1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 #include <linux/ratelimit.h> 12 13 #include "super.h" 14 #include "mds_client.h" 15 16 #include <linux/ceph/ceph_features.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 #include <linux/ceph/auth.h> 21 #include <linux/ceph/debugfs.h> 22 23 /* 24 * A cluster of MDS (metadata server) daemons is responsible for 25 * managing the file system namespace (the directory hierarchy and 26 * inodes) and for coordinating shared access to storage. Metadata is 27 * partitioning hierarchically across a number of servers, and that 28 * partition varies over time as the cluster adjusts the distribution 29 * in order to balance load. 30 * 31 * The MDS client is primarily responsible to managing synchronous 32 * metadata requests for operations like open, unlink, and so forth. 33 * If there is a MDS failure, we find out about it when we (possibly 34 * request and) receive a new MDS map, and can resubmit affected 35 * requests. 36 * 37 * For the most part, though, we take advantage of a lossless 38 * communications channel to the MDS, and do not need to worry about 39 * timing out or resubmitting requests. 40 * 41 * We maintain a stateful "session" with each MDS we interact with. 42 * Within each session, we sent periodic heartbeat messages to ensure 43 * any capabilities or leases we have been issues remain valid. If 44 * the session times out and goes stale, our leases and capabilities 45 * are no longer valid. 46 */ 47 48 struct ceph_reconnect_state { 49 int nr_caps; 50 struct ceph_pagelist *pagelist; 51 bool flock; 52 }; 53 54 static void __wake_requests(struct ceph_mds_client *mdsc, 55 struct list_head *head); 56 57 static const struct ceph_connection_operations mds_con_ops; 58 59 60 /* 61 * mds reply parsing 62 */ 63 64 /* 65 * parse individual inode info 66 */ 67 static int parse_reply_info_in(void **p, void *end, 68 struct ceph_mds_reply_info_in *info, 69 u64 features) 70 { 71 int err = -EIO; 72 73 info->in = *p; 74 *p += sizeof(struct ceph_mds_reply_inode) + 75 sizeof(*info->in->fragtree.splits) * 76 le32_to_cpu(info->in->fragtree.nsplits); 77 78 ceph_decode_32_safe(p, end, info->symlink_len, bad); 79 ceph_decode_need(p, end, info->symlink_len, bad); 80 info->symlink = *p; 81 *p += info->symlink_len; 82 83 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 84 ceph_decode_copy_safe(p, end, &info->dir_layout, 85 sizeof(info->dir_layout), bad); 86 else 87 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 88 89 ceph_decode_32_safe(p, end, info->xattr_len, bad); 90 ceph_decode_need(p, end, info->xattr_len, bad); 91 info->xattr_data = *p; 92 *p += info->xattr_len; 93 94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 95 ceph_decode_64_safe(p, end, info->inline_version, bad); 96 ceph_decode_32_safe(p, end, info->inline_len, bad); 97 ceph_decode_need(p, end, info->inline_len, bad); 98 info->inline_data = *p; 99 *p += info->inline_len; 100 } else 101 info->inline_version = CEPH_INLINE_NONE; 102 103 return 0; 104 bad: 105 return err; 106 } 107 108 /* 109 * parse a normal reply, which may contain a (dir+)dentry and/or a 110 * target inode. 111 */ 112 static int parse_reply_info_trace(void **p, void *end, 113 struct ceph_mds_reply_info_parsed *info, 114 u64 features) 115 { 116 int err; 117 118 if (info->head->is_dentry) { 119 err = parse_reply_info_in(p, end, &info->diri, features); 120 if (err < 0) 121 goto out_bad; 122 123 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 124 goto bad; 125 info->dirfrag = *p; 126 *p += sizeof(*info->dirfrag) + 127 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 128 if (unlikely(*p > end)) 129 goto bad; 130 131 ceph_decode_32_safe(p, end, info->dname_len, bad); 132 ceph_decode_need(p, end, info->dname_len, bad); 133 info->dname = *p; 134 *p += info->dname_len; 135 info->dlease = *p; 136 *p += sizeof(*info->dlease); 137 } 138 139 if (info->head->is_target) { 140 err = parse_reply_info_in(p, end, &info->targeti, features); 141 if (err < 0) 142 goto out_bad; 143 } 144 145 if (unlikely(*p != end)) 146 goto bad; 147 return 0; 148 149 bad: 150 err = -EIO; 151 out_bad: 152 pr_err("problem parsing mds trace %d\n", err); 153 return err; 154 } 155 156 /* 157 * parse readdir results 158 */ 159 static int parse_reply_info_dir(void **p, void *end, 160 struct ceph_mds_reply_info_parsed *info, 161 u64 features) 162 { 163 u32 num, i = 0; 164 int err; 165 166 info->dir_dir = *p; 167 if (*p + sizeof(*info->dir_dir) > end) 168 goto bad; 169 *p += sizeof(*info->dir_dir) + 170 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 171 if (*p > end) 172 goto bad; 173 174 ceph_decode_need(p, end, sizeof(num) + 2, bad); 175 num = ceph_decode_32(p); 176 info->dir_end = ceph_decode_8(p); 177 info->dir_complete = ceph_decode_8(p); 178 if (num == 0) 179 goto done; 180 181 BUG_ON(!info->dir_in); 182 info->dir_dname = (void *)(info->dir_in + num); 183 info->dir_dname_len = (void *)(info->dir_dname + num); 184 info->dir_dlease = (void *)(info->dir_dname_len + num); 185 if ((unsigned long)(info->dir_dlease + num) > 186 (unsigned long)info->dir_in + info->dir_buf_size) { 187 pr_err("dir contents are larger than expected\n"); 188 WARN_ON(1); 189 goto bad; 190 } 191 192 info->dir_nr = num; 193 while (num) { 194 /* dentry */ 195 ceph_decode_need(p, end, sizeof(u32)*2, bad); 196 info->dir_dname_len[i] = ceph_decode_32(p); 197 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 198 info->dir_dname[i] = *p; 199 *p += info->dir_dname_len[i]; 200 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 201 info->dir_dname[i]); 202 info->dir_dlease[i] = *p; 203 *p += sizeof(struct ceph_mds_reply_lease); 204 205 /* inode */ 206 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 207 if (err < 0) 208 goto out_bad; 209 i++; 210 num--; 211 } 212 213 done: 214 if (*p != end) 215 goto bad; 216 return 0; 217 218 bad: 219 err = -EIO; 220 out_bad: 221 pr_err("problem parsing dir contents %d\n", err); 222 return err; 223 } 224 225 /* 226 * parse fcntl F_GETLK results 227 */ 228 static int parse_reply_info_filelock(void **p, void *end, 229 struct ceph_mds_reply_info_parsed *info, 230 u64 features) 231 { 232 if (*p + sizeof(*info->filelock_reply) > end) 233 goto bad; 234 235 info->filelock_reply = *p; 236 *p += sizeof(*info->filelock_reply); 237 238 if (unlikely(*p != end)) 239 goto bad; 240 return 0; 241 242 bad: 243 return -EIO; 244 } 245 246 /* 247 * parse create results 248 */ 249 static int parse_reply_info_create(void **p, void *end, 250 struct ceph_mds_reply_info_parsed *info, 251 u64 features) 252 { 253 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 254 if (*p == end) { 255 info->has_create_ino = false; 256 } else { 257 info->has_create_ino = true; 258 info->ino = ceph_decode_64(p); 259 } 260 } 261 262 if (unlikely(*p != end)) 263 goto bad; 264 return 0; 265 266 bad: 267 return -EIO; 268 } 269 270 /* 271 * parse extra results 272 */ 273 static int parse_reply_info_extra(void **p, void *end, 274 struct ceph_mds_reply_info_parsed *info, 275 u64 features) 276 { 277 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 278 return parse_reply_info_filelock(p, end, info, features); 279 else if (info->head->op == CEPH_MDS_OP_READDIR || 280 info->head->op == CEPH_MDS_OP_LSSNAP) 281 return parse_reply_info_dir(p, end, info, features); 282 else if (info->head->op == CEPH_MDS_OP_CREATE) 283 return parse_reply_info_create(p, end, info, features); 284 else 285 return -EIO; 286 } 287 288 /* 289 * parse entire mds reply 290 */ 291 static int parse_reply_info(struct ceph_msg *msg, 292 struct ceph_mds_reply_info_parsed *info, 293 u64 features) 294 { 295 void *p, *end; 296 u32 len; 297 int err; 298 299 info->head = msg->front.iov_base; 300 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 301 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 302 303 /* trace */ 304 ceph_decode_32_safe(&p, end, len, bad); 305 if (len > 0) { 306 ceph_decode_need(&p, end, len, bad); 307 err = parse_reply_info_trace(&p, p+len, info, features); 308 if (err < 0) 309 goto out_bad; 310 } 311 312 /* extra */ 313 ceph_decode_32_safe(&p, end, len, bad); 314 if (len > 0) { 315 ceph_decode_need(&p, end, len, bad); 316 err = parse_reply_info_extra(&p, p+len, info, features); 317 if (err < 0) 318 goto out_bad; 319 } 320 321 /* snap blob */ 322 ceph_decode_32_safe(&p, end, len, bad); 323 info->snapblob_len = len; 324 info->snapblob = p; 325 p += len; 326 327 if (p != end) 328 goto bad; 329 return 0; 330 331 bad: 332 err = -EIO; 333 out_bad: 334 pr_err("mds parse_reply err %d\n", err); 335 return err; 336 } 337 338 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 339 { 340 if (!info->dir_in) 341 return; 342 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 343 } 344 345 346 /* 347 * sessions 348 */ 349 const char *ceph_session_state_name(int s) 350 { 351 switch (s) { 352 case CEPH_MDS_SESSION_NEW: return "new"; 353 case CEPH_MDS_SESSION_OPENING: return "opening"; 354 case CEPH_MDS_SESSION_OPEN: return "open"; 355 case CEPH_MDS_SESSION_HUNG: return "hung"; 356 case CEPH_MDS_SESSION_CLOSING: return "closing"; 357 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 358 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 359 default: return "???"; 360 } 361 } 362 363 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 364 { 365 if (atomic_inc_not_zero(&s->s_ref)) { 366 dout("mdsc get_session %p %d -> %d\n", s, 367 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 368 return s; 369 } else { 370 dout("mdsc get_session %p 0 -- FAIL", s); 371 return NULL; 372 } 373 } 374 375 void ceph_put_mds_session(struct ceph_mds_session *s) 376 { 377 dout("mdsc put_session %p %d -> %d\n", s, 378 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 379 if (atomic_dec_and_test(&s->s_ref)) { 380 if (s->s_auth.authorizer) 381 ceph_auth_destroy_authorizer( 382 s->s_mdsc->fsc->client->monc.auth, 383 s->s_auth.authorizer); 384 kfree(s); 385 } 386 } 387 388 /* 389 * called under mdsc->mutex 390 */ 391 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 392 int mds) 393 { 394 struct ceph_mds_session *session; 395 396 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 397 return NULL; 398 session = mdsc->sessions[mds]; 399 dout("lookup_mds_session %p %d\n", session, 400 atomic_read(&session->s_ref)); 401 get_session(session); 402 return session; 403 } 404 405 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 406 { 407 if (mds >= mdsc->max_sessions) 408 return false; 409 return mdsc->sessions[mds]; 410 } 411 412 static int __verify_registered_session(struct ceph_mds_client *mdsc, 413 struct ceph_mds_session *s) 414 { 415 if (s->s_mds >= mdsc->max_sessions || 416 mdsc->sessions[s->s_mds] != s) 417 return -ENOENT; 418 return 0; 419 } 420 421 /* 422 * create+register a new session for given mds. 423 * called under mdsc->mutex. 424 */ 425 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 426 int mds) 427 { 428 struct ceph_mds_session *s; 429 430 if (mds >= mdsc->mdsmap->m_max_mds) 431 return ERR_PTR(-EINVAL); 432 433 s = kzalloc(sizeof(*s), GFP_NOFS); 434 if (!s) 435 return ERR_PTR(-ENOMEM); 436 s->s_mdsc = mdsc; 437 s->s_mds = mds; 438 s->s_state = CEPH_MDS_SESSION_NEW; 439 s->s_ttl = 0; 440 s->s_seq = 0; 441 mutex_init(&s->s_mutex); 442 443 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 444 445 spin_lock_init(&s->s_gen_ttl_lock); 446 s->s_cap_gen = 0; 447 s->s_cap_ttl = jiffies - 1; 448 449 spin_lock_init(&s->s_cap_lock); 450 s->s_renew_requested = 0; 451 s->s_renew_seq = 0; 452 INIT_LIST_HEAD(&s->s_caps); 453 s->s_nr_caps = 0; 454 s->s_trim_caps = 0; 455 atomic_set(&s->s_ref, 1); 456 INIT_LIST_HEAD(&s->s_waiting); 457 INIT_LIST_HEAD(&s->s_unsafe); 458 s->s_num_cap_releases = 0; 459 s->s_cap_reconnect = 0; 460 s->s_cap_iterator = NULL; 461 INIT_LIST_HEAD(&s->s_cap_releases); 462 INIT_LIST_HEAD(&s->s_cap_flushing); 463 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 464 465 dout("register_session mds%d\n", mds); 466 if (mds >= mdsc->max_sessions) { 467 int newmax = 1 << get_count_order(mds+1); 468 struct ceph_mds_session **sa; 469 470 dout("register_session realloc to %d\n", newmax); 471 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 472 if (sa == NULL) 473 goto fail_realloc; 474 if (mdsc->sessions) { 475 memcpy(sa, mdsc->sessions, 476 mdsc->max_sessions * sizeof(void *)); 477 kfree(mdsc->sessions); 478 } 479 mdsc->sessions = sa; 480 mdsc->max_sessions = newmax; 481 } 482 mdsc->sessions[mds] = s; 483 atomic_inc(&mdsc->num_sessions); 484 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 485 486 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 487 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 488 489 return s; 490 491 fail_realloc: 492 kfree(s); 493 return ERR_PTR(-ENOMEM); 494 } 495 496 /* 497 * called under mdsc->mutex 498 */ 499 static void __unregister_session(struct ceph_mds_client *mdsc, 500 struct ceph_mds_session *s) 501 { 502 dout("__unregister_session mds%d %p\n", s->s_mds, s); 503 BUG_ON(mdsc->sessions[s->s_mds] != s); 504 mdsc->sessions[s->s_mds] = NULL; 505 ceph_con_close(&s->s_con); 506 ceph_put_mds_session(s); 507 atomic_dec(&mdsc->num_sessions); 508 } 509 510 /* 511 * drop session refs in request. 512 * 513 * should be last request ref, or hold mdsc->mutex 514 */ 515 static void put_request_session(struct ceph_mds_request *req) 516 { 517 if (req->r_session) { 518 ceph_put_mds_session(req->r_session); 519 req->r_session = NULL; 520 } 521 } 522 523 void ceph_mdsc_release_request(struct kref *kref) 524 { 525 struct ceph_mds_request *req = container_of(kref, 526 struct ceph_mds_request, 527 r_kref); 528 destroy_reply_info(&req->r_reply_info); 529 if (req->r_request) 530 ceph_msg_put(req->r_request); 531 if (req->r_reply) 532 ceph_msg_put(req->r_reply); 533 if (req->r_inode) { 534 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 535 iput(req->r_inode); 536 } 537 if (req->r_locked_dir) 538 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 539 iput(req->r_target_inode); 540 if (req->r_dentry) 541 dput(req->r_dentry); 542 if (req->r_old_dentry) 543 dput(req->r_old_dentry); 544 if (req->r_old_dentry_dir) { 545 /* 546 * track (and drop pins for) r_old_dentry_dir 547 * separately, since r_old_dentry's d_parent may have 548 * changed between the dir mutex being dropped and 549 * this request being freed. 550 */ 551 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 552 CEPH_CAP_PIN); 553 iput(req->r_old_dentry_dir); 554 } 555 kfree(req->r_path1); 556 kfree(req->r_path2); 557 if (req->r_pagelist) 558 ceph_pagelist_release(req->r_pagelist); 559 put_request_session(req); 560 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 561 kfree(req); 562 } 563 564 /* 565 * lookup session, bump ref if found. 566 * 567 * called under mdsc->mutex. 568 */ 569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 570 u64 tid) 571 { 572 struct ceph_mds_request *req; 573 struct rb_node *n = mdsc->request_tree.rb_node; 574 575 while (n) { 576 req = rb_entry(n, struct ceph_mds_request, r_node); 577 if (tid < req->r_tid) 578 n = n->rb_left; 579 else if (tid > req->r_tid) 580 n = n->rb_right; 581 else { 582 ceph_mdsc_get_request(req); 583 return req; 584 } 585 } 586 return NULL; 587 } 588 589 static void __insert_request(struct ceph_mds_client *mdsc, 590 struct ceph_mds_request *new) 591 { 592 struct rb_node **p = &mdsc->request_tree.rb_node; 593 struct rb_node *parent = NULL; 594 struct ceph_mds_request *req = NULL; 595 596 while (*p) { 597 parent = *p; 598 req = rb_entry(parent, struct ceph_mds_request, r_node); 599 if (new->r_tid < req->r_tid) 600 p = &(*p)->rb_left; 601 else if (new->r_tid > req->r_tid) 602 p = &(*p)->rb_right; 603 else 604 BUG(); 605 } 606 607 rb_link_node(&new->r_node, parent, p); 608 rb_insert_color(&new->r_node, &mdsc->request_tree); 609 } 610 611 /* 612 * Register an in-flight request, and assign a tid. Link to directory 613 * are modifying (if any). 614 * 615 * Called under mdsc->mutex. 616 */ 617 static void __register_request(struct ceph_mds_client *mdsc, 618 struct ceph_mds_request *req, 619 struct inode *dir) 620 { 621 req->r_tid = ++mdsc->last_tid; 622 if (req->r_num_caps) 623 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 624 req->r_num_caps); 625 dout("__register_request %p tid %lld\n", req, req->r_tid); 626 ceph_mdsc_get_request(req); 627 __insert_request(mdsc, req); 628 629 req->r_uid = current_fsuid(); 630 req->r_gid = current_fsgid(); 631 632 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 633 mdsc->oldest_tid = req->r_tid; 634 635 if (dir) { 636 ihold(dir); 637 req->r_unsafe_dir = dir; 638 } 639 } 640 641 static void __unregister_request(struct ceph_mds_client *mdsc, 642 struct ceph_mds_request *req) 643 { 644 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 645 646 if (req->r_tid == mdsc->oldest_tid) { 647 struct rb_node *p = rb_next(&req->r_node); 648 mdsc->oldest_tid = 0; 649 while (p) { 650 struct ceph_mds_request *next_req = 651 rb_entry(p, struct ceph_mds_request, r_node); 652 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 653 mdsc->oldest_tid = next_req->r_tid; 654 break; 655 } 656 p = rb_next(p); 657 } 658 } 659 660 rb_erase(&req->r_node, &mdsc->request_tree); 661 RB_CLEAR_NODE(&req->r_node); 662 663 if (req->r_unsafe_dir && req->r_got_unsafe) { 664 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 665 spin_lock(&ci->i_unsafe_lock); 666 list_del_init(&req->r_unsafe_dir_item); 667 spin_unlock(&ci->i_unsafe_lock); 668 } 669 if (req->r_target_inode && req->r_got_unsafe) { 670 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 671 spin_lock(&ci->i_unsafe_lock); 672 list_del_init(&req->r_unsafe_target_item); 673 spin_unlock(&ci->i_unsafe_lock); 674 } 675 676 if (req->r_unsafe_dir) { 677 iput(req->r_unsafe_dir); 678 req->r_unsafe_dir = NULL; 679 } 680 681 complete_all(&req->r_safe_completion); 682 683 ceph_mdsc_put_request(req); 684 } 685 686 /* 687 * Choose mds to send request to next. If there is a hint set in the 688 * request (e.g., due to a prior forward hint from the mds), use that. 689 * Otherwise, consult frag tree and/or caps to identify the 690 * appropriate mds. If all else fails, choose randomly. 691 * 692 * Called under mdsc->mutex. 693 */ 694 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 695 { 696 /* 697 * we don't need to worry about protecting the d_parent access 698 * here because we never renaming inside the snapped namespace 699 * except to resplice to another snapdir, and either the old or new 700 * result is a valid result. 701 */ 702 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP) 703 dentry = dentry->d_parent; 704 return dentry; 705 } 706 707 static int __choose_mds(struct ceph_mds_client *mdsc, 708 struct ceph_mds_request *req) 709 { 710 struct inode *inode; 711 struct ceph_inode_info *ci; 712 struct ceph_cap *cap; 713 int mode = req->r_direct_mode; 714 int mds = -1; 715 u32 hash = req->r_direct_hash; 716 bool is_hash = req->r_direct_is_hash; 717 718 /* 719 * is there a specific mds we should try? ignore hint if we have 720 * no session and the mds is not up (active or recovering). 721 */ 722 if (req->r_resend_mds >= 0 && 723 (__have_session(mdsc, req->r_resend_mds) || 724 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 725 dout("choose_mds using resend_mds mds%d\n", 726 req->r_resend_mds); 727 return req->r_resend_mds; 728 } 729 730 if (mode == USE_RANDOM_MDS) 731 goto random; 732 733 inode = NULL; 734 if (req->r_inode) { 735 inode = req->r_inode; 736 } else if (req->r_dentry) { 737 /* ignore race with rename; old or new d_parent is okay */ 738 struct dentry *parent = req->r_dentry->d_parent; 739 struct inode *dir = d_inode(parent); 740 741 if (dir->i_sb != mdsc->fsc->sb) { 742 /* not this fs! */ 743 inode = d_inode(req->r_dentry); 744 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 745 /* direct snapped/virtual snapdir requests 746 * based on parent dir inode */ 747 struct dentry *dn = get_nonsnap_parent(parent); 748 inode = d_inode(dn); 749 dout("__choose_mds using nonsnap parent %p\n", inode); 750 } else { 751 /* dentry target */ 752 inode = d_inode(req->r_dentry); 753 if (!inode || mode == USE_AUTH_MDS) { 754 /* dir + name */ 755 inode = dir; 756 hash = ceph_dentry_hash(dir, req->r_dentry); 757 is_hash = true; 758 } 759 } 760 } 761 762 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 763 (int)hash, mode); 764 if (!inode) 765 goto random; 766 ci = ceph_inode(inode); 767 768 if (is_hash && S_ISDIR(inode->i_mode)) { 769 struct ceph_inode_frag frag; 770 int found; 771 772 ceph_choose_frag(ci, hash, &frag, &found); 773 if (found) { 774 if (mode == USE_ANY_MDS && frag.ndist > 0) { 775 u8 r; 776 777 /* choose a random replica */ 778 get_random_bytes(&r, 1); 779 r %= frag.ndist; 780 mds = frag.dist[r]; 781 dout("choose_mds %p %llx.%llx " 782 "frag %u mds%d (%d/%d)\n", 783 inode, ceph_vinop(inode), 784 frag.frag, mds, 785 (int)r, frag.ndist); 786 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 787 CEPH_MDS_STATE_ACTIVE) 788 return mds; 789 } 790 791 /* since this file/dir wasn't known to be 792 * replicated, then we want to look for the 793 * authoritative mds. */ 794 mode = USE_AUTH_MDS; 795 if (frag.mds >= 0) { 796 /* choose auth mds */ 797 mds = frag.mds; 798 dout("choose_mds %p %llx.%llx " 799 "frag %u mds%d (auth)\n", 800 inode, ceph_vinop(inode), frag.frag, mds); 801 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 802 CEPH_MDS_STATE_ACTIVE) 803 return mds; 804 } 805 } 806 } 807 808 spin_lock(&ci->i_ceph_lock); 809 cap = NULL; 810 if (mode == USE_AUTH_MDS) 811 cap = ci->i_auth_cap; 812 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 813 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 814 if (!cap) { 815 spin_unlock(&ci->i_ceph_lock); 816 goto random; 817 } 818 mds = cap->session->s_mds; 819 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 820 inode, ceph_vinop(inode), mds, 821 cap == ci->i_auth_cap ? "auth " : "", cap); 822 spin_unlock(&ci->i_ceph_lock); 823 return mds; 824 825 random: 826 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 827 dout("choose_mds chose random mds%d\n", mds); 828 return mds; 829 } 830 831 832 /* 833 * session messages 834 */ 835 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 836 { 837 struct ceph_msg *msg; 838 struct ceph_mds_session_head *h; 839 840 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 841 false); 842 if (!msg) { 843 pr_err("create_session_msg ENOMEM creating msg\n"); 844 return NULL; 845 } 846 h = msg->front.iov_base; 847 h->op = cpu_to_le32(op); 848 h->seq = cpu_to_le64(seq); 849 850 return msg; 851 } 852 853 /* 854 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 855 * to include additional client metadata fields. 856 */ 857 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 858 { 859 struct ceph_msg *msg; 860 struct ceph_mds_session_head *h; 861 int i = -1; 862 int metadata_bytes = 0; 863 int metadata_key_count = 0; 864 struct ceph_options *opt = mdsc->fsc->client->options; 865 void *p; 866 867 const char* metadata[][2] = { 868 {"hostname", utsname()->nodename}, 869 {"kernel_version", utsname()->release}, 870 {"entity_id", opt->name ? opt->name : ""}, 871 {NULL, NULL} 872 }; 873 874 /* Calculate serialized length of metadata */ 875 metadata_bytes = 4; /* map length */ 876 for (i = 0; metadata[i][0] != NULL; ++i) { 877 metadata_bytes += 8 + strlen(metadata[i][0]) + 878 strlen(metadata[i][1]); 879 metadata_key_count++; 880 } 881 882 /* Allocate the message */ 883 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 884 GFP_NOFS, false); 885 if (!msg) { 886 pr_err("create_session_msg ENOMEM creating msg\n"); 887 return NULL; 888 } 889 h = msg->front.iov_base; 890 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 891 h->seq = cpu_to_le64(seq); 892 893 /* 894 * Serialize client metadata into waiting buffer space, using 895 * the format that userspace expects for map<string, string> 896 * 897 * ClientSession messages with metadata are v2 898 */ 899 msg->hdr.version = cpu_to_le16(2); 900 msg->hdr.compat_version = cpu_to_le16(1); 901 902 /* The write pointer, following the session_head structure */ 903 p = msg->front.iov_base + sizeof(*h); 904 905 /* Number of entries in the map */ 906 ceph_encode_32(&p, metadata_key_count); 907 908 /* Two length-prefixed strings for each entry in the map */ 909 for (i = 0; metadata[i][0] != NULL; ++i) { 910 size_t const key_len = strlen(metadata[i][0]); 911 size_t const val_len = strlen(metadata[i][1]); 912 913 ceph_encode_32(&p, key_len); 914 memcpy(p, metadata[i][0], key_len); 915 p += key_len; 916 ceph_encode_32(&p, val_len); 917 memcpy(p, metadata[i][1], val_len); 918 p += val_len; 919 } 920 921 return msg; 922 } 923 924 /* 925 * send session open request. 926 * 927 * called under mdsc->mutex 928 */ 929 static int __open_session(struct ceph_mds_client *mdsc, 930 struct ceph_mds_session *session) 931 { 932 struct ceph_msg *msg; 933 int mstate; 934 int mds = session->s_mds; 935 936 /* wait for mds to go active? */ 937 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 938 dout("open_session to mds%d (%s)\n", mds, 939 ceph_mds_state_name(mstate)); 940 session->s_state = CEPH_MDS_SESSION_OPENING; 941 session->s_renew_requested = jiffies; 942 943 /* send connect message */ 944 msg = create_session_open_msg(mdsc, session->s_seq); 945 if (!msg) 946 return -ENOMEM; 947 ceph_con_send(&session->s_con, msg); 948 return 0; 949 } 950 951 /* 952 * open sessions for any export targets for the given mds 953 * 954 * called under mdsc->mutex 955 */ 956 static struct ceph_mds_session * 957 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 958 { 959 struct ceph_mds_session *session; 960 961 session = __ceph_lookup_mds_session(mdsc, target); 962 if (!session) { 963 session = register_session(mdsc, target); 964 if (IS_ERR(session)) 965 return session; 966 } 967 if (session->s_state == CEPH_MDS_SESSION_NEW || 968 session->s_state == CEPH_MDS_SESSION_CLOSING) 969 __open_session(mdsc, session); 970 971 return session; 972 } 973 974 struct ceph_mds_session * 975 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 976 { 977 struct ceph_mds_session *session; 978 979 dout("open_export_target_session to mds%d\n", target); 980 981 mutex_lock(&mdsc->mutex); 982 session = __open_export_target_session(mdsc, target); 983 mutex_unlock(&mdsc->mutex); 984 985 return session; 986 } 987 988 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 989 struct ceph_mds_session *session) 990 { 991 struct ceph_mds_info *mi; 992 struct ceph_mds_session *ts; 993 int i, mds = session->s_mds; 994 995 if (mds >= mdsc->mdsmap->m_max_mds) 996 return; 997 998 mi = &mdsc->mdsmap->m_info[mds]; 999 dout("open_export_target_sessions for mds%d (%d targets)\n", 1000 session->s_mds, mi->num_export_targets); 1001 1002 for (i = 0; i < mi->num_export_targets; i++) { 1003 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1004 if (!IS_ERR(ts)) 1005 ceph_put_mds_session(ts); 1006 } 1007 } 1008 1009 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1010 struct ceph_mds_session *session) 1011 { 1012 mutex_lock(&mdsc->mutex); 1013 __open_export_target_sessions(mdsc, session); 1014 mutex_unlock(&mdsc->mutex); 1015 } 1016 1017 /* 1018 * session caps 1019 */ 1020 1021 /* caller holds s_cap_lock, we drop it */ 1022 static void cleanup_cap_releases(struct ceph_mds_client *mdsc, 1023 struct ceph_mds_session *session) 1024 __releases(session->s_cap_lock) 1025 { 1026 LIST_HEAD(tmp_list); 1027 list_splice_init(&session->s_cap_releases, &tmp_list); 1028 session->s_num_cap_releases = 0; 1029 spin_unlock(&session->s_cap_lock); 1030 1031 dout("cleanup_cap_releases mds%d\n", session->s_mds); 1032 while (!list_empty(&tmp_list)) { 1033 struct ceph_cap *cap; 1034 /* zero out the in-progress message */ 1035 cap = list_first_entry(&tmp_list, 1036 struct ceph_cap, session_caps); 1037 list_del(&cap->session_caps); 1038 ceph_put_cap(mdsc, cap); 1039 } 1040 } 1041 1042 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1043 struct ceph_mds_session *session) 1044 { 1045 struct ceph_mds_request *req; 1046 struct rb_node *p; 1047 1048 dout("cleanup_session_requests mds%d\n", session->s_mds); 1049 mutex_lock(&mdsc->mutex); 1050 while (!list_empty(&session->s_unsafe)) { 1051 req = list_first_entry(&session->s_unsafe, 1052 struct ceph_mds_request, r_unsafe_item); 1053 list_del_init(&req->r_unsafe_item); 1054 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1055 req->r_tid); 1056 __unregister_request(mdsc, req); 1057 } 1058 /* zero r_attempts, so kick_requests() will re-send requests */ 1059 p = rb_first(&mdsc->request_tree); 1060 while (p) { 1061 req = rb_entry(p, struct ceph_mds_request, r_node); 1062 p = rb_next(p); 1063 if (req->r_session && 1064 req->r_session->s_mds == session->s_mds) 1065 req->r_attempts = 0; 1066 } 1067 mutex_unlock(&mdsc->mutex); 1068 } 1069 1070 /* 1071 * Helper to safely iterate over all caps associated with a session, with 1072 * special care taken to handle a racing __ceph_remove_cap(). 1073 * 1074 * Caller must hold session s_mutex. 1075 */ 1076 static int iterate_session_caps(struct ceph_mds_session *session, 1077 int (*cb)(struct inode *, struct ceph_cap *, 1078 void *), void *arg) 1079 { 1080 struct list_head *p; 1081 struct ceph_cap *cap; 1082 struct inode *inode, *last_inode = NULL; 1083 struct ceph_cap *old_cap = NULL; 1084 int ret; 1085 1086 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1087 spin_lock(&session->s_cap_lock); 1088 p = session->s_caps.next; 1089 while (p != &session->s_caps) { 1090 cap = list_entry(p, struct ceph_cap, session_caps); 1091 inode = igrab(&cap->ci->vfs_inode); 1092 if (!inode) { 1093 p = p->next; 1094 continue; 1095 } 1096 session->s_cap_iterator = cap; 1097 spin_unlock(&session->s_cap_lock); 1098 1099 if (last_inode) { 1100 iput(last_inode); 1101 last_inode = NULL; 1102 } 1103 if (old_cap) { 1104 ceph_put_cap(session->s_mdsc, old_cap); 1105 old_cap = NULL; 1106 } 1107 1108 ret = cb(inode, cap, arg); 1109 last_inode = inode; 1110 1111 spin_lock(&session->s_cap_lock); 1112 p = p->next; 1113 if (cap->ci == NULL) { 1114 dout("iterate_session_caps finishing cap %p removal\n", 1115 cap); 1116 BUG_ON(cap->session != session); 1117 cap->session = NULL; 1118 list_del_init(&cap->session_caps); 1119 session->s_nr_caps--; 1120 if (cap->queue_release) { 1121 list_add_tail(&cap->session_caps, 1122 &session->s_cap_releases); 1123 session->s_num_cap_releases++; 1124 } else { 1125 old_cap = cap; /* put_cap it w/o locks held */ 1126 } 1127 } 1128 if (ret < 0) 1129 goto out; 1130 } 1131 ret = 0; 1132 out: 1133 session->s_cap_iterator = NULL; 1134 spin_unlock(&session->s_cap_lock); 1135 1136 iput(last_inode); 1137 if (old_cap) 1138 ceph_put_cap(session->s_mdsc, old_cap); 1139 1140 return ret; 1141 } 1142 1143 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1144 void *arg) 1145 { 1146 struct ceph_inode_info *ci = ceph_inode(inode); 1147 LIST_HEAD(to_remove); 1148 int drop = 0; 1149 1150 dout("removing cap %p, ci is %p, inode is %p\n", 1151 cap, ci, &ci->vfs_inode); 1152 spin_lock(&ci->i_ceph_lock); 1153 __ceph_remove_cap(cap, false); 1154 if (!ci->i_auth_cap) { 1155 struct ceph_cap_flush *cf; 1156 struct ceph_mds_client *mdsc = 1157 ceph_sb_to_client(inode->i_sb)->mdsc; 1158 1159 while (true) { 1160 struct rb_node *n = rb_first(&ci->i_cap_flush_tree); 1161 if (!n) 1162 break; 1163 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1164 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 1165 list_add(&cf->list, &to_remove); 1166 } 1167 1168 spin_lock(&mdsc->cap_dirty_lock); 1169 1170 list_for_each_entry(cf, &to_remove, list) 1171 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 1172 1173 if (!list_empty(&ci->i_dirty_item)) { 1174 pr_warn_ratelimited( 1175 " dropping dirty %s state for %p %lld\n", 1176 ceph_cap_string(ci->i_dirty_caps), 1177 inode, ceph_ino(inode)); 1178 ci->i_dirty_caps = 0; 1179 list_del_init(&ci->i_dirty_item); 1180 drop = 1; 1181 } 1182 if (!list_empty(&ci->i_flushing_item)) { 1183 pr_warn_ratelimited( 1184 " dropping dirty+flushing %s state for %p %lld\n", 1185 ceph_cap_string(ci->i_flushing_caps), 1186 inode, ceph_ino(inode)); 1187 ci->i_flushing_caps = 0; 1188 list_del_init(&ci->i_flushing_item); 1189 mdsc->num_cap_flushing--; 1190 drop = 1; 1191 } 1192 spin_unlock(&mdsc->cap_dirty_lock); 1193 1194 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1195 list_add(&ci->i_prealloc_cap_flush->list, &to_remove); 1196 ci->i_prealloc_cap_flush = NULL; 1197 } 1198 } 1199 spin_unlock(&ci->i_ceph_lock); 1200 while (!list_empty(&to_remove)) { 1201 struct ceph_cap_flush *cf; 1202 cf = list_first_entry(&to_remove, 1203 struct ceph_cap_flush, list); 1204 list_del(&cf->list); 1205 ceph_free_cap_flush(cf); 1206 } 1207 while (drop--) 1208 iput(inode); 1209 return 0; 1210 } 1211 1212 /* 1213 * caller must hold session s_mutex 1214 */ 1215 static void remove_session_caps(struct ceph_mds_session *session) 1216 { 1217 dout("remove_session_caps on %p\n", session); 1218 iterate_session_caps(session, remove_session_caps_cb, NULL); 1219 1220 spin_lock(&session->s_cap_lock); 1221 if (session->s_nr_caps > 0) { 1222 struct super_block *sb = session->s_mdsc->fsc->sb; 1223 struct inode *inode; 1224 struct ceph_cap *cap, *prev = NULL; 1225 struct ceph_vino vino; 1226 /* 1227 * iterate_session_caps() skips inodes that are being 1228 * deleted, we need to wait until deletions are complete. 1229 * __wait_on_freeing_inode() is designed for the job, 1230 * but it is not exported, so use lookup inode function 1231 * to access it. 1232 */ 1233 while (!list_empty(&session->s_caps)) { 1234 cap = list_entry(session->s_caps.next, 1235 struct ceph_cap, session_caps); 1236 if (cap == prev) 1237 break; 1238 prev = cap; 1239 vino = cap->ci->i_vino; 1240 spin_unlock(&session->s_cap_lock); 1241 1242 inode = ceph_find_inode(sb, vino); 1243 iput(inode); 1244 1245 spin_lock(&session->s_cap_lock); 1246 } 1247 } 1248 1249 // drop cap expires and unlock s_cap_lock 1250 cleanup_cap_releases(session->s_mdsc, session); 1251 1252 BUG_ON(session->s_nr_caps > 0); 1253 BUG_ON(!list_empty(&session->s_cap_flushing)); 1254 } 1255 1256 /* 1257 * wake up any threads waiting on this session's caps. if the cap is 1258 * old (didn't get renewed on the client reconnect), remove it now. 1259 * 1260 * caller must hold s_mutex. 1261 */ 1262 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1263 void *arg) 1264 { 1265 struct ceph_inode_info *ci = ceph_inode(inode); 1266 1267 wake_up_all(&ci->i_cap_wq); 1268 if (arg) { 1269 spin_lock(&ci->i_ceph_lock); 1270 ci->i_wanted_max_size = 0; 1271 ci->i_requested_max_size = 0; 1272 spin_unlock(&ci->i_ceph_lock); 1273 } 1274 return 0; 1275 } 1276 1277 static void wake_up_session_caps(struct ceph_mds_session *session, 1278 int reconnect) 1279 { 1280 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1281 iterate_session_caps(session, wake_up_session_cb, 1282 (void *)(unsigned long)reconnect); 1283 } 1284 1285 /* 1286 * Send periodic message to MDS renewing all currently held caps. The 1287 * ack will reset the expiration for all caps from this session. 1288 * 1289 * caller holds s_mutex 1290 */ 1291 static int send_renew_caps(struct ceph_mds_client *mdsc, 1292 struct ceph_mds_session *session) 1293 { 1294 struct ceph_msg *msg; 1295 int state; 1296 1297 if (time_after_eq(jiffies, session->s_cap_ttl) && 1298 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1299 pr_info("mds%d caps stale\n", session->s_mds); 1300 session->s_renew_requested = jiffies; 1301 1302 /* do not try to renew caps until a recovering mds has reconnected 1303 * with its clients. */ 1304 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1305 if (state < CEPH_MDS_STATE_RECONNECT) { 1306 dout("send_renew_caps ignoring mds%d (%s)\n", 1307 session->s_mds, ceph_mds_state_name(state)); 1308 return 0; 1309 } 1310 1311 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1312 ceph_mds_state_name(state)); 1313 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1314 ++session->s_renew_seq); 1315 if (!msg) 1316 return -ENOMEM; 1317 ceph_con_send(&session->s_con, msg); 1318 return 0; 1319 } 1320 1321 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1322 struct ceph_mds_session *session, u64 seq) 1323 { 1324 struct ceph_msg *msg; 1325 1326 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1327 session->s_mds, ceph_session_state_name(session->s_state), seq); 1328 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1329 if (!msg) 1330 return -ENOMEM; 1331 ceph_con_send(&session->s_con, msg); 1332 return 0; 1333 } 1334 1335 1336 /* 1337 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1338 * 1339 * Called under session->s_mutex 1340 */ 1341 static void renewed_caps(struct ceph_mds_client *mdsc, 1342 struct ceph_mds_session *session, int is_renew) 1343 { 1344 int was_stale; 1345 int wake = 0; 1346 1347 spin_lock(&session->s_cap_lock); 1348 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1349 1350 session->s_cap_ttl = session->s_renew_requested + 1351 mdsc->mdsmap->m_session_timeout*HZ; 1352 1353 if (was_stale) { 1354 if (time_before(jiffies, session->s_cap_ttl)) { 1355 pr_info("mds%d caps renewed\n", session->s_mds); 1356 wake = 1; 1357 } else { 1358 pr_info("mds%d caps still stale\n", session->s_mds); 1359 } 1360 } 1361 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1362 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1363 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1364 spin_unlock(&session->s_cap_lock); 1365 1366 if (wake) 1367 wake_up_session_caps(session, 0); 1368 } 1369 1370 /* 1371 * send a session close request 1372 */ 1373 static int request_close_session(struct ceph_mds_client *mdsc, 1374 struct ceph_mds_session *session) 1375 { 1376 struct ceph_msg *msg; 1377 1378 dout("request_close_session mds%d state %s seq %lld\n", 1379 session->s_mds, ceph_session_state_name(session->s_state), 1380 session->s_seq); 1381 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1382 if (!msg) 1383 return -ENOMEM; 1384 ceph_con_send(&session->s_con, msg); 1385 return 0; 1386 } 1387 1388 /* 1389 * Called with s_mutex held. 1390 */ 1391 static int __close_session(struct ceph_mds_client *mdsc, 1392 struct ceph_mds_session *session) 1393 { 1394 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1395 return 0; 1396 session->s_state = CEPH_MDS_SESSION_CLOSING; 1397 return request_close_session(mdsc, session); 1398 } 1399 1400 /* 1401 * Trim old(er) caps. 1402 * 1403 * Because we can't cache an inode without one or more caps, we do 1404 * this indirectly: if a cap is unused, we prune its aliases, at which 1405 * point the inode will hopefully get dropped to. 1406 * 1407 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1408 * memory pressure from the MDS, though, so it needn't be perfect. 1409 */ 1410 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1411 { 1412 struct ceph_mds_session *session = arg; 1413 struct ceph_inode_info *ci = ceph_inode(inode); 1414 int used, wanted, oissued, mine; 1415 1416 if (session->s_trim_caps <= 0) 1417 return -1; 1418 1419 spin_lock(&ci->i_ceph_lock); 1420 mine = cap->issued | cap->implemented; 1421 used = __ceph_caps_used(ci); 1422 wanted = __ceph_caps_file_wanted(ci); 1423 oissued = __ceph_caps_issued_other(ci, cap); 1424 1425 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1426 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1427 ceph_cap_string(used), ceph_cap_string(wanted)); 1428 if (cap == ci->i_auth_cap) { 1429 if (ci->i_dirty_caps || ci->i_flushing_caps || 1430 !list_empty(&ci->i_cap_snaps)) 1431 goto out; 1432 if ((used | wanted) & CEPH_CAP_ANY_WR) 1433 goto out; 1434 } 1435 /* The inode has cached pages, but it's no longer used. 1436 * we can safely drop it */ 1437 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1438 !(oissued & CEPH_CAP_FILE_CACHE)) { 1439 used = 0; 1440 oissued = 0; 1441 } 1442 if ((used | wanted) & ~oissued & mine) 1443 goto out; /* we need these caps */ 1444 1445 session->s_trim_caps--; 1446 if (oissued) { 1447 /* we aren't the only cap.. just remove us */ 1448 __ceph_remove_cap(cap, true); 1449 } else { 1450 /* try dropping referring dentries */ 1451 spin_unlock(&ci->i_ceph_lock); 1452 d_prune_aliases(inode); 1453 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1454 inode, cap, atomic_read(&inode->i_count)); 1455 return 0; 1456 } 1457 1458 out: 1459 spin_unlock(&ci->i_ceph_lock); 1460 return 0; 1461 } 1462 1463 /* 1464 * Trim session cap count down to some max number. 1465 */ 1466 static int trim_caps(struct ceph_mds_client *mdsc, 1467 struct ceph_mds_session *session, 1468 int max_caps) 1469 { 1470 int trim_caps = session->s_nr_caps - max_caps; 1471 1472 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1473 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1474 if (trim_caps > 0) { 1475 session->s_trim_caps = trim_caps; 1476 iterate_session_caps(session, trim_caps_cb, session); 1477 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1478 session->s_mds, session->s_nr_caps, max_caps, 1479 trim_caps - session->s_trim_caps); 1480 session->s_trim_caps = 0; 1481 } 1482 1483 ceph_send_cap_releases(mdsc, session); 1484 return 0; 1485 } 1486 1487 static int check_capsnap_flush(struct ceph_inode_info *ci, 1488 u64 want_snap_seq) 1489 { 1490 int ret = 1; 1491 spin_lock(&ci->i_ceph_lock); 1492 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) { 1493 struct ceph_cap_snap *capsnap = 1494 list_first_entry(&ci->i_cap_snaps, 1495 struct ceph_cap_snap, ci_item); 1496 ret = capsnap->follows >= want_snap_seq; 1497 } 1498 spin_unlock(&ci->i_ceph_lock); 1499 return ret; 1500 } 1501 1502 static int check_caps_flush(struct ceph_mds_client *mdsc, 1503 u64 want_flush_tid) 1504 { 1505 struct rb_node *n; 1506 struct ceph_cap_flush *cf; 1507 int ret = 1; 1508 1509 spin_lock(&mdsc->cap_dirty_lock); 1510 n = rb_first(&mdsc->cap_flush_tree); 1511 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 1512 if (cf && cf->tid <= want_flush_tid) { 1513 dout("check_caps_flush still flushing tid %llu <= %llu\n", 1514 cf->tid, want_flush_tid); 1515 ret = 0; 1516 } 1517 spin_unlock(&mdsc->cap_dirty_lock); 1518 return ret; 1519 } 1520 1521 /* 1522 * flush all dirty inode data to disk. 1523 * 1524 * returns true if we've flushed through want_flush_tid 1525 */ 1526 static void wait_caps_flush(struct ceph_mds_client *mdsc, 1527 u64 want_flush_tid, u64 want_snap_seq) 1528 { 1529 int mds; 1530 1531 dout("check_caps_flush want %llu snap want %llu\n", 1532 want_flush_tid, want_snap_seq); 1533 mutex_lock(&mdsc->mutex); 1534 for (mds = 0; mds < mdsc->max_sessions; ) { 1535 struct ceph_mds_session *session = mdsc->sessions[mds]; 1536 struct inode *inode = NULL; 1537 1538 if (!session) { 1539 mds++; 1540 continue; 1541 } 1542 get_session(session); 1543 mutex_unlock(&mdsc->mutex); 1544 1545 mutex_lock(&session->s_mutex); 1546 if (!list_empty(&session->s_cap_snaps_flushing)) { 1547 struct ceph_cap_snap *capsnap = 1548 list_first_entry(&session->s_cap_snaps_flushing, 1549 struct ceph_cap_snap, 1550 flushing_item); 1551 struct ceph_inode_info *ci = capsnap->ci; 1552 if (!check_capsnap_flush(ci, want_snap_seq)) { 1553 dout("check_cap_flush still flushing snap %p " 1554 "follows %lld <= %lld to mds%d\n", 1555 &ci->vfs_inode, capsnap->follows, 1556 want_snap_seq, mds); 1557 inode = igrab(&ci->vfs_inode); 1558 } 1559 } 1560 mutex_unlock(&session->s_mutex); 1561 ceph_put_mds_session(session); 1562 1563 if (inode) { 1564 wait_event(mdsc->cap_flushing_wq, 1565 check_capsnap_flush(ceph_inode(inode), 1566 want_snap_seq)); 1567 iput(inode); 1568 } else { 1569 mds++; 1570 } 1571 1572 mutex_lock(&mdsc->mutex); 1573 } 1574 mutex_unlock(&mdsc->mutex); 1575 1576 wait_event(mdsc->cap_flushing_wq, 1577 check_caps_flush(mdsc, want_flush_tid)); 1578 1579 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 1580 } 1581 1582 /* 1583 * called under s_mutex 1584 */ 1585 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1586 struct ceph_mds_session *session) 1587 { 1588 struct ceph_msg *msg = NULL; 1589 struct ceph_mds_cap_release *head; 1590 struct ceph_mds_cap_item *item; 1591 struct ceph_cap *cap; 1592 LIST_HEAD(tmp_list); 1593 int num_cap_releases; 1594 1595 spin_lock(&session->s_cap_lock); 1596 again: 1597 list_splice_init(&session->s_cap_releases, &tmp_list); 1598 num_cap_releases = session->s_num_cap_releases; 1599 session->s_num_cap_releases = 0; 1600 spin_unlock(&session->s_cap_lock); 1601 1602 while (!list_empty(&tmp_list)) { 1603 if (!msg) { 1604 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 1605 PAGE_CACHE_SIZE, GFP_NOFS, false); 1606 if (!msg) 1607 goto out_err; 1608 head = msg->front.iov_base; 1609 head->num = cpu_to_le32(0); 1610 msg->front.iov_len = sizeof(*head); 1611 } 1612 cap = list_first_entry(&tmp_list, struct ceph_cap, 1613 session_caps); 1614 list_del(&cap->session_caps); 1615 num_cap_releases--; 1616 1617 head = msg->front.iov_base; 1618 le32_add_cpu(&head->num, 1); 1619 item = msg->front.iov_base + msg->front.iov_len; 1620 item->ino = cpu_to_le64(cap->cap_ino); 1621 item->cap_id = cpu_to_le64(cap->cap_id); 1622 item->migrate_seq = cpu_to_le32(cap->mseq); 1623 item->seq = cpu_to_le32(cap->issue_seq); 1624 msg->front.iov_len += sizeof(*item); 1625 1626 ceph_put_cap(mdsc, cap); 1627 1628 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1629 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1630 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1631 ceph_con_send(&session->s_con, msg); 1632 msg = NULL; 1633 } 1634 } 1635 1636 BUG_ON(num_cap_releases != 0); 1637 1638 spin_lock(&session->s_cap_lock); 1639 if (!list_empty(&session->s_cap_releases)) 1640 goto again; 1641 spin_unlock(&session->s_cap_lock); 1642 1643 if (msg) { 1644 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1645 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1646 ceph_con_send(&session->s_con, msg); 1647 } 1648 return; 1649 out_err: 1650 pr_err("send_cap_releases mds%d, failed to allocate message\n", 1651 session->s_mds); 1652 spin_lock(&session->s_cap_lock); 1653 list_splice(&tmp_list, &session->s_cap_releases); 1654 session->s_num_cap_releases += num_cap_releases; 1655 spin_unlock(&session->s_cap_lock); 1656 } 1657 1658 /* 1659 * requests 1660 */ 1661 1662 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1663 struct inode *dir) 1664 { 1665 struct ceph_inode_info *ci = ceph_inode(dir); 1666 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1667 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1668 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1669 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1670 int order, num_entries; 1671 1672 spin_lock(&ci->i_ceph_lock); 1673 num_entries = ci->i_files + ci->i_subdirs; 1674 spin_unlock(&ci->i_ceph_lock); 1675 num_entries = max(num_entries, 1); 1676 num_entries = min(num_entries, opt->max_readdir); 1677 1678 order = get_order(size * num_entries); 1679 while (order >= 0) { 1680 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL | 1681 __GFP_NOWARN, 1682 order); 1683 if (rinfo->dir_in) 1684 break; 1685 order--; 1686 } 1687 if (!rinfo->dir_in) 1688 return -ENOMEM; 1689 1690 num_entries = (PAGE_SIZE << order) / size; 1691 num_entries = min(num_entries, opt->max_readdir); 1692 1693 rinfo->dir_buf_size = PAGE_SIZE << order; 1694 req->r_num_caps = num_entries + 1; 1695 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1696 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1697 return 0; 1698 } 1699 1700 /* 1701 * Create an mds request. 1702 */ 1703 struct ceph_mds_request * 1704 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1705 { 1706 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1707 1708 if (!req) 1709 return ERR_PTR(-ENOMEM); 1710 1711 mutex_init(&req->r_fill_mutex); 1712 req->r_mdsc = mdsc; 1713 req->r_started = jiffies; 1714 req->r_resend_mds = -1; 1715 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1716 INIT_LIST_HEAD(&req->r_unsafe_target_item); 1717 req->r_fmode = -1; 1718 kref_init(&req->r_kref); 1719 INIT_LIST_HEAD(&req->r_wait); 1720 init_completion(&req->r_completion); 1721 init_completion(&req->r_safe_completion); 1722 INIT_LIST_HEAD(&req->r_unsafe_item); 1723 1724 req->r_stamp = CURRENT_TIME; 1725 1726 req->r_op = op; 1727 req->r_direct_mode = mode; 1728 return req; 1729 } 1730 1731 /* 1732 * return oldest (lowest) request, tid in request tree, 0 if none. 1733 * 1734 * called under mdsc->mutex. 1735 */ 1736 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1737 { 1738 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1739 return NULL; 1740 return rb_entry(rb_first(&mdsc->request_tree), 1741 struct ceph_mds_request, r_node); 1742 } 1743 1744 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1745 { 1746 return mdsc->oldest_tid; 1747 } 1748 1749 /* 1750 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1751 * on build_path_from_dentry in fs/cifs/dir.c. 1752 * 1753 * If @stop_on_nosnap, generate path relative to the first non-snapped 1754 * inode. 1755 * 1756 * Encode hidden .snap dirs as a double /, i.e. 1757 * foo/.snap/bar -> foo//bar 1758 */ 1759 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1760 int stop_on_nosnap) 1761 { 1762 struct dentry *temp; 1763 char *path; 1764 int len, pos; 1765 unsigned seq; 1766 1767 if (dentry == NULL) 1768 return ERR_PTR(-EINVAL); 1769 1770 retry: 1771 len = 0; 1772 seq = read_seqbegin(&rename_lock); 1773 rcu_read_lock(); 1774 for (temp = dentry; !IS_ROOT(temp);) { 1775 struct inode *inode = d_inode(temp); 1776 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1777 len++; /* slash only */ 1778 else if (stop_on_nosnap && inode && 1779 ceph_snap(inode) == CEPH_NOSNAP) 1780 break; 1781 else 1782 len += 1 + temp->d_name.len; 1783 temp = temp->d_parent; 1784 } 1785 rcu_read_unlock(); 1786 if (len) 1787 len--; /* no leading '/' */ 1788 1789 path = kmalloc(len+1, GFP_NOFS); 1790 if (path == NULL) 1791 return ERR_PTR(-ENOMEM); 1792 pos = len; 1793 path[pos] = 0; /* trailing null */ 1794 rcu_read_lock(); 1795 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1796 struct inode *inode; 1797 1798 spin_lock(&temp->d_lock); 1799 inode = d_inode(temp); 1800 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1801 dout("build_path path+%d: %p SNAPDIR\n", 1802 pos, temp); 1803 } else if (stop_on_nosnap && inode && 1804 ceph_snap(inode) == CEPH_NOSNAP) { 1805 spin_unlock(&temp->d_lock); 1806 break; 1807 } else { 1808 pos -= temp->d_name.len; 1809 if (pos < 0) { 1810 spin_unlock(&temp->d_lock); 1811 break; 1812 } 1813 strncpy(path + pos, temp->d_name.name, 1814 temp->d_name.len); 1815 } 1816 spin_unlock(&temp->d_lock); 1817 if (pos) 1818 path[--pos] = '/'; 1819 temp = temp->d_parent; 1820 } 1821 rcu_read_unlock(); 1822 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1823 pr_err("build_path did not end path lookup where " 1824 "expected, namelen is %d, pos is %d\n", len, pos); 1825 /* presumably this is only possible if racing with a 1826 rename of one of the parent directories (we can not 1827 lock the dentries above us to prevent this, but 1828 retrying should be harmless) */ 1829 kfree(path); 1830 goto retry; 1831 } 1832 1833 *base = ceph_ino(d_inode(temp)); 1834 *plen = len; 1835 dout("build_path on %p %d built %llx '%.*s'\n", 1836 dentry, d_count(dentry), *base, len, path); 1837 return path; 1838 } 1839 1840 static int build_dentry_path(struct dentry *dentry, 1841 const char **ppath, int *ppathlen, u64 *pino, 1842 int *pfreepath) 1843 { 1844 char *path; 1845 1846 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) { 1847 *pino = ceph_ino(d_inode(dentry->d_parent)); 1848 *ppath = dentry->d_name.name; 1849 *ppathlen = dentry->d_name.len; 1850 return 0; 1851 } 1852 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1853 if (IS_ERR(path)) 1854 return PTR_ERR(path); 1855 *ppath = path; 1856 *pfreepath = 1; 1857 return 0; 1858 } 1859 1860 static int build_inode_path(struct inode *inode, 1861 const char **ppath, int *ppathlen, u64 *pino, 1862 int *pfreepath) 1863 { 1864 struct dentry *dentry; 1865 char *path; 1866 1867 if (ceph_snap(inode) == CEPH_NOSNAP) { 1868 *pino = ceph_ino(inode); 1869 *ppathlen = 0; 1870 return 0; 1871 } 1872 dentry = d_find_alias(inode); 1873 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1874 dput(dentry); 1875 if (IS_ERR(path)) 1876 return PTR_ERR(path); 1877 *ppath = path; 1878 *pfreepath = 1; 1879 return 0; 1880 } 1881 1882 /* 1883 * request arguments may be specified via an inode *, a dentry *, or 1884 * an explicit ino+path. 1885 */ 1886 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1887 const char *rpath, u64 rino, 1888 const char **ppath, int *pathlen, 1889 u64 *ino, int *freepath) 1890 { 1891 int r = 0; 1892 1893 if (rinode) { 1894 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1895 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1896 ceph_snap(rinode)); 1897 } else if (rdentry) { 1898 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1899 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1900 *ppath); 1901 } else if (rpath || rino) { 1902 *ino = rino; 1903 *ppath = rpath; 1904 *pathlen = rpath ? strlen(rpath) : 0; 1905 dout(" path %.*s\n", *pathlen, rpath); 1906 } 1907 1908 return r; 1909 } 1910 1911 /* 1912 * called under mdsc->mutex 1913 */ 1914 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1915 struct ceph_mds_request *req, 1916 int mds, bool drop_cap_releases) 1917 { 1918 struct ceph_msg *msg; 1919 struct ceph_mds_request_head *head; 1920 const char *path1 = NULL; 1921 const char *path2 = NULL; 1922 u64 ino1 = 0, ino2 = 0; 1923 int pathlen1 = 0, pathlen2 = 0; 1924 int freepath1 = 0, freepath2 = 0; 1925 int len; 1926 u16 releases; 1927 void *p, *end; 1928 int ret; 1929 1930 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1931 req->r_path1, req->r_ino1.ino, 1932 &path1, &pathlen1, &ino1, &freepath1); 1933 if (ret < 0) { 1934 msg = ERR_PTR(ret); 1935 goto out; 1936 } 1937 1938 ret = set_request_path_attr(NULL, req->r_old_dentry, 1939 req->r_path2, req->r_ino2.ino, 1940 &path2, &pathlen2, &ino2, &freepath2); 1941 if (ret < 0) { 1942 msg = ERR_PTR(ret); 1943 goto out_free1; 1944 } 1945 1946 len = sizeof(*head) + 1947 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1948 sizeof(struct ceph_timespec); 1949 1950 /* calculate (max) length for cap releases */ 1951 len += sizeof(struct ceph_mds_request_release) * 1952 (!!req->r_inode_drop + !!req->r_dentry_drop + 1953 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1954 if (req->r_dentry_drop) 1955 len += req->r_dentry->d_name.len; 1956 if (req->r_old_dentry_drop) 1957 len += req->r_old_dentry->d_name.len; 1958 1959 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1960 if (!msg) { 1961 msg = ERR_PTR(-ENOMEM); 1962 goto out_free2; 1963 } 1964 1965 msg->hdr.version = cpu_to_le16(2); 1966 msg->hdr.tid = cpu_to_le64(req->r_tid); 1967 1968 head = msg->front.iov_base; 1969 p = msg->front.iov_base + sizeof(*head); 1970 end = msg->front.iov_base + msg->front.iov_len; 1971 1972 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1973 head->op = cpu_to_le32(req->r_op); 1974 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1975 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1976 head->args = req->r_args; 1977 1978 ceph_encode_filepath(&p, end, ino1, path1); 1979 ceph_encode_filepath(&p, end, ino2, path2); 1980 1981 /* make note of release offset, in case we need to replay */ 1982 req->r_request_release_offset = p - msg->front.iov_base; 1983 1984 /* cap releases */ 1985 releases = 0; 1986 if (req->r_inode_drop) 1987 releases += ceph_encode_inode_release(&p, 1988 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 1989 mds, req->r_inode_drop, req->r_inode_unless, 0); 1990 if (req->r_dentry_drop) 1991 releases += ceph_encode_dentry_release(&p, req->r_dentry, 1992 mds, req->r_dentry_drop, req->r_dentry_unless); 1993 if (req->r_old_dentry_drop) 1994 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 1995 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 1996 if (req->r_old_inode_drop) 1997 releases += ceph_encode_inode_release(&p, 1998 d_inode(req->r_old_dentry), 1999 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 2000 2001 if (drop_cap_releases) { 2002 releases = 0; 2003 p = msg->front.iov_base + req->r_request_release_offset; 2004 } 2005 2006 head->num_releases = cpu_to_le16(releases); 2007 2008 /* time stamp */ 2009 { 2010 struct ceph_timespec ts; 2011 ceph_encode_timespec(&ts, &req->r_stamp); 2012 ceph_encode_copy(&p, &ts, sizeof(ts)); 2013 } 2014 2015 BUG_ON(p > end); 2016 msg->front.iov_len = p - msg->front.iov_base; 2017 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2018 2019 if (req->r_pagelist) { 2020 struct ceph_pagelist *pagelist = req->r_pagelist; 2021 atomic_inc(&pagelist->refcnt); 2022 ceph_msg_data_add_pagelist(msg, pagelist); 2023 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2024 } else { 2025 msg->hdr.data_len = 0; 2026 } 2027 2028 msg->hdr.data_off = cpu_to_le16(0); 2029 2030 out_free2: 2031 if (freepath2) 2032 kfree((char *)path2); 2033 out_free1: 2034 if (freepath1) 2035 kfree((char *)path1); 2036 out: 2037 return msg; 2038 } 2039 2040 /* 2041 * called under mdsc->mutex if error, under no mutex if 2042 * success. 2043 */ 2044 static void complete_request(struct ceph_mds_client *mdsc, 2045 struct ceph_mds_request *req) 2046 { 2047 if (req->r_callback) 2048 req->r_callback(mdsc, req); 2049 else 2050 complete_all(&req->r_completion); 2051 } 2052 2053 /* 2054 * called under mdsc->mutex 2055 */ 2056 static int __prepare_send_request(struct ceph_mds_client *mdsc, 2057 struct ceph_mds_request *req, 2058 int mds, bool drop_cap_releases) 2059 { 2060 struct ceph_mds_request_head *rhead; 2061 struct ceph_msg *msg; 2062 int flags = 0; 2063 2064 req->r_attempts++; 2065 if (req->r_inode) { 2066 struct ceph_cap *cap = 2067 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2068 2069 if (cap) 2070 req->r_sent_on_mseq = cap->mseq; 2071 else 2072 req->r_sent_on_mseq = -1; 2073 } 2074 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2075 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2076 2077 if (req->r_got_unsafe) { 2078 void *p; 2079 /* 2080 * Replay. Do not regenerate message (and rebuild 2081 * paths, etc.); just use the original message. 2082 * Rebuilding paths will break for renames because 2083 * d_move mangles the src name. 2084 */ 2085 msg = req->r_request; 2086 rhead = msg->front.iov_base; 2087 2088 flags = le32_to_cpu(rhead->flags); 2089 flags |= CEPH_MDS_FLAG_REPLAY; 2090 rhead->flags = cpu_to_le32(flags); 2091 2092 if (req->r_target_inode) 2093 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2094 2095 rhead->num_retry = req->r_attempts - 1; 2096 2097 /* remove cap/dentry releases from message */ 2098 rhead->num_releases = 0; 2099 2100 /* time stamp */ 2101 p = msg->front.iov_base + req->r_request_release_offset; 2102 { 2103 struct ceph_timespec ts; 2104 ceph_encode_timespec(&ts, &req->r_stamp); 2105 ceph_encode_copy(&p, &ts, sizeof(ts)); 2106 } 2107 2108 msg->front.iov_len = p - msg->front.iov_base; 2109 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2110 return 0; 2111 } 2112 2113 if (req->r_request) { 2114 ceph_msg_put(req->r_request); 2115 req->r_request = NULL; 2116 } 2117 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2118 if (IS_ERR(msg)) { 2119 req->r_err = PTR_ERR(msg); 2120 return PTR_ERR(msg); 2121 } 2122 req->r_request = msg; 2123 2124 rhead = msg->front.iov_base; 2125 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2126 if (req->r_got_unsafe) 2127 flags |= CEPH_MDS_FLAG_REPLAY; 2128 if (req->r_locked_dir) 2129 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2130 rhead->flags = cpu_to_le32(flags); 2131 rhead->num_fwd = req->r_num_fwd; 2132 rhead->num_retry = req->r_attempts - 1; 2133 rhead->ino = 0; 2134 2135 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2136 return 0; 2137 } 2138 2139 /* 2140 * send request, or put it on the appropriate wait list. 2141 */ 2142 static int __do_request(struct ceph_mds_client *mdsc, 2143 struct ceph_mds_request *req) 2144 { 2145 struct ceph_mds_session *session = NULL; 2146 int mds = -1; 2147 int err = 0; 2148 2149 if (req->r_err || req->r_got_result) { 2150 if (req->r_aborted) 2151 __unregister_request(mdsc, req); 2152 goto out; 2153 } 2154 2155 if (req->r_timeout && 2156 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2157 dout("do_request timed out\n"); 2158 err = -EIO; 2159 goto finish; 2160 } 2161 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2162 dout("do_request forced umount\n"); 2163 err = -EIO; 2164 goto finish; 2165 } 2166 2167 put_request_session(req); 2168 2169 mds = __choose_mds(mdsc, req); 2170 if (mds < 0 || 2171 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2172 dout("do_request no mds or not active, waiting for map\n"); 2173 list_add(&req->r_wait, &mdsc->waiting_for_map); 2174 goto out; 2175 } 2176 2177 /* get, open session */ 2178 session = __ceph_lookup_mds_session(mdsc, mds); 2179 if (!session) { 2180 session = register_session(mdsc, mds); 2181 if (IS_ERR(session)) { 2182 err = PTR_ERR(session); 2183 goto finish; 2184 } 2185 } 2186 req->r_session = get_session(session); 2187 2188 dout("do_request mds%d session %p state %s\n", mds, session, 2189 ceph_session_state_name(session->s_state)); 2190 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2191 session->s_state != CEPH_MDS_SESSION_HUNG) { 2192 if (session->s_state == CEPH_MDS_SESSION_NEW || 2193 session->s_state == CEPH_MDS_SESSION_CLOSING) 2194 __open_session(mdsc, session); 2195 list_add(&req->r_wait, &session->s_waiting); 2196 goto out_session; 2197 } 2198 2199 /* send request */ 2200 req->r_resend_mds = -1; /* forget any previous mds hint */ 2201 2202 if (req->r_request_started == 0) /* note request start time */ 2203 req->r_request_started = jiffies; 2204 2205 err = __prepare_send_request(mdsc, req, mds, false); 2206 if (!err) { 2207 ceph_msg_get(req->r_request); 2208 ceph_con_send(&session->s_con, req->r_request); 2209 } 2210 2211 out_session: 2212 ceph_put_mds_session(session); 2213 finish: 2214 if (err) { 2215 dout("__do_request early error %d\n", err); 2216 req->r_err = err; 2217 complete_request(mdsc, req); 2218 __unregister_request(mdsc, req); 2219 } 2220 out: 2221 return err; 2222 } 2223 2224 /* 2225 * called under mdsc->mutex 2226 */ 2227 static void __wake_requests(struct ceph_mds_client *mdsc, 2228 struct list_head *head) 2229 { 2230 struct ceph_mds_request *req; 2231 LIST_HEAD(tmp_list); 2232 2233 list_splice_init(head, &tmp_list); 2234 2235 while (!list_empty(&tmp_list)) { 2236 req = list_entry(tmp_list.next, 2237 struct ceph_mds_request, r_wait); 2238 list_del_init(&req->r_wait); 2239 dout(" wake request %p tid %llu\n", req, req->r_tid); 2240 __do_request(mdsc, req); 2241 } 2242 } 2243 2244 /* 2245 * Wake up threads with requests pending for @mds, so that they can 2246 * resubmit their requests to a possibly different mds. 2247 */ 2248 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2249 { 2250 struct ceph_mds_request *req; 2251 struct rb_node *p = rb_first(&mdsc->request_tree); 2252 2253 dout("kick_requests mds%d\n", mds); 2254 while (p) { 2255 req = rb_entry(p, struct ceph_mds_request, r_node); 2256 p = rb_next(p); 2257 if (req->r_got_unsafe) 2258 continue; 2259 if (req->r_attempts > 0) 2260 continue; /* only new requests */ 2261 if (req->r_session && 2262 req->r_session->s_mds == mds) { 2263 dout(" kicking tid %llu\n", req->r_tid); 2264 list_del_init(&req->r_wait); 2265 __do_request(mdsc, req); 2266 } 2267 } 2268 } 2269 2270 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2271 struct ceph_mds_request *req) 2272 { 2273 dout("submit_request on %p\n", req); 2274 mutex_lock(&mdsc->mutex); 2275 __register_request(mdsc, req, NULL); 2276 __do_request(mdsc, req); 2277 mutex_unlock(&mdsc->mutex); 2278 } 2279 2280 /* 2281 * Synchrously perform an mds request. Take care of all of the 2282 * session setup, forwarding, retry details. 2283 */ 2284 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2285 struct inode *dir, 2286 struct ceph_mds_request *req) 2287 { 2288 int err; 2289 2290 dout("do_request on %p\n", req); 2291 2292 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2293 if (req->r_inode) 2294 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2295 if (req->r_locked_dir) 2296 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2297 if (req->r_old_dentry_dir) 2298 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2299 CEPH_CAP_PIN); 2300 2301 /* issue */ 2302 mutex_lock(&mdsc->mutex); 2303 __register_request(mdsc, req, dir); 2304 __do_request(mdsc, req); 2305 2306 if (req->r_err) { 2307 err = req->r_err; 2308 goto out; 2309 } 2310 2311 /* wait */ 2312 mutex_unlock(&mdsc->mutex); 2313 dout("do_request waiting\n"); 2314 if (!req->r_timeout && req->r_wait_for_completion) { 2315 err = req->r_wait_for_completion(mdsc, req); 2316 } else { 2317 long timeleft = wait_for_completion_killable_timeout( 2318 &req->r_completion, 2319 ceph_timeout_jiffies(req->r_timeout)); 2320 if (timeleft > 0) 2321 err = 0; 2322 else if (!timeleft) 2323 err = -EIO; /* timed out */ 2324 else 2325 err = timeleft; /* killed */ 2326 } 2327 dout("do_request waited, got %d\n", err); 2328 mutex_lock(&mdsc->mutex); 2329 2330 /* only abort if we didn't race with a real reply */ 2331 if (req->r_got_result) { 2332 err = le32_to_cpu(req->r_reply_info.head->result); 2333 } else if (err < 0) { 2334 dout("aborted request %lld with %d\n", req->r_tid, err); 2335 2336 /* 2337 * ensure we aren't running concurrently with 2338 * ceph_fill_trace or ceph_readdir_prepopulate, which 2339 * rely on locks (dir mutex) held by our caller. 2340 */ 2341 mutex_lock(&req->r_fill_mutex); 2342 req->r_err = err; 2343 req->r_aborted = true; 2344 mutex_unlock(&req->r_fill_mutex); 2345 2346 if (req->r_locked_dir && 2347 (req->r_op & CEPH_MDS_OP_WRITE)) 2348 ceph_invalidate_dir_request(req); 2349 } else { 2350 err = req->r_err; 2351 } 2352 2353 out: 2354 mutex_unlock(&mdsc->mutex); 2355 dout("do_request %p done, result %d\n", req, err); 2356 return err; 2357 } 2358 2359 /* 2360 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2361 * namespace request. 2362 */ 2363 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2364 { 2365 struct inode *inode = req->r_locked_dir; 2366 2367 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2368 2369 ceph_dir_clear_complete(inode); 2370 if (req->r_dentry) 2371 ceph_invalidate_dentry_lease(req->r_dentry); 2372 if (req->r_old_dentry) 2373 ceph_invalidate_dentry_lease(req->r_old_dentry); 2374 } 2375 2376 /* 2377 * Handle mds reply. 2378 * 2379 * We take the session mutex and parse and process the reply immediately. 2380 * This preserves the logical ordering of replies, capabilities, etc., sent 2381 * by the MDS as they are applied to our local cache. 2382 */ 2383 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2384 { 2385 struct ceph_mds_client *mdsc = session->s_mdsc; 2386 struct ceph_mds_request *req; 2387 struct ceph_mds_reply_head *head = msg->front.iov_base; 2388 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2389 struct ceph_snap_realm *realm; 2390 u64 tid; 2391 int err, result; 2392 int mds = session->s_mds; 2393 2394 if (msg->front.iov_len < sizeof(*head)) { 2395 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2396 ceph_msg_dump(msg); 2397 return; 2398 } 2399 2400 /* get request, session */ 2401 tid = le64_to_cpu(msg->hdr.tid); 2402 mutex_lock(&mdsc->mutex); 2403 req = __lookup_request(mdsc, tid); 2404 if (!req) { 2405 dout("handle_reply on unknown tid %llu\n", tid); 2406 mutex_unlock(&mdsc->mutex); 2407 return; 2408 } 2409 dout("handle_reply %p\n", req); 2410 2411 /* correct session? */ 2412 if (req->r_session != session) { 2413 pr_err("mdsc_handle_reply got %llu on session mds%d" 2414 " not mds%d\n", tid, session->s_mds, 2415 req->r_session ? req->r_session->s_mds : -1); 2416 mutex_unlock(&mdsc->mutex); 2417 goto out; 2418 } 2419 2420 /* dup? */ 2421 if ((req->r_got_unsafe && !head->safe) || 2422 (req->r_got_safe && head->safe)) { 2423 pr_warn("got a dup %s reply on %llu from mds%d\n", 2424 head->safe ? "safe" : "unsafe", tid, mds); 2425 mutex_unlock(&mdsc->mutex); 2426 goto out; 2427 } 2428 if (req->r_got_safe) { 2429 pr_warn("got unsafe after safe on %llu from mds%d\n", 2430 tid, mds); 2431 mutex_unlock(&mdsc->mutex); 2432 goto out; 2433 } 2434 2435 result = le32_to_cpu(head->result); 2436 2437 /* 2438 * Handle an ESTALE 2439 * if we're not talking to the authority, send to them 2440 * if the authority has changed while we weren't looking, 2441 * send to new authority 2442 * Otherwise we just have to return an ESTALE 2443 */ 2444 if (result == -ESTALE) { 2445 dout("got ESTALE on request %llu", req->r_tid); 2446 req->r_resend_mds = -1; 2447 if (req->r_direct_mode != USE_AUTH_MDS) { 2448 dout("not using auth, setting for that now"); 2449 req->r_direct_mode = USE_AUTH_MDS; 2450 __do_request(mdsc, req); 2451 mutex_unlock(&mdsc->mutex); 2452 goto out; 2453 } else { 2454 int mds = __choose_mds(mdsc, req); 2455 if (mds >= 0 && mds != req->r_session->s_mds) { 2456 dout("but auth changed, so resending"); 2457 __do_request(mdsc, req); 2458 mutex_unlock(&mdsc->mutex); 2459 goto out; 2460 } 2461 } 2462 dout("have to return ESTALE on request %llu", req->r_tid); 2463 } 2464 2465 2466 if (head->safe) { 2467 req->r_got_safe = true; 2468 __unregister_request(mdsc, req); 2469 2470 if (req->r_got_unsafe) { 2471 /* 2472 * We already handled the unsafe response, now do the 2473 * cleanup. No need to examine the response; the MDS 2474 * doesn't include any result info in the safe 2475 * response. And even if it did, there is nothing 2476 * useful we could do with a revised return value. 2477 */ 2478 dout("got safe reply %llu, mds%d\n", tid, mds); 2479 list_del_init(&req->r_unsafe_item); 2480 2481 /* last unsafe request during umount? */ 2482 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2483 complete_all(&mdsc->safe_umount_waiters); 2484 mutex_unlock(&mdsc->mutex); 2485 goto out; 2486 } 2487 } else { 2488 req->r_got_unsafe = true; 2489 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2490 if (req->r_unsafe_dir) { 2491 struct ceph_inode_info *ci = 2492 ceph_inode(req->r_unsafe_dir); 2493 spin_lock(&ci->i_unsafe_lock); 2494 list_add_tail(&req->r_unsafe_dir_item, 2495 &ci->i_unsafe_dirops); 2496 spin_unlock(&ci->i_unsafe_lock); 2497 } 2498 } 2499 2500 dout("handle_reply tid %lld result %d\n", tid, result); 2501 rinfo = &req->r_reply_info; 2502 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2503 mutex_unlock(&mdsc->mutex); 2504 2505 mutex_lock(&session->s_mutex); 2506 if (err < 0) { 2507 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2508 ceph_msg_dump(msg); 2509 goto out_err; 2510 } 2511 2512 /* snap trace */ 2513 realm = NULL; 2514 if (rinfo->snapblob_len) { 2515 down_write(&mdsc->snap_rwsem); 2516 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2517 rinfo->snapblob + rinfo->snapblob_len, 2518 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2519 &realm); 2520 downgrade_write(&mdsc->snap_rwsem); 2521 } else { 2522 down_read(&mdsc->snap_rwsem); 2523 } 2524 2525 /* insert trace into our cache */ 2526 mutex_lock(&req->r_fill_mutex); 2527 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2528 if (err == 0) { 2529 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2530 req->r_op == CEPH_MDS_OP_LSSNAP)) 2531 ceph_readdir_prepopulate(req, req->r_session); 2532 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2533 } 2534 mutex_unlock(&req->r_fill_mutex); 2535 2536 up_read(&mdsc->snap_rwsem); 2537 if (realm) 2538 ceph_put_snap_realm(mdsc, realm); 2539 2540 if (err == 0 && req->r_got_unsafe && req->r_target_inode) { 2541 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 2542 spin_lock(&ci->i_unsafe_lock); 2543 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops); 2544 spin_unlock(&ci->i_unsafe_lock); 2545 } 2546 out_err: 2547 mutex_lock(&mdsc->mutex); 2548 if (!req->r_aborted) { 2549 if (err) { 2550 req->r_err = err; 2551 } else { 2552 req->r_reply = ceph_msg_get(msg); 2553 req->r_got_result = true; 2554 } 2555 } else { 2556 dout("reply arrived after request %lld was aborted\n", tid); 2557 } 2558 mutex_unlock(&mdsc->mutex); 2559 2560 mutex_unlock(&session->s_mutex); 2561 2562 /* kick calling process */ 2563 complete_request(mdsc, req); 2564 out: 2565 ceph_mdsc_put_request(req); 2566 return; 2567 } 2568 2569 2570 2571 /* 2572 * handle mds notification that our request has been forwarded. 2573 */ 2574 static void handle_forward(struct ceph_mds_client *mdsc, 2575 struct ceph_mds_session *session, 2576 struct ceph_msg *msg) 2577 { 2578 struct ceph_mds_request *req; 2579 u64 tid = le64_to_cpu(msg->hdr.tid); 2580 u32 next_mds; 2581 u32 fwd_seq; 2582 int err = -EINVAL; 2583 void *p = msg->front.iov_base; 2584 void *end = p + msg->front.iov_len; 2585 2586 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2587 next_mds = ceph_decode_32(&p); 2588 fwd_seq = ceph_decode_32(&p); 2589 2590 mutex_lock(&mdsc->mutex); 2591 req = __lookup_request(mdsc, tid); 2592 if (!req) { 2593 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2594 goto out; /* dup reply? */ 2595 } 2596 2597 if (req->r_aborted) { 2598 dout("forward tid %llu aborted, unregistering\n", tid); 2599 __unregister_request(mdsc, req); 2600 } else if (fwd_seq <= req->r_num_fwd) { 2601 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2602 tid, next_mds, req->r_num_fwd, fwd_seq); 2603 } else { 2604 /* resend. forward race not possible; mds would drop */ 2605 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2606 BUG_ON(req->r_err); 2607 BUG_ON(req->r_got_result); 2608 req->r_attempts = 0; 2609 req->r_num_fwd = fwd_seq; 2610 req->r_resend_mds = next_mds; 2611 put_request_session(req); 2612 __do_request(mdsc, req); 2613 } 2614 ceph_mdsc_put_request(req); 2615 out: 2616 mutex_unlock(&mdsc->mutex); 2617 return; 2618 2619 bad: 2620 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2621 } 2622 2623 /* 2624 * handle a mds session control message 2625 */ 2626 static void handle_session(struct ceph_mds_session *session, 2627 struct ceph_msg *msg) 2628 { 2629 struct ceph_mds_client *mdsc = session->s_mdsc; 2630 u32 op; 2631 u64 seq; 2632 int mds = session->s_mds; 2633 struct ceph_mds_session_head *h = msg->front.iov_base; 2634 int wake = 0; 2635 2636 /* decode */ 2637 if (msg->front.iov_len != sizeof(*h)) 2638 goto bad; 2639 op = le32_to_cpu(h->op); 2640 seq = le64_to_cpu(h->seq); 2641 2642 mutex_lock(&mdsc->mutex); 2643 if (op == CEPH_SESSION_CLOSE) 2644 __unregister_session(mdsc, session); 2645 /* FIXME: this ttl calculation is generous */ 2646 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2647 mutex_unlock(&mdsc->mutex); 2648 2649 mutex_lock(&session->s_mutex); 2650 2651 dout("handle_session mds%d %s %p state %s seq %llu\n", 2652 mds, ceph_session_op_name(op), session, 2653 ceph_session_state_name(session->s_state), seq); 2654 2655 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2656 session->s_state = CEPH_MDS_SESSION_OPEN; 2657 pr_info("mds%d came back\n", session->s_mds); 2658 } 2659 2660 switch (op) { 2661 case CEPH_SESSION_OPEN: 2662 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2663 pr_info("mds%d reconnect success\n", session->s_mds); 2664 session->s_state = CEPH_MDS_SESSION_OPEN; 2665 renewed_caps(mdsc, session, 0); 2666 wake = 1; 2667 if (mdsc->stopping) 2668 __close_session(mdsc, session); 2669 break; 2670 2671 case CEPH_SESSION_RENEWCAPS: 2672 if (session->s_renew_seq == seq) 2673 renewed_caps(mdsc, session, 1); 2674 break; 2675 2676 case CEPH_SESSION_CLOSE: 2677 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2678 pr_info("mds%d reconnect denied\n", session->s_mds); 2679 cleanup_session_requests(mdsc, session); 2680 remove_session_caps(session); 2681 wake = 2; /* for good measure */ 2682 wake_up_all(&mdsc->session_close_wq); 2683 break; 2684 2685 case CEPH_SESSION_STALE: 2686 pr_info("mds%d caps went stale, renewing\n", 2687 session->s_mds); 2688 spin_lock(&session->s_gen_ttl_lock); 2689 session->s_cap_gen++; 2690 session->s_cap_ttl = jiffies - 1; 2691 spin_unlock(&session->s_gen_ttl_lock); 2692 send_renew_caps(mdsc, session); 2693 break; 2694 2695 case CEPH_SESSION_RECALL_STATE: 2696 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2697 break; 2698 2699 case CEPH_SESSION_FLUSHMSG: 2700 send_flushmsg_ack(mdsc, session, seq); 2701 break; 2702 2703 case CEPH_SESSION_FORCE_RO: 2704 dout("force_session_readonly %p\n", session); 2705 spin_lock(&session->s_cap_lock); 2706 session->s_readonly = true; 2707 spin_unlock(&session->s_cap_lock); 2708 wake_up_session_caps(session, 0); 2709 break; 2710 2711 default: 2712 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2713 WARN_ON(1); 2714 } 2715 2716 mutex_unlock(&session->s_mutex); 2717 if (wake) { 2718 mutex_lock(&mdsc->mutex); 2719 __wake_requests(mdsc, &session->s_waiting); 2720 if (wake == 2) 2721 kick_requests(mdsc, mds); 2722 mutex_unlock(&mdsc->mutex); 2723 } 2724 return; 2725 2726 bad: 2727 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2728 (int)msg->front.iov_len); 2729 ceph_msg_dump(msg); 2730 return; 2731 } 2732 2733 2734 /* 2735 * called under session->mutex. 2736 */ 2737 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2738 struct ceph_mds_session *session) 2739 { 2740 struct ceph_mds_request *req, *nreq; 2741 struct rb_node *p; 2742 int err; 2743 2744 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2745 2746 mutex_lock(&mdsc->mutex); 2747 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2748 err = __prepare_send_request(mdsc, req, session->s_mds, true); 2749 if (!err) { 2750 ceph_msg_get(req->r_request); 2751 ceph_con_send(&session->s_con, req->r_request); 2752 } 2753 } 2754 2755 /* 2756 * also re-send old requests when MDS enters reconnect stage. So that MDS 2757 * can process completed request in clientreplay stage. 2758 */ 2759 p = rb_first(&mdsc->request_tree); 2760 while (p) { 2761 req = rb_entry(p, struct ceph_mds_request, r_node); 2762 p = rb_next(p); 2763 if (req->r_got_unsafe) 2764 continue; 2765 if (req->r_attempts == 0) 2766 continue; /* only old requests */ 2767 if (req->r_session && 2768 req->r_session->s_mds == session->s_mds) { 2769 err = __prepare_send_request(mdsc, req, 2770 session->s_mds, true); 2771 if (!err) { 2772 ceph_msg_get(req->r_request); 2773 ceph_con_send(&session->s_con, req->r_request); 2774 } 2775 } 2776 } 2777 mutex_unlock(&mdsc->mutex); 2778 } 2779 2780 /* 2781 * Encode information about a cap for a reconnect with the MDS. 2782 */ 2783 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2784 void *arg) 2785 { 2786 union { 2787 struct ceph_mds_cap_reconnect v2; 2788 struct ceph_mds_cap_reconnect_v1 v1; 2789 } rec; 2790 size_t reclen; 2791 struct ceph_inode_info *ci; 2792 struct ceph_reconnect_state *recon_state = arg; 2793 struct ceph_pagelist *pagelist = recon_state->pagelist; 2794 char *path; 2795 int pathlen, err; 2796 u64 pathbase; 2797 struct dentry *dentry; 2798 2799 ci = cap->ci; 2800 2801 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2802 inode, ceph_vinop(inode), cap, cap->cap_id, 2803 ceph_cap_string(cap->issued)); 2804 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2805 if (err) 2806 return err; 2807 2808 dentry = d_find_alias(inode); 2809 if (dentry) { 2810 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2811 if (IS_ERR(path)) { 2812 err = PTR_ERR(path); 2813 goto out_dput; 2814 } 2815 } else { 2816 path = NULL; 2817 pathlen = 0; 2818 } 2819 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2820 if (err) 2821 goto out_free; 2822 2823 spin_lock(&ci->i_ceph_lock); 2824 cap->seq = 0; /* reset cap seq */ 2825 cap->issue_seq = 0; /* and issue_seq */ 2826 cap->mseq = 0; /* and migrate_seq */ 2827 cap->cap_gen = cap->session->s_cap_gen; 2828 2829 if (recon_state->flock) { 2830 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2831 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2832 rec.v2.issued = cpu_to_le32(cap->issued); 2833 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2834 rec.v2.pathbase = cpu_to_le64(pathbase); 2835 rec.v2.flock_len = 0; 2836 reclen = sizeof(rec.v2); 2837 } else { 2838 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2839 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2840 rec.v1.issued = cpu_to_le32(cap->issued); 2841 rec.v1.size = cpu_to_le64(inode->i_size); 2842 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2843 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2844 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2845 rec.v1.pathbase = cpu_to_le64(pathbase); 2846 reclen = sizeof(rec.v1); 2847 } 2848 spin_unlock(&ci->i_ceph_lock); 2849 2850 if (recon_state->flock) { 2851 int num_fcntl_locks, num_flock_locks; 2852 struct ceph_filelock *flocks; 2853 2854 encode_again: 2855 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2856 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2857 sizeof(struct ceph_filelock), GFP_NOFS); 2858 if (!flocks) { 2859 err = -ENOMEM; 2860 goto out_free; 2861 } 2862 err = ceph_encode_locks_to_buffer(inode, flocks, 2863 num_fcntl_locks, 2864 num_flock_locks); 2865 if (err) { 2866 kfree(flocks); 2867 if (err == -ENOSPC) 2868 goto encode_again; 2869 goto out_free; 2870 } 2871 /* 2872 * number of encoded locks is stable, so copy to pagelist 2873 */ 2874 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2875 (num_fcntl_locks+num_flock_locks) * 2876 sizeof(struct ceph_filelock)); 2877 err = ceph_pagelist_append(pagelist, &rec, reclen); 2878 if (!err) 2879 err = ceph_locks_to_pagelist(flocks, pagelist, 2880 num_fcntl_locks, 2881 num_flock_locks); 2882 kfree(flocks); 2883 } else { 2884 err = ceph_pagelist_append(pagelist, &rec, reclen); 2885 } 2886 2887 recon_state->nr_caps++; 2888 out_free: 2889 kfree(path); 2890 out_dput: 2891 dput(dentry); 2892 return err; 2893 } 2894 2895 2896 /* 2897 * If an MDS fails and recovers, clients need to reconnect in order to 2898 * reestablish shared state. This includes all caps issued through 2899 * this session _and_ the snap_realm hierarchy. Because it's not 2900 * clear which snap realms the mds cares about, we send everything we 2901 * know about.. that ensures we'll then get any new info the 2902 * recovering MDS might have. 2903 * 2904 * This is a relatively heavyweight operation, but it's rare. 2905 * 2906 * called with mdsc->mutex held. 2907 */ 2908 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2909 struct ceph_mds_session *session) 2910 { 2911 struct ceph_msg *reply; 2912 struct rb_node *p; 2913 int mds = session->s_mds; 2914 int err = -ENOMEM; 2915 int s_nr_caps; 2916 struct ceph_pagelist *pagelist; 2917 struct ceph_reconnect_state recon_state; 2918 2919 pr_info("mds%d reconnect start\n", mds); 2920 2921 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2922 if (!pagelist) 2923 goto fail_nopagelist; 2924 ceph_pagelist_init(pagelist); 2925 2926 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2927 if (!reply) 2928 goto fail_nomsg; 2929 2930 mutex_lock(&session->s_mutex); 2931 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2932 session->s_seq = 0; 2933 2934 dout("session %p state %s\n", session, 2935 ceph_session_state_name(session->s_state)); 2936 2937 spin_lock(&session->s_gen_ttl_lock); 2938 session->s_cap_gen++; 2939 spin_unlock(&session->s_gen_ttl_lock); 2940 2941 spin_lock(&session->s_cap_lock); 2942 /* don't know if session is readonly */ 2943 session->s_readonly = 0; 2944 /* 2945 * notify __ceph_remove_cap() that we are composing cap reconnect. 2946 * If a cap get released before being added to the cap reconnect, 2947 * __ceph_remove_cap() should skip queuing cap release. 2948 */ 2949 session->s_cap_reconnect = 1; 2950 /* drop old cap expires; we're about to reestablish that state */ 2951 cleanup_cap_releases(mdsc, session); 2952 2953 /* trim unused caps to reduce MDS's cache rejoin time */ 2954 if (mdsc->fsc->sb->s_root) 2955 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2956 2957 ceph_con_close(&session->s_con); 2958 ceph_con_open(&session->s_con, 2959 CEPH_ENTITY_TYPE_MDS, mds, 2960 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2961 2962 /* replay unsafe requests */ 2963 replay_unsafe_requests(mdsc, session); 2964 2965 down_read(&mdsc->snap_rwsem); 2966 2967 /* traverse this session's caps */ 2968 s_nr_caps = session->s_nr_caps; 2969 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2970 if (err) 2971 goto fail; 2972 2973 recon_state.nr_caps = 0; 2974 recon_state.pagelist = pagelist; 2975 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2976 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2977 if (err < 0) 2978 goto fail; 2979 2980 spin_lock(&session->s_cap_lock); 2981 session->s_cap_reconnect = 0; 2982 spin_unlock(&session->s_cap_lock); 2983 2984 /* 2985 * snaprealms. we provide mds with the ino, seq (version), and 2986 * parent for all of our realms. If the mds has any newer info, 2987 * it will tell us. 2988 */ 2989 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 2990 struct ceph_snap_realm *realm = 2991 rb_entry(p, struct ceph_snap_realm, node); 2992 struct ceph_mds_snaprealm_reconnect sr_rec; 2993 2994 dout(" adding snap realm %llx seq %lld parent %llx\n", 2995 realm->ino, realm->seq, realm->parent_ino); 2996 sr_rec.ino = cpu_to_le64(realm->ino); 2997 sr_rec.seq = cpu_to_le64(realm->seq); 2998 sr_rec.parent = cpu_to_le64(realm->parent_ino); 2999 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 3000 if (err) 3001 goto fail; 3002 } 3003 3004 if (recon_state.flock) 3005 reply->hdr.version = cpu_to_le16(2); 3006 3007 /* raced with cap release? */ 3008 if (s_nr_caps != recon_state.nr_caps) { 3009 struct page *page = list_first_entry(&pagelist->head, 3010 struct page, lru); 3011 __le32 *addr = kmap_atomic(page); 3012 *addr = cpu_to_le32(recon_state.nr_caps); 3013 kunmap_atomic(addr); 3014 } 3015 3016 reply->hdr.data_len = cpu_to_le32(pagelist->length); 3017 ceph_msg_data_add_pagelist(reply, pagelist); 3018 3019 ceph_early_kick_flushing_caps(mdsc, session); 3020 3021 ceph_con_send(&session->s_con, reply); 3022 3023 mutex_unlock(&session->s_mutex); 3024 3025 mutex_lock(&mdsc->mutex); 3026 __wake_requests(mdsc, &session->s_waiting); 3027 mutex_unlock(&mdsc->mutex); 3028 3029 up_read(&mdsc->snap_rwsem); 3030 return; 3031 3032 fail: 3033 ceph_msg_put(reply); 3034 up_read(&mdsc->snap_rwsem); 3035 mutex_unlock(&session->s_mutex); 3036 fail_nomsg: 3037 ceph_pagelist_release(pagelist); 3038 fail_nopagelist: 3039 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 3040 return; 3041 } 3042 3043 3044 /* 3045 * compare old and new mdsmaps, kicking requests 3046 * and closing out old connections as necessary 3047 * 3048 * called under mdsc->mutex. 3049 */ 3050 static void check_new_map(struct ceph_mds_client *mdsc, 3051 struct ceph_mdsmap *newmap, 3052 struct ceph_mdsmap *oldmap) 3053 { 3054 int i; 3055 int oldstate, newstate; 3056 struct ceph_mds_session *s; 3057 3058 dout("check_new_map new %u old %u\n", 3059 newmap->m_epoch, oldmap->m_epoch); 3060 3061 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 3062 if (mdsc->sessions[i] == NULL) 3063 continue; 3064 s = mdsc->sessions[i]; 3065 oldstate = ceph_mdsmap_get_state(oldmap, i); 3066 newstate = ceph_mdsmap_get_state(newmap, i); 3067 3068 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3069 i, ceph_mds_state_name(oldstate), 3070 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3071 ceph_mds_state_name(newstate), 3072 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3073 ceph_session_state_name(s->s_state)); 3074 3075 if (i >= newmap->m_max_mds || 3076 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3077 ceph_mdsmap_get_addr(newmap, i), 3078 sizeof(struct ceph_entity_addr))) { 3079 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3080 /* the session never opened, just close it 3081 * out now */ 3082 __wake_requests(mdsc, &s->s_waiting); 3083 __unregister_session(mdsc, s); 3084 } else { 3085 /* just close it */ 3086 mutex_unlock(&mdsc->mutex); 3087 mutex_lock(&s->s_mutex); 3088 mutex_lock(&mdsc->mutex); 3089 ceph_con_close(&s->s_con); 3090 mutex_unlock(&s->s_mutex); 3091 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3092 } 3093 } else if (oldstate == newstate) { 3094 continue; /* nothing new with this mds */ 3095 } 3096 3097 /* 3098 * send reconnect? 3099 */ 3100 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3101 newstate >= CEPH_MDS_STATE_RECONNECT) { 3102 mutex_unlock(&mdsc->mutex); 3103 send_mds_reconnect(mdsc, s); 3104 mutex_lock(&mdsc->mutex); 3105 } 3106 3107 /* 3108 * kick request on any mds that has gone active. 3109 */ 3110 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3111 newstate >= CEPH_MDS_STATE_ACTIVE) { 3112 if (oldstate != CEPH_MDS_STATE_CREATING && 3113 oldstate != CEPH_MDS_STATE_STARTING) 3114 pr_info("mds%d recovery completed\n", s->s_mds); 3115 kick_requests(mdsc, i); 3116 ceph_kick_flushing_caps(mdsc, s); 3117 wake_up_session_caps(s, 1); 3118 } 3119 } 3120 3121 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 3122 s = mdsc->sessions[i]; 3123 if (!s) 3124 continue; 3125 if (!ceph_mdsmap_is_laggy(newmap, i)) 3126 continue; 3127 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3128 s->s_state == CEPH_MDS_SESSION_HUNG || 3129 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3130 dout(" connecting to export targets of laggy mds%d\n", 3131 i); 3132 __open_export_target_sessions(mdsc, s); 3133 } 3134 } 3135 } 3136 3137 3138 3139 /* 3140 * leases 3141 */ 3142 3143 /* 3144 * caller must hold session s_mutex, dentry->d_lock 3145 */ 3146 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3147 { 3148 struct ceph_dentry_info *di = ceph_dentry(dentry); 3149 3150 ceph_put_mds_session(di->lease_session); 3151 di->lease_session = NULL; 3152 } 3153 3154 static void handle_lease(struct ceph_mds_client *mdsc, 3155 struct ceph_mds_session *session, 3156 struct ceph_msg *msg) 3157 { 3158 struct super_block *sb = mdsc->fsc->sb; 3159 struct inode *inode; 3160 struct dentry *parent, *dentry; 3161 struct ceph_dentry_info *di; 3162 int mds = session->s_mds; 3163 struct ceph_mds_lease *h = msg->front.iov_base; 3164 u32 seq; 3165 struct ceph_vino vino; 3166 struct qstr dname; 3167 int release = 0; 3168 3169 dout("handle_lease from mds%d\n", mds); 3170 3171 /* decode */ 3172 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3173 goto bad; 3174 vino.ino = le64_to_cpu(h->ino); 3175 vino.snap = CEPH_NOSNAP; 3176 seq = le32_to_cpu(h->seq); 3177 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3178 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3179 if (dname.len != get_unaligned_le32(h+1)) 3180 goto bad; 3181 3182 /* lookup inode */ 3183 inode = ceph_find_inode(sb, vino); 3184 dout("handle_lease %s, ino %llx %p %.*s\n", 3185 ceph_lease_op_name(h->action), vino.ino, inode, 3186 dname.len, dname.name); 3187 3188 mutex_lock(&session->s_mutex); 3189 session->s_seq++; 3190 3191 if (inode == NULL) { 3192 dout("handle_lease no inode %llx\n", vino.ino); 3193 goto release; 3194 } 3195 3196 /* dentry */ 3197 parent = d_find_alias(inode); 3198 if (!parent) { 3199 dout("no parent dentry on inode %p\n", inode); 3200 WARN_ON(1); 3201 goto release; /* hrm... */ 3202 } 3203 dname.hash = full_name_hash(dname.name, dname.len); 3204 dentry = d_lookup(parent, &dname); 3205 dput(parent); 3206 if (!dentry) 3207 goto release; 3208 3209 spin_lock(&dentry->d_lock); 3210 di = ceph_dentry(dentry); 3211 switch (h->action) { 3212 case CEPH_MDS_LEASE_REVOKE: 3213 if (di->lease_session == session) { 3214 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3215 h->seq = cpu_to_le32(di->lease_seq); 3216 __ceph_mdsc_drop_dentry_lease(dentry); 3217 } 3218 release = 1; 3219 break; 3220 3221 case CEPH_MDS_LEASE_RENEW: 3222 if (di->lease_session == session && 3223 di->lease_gen == session->s_cap_gen && 3224 di->lease_renew_from && 3225 di->lease_renew_after == 0) { 3226 unsigned long duration = 3227 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3228 3229 di->lease_seq = seq; 3230 dentry->d_time = di->lease_renew_from + duration; 3231 di->lease_renew_after = di->lease_renew_from + 3232 (duration >> 1); 3233 di->lease_renew_from = 0; 3234 } 3235 break; 3236 } 3237 spin_unlock(&dentry->d_lock); 3238 dput(dentry); 3239 3240 if (!release) 3241 goto out; 3242 3243 release: 3244 /* let's just reuse the same message */ 3245 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3246 ceph_msg_get(msg); 3247 ceph_con_send(&session->s_con, msg); 3248 3249 out: 3250 iput(inode); 3251 mutex_unlock(&session->s_mutex); 3252 return; 3253 3254 bad: 3255 pr_err("corrupt lease message\n"); 3256 ceph_msg_dump(msg); 3257 } 3258 3259 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3260 struct inode *inode, 3261 struct dentry *dentry, char action, 3262 u32 seq) 3263 { 3264 struct ceph_msg *msg; 3265 struct ceph_mds_lease *lease; 3266 int len = sizeof(*lease) + sizeof(u32); 3267 int dnamelen = 0; 3268 3269 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3270 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3271 dnamelen = dentry->d_name.len; 3272 len += dnamelen; 3273 3274 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3275 if (!msg) 3276 return; 3277 lease = msg->front.iov_base; 3278 lease->action = action; 3279 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3280 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3281 lease->seq = cpu_to_le32(seq); 3282 put_unaligned_le32(dnamelen, lease + 1); 3283 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3284 3285 /* 3286 * if this is a preemptive lease RELEASE, no need to 3287 * flush request stream, since the actual request will 3288 * soon follow. 3289 */ 3290 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3291 3292 ceph_con_send(&session->s_con, msg); 3293 } 3294 3295 /* 3296 * Preemptively release a lease we expect to invalidate anyway. 3297 * Pass @inode always, @dentry is optional. 3298 */ 3299 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3300 struct dentry *dentry) 3301 { 3302 struct ceph_dentry_info *di; 3303 struct ceph_mds_session *session; 3304 u32 seq; 3305 3306 BUG_ON(inode == NULL); 3307 BUG_ON(dentry == NULL); 3308 3309 /* is dentry lease valid? */ 3310 spin_lock(&dentry->d_lock); 3311 di = ceph_dentry(dentry); 3312 if (!di || !di->lease_session || 3313 di->lease_session->s_mds < 0 || 3314 di->lease_gen != di->lease_session->s_cap_gen || 3315 !time_before(jiffies, dentry->d_time)) { 3316 dout("lease_release inode %p dentry %p -- " 3317 "no lease\n", 3318 inode, dentry); 3319 spin_unlock(&dentry->d_lock); 3320 return; 3321 } 3322 3323 /* we do have a lease on this dentry; note mds and seq */ 3324 session = ceph_get_mds_session(di->lease_session); 3325 seq = di->lease_seq; 3326 __ceph_mdsc_drop_dentry_lease(dentry); 3327 spin_unlock(&dentry->d_lock); 3328 3329 dout("lease_release inode %p dentry %p to mds%d\n", 3330 inode, dentry, session->s_mds); 3331 ceph_mdsc_lease_send_msg(session, inode, dentry, 3332 CEPH_MDS_LEASE_RELEASE, seq); 3333 ceph_put_mds_session(session); 3334 } 3335 3336 /* 3337 * drop all leases (and dentry refs) in preparation for umount 3338 */ 3339 static void drop_leases(struct ceph_mds_client *mdsc) 3340 { 3341 int i; 3342 3343 dout("drop_leases\n"); 3344 mutex_lock(&mdsc->mutex); 3345 for (i = 0; i < mdsc->max_sessions; i++) { 3346 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3347 if (!s) 3348 continue; 3349 mutex_unlock(&mdsc->mutex); 3350 mutex_lock(&s->s_mutex); 3351 mutex_unlock(&s->s_mutex); 3352 ceph_put_mds_session(s); 3353 mutex_lock(&mdsc->mutex); 3354 } 3355 mutex_unlock(&mdsc->mutex); 3356 } 3357 3358 3359 3360 /* 3361 * delayed work -- periodically trim expired leases, renew caps with mds 3362 */ 3363 static void schedule_delayed(struct ceph_mds_client *mdsc) 3364 { 3365 int delay = 5; 3366 unsigned hz = round_jiffies_relative(HZ * delay); 3367 schedule_delayed_work(&mdsc->delayed_work, hz); 3368 } 3369 3370 static void delayed_work(struct work_struct *work) 3371 { 3372 int i; 3373 struct ceph_mds_client *mdsc = 3374 container_of(work, struct ceph_mds_client, delayed_work.work); 3375 int renew_interval; 3376 int renew_caps; 3377 3378 dout("mdsc delayed_work\n"); 3379 ceph_check_delayed_caps(mdsc); 3380 3381 mutex_lock(&mdsc->mutex); 3382 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3383 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3384 mdsc->last_renew_caps); 3385 if (renew_caps) 3386 mdsc->last_renew_caps = jiffies; 3387 3388 for (i = 0; i < mdsc->max_sessions; i++) { 3389 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3390 if (s == NULL) 3391 continue; 3392 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3393 dout("resending session close request for mds%d\n", 3394 s->s_mds); 3395 request_close_session(mdsc, s); 3396 ceph_put_mds_session(s); 3397 continue; 3398 } 3399 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3400 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3401 s->s_state = CEPH_MDS_SESSION_HUNG; 3402 pr_info("mds%d hung\n", s->s_mds); 3403 } 3404 } 3405 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3406 /* this mds is failed or recovering, just wait */ 3407 ceph_put_mds_session(s); 3408 continue; 3409 } 3410 mutex_unlock(&mdsc->mutex); 3411 3412 mutex_lock(&s->s_mutex); 3413 if (renew_caps) 3414 send_renew_caps(mdsc, s); 3415 else 3416 ceph_con_keepalive(&s->s_con); 3417 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3418 s->s_state == CEPH_MDS_SESSION_HUNG) 3419 ceph_send_cap_releases(mdsc, s); 3420 mutex_unlock(&s->s_mutex); 3421 ceph_put_mds_session(s); 3422 3423 mutex_lock(&mdsc->mutex); 3424 } 3425 mutex_unlock(&mdsc->mutex); 3426 3427 schedule_delayed(mdsc); 3428 } 3429 3430 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3431 3432 { 3433 struct ceph_mds_client *mdsc; 3434 3435 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3436 if (!mdsc) 3437 return -ENOMEM; 3438 mdsc->fsc = fsc; 3439 fsc->mdsc = mdsc; 3440 mutex_init(&mdsc->mutex); 3441 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3442 if (mdsc->mdsmap == NULL) { 3443 kfree(mdsc); 3444 return -ENOMEM; 3445 } 3446 3447 init_completion(&mdsc->safe_umount_waiters); 3448 init_waitqueue_head(&mdsc->session_close_wq); 3449 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3450 mdsc->sessions = NULL; 3451 atomic_set(&mdsc->num_sessions, 0); 3452 mdsc->max_sessions = 0; 3453 mdsc->stopping = 0; 3454 mdsc->last_snap_seq = 0; 3455 init_rwsem(&mdsc->snap_rwsem); 3456 mdsc->snap_realms = RB_ROOT; 3457 INIT_LIST_HEAD(&mdsc->snap_empty); 3458 spin_lock_init(&mdsc->snap_empty_lock); 3459 mdsc->last_tid = 0; 3460 mdsc->oldest_tid = 0; 3461 mdsc->request_tree = RB_ROOT; 3462 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3463 mdsc->last_renew_caps = jiffies; 3464 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3465 spin_lock_init(&mdsc->cap_delay_lock); 3466 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3467 spin_lock_init(&mdsc->snap_flush_lock); 3468 mdsc->last_cap_flush_tid = 1; 3469 mdsc->cap_flush_tree = RB_ROOT; 3470 INIT_LIST_HEAD(&mdsc->cap_dirty); 3471 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3472 mdsc->num_cap_flushing = 0; 3473 spin_lock_init(&mdsc->cap_dirty_lock); 3474 init_waitqueue_head(&mdsc->cap_flushing_wq); 3475 spin_lock_init(&mdsc->dentry_lru_lock); 3476 INIT_LIST_HEAD(&mdsc->dentry_lru); 3477 3478 ceph_caps_init(mdsc); 3479 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3480 3481 init_rwsem(&mdsc->pool_perm_rwsem); 3482 mdsc->pool_perm_tree = RB_ROOT; 3483 3484 return 0; 3485 } 3486 3487 /* 3488 * Wait for safe replies on open mds requests. If we time out, drop 3489 * all requests from the tree to avoid dangling dentry refs. 3490 */ 3491 static void wait_requests(struct ceph_mds_client *mdsc) 3492 { 3493 struct ceph_options *opts = mdsc->fsc->client->options; 3494 struct ceph_mds_request *req; 3495 3496 mutex_lock(&mdsc->mutex); 3497 if (__get_oldest_req(mdsc)) { 3498 mutex_unlock(&mdsc->mutex); 3499 3500 dout("wait_requests waiting for requests\n"); 3501 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3502 ceph_timeout_jiffies(opts->mount_timeout)); 3503 3504 /* tear down remaining requests */ 3505 mutex_lock(&mdsc->mutex); 3506 while ((req = __get_oldest_req(mdsc))) { 3507 dout("wait_requests timed out on tid %llu\n", 3508 req->r_tid); 3509 __unregister_request(mdsc, req); 3510 } 3511 } 3512 mutex_unlock(&mdsc->mutex); 3513 dout("wait_requests done\n"); 3514 } 3515 3516 /* 3517 * called before mount is ro, and before dentries are torn down. 3518 * (hmm, does this still race with new lookups?) 3519 */ 3520 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3521 { 3522 dout("pre_umount\n"); 3523 mdsc->stopping = 1; 3524 3525 drop_leases(mdsc); 3526 ceph_flush_dirty_caps(mdsc); 3527 wait_requests(mdsc); 3528 3529 /* 3530 * wait for reply handlers to drop their request refs and 3531 * their inode/dcache refs 3532 */ 3533 ceph_msgr_flush(); 3534 } 3535 3536 /* 3537 * wait for all write mds requests to flush. 3538 */ 3539 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3540 { 3541 struct ceph_mds_request *req = NULL, *nextreq; 3542 struct rb_node *n; 3543 3544 mutex_lock(&mdsc->mutex); 3545 dout("wait_unsafe_requests want %lld\n", want_tid); 3546 restart: 3547 req = __get_oldest_req(mdsc); 3548 while (req && req->r_tid <= want_tid) { 3549 /* find next request */ 3550 n = rb_next(&req->r_node); 3551 if (n) 3552 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3553 else 3554 nextreq = NULL; 3555 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 3556 (req->r_op & CEPH_MDS_OP_WRITE)) { 3557 /* write op */ 3558 ceph_mdsc_get_request(req); 3559 if (nextreq) 3560 ceph_mdsc_get_request(nextreq); 3561 mutex_unlock(&mdsc->mutex); 3562 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3563 req->r_tid, want_tid); 3564 wait_for_completion(&req->r_safe_completion); 3565 mutex_lock(&mdsc->mutex); 3566 ceph_mdsc_put_request(req); 3567 if (!nextreq) 3568 break; /* next dne before, so we're done! */ 3569 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3570 /* next request was removed from tree */ 3571 ceph_mdsc_put_request(nextreq); 3572 goto restart; 3573 } 3574 ceph_mdsc_put_request(nextreq); /* won't go away */ 3575 } 3576 req = nextreq; 3577 } 3578 mutex_unlock(&mdsc->mutex); 3579 dout("wait_unsafe_requests done\n"); 3580 } 3581 3582 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3583 { 3584 u64 want_tid, want_flush, want_snap; 3585 3586 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3587 return; 3588 3589 dout("sync\n"); 3590 mutex_lock(&mdsc->mutex); 3591 want_tid = mdsc->last_tid; 3592 mutex_unlock(&mdsc->mutex); 3593 3594 ceph_flush_dirty_caps(mdsc); 3595 spin_lock(&mdsc->cap_dirty_lock); 3596 want_flush = mdsc->last_cap_flush_tid; 3597 spin_unlock(&mdsc->cap_dirty_lock); 3598 3599 down_read(&mdsc->snap_rwsem); 3600 want_snap = mdsc->last_snap_seq; 3601 up_read(&mdsc->snap_rwsem); 3602 3603 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n", 3604 want_tid, want_flush, want_snap); 3605 3606 wait_unsafe_requests(mdsc, want_tid); 3607 wait_caps_flush(mdsc, want_flush, want_snap); 3608 } 3609 3610 /* 3611 * true if all sessions are closed, or we force unmount 3612 */ 3613 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3614 { 3615 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3616 return true; 3617 return atomic_read(&mdsc->num_sessions) == 0; 3618 } 3619 3620 /* 3621 * called after sb is ro. 3622 */ 3623 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3624 { 3625 struct ceph_options *opts = mdsc->fsc->client->options; 3626 struct ceph_mds_session *session; 3627 int i; 3628 3629 dout("close_sessions\n"); 3630 3631 /* close sessions */ 3632 mutex_lock(&mdsc->mutex); 3633 for (i = 0; i < mdsc->max_sessions; i++) { 3634 session = __ceph_lookup_mds_session(mdsc, i); 3635 if (!session) 3636 continue; 3637 mutex_unlock(&mdsc->mutex); 3638 mutex_lock(&session->s_mutex); 3639 __close_session(mdsc, session); 3640 mutex_unlock(&session->s_mutex); 3641 ceph_put_mds_session(session); 3642 mutex_lock(&mdsc->mutex); 3643 } 3644 mutex_unlock(&mdsc->mutex); 3645 3646 dout("waiting for sessions to close\n"); 3647 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3648 ceph_timeout_jiffies(opts->mount_timeout)); 3649 3650 /* tear down remaining sessions */ 3651 mutex_lock(&mdsc->mutex); 3652 for (i = 0; i < mdsc->max_sessions; i++) { 3653 if (mdsc->sessions[i]) { 3654 session = get_session(mdsc->sessions[i]); 3655 __unregister_session(mdsc, session); 3656 mutex_unlock(&mdsc->mutex); 3657 mutex_lock(&session->s_mutex); 3658 remove_session_caps(session); 3659 mutex_unlock(&session->s_mutex); 3660 ceph_put_mds_session(session); 3661 mutex_lock(&mdsc->mutex); 3662 } 3663 } 3664 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3665 mutex_unlock(&mdsc->mutex); 3666 3667 ceph_cleanup_empty_realms(mdsc); 3668 3669 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3670 3671 dout("stopped\n"); 3672 } 3673 3674 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 3675 { 3676 struct ceph_mds_session *session; 3677 int mds; 3678 3679 dout("force umount\n"); 3680 3681 mutex_lock(&mdsc->mutex); 3682 for (mds = 0; mds < mdsc->max_sessions; mds++) { 3683 session = __ceph_lookup_mds_session(mdsc, mds); 3684 if (!session) 3685 continue; 3686 mutex_unlock(&mdsc->mutex); 3687 mutex_lock(&session->s_mutex); 3688 __close_session(mdsc, session); 3689 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 3690 cleanup_session_requests(mdsc, session); 3691 remove_session_caps(session); 3692 } 3693 mutex_unlock(&session->s_mutex); 3694 ceph_put_mds_session(session); 3695 mutex_lock(&mdsc->mutex); 3696 kick_requests(mdsc, mds); 3697 } 3698 __wake_requests(mdsc, &mdsc->waiting_for_map); 3699 mutex_unlock(&mdsc->mutex); 3700 } 3701 3702 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3703 { 3704 dout("stop\n"); 3705 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3706 if (mdsc->mdsmap) 3707 ceph_mdsmap_destroy(mdsc->mdsmap); 3708 kfree(mdsc->sessions); 3709 ceph_caps_finalize(mdsc); 3710 ceph_pool_perm_destroy(mdsc); 3711 } 3712 3713 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3714 { 3715 struct ceph_mds_client *mdsc = fsc->mdsc; 3716 3717 dout("mdsc_destroy %p\n", mdsc); 3718 ceph_mdsc_stop(mdsc); 3719 3720 /* flush out any connection work with references to us */ 3721 ceph_msgr_flush(); 3722 3723 fsc->mdsc = NULL; 3724 kfree(mdsc); 3725 dout("mdsc_destroy %p done\n", mdsc); 3726 } 3727 3728 3729 /* 3730 * handle mds map update. 3731 */ 3732 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3733 { 3734 u32 epoch; 3735 u32 maplen; 3736 void *p = msg->front.iov_base; 3737 void *end = p + msg->front.iov_len; 3738 struct ceph_mdsmap *newmap, *oldmap; 3739 struct ceph_fsid fsid; 3740 int err = -EINVAL; 3741 3742 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3743 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3744 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3745 return; 3746 epoch = ceph_decode_32(&p); 3747 maplen = ceph_decode_32(&p); 3748 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3749 3750 /* do we need it? */ 3751 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3752 mutex_lock(&mdsc->mutex); 3753 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3754 dout("handle_map epoch %u <= our %u\n", 3755 epoch, mdsc->mdsmap->m_epoch); 3756 mutex_unlock(&mdsc->mutex); 3757 return; 3758 } 3759 3760 newmap = ceph_mdsmap_decode(&p, end); 3761 if (IS_ERR(newmap)) { 3762 err = PTR_ERR(newmap); 3763 goto bad_unlock; 3764 } 3765 3766 /* swap into place */ 3767 if (mdsc->mdsmap) { 3768 oldmap = mdsc->mdsmap; 3769 mdsc->mdsmap = newmap; 3770 check_new_map(mdsc, newmap, oldmap); 3771 ceph_mdsmap_destroy(oldmap); 3772 } else { 3773 mdsc->mdsmap = newmap; /* first mds map */ 3774 } 3775 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3776 3777 __wake_requests(mdsc, &mdsc->waiting_for_map); 3778 3779 mutex_unlock(&mdsc->mutex); 3780 schedule_delayed(mdsc); 3781 return; 3782 3783 bad_unlock: 3784 mutex_unlock(&mdsc->mutex); 3785 bad: 3786 pr_err("error decoding mdsmap %d\n", err); 3787 return; 3788 } 3789 3790 static struct ceph_connection *con_get(struct ceph_connection *con) 3791 { 3792 struct ceph_mds_session *s = con->private; 3793 3794 if (get_session(s)) { 3795 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3796 return con; 3797 } 3798 dout("mdsc con_get %p FAIL\n", s); 3799 return NULL; 3800 } 3801 3802 static void con_put(struct ceph_connection *con) 3803 { 3804 struct ceph_mds_session *s = con->private; 3805 3806 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3807 ceph_put_mds_session(s); 3808 } 3809 3810 /* 3811 * if the client is unresponsive for long enough, the mds will kill 3812 * the session entirely. 3813 */ 3814 static void peer_reset(struct ceph_connection *con) 3815 { 3816 struct ceph_mds_session *s = con->private; 3817 struct ceph_mds_client *mdsc = s->s_mdsc; 3818 3819 pr_warn("mds%d closed our session\n", s->s_mds); 3820 send_mds_reconnect(mdsc, s); 3821 } 3822 3823 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3824 { 3825 struct ceph_mds_session *s = con->private; 3826 struct ceph_mds_client *mdsc = s->s_mdsc; 3827 int type = le16_to_cpu(msg->hdr.type); 3828 3829 mutex_lock(&mdsc->mutex); 3830 if (__verify_registered_session(mdsc, s) < 0) { 3831 mutex_unlock(&mdsc->mutex); 3832 goto out; 3833 } 3834 mutex_unlock(&mdsc->mutex); 3835 3836 switch (type) { 3837 case CEPH_MSG_MDS_MAP: 3838 ceph_mdsc_handle_map(mdsc, msg); 3839 break; 3840 case CEPH_MSG_CLIENT_SESSION: 3841 handle_session(s, msg); 3842 break; 3843 case CEPH_MSG_CLIENT_REPLY: 3844 handle_reply(s, msg); 3845 break; 3846 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3847 handle_forward(mdsc, s, msg); 3848 break; 3849 case CEPH_MSG_CLIENT_CAPS: 3850 ceph_handle_caps(s, msg); 3851 break; 3852 case CEPH_MSG_CLIENT_SNAP: 3853 ceph_handle_snap(mdsc, s, msg); 3854 break; 3855 case CEPH_MSG_CLIENT_LEASE: 3856 handle_lease(mdsc, s, msg); 3857 break; 3858 3859 default: 3860 pr_err("received unknown message type %d %s\n", type, 3861 ceph_msg_type_name(type)); 3862 } 3863 out: 3864 ceph_msg_put(msg); 3865 } 3866 3867 /* 3868 * authentication 3869 */ 3870 3871 /* 3872 * Note: returned pointer is the address of a structure that's 3873 * managed separately. Caller must *not* attempt to free it. 3874 */ 3875 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3876 int *proto, int force_new) 3877 { 3878 struct ceph_mds_session *s = con->private; 3879 struct ceph_mds_client *mdsc = s->s_mdsc; 3880 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3881 struct ceph_auth_handshake *auth = &s->s_auth; 3882 3883 if (force_new && auth->authorizer) { 3884 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3885 auth->authorizer = NULL; 3886 } 3887 if (!auth->authorizer) { 3888 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3889 auth); 3890 if (ret) 3891 return ERR_PTR(ret); 3892 } else { 3893 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3894 auth); 3895 if (ret) 3896 return ERR_PTR(ret); 3897 } 3898 *proto = ac->protocol; 3899 3900 return auth; 3901 } 3902 3903 3904 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3905 { 3906 struct ceph_mds_session *s = con->private; 3907 struct ceph_mds_client *mdsc = s->s_mdsc; 3908 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3909 3910 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3911 } 3912 3913 static int invalidate_authorizer(struct ceph_connection *con) 3914 { 3915 struct ceph_mds_session *s = con->private; 3916 struct ceph_mds_client *mdsc = s->s_mdsc; 3917 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3918 3919 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3920 3921 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3922 } 3923 3924 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3925 struct ceph_msg_header *hdr, int *skip) 3926 { 3927 struct ceph_msg *msg; 3928 int type = (int) le16_to_cpu(hdr->type); 3929 int front_len = (int) le32_to_cpu(hdr->front_len); 3930 3931 if (con->in_msg) 3932 return con->in_msg; 3933 3934 *skip = 0; 3935 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3936 if (!msg) { 3937 pr_err("unable to allocate msg type %d len %d\n", 3938 type, front_len); 3939 return NULL; 3940 } 3941 3942 return msg; 3943 } 3944 3945 static int mds_sign_message(struct ceph_msg *msg) 3946 { 3947 struct ceph_mds_session *s = msg->con->private; 3948 struct ceph_auth_handshake *auth = &s->s_auth; 3949 3950 return ceph_auth_sign_message(auth, msg); 3951 } 3952 3953 static int mds_check_message_signature(struct ceph_msg *msg) 3954 { 3955 struct ceph_mds_session *s = msg->con->private; 3956 struct ceph_auth_handshake *auth = &s->s_auth; 3957 3958 return ceph_auth_check_message_signature(auth, msg); 3959 } 3960 3961 static const struct ceph_connection_operations mds_con_ops = { 3962 .get = con_get, 3963 .put = con_put, 3964 .dispatch = dispatch, 3965 .get_authorizer = get_authorizer, 3966 .verify_authorizer_reply = verify_authorizer_reply, 3967 .invalidate_authorizer = invalidate_authorizer, 3968 .peer_reset = peer_reset, 3969 .alloc_msg = mds_alloc_msg, 3970 .sign_message = mds_sign_message, 3971 .check_message_signature = mds_check_message_signature, 3972 }; 3973 3974 /* eof */ 3975