
244 		if (*p == end) {
245 			info->has_create_ino = false;
246 		} else {
247 			info->has_create_ino = true;
248 			info->ino = ceph_decode_64(p);
249 		}
250 	}
251 
252 	if (unlikely(*p != end))
253 		goto bad;
254 	return 0;
255 
256 bad:
257 	return -EIO;
258 }
259 
260 /*
261  * parse extra results
262  */
263 static int parse_reply_info_extra(void **p, void *end,
264 				  struct ceph_mds_reply_info_parsed *info,
265 				  int features)
266 {
267 	if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
268 		return parse_reply_info_filelock(p, end, info, features);
269 	else if (info->head->op == CEPH_MDS_OP_READDIR ||
270 		 info->head->op == CEPH_MDS_OP_LSSNAP)
271 		return parse_reply_info_dir(p, end, info, features);
272 	else if (info->head->op == CEPH_MDS_OP_CREATE)
273 		return parse_reply_info_create(p, end, info, features);
274 	else
275 		return -EIO;
276 }
277 
278 /*
279  * parse entire mds reply
280  */
281 static int parse_reply_info(struct ceph_msg *msg,
282 			    struct ceph_mds_reply_info_parsed *info,
283 			    int features)
284 {
285 	void *p, *end;
286 	u32 len;
287 	int err;
288 
289 	info->head = msg->front.iov_base;
290 	p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
291 	end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
292 
293 	/* trace */
294 	ceph_decode_32_safe(&p, end, len, bad);
295 	if (len > 0) {
296 		ceph_decode_need(&p, end, len, bad);
297 		err = parse_reply_info_trace(&p, p+len, info, features);
298 		if (err < 0)
299 			goto out_bad;
300 	}
301 
302 	/* extra */
303 	ceph_decode_32_safe(&p, end, len, bad);
304 	if (len > 0) {
305 		ceph_decode_need(&p, end, len, bad);
306 		err = parse_reply_info_extra(&p, p+len, info, features);
307 		if (err < 0)
308 			goto out_bad;
309 	}
310 
311 	/* snap blob */
312 	ceph_decode_32_safe(&p, end, len, bad);
313 	info->snapblob_len = len;
314 	info->snapblob = p;
315 	p += len;
316 
317 	if (p != end)
318 		goto bad;
319 	return 0;
320 
321 bad:
322 	err = -EIO;
323 out_bad:
324 	pr_err("mds parse_reply err %d\n", err);
325 	return err;
326 }
327 
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
329 {
330 	kfree(info->dir_in);
331 }
332 
333 
334 /*
335  * sessions
336  */
337 static const char *session_state_name(int s)
338 {
339 	switch (s) {
340 	case CEPH_MDS_SESSION_NEW: return "new";
341 	case CEPH_MDS_SESSION_OPENING: return "opening";
342 	case CEPH_MDS_SESSION_OPEN: return "open";
343 	case CEPH_MDS_SESSION_HUNG: return "hung";
344 	case CEPH_MDS_SESSION_CLOSING: return "closing";
345 	case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346 	case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347 	default: return "???";
348 	}
349 }
350 
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
352 {
353 	if (atomic_inc_not_zero(&s->s_ref)) {
354 		dout("mdsc get_session %p %d -> %d\n", s,
355 		     atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356 		return s;
357 	} else {
358 		dout("mdsc get_session %p 0 -- FAIL", s);
359 		return NULL;
360 	}
361 }
362 
363 void ceph_put_mds_session(struct ceph_mds_session *s)
364 {
365 	dout("mdsc put_session %p %d -> %d\n", s,
366 	     atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367 	if (atomic_dec_and_test(&s->s_ref)) {
368 		if (s->s_auth.authorizer)
369 			ceph_auth_destroy_authorizer(
370 				s->s_mdsc->fsc->client->monc.auth,
371 				s->s_auth.authorizer);
372 		kfree(s);
373 	}
374 }
375 
376 /*
377  * called under mdsc->mutex
378  */
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380 						   int mds)
381 {
382 	struct ceph_mds_session *session;
383 
384 	if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385 		return NULL;
386 	session = mdsc->sessions[mds];
387 	dout("lookup_mds_session %p %d\n", session,
388 	     atomic_read(&session->s_ref));
389 	get_session(session);
390 	return session;
391 }
392 
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
394 {
395 	if (mds >= mdsc->max_sessions)
396 		return false;
397 	return mdsc->sessions[mds];
398 }
399 
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401 				       struct ceph_mds_session *s)
402 {
403 	if (s->s_mds >= mdsc->max_sessions ||
404 	    mdsc->sessions[s->s_mds] != s)
405 		return -ENOENT;
406 	return 0;
407 }
408 
409 /*
410  * create+register a new session for given mds.
411  * called under mdsc->mutex.
412  */
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414 						 int mds)
415 {
416 	struct ceph_mds_session *s;
417 
418 	if (mds >= mdsc->mdsmap->m_max_mds)
419 		return ERR_PTR(-EINVAL);
420 
421 	s = kzalloc(sizeof(*s), GFP_NOFS);
422 	if (!s)
423 		return ERR_PTR(-ENOMEM);
424 	s->s_mdsc = mdsc;
425 	s->s_mds = mds;
426 	s->s_state = CEPH_MDS_SESSION_NEW;
427 	s->s_ttl = 0;
428 	s->s_seq = 0;
429 	mutex_init(&s->s_mutex);
430 
431 	ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
432 
433 	spin_lock_init(&s->s_gen_ttl_lock);
434 	s->s_cap_gen = 0;
435 	s->s_cap_ttl = jiffies - 1;
436 
437 	spin_lock_init(&s->s_cap_lock);
438 	s->s_renew_requested = 0;
439 	s->s_renew_seq = 0;
440 	INIT_LIST_HEAD(&s->s_caps);
441 	s->s_nr_caps = 0;
442 	s->s_trim_caps = 0;
443 	atomic_set(&s->s_ref, 1);
444 	INIT_LIST_HEAD(&s->s_waiting);
445 	INIT_LIST_HEAD(&s->s_unsafe);
446 	s->s_num_cap_releases = 0;
447 	s->s_cap_reconnect = 0;
448 	s->s_cap_iterator = NULL;
449 	INIT_LIST_HEAD(&s->s_cap_releases);
450 	INIT_LIST_HEAD(&s->s_cap_releases_done);
451 	INIT_LIST_HEAD(&s->s_cap_flushing);
452 	INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
453 
454 	dout("register_session mds%d\n", mds);
455 	if (mds >= mdsc->max_sessions) {
456 		int newmax = 1 << get_count_order(mds+1);
457 		struct ceph_mds_session **sa;
458 
459 		dout("register_session realloc to %d\n", newmax);
460 		sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461 		if (sa == NULL)
462 			goto fail_realloc;
463 		if (mdsc->sessions) {
464 			memcpy(sa, mdsc->sessions,
465 			       mdsc->max_sessions * sizeof(void *));
466 			kfree(mdsc->sessions);
467 		}
468 		mdsc->sessions = sa;
469 		mdsc->max_sessions = newmax;
470 	}
471 	mdsc->sessions[mds] = s;
472 	atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
473 
474 	ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
476 
477 	return s;
478 
479 fail_realloc:
480 	kfree(s);
481 	return ERR_PTR(-ENOMEM);
482 }
483 
484 /*
485  * called under mdsc->mutex
486  */
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488 			       struct ceph_mds_session *s)
489 {
490 	dout("__unregister_session mds%d %p\n", s->s_mds, s);
491 	BUG_ON(mdsc->sessions[s->s_mds] != s);
492 	mdsc->sessions[s->s_mds] = NULL;
493 	ceph_con_close(&s->s_con);
494 	ceph_put_mds_session(s);
495 }
496 
497 /*
498  * drop session refs in request.
499  *
500  * should be last request ref, or hold mdsc->mutex
501  */
502 static void put_request_session(struct ceph_mds_request *req)
503 {
504 	if (req->r_session) {
505 		ceph_put_mds_session(req->r_session);
506 		req->r_session = NULL;
507 	}
508 }
509 
510 void ceph_mdsc_release_request(struct kref *kref)
511 {
512 	struct ceph_mds_request *req = container_of(kref,
513 						    struct ceph_mds_request,
514 						    r_kref);
515 	if (req->r_request)
516 		ceph_msg_put(req->r_request);
517 	if (req->r_reply) {
518 		ceph_msg_put(req->r_reply);
519 		destroy_reply_info(&req->r_reply_info);
520 	}
521 	if (req->r_inode) {
522 		ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
523 		iput(req->r_inode);
524 	}
525 	if (req->r_locked_dir)
526 		ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
527 	if (req->r_target_inode)
528 		iput(req->r_target_inode);
529 	if (req->r_dentry)
530 		dput(req->r_dentry);
531 	if (req->r_old_dentry) {
532 		/*
533 		 * track (and drop pins for) r_old_dentry_dir
534 		 * separately, since r_old_dentry's d_parent may have
535 		 * changed between the dir mutex being dropped and
536 		 * this request being freed.
537 		 */
538 		ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
539 				  CEPH_CAP_PIN);
540 		dput(req->r_old_dentry);
541 		iput(req->r_old_dentry_dir);
542 	}
543 	kfree(req->r_path1);
544 	kfree(req->r_path2);
545 	put_request_session(req);
546 	ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547 	kfree(req);
548 }
549 
550 /*
551  * lookup session, bump ref if found.
552  *
553  * called under mdsc->mutex.
554  */
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556 					     u64 tid)
557 {
558 	struct ceph_mds_request *req;
559 	struct rb_node *n = mdsc->request_tree.rb_node;
560 
561 	while (n) {
562 		req = rb_entry(n, struct ceph_mds_request, r_node);
563 		if (tid < req->r_tid)
564 			n = n->rb_left;
565 		else if (tid > req->r_tid)
566 			n = n->rb_right;
567 		else {
568 			ceph_mdsc_get_request(req);
569 			return req;
570 		}
571 	}
572 	return NULL;
573 }
574 
575 static void __insert_request(struct ceph_mds_client *mdsc,
576 			     struct ceph_mds_request *new)
577 {
578 	struct rb_node **p = &mdsc->request_tree.rb_node;
579 	struct rb_node *parent = NULL;
580 	struct ceph_mds_request *req = NULL;
581 
582 	while (*p) {
583 		parent = *p;
584 		req = rb_entry(parent, struct ceph_mds_request, r_node);
585 		if (new->r_tid < req->r_tid)
586 			p = &(*p)->rb_left;
587 		else if (new->r_tid > req->r_tid)
588 			p = &(*p)->rb_right;
589 		else
590 			BUG();
591 	}
592 
593 	rb_link_node(&new->r_node, parent, p);
594 	rb_insert_color(&new->r_node, &mdsc->request_tree);
595 }
596 
597 /*
598  * Register an in-flight request, and assign a tid.  Link to directory
599  * are modifying (if any).
600  *
601  * Called under mdsc->mutex.
602  */
603 static void __register_request(struct ceph_mds_client *mdsc,
604 			       struct ceph_mds_request *req,
605 			       struct inode *dir)
606 {
607 	req->r_tid = ++mdsc->last_tid;
608 	if (req->r_num_caps)
609 		ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 				  req->r_num_caps);
611 	dout("__register_request %p tid %lld\n", req, req->r_tid);
612 	ceph_mdsc_get_request(req);
613 	__insert_request(mdsc, req);
614 
615 	req->r_uid = current_fsuid();
616 	req->r_gid = current_fsgid();
617 
618 	if (dir) {
619 		struct ceph_inode_info *ci = ceph_inode(dir);
620 
621 		ihold(dir);
622 		spin_lock(&ci->i_unsafe_lock);
623 		req->r_unsafe_dir = dir;
624 		list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625 		spin_unlock(&ci->i_unsafe_lock);
626 	}
627 }
628 
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630 				 struct ceph_mds_request *req)
631 {
632 	dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633 	rb_erase(&req->r_node, &mdsc->request_tree);
634 	RB_CLEAR_NODE(&req->r_node);
635 
636 	if (req->r_unsafe_dir) {
637 		struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
638 
639 		spin_lock(&ci->i_unsafe_lock);
640 		list_del_init(&req->r_unsafe_dir_item);
641 		spin_unlock(&ci->i_unsafe_lock);
642 
643 		iput(req->r_unsafe_dir);
644 		req->r_unsafe_dir = NULL;
645 	}
646 
647 	complete_all(&req->r_safe_completion);
648 
649 	ceph_mdsc_put_request(req);
650 }
651 
652 /*
653  * Choose mds to send request to next.  If there is a hint set in the
654  * request (e.g., due to a prior forward hint from the mds), use that.
655  * Otherwise, consult frag tree and/or caps to identify the
656  * appropriate mds.  If all else fails, choose randomly.
657  *
658  * Called under mdsc->mutex.
659  */
660 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
661 {
662 	/*
663 	 * we don't need to worry about protecting the d_parent access
664 	 * here because we never renaming inside the snapped namespace
665 	 * except to resplice to another snapdir, and either the old or new
666 	 * result is a valid result.
667 	 */
668 	while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
669 		dentry = dentry->d_parent;
670 	return dentry;
671 }
672 
673 static int __choose_mds(struct ceph_mds_client *mdsc,
674 			struct ceph_mds_request *req)
675 {
676 	struct inode *inode;
677 	struct ceph_inode_info *ci;
678 	struct ceph_cap *cap;
679 	int mode = req->r_direct_mode;
680 	int mds = -1;
681 	u32 hash = req->r_direct_hash;
682 	bool is_hash = req->r_direct_is_hash;
683 
684 	/*
685 	 * is there a specific mds we should try?  ignore hint if we have
686 	 * no session and the mds is not up (active or recovering).
687 	 */
688 	if (req->r_resend_mds >= 0 &&
689 	    (__have_session(mdsc, req->r_resend_mds) ||
690 	     ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
691 		dout("choose_mds using resend_mds mds%d\n",
692 		     req->r_resend_mds);
693 		return req->r_resend_mds;
694 	}
695 
696 	if (mode == USE_RANDOM_MDS)
697 		goto random;
698 
699 	inode = NULL;
700 	if (req->r_inode) {
701 		inode = req->r_inode;
702 	} else if (req->r_dentry) {
703 		/* ignore race with rename; old or new d_parent is okay */
704 		struct dentry *parent = req->r_dentry->d_parent;
705 		struct inode *dir = parent->d_inode;
706 
707 		if (dir->i_sb != mdsc->fsc->sb) {
708 			/* not this fs! */
709 			inode = req->r_dentry->d_inode;
710 		} else if (ceph_snap(dir) != CEPH_NOSNAP) {
711 			/* direct snapped/virtual snapdir requests
712 			 * based on parent dir inode */
713 			struct dentry *dn = get_nonsnap_parent(parent);
714 			inode = dn->d_inode;
715 			dout("__choose_mds using nonsnap parent %p\n", inode);
716 		} else if (req->r_dentry->d_inode) {
717 			/* dentry target */
718 			inode = req->r_dentry->d_inode;
719 		} else {
720 			/* dir + name */
721 			inode = dir;
722 			hash = ceph_dentry_hash(dir, req->r_dentry);
723 			is_hash = true;
724 		}
725 	}
726 
727 	dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
728 	     (int)hash, mode);
729 	if (!inode)
730 		goto random;
731 	ci = ceph_inode(inode);
732 
733 	if (is_hash && S_ISDIR(inode->i_mode)) {
734 		struct ceph_inode_frag frag;
735 		int found;
736 
737 		ceph_choose_frag(ci, hash, &frag, &found);
738 		if (found) {
739 			if (mode == USE_ANY_MDS && frag.ndist > 0) {
740 				u8 r;
741 
742 				/* choose a random replica */
743 				get_random_bytes(&r, 1);
744 				r %= frag.ndist;
745 				mds = frag.dist[r];
746 				dout("choose_mds %p %llx.%llx "
747 				     "frag %u mds%d (%d/%d)\n",
748 				     inode, ceph_vinop(inode),
749 				     frag.frag, mds,
750 				     (int)r, frag.ndist);
751 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
752 				    CEPH_MDS_STATE_ACTIVE)
753 					return mds;
754 			}
755 
756 			/* since this file/dir wasn't known to be
757 			 * replicated, then we want to look for the
758 			 * authoritative mds. */
759 			mode = USE_AUTH_MDS;
760 			if (frag.mds >= 0) {
761 				/* choose auth mds */
762 				mds = frag.mds;
763 				dout("choose_mds %p %llx.%llx "
764 				     "frag %u mds%d (auth)\n",
765 				     inode, ceph_vinop(inode), frag.frag, mds);
766 				if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
767 				    CEPH_MDS_STATE_ACTIVE)
768 					return mds;
769 			}
770 		}
771 	}
772 
773 	spin_lock(&ci->i_ceph_lock);
774 	cap = NULL;
775 	if (mode == USE_AUTH_MDS)
776 		cap = ci->i_auth_cap;
777 	if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
778 		cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
779 	if (!cap) {
780 		spin_unlock(&ci->i_ceph_lock);
781 		goto random;
782 	}
783 	mds = cap->session->s_mds;
784 	dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
785 	     inode, ceph_vinop(inode), mds,
786 	     cap == ci->i_auth_cap ? "auth " : "", cap);
787 	spin_unlock(&ci->i_ceph_lock);
788 	return mds;
789 
790 random:
791 	mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
792 	dout("choose_mds chose random mds%d\n", mds);
793 	return mds;
794 }
795 
796 
797 /*
798  * session messages
799  */
800 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
801 {
802 	struct ceph_msg *msg;
803 	struct ceph_mds_session_head *h;
804 
805 	msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
806 			   false);
807 	if (!msg) {
808 		pr_err("create_session_msg ENOMEM creating msg\n");
809 		return NULL;
810 	}
811 	h = msg->front.iov_base;
812 	h->op = cpu_to_le32(op);
813 	h->seq = cpu_to_le64(seq);
814 	return msg;
815 }
816 
817 /*
818  * send session open request.
819  *
820  * called under mdsc->mutex
821  */
822 static int __open_session(struct ceph_mds_client *mdsc,
823 			  struct ceph_mds_session *session)
824 {
825 	struct ceph_msg *msg;
826 	int mstate;
827 	int mds = session->s_mds;
828 
829 	/* wait for mds to go active? */
830 	mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
831 	dout("open_session to mds%d (%s)\n", mds,
832 	     ceph_mds_state_name(mstate));
833 	session->s_state = CEPH_MDS_SESSION_OPENING;
834 	session->s_renew_requested = jiffies;
835 
836 	/* send connect message */
837 	msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
838 	if (!msg)
839 		return -ENOMEM;
840 	ceph_con_send(&session->s_con, msg);
841 	return 0;
842 }
843 
844 /*
845  * open sessions for any export targets for the given mds
846  *
847  * called under mdsc->mutex
848  */
849 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
850 					  struct ceph_mds_session *session)
851 {
852 	struct ceph_mds_info *mi;
853 	struct ceph_mds_session *ts;
854 	int i, mds = session->s_mds;
855 	int target;
856 
857 	if (mds >= mdsc->mdsmap->m_max_mds)
858 		return;
859 	mi = &mdsc->mdsmap->m_info[mds];
860 	dout("open_export_target_sessions for mds%d (%d targets)\n",
861 	     session->s_mds, mi->num_export_targets);
862 
863 	for (i = 0; i < mi->num_export_targets; i++) {
864 		target = mi->export_targets[i];
865 		ts = __ceph_lookup_mds_session(mdsc, target);
866 		if (!ts) {
867 			ts = register_session(mdsc, target);
868 			if (IS_ERR(ts))
869 				return;
870 		}
871 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
872 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
873 			__open_session(mdsc, session);
874 		else
875 			dout(" mds%d target mds%d %p is %s\n", session->s_mds,
876 			     i, ts, session_state_name(ts->s_state));
877 		ceph_put_mds_session(ts);
878 	}
879 }
880 
881 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
882 					   struct ceph_mds_session *session)
883 {
884 	mutex_lock(&mdsc->mutex);
885 	__open_export_target_sessions(mdsc, session);
886 	mutex_unlock(&mdsc->mutex);
887 }
888 
889 /*
890  * session caps
891  */
892 
893 /*
894  * Free preallocated cap messages assigned to this session
895  */
896 static void cleanup_cap_releases(struct ceph_mds_session *session)
897 {
898 	struct ceph_msg *msg;
899 
900 	spin_lock(&session->s_cap_lock);
901 	while (!list_empty(&session->s_cap_releases)) {
902 		msg = list_first_entry(&session->s_cap_releases,
903 				       struct ceph_msg, list_head);
904 		list_del_init(&msg->list_head);
905 		ceph_msg_put(msg);
906 	}
907 	while (!list_empty(&session->s_cap_releases_done)) {
908 		msg = list_first_entry(&session->s_cap_releases_done,
909 				       struct ceph_msg, list_head);
910 		list_del_init(&msg->list_head);
911 		ceph_msg_put(msg);
912 	}
913 	spin_unlock(&session->s_cap_lock);
914 }
915 
916 /*
917  * Helper to safely iterate over all caps associated with a session, with
918  * special care taken to handle a racing __ceph_remove_cap().
919  *
920  * Caller must hold session s_mutex.
921  */
922 static int iterate_session_caps(struct ceph_mds_session *session,
923 				 int (*cb)(struct inode *, struct ceph_cap *,
924 					    void *), void *arg)
925 {
926 	struct list_head *p;
927 	struct ceph_cap *cap;
928 	struct inode *inode, *last_inode = NULL;
929 	struct ceph_cap *old_cap = NULL;
930 	int ret;
931 
932 	dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
933 	spin_lock(&session->s_cap_lock);
934 	p = session->s_caps.next;
935 	while (p != &session->s_caps) {
936 		cap = list_entry(p, struct ceph_cap, session_caps);
937 		inode = igrab(&cap->ci->vfs_inode);
938 		if (!inode) {
939 			p = p->next;
940 			continue;
941 		}
942 		session->s_cap_iterator = cap;
943 		spin_unlock(&session->s_cap_lock);
944 
945 		if (last_inode) {
946 			iput(last_inode);
947 			last_inode = NULL;
948 		}
949 		if (old_cap) {
950 			ceph_put_cap(session->s_mdsc, old_cap);
951 			old_cap = NULL;
952 		}
953 
954 		ret = cb(inode, cap, arg);
955 		last_inode = inode;
956 
957 		spin_lock(&session->s_cap_lock);
958 		p = p->next;
959 		if (cap->ci == NULL) {
960 			dout("iterate_session_caps  finishing cap %p removal\n",
961 			     cap);
962 			BUG_ON(cap->session != session);
963 			list_del_init(&cap->session_caps);
964 			session->s_nr_caps--;
965 			cap->session = NULL;
966 			old_cap = cap;  /* put_cap it w/o locks held */
967 		}
968 		if (ret < 0)
969 			goto out;
970 	}
971 	ret = 0;
972 out:
973 	session->s_cap_iterator = NULL;
974 	spin_unlock(&session->s_cap_lock);
975 
976 	if (last_inode)
977 		iput(last_inode);
978 	if (old_cap)
979 		ceph_put_cap(session->s_mdsc, old_cap);
980 
981 	return ret;
982 }
983 
984 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
985 				  void *arg)
986 {
987 	struct ceph_inode_info *ci = ceph_inode(inode);
988 	int drop = 0;
989 
990 	dout("removing cap %p, ci is %p, inode is %p\n",
991 	     cap, ci, &ci->vfs_inode);
992 	spin_lock(&ci->i_ceph_lock);
993 	__ceph_remove_cap(cap, false);
994 	if (!__ceph_is_any_real_caps(ci)) {
995 		struct ceph_mds_client *mdsc =
996 			ceph_sb_to_client(inode->i_sb)->mdsc;
997 
998 		spin_lock(&mdsc->cap_dirty_lock);
999 		if (!list_empty(&ci->i_dirty_item)) {
1000 			pr_info(" dropping dirty %s state for %p %lld\n",
1001 				ceph_cap_string(ci->i_dirty_caps),
1002 				inode, ceph_ino(inode));
1003 			ci->i_dirty_caps = 0;
1004 			list_del_init(&ci->i_dirty_item);
1005 			drop = 1;
1006 		}
1007 		if (!list_empty(&ci->i_flushing_item)) {
1008 			pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1009 				ceph_cap_string(ci->i_flushing_caps),
1010 				inode, ceph_ino(inode));
1011 			ci->i_flushing_caps = 0;
1012 			list_del_init(&ci->i_flushing_item);
1013 			mdsc->num_cap_flushing--;
1014 			drop = 1;
1015 		}
1016 		if (drop && ci->i_wrbuffer_ref) {
1017 			pr_info(" dropping dirty data for %p %lld\n",
1018 				inode, ceph_ino(inode));
1019 			ci->i_wrbuffer_ref = 0;
1020 			ci->i_wrbuffer_ref_head = 0;
1021 			drop++;
1022 		}
1023 		spin_unlock(&mdsc->cap_dirty_lock);
1024 	}
1025 	spin_unlock(&ci->i_ceph_lock);
1026 	while (drop--)
1027 		iput(inode);
1028 	return 0;
1029 }
1030 
1031 /*
1032  * caller must hold session s_mutex
1033  */
1034 static void remove_session_caps(struct ceph_mds_session *session)
1035 {
1036 	dout("remove_session_caps on %p\n", session);
1037 	iterate_session_caps(session, remove_session_caps_cb, NULL);
1038 
1039 	spin_lock(&session->s_cap_lock);
1040 	if (session->s_nr_caps > 0) {
1041 		struct super_block *sb = session->s_mdsc->fsc->sb;
1042 		struct inode *inode;
1043 		struct ceph_cap *cap, *prev = NULL;
1044 		struct ceph_vino vino;
1045 		/*
1046 		 * iterate_session_caps() skips inodes that are being
1047 		 * deleted, we need to wait until deletions are complete.
1048 		 * __wait_on_freeing_inode() is designed for the job,
1049 		 * but it is not exported, so use lookup inode function
1050 		 * to access it.
1051 		 */
1052 		while (!list_empty(&session->s_caps)) {
1053 			cap = list_entry(session->s_caps.next,
1054 					 struct ceph_cap, session_caps);
1055 			if (cap == prev)
1056 				break;
1057 			prev = cap;
1058 			vino = cap->ci->i_vino;
1059 			spin_unlock(&session->s_cap_lock);
1060 
1061 			inode = ceph_find_inode(sb, vino);
1062 			iput(inode);
1063 
1064 			spin_lock(&session->s_cap_lock);
1065 		}
1066 	}
1067 	spin_unlock(&session->s_cap_lock);
1068 
1069 	BUG_ON(session->s_nr_caps > 0);
1070 	BUG_ON(!list_empty(&session->s_cap_flushing));
1071 	cleanup_cap_releases(session);
1072 }
1073 
1074 /*
1075  * wake up any threads waiting on this session's caps.  if the cap is
1076  * old (didn't get renewed on the client reconnect), remove it now.
1077  *
1078  * caller must hold s_mutex.
1079  */
1080 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1081 			      void *arg)
1082 {
1083 	struct ceph_inode_info *ci = ceph_inode(inode);
1084 
1085 	wake_up_all(&ci->i_cap_wq);
1086 	if (arg) {
1087 		spin_lock(&ci->i_ceph_lock);
1088 		ci->i_wanted_max_size = 0;
1089 		ci->i_requested_max_size = 0;
1090 		spin_unlock(&ci->i_ceph_lock);
1091 	}
1092 	return 0;
1093 }
1094 
1095 static void wake_up_session_caps(struct ceph_mds_session *session,
1096 				 int reconnect)
1097 {
1098 	dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1099 	iterate_session_caps(session, wake_up_session_cb,
1100 			     (void *)(unsigned long)reconnect);
1101 }
1102 
1103 /*
1104  * Send periodic message to MDS renewing all currently held caps.  The
1105  * ack will reset the expiration for all caps from this session.
1106  *
1107  * caller holds s_mutex
1108  */
1109 static int send_renew_caps(struct ceph_mds_client *mdsc,
1110 			   struct ceph_mds_session *session)
1111 {
1112 	struct ceph_msg *msg;
1113 	int state;
1114 
1115 	if (time_after_eq(jiffies, session->s_cap_ttl) &&
1116 	    time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1117 		pr_info("mds%d caps stale\n", session->s_mds);
1118 	session->s_renew_requested = jiffies;
1119 
1120 	/* do not try to renew caps until a recovering mds has reconnected
1121 	 * with its clients. */
1122 	state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1123 	if (state < CEPH_MDS_STATE_RECONNECT) {
1124 		dout("send_renew_caps ignoring mds%d (%s)\n",
1125 		     session->s_mds, ceph_mds_state_name(state));
1126 		return 0;
1127 	}
1128 
1129 	dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1130 		ceph_mds_state_name(state));
1131 	msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1132 				 ++session->s_renew_seq);
1133 	if (!msg)
1134 		return -ENOMEM;
1135 	ceph_con_send(&session->s_con, msg);
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1141  *
1142  * Called under session->s_mutex
1143  */
1144 static void renewed_caps(struct ceph_mds_client *mdsc,
1145 			 struct ceph_mds_session *session, int is_renew)
1146 {
1147 	int was_stale;
1148 	int wake = 0;
1149 
1150 	spin_lock(&session->s_cap_lock);
1151 	was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1152 
1153 	session->s_cap_ttl = session->s_renew_requested +
1154 		mdsc->mdsmap->m_session_timeout*HZ;
1155 
1156 	if (was_stale) {
1157 		if (time_before(jiffies, session->s_cap_ttl)) {
1158 			pr_info("mds%d caps renewed\n", session->s_mds);
1159 			wake = 1;
1160 		} else {
1161 			pr_info("mds%d caps still stale\n", session->s_mds);
1162 		}
1163 	}
1164 	dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1165 	     session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1166 	     time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1167 	spin_unlock(&session->s_cap_lock);
1168 
1169 	if (wake)
1170 		wake_up_session_caps(session, 0);
1171 }
1172 
1173 /*
1174  * send a session close request
1175  */
1176 static int request_close_session(struct ceph_mds_client *mdsc,
1177 				 struct ceph_mds_session *session)
1178 {
1179 	struct ceph_msg *msg;
1180 
1181 	dout("request_close_session mds%d state %s seq %lld\n",
1182 	     session->s_mds, session_state_name(session->s_state),
1183 	     session->s_seq);
1184 	msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1185 	if (!msg)
1186 		return -ENOMEM;
1187 	ceph_con_send(&session->s_con, msg);
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Called with s_mutex held.
1193  */
1194 static int __close_session(struct ceph_mds_client *mdsc,
1195 			 struct ceph_mds_session *session)
1196 {
1197 	if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1198 		return 0;
1199 	session->s_state = CEPH_MDS_SESSION_CLOSING;
1200 	return request_close_session(mdsc, session);
1201 }
1202 
1203 /*
1204  * Trim old(er) caps.
1205  *
1206  * Because we can't cache an inode without one or more caps, we do
1207  * this indirectly: if a cap is unused, we prune its aliases, at which
1208  * point the inode will hopefully get dropped to.
1209  *
1210  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1211  * memory pressure from the MDS, though, so it needn't be perfect.
1212  */
1213 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1214 {
1215 	struct ceph_mds_session *session = arg;
1216 	struct ceph_inode_info *ci = ceph_inode(inode);
1217 	int used, oissued, mine;
1218 
1219 	if (session->s_trim_caps <= 0)
1220 		return -1;
1221 
1222 	spin_lock(&ci->i_ceph_lock);
1223 	mine = cap->issued | cap->implemented;
1224 	used = __ceph_caps_used(ci);
1225 	oissued = __ceph_caps_issued_other(ci, cap);
1226 
1227 	dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1228 	     inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1229 	     ceph_cap_string(used));
1230 	if (ci->i_dirty_caps)
1231 		goto out;   /* dirty caps */
1232 	if ((used & ~oissued) & mine)
1233 		goto out;   /* we need these caps */
1234 
1235 	session->s_trim_caps--;
1236 	if (oissued) {
1237 		/* we aren't the only cap.. just remove us */
1238 		__ceph_remove_cap(cap, true);
1239 	} else {
1240 		/* try to drop referring dentries */
1241 		spin_unlock(&ci->i_ceph_lock);
1242 		d_prune_aliases(inode);
1243 		dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1244 		     inode, cap, atomic_read(&inode->i_count));
1245 		return 0;
1246 	}
1247 
1248 out:
1249 	spin_unlock(&ci->i_ceph_lock);
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Trim session cap count down to some max number.
1255  */
1256 static int trim_caps(struct ceph_mds_client *mdsc,
1257 		     struct ceph_mds_session *session,
1258 		     int max_caps)
1259 {
1260 	int trim_caps = session->s_nr_caps - max_caps;
1261 
1262 	dout("trim_caps mds%d start: %d / %d, trim %d\n",
1263 	     session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1264 	if (trim_caps > 0) {
1265 		session->s_trim_caps = trim_caps;
1266 		iterate_session_caps(session, trim_caps_cb, session);
1267 		dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1268 		     session->s_mds, session->s_nr_caps, max_caps,
1269 			trim_caps - session->s_trim_caps);
1270 		session->s_trim_caps = 0;
1271 	}
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Allocate cap_release messages.  If there is a partially full message
1277  * in the queue, try to allocate enough to cover it's remainder, so that
1278  * we can send it immediately.
1279  *
1280  * Called under s_mutex.
1281  */
1282 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1283 			  struct ceph_mds_session *session)
1284 {
1285 	struct ceph_msg *msg, *partial = NULL;
1286 	struct ceph_mds_cap_release *head;
1287 	int err = -ENOMEM;
1288 	int extra = mdsc->fsc->mount_options->cap_release_safety;
1289 	int num;
1290 
1291 	dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1292 	     extra);
1293 
1294 	spin_lock(&session->s_cap_lock);
1295 
1296 	if (!list_empty(&session->s_cap_releases)) {
1297 		msg = list_first_entry(&session->s_cap_releases,
1298 				       struct ceph_msg,
1299 				 list_head);
1300 		head = msg->front.iov_base;
1301 		num = le32_to_cpu(head->num);
1302 		if (num) {
1303 			dout(" partial %p with (%d/%d)\n", msg, num,
1304 			     (int)CEPH_CAPS_PER_RELEASE);
1305 			extra += CEPH_CAPS_PER_RELEASE - num;
1306 			partial = msg;
1307 		}
1308 	}
1309 	while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1310 		spin_unlock(&session->s_cap_lock);
1311 		msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1312 				   GFP_NOFS, false);
1313 		if (!msg)
1314 			goto out_unlocked;
1315 		dout("add_cap_releases %p msg %p now %d\n", session, msg,
1316 		     (int)msg->front.iov_len);
1317 		head = msg->front.iov_base;
1318 		head->num = cpu_to_le32(0);
1319 		msg->front.iov_len = sizeof(*head);
1320 		spin_lock(&session->s_cap_lock);
1321 		list_add(&msg->list_head, &session->s_cap_releases);
1322 		session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1323 	}
1324 
1325 	if (partial) {
1326 		head = partial->front.iov_base;
1327 		num = le32_to_cpu(head->num);
1328 		dout(" queueing partial %p with %d/%d\n", partial, num,
1329 		     (int)CEPH_CAPS_PER_RELEASE);
1330 		list_move_tail(&partial->list_head,
1331 			       &session->s_cap_releases_done);
1332 		session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1333 	}
1334 	err = 0;
1335 	spin_unlock(&session->s_cap_lock);
1336 out_unlocked:
1337 	return err;
1338 }
1339 
1340 /*
1341  * flush all dirty inode data to disk.
1342  *
1343  * returns true if we've flushed through want_flush_seq
1344  */
1345 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1346 {
1347 	int mds, ret = 1;
1348 
1349 	dout("check_cap_flush want %lld\n", want_flush_seq);
1350 	mutex_lock(&mdsc->mutex);
1351 	for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1352 		struct ceph_mds_session *session = mdsc->sessions[mds];
1353 
1354 		if (!session)
1355 			continue;
1356 		get_session(session);
1357 		mutex_unlock(&mdsc->mutex);
1358 
1359 		mutex_lock(&session->s_mutex);
1360 		if (!list_empty(&session->s_cap_flushing)) {
1361 			struct ceph_inode_info *ci =
1362 				list_entry(session->s_cap_flushing.next,
1363 					   struct ceph_inode_info,
1364 					   i_flushing_item);
1365 			struct inode *inode = &ci->vfs_inode;
1366 
1367 			spin_lock(&ci->i_ceph_lock);
1368 			if (ci->i_cap_flush_seq <= want_flush_seq) {
1369 				dout("check_cap_flush still flushing %p "
1370 				     "seq %lld <= %lld to mds%d\n", inode,
1371 				     ci->i_cap_flush_seq, want_flush_seq,
1372 				     session->s_mds);
1373 				ret = 0;
1374 			}
1375 			spin_unlock(&ci->i_ceph_lock);
1376 		}
1377 		mutex_unlock(&session->s_mutex);
1378 		ceph_put_mds_session(session);
1379 
1380 		if (!ret)
1381 			return ret;
1382 		mutex_lock(&mdsc->mutex);
1383 	}
1384 
1385 	mutex_unlock(&mdsc->mutex);
1386 	dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * called under s_mutex
1392  */
1393 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1394 			    struct ceph_mds_session *session)
1395 {
1396 	struct ceph_msg *msg;
1397 
1398 	dout("send_cap_releases mds%d\n", session->s_mds);
1399 	spin_lock(&session->s_cap_lock);
1400 	while (!list_empty(&session->s_cap_releases_done)) {
1401 		msg = list_first_entry(&session->s_cap_releases_done,
1402 				 struct ceph_msg, list_head);
1403 		list_del_init(&msg->list_head);
1404 		spin_unlock(&session->s_cap_lock);
1405 		msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1406 		dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1407 		ceph_con_send(&session->s_con, msg);
1408 		spin_lock(&session->s_cap_lock);
1409 	}
1410 	spin_unlock(&session->s_cap_lock);
1411 }
1412 
1413 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1414 				 struct ceph_mds_session *session)
1415 {
1416 	struct ceph_msg *msg;
1417 	struct ceph_mds_cap_release *head;
1418 	unsigned num;
1419 
1420 	dout("discard_cap_releases mds%d\n", session->s_mds);
1421 
1422 	/* zero out the in-progress message */
1423 	msg = list_first_entry(&session->s_cap_releases,
1424 			       struct ceph_msg, list_head);
1425 	head = msg->front.iov_base;
1426 	num = le32_to_cpu(head->num);
1427 	dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1428 	head->num = cpu_to_le32(0);
1429 	msg->front.iov_len = sizeof(*head);
1430 	session->s_num_cap_releases += num;
1431 
1432 	/* requeue completed messages */
1433 	while (!list_empty(&session->s_cap_releases_done)) {
1434 		msg = list_first_entry(&session->s_cap_releases_done,
1435 				 struct ceph_msg, list_head);
1436 		list_del_init(&msg->list_head);
1437 
1438 		head = msg->front.iov_base;
1439 		num = le32_to_cpu(head->num);
1440 		dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1441 		     num);
1442 		session->s_num_cap_releases += num;
1443 		head->num = cpu_to_le32(0);
1444 		msg->front.iov_len = sizeof(*head);
1445 		list_add(&msg->list_head, &session->s_cap_releases);
1446 	}
1447 }
1448 
1449 /*
1450  * requests
1451  */
1452 
1453 /*
1454  * Create an mds request.
1455  */
1456 struct ceph_mds_request *
1457 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1458 {
1459 	struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1460 
1461 	if (!req)
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	mutex_init(&req->r_fill_mutex);
1465 	req->r_mdsc = mdsc;
1466 	req->r_started = jiffies;
1467 	req->r_resend_mds = -1;
1468 	INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1469 	req->r_fmode = -1;
1470 	kref_init(&req->r_kref);
1471 	INIT_LIST_HEAD(&req->r_wait);
1472 	init_completion(&req->r_completion);
1473 	init_completion(&req->r_safe_completion);
1474 	INIT_LIST_HEAD(&req->r_unsafe_item);
1475 
1476 	req->r_op = op;
1477 	req->r_direct_mode = mode;
1478 	return req;
1479 }
1480 
1481 /*
1482  * return oldest (lowest) request, tid in request tree, 0 if none.
1483  *
1484  * called under mdsc->mutex.
1485  */
1486 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1487 {
1488 	if (RB_EMPTY_ROOT(&mdsc->request_tree))
1489 		return NULL;
1490 	return rb_entry(rb_first(&mdsc->request_tree),
1491 			struct ceph_mds_request, r_node);
1492 }
1493 
1494 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1495 {
1496 	struct ceph_mds_request *req = __get_oldest_req(mdsc);
1497 
1498 	if (req)
1499 		return req->r_tid;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1505  * on build_path_from_dentry in fs/cifs/dir.c.
1506  *
1507  * If @stop_on_nosnap, generate path relative to the first non-snapped
1508  * inode.
1509  *
1510  * Encode hidden .snap dirs as a double /, i.e.
1511  *   foo/.snap/bar -> foo//bar
1512  */
1513 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1514 			   int stop_on_nosnap)
1515 {
1516 	struct dentry *temp;
1517 	char *path;
1518 	int len, pos;
1519 	unsigned seq;
1520 
1521 	if (dentry == NULL)
1522 		return ERR_PTR(-EINVAL);
1523 
1524 retry:
1525 	len = 0;
1526 	seq = read_seqbegin(&rename_lock);
1527 	rcu_read_lock();
1528 	for (temp = dentry; !IS_ROOT(temp);) {
1529 		struct inode *inode = temp->d_inode;
1530 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1531 			len++;  /* slash only */
1532 		else if (stop_on_nosnap && inode &&
1533 			 ceph_snap(inode) == CEPH_NOSNAP)
1534 			break;
1535 		else
1536 			len += 1 + temp->d_name.len;
1537 		temp = temp->d_parent;
1538 	}
1539 	rcu_read_unlock();
1540 	if (len)
1541 		len--;  /* no leading '/' */
1542 
1543 	path = kmalloc(len+1, GFP_NOFS);
1544 	if (path == NULL)
1545 		return ERR_PTR(-ENOMEM);
1546 	pos = len;
1547 	path[pos] = 0;	/* trailing null */
1548 	rcu_read_lock();
1549 	for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1550 		struct inode *inode;
1551 
1552 		spin_lock(&temp->d_lock);
1553 		inode = temp->d_inode;
1554 		if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1555 			dout("build_path path+%d: %p SNAPDIR\n",
1556 			     pos, temp);
1557 		} else if (stop_on_nosnap && inode &&
1558 			   ceph_snap(inode) == CEPH_NOSNAP) {
1559 			spin_unlock(&temp->d_lock);
1560 			break;
1561 		} else {
1562 			pos -= temp->d_name.len;
1563 			if (pos < 0) {
1564 				spin_unlock(&temp->d_lock);
1565 				break;
1566 			}
1567 			strncpy(path + pos, temp->d_name.name,
1568 				temp->d_name.len);
1569 		}
1570 		spin_unlock(&temp->d_lock);
1571 		if (pos)
1572 			path[--pos] = '/';
1573 		temp = temp->d_parent;
1574 	}
1575 	rcu_read_unlock();
1576 	if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1577 		pr_err("build_path did not end path lookup where "
1578 		       "expected, namelen is %d, pos is %d\n", len, pos);
1579 		/* presumably this is only possible if racing with a
1580 		   rename of one of the parent directories (we can not
1581 		   lock the dentries above us to prevent this, but
1582 		   retrying should be harmless) */
1583 		kfree(path);
1584 		goto retry;
1585 	}
1586 
1587 	*base = ceph_ino(temp->d_inode);
1588 	*plen = len;
1589 	dout("build_path on %p %d built %llx '%.*s'\n",
1590 	     dentry, d_count(dentry), *base, len, path);
1591 	return path;
1592 }
1593 
1594 static int build_dentry_path(struct dentry *dentry,
1595 			     const char **ppath, int *ppathlen, u64 *pino,
1596 			     int *pfreepath)
1597 {
1598 	char *path;
1599 
1600 	if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1601 		*pino = ceph_ino(dentry->d_parent->d_inode);
1602 		*ppath = dentry->d_name.name;
1603 		*ppathlen = dentry->d_name.len;
1604 		return 0;
1605 	}
1606 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1607 	if (IS_ERR(path))
1608 		return PTR_ERR(path);
1609 	*ppath = path;
1610 	*pfreepath = 1;
1611 	return 0;
1612 }
1613 
1614 static int build_inode_path(struct inode *inode,
1615 			    const char **ppath, int *ppathlen, u64 *pino,
1616 			    int *pfreepath)
1617 {
1618 	struct dentry *dentry;
1619 	char *path;
1620 
1621 	if (ceph_snap(inode) == CEPH_NOSNAP) {
1622 		*pino = ceph_ino(inode);
1623 		*ppathlen = 0;
1624 		return 0;
1625 	}
1626 	dentry = d_find_alias(inode);
1627 	path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1628 	dput(dentry);
1629 	if (IS_ERR(path))
1630 		return PTR_ERR(path);
1631 	*ppath = path;
1632 	*pfreepath = 1;
1633 	return 0;
1634 }
1635 
1636 /*
1637  * request arguments may be specified via an inode *, a dentry *, or
1638  * an explicit ino+path.
1639  */
1640 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1641 				  const char *rpath, u64 rino,
1642 				  const char **ppath, int *pathlen,
1643 				  u64 *ino, int *freepath)
1644 {
1645 	int r = 0;
1646 
1647 	if (rinode) {
1648 		r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1649 		dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1650 		     ceph_snap(rinode));
1651 	} else if (rdentry) {
1652 		r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1653 		dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1654 		     *ppath);
1655 	} else if (rpath || rino) {
1656 		*ino = rino;
1657 		*ppath = rpath;
1658 		*pathlen = rpath ? strlen(rpath) : 0;
1659 		dout(" path %.*s\n", *pathlen, rpath);
1660 	}
1661 
1662 	return r;
1663 }
1664 
1665 /*
1666  * called under mdsc->mutex
1667  */
1668 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1669 					       struct ceph_mds_request *req,
1670 					       int mds)
1671 {
1672 	struct ceph_msg *msg;
1673 	struct ceph_mds_request_head *head;
1674 	const char *path1 = NULL;
1675 	const char *path2 = NULL;
1676 	u64 ino1 = 0, ino2 = 0;
1677 	int pathlen1 = 0, pathlen2 = 0;
1678 	int freepath1 = 0, freepath2 = 0;
1679 	int len;
1680 	u16 releases;
1681 	void *p, *end;
1682 	int ret;
1683 
1684 	ret = set_request_path_attr(req->r_inode, req->r_dentry,
1685 			      req->r_path1, req->r_ino1.ino,
1686 			      &path1, &pathlen1, &ino1, &freepath1);
1687 	if (ret < 0) {
1688 		msg = ERR_PTR(ret);
1689 		goto out;
1690 	}
1691 
1692 	ret = set_request_path_attr(NULL, req->r_old_dentry,
1693 			      req->r_path2, req->r_ino2.ino,
1694 			      &path2, &pathlen2, &ino2, &freepath2);
1695 	if (ret < 0) {
1696 		msg = ERR_PTR(ret);
1697 		goto out_free1;
1698 	}
1699 
1700 	len = sizeof(*head) +
1701 		pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1702 
1703 	/* calculate (max) length for cap releases */
1704 	len += sizeof(struct ceph_mds_request_release) *
1705 		(!!req->r_inode_drop + !!req->r_dentry_drop +
1706 		 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1707 	if (req->r_dentry_drop)
1708 		len += req->r_dentry->d_name.len;
1709 	if (req->r_old_dentry_drop)
1710 		len += req->r_old_dentry->d_name.len;
1711 
1712 	msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1713 	if (!msg) {
1714 		msg = ERR_PTR(-ENOMEM);
1715 		goto out_free2;
1716 	}
1717 
1718 	msg->hdr.tid = cpu_to_le64(req->r_tid);
1719 
1720 	head = msg->front.iov_base;
1721 	p = msg->front.iov_base + sizeof(*head);
1722 	end = msg->front.iov_base + msg->front.iov_len;
1723 
1724 	head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1725 	head->op = cpu_to_le32(req->r_op);
1726 	head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1727 	head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1728 	head->args = req->r_args;
1729 
1730 	ceph_encode_filepath(&p, end, ino1, path1);
1731 	ceph_encode_filepath(&p, end, ino2, path2);
1732 
1733 	/* make note of release offset, in case we need to replay */
1734 	req->r_request_release_offset = p - msg->front.iov_base;
1735 
1736 	/* cap releases */
1737 	releases = 0;
1738 	if (req->r_inode_drop)
1739 		releases += ceph_encode_inode_release(&p,
1740 		      req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1741 		      mds, req->r_inode_drop, req->r_inode_unless, 0);
1742 	if (req->r_dentry_drop)
1743 		releases += ceph_encode_dentry_release(&p, req->r_dentry,
1744 		       mds, req->r_dentry_drop, req->r_dentry_unless);
1745 	if (req->r_old_dentry_drop)
1746 		releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1747 		       mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1748 	if (req->r_old_inode_drop)
1749 		releases += ceph_encode_inode_release(&p,
1750 		      req->r_old_dentry->d_inode,
1751 		      mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1752 	head->num_releases = cpu_to_le16(releases);
1753 
1754 	BUG_ON(p > end);
1755 	msg->front.iov_len = p - msg->front.iov_base;
1756 	msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1757 
1758 	if (req->r_data_len) {
1759 		/* outbound data set only by ceph_sync_setxattr() */
1760 		BUG_ON(!req->r_pages);
1761 		ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1762 	}
1763 
1764 	msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1765 	msg->hdr.data_off = cpu_to_le16(0);
1766 
1767 out_free2:
1768 	if (freepath2)
1769 		kfree((char *)path2);
1770 out_free1:
1771 	if (freepath1)
1772 		kfree((char *)path1);
1773 out:
1774 	return msg;
1775 }
1776 
1777 /*
1778  * called under mdsc->mutex if error, under no mutex if
1779  * success.
1780  */
1781 static void complete_request(struct ceph_mds_client *mdsc,
1782 			     struct ceph_mds_request *req)
1783 {
1784 	if (req->r_callback)
1785 		req->r_callback(mdsc, req);
1786 	else
1787 		complete_all(&req->r_completion);
1788 }
1789 
1790 /*
1791  * called under mdsc->mutex
1792  */
1793 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1794 				  struct ceph_mds_request *req,
1795 				  int mds)
1796 {
1797 	struct ceph_mds_request_head *rhead;
1798 	struct ceph_msg *msg;
1799 	int flags = 0;
1800 
1801 	req->r_attempts++;
1802 	if (req->r_inode) {
1803 		struct ceph_cap *cap =
1804 			ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1805 
1806 		if (cap)
1807 			req->r_sent_on_mseq = cap->mseq;
1808 		else
1809 			req->r_sent_on_mseq = -1;
1810 	}
1811 	dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1812 	     req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1813 
1814 	if (req->r_got_unsafe) {
1815 		/*
1816 		 * Replay.  Do not regenerate message (and rebuild
1817 		 * paths, etc.); just use the original message.
1818 		 * Rebuilding paths will break for renames because
1819 		 * d_move mangles the src name.
1820 		 */
1821 		msg = req->r_request;
1822 		rhead = msg->front.iov_base;
1823 
1824 		flags = le32_to_cpu(rhead->flags);
1825 		flags |= CEPH_MDS_FLAG_REPLAY;
1826 		rhead->flags = cpu_to_le32(flags);
1827 
1828 		if (req->r_target_inode)
1829 			rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1830 
1831 		rhead->num_retry = req->r_attempts - 1;
1832 
1833 		/* remove cap/dentry releases from message */
1834 		rhead->num_releases = 0;
1835 		msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1836 		msg->front.iov_len = req->r_request_release_offset;
1837 		return 0;
1838 	}
1839 
1840 	if (req->r_request) {
1841 		ceph_msg_put(req->r_request);
1842 		req->r_request = NULL;
1843 	}
1844 	msg = create_request_message(mdsc, req, mds);
1845 	if (IS_ERR(msg)) {
1846 		req->r_err = PTR_ERR(msg);
1847 		complete_request(mdsc, req);
1848 		return PTR_ERR(msg);
1849 	}
1850 	req->r_request = msg;
1851 
1852 	rhead = msg->front.iov_base;
1853 	rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1854 	if (req->r_got_unsafe)
1855 		flags |= CEPH_MDS_FLAG_REPLAY;
1856 	if (req->r_locked_dir)
1857 		flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1858 	rhead->flags = cpu_to_le32(flags);
1859 	rhead->num_fwd = req->r_num_fwd;
1860 	rhead->num_retry = req->r_attempts - 1;
1861 	rhead->ino = 0;
1862 
1863 	dout(" r_locked_dir = %p\n", req->r_locked_dir);
1864 	return 0;
1865 }
1866 
1867 /*
1868  * send request, or put it on the appropriate wait list.
1869  */
1870 static int __do_request(struct ceph_mds_client *mdsc,
1871 			struct ceph_mds_request *req)
1872 {
1873 	struct ceph_mds_session *session = NULL;
1874 	int mds = -1;
1875 	int err = -EAGAIN;
1876 
1877 	if (req->r_err || req->r_got_result) {
1878 		if (req->r_aborted)
1879 			__unregister_request(mdsc, req);
1880 		goto out;
1881 	}
1882 
1883 	if (req->r_timeout &&
1884 	    time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1885 		dout("do_request timed out\n");
1886 		err = -EIO;
1887 		goto finish;
1888 	}
1889 
1890 	put_request_session(req);
1891 
1892 	mds = __choose_mds(mdsc, req);
1893 	if (mds < 0 ||
1894 	    ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1895 		dout("do_request no mds or not active, waiting for map\n");
1896 		list_add(&req->r_wait, &mdsc->waiting_for_map);
1897 		goto out;
1898 	}
1899 
1900 	/* get, open session */
1901 	session = __ceph_lookup_mds_session(mdsc, mds);
1902 	if (!session) {
1903 		session = register_session(mdsc, mds);
1904 		if (IS_ERR(session)) {
1905 			err = PTR_ERR(session);
1906 			goto finish;
1907 		}
1908 	}
1909 	req->r_session = get_session(session);
1910 
1911 	dout("do_request mds%d session %p state %s\n", mds, session,
1912 	     session_state_name(session->s_state));
1913 	if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1914 	    session->s_state != CEPH_MDS_SESSION_HUNG) {
1915 		if (session->s_state == CEPH_MDS_SESSION_NEW ||
1916 		    session->s_state == CEPH_MDS_SESSION_CLOSING)
1917 			__open_session(mdsc, session);
1918 		list_add(&req->r_wait, &session->s_waiting);
1919 		goto out_session;
1920 	}
1921 
1922 	/* send request */
1923 	req->r_resend_mds = -1;   /* forget any previous mds hint */
1924 
1925 	if (req->r_request_started == 0)   /* note request start time */
1926 		req->r_request_started = jiffies;
1927 
1928 	err = __prepare_send_request(mdsc, req, mds);
1929 	if (!err) {
1930 		ceph_msg_get(req->r_request);
1931 		ceph_con_send(&session->s_con, req->r_request);
1932 	}
1933 
1934 out_session:
1935 	ceph_put_mds_session(session);
1936 out:
1937 	return err;
1938 
1939 finish:
1940 	req->r_err = err;
1941 	complete_request(mdsc, req);
1942 	goto out;
1943 }
1944 
1945 /*
1946  * called under mdsc->mutex
1947  */
1948 static void __wake_requests(struct ceph_mds_client *mdsc,
1949 			    struct list_head *head)
1950 {
1951 	struct ceph_mds_request *req;
1952 	LIST_HEAD(tmp_list);
1953 
1954 	list_splice_init(head, &tmp_list);
1955 
1956 	while (!list_empty(&tmp_list)) {
1957 		req = list_entry(tmp_list.next,
1958 				 struct ceph_mds_request, r_wait);
1959 		list_del_init(&req->r_wait);
1960 		dout(" wake request %p tid %llu\n", req, req->r_tid);
1961 		__do_request(mdsc, req);
1962 	}
1963 }
1964 
1965 /*
1966  * Wake up threads with requests pending for @mds, so that they can
1967  * resubmit their requests to a possibly different mds.
1968  */
1969 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1970 {
1971 	struct ceph_mds_request *req;
1972 	struct rb_node *p;
1973 
1974 	dout("kick_requests mds%d\n", mds);
1975 	for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1976 		req = rb_entry(p, struct ceph_mds_request, r_node);
1977 		if (req->r_got_unsafe)
1978 			continue;
1979 		if (req->r_session &&
1980 		    req->r_session->s_mds == mds) {
1981 			dout(" kicking tid %llu\n", req->r_tid);
1982 			__do_request(mdsc, req);
1983 		}
1984 	}
1985 }
1986 
1987 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1988 			      struct ceph_mds_request *req)
1989 {
1990 	dout("submit_request on %p\n", req);
1991 	mutex_lock(&mdsc->mutex);
1992 	__register_request(mdsc, req, NULL);
1993 	__do_request(mdsc, req);
1994 	mutex_unlock(&mdsc->mutex);
1995 }
1996 
1997 /*
1998  * Synchrously perform an mds request.  Take care of all of the
1999  * session setup, forwarding, retry details.
2000  */
2001 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2002 			 struct inode *dir,
2003 			 struct ceph_mds_request *req)
2004 {
2005 	int err;
2006 
2007 	dout("do_request on %p\n", req);
2008 
2009 	/* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2010 	if (req->r_inode)
2011 		ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2012 	if (req->r_locked_dir)
2013 		ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2014 	if (req->r_old_dentry)
2015 		ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2016 				  CEPH_CAP_PIN);
2017 
2018 	/* issue */
2019 	mutex_lock(&mdsc->mutex);
2020 	__register_request(mdsc, req, dir);
2021 	__do_request(mdsc, req);
2022 
2023 	if (req->r_err) {
2024 		err = req->r_err;
2025 		__unregister_request(mdsc, req);
2026 		dout("do_request early error %d\n", err);
2027 		goto out;
2028 	}
2029 
2030 	/* wait */
2031 	mutex_unlock(&mdsc->mutex);
2032 	dout("do_request waiting\n");
2033 	if (req->r_timeout) {
2034 		err = (long)wait_for_completion_killable_timeout(
2035 			&req->r_completion, req->r_timeout);
2036 		if (err == 0)
2037 			err = -EIO;
2038 	} else {
2039 		err = wait_for_completion_killable(&req->r_completion);
2040 	}
2041 	dout("do_request waited, got %d\n", err);
2042 	mutex_lock(&mdsc->mutex);
2043 
2044 	/* only abort if we didn't race with a real reply */
2045 	if (req->r_got_result) {
2046 		err = le32_to_cpu(req->r_reply_info.head->result);
2047 	} else if (err < 0) {
2048 		dout("aborted request %lld with %d\n", req->r_tid, err);
2049 
2050 		/*
2051 		 * ensure we aren't running concurrently with
2052 		 * ceph_fill_trace or ceph_readdir_prepopulate, which
2053 		 * rely on locks (dir mutex) held by our caller.
2054 		 */
2055 		mutex_lock(&req->r_fill_mutex);
2056 		req->r_err = err;
2057 		req->r_aborted = true;
2058 		mutex_unlock(&req->r_fill_mutex);
2059 
2060 		if (req->r_locked_dir &&
2061 		    (req->r_op & CEPH_MDS_OP_WRITE))
2062 			ceph_invalidate_dir_request(req);
2063 	} else {
2064 		err = req->r_err;
2065 	}
2066 
2067 out:
2068 	mutex_unlock(&mdsc->mutex);
2069 	dout("do_request %p done, result %d\n", req, err);
2070 	return err;
2071 }
2072 
2073 /*
2074  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2075  * namespace request.
2076  */
2077 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2078 {
2079 	struct inode *inode = req->r_locked_dir;
2080 
2081 	dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2082 
2083 	ceph_dir_clear_complete(inode);
2084 	if (req->r_dentry)
2085 		ceph_invalidate_dentry_lease(req->r_dentry);
2086 	if (req->r_old_dentry)
2087 		ceph_invalidate_dentry_lease(req->r_old_dentry);
2088 }
2089 
2090 /*
2091  * Handle mds reply.
2092  *
2093  * We take the session mutex and parse and process the reply immediately.
2094  * This preserves the logical ordering of replies, capabilities, etc., sent
2095  * by the MDS as they are applied to our local cache.
2096  */
2097 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2098 {
2099 	struct ceph_mds_client *mdsc = session->s_mdsc;
2100 	struct ceph_mds_request *req;
2101 	struct ceph_mds_reply_head *head = msg->front.iov_base;
2102 	struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2103 	u64 tid;
2104 	int err, result;
2105 	int mds = session->s_mds;
2106 
2107 	if (msg->front.iov_len < sizeof(*head)) {
2108 		pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2109 		ceph_msg_dump(msg);
2110 		return;
2111 	}
2112 
2113 	/* get request, session */
2114 	tid = le64_to_cpu(msg->hdr.tid);
2115 	mutex_lock(&mdsc->mutex);
2116 	req = __lookup_request(mdsc, tid);
2117 	if (!req) {
2118 		dout("handle_reply on unknown tid %llu\n", tid);
2119 		mutex_unlock(&mdsc->mutex);
2120 		return;
2121 	}
2122 	dout("handle_reply %p\n", req);
2123 
2124 	/* correct session? */
2125 	if (req->r_session != session) {
2126 		pr_err("mdsc_handle_reply got %llu on session mds%d"
2127 		       " not mds%d\n", tid, session->s_mds,
2128 		       req->r_session ? req->r_session->s_mds : -1);
2129 		mutex_unlock(&mdsc->mutex);
2130 		goto out;
2131 	}
2132 
2133 	/* dup? */
2134 	if ((req->r_got_unsafe && !head->safe) ||
2135 	    (req->r_got_safe && head->safe)) {
2136 		pr_warning("got a dup %s reply on %llu from mds%d\n",
2137 			   head->safe ? "safe" : "unsafe", tid, mds);
2138 		mutex_unlock(&mdsc->mutex);
2139 		goto out;
2140 	}
2141 	if (req->r_got_safe && !head->safe) {
2142 		pr_warning("got unsafe after safe on %llu from mds%d\n",
2143 			   tid, mds);
2144 		mutex_unlock(&mdsc->mutex);
2145 		goto out;
2146 	}
2147 
2148 	result = le32_to_cpu(head->result);
2149 
2150 	/*
2151 	 * Handle an ESTALE
2152 	 * if we're not talking to the authority, send to them
2153 	 * if the authority has changed while we weren't looking,
2154 	 * send to new authority
2155 	 * Otherwise we just have to return an ESTALE
2156 	 */
2157 	if (result == -ESTALE) {
2158 		dout("got ESTALE on request %llu", req->r_tid);
2159 		if (!req->r_inode) {
2160 			/* do nothing; not an authority problem */
2161 		} else if (req->r_direct_mode != USE_AUTH_MDS) {
2162 			dout("not using auth, setting for that now");
2163 			req->r_direct_mode = USE_AUTH_MDS;
2164 			__do_request(mdsc, req);
2165 			mutex_unlock(&mdsc->mutex);
2166 			goto out;
2167 		} else  {
2168 			struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2169 			struct ceph_cap *cap = NULL;
2170 
2171 			if (req->r_session)
2172 				cap = ceph_get_cap_for_mds(ci,
2173 						   req->r_session->s_mds);
2174 
2175 			dout("already using auth");
2176 			if ((!cap || cap != ci->i_auth_cap) ||
2177 			    (cap->mseq != req->r_sent_on_mseq)) {
2178 				dout("but cap changed, so resending");
2179 				__do_request(mdsc, req);
2180 				mutex_unlock(&mdsc->mutex);
2181 				goto out;
2182 			}
2183 		}
2184 		dout("have to return ESTALE on request %llu", req->r_tid);
2185 	}
2186 
2187 
2188 	if (head->safe) {
2189 		req->r_got_safe = true;
2190 		__unregister_request(mdsc, req);
2191 
2192 		if (req->r_got_unsafe) {
2193 			/*
2194 			 * We already handled the unsafe response, now do the
2195 			 * cleanup.  No need to examine the response; the MDS
2196 			 * doesn't include any result info in the safe
2197 			 * response.  And even if it did, there is nothing
2198 			 * useful we could do with a revised return value.
2199 			 */
2200 			dout("got safe reply %llu, mds%d\n", tid, mds);
2201 			list_del_init(&req->r_unsafe_item);
2202 
2203 			/* last unsafe request during umount? */
2204 			if (mdsc->stopping && !__get_oldest_req(mdsc))
2205 				complete_all(&mdsc->safe_umount_waiters);
2206 			mutex_unlock(&mdsc->mutex);
2207 			goto out;
2208 		}
2209 	} else {
2210 		req->r_got_unsafe = true;
2211 		list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2212 	}
2213 
2214 	dout("handle_reply tid %lld result %d\n", tid, result);
2215 	rinfo = &req->r_reply_info;
2216 	err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2217 	mutex_unlock(&mdsc->mutex);
2218 
2219 	mutex_lock(&session->s_mutex);
2220 	if (err < 0) {
2221 		pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2222 		ceph_msg_dump(msg);
2223 		goto out_err;
2224 	}
2225 
2226 	/* snap trace */
2227 	if (rinfo->snapblob_len) {
2228 		down_write(&mdsc->snap_rwsem);
2229 		ceph_update_snap_trace(mdsc, rinfo->snapblob,
2230 			       rinfo->snapblob + rinfo->snapblob_len,
2231 			       le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2232 		downgrade_write(&mdsc->snap_rwsem);
2233 	} else {
2234 		down_read(&mdsc->snap_rwsem);
2235 	}
2236 
2237 	/* insert trace into our cache */
2238 	mutex_lock(&req->r_fill_mutex);
2239 	err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2240 	if (err == 0) {
2241 		if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2242 				    req->r_op == CEPH_MDS_OP_LSSNAP))
2243 			ceph_readdir_prepopulate(req, req->r_session);
2244 		ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2245 	}
2246 	mutex_unlock(&req->r_fill_mutex);
2247 
2248 	up_read(&mdsc->snap_rwsem);
2249 out_err:
2250 	mutex_lock(&mdsc->mutex);
2251 	if (!req->r_aborted) {
2252 		if (err) {
2253 			req->r_err = err;
2254 		} else {
2255 			req->r_reply = msg;
2256 			ceph_msg_get(msg);
2257 			req->r_got_result = true;
2258 		}
2259 	} else {
2260 		dout("reply arrived after request %lld was aborted\n", tid);
2261 	}
2262 	mutex_unlock(&mdsc->mutex);
2263 
2264 	ceph_add_cap_releases(mdsc, req->r_session);
2265 	mutex_unlock(&session->s_mutex);
2266 
2267 	/* kick calling process */
2268 	complete_request(mdsc, req);
2269 out:
2270 	ceph_mdsc_put_request(req);
2271 	return;
2272 }
2273 
2274 
2275 
2276 /*
2277  * handle mds notification that our request has been forwarded.
2278  */
2279 static void handle_forward(struct ceph_mds_client *mdsc,
2280 			   struct ceph_mds_session *session,
2281 			   struct ceph_msg *msg)
2282 {
2283 	struct ceph_mds_request *req;
2284 	u64 tid = le64_to_cpu(msg->hdr.tid);
2285 	u32 next_mds;
2286 	u32 fwd_seq;
2287 	int err = -EINVAL;
2288 	void *p = msg->front.iov_base;
2289 	void *end = p + msg->front.iov_len;
2290 
2291 	ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2292 	next_mds = ceph_decode_32(&p);
2293 	fwd_seq = ceph_decode_32(&p);
2294 
2295 	mutex_lock(&mdsc->mutex);
2296 	req = __lookup_request(mdsc, tid);
2297 	if (!req) {
2298 		dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2299 		goto out;  /* dup reply? */
2300 	}
2301 
2302 	if (req->r_aborted) {
2303 		dout("forward tid %llu aborted, unregistering\n", tid);
2304 		__unregister_request(mdsc, req);
2305 	} else if (fwd_seq <= req->r_num_fwd) {
2306 		dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2307 		     tid, next_mds, req->r_num_fwd, fwd_seq);
2308 	} else {
2309 		/* resend. forward race not possible; mds would drop */
2310 		dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2311 		BUG_ON(req->r_err);
2312 		BUG_ON(req->r_got_result);
2313 		req->r_num_fwd = fwd_seq;
2314 		req->r_resend_mds = next_mds;
2315 		put_request_session(req);
2316 		__do_request(mdsc, req);
2317 	}
2318 	ceph_mdsc_put_request(req);
2319 out:
2320 	mutex_unlock(&mdsc->mutex);
2321 	return;
2322 
2323 bad:
2324 	pr_err("mdsc_handle_forward decode error err=%d\n", err);
2325 }
2326 
2327 /*
2328  * handle a mds session control message
2329  */
2330 static void handle_session(struct ceph_mds_session *session,
2331 			   struct ceph_msg *msg)
2332 {
2333 	struct ceph_mds_client *mdsc = session->s_mdsc;
2334 	u32 op;
2335 	u64 seq;
2336 	int mds = session->s_mds;
2337 	struct ceph_mds_session_head *h = msg->front.iov_base;
2338 	int wake = 0;
2339 
2340 	/* decode */
2341 	if (msg->front.iov_len != sizeof(*h))
2342 		goto bad;
2343 	op = le32_to_cpu(h->op);
2344 	seq = le64_to_cpu(h->seq);
2345 
2346 	mutex_lock(&mdsc->mutex);
2347 	if (op == CEPH_SESSION_CLOSE)
2348 		__unregister_session(mdsc, session);
2349 	/* FIXME: this ttl calculation is generous */
2350 	session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2351 	mutex_unlock(&mdsc->mutex);
2352 
2353 	mutex_lock(&session->s_mutex);
2354 
2355 	dout("handle_session mds%d %s %p state %s seq %llu\n",
2356 	     mds, ceph_session_op_name(op), session,
2357 	     session_state_name(session->s_state), seq);
2358 
2359 	if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2360 		session->s_state = CEPH_MDS_SESSION_OPEN;
2361 		pr_info("mds%d came back\n", session->s_mds);
2362 	}
2363 
2364 	switch (op) {
2365 	case CEPH_SESSION_OPEN:
2366 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2367 			pr_info("mds%d reconnect success\n", session->s_mds);
2368 		session->s_state = CEPH_MDS_SESSION_OPEN;
2369 		renewed_caps(mdsc, session, 0);
2370 		wake = 1;
2371 		if (mdsc->stopping)
2372 			__close_session(mdsc, session);
2373 		break;
2374 
2375 	case CEPH_SESSION_RENEWCAPS:
2376 		if (session->s_renew_seq == seq)
2377 			renewed_caps(mdsc, session, 1);
2378 		break;
2379 
2380 	case CEPH_SESSION_CLOSE:
2381 		if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2382 			pr_info("mds%d reconnect denied\n", session->s_mds);
2383 		remove_session_caps(session);
2384 		wake = 1; /* for good measure */
2385 		wake_up_all(&mdsc->session_close_wq);
2386 		kick_requests(mdsc, mds);
2387 		break;
2388 
2389 	case CEPH_SESSION_STALE:
2390 		pr_info("mds%d caps went stale, renewing\n",
2391 			session->s_mds);
2392 		spin_lock(&session->s_gen_ttl_lock);
2393 		session->s_cap_gen++;
2394 		session->s_cap_ttl = jiffies - 1;
2395 		spin_unlock(&session->s_gen_ttl_lock);
2396 		send_renew_caps(mdsc, session);
2397 		break;
2398 
2399 	case CEPH_SESSION_RECALL_STATE:
2400 		trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2401 		break;
2402 
2403 	default:
2404 		pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2405 		WARN_ON(1);
2406 	}
2407 
2408 	mutex_unlock(&session->s_mutex);
2409 	if (wake) {
2410 		mutex_lock(&mdsc->mutex);
2411 		__wake_requests(mdsc, &session->s_waiting);
2412 		mutex_unlock(&mdsc->mutex);
2413 	}
2414 	return;
2415 
2416 bad:
2417 	pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2418 	       (int)msg->front.iov_len);
2419 	ceph_msg_dump(msg);
2420 	return;
2421 }
2422 
2423 
2424 /*
2425  * called under session->mutex.
2426  */
2427 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2428 				   struct ceph_mds_session *session)
2429 {
2430 	struct ceph_mds_request *req, *nreq;
2431 	int err;
2432 
2433 	dout("replay_unsafe_requests mds%d\n", session->s_mds);
2434 
2435 	mutex_lock(&mdsc->mutex);
2436 	list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2437 		err = __prepare_send_request(mdsc, req, session->s_mds);
2438 		if (!err) {
2439 			ceph_msg_get(req->r_request);
2440 			ceph_con_send(&session->s_con, req->r_request);
2441 		}
2442 	}
2443 	mutex_unlock(&mdsc->mutex);
2444 }
2445 
2446 /*
2447  * Encode information about a cap for a reconnect with the MDS.
2448  */
2449 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2450 			  void *arg)
2451 {
2452 	union {
2453 		struct ceph_mds_cap_reconnect v2;
2454 		struct ceph_mds_cap_reconnect_v1 v1;
2455 	} rec;
2456 	size_t reclen;
2457 	struct ceph_inode_info *ci;
2458 	struct ceph_reconnect_state *recon_state = arg;
2459 	struct ceph_pagelist *pagelist = recon_state->pagelist;
2460 	char *path;
2461 	int pathlen, err;
2462 	u64 pathbase;
2463 	struct dentry *dentry;
2464 
2465 	ci = cap->ci;
2466 
2467 	dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2468 	     inode, ceph_vinop(inode), cap, cap->cap_id,
2469 	     ceph_cap_string(cap->issued));
2470 	err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2471 	if (err)
2472 		return err;
2473 
2474 	dentry = d_find_alias(inode);
2475 	if (dentry) {
2476 		path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2477 		if (IS_ERR(path)) {
2478 			err = PTR_ERR(path);
2479 			goto out_dput;
2480 		}
2481 	} else {
2482 		path = NULL;
2483 		pathlen = 0;
2484 	}
2485 	err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2486 	if (err)
2487 		goto out_free;
2488 
2489 	spin_lock(&ci->i_ceph_lock);
2490 	cap->seq = 0;        /* reset cap seq */
2491 	cap->issue_seq = 0;  /* and issue_seq */
2492 	cap->mseq = 0;       /* and migrate_seq */
2493 	cap->cap_gen = cap->session->s_cap_gen;
2494 
2495 	if (recon_state->flock) {
2496 		rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2497 		rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2498 		rec.v2.issued = cpu_to_le32(cap->issued);
2499 		rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2500 		rec.v2.pathbase = cpu_to_le64(pathbase);
2501 		rec.v2.flock_len = 0;
2502 		reclen = sizeof(rec.v2);
2503 	} else {
2504 		rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2505 		rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2506 		rec.v1.issued = cpu_to_le32(cap->issued);
2507 		rec.v1.size = cpu_to_le64(inode->i_size);
2508 		ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2509 		ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2510 		rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2511 		rec.v1.pathbase = cpu_to_le64(pathbase);
2512 		reclen = sizeof(rec.v1);
2513 	}
2514 	spin_unlock(&ci->i_ceph_lock);
2515 
2516 	if (recon_state->flock) {
2517 		int num_fcntl_locks, num_flock_locks;
2518 		struct ceph_filelock *flocks;
2519 
2520 encode_again:
2521 		spin_lock(&inode->i_lock);
2522 		ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2523 		spin_unlock(&inode->i_lock);
2524 		flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2525 				 sizeof(struct ceph_filelock), GFP_NOFS);
2526 		if (!flocks) {
2527 			err = -ENOMEM;
2528 			goto out_free;
2529 		}
2530 		spin_lock(&inode->i_lock);
2531 		err = ceph_encode_locks_to_buffer(inode, flocks,
2532 						  num_fcntl_locks,
2533 						  num_flock_locks);
2534 		spin_unlock(&inode->i_lock);
2535 		if (err) {
2536 			kfree(flocks);
2537 			if (err == -ENOSPC)
2538 				goto encode_again;
2539 			goto out_free;
2540 		}
2541 		/*
2542 		 * number of encoded locks is stable, so copy to pagelist
2543 		 */
2544 		rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2545 				    (num_fcntl_locks+num_flock_locks) *
2546 				    sizeof(struct ceph_filelock));
2547 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2548 		if (!err)
2549 			err = ceph_locks_to_pagelist(flocks, pagelist,
2550 						     num_fcntl_locks,
2551 						     num_flock_locks);
2552 		kfree(flocks);
2553 	} else {
2554 		err = ceph_pagelist_append(pagelist, &rec, reclen);
2555 	}
2556 
2557 	recon_state->nr_caps++;
2558 out_free:
2559 	kfree(path);
2560 out_dput:
2561 	dput(dentry);
2562 	return err;
2563 }
2564 
2565 
2566 /*
2567  * If an MDS fails and recovers, clients need to reconnect in order to
2568  * reestablish shared state.  This includes all caps issued through
2569  * this session _and_ the snap_realm hierarchy.  Because it's not
2570  * clear which snap realms the mds cares about, we send everything we
2571  * know about.. that ensures we'll then get any new info the
2572  * recovering MDS might have.
2573  *
2574  * This is a relatively heavyweight operation, but it's rare.
2575  *
2576  * called with mdsc->mutex held.
2577  */
2578 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2579 			       struct ceph_mds_session *session)
2580 {
2581 	struct ceph_msg *reply;
2582 	struct rb_node *p;
2583 	int mds = session->s_mds;
2584 	int err = -ENOMEM;
2585 	int s_nr_caps;
2586 	struct ceph_pagelist *pagelist;
2587 	struct ceph_reconnect_state recon_state;
2588 
2589 	pr_info("mds%d reconnect start\n", mds);
2590 
2591 	pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2592 	if (!pagelist)
2593 		goto fail_nopagelist;
2594 	ceph_pagelist_init(pagelist);
2595 
2596 	reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2597 	if (!reply)
2598 		goto fail_nomsg;
2599 
2600 	mutex_lock(&session->s_mutex);
2601 	session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2602 	session->s_seq = 0;
2603 
2604 	ceph_con_close(&session->s_con);
2605 	ceph_con_open(&session->s_con,
2606 		      CEPH_ENTITY_TYPE_MDS, mds,
2607 		      ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2608 
2609 	/* replay unsafe requests */
2610 	replay_unsafe_requests(mdsc, session);
2611 
2612 	down_read(&mdsc->snap_rwsem);
2613 
2614 	dout("session %p state %s\n", session,
2615 	     session_state_name(session->s_state));
2616 
2617 	spin_lock(&session->s_gen_ttl_lock);
2618 	session->s_cap_gen++;
2619 	spin_unlock(&session->s_gen_ttl_lock);
2620 
2621 	spin_lock(&session->s_cap_lock);
2622 	/*
2623 	 * notify __ceph_remove_cap() that we are composing cap reconnect.
2624 	 * If a cap get released before being added to the cap reconnect,
2625 	 * __ceph_remove_cap() should skip queuing cap release.
2626 	 */
2627 	session->s_cap_reconnect = 1;
2628 	/* drop old cap expires; we're about to reestablish that state */
2629 	discard_cap_releases(mdsc, session);
2630 	spin_unlock(&session->s_cap_lock);
2631 
2632 	/* traverse this session's caps */
2633 	s_nr_caps = session->s_nr_caps;
2634 	err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2635 	if (err)
2636 		goto fail;
2637 
2638 	recon_state.nr_caps = 0;
2639 	recon_state.pagelist = pagelist;
2640 	recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2641 	err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2642 	if (err < 0)
2643 		goto fail;
2644 
2645 	spin_lock(&session->s_cap_lock);
2646 	session->s_cap_reconnect = 0;
2647 	spin_unlock(&session->s_cap_lock);
2648 
2649 	/*
2650 	 * snaprealms.  we provide mds with the ino, seq (version), and
2651 	 * parent for all of our realms.  If the mds has any newer info,
2652 	 * it will tell us.
2653 	 */
2654 	for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2655 		struct ceph_snap_realm *realm =
2656 			rb_entry(p, struct ceph_snap_realm, node);
2657 		struct ceph_mds_snaprealm_reconnect sr_rec;
2658 
2659 		dout(" adding snap realm %llx seq %lld parent %llx\n",
2660 		     realm->ino, realm->seq, realm->parent_ino);
2661 		sr_rec.ino = cpu_to_le64(realm->ino);
2662 		sr_rec.seq = cpu_to_le64(realm->seq);
2663 		sr_rec.parent = cpu_to_le64(realm->parent_ino);
2664 		err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2665 		if (err)
2666 			goto fail;
2667 	}
2668 
2669 	if (recon_state.flock)
2670 		reply->hdr.version = cpu_to_le16(2);
2671 
2672 	/* raced with cap release? */
2673 	if (s_nr_caps != recon_state.nr_caps) {
2674 		struct page *page = list_first_entry(&pagelist->head,
2675 						     struct page, lru);
2676 		__le32 *addr = kmap_atomic(page);
2677 		*addr = cpu_to_le32(recon_state.nr_caps);
2678 		kunmap_atomic(addr);
2679 	}
2680 
2681 	reply->hdr.data_len = cpu_to_le32(pagelist->length);
2682 	ceph_msg_data_add_pagelist(reply, pagelist);
2683 	ceph_con_send(&session->s_con, reply);
2684 
2685 	mutex_unlock(&session->s_mutex);
2686 
2687 	mutex_lock(&mdsc->mutex);
2688 	__wake_requests(mdsc, &session->s_waiting);
2689 	mutex_unlock(&mdsc->mutex);
2690 
2691 	up_read(&mdsc->snap_rwsem);
2692 	return;
2693 
2694 fail:
2695 	ceph_msg_put(reply);
2696 	up_read(&mdsc->snap_rwsem);
2697 	mutex_unlock(&session->s_mutex);
2698 fail_nomsg:
2699 	ceph_pagelist_release(pagelist);
2700 	kfree(pagelist);
2701 fail_nopagelist:
2702 	pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2703 	return;
2704 }
2705 
2706 
2707 /*
2708  * compare old and new mdsmaps, kicking requests
2709  * and closing out old connections as necessary
2710  *
2711  * called under mdsc->mutex.
2712  */
2713 static void check_new_map(struct ceph_mds_client *mdsc,
2714 			  struct ceph_mdsmap *newmap,
2715 			  struct ceph_mdsmap *oldmap)
2716 {
2717 	int i;
2718 	int oldstate, newstate;
2719 	struct ceph_mds_session *s;
2720 
2721 	dout("check_new_map new %u old %u\n",
2722 	     newmap->m_epoch, oldmap->m_epoch);
2723 
2724 	for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2725 		if (mdsc->sessions[i] == NULL)
2726 			continue;
2727 		s = mdsc->sessions[i];
2728 		oldstate = ceph_mdsmap_get_state(oldmap, i);
2729 		newstate = ceph_mdsmap_get_state(newmap, i);
2730 
2731 		dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2732 		     i, ceph_mds_state_name(oldstate),
2733 		     ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2734 		     ceph_mds_state_name(newstate),
2735 		     ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2736 		     session_state_name(s->s_state));
2737 
2738 		if (i >= newmap->m_max_mds ||
2739 		    memcmp(ceph_mdsmap_get_addr(oldmap, i),
2740 			   ceph_mdsmap_get_addr(newmap, i),
2741 			   sizeof(struct ceph_entity_addr))) {
2742 			if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2743 				/* the session never opened, just close it
2744 				 * out now */
2745 				__wake_requests(mdsc, &s->s_waiting);
2746 				__unregister_session(mdsc, s);
2747 			} else {
2748 				/* just close it */
2749 				mutex_unlock(&mdsc->mutex);
2750 				mutex_lock(&s->s_mutex);
2751 				mutex_lock(&mdsc->mutex);
2752 				ceph_con_close(&s->s_con);
2753 				mutex_unlock(&s->s_mutex);
2754 				s->s_state = CEPH_MDS_SESSION_RESTARTING;
2755 			}
2756 
2757 			/* kick any requests waiting on the recovering mds */
2758 			kick_requests(mdsc, i);
2759 		} else if (oldstate == newstate) {
2760 			continue;  /* nothing new with this mds */
2761 		}
2762 
2763 		/*
2764 		 * send reconnect?
2765 		 */
2766 		if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2767 		    newstate >= CEPH_MDS_STATE_RECONNECT) {
2768 			mutex_unlock(&mdsc->mutex);
2769 			send_mds_reconnect(mdsc, s);
2770 			mutex_lock(&mdsc->mutex);
2771 		}
2772 
2773 		/*
2774 		 * kick request on any mds that has gone active.
2775 		 */
2776 		if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2777 		    newstate >= CEPH_MDS_STATE_ACTIVE) {
2778 			if (oldstate != CEPH_MDS_STATE_CREATING &&
2779 			    oldstate != CEPH_MDS_STATE_STARTING)
2780 				pr_info("mds%d recovery completed\n", s->s_mds);
2781 			kick_requests(mdsc, i);
2782 			ceph_kick_flushing_caps(mdsc, s);
2783 			wake_up_session_caps(s, 1);
2784 		}
2785 	}
2786 
2787 	for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2788 		s = mdsc->sessions[i];
2789 		if (!s)
2790 			continue;
2791 		if (!ceph_mdsmap_is_laggy(newmap, i))
2792 			continue;
2793 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2794 		    s->s_state == CEPH_MDS_SESSION_HUNG ||
2795 		    s->s_state == CEPH_MDS_SESSION_CLOSING) {
2796 			dout(" connecting to export targets of laggy mds%d\n",
2797 			     i);
2798 			__open_export_target_sessions(mdsc, s);
2799 		}
2800 	}
2801 }
2802 
2803 
2804 
2805 /*
2806  * leases
2807  */
2808 
2809 /*
2810  * caller must hold session s_mutex, dentry->d_lock
2811  */
2812 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2813 {
2814 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2815 
2816 	ceph_put_mds_session(di->lease_session);
2817 	di->lease_session = NULL;
2818 }
2819 
2820 static void handle_lease(struct ceph_mds_client *mdsc,
2821 			 struct ceph_mds_session *session,
2822 			 struct ceph_msg *msg)
2823 {
2824 	struct super_block *sb = mdsc->fsc->sb;
2825 	struct inode *inode;
2826 	struct dentry *parent, *dentry;
2827 	struct ceph_dentry_info *di;
2828 	int mds = session->s_mds;
2829 	struct ceph_mds_lease *h = msg->front.iov_base;
2830 	u32 seq;
2831 	struct ceph_vino vino;
2832 	struct qstr dname;
2833 	int release = 0;
2834 
2835 	dout("handle_lease from mds%d\n", mds);
2836 
2837 	/* decode */
2838 	if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2839 		goto bad;
2840 	vino.ino = le64_to_cpu(h->ino);
2841 	vino.snap = CEPH_NOSNAP;
2842 	seq = le32_to_cpu(h->seq);
2843 	dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2844 	dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2845 	if (dname.len != get_unaligned_le32(h+1))
2846 		goto bad;
2847 
2848 	mutex_lock(&session->s_mutex);
2849 	session->s_seq++;
2850 
2851 	/* lookup inode */
2852 	inode = ceph_find_inode(sb, vino);
2853 	dout("handle_lease %s, ino %llx %p %.*s\n",
2854 	     ceph_lease_op_name(h->action), vino.ino, inode,
2855 	     dname.len, dname.name);
2856 	if (inode == NULL) {
2857 		dout("handle_lease no inode %llx\n", vino.ino);
2858 		goto release;
2859 	}
2860 
2861 	/* dentry */
2862 	parent = d_find_alias(inode);
2863 	if (!parent) {
2864 		dout("no parent dentry on inode %p\n", inode);
2865 		WARN_ON(1);
2866 		goto release;  /* hrm... */
2867 	}
2868 	dname.hash = full_name_hash(dname.name, dname.len);
2869 	dentry = d_lookup(parent, &dname);
2870 	dput(parent);
2871 	if (!dentry)
2872 		goto release;
2873 
2874 	spin_lock(&dentry->d_lock);
2875 	di = ceph_dentry(dentry);
2876 	switch (h->action) {
2877 	case CEPH_MDS_LEASE_REVOKE:
2878 		if (di->lease_session == session) {
2879 			if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2880 				h->seq = cpu_to_le32(di->lease_seq);
2881 			__ceph_mdsc_drop_dentry_lease(dentry);
2882 		}
2883 		release = 1;
2884 		break;
2885 
2886 	case CEPH_MDS_LEASE_RENEW:
2887 		if (di->lease_session == session &&
2888 		    di->lease_gen == session->s_cap_gen &&
2889 		    di->lease_renew_from &&
2890 		    di->lease_renew_after == 0) {
2891 			unsigned long duration =
2892 				le32_to_cpu(h->duration_ms) * HZ / 1000;
2893 
2894 			di->lease_seq = seq;
2895 			dentry->d_time = di->lease_renew_from + duration;
2896 			di->lease_renew_after = di->lease_renew_from +
2897 				(duration >> 1);
2898 			di->lease_renew_from = 0;
2899 		}
2900 		break;
2901 	}
2902 	spin_unlock(&dentry->d_lock);
2903 	dput(dentry);
2904 
2905 	if (!release)
2906 		goto out;
2907 
2908 release:
2909 	/* let's just reuse the same message */
2910 	h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2911 	ceph_msg_get(msg);
2912 	ceph_con_send(&session->s_con, msg);
2913 
2914 out:
2915 	iput(inode);
2916 	mutex_unlock(&session->s_mutex);
2917 	return;
2918 
2919 bad:
2920 	pr_err("corrupt lease message\n");
2921 	ceph_msg_dump(msg);
2922 }
2923 
2924 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2925 			      struct inode *inode,
2926 			      struct dentry *dentry, char action,
2927 			      u32 seq)
2928 {
2929 	struct ceph_msg *msg;
2930 	struct ceph_mds_lease *lease;
2931 	int len = sizeof(*lease) + sizeof(u32);
2932 	int dnamelen = 0;
2933 
2934 	dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2935 	     inode, dentry, ceph_lease_op_name(action), session->s_mds);
2936 	dnamelen = dentry->d_name.len;
2937 	len += dnamelen;
2938 
2939 	msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2940 	if (!msg)
2941 		return;
2942 	lease = msg->front.iov_base;
2943 	lease->action = action;
2944 	lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2945 	lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2946 	lease->seq = cpu_to_le32(seq);
2947 	put_unaligned_le32(dnamelen, lease + 1);
2948 	memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2949 
2950 	/*
2951 	 * if this is a preemptive lease RELEASE, no need to
2952 	 * flush request stream, since the actual request will
2953 	 * soon follow.
2954 	 */
2955 	msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2956 
2957 	ceph_con_send(&session->s_con, msg);
2958 }
2959 
2960 /*
2961  * Preemptively release a lease we expect to invalidate anyway.
2962  * Pass @inode always, @dentry is optional.
2963  */
2964 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2965 			     struct dentry *dentry)
2966 {
2967 	struct ceph_dentry_info *di;
2968 	struct ceph_mds_session *session;
2969 	u32 seq;
2970 
2971 	BUG_ON(inode == NULL);
2972 	BUG_ON(dentry == NULL);
2973 
2974 	/* is dentry lease valid? */
2975 	spin_lock(&dentry->d_lock);
2976 	di = ceph_dentry(dentry);
2977 	if (!di || !di->lease_session ||
2978 	    di->lease_session->s_mds < 0 ||
2979 	    di->lease_gen != di->lease_session->s_cap_gen ||
2980 	    !time_before(jiffies, dentry->d_time)) {
2981 		dout("lease_release inode %p dentry %p -- "
2982 		     "no lease\n",
2983 		     inode, dentry);
2984 		spin_unlock(&dentry->d_lock);
2985 		return;
2986 	}
2987 
2988 	/* we do have a lease on this dentry; note mds and seq */
2989 	session = ceph_get_mds_session(di->lease_session);
2990 	seq = di->lease_seq;
2991 	__ceph_mdsc_drop_dentry_lease(dentry);
2992 	spin_unlock(&dentry->d_lock);
2993 
2994 	dout("lease_release inode %p dentry %p to mds%d\n",
2995 	     inode, dentry, session->s_mds);
2996 	ceph_mdsc_lease_send_msg(session, inode, dentry,
2997 				 CEPH_MDS_LEASE_RELEASE, seq);
2998 	ceph_put_mds_session(session);
2999 }
3000 
3001 /*
3002  * drop all leases (and dentry refs) in preparation for umount
3003  */
3004 static void drop_leases(struct ceph_mds_client *mdsc)
3005 {
3006 	int i;
3007 
3008 	dout("drop_leases\n");
3009 	mutex_lock(&mdsc->mutex);
3010 	for (i = 0; i < mdsc->max_sessions; i++) {
3011 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3012 		if (!s)
3013 			continue;
3014 		mutex_unlock(&mdsc->mutex);
3015 		mutex_lock(&s->s_mutex);
3016 		mutex_unlock(&s->s_mutex);
3017 		ceph_put_mds_session(s);
3018 		mutex_lock(&mdsc->mutex);
3019 	}
3020 	mutex_unlock(&mdsc->mutex);
3021 }
3022 
3023 
3024 
3025 /*
3026  * delayed work -- periodically trim expired leases, renew caps with mds
3027  */
3028 static void schedule_delayed(struct ceph_mds_client *mdsc)
3029 {
3030 	int delay = 5;
3031 	unsigned hz = round_jiffies_relative(HZ * delay);
3032 	schedule_delayed_work(&mdsc->delayed_work, hz);
3033 }
3034 
3035 static void delayed_work(struct work_struct *work)
3036 {
3037 	int i;
3038 	struct ceph_mds_client *mdsc =
3039 		container_of(work, struct ceph_mds_client, delayed_work.work);
3040 	int renew_interval;
3041 	int renew_caps;
3042 
3043 	dout("mdsc delayed_work\n");
3044 	ceph_check_delayed_caps(mdsc);
3045 
3046 	mutex_lock(&mdsc->mutex);
3047 	renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3048 	renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3049 				   mdsc->last_renew_caps);
3050 	if (renew_caps)
3051 		mdsc->last_renew_caps = jiffies;
3052 
3053 	for (i = 0; i < mdsc->max_sessions; i++) {
3054 		struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3055 		if (s == NULL)
3056 			continue;
3057 		if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3058 			dout("resending session close request for mds%d\n",
3059 			     s->s_mds);
3060 			request_close_session(mdsc, s);
3061 			ceph_put_mds_session(s);
3062 			continue;
3063 		}
3064 		if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3065 			if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3066 				s->s_state = CEPH_MDS_SESSION_HUNG;
3067 				pr_info("mds%d hung\n", s->s_mds);
3068 			}
3069 		}
3070 		if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3071 			/* this mds is failed or recovering, just wait */
3072 			ceph_put_mds_session(s);
3073 			continue;
3074 		}
3075 		mutex_unlock(&mdsc->mutex);
3076 
3077 		mutex_lock(&s->s_mutex);
3078 		if (renew_caps)
3079 			send_renew_caps(mdsc, s);
3080 		else
3081 			ceph_con_keepalive(&s->s_con);
3082 		ceph_add_cap_releases(mdsc, s);
3083 		if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3084 		    s->s_state == CEPH_MDS_SESSION_HUNG)
3085 			ceph_send_cap_releases(mdsc, s);
3086 		mutex_unlock(&s->s_mutex);
3087 		ceph_put_mds_session(s);
3088 
3089 		mutex_lock(&mdsc->mutex);
3090 	}
3091 	mutex_unlock(&mdsc->mutex);
3092 
3093 	schedule_delayed(mdsc);
3094 }
3095 
3096 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3097 
3098 {
3099 	struct ceph_mds_client *mdsc;
3100 
3101 	mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3102 	if (!mdsc)
3103 		return -ENOMEM;
3104 	mdsc->fsc = fsc;
3105 	fsc->mdsc = mdsc;
3106 	mutex_init(&mdsc->mutex);
3107 	mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3108 	if (mdsc->mdsmap == NULL) {
3109 		kfree(mdsc);
3110 		return -ENOMEM;
3111 	}
3112 
3113 	init_completion(&mdsc->safe_umount_waiters);
3114 	init_waitqueue_head(&mdsc->session_close_wq);
3115 	INIT_LIST_HEAD(&mdsc->waiting_for_map);
3116 	mdsc->sessions = NULL;
3117 	mdsc->max_sessions = 0;
3118 	mdsc->stopping = 0;
3119 	init_rwsem(&mdsc->snap_rwsem);
3120 	mdsc->snap_realms = RB_ROOT;
3121 	INIT_LIST_HEAD(&mdsc->snap_empty);
3122 	spin_lock_init(&mdsc->snap_empty_lock);
3123 	mdsc->last_tid = 0;
3124 	mdsc->request_tree = RB_ROOT;
3125 	INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3126 	mdsc->last_renew_caps = jiffies;
3127 	INIT_LIST_HEAD(&mdsc->cap_delay_list);
3128 	spin_lock_init(&mdsc->cap_delay_lock);
3129 	INIT_LIST_HEAD(&mdsc->snap_flush_list);
3130 	spin_lock_init(&mdsc->snap_flush_lock);
3131 	mdsc->cap_flush_seq = 0;
3132 	INIT_LIST_HEAD(&mdsc->cap_dirty);
3133 	INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3134 	mdsc->num_cap_flushing = 0;
3135 	spin_lock_init(&mdsc->cap_dirty_lock);
3136 	init_waitqueue_head(&mdsc->cap_flushing_wq);
3137 	spin_lock_init(&mdsc->dentry_lru_lock);
3138 	INIT_LIST_HEAD(&mdsc->dentry_lru);
3139 
3140 	ceph_caps_init(mdsc);
3141 	ceph_adjust_min_caps(mdsc, fsc->min_caps);
3142 
3143 	return 0;
3144 }
3145 
3146 /*
3147  * Wait for safe replies on open mds requests.  If we time out, drop
3148  * all requests from the tree to avoid dangling dentry refs.
3149  */
3150 static void wait_requests(struct ceph_mds_client *mdsc)
3151 {
3152 	struct ceph_mds_request *req;
3153 	struct ceph_fs_client *fsc = mdsc->fsc;
3154 
3155 	mutex_lock(&mdsc->mutex);
3156 	if (__get_oldest_req(mdsc)) {
3157 		mutex_unlock(&mdsc->mutex);
3158 
3159 		dout("wait_requests waiting for requests\n");
3160 		wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3161 				    fsc->client->options->mount_timeout * HZ);
3162 
3163 		/* tear down remaining requests */
3164 		mutex_lock(&mdsc->mutex);
3165 		while ((req = __get_oldest_req(mdsc))) {
3166 			dout("wait_requests timed out on tid %llu\n",
3167 			     req->r_tid);
3168 			__unregister_request(mdsc, req);
3169 		}
3170 	}
3171 	mutex_unlock(&mdsc->mutex);
3172 	dout("wait_requests done\n");
3173 }
3174 
3175 /*
3176  * called before mount is ro, and before dentries are torn down.
3177  * (hmm, does this still race with new lookups?)
3178  */
3179 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3180 {
3181 	dout("pre_umount\n");
3182 	mdsc->stopping = 1;
3183 
3184 	drop_leases(mdsc);
3185 	ceph_flush_dirty_caps(mdsc);
3186 	wait_requests(mdsc);
3187 
3188 	/*
3189 	 * wait for reply handlers to drop their request refs and
3190 	 * their inode/dcache refs
3191 	 */
3192 	ceph_msgr_flush();
3193 }
3194 
3195 /*
3196  * wait for all write mds requests to flush.
3197  */
3198 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3199 {
3200 	struct ceph_mds_request *req = NULL, *nextreq;
3201 	struct rb_node *n;
3202 
3203 	mutex_lock(&mdsc->mutex);
3204 	dout("wait_unsafe_requests want %lld\n", want_tid);
3205 restart:
3206 	req = __get_oldest_req(mdsc);
3207 	while (req && req->r_tid <= want_tid) {
3208 		/* find next request */
3209 		n = rb_next(&req->r_node);
3210 		if (n)
3211 			nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3212 		else
3213 			nextreq = NULL;
3214 		if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3215 			/* write op */
3216 			ceph_mdsc_get_request(req);
3217 			if (nextreq)
3218 				ceph_mdsc_get_request(nextreq);
3219 			mutex_unlock(&mdsc->mutex);
3220 			dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3221 			     req->r_tid, want_tid);
3222 			wait_for_completion(&req->r_safe_completion);
3223 			mutex_lock(&mdsc->mutex);
3224 			ceph_mdsc_put_request(req);
3225 			if (!nextreq)
3226 				break;  /* next dne before, so we're done! */
3227 			if (RB_EMPTY_NODE(&nextreq->r_node)) {
3228 				/* next request was removed from tree */
3229 				ceph_mdsc_put_request(nextreq);
3230 				goto restart;
3231 			}
3232 			ceph_mdsc_put_request(nextreq);  /* won't go away */
3233 		}
3234 		req = nextreq;
3235 	}
3236 	mutex_unlock(&mdsc->mutex);
3237 	dout("wait_unsafe_requests done\n");
3238 }
3239 
3240 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3241 {
3242 	u64 want_tid, want_flush;
3243 
3244 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3245 		return;
3246 
3247 	dout("sync\n");
3248 	mutex_lock(&mdsc->mutex);
3249 	want_tid = mdsc->last_tid;
3250 	want_flush = mdsc->cap_flush_seq;
3251 	mutex_unlock(&mdsc->mutex);
3252 	dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3253 
3254 	ceph_flush_dirty_caps(mdsc);
3255 
3256 	wait_unsafe_requests(mdsc, want_tid);
3257 	wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3258 }
3259 
3260 /*
3261  * true if all sessions are closed, or we force unmount
3262  */
3263 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3264 {
3265 	int i, n = 0;
3266 
3267 	if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3268 		return true;
3269 
3270 	mutex_lock(&mdsc->mutex);
3271 	for (i = 0; i < mdsc->max_sessions; i++)
3272 		if (mdsc->sessions[i])
3273 			n++;
3274 	mutex_unlock(&mdsc->mutex);
3275 	return n == 0;
3276 }
3277 
3278 /*
3279  * called after sb is ro.
3280  */
3281 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3282 {
3283 	struct ceph_mds_session *session;
3284 	int i;
3285 	struct ceph_fs_client *fsc = mdsc->fsc;
3286 	unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3287 
3288 	dout("close_sessions\n");
3289 
3290 	/* close sessions */
3291 	mutex_lock(&mdsc->mutex);
3292 	for (i = 0; i < mdsc->max_sessions; i++) {
3293 		session = __ceph_lookup_mds_session(mdsc, i);
3294 		if (!session)
3295 			continue;
3296 		mutex_unlock(&mdsc->mutex);
3297 		mutex_lock(&session->s_mutex);
3298 		__close_session(mdsc, session);
3299 		mutex_unlock(&session->s_mutex);
3300 		ceph_put_mds_session(session);
3301 		mutex_lock(&mdsc->mutex);
3302 	}
3303 	mutex_unlock(&mdsc->mutex);
3304 
3305 	dout("waiting for sessions to close\n");
3306 	wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3307 			   timeout);
3308 
3309 	/* tear down remaining sessions */
3310 	mutex_lock(&mdsc->mutex);
3311 	for (i = 0; i < mdsc->max_sessions; i++) {
3312 		if (mdsc->sessions[i]) {
3313 			session = get_session(mdsc->sessions[i]);
3314 			__unregister_session(mdsc, session);
3315 			mutex_unlock(&mdsc->mutex);
3316 			mutex_lock(&session->s_mutex);
3317 			remove_session_caps(session);
3318 			mutex_unlock(&session->s_mutex);
3319 			ceph_put_mds_session(session);
3320 			mutex_lock(&mdsc->mutex);
3321 		}
3322 	}
3323 	WARN_ON(!list_empty(&mdsc->cap_delay_list));
3324 	mutex_unlock(&mdsc->mutex);
3325 
3326 	ceph_cleanup_empty_realms(mdsc);
3327 
3328 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3329 
3330 	dout("stopped\n");
3331 }
3332 
3333 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3334 {
3335 	dout("stop\n");
3336 	cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3337 	if (mdsc->mdsmap)
3338 		ceph_mdsmap_destroy(mdsc->mdsmap);
3339 	kfree(mdsc->sessions);
3340 	ceph_caps_finalize(mdsc);
3341 }
3342 
3343 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3344 {
3345 	struct ceph_mds_client *mdsc = fsc->mdsc;
3346 
3347 	dout("mdsc_destroy %p\n", mdsc);
3348 	ceph_mdsc_stop(mdsc);
3349 
3350 	/* flush out any connection work with references to us */
3351 	ceph_msgr_flush();
3352 
3353 	fsc->mdsc = NULL;
3354 	kfree(mdsc);
3355 	dout("mdsc_destroy %p done\n", mdsc);
3356 }
3357 
3358 
3359 /*
3360  * handle mds map update.
3361  */
3362 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3363 {
3364 	u32 epoch;
3365 	u32 maplen;
3366 	void *p = msg->front.iov_base;
3367 	void *end = p + msg->front.iov_len;
3368 	struct ceph_mdsmap *newmap, *oldmap;
3369 	struct ceph_fsid fsid;
3370 	int err = -EINVAL;
3371 
3372 	ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3373 	ceph_decode_copy(&p, &fsid, sizeof(fsid));
3374 	if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3375 		return;
3376 	epoch = ceph_decode_32(&p);
3377 	maplen = ceph_decode_32(&p);
3378 	dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3379 
3380 	/* do we need it? */
3381 	ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3382 	mutex_lock(&mdsc->mutex);
3383 	if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3384 		dout("handle_map epoch %u <= our %u\n",
3385 		     epoch, mdsc->mdsmap->m_epoch);
3386 		mutex_unlock(&mdsc->mutex);
3387 		return;
3388 	}
3389 
3390 	newmap = ceph_mdsmap_decode(&p, end);
3391 	if (IS_ERR(newmap)) {
3392 		err = PTR_ERR(newmap);
3393 		goto bad_unlock;
3394 	}
3395 
3396 	/* swap into place */
3397 	if (mdsc->mdsmap) {
3398 		oldmap = mdsc->mdsmap;
3399 		mdsc->mdsmap = newmap;
3400 		check_new_map(mdsc, newmap, oldmap);
3401 		ceph_mdsmap_destroy(oldmap);
3402 	} else {
3403 		mdsc->mdsmap = newmap;  /* first mds map */
3404 	}
3405 	mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3406 
3407 	__wake_requests(mdsc, &mdsc->waiting_for_map);
3408 
3409 	mutex_unlock(&mdsc->mutex);
3410 	schedule_delayed(mdsc);
3411 	return;
3412 
3413 bad_unlock:
3414 	mutex_unlock(&mdsc->mutex);
3415 bad:
3416 	pr_err("error decoding mdsmap %d\n", err);
3417 	return;
3418 }
3419 
3420 static struct ceph_connection *con_get(struct ceph_connection *con)
3421 {
3422 	struct ceph_mds_session *s = con->private;
3423 
3424 	if (get_session(s)) {
3425 		dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3426 		return con;
3427 	}
3428 	dout("mdsc con_get %p FAIL\n", s);
3429 	return NULL;
3430 }
3431 
3432 static void con_put(struct ceph_connection *con)
3433 {
3434 	struct ceph_mds_session *s = con->private;
3435 
3436 	dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3437 	ceph_put_mds_session(s);
3438 }
3439 
3440 /*
3441  * if the client is unresponsive for long enough, the mds will kill
3442  * the session entirely.
3443  */
3444 static void peer_reset(struct ceph_connection *con)
3445 {
3446 	struct ceph_mds_session *s = con->private;
3447 	struct ceph_mds_client *mdsc = s->s_mdsc;
3448 
3449 	pr_warning("mds%d closed our session\n", s->s_mds);
3450 	send_mds_reconnect(mdsc, s);
3451 }
3452 
3453 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3454 {
3455 	struct ceph_mds_session *s = con->private;
3456 	struct ceph_mds_client *mdsc = s->s_mdsc;
3457 	int type = le16_to_cpu(msg->hdr.type);
3458 
3459 	mutex_lock(&mdsc->mutex);
3460 	if (__verify_registered_session(mdsc, s) < 0) {
3461 		mutex_unlock(&mdsc->mutex);
3462 		goto out;
3463 	}
3464 	mutex_unlock(&mdsc->mutex);
3465 
3466 	switch (type) {
3467 	case CEPH_MSG_MDS_MAP:
3468 		ceph_mdsc_handle_map(mdsc, msg);
3469 		break;
3470 	case CEPH_MSG_CLIENT_SESSION:
3471 		handle_session(s, msg);
3472 		break;
3473 	case CEPH_MSG_CLIENT_REPLY:
3474 		handle_reply(s, msg);
3475 		break;
3476 	case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3477 		handle_forward(mdsc, s, msg);
3478 		break;
3479 	case CEPH_MSG_CLIENT_CAPS:
3480 		ceph_handle_caps(s, msg);
3481 		break;
3482 	case CEPH_MSG_CLIENT_SNAP:
3483 		ceph_handle_snap(mdsc, s, msg);
3484 		break;
3485 	case CEPH_MSG_CLIENT_LEASE:
3486 		handle_lease(mdsc, s, msg);
3487 		break;
3488 
3489 	default:
3490 		pr_err("received unknown message type %d %s\n", type,
3491 		       ceph_msg_type_name(type));
3492 	}
3493 out:
3494 	ceph_msg_put(msg);
3495 }
3496 
3497 /*
3498  * authentication
3499  */
3500 
3501 /*
3502  * Note: returned pointer is the address of a structure that's
3503  * managed separately.  Caller must *not* attempt to free it.
3504  */
3505 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3506 					int *proto, int force_new)
3507 {
3508 	struct ceph_mds_session *s = con->private;
3509 	struct ceph_mds_client *mdsc = s->s_mdsc;
3510 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3511 	struct ceph_auth_handshake *auth = &s->s_auth;
3512 
3513 	if (force_new && auth->authorizer) {
3514 		ceph_auth_destroy_authorizer(ac, auth->authorizer);
3515 		auth->authorizer = NULL;
3516 	}
3517 	if (!auth->authorizer) {
3518 		int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3519 						      auth);
3520 		if (ret)
3521 			return ERR_PTR(ret);
3522 	} else {
3523 		int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3524 						      auth);
3525 		if (ret)
3526 			return ERR_PTR(ret);
3527 	}
3528 	*proto = ac->protocol;
3529 
3530 	return auth;
3531 }
3532 
3533 
3534 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3535 {
3536 	struct ceph_mds_session *s = con->private;
3537 	struct ceph_mds_client *mdsc = s->s_mdsc;
3538 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3539 
3540 	return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3541 }
3542 
3543 static int invalidate_authorizer(struct ceph_connection *con)
3544 {
3545 	struct ceph_mds_session *s = con->private;
3546 	struct ceph_mds_client *mdsc = s->s_mdsc;
3547 	struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3548 
3549 	ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3550 
3551 	return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3552 }
3553 
3554 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3555 				struct ceph_msg_header *hdr, int *skip)
3556 {
3557 	struct ceph_msg *msg;
3558 	int type = (int) le16_to_cpu(hdr->type);
3559 	int front_len = (int) le32_to_cpu(hdr->front_len);
3560 
3561 	if (con->in_msg)
3562 		return con->in_msg;
3563 
3564 	*skip = 0;
3565 	msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3566 	if (!msg) {
3567 		pr_err("unable to allocate msg type %d len %d\n",
3568 		       type, front_len);
3569 		return NULL;
3570 	}
3571 
3572 	return msg;
3573 }
3574 
3575 static const struct ceph_connection_operations mds_con_ops = {
3576 	.get = con_get,
3577 	.put = con_put,
3578 	.dispatch = dispatch,
3579 	.get_authorizer = get_authorizer,
3580 	.verify_authorizer_reply = verify_authorizer_reply,
3581 	.invalidate_authorizer = invalidate_authorizer,
3582 	.peer_reset = peer_reset,
3583 	.alloc_msg = mds_alloc_msg,
3584 };
3585 
3586 /* eof */
3587