1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/sched.h> 7 #include <linux/debugfs.h> 8 #include <linux/seq_file.h> 9 10 #include "super.h" 11 #include "mds_client.h" 12 13 #include <linux/ceph/ceph_features.h> 14 #include <linux/ceph/messenger.h> 15 #include <linux/ceph/decode.h> 16 #include <linux/ceph/pagelist.h> 17 #include <linux/ceph/auth.h> 18 #include <linux/ceph/debugfs.h> 19 20 /* 21 * A cluster of MDS (metadata server) daemons is responsible for 22 * managing the file system namespace (the directory hierarchy and 23 * inodes) and for coordinating shared access to storage. Metadata is 24 * partitioning hierarchically across a number of servers, and that 25 * partition varies over time as the cluster adjusts the distribution 26 * in order to balance load. 27 * 28 * The MDS client is primarily responsible to managing synchronous 29 * metadata requests for operations like open, unlink, and so forth. 30 * If there is a MDS failure, we find out about it when we (possibly 31 * request and) receive a new MDS map, and can resubmit affected 32 * requests. 33 * 34 * For the most part, though, we take advantage of a lossless 35 * communications channel to the MDS, and do not need to worry about 36 * timing out or resubmitting requests. 37 * 38 * We maintain a stateful "session" with each MDS we interact with. 39 * Within each session, we sent periodic heartbeat messages to ensure 40 * any capabilities or leases we have been issues remain valid. If 41 * the session times out and goes stale, our leases and capabilities 42 * are no longer valid. 43 */ 44 45 struct ceph_reconnect_state { 46 int nr_caps; 47 struct ceph_pagelist *pagelist; 48 bool flock; 49 }; 50 51 static void __wake_requests(struct ceph_mds_client *mdsc, 52 struct list_head *head); 53 54 static const struct ceph_connection_operations mds_con_ops; 55 56 57 /* 58 * mds reply parsing 59 */ 60 61 /* 62 * parse individual inode info 63 */ 64 static int parse_reply_info_in(void **p, void *end, 65 struct ceph_mds_reply_info_in *info, 66 int features) 67 { 68 int err = -EIO; 69 70 info->in = *p; 71 *p += sizeof(struct ceph_mds_reply_inode) + 72 sizeof(*info->in->fragtree.splits) * 73 le32_to_cpu(info->in->fragtree.nsplits); 74 75 ceph_decode_32_safe(p, end, info->symlink_len, bad); 76 ceph_decode_need(p, end, info->symlink_len, bad); 77 info->symlink = *p; 78 *p += info->symlink_len; 79 80 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 81 ceph_decode_copy_safe(p, end, &info->dir_layout, 82 sizeof(info->dir_layout), bad); 83 else 84 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 85 86 ceph_decode_32_safe(p, end, info->xattr_len, bad); 87 ceph_decode_need(p, end, info->xattr_len, bad); 88 info->xattr_data = *p; 89 *p += info->xattr_len; 90 return 0; 91 bad: 92 return err; 93 } 94 95 /* 96 * parse a normal reply, which may contain a (dir+)dentry and/or a 97 * target inode. 98 */ 99 static int parse_reply_info_trace(void **p, void *end, 100 struct ceph_mds_reply_info_parsed *info, 101 int features) 102 { 103 int err; 104 105 if (info->head->is_dentry) { 106 err = parse_reply_info_in(p, end, &info->diri, features); 107 if (err < 0) 108 goto out_bad; 109 110 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 111 goto bad; 112 info->dirfrag = *p; 113 *p += sizeof(*info->dirfrag) + 114 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 115 if (unlikely(*p > end)) 116 goto bad; 117 118 ceph_decode_32_safe(p, end, info->dname_len, bad); 119 ceph_decode_need(p, end, info->dname_len, bad); 120 info->dname = *p; 121 *p += info->dname_len; 122 info->dlease = *p; 123 *p += sizeof(*info->dlease); 124 } 125 126 if (info->head->is_target) { 127 err = parse_reply_info_in(p, end, &info->targeti, features); 128 if (err < 0) 129 goto out_bad; 130 } 131 132 if (unlikely(*p != end)) 133 goto bad; 134 return 0; 135 136 bad: 137 err = -EIO; 138 out_bad: 139 pr_err("problem parsing mds trace %d\n", err); 140 return err; 141 } 142 143 /* 144 * parse readdir results 145 */ 146 static int parse_reply_info_dir(void **p, void *end, 147 struct ceph_mds_reply_info_parsed *info, 148 int features) 149 { 150 u32 num, i = 0; 151 int err; 152 153 info->dir_dir = *p; 154 if (*p + sizeof(*info->dir_dir) > end) 155 goto bad; 156 *p += sizeof(*info->dir_dir) + 157 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 158 if (*p > end) 159 goto bad; 160 161 ceph_decode_need(p, end, sizeof(num) + 2, bad); 162 num = ceph_decode_32(p); 163 info->dir_end = ceph_decode_8(p); 164 info->dir_complete = ceph_decode_8(p); 165 if (num == 0) 166 goto done; 167 168 /* alloc large array */ 169 info->dir_nr = num; 170 info->dir_in = kcalloc(num, sizeof(*info->dir_in) + 171 sizeof(*info->dir_dname) + 172 sizeof(*info->dir_dname_len) + 173 sizeof(*info->dir_dlease), 174 GFP_NOFS); 175 if (info->dir_in == NULL) { 176 err = -ENOMEM; 177 goto out_bad; 178 } 179 info->dir_dname = (void *)(info->dir_in + num); 180 info->dir_dname_len = (void *)(info->dir_dname + num); 181 info->dir_dlease = (void *)(info->dir_dname_len + num); 182 183 while (num) { 184 /* dentry */ 185 ceph_decode_need(p, end, sizeof(u32)*2, bad); 186 info->dir_dname_len[i] = ceph_decode_32(p); 187 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 188 info->dir_dname[i] = *p; 189 *p += info->dir_dname_len[i]; 190 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 191 info->dir_dname[i]); 192 info->dir_dlease[i] = *p; 193 *p += sizeof(struct ceph_mds_reply_lease); 194 195 /* inode */ 196 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 197 if (err < 0) 198 goto out_bad; 199 i++; 200 num--; 201 } 202 203 done: 204 if (*p != end) 205 goto bad; 206 return 0; 207 208 bad: 209 err = -EIO; 210 out_bad: 211 pr_err("problem parsing dir contents %d\n", err); 212 return err; 213 } 214 215 /* 216 * parse fcntl F_GETLK results 217 */ 218 static int parse_reply_info_filelock(void **p, void *end, 219 struct ceph_mds_reply_info_parsed *info, 220 int features) 221 { 222 if (*p + sizeof(*info->filelock_reply) > end) 223 goto bad; 224 225 info->filelock_reply = *p; 226 *p += sizeof(*info->filelock_reply); 227 228 if (unlikely(*p != end)) 229 goto bad; 230 return 0; 231 232 bad: 233 return -EIO; 234 } 235 236 /* 237 * parse create results 238 */ 239 static int parse_reply_info_create(void **p, void *end, 240 struct ceph_mds_reply_info_parsed *info, 241 int features) 242 { 243 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 244 if (*p == end) { 245 info->has_create_ino = false; 246 } else { 247 info->has_create_ino = true; 248 info->ino = ceph_decode_64(p); 249 } 250 } 251 252 if (unlikely(*p != end)) 253 goto bad; 254 return 0; 255 256 bad: 257 return -EIO; 258 } 259 260 /* 261 * parse extra results 262 */ 263 static int parse_reply_info_extra(void **p, void *end, 264 struct ceph_mds_reply_info_parsed *info, 265 int features) 266 { 267 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 268 return parse_reply_info_filelock(p, end, info, features); 269 else if (info->head->op == CEPH_MDS_OP_READDIR || 270 info->head->op == CEPH_MDS_OP_LSSNAP) 271 return parse_reply_info_dir(p, end, info, features); 272 else if (info->head->op == CEPH_MDS_OP_CREATE) 273 return parse_reply_info_create(p, end, info, features); 274 else 275 return -EIO; 276 } 277 278 /* 279 * parse entire mds reply 280 */ 281 static int parse_reply_info(struct ceph_msg *msg, 282 struct ceph_mds_reply_info_parsed *info, 283 int features) 284 { 285 void *p, *end; 286 u32 len; 287 int err; 288 289 info->head = msg->front.iov_base; 290 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 291 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 292 293 /* trace */ 294 ceph_decode_32_safe(&p, end, len, bad); 295 if (len > 0) { 296 ceph_decode_need(&p, end, len, bad); 297 err = parse_reply_info_trace(&p, p+len, info, features); 298 if (err < 0) 299 goto out_bad; 300 } 301 302 /* extra */ 303 ceph_decode_32_safe(&p, end, len, bad); 304 if (len > 0) { 305 ceph_decode_need(&p, end, len, bad); 306 err = parse_reply_info_extra(&p, p+len, info, features); 307 if (err < 0) 308 goto out_bad; 309 } 310 311 /* snap blob */ 312 ceph_decode_32_safe(&p, end, len, bad); 313 info->snapblob_len = len; 314 info->snapblob = p; 315 p += len; 316 317 if (p != end) 318 goto bad; 319 return 0; 320 321 bad: 322 err = -EIO; 323 out_bad: 324 pr_err("mds parse_reply err %d\n", err); 325 return err; 326 } 327 328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 329 { 330 kfree(info->dir_in); 331 } 332 333 334 /* 335 * sessions 336 */ 337 static const char *session_state_name(int s) 338 { 339 switch (s) { 340 case CEPH_MDS_SESSION_NEW: return "new"; 341 case CEPH_MDS_SESSION_OPENING: return "opening"; 342 case CEPH_MDS_SESSION_OPEN: return "open"; 343 case CEPH_MDS_SESSION_HUNG: return "hung"; 344 case CEPH_MDS_SESSION_CLOSING: return "closing"; 345 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 346 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 347 default: return "???"; 348 } 349 } 350 351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 352 { 353 if (atomic_inc_not_zero(&s->s_ref)) { 354 dout("mdsc get_session %p %d -> %d\n", s, 355 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 356 return s; 357 } else { 358 dout("mdsc get_session %p 0 -- FAIL", s); 359 return NULL; 360 } 361 } 362 363 void ceph_put_mds_session(struct ceph_mds_session *s) 364 { 365 dout("mdsc put_session %p %d -> %d\n", s, 366 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 367 if (atomic_dec_and_test(&s->s_ref)) { 368 if (s->s_auth.authorizer) 369 ceph_auth_destroy_authorizer( 370 s->s_mdsc->fsc->client->monc.auth, 371 s->s_auth.authorizer); 372 kfree(s); 373 } 374 } 375 376 /* 377 * called under mdsc->mutex 378 */ 379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 380 int mds) 381 { 382 struct ceph_mds_session *session; 383 384 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 385 return NULL; 386 session = mdsc->sessions[mds]; 387 dout("lookup_mds_session %p %d\n", session, 388 atomic_read(&session->s_ref)); 389 get_session(session); 390 return session; 391 } 392 393 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 394 { 395 if (mds >= mdsc->max_sessions) 396 return false; 397 return mdsc->sessions[mds]; 398 } 399 400 static int __verify_registered_session(struct ceph_mds_client *mdsc, 401 struct ceph_mds_session *s) 402 { 403 if (s->s_mds >= mdsc->max_sessions || 404 mdsc->sessions[s->s_mds] != s) 405 return -ENOENT; 406 return 0; 407 } 408 409 /* 410 * create+register a new session for given mds. 411 * called under mdsc->mutex. 412 */ 413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 414 int mds) 415 { 416 struct ceph_mds_session *s; 417 418 if (mds >= mdsc->mdsmap->m_max_mds) 419 return ERR_PTR(-EINVAL); 420 421 s = kzalloc(sizeof(*s), GFP_NOFS); 422 if (!s) 423 return ERR_PTR(-ENOMEM); 424 s->s_mdsc = mdsc; 425 s->s_mds = mds; 426 s->s_state = CEPH_MDS_SESSION_NEW; 427 s->s_ttl = 0; 428 s->s_seq = 0; 429 mutex_init(&s->s_mutex); 430 431 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 432 433 spin_lock_init(&s->s_gen_ttl_lock); 434 s->s_cap_gen = 0; 435 s->s_cap_ttl = jiffies - 1; 436 437 spin_lock_init(&s->s_cap_lock); 438 s->s_renew_requested = 0; 439 s->s_renew_seq = 0; 440 INIT_LIST_HEAD(&s->s_caps); 441 s->s_nr_caps = 0; 442 s->s_trim_caps = 0; 443 atomic_set(&s->s_ref, 1); 444 INIT_LIST_HEAD(&s->s_waiting); 445 INIT_LIST_HEAD(&s->s_unsafe); 446 s->s_num_cap_releases = 0; 447 s->s_cap_reconnect = 0; 448 s->s_cap_iterator = NULL; 449 INIT_LIST_HEAD(&s->s_cap_releases); 450 INIT_LIST_HEAD(&s->s_cap_releases_done); 451 INIT_LIST_HEAD(&s->s_cap_flushing); 452 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 453 454 dout("register_session mds%d\n", mds); 455 if (mds >= mdsc->max_sessions) { 456 int newmax = 1 << get_count_order(mds+1); 457 struct ceph_mds_session **sa; 458 459 dout("register_session realloc to %d\n", newmax); 460 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 461 if (sa == NULL) 462 goto fail_realloc; 463 if (mdsc->sessions) { 464 memcpy(sa, mdsc->sessions, 465 mdsc->max_sessions * sizeof(void *)); 466 kfree(mdsc->sessions); 467 } 468 mdsc->sessions = sa; 469 mdsc->max_sessions = newmax; 470 } 471 mdsc->sessions[mds] = s; 472 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 473 474 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 475 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 476 477 return s; 478 479 fail_realloc: 480 kfree(s); 481 return ERR_PTR(-ENOMEM); 482 } 483 484 /* 485 * called under mdsc->mutex 486 */ 487 static void __unregister_session(struct ceph_mds_client *mdsc, 488 struct ceph_mds_session *s) 489 { 490 dout("__unregister_session mds%d %p\n", s->s_mds, s); 491 BUG_ON(mdsc->sessions[s->s_mds] != s); 492 mdsc->sessions[s->s_mds] = NULL; 493 ceph_con_close(&s->s_con); 494 ceph_put_mds_session(s); 495 } 496 497 /* 498 * drop session refs in request. 499 * 500 * should be last request ref, or hold mdsc->mutex 501 */ 502 static void put_request_session(struct ceph_mds_request *req) 503 { 504 if (req->r_session) { 505 ceph_put_mds_session(req->r_session); 506 req->r_session = NULL; 507 } 508 } 509 510 void ceph_mdsc_release_request(struct kref *kref) 511 { 512 struct ceph_mds_request *req = container_of(kref, 513 struct ceph_mds_request, 514 r_kref); 515 if (req->r_request) 516 ceph_msg_put(req->r_request); 517 if (req->r_reply) { 518 ceph_msg_put(req->r_reply); 519 destroy_reply_info(&req->r_reply_info); 520 } 521 if (req->r_inode) { 522 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 523 iput(req->r_inode); 524 } 525 if (req->r_locked_dir) 526 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 527 if (req->r_target_inode) 528 iput(req->r_target_inode); 529 if (req->r_dentry) 530 dput(req->r_dentry); 531 if (req->r_old_dentry) { 532 /* 533 * track (and drop pins for) r_old_dentry_dir 534 * separately, since r_old_dentry's d_parent may have 535 * changed between the dir mutex being dropped and 536 * this request being freed. 537 */ 538 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 539 CEPH_CAP_PIN); 540 dput(req->r_old_dentry); 541 iput(req->r_old_dentry_dir); 542 } 543 kfree(req->r_path1); 544 kfree(req->r_path2); 545 put_request_session(req); 546 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 547 kfree(req); 548 } 549 550 /* 551 * lookup session, bump ref if found. 552 * 553 * called under mdsc->mutex. 554 */ 555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 556 u64 tid) 557 { 558 struct ceph_mds_request *req; 559 struct rb_node *n = mdsc->request_tree.rb_node; 560 561 while (n) { 562 req = rb_entry(n, struct ceph_mds_request, r_node); 563 if (tid < req->r_tid) 564 n = n->rb_left; 565 else if (tid > req->r_tid) 566 n = n->rb_right; 567 else { 568 ceph_mdsc_get_request(req); 569 return req; 570 } 571 } 572 return NULL; 573 } 574 575 static void __insert_request(struct ceph_mds_client *mdsc, 576 struct ceph_mds_request *new) 577 { 578 struct rb_node **p = &mdsc->request_tree.rb_node; 579 struct rb_node *parent = NULL; 580 struct ceph_mds_request *req = NULL; 581 582 while (*p) { 583 parent = *p; 584 req = rb_entry(parent, struct ceph_mds_request, r_node); 585 if (new->r_tid < req->r_tid) 586 p = &(*p)->rb_left; 587 else if (new->r_tid > req->r_tid) 588 p = &(*p)->rb_right; 589 else 590 BUG(); 591 } 592 593 rb_link_node(&new->r_node, parent, p); 594 rb_insert_color(&new->r_node, &mdsc->request_tree); 595 } 596 597 /* 598 * Register an in-flight request, and assign a tid. Link to directory 599 * are modifying (if any). 600 * 601 * Called under mdsc->mutex. 602 */ 603 static void __register_request(struct ceph_mds_client *mdsc, 604 struct ceph_mds_request *req, 605 struct inode *dir) 606 { 607 req->r_tid = ++mdsc->last_tid; 608 if (req->r_num_caps) 609 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 610 req->r_num_caps); 611 dout("__register_request %p tid %lld\n", req, req->r_tid); 612 ceph_mdsc_get_request(req); 613 __insert_request(mdsc, req); 614 615 req->r_uid = current_fsuid(); 616 req->r_gid = current_fsgid(); 617 618 if (dir) { 619 struct ceph_inode_info *ci = ceph_inode(dir); 620 621 ihold(dir); 622 spin_lock(&ci->i_unsafe_lock); 623 req->r_unsafe_dir = dir; 624 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops); 625 spin_unlock(&ci->i_unsafe_lock); 626 } 627 } 628 629 static void __unregister_request(struct ceph_mds_client *mdsc, 630 struct ceph_mds_request *req) 631 { 632 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 633 rb_erase(&req->r_node, &mdsc->request_tree); 634 RB_CLEAR_NODE(&req->r_node); 635 636 if (req->r_unsafe_dir) { 637 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 638 639 spin_lock(&ci->i_unsafe_lock); 640 list_del_init(&req->r_unsafe_dir_item); 641 spin_unlock(&ci->i_unsafe_lock); 642 643 iput(req->r_unsafe_dir); 644 req->r_unsafe_dir = NULL; 645 } 646 647 complete_all(&req->r_safe_completion); 648 649 ceph_mdsc_put_request(req); 650 } 651 652 /* 653 * Choose mds to send request to next. If there is a hint set in the 654 * request (e.g., due to a prior forward hint from the mds), use that. 655 * Otherwise, consult frag tree and/or caps to identify the 656 * appropriate mds. If all else fails, choose randomly. 657 * 658 * Called under mdsc->mutex. 659 */ 660 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 661 { 662 /* 663 * we don't need to worry about protecting the d_parent access 664 * here because we never renaming inside the snapped namespace 665 * except to resplice to another snapdir, and either the old or new 666 * result is a valid result. 667 */ 668 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP) 669 dentry = dentry->d_parent; 670 return dentry; 671 } 672 673 static int __choose_mds(struct ceph_mds_client *mdsc, 674 struct ceph_mds_request *req) 675 { 676 struct inode *inode; 677 struct ceph_inode_info *ci; 678 struct ceph_cap *cap; 679 int mode = req->r_direct_mode; 680 int mds = -1; 681 u32 hash = req->r_direct_hash; 682 bool is_hash = req->r_direct_is_hash; 683 684 /* 685 * is there a specific mds we should try? ignore hint if we have 686 * no session and the mds is not up (active or recovering). 687 */ 688 if (req->r_resend_mds >= 0 && 689 (__have_session(mdsc, req->r_resend_mds) || 690 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 691 dout("choose_mds using resend_mds mds%d\n", 692 req->r_resend_mds); 693 return req->r_resend_mds; 694 } 695 696 if (mode == USE_RANDOM_MDS) 697 goto random; 698 699 inode = NULL; 700 if (req->r_inode) { 701 inode = req->r_inode; 702 } else if (req->r_dentry) { 703 /* ignore race with rename; old or new d_parent is okay */ 704 struct dentry *parent = req->r_dentry->d_parent; 705 struct inode *dir = parent->d_inode; 706 707 if (dir->i_sb != mdsc->fsc->sb) { 708 /* not this fs! */ 709 inode = req->r_dentry->d_inode; 710 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 711 /* direct snapped/virtual snapdir requests 712 * based on parent dir inode */ 713 struct dentry *dn = get_nonsnap_parent(parent); 714 inode = dn->d_inode; 715 dout("__choose_mds using nonsnap parent %p\n", inode); 716 } else if (req->r_dentry->d_inode) { 717 /* dentry target */ 718 inode = req->r_dentry->d_inode; 719 } else { 720 /* dir + name */ 721 inode = dir; 722 hash = ceph_dentry_hash(dir, req->r_dentry); 723 is_hash = true; 724 } 725 } 726 727 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 728 (int)hash, mode); 729 if (!inode) 730 goto random; 731 ci = ceph_inode(inode); 732 733 if (is_hash && S_ISDIR(inode->i_mode)) { 734 struct ceph_inode_frag frag; 735 int found; 736 737 ceph_choose_frag(ci, hash, &frag, &found); 738 if (found) { 739 if (mode == USE_ANY_MDS && frag.ndist > 0) { 740 u8 r; 741 742 /* choose a random replica */ 743 get_random_bytes(&r, 1); 744 r %= frag.ndist; 745 mds = frag.dist[r]; 746 dout("choose_mds %p %llx.%llx " 747 "frag %u mds%d (%d/%d)\n", 748 inode, ceph_vinop(inode), 749 frag.frag, mds, 750 (int)r, frag.ndist); 751 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 752 CEPH_MDS_STATE_ACTIVE) 753 return mds; 754 } 755 756 /* since this file/dir wasn't known to be 757 * replicated, then we want to look for the 758 * authoritative mds. */ 759 mode = USE_AUTH_MDS; 760 if (frag.mds >= 0) { 761 /* choose auth mds */ 762 mds = frag.mds; 763 dout("choose_mds %p %llx.%llx " 764 "frag %u mds%d (auth)\n", 765 inode, ceph_vinop(inode), frag.frag, mds); 766 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 767 CEPH_MDS_STATE_ACTIVE) 768 return mds; 769 } 770 } 771 } 772 773 spin_lock(&ci->i_ceph_lock); 774 cap = NULL; 775 if (mode == USE_AUTH_MDS) 776 cap = ci->i_auth_cap; 777 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 778 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 779 if (!cap) { 780 spin_unlock(&ci->i_ceph_lock); 781 goto random; 782 } 783 mds = cap->session->s_mds; 784 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 785 inode, ceph_vinop(inode), mds, 786 cap == ci->i_auth_cap ? "auth " : "", cap); 787 spin_unlock(&ci->i_ceph_lock); 788 return mds; 789 790 random: 791 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 792 dout("choose_mds chose random mds%d\n", mds); 793 return mds; 794 } 795 796 797 /* 798 * session messages 799 */ 800 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 801 { 802 struct ceph_msg *msg; 803 struct ceph_mds_session_head *h; 804 805 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 806 false); 807 if (!msg) { 808 pr_err("create_session_msg ENOMEM creating msg\n"); 809 return NULL; 810 } 811 h = msg->front.iov_base; 812 h->op = cpu_to_le32(op); 813 h->seq = cpu_to_le64(seq); 814 return msg; 815 } 816 817 /* 818 * send session open request. 819 * 820 * called under mdsc->mutex 821 */ 822 static int __open_session(struct ceph_mds_client *mdsc, 823 struct ceph_mds_session *session) 824 { 825 struct ceph_msg *msg; 826 int mstate; 827 int mds = session->s_mds; 828 829 /* wait for mds to go active? */ 830 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 831 dout("open_session to mds%d (%s)\n", mds, 832 ceph_mds_state_name(mstate)); 833 session->s_state = CEPH_MDS_SESSION_OPENING; 834 session->s_renew_requested = jiffies; 835 836 /* send connect message */ 837 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq); 838 if (!msg) 839 return -ENOMEM; 840 ceph_con_send(&session->s_con, msg); 841 return 0; 842 } 843 844 /* 845 * open sessions for any export targets for the given mds 846 * 847 * called under mdsc->mutex 848 */ 849 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 850 struct ceph_mds_session *session) 851 { 852 struct ceph_mds_info *mi; 853 struct ceph_mds_session *ts; 854 int i, mds = session->s_mds; 855 int target; 856 857 if (mds >= mdsc->mdsmap->m_max_mds) 858 return; 859 mi = &mdsc->mdsmap->m_info[mds]; 860 dout("open_export_target_sessions for mds%d (%d targets)\n", 861 session->s_mds, mi->num_export_targets); 862 863 for (i = 0; i < mi->num_export_targets; i++) { 864 target = mi->export_targets[i]; 865 ts = __ceph_lookup_mds_session(mdsc, target); 866 if (!ts) { 867 ts = register_session(mdsc, target); 868 if (IS_ERR(ts)) 869 return; 870 } 871 if (session->s_state == CEPH_MDS_SESSION_NEW || 872 session->s_state == CEPH_MDS_SESSION_CLOSING) 873 __open_session(mdsc, session); 874 else 875 dout(" mds%d target mds%d %p is %s\n", session->s_mds, 876 i, ts, session_state_name(ts->s_state)); 877 ceph_put_mds_session(ts); 878 } 879 } 880 881 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 882 struct ceph_mds_session *session) 883 { 884 mutex_lock(&mdsc->mutex); 885 __open_export_target_sessions(mdsc, session); 886 mutex_unlock(&mdsc->mutex); 887 } 888 889 /* 890 * session caps 891 */ 892 893 /* 894 * Free preallocated cap messages assigned to this session 895 */ 896 static void cleanup_cap_releases(struct ceph_mds_session *session) 897 { 898 struct ceph_msg *msg; 899 900 spin_lock(&session->s_cap_lock); 901 while (!list_empty(&session->s_cap_releases)) { 902 msg = list_first_entry(&session->s_cap_releases, 903 struct ceph_msg, list_head); 904 list_del_init(&msg->list_head); 905 ceph_msg_put(msg); 906 } 907 while (!list_empty(&session->s_cap_releases_done)) { 908 msg = list_first_entry(&session->s_cap_releases_done, 909 struct ceph_msg, list_head); 910 list_del_init(&msg->list_head); 911 ceph_msg_put(msg); 912 } 913 spin_unlock(&session->s_cap_lock); 914 } 915 916 /* 917 * Helper to safely iterate over all caps associated with a session, with 918 * special care taken to handle a racing __ceph_remove_cap(). 919 * 920 * Caller must hold session s_mutex. 921 */ 922 static int iterate_session_caps(struct ceph_mds_session *session, 923 int (*cb)(struct inode *, struct ceph_cap *, 924 void *), void *arg) 925 { 926 struct list_head *p; 927 struct ceph_cap *cap; 928 struct inode *inode, *last_inode = NULL; 929 struct ceph_cap *old_cap = NULL; 930 int ret; 931 932 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 933 spin_lock(&session->s_cap_lock); 934 p = session->s_caps.next; 935 while (p != &session->s_caps) { 936 cap = list_entry(p, struct ceph_cap, session_caps); 937 inode = igrab(&cap->ci->vfs_inode); 938 if (!inode) { 939 p = p->next; 940 continue; 941 } 942 session->s_cap_iterator = cap; 943 spin_unlock(&session->s_cap_lock); 944 945 if (last_inode) { 946 iput(last_inode); 947 last_inode = NULL; 948 } 949 if (old_cap) { 950 ceph_put_cap(session->s_mdsc, old_cap); 951 old_cap = NULL; 952 } 953 954 ret = cb(inode, cap, arg); 955 last_inode = inode; 956 957 spin_lock(&session->s_cap_lock); 958 p = p->next; 959 if (cap->ci == NULL) { 960 dout("iterate_session_caps finishing cap %p removal\n", 961 cap); 962 BUG_ON(cap->session != session); 963 list_del_init(&cap->session_caps); 964 session->s_nr_caps--; 965 cap->session = NULL; 966 old_cap = cap; /* put_cap it w/o locks held */ 967 } 968 if (ret < 0) 969 goto out; 970 } 971 ret = 0; 972 out: 973 session->s_cap_iterator = NULL; 974 spin_unlock(&session->s_cap_lock); 975 976 if (last_inode) 977 iput(last_inode); 978 if (old_cap) 979 ceph_put_cap(session->s_mdsc, old_cap); 980 981 return ret; 982 } 983 984 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 985 void *arg) 986 { 987 struct ceph_inode_info *ci = ceph_inode(inode); 988 int drop = 0; 989 990 dout("removing cap %p, ci is %p, inode is %p\n", 991 cap, ci, &ci->vfs_inode); 992 spin_lock(&ci->i_ceph_lock); 993 __ceph_remove_cap(cap, false); 994 if (!__ceph_is_any_real_caps(ci)) { 995 struct ceph_mds_client *mdsc = 996 ceph_sb_to_client(inode->i_sb)->mdsc; 997 998 spin_lock(&mdsc->cap_dirty_lock); 999 if (!list_empty(&ci->i_dirty_item)) { 1000 pr_info(" dropping dirty %s state for %p %lld\n", 1001 ceph_cap_string(ci->i_dirty_caps), 1002 inode, ceph_ino(inode)); 1003 ci->i_dirty_caps = 0; 1004 list_del_init(&ci->i_dirty_item); 1005 drop = 1; 1006 } 1007 if (!list_empty(&ci->i_flushing_item)) { 1008 pr_info(" dropping dirty+flushing %s state for %p %lld\n", 1009 ceph_cap_string(ci->i_flushing_caps), 1010 inode, ceph_ino(inode)); 1011 ci->i_flushing_caps = 0; 1012 list_del_init(&ci->i_flushing_item); 1013 mdsc->num_cap_flushing--; 1014 drop = 1; 1015 } 1016 if (drop && ci->i_wrbuffer_ref) { 1017 pr_info(" dropping dirty data for %p %lld\n", 1018 inode, ceph_ino(inode)); 1019 ci->i_wrbuffer_ref = 0; 1020 ci->i_wrbuffer_ref_head = 0; 1021 drop++; 1022 } 1023 spin_unlock(&mdsc->cap_dirty_lock); 1024 } 1025 spin_unlock(&ci->i_ceph_lock); 1026 while (drop--) 1027 iput(inode); 1028 return 0; 1029 } 1030 1031 /* 1032 * caller must hold session s_mutex 1033 */ 1034 static void remove_session_caps(struct ceph_mds_session *session) 1035 { 1036 dout("remove_session_caps on %p\n", session); 1037 iterate_session_caps(session, remove_session_caps_cb, NULL); 1038 1039 spin_lock(&session->s_cap_lock); 1040 if (session->s_nr_caps > 0) { 1041 struct super_block *sb = session->s_mdsc->fsc->sb; 1042 struct inode *inode; 1043 struct ceph_cap *cap, *prev = NULL; 1044 struct ceph_vino vino; 1045 /* 1046 * iterate_session_caps() skips inodes that are being 1047 * deleted, we need to wait until deletions are complete. 1048 * __wait_on_freeing_inode() is designed for the job, 1049 * but it is not exported, so use lookup inode function 1050 * to access it. 1051 */ 1052 while (!list_empty(&session->s_caps)) { 1053 cap = list_entry(session->s_caps.next, 1054 struct ceph_cap, session_caps); 1055 if (cap == prev) 1056 break; 1057 prev = cap; 1058 vino = cap->ci->i_vino; 1059 spin_unlock(&session->s_cap_lock); 1060 1061 inode = ceph_find_inode(sb, vino); 1062 iput(inode); 1063 1064 spin_lock(&session->s_cap_lock); 1065 } 1066 } 1067 spin_unlock(&session->s_cap_lock); 1068 1069 BUG_ON(session->s_nr_caps > 0); 1070 BUG_ON(!list_empty(&session->s_cap_flushing)); 1071 cleanup_cap_releases(session); 1072 } 1073 1074 /* 1075 * wake up any threads waiting on this session's caps. if the cap is 1076 * old (didn't get renewed on the client reconnect), remove it now. 1077 * 1078 * caller must hold s_mutex. 1079 */ 1080 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1081 void *arg) 1082 { 1083 struct ceph_inode_info *ci = ceph_inode(inode); 1084 1085 wake_up_all(&ci->i_cap_wq); 1086 if (arg) { 1087 spin_lock(&ci->i_ceph_lock); 1088 ci->i_wanted_max_size = 0; 1089 ci->i_requested_max_size = 0; 1090 spin_unlock(&ci->i_ceph_lock); 1091 } 1092 return 0; 1093 } 1094 1095 static void wake_up_session_caps(struct ceph_mds_session *session, 1096 int reconnect) 1097 { 1098 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1099 iterate_session_caps(session, wake_up_session_cb, 1100 (void *)(unsigned long)reconnect); 1101 } 1102 1103 /* 1104 * Send periodic message to MDS renewing all currently held caps. The 1105 * ack will reset the expiration for all caps from this session. 1106 * 1107 * caller holds s_mutex 1108 */ 1109 static int send_renew_caps(struct ceph_mds_client *mdsc, 1110 struct ceph_mds_session *session) 1111 { 1112 struct ceph_msg *msg; 1113 int state; 1114 1115 if (time_after_eq(jiffies, session->s_cap_ttl) && 1116 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1117 pr_info("mds%d caps stale\n", session->s_mds); 1118 session->s_renew_requested = jiffies; 1119 1120 /* do not try to renew caps until a recovering mds has reconnected 1121 * with its clients. */ 1122 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1123 if (state < CEPH_MDS_STATE_RECONNECT) { 1124 dout("send_renew_caps ignoring mds%d (%s)\n", 1125 session->s_mds, ceph_mds_state_name(state)); 1126 return 0; 1127 } 1128 1129 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1130 ceph_mds_state_name(state)); 1131 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1132 ++session->s_renew_seq); 1133 if (!msg) 1134 return -ENOMEM; 1135 ceph_con_send(&session->s_con, msg); 1136 return 0; 1137 } 1138 1139 /* 1140 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1141 * 1142 * Called under session->s_mutex 1143 */ 1144 static void renewed_caps(struct ceph_mds_client *mdsc, 1145 struct ceph_mds_session *session, int is_renew) 1146 { 1147 int was_stale; 1148 int wake = 0; 1149 1150 spin_lock(&session->s_cap_lock); 1151 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1152 1153 session->s_cap_ttl = session->s_renew_requested + 1154 mdsc->mdsmap->m_session_timeout*HZ; 1155 1156 if (was_stale) { 1157 if (time_before(jiffies, session->s_cap_ttl)) { 1158 pr_info("mds%d caps renewed\n", session->s_mds); 1159 wake = 1; 1160 } else { 1161 pr_info("mds%d caps still stale\n", session->s_mds); 1162 } 1163 } 1164 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1165 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1166 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1167 spin_unlock(&session->s_cap_lock); 1168 1169 if (wake) 1170 wake_up_session_caps(session, 0); 1171 } 1172 1173 /* 1174 * send a session close request 1175 */ 1176 static int request_close_session(struct ceph_mds_client *mdsc, 1177 struct ceph_mds_session *session) 1178 { 1179 struct ceph_msg *msg; 1180 1181 dout("request_close_session mds%d state %s seq %lld\n", 1182 session->s_mds, session_state_name(session->s_state), 1183 session->s_seq); 1184 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1185 if (!msg) 1186 return -ENOMEM; 1187 ceph_con_send(&session->s_con, msg); 1188 return 0; 1189 } 1190 1191 /* 1192 * Called with s_mutex held. 1193 */ 1194 static int __close_session(struct ceph_mds_client *mdsc, 1195 struct ceph_mds_session *session) 1196 { 1197 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1198 return 0; 1199 session->s_state = CEPH_MDS_SESSION_CLOSING; 1200 return request_close_session(mdsc, session); 1201 } 1202 1203 /* 1204 * Trim old(er) caps. 1205 * 1206 * Because we can't cache an inode without one or more caps, we do 1207 * this indirectly: if a cap is unused, we prune its aliases, at which 1208 * point the inode will hopefully get dropped to. 1209 * 1210 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1211 * memory pressure from the MDS, though, so it needn't be perfect. 1212 */ 1213 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1214 { 1215 struct ceph_mds_session *session = arg; 1216 struct ceph_inode_info *ci = ceph_inode(inode); 1217 int used, oissued, mine; 1218 1219 if (session->s_trim_caps <= 0) 1220 return -1; 1221 1222 spin_lock(&ci->i_ceph_lock); 1223 mine = cap->issued | cap->implemented; 1224 used = __ceph_caps_used(ci); 1225 oissued = __ceph_caps_issued_other(ci, cap); 1226 1227 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n", 1228 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1229 ceph_cap_string(used)); 1230 if (ci->i_dirty_caps) 1231 goto out; /* dirty caps */ 1232 if ((used & ~oissued) & mine) 1233 goto out; /* we need these caps */ 1234 1235 session->s_trim_caps--; 1236 if (oissued) { 1237 /* we aren't the only cap.. just remove us */ 1238 __ceph_remove_cap(cap, true); 1239 } else { 1240 /* try to drop referring dentries */ 1241 spin_unlock(&ci->i_ceph_lock); 1242 d_prune_aliases(inode); 1243 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1244 inode, cap, atomic_read(&inode->i_count)); 1245 return 0; 1246 } 1247 1248 out: 1249 spin_unlock(&ci->i_ceph_lock); 1250 return 0; 1251 } 1252 1253 /* 1254 * Trim session cap count down to some max number. 1255 */ 1256 static int trim_caps(struct ceph_mds_client *mdsc, 1257 struct ceph_mds_session *session, 1258 int max_caps) 1259 { 1260 int trim_caps = session->s_nr_caps - max_caps; 1261 1262 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1263 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1264 if (trim_caps > 0) { 1265 session->s_trim_caps = trim_caps; 1266 iterate_session_caps(session, trim_caps_cb, session); 1267 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1268 session->s_mds, session->s_nr_caps, max_caps, 1269 trim_caps - session->s_trim_caps); 1270 session->s_trim_caps = 0; 1271 } 1272 return 0; 1273 } 1274 1275 /* 1276 * Allocate cap_release messages. If there is a partially full message 1277 * in the queue, try to allocate enough to cover it's remainder, so that 1278 * we can send it immediately. 1279 * 1280 * Called under s_mutex. 1281 */ 1282 int ceph_add_cap_releases(struct ceph_mds_client *mdsc, 1283 struct ceph_mds_session *session) 1284 { 1285 struct ceph_msg *msg, *partial = NULL; 1286 struct ceph_mds_cap_release *head; 1287 int err = -ENOMEM; 1288 int extra = mdsc->fsc->mount_options->cap_release_safety; 1289 int num; 1290 1291 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds, 1292 extra); 1293 1294 spin_lock(&session->s_cap_lock); 1295 1296 if (!list_empty(&session->s_cap_releases)) { 1297 msg = list_first_entry(&session->s_cap_releases, 1298 struct ceph_msg, 1299 list_head); 1300 head = msg->front.iov_base; 1301 num = le32_to_cpu(head->num); 1302 if (num) { 1303 dout(" partial %p with (%d/%d)\n", msg, num, 1304 (int)CEPH_CAPS_PER_RELEASE); 1305 extra += CEPH_CAPS_PER_RELEASE - num; 1306 partial = msg; 1307 } 1308 } 1309 while (session->s_num_cap_releases < session->s_nr_caps + extra) { 1310 spin_unlock(&session->s_cap_lock); 1311 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE, 1312 GFP_NOFS, false); 1313 if (!msg) 1314 goto out_unlocked; 1315 dout("add_cap_releases %p msg %p now %d\n", session, msg, 1316 (int)msg->front.iov_len); 1317 head = msg->front.iov_base; 1318 head->num = cpu_to_le32(0); 1319 msg->front.iov_len = sizeof(*head); 1320 spin_lock(&session->s_cap_lock); 1321 list_add(&msg->list_head, &session->s_cap_releases); 1322 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE; 1323 } 1324 1325 if (partial) { 1326 head = partial->front.iov_base; 1327 num = le32_to_cpu(head->num); 1328 dout(" queueing partial %p with %d/%d\n", partial, num, 1329 (int)CEPH_CAPS_PER_RELEASE); 1330 list_move_tail(&partial->list_head, 1331 &session->s_cap_releases_done); 1332 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num; 1333 } 1334 err = 0; 1335 spin_unlock(&session->s_cap_lock); 1336 out_unlocked: 1337 return err; 1338 } 1339 1340 /* 1341 * flush all dirty inode data to disk. 1342 * 1343 * returns true if we've flushed through want_flush_seq 1344 */ 1345 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq) 1346 { 1347 int mds, ret = 1; 1348 1349 dout("check_cap_flush want %lld\n", want_flush_seq); 1350 mutex_lock(&mdsc->mutex); 1351 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) { 1352 struct ceph_mds_session *session = mdsc->sessions[mds]; 1353 1354 if (!session) 1355 continue; 1356 get_session(session); 1357 mutex_unlock(&mdsc->mutex); 1358 1359 mutex_lock(&session->s_mutex); 1360 if (!list_empty(&session->s_cap_flushing)) { 1361 struct ceph_inode_info *ci = 1362 list_entry(session->s_cap_flushing.next, 1363 struct ceph_inode_info, 1364 i_flushing_item); 1365 struct inode *inode = &ci->vfs_inode; 1366 1367 spin_lock(&ci->i_ceph_lock); 1368 if (ci->i_cap_flush_seq <= want_flush_seq) { 1369 dout("check_cap_flush still flushing %p " 1370 "seq %lld <= %lld to mds%d\n", inode, 1371 ci->i_cap_flush_seq, want_flush_seq, 1372 session->s_mds); 1373 ret = 0; 1374 } 1375 spin_unlock(&ci->i_ceph_lock); 1376 } 1377 mutex_unlock(&session->s_mutex); 1378 ceph_put_mds_session(session); 1379 1380 if (!ret) 1381 return ret; 1382 mutex_lock(&mdsc->mutex); 1383 } 1384 1385 mutex_unlock(&mdsc->mutex); 1386 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq); 1387 return ret; 1388 } 1389 1390 /* 1391 * called under s_mutex 1392 */ 1393 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1394 struct ceph_mds_session *session) 1395 { 1396 struct ceph_msg *msg; 1397 1398 dout("send_cap_releases mds%d\n", session->s_mds); 1399 spin_lock(&session->s_cap_lock); 1400 while (!list_empty(&session->s_cap_releases_done)) { 1401 msg = list_first_entry(&session->s_cap_releases_done, 1402 struct ceph_msg, list_head); 1403 list_del_init(&msg->list_head); 1404 spin_unlock(&session->s_cap_lock); 1405 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1406 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1407 ceph_con_send(&session->s_con, msg); 1408 spin_lock(&session->s_cap_lock); 1409 } 1410 spin_unlock(&session->s_cap_lock); 1411 } 1412 1413 static void discard_cap_releases(struct ceph_mds_client *mdsc, 1414 struct ceph_mds_session *session) 1415 { 1416 struct ceph_msg *msg; 1417 struct ceph_mds_cap_release *head; 1418 unsigned num; 1419 1420 dout("discard_cap_releases mds%d\n", session->s_mds); 1421 1422 /* zero out the in-progress message */ 1423 msg = list_first_entry(&session->s_cap_releases, 1424 struct ceph_msg, list_head); 1425 head = msg->front.iov_base; 1426 num = le32_to_cpu(head->num); 1427 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num); 1428 head->num = cpu_to_le32(0); 1429 msg->front.iov_len = sizeof(*head); 1430 session->s_num_cap_releases += num; 1431 1432 /* requeue completed messages */ 1433 while (!list_empty(&session->s_cap_releases_done)) { 1434 msg = list_first_entry(&session->s_cap_releases_done, 1435 struct ceph_msg, list_head); 1436 list_del_init(&msg->list_head); 1437 1438 head = msg->front.iov_base; 1439 num = le32_to_cpu(head->num); 1440 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, 1441 num); 1442 session->s_num_cap_releases += num; 1443 head->num = cpu_to_le32(0); 1444 msg->front.iov_len = sizeof(*head); 1445 list_add(&msg->list_head, &session->s_cap_releases); 1446 } 1447 } 1448 1449 /* 1450 * requests 1451 */ 1452 1453 /* 1454 * Create an mds request. 1455 */ 1456 struct ceph_mds_request * 1457 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1458 { 1459 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1460 1461 if (!req) 1462 return ERR_PTR(-ENOMEM); 1463 1464 mutex_init(&req->r_fill_mutex); 1465 req->r_mdsc = mdsc; 1466 req->r_started = jiffies; 1467 req->r_resend_mds = -1; 1468 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1469 req->r_fmode = -1; 1470 kref_init(&req->r_kref); 1471 INIT_LIST_HEAD(&req->r_wait); 1472 init_completion(&req->r_completion); 1473 init_completion(&req->r_safe_completion); 1474 INIT_LIST_HEAD(&req->r_unsafe_item); 1475 1476 req->r_op = op; 1477 req->r_direct_mode = mode; 1478 return req; 1479 } 1480 1481 /* 1482 * return oldest (lowest) request, tid in request tree, 0 if none. 1483 * 1484 * called under mdsc->mutex. 1485 */ 1486 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1487 { 1488 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1489 return NULL; 1490 return rb_entry(rb_first(&mdsc->request_tree), 1491 struct ceph_mds_request, r_node); 1492 } 1493 1494 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1495 { 1496 struct ceph_mds_request *req = __get_oldest_req(mdsc); 1497 1498 if (req) 1499 return req->r_tid; 1500 return 0; 1501 } 1502 1503 /* 1504 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1505 * on build_path_from_dentry in fs/cifs/dir.c. 1506 * 1507 * If @stop_on_nosnap, generate path relative to the first non-snapped 1508 * inode. 1509 * 1510 * Encode hidden .snap dirs as a double /, i.e. 1511 * foo/.snap/bar -> foo//bar 1512 */ 1513 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1514 int stop_on_nosnap) 1515 { 1516 struct dentry *temp; 1517 char *path; 1518 int len, pos; 1519 unsigned seq; 1520 1521 if (dentry == NULL) 1522 return ERR_PTR(-EINVAL); 1523 1524 retry: 1525 len = 0; 1526 seq = read_seqbegin(&rename_lock); 1527 rcu_read_lock(); 1528 for (temp = dentry; !IS_ROOT(temp);) { 1529 struct inode *inode = temp->d_inode; 1530 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1531 len++; /* slash only */ 1532 else if (stop_on_nosnap && inode && 1533 ceph_snap(inode) == CEPH_NOSNAP) 1534 break; 1535 else 1536 len += 1 + temp->d_name.len; 1537 temp = temp->d_parent; 1538 } 1539 rcu_read_unlock(); 1540 if (len) 1541 len--; /* no leading '/' */ 1542 1543 path = kmalloc(len+1, GFP_NOFS); 1544 if (path == NULL) 1545 return ERR_PTR(-ENOMEM); 1546 pos = len; 1547 path[pos] = 0; /* trailing null */ 1548 rcu_read_lock(); 1549 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1550 struct inode *inode; 1551 1552 spin_lock(&temp->d_lock); 1553 inode = temp->d_inode; 1554 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1555 dout("build_path path+%d: %p SNAPDIR\n", 1556 pos, temp); 1557 } else if (stop_on_nosnap && inode && 1558 ceph_snap(inode) == CEPH_NOSNAP) { 1559 spin_unlock(&temp->d_lock); 1560 break; 1561 } else { 1562 pos -= temp->d_name.len; 1563 if (pos < 0) { 1564 spin_unlock(&temp->d_lock); 1565 break; 1566 } 1567 strncpy(path + pos, temp->d_name.name, 1568 temp->d_name.len); 1569 } 1570 spin_unlock(&temp->d_lock); 1571 if (pos) 1572 path[--pos] = '/'; 1573 temp = temp->d_parent; 1574 } 1575 rcu_read_unlock(); 1576 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1577 pr_err("build_path did not end path lookup where " 1578 "expected, namelen is %d, pos is %d\n", len, pos); 1579 /* presumably this is only possible if racing with a 1580 rename of one of the parent directories (we can not 1581 lock the dentries above us to prevent this, but 1582 retrying should be harmless) */ 1583 kfree(path); 1584 goto retry; 1585 } 1586 1587 *base = ceph_ino(temp->d_inode); 1588 *plen = len; 1589 dout("build_path on %p %d built %llx '%.*s'\n", 1590 dentry, d_count(dentry), *base, len, path); 1591 return path; 1592 } 1593 1594 static int build_dentry_path(struct dentry *dentry, 1595 const char **ppath, int *ppathlen, u64 *pino, 1596 int *pfreepath) 1597 { 1598 char *path; 1599 1600 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) { 1601 *pino = ceph_ino(dentry->d_parent->d_inode); 1602 *ppath = dentry->d_name.name; 1603 *ppathlen = dentry->d_name.len; 1604 return 0; 1605 } 1606 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1607 if (IS_ERR(path)) 1608 return PTR_ERR(path); 1609 *ppath = path; 1610 *pfreepath = 1; 1611 return 0; 1612 } 1613 1614 static int build_inode_path(struct inode *inode, 1615 const char **ppath, int *ppathlen, u64 *pino, 1616 int *pfreepath) 1617 { 1618 struct dentry *dentry; 1619 char *path; 1620 1621 if (ceph_snap(inode) == CEPH_NOSNAP) { 1622 *pino = ceph_ino(inode); 1623 *ppathlen = 0; 1624 return 0; 1625 } 1626 dentry = d_find_alias(inode); 1627 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1628 dput(dentry); 1629 if (IS_ERR(path)) 1630 return PTR_ERR(path); 1631 *ppath = path; 1632 *pfreepath = 1; 1633 return 0; 1634 } 1635 1636 /* 1637 * request arguments may be specified via an inode *, a dentry *, or 1638 * an explicit ino+path. 1639 */ 1640 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1641 const char *rpath, u64 rino, 1642 const char **ppath, int *pathlen, 1643 u64 *ino, int *freepath) 1644 { 1645 int r = 0; 1646 1647 if (rinode) { 1648 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1649 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1650 ceph_snap(rinode)); 1651 } else if (rdentry) { 1652 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1653 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1654 *ppath); 1655 } else if (rpath || rino) { 1656 *ino = rino; 1657 *ppath = rpath; 1658 *pathlen = rpath ? strlen(rpath) : 0; 1659 dout(" path %.*s\n", *pathlen, rpath); 1660 } 1661 1662 return r; 1663 } 1664 1665 /* 1666 * called under mdsc->mutex 1667 */ 1668 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1669 struct ceph_mds_request *req, 1670 int mds) 1671 { 1672 struct ceph_msg *msg; 1673 struct ceph_mds_request_head *head; 1674 const char *path1 = NULL; 1675 const char *path2 = NULL; 1676 u64 ino1 = 0, ino2 = 0; 1677 int pathlen1 = 0, pathlen2 = 0; 1678 int freepath1 = 0, freepath2 = 0; 1679 int len; 1680 u16 releases; 1681 void *p, *end; 1682 int ret; 1683 1684 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1685 req->r_path1, req->r_ino1.ino, 1686 &path1, &pathlen1, &ino1, &freepath1); 1687 if (ret < 0) { 1688 msg = ERR_PTR(ret); 1689 goto out; 1690 } 1691 1692 ret = set_request_path_attr(NULL, req->r_old_dentry, 1693 req->r_path2, req->r_ino2.ino, 1694 &path2, &pathlen2, &ino2, &freepath2); 1695 if (ret < 0) { 1696 msg = ERR_PTR(ret); 1697 goto out_free1; 1698 } 1699 1700 len = sizeof(*head) + 1701 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)); 1702 1703 /* calculate (max) length for cap releases */ 1704 len += sizeof(struct ceph_mds_request_release) * 1705 (!!req->r_inode_drop + !!req->r_dentry_drop + 1706 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1707 if (req->r_dentry_drop) 1708 len += req->r_dentry->d_name.len; 1709 if (req->r_old_dentry_drop) 1710 len += req->r_old_dentry->d_name.len; 1711 1712 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1713 if (!msg) { 1714 msg = ERR_PTR(-ENOMEM); 1715 goto out_free2; 1716 } 1717 1718 msg->hdr.tid = cpu_to_le64(req->r_tid); 1719 1720 head = msg->front.iov_base; 1721 p = msg->front.iov_base + sizeof(*head); 1722 end = msg->front.iov_base + msg->front.iov_len; 1723 1724 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1725 head->op = cpu_to_le32(req->r_op); 1726 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1727 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1728 head->args = req->r_args; 1729 1730 ceph_encode_filepath(&p, end, ino1, path1); 1731 ceph_encode_filepath(&p, end, ino2, path2); 1732 1733 /* make note of release offset, in case we need to replay */ 1734 req->r_request_release_offset = p - msg->front.iov_base; 1735 1736 /* cap releases */ 1737 releases = 0; 1738 if (req->r_inode_drop) 1739 releases += ceph_encode_inode_release(&p, 1740 req->r_inode ? req->r_inode : req->r_dentry->d_inode, 1741 mds, req->r_inode_drop, req->r_inode_unless, 0); 1742 if (req->r_dentry_drop) 1743 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1744 mds, req->r_dentry_drop, req->r_dentry_unless); 1745 if (req->r_old_dentry_drop) 1746 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1747 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1748 if (req->r_old_inode_drop) 1749 releases += ceph_encode_inode_release(&p, 1750 req->r_old_dentry->d_inode, 1751 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 1752 head->num_releases = cpu_to_le16(releases); 1753 1754 BUG_ON(p > end); 1755 msg->front.iov_len = p - msg->front.iov_base; 1756 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1757 1758 if (req->r_data_len) { 1759 /* outbound data set only by ceph_sync_setxattr() */ 1760 BUG_ON(!req->r_pages); 1761 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0); 1762 } 1763 1764 msg->hdr.data_len = cpu_to_le32(req->r_data_len); 1765 msg->hdr.data_off = cpu_to_le16(0); 1766 1767 out_free2: 1768 if (freepath2) 1769 kfree((char *)path2); 1770 out_free1: 1771 if (freepath1) 1772 kfree((char *)path1); 1773 out: 1774 return msg; 1775 } 1776 1777 /* 1778 * called under mdsc->mutex if error, under no mutex if 1779 * success. 1780 */ 1781 static void complete_request(struct ceph_mds_client *mdsc, 1782 struct ceph_mds_request *req) 1783 { 1784 if (req->r_callback) 1785 req->r_callback(mdsc, req); 1786 else 1787 complete_all(&req->r_completion); 1788 } 1789 1790 /* 1791 * called under mdsc->mutex 1792 */ 1793 static int __prepare_send_request(struct ceph_mds_client *mdsc, 1794 struct ceph_mds_request *req, 1795 int mds) 1796 { 1797 struct ceph_mds_request_head *rhead; 1798 struct ceph_msg *msg; 1799 int flags = 0; 1800 1801 req->r_attempts++; 1802 if (req->r_inode) { 1803 struct ceph_cap *cap = 1804 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 1805 1806 if (cap) 1807 req->r_sent_on_mseq = cap->mseq; 1808 else 1809 req->r_sent_on_mseq = -1; 1810 } 1811 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 1812 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 1813 1814 if (req->r_got_unsafe) { 1815 /* 1816 * Replay. Do not regenerate message (and rebuild 1817 * paths, etc.); just use the original message. 1818 * Rebuilding paths will break for renames because 1819 * d_move mangles the src name. 1820 */ 1821 msg = req->r_request; 1822 rhead = msg->front.iov_base; 1823 1824 flags = le32_to_cpu(rhead->flags); 1825 flags |= CEPH_MDS_FLAG_REPLAY; 1826 rhead->flags = cpu_to_le32(flags); 1827 1828 if (req->r_target_inode) 1829 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 1830 1831 rhead->num_retry = req->r_attempts - 1; 1832 1833 /* remove cap/dentry releases from message */ 1834 rhead->num_releases = 0; 1835 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset); 1836 msg->front.iov_len = req->r_request_release_offset; 1837 return 0; 1838 } 1839 1840 if (req->r_request) { 1841 ceph_msg_put(req->r_request); 1842 req->r_request = NULL; 1843 } 1844 msg = create_request_message(mdsc, req, mds); 1845 if (IS_ERR(msg)) { 1846 req->r_err = PTR_ERR(msg); 1847 complete_request(mdsc, req); 1848 return PTR_ERR(msg); 1849 } 1850 req->r_request = msg; 1851 1852 rhead = msg->front.iov_base; 1853 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 1854 if (req->r_got_unsafe) 1855 flags |= CEPH_MDS_FLAG_REPLAY; 1856 if (req->r_locked_dir) 1857 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 1858 rhead->flags = cpu_to_le32(flags); 1859 rhead->num_fwd = req->r_num_fwd; 1860 rhead->num_retry = req->r_attempts - 1; 1861 rhead->ino = 0; 1862 1863 dout(" r_locked_dir = %p\n", req->r_locked_dir); 1864 return 0; 1865 } 1866 1867 /* 1868 * send request, or put it on the appropriate wait list. 1869 */ 1870 static int __do_request(struct ceph_mds_client *mdsc, 1871 struct ceph_mds_request *req) 1872 { 1873 struct ceph_mds_session *session = NULL; 1874 int mds = -1; 1875 int err = -EAGAIN; 1876 1877 if (req->r_err || req->r_got_result) { 1878 if (req->r_aborted) 1879 __unregister_request(mdsc, req); 1880 goto out; 1881 } 1882 1883 if (req->r_timeout && 1884 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 1885 dout("do_request timed out\n"); 1886 err = -EIO; 1887 goto finish; 1888 } 1889 1890 put_request_session(req); 1891 1892 mds = __choose_mds(mdsc, req); 1893 if (mds < 0 || 1894 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 1895 dout("do_request no mds or not active, waiting for map\n"); 1896 list_add(&req->r_wait, &mdsc->waiting_for_map); 1897 goto out; 1898 } 1899 1900 /* get, open session */ 1901 session = __ceph_lookup_mds_session(mdsc, mds); 1902 if (!session) { 1903 session = register_session(mdsc, mds); 1904 if (IS_ERR(session)) { 1905 err = PTR_ERR(session); 1906 goto finish; 1907 } 1908 } 1909 req->r_session = get_session(session); 1910 1911 dout("do_request mds%d session %p state %s\n", mds, session, 1912 session_state_name(session->s_state)); 1913 if (session->s_state != CEPH_MDS_SESSION_OPEN && 1914 session->s_state != CEPH_MDS_SESSION_HUNG) { 1915 if (session->s_state == CEPH_MDS_SESSION_NEW || 1916 session->s_state == CEPH_MDS_SESSION_CLOSING) 1917 __open_session(mdsc, session); 1918 list_add(&req->r_wait, &session->s_waiting); 1919 goto out_session; 1920 } 1921 1922 /* send request */ 1923 req->r_resend_mds = -1; /* forget any previous mds hint */ 1924 1925 if (req->r_request_started == 0) /* note request start time */ 1926 req->r_request_started = jiffies; 1927 1928 err = __prepare_send_request(mdsc, req, mds); 1929 if (!err) { 1930 ceph_msg_get(req->r_request); 1931 ceph_con_send(&session->s_con, req->r_request); 1932 } 1933 1934 out_session: 1935 ceph_put_mds_session(session); 1936 out: 1937 return err; 1938 1939 finish: 1940 req->r_err = err; 1941 complete_request(mdsc, req); 1942 goto out; 1943 } 1944 1945 /* 1946 * called under mdsc->mutex 1947 */ 1948 static void __wake_requests(struct ceph_mds_client *mdsc, 1949 struct list_head *head) 1950 { 1951 struct ceph_mds_request *req; 1952 LIST_HEAD(tmp_list); 1953 1954 list_splice_init(head, &tmp_list); 1955 1956 while (!list_empty(&tmp_list)) { 1957 req = list_entry(tmp_list.next, 1958 struct ceph_mds_request, r_wait); 1959 list_del_init(&req->r_wait); 1960 dout(" wake request %p tid %llu\n", req, req->r_tid); 1961 __do_request(mdsc, req); 1962 } 1963 } 1964 1965 /* 1966 * Wake up threads with requests pending for @mds, so that they can 1967 * resubmit their requests to a possibly different mds. 1968 */ 1969 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 1970 { 1971 struct ceph_mds_request *req; 1972 struct rb_node *p; 1973 1974 dout("kick_requests mds%d\n", mds); 1975 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) { 1976 req = rb_entry(p, struct ceph_mds_request, r_node); 1977 if (req->r_got_unsafe) 1978 continue; 1979 if (req->r_session && 1980 req->r_session->s_mds == mds) { 1981 dout(" kicking tid %llu\n", req->r_tid); 1982 __do_request(mdsc, req); 1983 } 1984 } 1985 } 1986 1987 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 1988 struct ceph_mds_request *req) 1989 { 1990 dout("submit_request on %p\n", req); 1991 mutex_lock(&mdsc->mutex); 1992 __register_request(mdsc, req, NULL); 1993 __do_request(mdsc, req); 1994 mutex_unlock(&mdsc->mutex); 1995 } 1996 1997 /* 1998 * Synchrously perform an mds request. Take care of all of the 1999 * session setup, forwarding, retry details. 2000 */ 2001 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2002 struct inode *dir, 2003 struct ceph_mds_request *req) 2004 { 2005 int err; 2006 2007 dout("do_request on %p\n", req); 2008 2009 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2010 if (req->r_inode) 2011 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2012 if (req->r_locked_dir) 2013 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2014 if (req->r_old_dentry) 2015 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2016 CEPH_CAP_PIN); 2017 2018 /* issue */ 2019 mutex_lock(&mdsc->mutex); 2020 __register_request(mdsc, req, dir); 2021 __do_request(mdsc, req); 2022 2023 if (req->r_err) { 2024 err = req->r_err; 2025 __unregister_request(mdsc, req); 2026 dout("do_request early error %d\n", err); 2027 goto out; 2028 } 2029 2030 /* wait */ 2031 mutex_unlock(&mdsc->mutex); 2032 dout("do_request waiting\n"); 2033 if (req->r_timeout) { 2034 err = (long)wait_for_completion_killable_timeout( 2035 &req->r_completion, req->r_timeout); 2036 if (err == 0) 2037 err = -EIO; 2038 } else { 2039 err = wait_for_completion_killable(&req->r_completion); 2040 } 2041 dout("do_request waited, got %d\n", err); 2042 mutex_lock(&mdsc->mutex); 2043 2044 /* only abort if we didn't race with a real reply */ 2045 if (req->r_got_result) { 2046 err = le32_to_cpu(req->r_reply_info.head->result); 2047 } else if (err < 0) { 2048 dout("aborted request %lld with %d\n", req->r_tid, err); 2049 2050 /* 2051 * ensure we aren't running concurrently with 2052 * ceph_fill_trace or ceph_readdir_prepopulate, which 2053 * rely on locks (dir mutex) held by our caller. 2054 */ 2055 mutex_lock(&req->r_fill_mutex); 2056 req->r_err = err; 2057 req->r_aborted = true; 2058 mutex_unlock(&req->r_fill_mutex); 2059 2060 if (req->r_locked_dir && 2061 (req->r_op & CEPH_MDS_OP_WRITE)) 2062 ceph_invalidate_dir_request(req); 2063 } else { 2064 err = req->r_err; 2065 } 2066 2067 out: 2068 mutex_unlock(&mdsc->mutex); 2069 dout("do_request %p done, result %d\n", req, err); 2070 return err; 2071 } 2072 2073 /* 2074 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2075 * namespace request. 2076 */ 2077 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2078 { 2079 struct inode *inode = req->r_locked_dir; 2080 2081 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2082 2083 ceph_dir_clear_complete(inode); 2084 if (req->r_dentry) 2085 ceph_invalidate_dentry_lease(req->r_dentry); 2086 if (req->r_old_dentry) 2087 ceph_invalidate_dentry_lease(req->r_old_dentry); 2088 } 2089 2090 /* 2091 * Handle mds reply. 2092 * 2093 * We take the session mutex and parse and process the reply immediately. 2094 * This preserves the logical ordering of replies, capabilities, etc., sent 2095 * by the MDS as they are applied to our local cache. 2096 */ 2097 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2098 { 2099 struct ceph_mds_client *mdsc = session->s_mdsc; 2100 struct ceph_mds_request *req; 2101 struct ceph_mds_reply_head *head = msg->front.iov_base; 2102 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2103 u64 tid; 2104 int err, result; 2105 int mds = session->s_mds; 2106 2107 if (msg->front.iov_len < sizeof(*head)) { 2108 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2109 ceph_msg_dump(msg); 2110 return; 2111 } 2112 2113 /* get request, session */ 2114 tid = le64_to_cpu(msg->hdr.tid); 2115 mutex_lock(&mdsc->mutex); 2116 req = __lookup_request(mdsc, tid); 2117 if (!req) { 2118 dout("handle_reply on unknown tid %llu\n", tid); 2119 mutex_unlock(&mdsc->mutex); 2120 return; 2121 } 2122 dout("handle_reply %p\n", req); 2123 2124 /* correct session? */ 2125 if (req->r_session != session) { 2126 pr_err("mdsc_handle_reply got %llu on session mds%d" 2127 " not mds%d\n", tid, session->s_mds, 2128 req->r_session ? req->r_session->s_mds : -1); 2129 mutex_unlock(&mdsc->mutex); 2130 goto out; 2131 } 2132 2133 /* dup? */ 2134 if ((req->r_got_unsafe && !head->safe) || 2135 (req->r_got_safe && head->safe)) { 2136 pr_warning("got a dup %s reply on %llu from mds%d\n", 2137 head->safe ? "safe" : "unsafe", tid, mds); 2138 mutex_unlock(&mdsc->mutex); 2139 goto out; 2140 } 2141 if (req->r_got_safe && !head->safe) { 2142 pr_warning("got unsafe after safe on %llu from mds%d\n", 2143 tid, mds); 2144 mutex_unlock(&mdsc->mutex); 2145 goto out; 2146 } 2147 2148 result = le32_to_cpu(head->result); 2149 2150 /* 2151 * Handle an ESTALE 2152 * if we're not talking to the authority, send to them 2153 * if the authority has changed while we weren't looking, 2154 * send to new authority 2155 * Otherwise we just have to return an ESTALE 2156 */ 2157 if (result == -ESTALE) { 2158 dout("got ESTALE on request %llu", req->r_tid); 2159 if (!req->r_inode) { 2160 /* do nothing; not an authority problem */ 2161 } else if (req->r_direct_mode != USE_AUTH_MDS) { 2162 dout("not using auth, setting for that now"); 2163 req->r_direct_mode = USE_AUTH_MDS; 2164 __do_request(mdsc, req); 2165 mutex_unlock(&mdsc->mutex); 2166 goto out; 2167 } else { 2168 struct ceph_inode_info *ci = ceph_inode(req->r_inode); 2169 struct ceph_cap *cap = NULL; 2170 2171 if (req->r_session) 2172 cap = ceph_get_cap_for_mds(ci, 2173 req->r_session->s_mds); 2174 2175 dout("already using auth"); 2176 if ((!cap || cap != ci->i_auth_cap) || 2177 (cap->mseq != req->r_sent_on_mseq)) { 2178 dout("but cap changed, so resending"); 2179 __do_request(mdsc, req); 2180 mutex_unlock(&mdsc->mutex); 2181 goto out; 2182 } 2183 } 2184 dout("have to return ESTALE on request %llu", req->r_tid); 2185 } 2186 2187 2188 if (head->safe) { 2189 req->r_got_safe = true; 2190 __unregister_request(mdsc, req); 2191 2192 if (req->r_got_unsafe) { 2193 /* 2194 * We already handled the unsafe response, now do the 2195 * cleanup. No need to examine the response; the MDS 2196 * doesn't include any result info in the safe 2197 * response. And even if it did, there is nothing 2198 * useful we could do with a revised return value. 2199 */ 2200 dout("got safe reply %llu, mds%d\n", tid, mds); 2201 list_del_init(&req->r_unsafe_item); 2202 2203 /* last unsafe request during umount? */ 2204 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2205 complete_all(&mdsc->safe_umount_waiters); 2206 mutex_unlock(&mdsc->mutex); 2207 goto out; 2208 } 2209 } else { 2210 req->r_got_unsafe = true; 2211 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2212 } 2213 2214 dout("handle_reply tid %lld result %d\n", tid, result); 2215 rinfo = &req->r_reply_info; 2216 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2217 mutex_unlock(&mdsc->mutex); 2218 2219 mutex_lock(&session->s_mutex); 2220 if (err < 0) { 2221 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2222 ceph_msg_dump(msg); 2223 goto out_err; 2224 } 2225 2226 /* snap trace */ 2227 if (rinfo->snapblob_len) { 2228 down_write(&mdsc->snap_rwsem); 2229 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2230 rinfo->snapblob + rinfo->snapblob_len, 2231 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP); 2232 downgrade_write(&mdsc->snap_rwsem); 2233 } else { 2234 down_read(&mdsc->snap_rwsem); 2235 } 2236 2237 /* insert trace into our cache */ 2238 mutex_lock(&req->r_fill_mutex); 2239 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2240 if (err == 0) { 2241 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2242 req->r_op == CEPH_MDS_OP_LSSNAP)) 2243 ceph_readdir_prepopulate(req, req->r_session); 2244 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2245 } 2246 mutex_unlock(&req->r_fill_mutex); 2247 2248 up_read(&mdsc->snap_rwsem); 2249 out_err: 2250 mutex_lock(&mdsc->mutex); 2251 if (!req->r_aborted) { 2252 if (err) { 2253 req->r_err = err; 2254 } else { 2255 req->r_reply = msg; 2256 ceph_msg_get(msg); 2257 req->r_got_result = true; 2258 } 2259 } else { 2260 dout("reply arrived after request %lld was aborted\n", tid); 2261 } 2262 mutex_unlock(&mdsc->mutex); 2263 2264 ceph_add_cap_releases(mdsc, req->r_session); 2265 mutex_unlock(&session->s_mutex); 2266 2267 /* kick calling process */ 2268 complete_request(mdsc, req); 2269 out: 2270 ceph_mdsc_put_request(req); 2271 return; 2272 } 2273 2274 2275 2276 /* 2277 * handle mds notification that our request has been forwarded. 2278 */ 2279 static void handle_forward(struct ceph_mds_client *mdsc, 2280 struct ceph_mds_session *session, 2281 struct ceph_msg *msg) 2282 { 2283 struct ceph_mds_request *req; 2284 u64 tid = le64_to_cpu(msg->hdr.tid); 2285 u32 next_mds; 2286 u32 fwd_seq; 2287 int err = -EINVAL; 2288 void *p = msg->front.iov_base; 2289 void *end = p + msg->front.iov_len; 2290 2291 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2292 next_mds = ceph_decode_32(&p); 2293 fwd_seq = ceph_decode_32(&p); 2294 2295 mutex_lock(&mdsc->mutex); 2296 req = __lookup_request(mdsc, tid); 2297 if (!req) { 2298 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2299 goto out; /* dup reply? */ 2300 } 2301 2302 if (req->r_aborted) { 2303 dout("forward tid %llu aborted, unregistering\n", tid); 2304 __unregister_request(mdsc, req); 2305 } else if (fwd_seq <= req->r_num_fwd) { 2306 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2307 tid, next_mds, req->r_num_fwd, fwd_seq); 2308 } else { 2309 /* resend. forward race not possible; mds would drop */ 2310 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2311 BUG_ON(req->r_err); 2312 BUG_ON(req->r_got_result); 2313 req->r_num_fwd = fwd_seq; 2314 req->r_resend_mds = next_mds; 2315 put_request_session(req); 2316 __do_request(mdsc, req); 2317 } 2318 ceph_mdsc_put_request(req); 2319 out: 2320 mutex_unlock(&mdsc->mutex); 2321 return; 2322 2323 bad: 2324 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2325 } 2326 2327 /* 2328 * handle a mds session control message 2329 */ 2330 static void handle_session(struct ceph_mds_session *session, 2331 struct ceph_msg *msg) 2332 { 2333 struct ceph_mds_client *mdsc = session->s_mdsc; 2334 u32 op; 2335 u64 seq; 2336 int mds = session->s_mds; 2337 struct ceph_mds_session_head *h = msg->front.iov_base; 2338 int wake = 0; 2339 2340 /* decode */ 2341 if (msg->front.iov_len != sizeof(*h)) 2342 goto bad; 2343 op = le32_to_cpu(h->op); 2344 seq = le64_to_cpu(h->seq); 2345 2346 mutex_lock(&mdsc->mutex); 2347 if (op == CEPH_SESSION_CLOSE) 2348 __unregister_session(mdsc, session); 2349 /* FIXME: this ttl calculation is generous */ 2350 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2351 mutex_unlock(&mdsc->mutex); 2352 2353 mutex_lock(&session->s_mutex); 2354 2355 dout("handle_session mds%d %s %p state %s seq %llu\n", 2356 mds, ceph_session_op_name(op), session, 2357 session_state_name(session->s_state), seq); 2358 2359 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2360 session->s_state = CEPH_MDS_SESSION_OPEN; 2361 pr_info("mds%d came back\n", session->s_mds); 2362 } 2363 2364 switch (op) { 2365 case CEPH_SESSION_OPEN: 2366 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2367 pr_info("mds%d reconnect success\n", session->s_mds); 2368 session->s_state = CEPH_MDS_SESSION_OPEN; 2369 renewed_caps(mdsc, session, 0); 2370 wake = 1; 2371 if (mdsc->stopping) 2372 __close_session(mdsc, session); 2373 break; 2374 2375 case CEPH_SESSION_RENEWCAPS: 2376 if (session->s_renew_seq == seq) 2377 renewed_caps(mdsc, session, 1); 2378 break; 2379 2380 case CEPH_SESSION_CLOSE: 2381 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2382 pr_info("mds%d reconnect denied\n", session->s_mds); 2383 remove_session_caps(session); 2384 wake = 1; /* for good measure */ 2385 wake_up_all(&mdsc->session_close_wq); 2386 kick_requests(mdsc, mds); 2387 break; 2388 2389 case CEPH_SESSION_STALE: 2390 pr_info("mds%d caps went stale, renewing\n", 2391 session->s_mds); 2392 spin_lock(&session->s_gen_ttl_lock); 2393 session->s_cap_gen++; 2394 session->s_cap_ttl = jiffies - 1; 2395 spin_unlock(&session->s_gen_ttl_lock); 2396 send_renew_caps(mdsc, session); 2397 break; 2398 2399 case CEPH_SESSION_RECALL_STATE: 2400 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2401 break; 2402 2403 default: 2404 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2405 WARN_ON(1); 2406 } 2407 2408 mutex_unlock(&session->s_mutex); 2409 if (wake) { 2410 mutex_lock(&mdsc->mutex); 2411 __wake_requests(mdsc, &session->s_waiting); 2412 mutex_unlock(&mdsc->mutex); 2413 } 2414 return; 2415 2416 bad: 2417 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2418 (int)msg->front.iov_len); 2419 ceph_msg_dump(msg); 2420 return; 2421 } 2422 2423 2424 /* 2425 * called under session->mutex. 2426 */ 2427 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2428 struct ceph_mds_session *session) 2429 { 2430 struct ceph_mds_request *req, *nreq; 2431 int err; 2432 2433 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2434 2435 mutex_lock(&mdsc->mutex); 2436 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2437 err = __prepare_send_request(mdsc, req, session->s_mds); 2438 if (!err) { 2439 ceph_msg_get(req->r_request); 2440 ceph_con_send(&session->s_con, req->r_request); 2441 } 2442 } 2443 mutex_unlock(&mdsc->mutex); 2444 } 2445 2446 /* 2447 * Encode information about a cap for a reconnect with the MDS. 2448 */ 2449 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2450 void *arg) 2451 { 2452 union { 2453 struct ceph_mds_cap_reconnect v2; 2454 struct ceph_mds_cap_reconnect_v1 v1; 2455 } rec; 2456 size_t reclen; 2457 struct ceph_inode_info *ci; 2458 struct ceph_reconnect_state *recon_state = arg; 2459 struct ceph_pagelist *pagelist = recon_state->pagelist; 2460 char *path; 2461 int pathlen, err; 2462 u64 pathbase; 2463 struct dentry *dentry; 2464 2465 ci = cap->ci; 2466 2467 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2468 inode, ceph_vinop(inode), cap, cap->cap_id, 2469 ceph_cap_string(cap->issued)); 2470 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2471 if (err) 2472 return err; 2473 2474 dentry = d_find_alias(inode); 2475 if (dentry) { 2476 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2477 if (IS_ERR(path)) { 2478 err = PTR_ERR(path); 2479 goto out_dput; 2480 } 2481 } else { 2482 path = NULL; 2483 pathlen = 0; 2484 } 2485 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2486 if (err) 2487 goto out_free; 2488 2489 spin_lock(&ci->i_ceph_lock); 2490 cap->seq = 0; /* reset cap seq */ 2491 cap->issue_seq = 0; /* and issue_seq */ 2492 cap->mseq = 0; /* and migrate_seq */ 2493 cap->cap_gen = cap->session->s_cap_gen; 2494 2495 if (recon_state->flock) { 2496 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2497 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2498 rec.v2.issued = cpu_to_le32(cap->issued); 2499 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2500 rec.v2.pathbase = cpu_to_le64(pathbase); 2501 rec.v2.flock_len = 0; 2502 reclen = sizeof(rec.v2); 2503 } else { 2504 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2505 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2506 rec.v1.issued = cpu_to_le32(cap->issued); 2507 rec.v1.size = cpu_to_le64(inode->i_size); 2508 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2509 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2510 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2511 rec.v1.pathbase = cpu_to_le64(pathbase); 2512 reclen = sizeof(rec.v1); 2513 } 2514 spin_unlock(&ci->i_ceph_lock); 2515 2516 if (recon_state->flock) { 2517 int num_fcntl_locks, num_flock_locks; 2518 struct ceph_filelock *flocks; 2519 2520 encode_again: 2521 spin_lock(&inode->i_lock); 2522 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2523 spin_unlock(&inode->i_lock); 2524 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2525 sizeof(struct ceph_filelock), GFP_NOFS); 2526 if (!flocks) { 2527 err = -ENOMEM; 2528 goto out_free; 2529 } 2530 spin_lock(&inode->i_lock); 2531 err = ceph_encode_locks_to_buffer(inode, flocks, 2532 num_fcntl_locks, 2533 num_flock_locks); 2534 spin_unlock(&inode->i_lock); 2535 if (err) { 2536 kfree(flocks); 2537 if (err == -ENOSPC) 2538 goto encode_again; 2539 goto out_free; 2540 } 2541 /* 2542 * number of encoded locks is stable, so copy to pagelist 2543 */ 2544 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2545 (num_fcntl_locks+num_flock_locks) * 2546 sizeof(struct ceph_filelock)); 2547 err = ceph_pagelist_append(pagelist, &rec, reclen); 2548 if (!err) 2549 err = ceph_locks_to_pagelist(flocks, pagelist, 2550 num_fcntl_locks, 2551 num_flock_locks); 2552 kfree(flocks); 2553 } else { 2554 err = ceph_pagelist_append(pagelist, &rec, reclen); 2555 } 2556 2557 recon_state->nr_caps++; 2558 out_free: 2559 kfree(path); 2560 out_dput: 2561 dput(dentry); 2562 return err; 2563 } 2564 2565 2566 /* 2567 * If an MDS fails and recovers, clients need to reconnect in order to 2568 * reestablish shared state. This includes all caps issued through 2569 * this session _and_ the snap_realm hierarchy. Because it's not 2570 * clear which snap realms the mds cares about, we send everything we 2571 * know about.. that ensures we'll then get any new info the 2572 * recovering MDS might have. 2573 * 2574 * This is a relatively heavyweight operation, but it's rare. 2575 * 2576 * called with mdsc->mutex held. 2577 */ 2578 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2579 struct ceph_mds_session *session) 2580 { 2581 struct ceph_msg *reply; 2582 struct rb_node *p; 2583 int mds = session->s_mds; 2584 int err = -ENOMEM; 2585 int s_nr_caps; 2586 struct ceph_pagelist *pagelist; 2587 struct ceph_reconnect_state recon_state; 2588 2589 pr_info("mds%d reconnect start\n", mds); 2590 2591 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2592 if (!pagelist) 2593 goto fail_nopagelist; 2594 ceph_pagelist_init(pagelist); 2595 2596 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2597 if (!reply) 2598 goto fail_nomsg; 2599 2600 mutex_lock(&session->s_mutex); 2601 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2602 session->s_seq = 0; 2603 2604 ceph_con_close(&session->s_con); 2605 ceph_con_open(&session->s_con, 2606 CEPH_ENTITY_TYPE_MDS, mds, 2607 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2608 2609 /* replay unsafe requests */ 2610 replay_unsafe_requests(mdsc, session); 2611 2612 down_read(&mdsc->snap_rwsem); 2613 2614 dout("session %p state %s\n", session, 2615 session_state_name(session->s_state)); 2616 2617 spin_lock(&session->s_gen_ttl_lock); 2618 session->s_cap_gen++; 2619 spin_unlock(&session->s_gen_ttl_lock); 2620 2621 spin_lock(&session->s_cap_lock); 2622 /* 2623 * notify __ceph_remove_cap() that we are composing cap reconnect. 2624 * If a cap get released before being added to the cap reconnect, 2625 * __ceph_remove_cap() should skip queuing cap release. 2626 */ 2627 session->s_cap_reconnect = 1; 2628 /* drop old cap expires; we're about to reestablish that state */ 2629 discard_cap_releases(mdsc, session); 2630 spin_unlock(&session->s_cap_lock); 2631 2632 /* traverse this session's caps */ 2633 s_nr_caps = session->s_nr_caps; 2634 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2635 if (err) 2636 goto fail; 2637 2638 recon_state.nr_caps = 0; 2639 recon_state.pagelist = pagelist; 2640 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2641 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2642 if (err < 0) 2643 goto fail; 2644 2645 spin_lock(&session->s_cap_lock); 2646 session->s_cap_reconnect = 0; 2647 spin_unlock(&session->s_cap_lock); 2648 2649 /* 2650 * snaprealms. we provide mds with the ino, seq (version), and 2651 * parent for all of our realms. If the mds has any newer info, 2652 * it will tell us. 2653 */ 2654 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2655 struct ceph_snap_realm *realm = 2656 rb_entry(p, struct ceph_snap_realm, node); 2657 struct ceph_mds_snaprealm_reconnect sr_rec; 2658 2659 dout(" adding snap realm %llx seq %lld parent %llx\n", 2660 realm->ino, realm->seq, realm->parent_ino); 2661 sr_rec.ino = cpu_to_le64(realm->ino); 2662 sr_rec.seq = cpu_to_le64(realm->seq); 2663 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2664 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 2665 if (err) 2666 goto fail; 2667 } 2668 2669 if (recon_state.flock) 2670 reply->hdr.version = cpu_to_le16(2); 2671 2672 /* raced with cap release? */ 2673 if (s_nr_caps != recon_state.nr_caps) { 2674 struct page *page = list_first_entry(&pagelist->head, 2675 struct page, lru); 2676 __le32 *addr = kmap_atomic(page); 2677 *addr = cpu_to_le32(recon_state.nr_caps); 2678 kunmap_atomic(addr); 2679 } 2680 2681 reply->hdr.data_len = cpu_to_le32(pagelist->length); 2682 ceph_msg_data_add_pagelist(reply, pagelist); 2683 ceph_con_send(&session->s_con, reply); 2684 2685 mutex_unlock(&session->s_mutex); 2686 2687 mutex_lock(&mdsc->mutex); 2688 __wake_requests(mdsc, &session->s_waiting); 2689 mutex_unlock(&mdsc->mutex); 2690 2691 up_read(&mdsc->snap_rwsem); 2692 return; 2693 2694 fail: 2695 ceph_msg_put(reply); 2696 up_read(&mdsc->snap_rwsem); 2697 mutex_unlock(&session->s_mutex); 2698 fail_nomsg: 2699 ceph_pagelist_release(pagelist); 2700 kfree(pagelist); 2701 fail_nopagelist: 2702 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 2703 return; 2704 } 2705 2706 2707 /* 2708 * compare old and new mdsmaps, kicking requests 2709 * and closing out old connections as necessary 2710 * 2711 * called under mdsc->mutex. 2712 */ 2713 static void check_new_map(struct ceph_mds_client *mdsc, 2714 struct ceph_mdsmap *newmap, 2715 struct ceph_mdsmap *oldmap) 2716 { 2717 int i; 2718 int oldstate, newstate; 2719 struct ceph_mds_session *s; 2720 2721 dout("check_new_map new %u old %u\n", 2722 newmap->m_epoch, oldmap->m_epoch); 2723 2724 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 2725 if (mdsc->sessions[i] == NULL) 2726 continue; 2727 s = mdsc->sessions[i]; 2728 oldstate = ceph_mdsmap_get_state(oldmap, i); 2729 newstate = ceph_mdsmap_get_state(newmap, i); 2730 2731 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 2732 i, ceph_mds_state_name(oldstate), 2733 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 2734 ceph_mds_state_name(newstate), 2735 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 2736 session_state_name(s->s_state)); 2737 2738 if (i >= newmap->m_max_mds || 2739 memcmp(ceph_mdsmap_get_addr(oldmap, i), 2740 ceph_mdsmap_get_addr(newmap, i), 2741 sizeof(struct ceph_entity_addr))) { 2742 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 2743 /* the session never opened, just close it 2744 * out now */ 2745 __wake_requests(mdsc, &s->s_waiting); 2746 __unregister_session(mdsc, s); 2747 } else { 2748 /* just close it */ 2749 mutex_unlock(&mdsc->mutex); 2750 mutex_lock(&s->s_mutex); 2751 mutex_lock(&mdsc->mutex); 2752 ceph_con_close(&s->s_con); 2753 mutex_unlock(&s->s_mutex); 2754 s->s_state = CEPH_MDS_SESSION_RESTARTING; 2755 } 2756 2757 /* kick any requests waiting on the recovering mds */ 2758 kick_requests(mdsc, i); 2759 } else if (oldstate == newstate) { 2760 continue; /* nothing new with this mds */ 2761 } 2762 2763 /* 2764 * send reconnect? 2765 */ 2766 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 2767 newstate >= CEPH_MDS_STATE_RECONNECT) { 2768 mutex_unlock(&mdsc->mutex); 2769 send_mds_reconnect(mdsc, s); 2770 mutex_lock(&mdsc->mutex); 2771 } 2772 2773 /* 2774 * kick request on any mds that has gone active. 2775 */ 2776 if (oldstate < CEPH_MDS_STATE_ACTIVE && 2777 newstate >= CEPH_MDS_STATE_ACTIVE) { 2778 if (oldstate != CEPH_MDS_STATE_CREATING && 2779 oldstate != CEPH_MDS_STATE_STARTING) 2780 pr_info("mds%d recovery completed\n", s->s_mds); 2781 kick_requests(mdsc, i); 2782 ceph_kick_flushing_caps(mdsc, s); 2783 wake_up_session_caps(s, 1); 2784 } 2785 } 2786 2787 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 2788 s = mdsc->sessions[i]; 2789 if (!s) 2790 continue; 2791 if (!ceph_mdsmap_is_laggy(newmap, i)) 2792 continue; 2793 if (s->s_state == CEPH_MDS_SESSION_OPEN || 2794 s->s_state == CEPH_MDS_SESSION_HUNG || 2795 s->s_state == CEPH_MDS_SESSION_CLOSING) { 2796 dout(" connecting to export targets of laggy mds%d\n", 2797 i); 2798 __open_export_target_sessions(mdsc, s); 2799 } 2800 } 2801 } 2802 2803 2804 2805 /* 2806 * leases 2807 */ 2808 2809 /* 2810 * caller must hold session s_mutex, dentry->d_lock 2811 */ 2812 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 2813 { 2814 struct ceph_dentry_info *di = ceph_dentry(dentry); 2815 2816 ceph_put_mds_session(di->lease_session); 2817 di->lease_session = NULL; 2818 } 2819 2820 static void handle_lease(struct ceph_mds_client *mdsc, 2821 struct ceph_mds_session *session, 2822 struct ceph_msg *msg) 2823 { 2824 struct super_block *sb = mdsc->fsc->sb; 2825 struct inode *inode; 2826 struct dentry *parent, *dentry; 2827 struct ceph_dentry_info *di; 2828 int mds = session->s_mds; 2829 struct ceph_mds_lease *h = msg->front.iov_base; 2830 u32 seq; 2831 struct ceph_vino vino; 2832 struct qstr dname; 2833 int release = 0; 2834 2835 dout("handle_lease from mds%d\n", mds); 2836 2837 /* decode */ 2838 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 2839 goto bad; 2840 vino.ino = le64_to_cpu(h->ino); 2841 vino.snap = CEPH_NOSNAP; 2842 seq = le32_to_cpu(h->seq); 2843 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 2844 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 2845 if (dname.len != get_unaligned_le32(h+1)) 2846 goto bad; 2847 2848 mutex_lock(&session->s_mutex); 2849 session->s_seq++; 2850 2851 /* lookup inode */ 2852 inode = ceph_find_inode(sb, vino); 2853 dout("handle_lease %s, ino %llx %p %.*s\n", 2854 ceph_lease_op_name(h->action), vino.ino, inode, 2855 dname.len, dname.name); 2856 if (inode == NULL) { 2857 dout("handle_lease no inode %llx\n", vino.ino); 2858 goto release; 2859 } 2860 2861 /* dentry */ 2862 parent = d_find_alias(inode); 2863 if (!parent) { 2864 dout("no parent dentry on inode %p\n", inode); 2865 WARN_ON(1); 2866 goto release; /* hrm... */ 2867 } 2868 dname.hash = full_name_hash(dname.name, dname.len); 2869 dentry = d_lookup(parent, &dname); 2870 dput(parent); 2871 if (!dentry) 2872 goto release; 2873 2874 spin_lock(&dentry->d_lock); 2875 di = ceph_dentry(dentry); 2876 switch (h->action) { 2877 case CEPH_MDS_LEASE_REVOKE: 2878 if (di->lease_session == session) { 2879 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 2880 h->seq = cpu_to_le32(di->lease_seq); 2881 __ceph_mdsc_drop_dentry_lease(dentry); 2882 } 2883 release = 1; 2884 break; 2885 2886 case CEPH_MDS_LEASE_RENEW: 2887 if (di->lease_session == session && 2888 di->lease_gen == session->s_cap_gen && 2889 di->lease_renew_from && 2890 di->lease_renew_after == 0) { 2891 unsigned long duration = 2892 le32_to_cpu(h->duration_ms) * HZ / 1000; 2893 2894 di->lease_seq = seq; 2895 dentry->d_time = di->lease_renew_from + duration; 2896 di->lease_renew_after = di->lease_renew_from + 2897 (duration >> 1); 2898 di->lease_renew_from = 0; 2899 } 2900 break; 2901 } 2902 spin_unlock(&dentry->d_lock); 2903 dput(dentry); 2904 2905 if (!release) 2906 goto out; 2907 2908 release: 2909 /* let's just reuse the same message */ 2910 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 2911 ceph_msg_get(msg); 2912 ceph_con_send(&session->s_con, msg); 2913 2914 out: 2915 iput(inode); 2916 mutex_unlock(&session->s_mutex); 2917 return; 2918 2919 bad: 2920 pr_err("corrupt lease message\n"); 2921 ceph_msg_dump(msg); 2922 } 2923 2924 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 2925 struct inode *inode, 2926 struct dentry *dentry, char action, 2927 u32 seq) 2928 { 2929 struct ceph_msg *msg; 2930 struct ceph_mds_lease *lease; 2931 int len = sizeof(*lease) + sizeof(u32); 2932 int dnamelen = 0; 2933 2934 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 2935 inode, dentry, ceph_lease_op_name(action), session->s_mds); 2936 dnamelen = dentry->d_name.len; 2937 len += dnamelen; 2938 2939 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 2940 if (!msg) 2941 return; 2942 lease = msg->front.iov_base; 2943 lease->action = action; 2944 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 2945 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 2946 lease->seq = cpu_to_le32(seq); 2947 put_unaligned_le32(dnamelen, lease + 1); 2948 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 2949 2950 /* 2951 * if this is a preemptive lease RELEASE, no need to 2952 * flush request stream, since the actual request will 2953 * soon follow. 2954 */ 2955 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 2956 2957 ceph_con_send(&session->s_con, msg); 2958 } 2959 2960 /* 2961 * Preemptively release a lease we expect to invalidate anyway. 2962 * Pass @inode always, @dentry is optional. 2963 */ 2964 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 2965 struct dentry *dentry) 2966 { 2967 struct ceph_dentry_info *di; 2968 struct ceph_mds_session *session; 2969 u32 seq; 2970 2971 BUG_ON(inode == NULL); 2972 BUG_ON(dentry == NULL); 2973 2974 /* is dentry lease valid? */ 2975 spin_lock(&dentry->d_lock); 2976 di = ceph_dentry(dentry); 2977 if (!di || !di->lease_session || 2978 di->lease_session->s_mds < 0 || 2979 di->lease_gen != di->lease_session->s_cap_gen || 2980 !time_before(jiffies, dentry->d_time)) { 2981 dout("lease_release inode %p dentry %p -- " 2982 "no lease\n", 2983 inode, dentry); 2984 spin_unlock(&dentry->d_lock); 2985 return; 2986 } 2987 2988 /* we do have a lease on this dentry; note mds and seq */ 2989 session = ceph_get_mds_session(di->lease_session); 2990 seq = di->lease_seq; 2991 __ceph_mdsc_drop_dentry_lease(dentry); 2992 spin_unlock(&dentry->d_lock); 2993 2994 dout("lease_release inode %p dentry %p to mds%d\n", 2995 inode, dentry, session->s_mds); 2996 ceph_mdsc_lease_send_msg(session, inode, dentry, 2997 CEPH_MDS_LEASE_RELEASE, seq); 2998 ceph_put_mds_session(session); 2999 } 3000 3001 /* 3002 * drop all leases (and dentry refs) in preparation for umount 3003 */ 3004 static void drop_leases(struct ceph_mds_client *mdsc) 3005 { 3006 int i; 3007 3008 dout("drop_leases\n"); 3009 mutex_lock(&mdsc->mutex); 3010 for (i = 0; i < mdsc->max_sessions; i++) { 3011 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3012 if (!s) 3013 continue; 3014 mutex_unlock(&mdsc->mutex); 3015 mutex_lock(&s->s_mutex); 3016 mutex_unlock(&s->s_mutex); 3017 ceph_put_mds_session(s); 3018 mutex_lock(&mdsc->mutex); 3019 } 3020 mutex_unlock(&mdsc->mutex); 3021 } 3022 3023 3024 3025 /* 3026 * delayed work -- periodically trim expired leases, renew caps with mds 3027 */ 3028 static void schedule_delayed(struct ceph_mds_client *mdsc) 3029 { 3030 int delay = 5; 3031 unsigned hz = round_jiffies_relative(HZ * delay); 3032 schedule_delayed_work(&mdsc->delayed_work, hz); 3033 } 3034 3035 static void delayed_work(struct work_struct *work) 3036 { 3037 int i; 3038 struct ceph_mds_client *mdsc = 3039 container_of(work, struct ceph_mds_client, delayed_work.work); 3040 int renew_interval; 3041 int renew_caps; 3042 3043 dout("mdsc delayed_work\n"); 3044 ceph_check_delayed_caps(mdsc); 3045 3046 mutex_lock(&mdsc->mutex); 3047 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3048 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3049 mdsc->last_renew_caps); 3050 if (renew_caps) 3051 mdsc->last_renew_caps = jiffies; 3052 3053 for (i = 0; i < mdsc->max_sessions; i++) { 3054 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3055 if (s == NULL) 3056 continue; 3057 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3058 dout("resending session close request for mds%d\n", 3059 s->s_mds); 3060 request_close_session(mdsc, s); 3061 ceph_put_mds_session(s); 3062 continue; 3063 } 3064 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3065 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3066 s->s_state = CEPH_MDS_SESSION_HUNG; 3067 pr_info("mds%d hung\n", s->s_mds); 3068 } 3069 } 3070 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3071 /* this mds is failed or recovering, just wait */ 3072 ceph_put_mds_session(s); 3073 continue; 3074 } 3075 mutex_unlock(&mdsc->mutex); 3076 3077 mutex_lock(&s->s_mutex); 3078 if (renew_caps) 3079 send_renew_caps(mdsc, s); 3080 else 3081 ceph_con_keepalive(&s->s_con); 3082 ceph_add_cap_releases(mdsc, s); 3083 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3084 s->s_state == CEPH_MDS_SESSION_HUNG) 3085 ceph_send_cap_releases(mdsc, s); 3086 mutex_unlock(&s->s_mutex); 3087 ceph_put_mds_session(s); 3088 3089 mutex_lock(&mdsc->mutex); 3090 } 3091 mutex_unlock(&mdsc->mutex); 3092 3093 schedule_delayed(mdsc); 3094 } 3095 3096 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3097 3098 { 3099 struct ceph_mds_client *mdsc; 3100 3101 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3102 if (!mdsc) 3103 return -ENOMEM; 3104 mdsc->fsc = fsc; 3105 fsc->mdsc = mdsc; 3106 mutex_init(&mdsc->mutex); 3107 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3108 if (mdsc->mdsmap == NULL) { 3109 kfree(mdsc); 3110 return -ENOMEM; 3111 } 3112 3113 init_completion(&mdsc->safe_umount_waiters); 3114 init_waitqueue_head(&mdsc->session_close_wq); 3115 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3116 mdsc->sessions = NULL; 3117 mdsc->max_sessions = 0; 3118 mdsc->stopping = 0; 3119 init_rwsem(&mdsc->snap_rwsem); 3120 mdsc->snap_realms = RB_ROOT; 3121 INIT_LIST_HEAD(&mdsc->snap_empty); 3122 spin_lock_init(&mdsc->snap_empty_lock); 3123 mdsc->last_tid = 0; 3124 mdsc->request_tree = RB_ROOT; 3125 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3126 mdsc->last_renew_caps = jiffies; 3127 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3128 spin_lock_init(&mdsc->cap_delay_lock); 3129 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3130 spin_lock_init(&mdsc->snap_flush_lock); 3131 mdsc->cap_flush_seq = 0; 3132 INIT_LIST_HEAD(&mdsc->cap_dirty); 3133 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3134 mdsc->num_cap_flushing = 0; 3135 spin_lock_init(&mdsc->cap_dirty_lock); 3136 init_waitqueue_head(&mdsc->cap_flushing_wq); 3137 spin_lock_init(&mdsc->dentry_lru_lock); 3138 INIT_LIST_HEAD(&mdsc->dentry_lru); 3139 3140 ceph_caps_init(mdsc); 3141 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * Wait for safe replies on open mds requests. If we time out, drop 3148 * all requests from the tree to avoid dangling dentry refs. 3149 */ 3150 static void wait_requests(struct ceph_mds_client *mdsc) 3151 { 3152 struct ceph_mds_request *req; 3153 struct ceph_fs_client *fsc = mdsc->fsc; 3154 3155 mutex_lock(&mdsc->mutex); 3156 if (__get_oldest_req(mdsc)) { 3157 mutex_unlock(&mdsc->mutex); 3158 3159 dout("wait_requests waiting for requests\n"); 3160 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3161 fsc->client->options->mount_timeout * HZ); 3162 3163 /* tear down remaining requests */ 3164 mutex_lock(&mdsc->mutex); 3165 while ((req = __get_oldest_req(mdsc))) { 3166 dout("wait_requests timed out on tid %llu\n", 3167 req->r_tid); 3168 __unregister_request(mdsc, req); 3169 } 3170 } 3171 mutex_unlock(&mdsc->mutex); 3172 dout("wait_requests done\n"); 3173 } 3174 3175 /* 3176 * called before mount is ro, and before dentries are torn down. 3177 * (hmm, does this still race with new lookups?) 3178 */ 3179 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3180 { 3181 dout("pre_umount\n"); 3182 mdsc->stopping = 1; 3183 3184 drop_leases(mdsc); 3185 ceph_flush_dirty_caps(mdsc); 3186 wait_requests(mdsc); 3187 3188 /* 3189 * wait for reply handlers to drop their request refs and 3190 * their inode/dcache refs 3191 */ 3192 ceph_msgr_flush(); 3193 } 3194 3195 /* 3196 * wait for all write mds requests to flush. 3197 */ 3198 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3199 { 3200 struct ceph_mds_request *req = NULL, *nextreq; 3201 struct rb_node *n; 3202 3203 mutex_lock(&mdsc->mutex); 3204 dout("wait_unsafe_requests want %lld\n", want_tid); 3205 restart: 3206 req = __get_oldest_req(mdsc); 3207 while (req && req->r_tid <= want_tid) { 3208 /* find next request */ 3209 n = rb_next(&req->r_node); 3210 if (n) 3211 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3212 else 3213 nextreq = NULL; 3214 if ((req->r_op & CEPH_MDS_OP_WRITE)) { 3215 /* write op */ 3216 ceph_mdsc_get_request(req); 3217 if (nextreq) 3218 ceph_mdsc_get_request(nextreq); 3219 mutex_unlock(&mdsc->mutex); 3220 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3221 req->r_tid, want_tid); 3222 wait_for_completion(&req->r_safe_completion); 3223 mutex_lock(&mdsc->mutex); 3224 ceph_mdsc_put_request(req); 3225 if (!nextreq) 3226 break; /* next dne before, so we're done! */ 3227 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3228 /* next request was removed from tree */ 3229 ceph_mdsc_put_request(nextreq); 3230 goto restart; 3231 } 3232 ceph_mdsc_put_request(nextreq); /* won't go away */ 3233 } 3234 req = nextreq; 3235 } 3236 mutex_unlock(&mdsc->mutex); 3237 dout("wait_unsafe_requests done\n"); 3238 } 3239 3240 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3241 { 3242 u64 want_tid, want_flush; 3243 3244 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3245 return; 3246 3247 dout("sync\n"); 3248 mutex_lock(&mdsc->mutex); 3249 want_tid = mdsc->last_tid; 3250 want_flush = mdsc->cap_flush_seq; 3251 mutex_unlock(&mdsc->mutex); 3252 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush); 3253 3254 ceph_flush_dirty_caps(mdsc); 3255 3256 wait_unsafe_requests(mdsc, want_tid); 3257 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush)); 3258 } 3259 3260 /* 3261 * true if all sessions are closed, or we force unmount 3262 */ 3263 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3264 { 3265 int i, n = 0; 3266 3267 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN) 3268 return true; 3269 3270 mutex_lock(&mdsc->mutex); 3271 for (i = 0; i < mdsc->max_sessions; i++) 3272 if (mdsc->sessions[i]) 3273 n++; 3274 mutex_unlock(&mdsc->mutex); 3275 return n == 0; 3276 } 3277 3278 /* 3279 * called after sb is ro. 3280 */ 3281 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3282 { 3283 struct ceph_mds_session *session; 3284 int i; 3285 struct ceph_fs_client *fsc = mdsc->fsc; 3286 unsigned long timeout = fsc->client->options->mount_timeout * HZ; 3287 3288 dout("close_sessions\n"); 3289 3290 /* close sessions */ 3291 mutex_lock(&mdsc->mutex); 3292 for (i = 0; i < mdsc->max_sessions; i++) { 3293 session = __ceph_lookup_mds_session(mdsc, i); 3294 if (!session) 3295 continue; 3296 mutex_unlock(&mdsc->mutex); 3297 mutex_lock(&session->s_mutex); 3298 __close_session(mdsc, session); 3299 mutex_unlock(&session->s_mutex); 3300 ceph_put_mds_session(session); 3301 mutex_lock(&mdsc->mutex); 3302 } 3303 mutex_unlock(&mdsc->mutex); 3304 3305 dout("waiting for sessions to close\n"); 3306 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3307 timeout); 3308 3309 /* tear down remaining sessions */ 3310 mutex_lock(&mdsc->mutex); 3311 for (i = 0; i < mdsc->max_sessions; i++) { 3312 if (mdsc->sessions[i]) { 3313 session = get_session(mdsc->sessions[i]); 3314 __unregister_session(mdsc, session); 3315 mutex_unlock(&mdsc->mutex); 3316 mutex_lock(&session->s_mutex); 3317 remove_session_caps(session); 3318 mutex_unlock(&session->s_mutex); 3319 ceph_put_mds_session(session); 3320 mutex_lock(&mdsc->mutex); 3321 } 3322 } 3323 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3324 mutex_unlock(&mdsc->mutex); 3325 3326 ceph_cleanup_empty_realms(mdsc); 3327 3328 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3329 3330 dout("stopped\n"); 3331 } 3332 3333 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3334 { 3335 dout("stop\n"); 3336 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3337 if (mdsc->mdsmap) 3338 ceph_mdsmap_destroy(mdsc->mdsmap); 3339 kfree(mdsc->sessions); 3340 ceph_caps_finalize(mdsc); 3341 } 3342 3343 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3344 { 3345 struct ceph_mds_client *mdsc = fsc->mdsc; 3346 3347 dout("mdsc_destroy %p\n", mdsc); 3348 ceph_mdsc_stop(mdsc); 3349 3350 /* flush out any connection work with references to us */ 3351 ceph_msgr_flush(); 3352 3353 fsc->mdsc = NULL; 3354 kfree(mdsc); 3355 dout("mdsc_destroy %p done\n", mdsc); 3356 } 3357 3358 3359 /* 3360 * handle mds map update. 3361 */ 3362 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3363 { 3364 u32 epoch; 3365 u32 maplen; 3366 void *p = msg->front.iov_base; 3367 void *end = p + msg->front.iov_len; 3368 struct ceph_mdsmap *newmap, *oldmap; 3369 struct ceph_fsid fsid; 3370 int err = -EINVAL; 3371 3372 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3373 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3374 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3375 return; 3376 epoch = ceph_decode_32(&p); 3377 maplen = ceph_decode_32(&p); 3378 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3379 3380 /* do we need it? */ 3381 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3382 mutex_lock(&mdsc->mutex); 3383 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3384 dout("handle_map epoch %u <= our %u\n", 3385 epoch, mdsc->mdsmap->m_epoch); 3386 mutex_unlock(&mdsc->mutex); 3387 return; 3388 } 3389 3390 newmap = ceph_mdsmap_decode(&p, end); 3391 if (IS_ERR(newmap)) { 3392 err = PTR_ERR(newmap); 3393 goto bad_unlock; 3394 } 3395 3396 /* swap into place */ 3397 if (mdsc->mdsmap) { 3398 oldmap = mdsc->mdsmap; 3399 mdsc->mdsmap = newmap; 3400 check_new_map(mdsc, newmap, oldmap); 3401 ceph_mdsmap_destroy(oldmap); 3402 } else { 3403 mdsc->mdsmap = newmap; /* first mds map */ 3404 } 3405 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3406 3407 __wake_requests(mdsc, &mdsc->waiting_for_map); 3408 3409 mutex_unlock(&mdsc->mutex); 3410 schedule_delayed(mdsc); 3411 return; 3412 3413 bad_unlock: 3414 mutex_unlock(&mdsc->mutex); 3415 bad: 3416 pr_err("error decoding mdsmap %d\n", err); 3417 return; 3418 } 3419 3420 static struct ceph_connection *con_get(struct ceph_connection *con) 3421 { 3422 struct ceph_mds_session *s = con->private; 3423 3424 if (get_session(s)) { 3425 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3426 return con; 3427 } 3428 dout("mdsc con_get %p FAIL\n", s); 3429 return NULL; 3430 } 3431 3432 static void con_put(struct ceph_connection *con) 3433 { 3434 struct ceph_mds_session *s = con->private; 3435 3436 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3437 ceph_put_mds_session(s); 3438 } 3439 3440 /* 3441 * if the client is unresponsive for long enough, the mds will kill 3442 * the session entirely. 3443 */ 3444 static void peer_reset(struct ceph_connection *con) 3445 { 3446 struct ceph_mds_session *s = con->private; 3447 struct ceph_mds_client *mdsc = s->s_mdsc; 3448 3449 pr_warning("mds%d closed our session\n", s->s_mds); 3450 send_mds_reconnect(mdsc, s); 3451 } 3452 3453 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3454 { 3455 struct ceph_mds_session *s = con->private; 3456 struct ceph_mds_client *mdsc = s->s_mdsc; 3457 int type = le16_to_cpu(msg->hdr.type); 3458 3459 mutex_lock(&mdsc->mutex); 3460 if (__verify_registered_session(mdsc, s) < 0) { 3461 mutex_unlock(&mdsc->mutex); 3462 goto out; 3463 } 3464 mutex_unlock(&mdsc->mutex); 3465 3466 switch (type) { 3467 case CEPH_MSG_MDS_MAP: 3468 ceph_mdsc_handle_map(mdsc, msg); 3469 break; 3470 case CEPH_MSG_CLIENT_SESSION: 3471 handle_session(s, msg); 3472 break; 3473 case CEPH_MSG_CLIENT_REPLY: 3474 handle_reply(s, msg); 3475 break; 3476 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3477 handle_forward(mdsc, s, msg); 3478 break; 3479 case CEPH_MSG_CLIENT_CAPS: 3480 ceph_handle_caps(s, msg); 3481 break; 3482 case CEPH_MSG_CLIENT_SNAP: 3483 ceph_handle_snap(mdsc, s, msg); 3484 break; 3485 case CEPH_MSG_CLIENT_LEASE: 3486 handle_lease(mdsc, s, msg); 3487 break; 3488 3489 default: 3490 pr_err("received unknown message type %d %s\n", type, 3491 ceph_msg_type_name(type)); 3492 } 3493 out: 3494 ceph_msg_put(msg); 3495 } 3496 3497 /* 3498 * authentication 3499 */ 3500 3501 /* 3502 * Note: returned pointer is the address of a structure that's 3503 * managed separately. Caller must *not* attempt to free it. 3504 */ 3505 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3506 int *proto, int force_new) 3507 { 3508 struct ceph_mds_session *s = con->private; 3509 struct ceph_mds_client *mdsc = s->s_mdsc; 3510 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3511 struct ceph_auth_handshake *auth = &s->s_auth; 3512 3513 if (force_new && auth->authorizer) { 3514 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3515 auth->authorizer = NULL; 3516 } 3517 if (!auth->authorizer) { 3518 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3519 auth); 3520 if (ret) 3521 return ERR_PTR(ret); 3522 } else { 3523 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3524 auth); 3525 if (ret) 3526 return ERR_PTR(ret); 3527 } 3528 *proto = ac->protocol; 3529 3530 return auth; 3531 } 3532 3533 3534 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3535 { 3536 struct ceph_mds_session *s = con->private; 3537 struct ceph_mds_client *mdsc = s->s_mdsc; 3538 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3539 3540 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3541 } 3542 3543 static int invalidate_authorizer(struct ceph_connection *con) 3544 { 3545 struct ceph_mds_session *s = con->private; 3546 struct ceph_mds_client *mdsc = s->s_mdsc; 3547 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3548 3549 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3550 3551 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3552 } 3553 3554 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3555 struct ceph_msg_header *hdr, int *skip) 3556 { 3557 struct ceph_msg *msg; 3558 int type = (int) le16_to_cpu(hdr->type); 3559 int front_len = (int) le32_to_cpu(hdr->front_len); 3560 3561 if (con->in_msg) 3562 return con->in_msg; 3563 3564 *skip = 0; 3565 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3566 if (!msg) { 3567 pr_err("unable to allocate msg type %d len %d\n", 3568 type, front_len); 3569 return NULL; 3570 } 3571 3572 return msg; 3573 } 3574 3575 static const struct ceph_connection_operations mds_con_ops = { 3576 .get = con_get, 3577 .put = con_put, 3578 .dispatch = dispatch, 3579 .get_authorizer = get_authorizer, 3580 .verify_authorizer_reply = verify_authorizer_reply, 3581 .invalidate_authorizer = invalidate_authorizer, 3582 .peer_reset = peer_reset, 3583 .alloc_msg = mds_alloc_msg, 3584 }; 3585 3586 /* eof */ 3587