1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 int ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap_reservation *caps_reservation) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *new_cap = NULL; 520 struct ceph_cap *cap; 521 int mds = session->s_mds; 522 int actual_wanted; 523 524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 525 session->s_mds, cap_id, ceph_cap_string(issued), seq); 526 527 /* 528 * If we are opening the file, include file mode wanted bits 529 * in wanted. 530 */ 531 if (fmode >= 0) 532 wanted |= ceph_caps_for_mode(fmode); 533 534 retry: 535 spin_lock(&ci->i_ceph_lock); 536 cap = __get_cap_for_mds(ci, mds); 537 if (!cap) { 538 if (new_cap) { 539 cap = new_cap; 540 new_cap = NULL; 541 } else { 542 spin_unlock(&ci->i_ceph_lock); 543 new_cap = get_cap(mdsc, caps_reservation); 544 if (new_cap == NULL) 545 return -ENOMEM; 546 goto retry; 547 } 548 549 cap->issued = 0; 550 cap->implemented = 0; 551 cap->mds = mds; 552 cap->mds_wanted = 0; 553 cap->mseq = 0; 554 555 cap->ci = ci; 556 __insert_cap_node(ci, cap); 557 558 /* clear out old exporting info? (i.e. on cap import) */ 559 if (ci->i_cap_exporting_mds == mds) { 560 ci->i_cap_exporting_issued = 0; 561 ci->i_cap_exporting_mseq = 0; 562 ci->i_cap_exporting_mds = -1; 563 } 564 565 /* add to session cap list */ 566 cap->session = session; 567 spin_lock(&session->s_cap_lock); 568 list_add_tail(&cap->session_caps, &session->s_caps); 569 session->s_nr_caps++; 570 spin_unlock(&session->s_cap_lock); 571 } else if (new_cap) 572 ceph_put_cap(mdsc, new_cap); 573 574 if (!ci->i_snap_realm) { 575 /* 576 * add this inode to the appropriate snap realm 577 */ 578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 579 realmino); 580 if (realm) { 581 ceph_get_snap_realm(mdsc, realm); 582 spin_lock(&realm->inodes_with_caps_lock); 583 ci->i_snap_realm = realm; 584 list_add(&ci->i_snap_realm_item, 585 &realm->inodes_with_caps); 586 spin_unlock(&realm->inodes_with_caps_lock); 587 } else { 588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 589 realmino); 590 WARN_ON(!realm); 591 } 592 } 593 594 __check_cap_issue(ci, cap, issued); 595 596 /* 597 * If we are issued caps we don't want, or the mds' wanted 598 * value appears to be off, queue a check so we'll release 599 * later and/or update the mds wanted value. 600 */ 601 actual_wanted = __ceph_caps_wanted(ci); 602 if ((wanted & ~actual_wanted) || 603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 604 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 605 ceph_cap_string(issued), ceph_cap_string(wanted), 606 ceph_cap_string(actual_wanted)); 607 __cap_delay_requeue(mdsc, ci); 608 } 609 610 if (flags & CEPH_CAP_FLAG_AUTH) { 611 if (ci->i_auth_cap == NULL || 612 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) 613 ci->i_auth_cap = cap; 614 } else if (ci->i_auth_cap == cap) { 615 ci->i_auth_cap = NULL; 616 spin_lock(&mdsc->cap_dirty_lock); 617 if (!list_empty(&ci->i_dirty_item)) { 618 dout(" moving %p to cap_dirty_migrating\n", inode); 619 list_move(&ci->i_dirty_item, 620 &mdsc->cap_dirty_migrating); 621 } 622 spin_unlock(&mdsc->cap_dirty_lock); 623 } 624 625 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 626 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 627 ceph_cap_string(issued|cap->issued), seq, mds); 628 cap->cap_id = cap_id; 629 cap->issued = issued; 630 cap->implemented |= issued; 631 if (mseq > cap->mseq) 632 cap->mds_wanted = wanted; 633 else 634 cap->mds_wanted |= wanted; 635 cap->seq = seq; 636 cap->issue_seq = seq; 637 cap->mseq = mseq; 638 cap->cap_gen = session->s_cap_gen; 639 640 if (fmode >= 0) 641 __ceph_get_fmode(ci, fmode); 642 spin_unlock(&ci->i_ceph_lock); 643 wake_up_all(&ci->i_cap_wq); 644 return 0; 645 } 646 647 /* 648 * Return true if cap has not timed out and belongs to the current 649 * generation of the MDS session (i.e. has not gone 'stale' due to 650 * us losing touch with the mds). 651 */ 652 static int __cap_is_valid(struct ceph_cap *cap) 653 { 654 unsigned long ttl; 655 u32 gen; 656 657 spin_lock(&cap->session->s_gen_ttl_lock); 658 gen = cap->session->s_cap_gen; 659 ttl = cap->session->s_cap_ttl; 660 spin_unlock(&cap->session->s_gen_ttl_lock); 661 662 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 663 dout("__cap_is_valid %p cap %p issued %s " 664 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 665 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 666 return 0; 667 } 668 669 return 1; 670 } 671 672 /* 673 * Return set of valid cap bits issued to us. Note that caps time 674 * out, and may be invalidated in bulk if the client session times out 675 * and session->s_cap_gen is bumped. 676 */ 677 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 678 { 679 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 680 struct ceph_cap *cap; 681 struct rb_node *p; 682 683 if (implemented) 684 *implemented = 0; 685 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 686 cap = rb_entry(p, struct ceph_cap, ci_node); 687 if (!__cap_is_valid(cap)) 688 continue; 689 dout("__ceph_caps_issued %p cap %p issued %s\n", 690 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 691 have |= cap->issued; 692 if (implemented) 693 *implemented |= cap->implemented; 694 } 695 /* 696 * exclude caps issued by non-auth MDS, but are been revoking 697 * by the auth MDS. The non-auth MDS should be revoking/exporting 698 * these caps, but the message is delayed. 699 */ 700 if (ci->i_auth_cap) { 701 cap = ci->i_auth_cap; 702 have &= ~cap->implemented | cap->issued; 703 } 704 return have; 705 } 706 707 /* 708 * Get cap bits issued by caps other than @ocap 709 */ 710 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 711 { 712 int have = ci->i_snap_caps; 713 struct ceph_cap *cap; 714 struct rb_node *p; 715 716 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 717 cap = rb_entry(p, struct ceph_cap, ci_node); 718 if (cap == ocap) 719 continue; 720 if (!__cap_is_valid(cap)) 721 continue; 722 have |= cap->issued; 723 } 724 return have; 725 } 726 727 /* 728 * Move a cap to the end of the LRU (oldest caps at list head, newest 729 * at list tail). 730 */ 731 static void __touch_cap(struct ceph_cap *cap) 732 { 733 struct ceph_mds_session *s = cap->session; 734 735 spin_lock(&s->s_cap_lock); 736 if (s->s_cap_iterator == NULL) { 737 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 738 s->s_mds); 739 list_move_tail(&cap->session_caps, &s->s_caps); 740 } else { 741 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 742 &cap->ci->vfs_inode, cap, s->s_mds); 743 } 744 spin_unlock(&s->s_cap_lock); 745 } 746 747 /* 748 * Check if we hold the given mask. If so, move the cap(s) to the 749 * front of their respective LRUs. (This is the preferred way for 750 * callers to check for caps they want.) 751 */ 752 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 753 { 754 struct ceph_cap *cap; 755 struct rb_node *p; 756 int have = ci->i_snap_caps; 757 758 if ((have & mask) == mask) { 759 dout("__ceph_caps_issued_mask %p snap issued %s" 760 " (mask %s)\n", &ci->vfs_inode, 761 ceph_cap_string(have), 762 ceph_cap_string(mask)); 763 return 1; 764 } 765 766 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 767 cap = rb_entry(p, struct ceph_cap, ci_node); 768 if (!__cap_is_valid(cap)) 769 continue; 770 if ((cap->issued & mask) == mask) { 771 dout("__ceph_caps_issued_mask %p cap %p issued %s" 772 " (mask %s)\n", &ci->vfs_inode, cap, 773 ceph_cap_string(cap->issued), 774 ceph_cap_string(mask)); 775 if (touch) 776 __touch_cap(cap); 777 return 1; 778 } 779 780 /* does a combination of caps satisfy mask? */ 781 have |= cap->issued; 782 if ((have & mask) == mask) { 783 dout("__ceph_caps_issued_mask %p combo issued %s" 784 " (mask %s)\n", &ci->vfs_inode, 785 ceph_cap_string(cap->issued), 786 ceph_cap_string(mask)); 787 if (touch) { 788 struct rb_node *q; 789 790 /* touch this + preceding caps */ 791 __touch_cap(cap); 792 for (q = rb_first(&ci->i_caps); q != p; 793 q = rb_next(q)) { 794 cap = rb_entry(q, struct ceph_cap, 795 ci_node); 796 if (!__cap_is_valid(cap)) 797 continue; 798 __touch_cap(cap); 799 } 800 } 801 return 1; 802 } 803 } 804 805 return 0; 806 } 807 808 /* 809 * Return true if mask caps are currently being revoked by an MDS. 810 */ 811 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 812 struct ceph_cap *ocap, int mask) 813 { 814 struct ceph_cap *cap; 815 struct rb_node *p; 816 817 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 818 cap = rb_entry(p, struct ceph_cap, ci_node); 819 if (cap != ocap && __cap_is_valid(cap) && 820 (cap->implemented & ~cap->issued & mask)) 821 return 1; 822 } 823 return 0; 824 } 825 826 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 827 { 828 struct inode *inode = &ci->vfs_inode; 829 int ret; 830 831 spin_lock(&ci->i_ceph_lock); 832 ret = __ceph_caps_revoking_other(ci, NULL, mask); 833 spin_unlock(&ci->i_ceph_lock); 834 dout("ceph_caps_revoking %p %s = %d\n", inode, 835 ceph_cap_string(mask), ret); 836 return ret; 837 } 838 839 int __ceph_caps_used(struct ceph_inode_info *ci) 840 { 841 int used = 0; 842 if (ci->i_pin_ref) 843 used |= CEPH_CAP_PIN; 844 if (ci->i_rd_ref) 845 used |= CEPH_CAP_FILE_RD; 846 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 847 used |= CEPH_CAP_FILE_CACHE; 848 if (ci->i_wr_ref) 849 used |= CEPH_CAP_FILE_WR; 850 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 851 used |= CEPH_CAP_FILE_BUFFER; 852 return used; 853 } 854 855 /* 856 * wanted, by virtue of open file modes 857 */ 858 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 859 { 860 int want = 0; 861 int mode; 862 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 863 if (ci->i_nr_by_mode[mode]) 864 want |= ceph_caps_for_mode(mode); 865 return want; 866 } 867 868 /* 869 * Return caps we have registered with the MDS(s) as 'wanted'. 870 */ 871 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 872 { 873 struct ceph_cap *cap; 874 struct rb_node *p; 875 int mds_wanted = 0; 876 877 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 878 cap = rb_entry(p, struct ceph_cap, ci_node); 879 if (!__cap_is_valid(cap)) 880 continue; 881 mds_wanted |= cap->mds_wanted; 882 } 883 return mds_wanted; 884 } 885 886 /* 887 * called under i_ceph_lock 888 */ 889 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 890 { 891 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 892 } 893 894 /* 895 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 896 * 897 * caller should hold i_ceph_lock. 898 * caller will not hold session s_mutex if called from destroy_inode. 899 */ 900 void __ceph_remove_cap(struct ceph_cap *cap) 901 { 902 struct ceph_mds_session *session = cap->session; 903 struct ceph_inode_info *ci = cap->ci; 904 struct ceph_mds_client *mdsc = 905 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 906 int removed = 0; 907 908 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 909 910 /* remove from session list */ 911 spin_lock(&session->s_cap_lock); 912 if (session->s_cap_iterator == cap) { 913 /* not yet, we are iterating over this very cap */ 914 dout("__ceph_remove_cap delaying %p removal from session %p\n", 915 cap, cap->session); 916 } else { 917 list_del_init(&cap->session_caps); 918 session->s_nr_caps--; 919 cap->session = NULL; 920 removed = 1; 921 } 922 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 923 cap->ci = NULL; 924 spin_unlock(&session->s_cap_lock); 925 926 /* remove from inode list */ 927 rb_erase(&cap->ci_node, &ci->i_caps); 928 if (ci->i_auth_cap == cap) 929 ci->i_auth_cap = NULL; 930 931 if (removed) 932 ceph_put_cap(mdsc, cap); 933 934 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 935 struct ceph_snap_realm *realm = ci->i_snap_realm; 936 spin_lock(&realm->inodes_with_caps_lock); 937 list_del_init(&ci->i_snap_realm_item); 938 ci->i_snap_realm_counter++; 939 ci->i_snap_realm = NULL; 940 spin_unlock(&realm->inodes_with_caps_lock); 941 ceph_put_snap_realm(mdsc, realm); 942 } 943 if (!__ceph_is_any_real_caps(ci)) 944 __cap_delay_cancel(mdsc, ci); 945 } 946 947 /* 948 * Build and send a cap message to the given MDS. 949 * 950 * Caller should be holding s_mutex. 951 */ 952 static int send_cap_msg(struct ceph_mds_session *session, 953 u64 ino, u64 cid, int op, 954 int caps, int wanted, int dirty, 955 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 956 u64 size, u64 max_size, 957 struct timespec *mtime, struct timespec *atime, 958 u64 time_warp_seq, 959 kuid_t uid, kgid_t gid, umode_t mode, 960 u64 xattr_version, 961 struct ceph_buffer *xattrs_buf, 962 u64 follows) 963 { 964 struct ceph_mds_caps *fc; 965 struct ceph_msg *msg; 966 967 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 968 " seq %u/%u mseq %u follows %lld size %llu/%llu" 969 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 970 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 971 ceph_cap_string(dirty), 972 seq, issue_seq, mseq, follows, size, max_size, 973 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 974 975 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 976 if (!msg) 977 return -ENOMEM; 978 979 msg->hdr.tid = cpu_to_le64(flush_tid); 980 981 fc = msg->front.iov_base; 982 memset(fc, 0, sizeof(*fc)); 983 984 fc->cap_id = cpu_to_le64(cid); 985 fc->op = cpu_to_le32(op); 986 fc->seq = cpu_to_le32(seq); 987 fc->issue_seq = cpu_to_le32(issue_seq); 988 fc->migrate_seq = cpu_to_le32(mseq); 989 fc->caps = cpu_to_le32(caps); 990 fc->wanted = cpu_to_le32(wanted); 991 fc->dirty = cpu_to_le32(dirty); 992 fc->ino = cpu_to_le64(ino); 993 fc->snap_follows = cpu_to_le64(follows); 994 995 fc->size = cpu_to_le64(size); 996 fc->max_size = cpu_to_le64(max_size); 997 if (mtime) 998 ceph_encode_timespec(&fc->mtime, mtime); 999 if (atime) 1000 ceph_encode_timespec(&fc->atime, atime); 1001 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1002 1003 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1004 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1005 fc->mode = cpu_to_le32(mode); 1006 1007 fc->xattr_version = cpu_to_le64(xattr_version); 1008 if (xattrs_buf) { 1009 msg->middle = ceph_buffer_get(xattrs_buf); 1010 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1011 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1012 } 1013 1014 ceph_con_send(&session->s_con, msg); 1015 return 0; 1016 } 1017 1018 void __queue_cap_release(struct ceph_mds_session *session, 1019 u64 ino, u64 cap_id, u32 migrate_seq, 1020 u32 issue_seq) 1021 { 1022 struct ceph_msg *msg; 1023 struct ceph_mds_cap_release *head; 1024 struct ceph_mds_cap_item *item; 1025 1026 spin_lock(&session->s_cap_lock); 1027 BUG_ON(!session->s_num_cap_releases); 1028 msg = list_first_entry(&session->s_cap_releases, 1029 struct ceph_msg, list_head); 1030 1031 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1032 ino, session->s_mds, msg, session->s_num_cap_releases); 1033 1034 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1035 head = msg->front.iov_base; 1036 le32_add_cpu(&head->num, 1); 1037 item = msg->front.iov_base + msg->front.iov_len; 1038 item->ino = cpu_to_le64(ino); 1039 item->cap_id = cpu_to_le64(cap_id); 1040 item->migrate_seq = cpu_to_le32(migrate_seq); 1041 item->seq = cpu_to_le32(issue_seq); 1042 1043 session->s_num_cap_releases--; 1044 1045 msg->front.iov_len += sizeof(*item); 1046 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1047 dout(" release msg %p full\n", msg); 1048 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1049 } else { 1050 dout(" release msg %p at %d/%d (%d)\n", msg, 1051 (int)le32_to_cpu(head->num), 1052 (int)CEPH_CAPS_PER_RELEASE, 1053 (int)msg->front.iov_len); 1054 } 1055 spin_unlock(&session->s_cap_lock); 1056 } 1057 1058 /* 1059 * Queue cap releases when an inode is dropped from our cache. Since 1060 * inode is about to be destroyed, there is no need for i_ceph_lock. 1061 */ 1062 void ceph_queue_caps_release(struct inode *inode) 1063 { 1064 struct ceph_inode_info *ci = ceph_inode(inode); 1065 struct rb_node *p; 1066 1067 p = rb_first(&ci->i_caps); 1068 while (p) { 1069 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1070 struct ceph_mds_session *session = cap->session; 1071 1072 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1073 cap->mseq, cap->issue_seq); 1074 p = rb_next(p); 1075 __ceph_remove_cap(cap); 1076 } 1077 } 1078 1079 /* 1080 * Send a cap msg on the given inode. Update our caps state, then 1081 * drop i_ceph_lock and send the message. 1082 * 1083 * Make note of max_size reported/requested from mds, revoked caps 1084 * that have now been implemented. 1085 * 1086 * Make half-hearted attempt ot to invalidate page cache if we are 1087 * dropping RDCACHE. Note that this will leave behind locked pages 1088 * that we'll then need to deal with elsewhere. 1089 * 1090 * Return non-zero if delayed release, or we experienced an error 1091 * such that the caller should requeue + retry later. 1092 * 1093 * called with i_ceph_lock, then drops it. 1094 * caller should hold snap_rwsem (read), s_mutex. 1095 */ 1096 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1097 int op, int used, int want, int retain, int flushing, 1098 unsigned *pflush_tid) 1099 __releases(cap->ci->i_ceph_lock) 1100 { 1101 struct ceph_inode_info *ci = cap->ci; 1102 struct inode *inode = &ci->vfs_inode; 1103 u64 cap_id = cap->cap_id; 1104 int held, revoking, dropping, keep; 1105 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1106 u64 size, max_size; 1107 struct timespec mtime, atime; 1108 int wake = 0; 1109 umode_t mode; 1110 kuid_t uid; 1111 kgid_t gid; 1112 struct ceph_mds_session *session; 1113 u64 xattr_version = 0; 1114 struct ceph_buffer *xattr_blob = NULL; 1115 int delayed = 0; 1116 u64 flush_tid = 0; 1117 int i; 1118 int ret; 1119 1120 held = cap->issued | cap->implemented; 1121 revoking = cap->implemented & ~cap->issued; 1122 retain &= ~revoking; 1123 dropping = cap->issued & ~retain; 1124 1125 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1126 inode, cap, cap->session, 1127 ceph_cap_string(held), ceph_cap_string(held & retain), 1128 ceph_cap_string(revoking)); 1129 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1130 1131 session = cap->session; 1132 1133 /* don't release wanted unless we've waited a bit. */ 1134 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1135 time_before(jiffies, ci->i_hold_caps_min)) { 1136 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1137 ceph_cap_string(cap->issued), 1138 ceph_cap_string(cap->issued & retain), 1139 ceph_cap_string(cap->mds_wanted), 1140 ceph_cap_string(want)); 1141 want |= cap->mds_wanted; 1142 retain |= cap->issued; 1143 delayed = 1; 1144 } 1145 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1146 1147 cap->issued &= retain; /* drop bits we don't want */ 1148 if (cap->implemented & ~cap->issued) { 1149 /* 1150 * Wake up any waiters on wanted -> needed transition. 1151 * This is due to the weird transition from buffered 1152 * to sync IO... we need to flush dirty pages _before_ 1153 * allowing sync writes to avoid reordering. 1154 */ 1155 wake = 1; 1156 } 1157 cap->implemented &= cap->issued | used; 1158 cap->mds_wanted = want; 1159 1160 if (flushing) { 1161 /* 1162 * assign a tid for flush operations so we can avoid 1163 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1164 * clean type races. track latest tid for every bit 1165 * so we can handle flush AxFw, flush Fw, and have the 1166 * first ack clean Ax. 1167 */ 1168 flush_tid = ++ci->i_cap_flush_last_tid; 1169 if (pflush_tid) 1170 *pflush_tid = flush_tid; 1171 dout(" cap_flush_tid %d\n", (int)flush_tid); 1172 for (i = 0; i < CEPH_CAP_BITS; i++) 1173 if (flushing & (1 << i)) 1174 ci->i_cap_flush_tid[i] = flush_tid; 1175 1176 follows = ci->i_head_snapc->seq; 1177 } else { 1178 follows = 0; 1179 } 1180 1181 keep = cap->implemented; 1182 seq = cap->seq; 1183 issue_seq = cap->issue_seq; 1184 mseq = cap->mseq; 1185 size = inode->i_size; 1186 ci->i_reported_size = size; 1187 max_size = ci->i_wanted_max_size; 1188 ci->i_requested_max_size = max_size; 1189 mtime = inode->i_mtime; 1190 atime = inode->i_atime; 1191 time_warp_seq = ci->i_time_warp_seq; 1192 uid = inode->i_uid; 1193 gid = inode->i_gid; 1194 mode = inode->i_mode; 1195 1196 if (flushing & CEPH_CAP_XATTR_EXCL) { 1197 __ceph_build_xattrs_blob(ci); 1198 xattr_blob = ci->i_xattrs.blob; 1199 xattr_version = ci->i_xattrs.version; 1200 } 1201 1202 spin_unlock(&ci->i_ceph_lock); 1203 1204 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1205 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1206 size, max_size, &mtime, &atime, time_warp_seq, 1207 uid, gid, mode, xattr_version, xattr_blob, 1208 follows); 1209 if (ret < 0) { 1210 dout("error sending cap msg, must requeue %p\n", inode); 1211 delayed = 1; 1212 } 1213 1214 if (wake) 1215 wake_up_all(&ci->i_cap_wq); 1216 1217 return delayed; 1218 } 1219 1220 /* 1221 * When a snapshot is taken, clients accumulate dirty metadata on 1222 * inodes with capabilities in ceph_cap_snaps to describe the file 1223 * state at the time the snapshot was taken. This must be flushed 1224 * asynchronously back to the MDS once sync writes complete and dirty 1225 * data is written out. 1226 * 1227 * Unless @again is true, skip cap_snaps that were already sent to 1228 * the MDS (i.e., during this session). 1229 * 1230 * Called under i_ceph_lock. Takes s_mutex as needed. 1231 */ 1232 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1233 struct ceph_mds_session **psession, 1234 int again) 1235 __releases(ci->i_ceph_lock) 1236 __acquires(ci->i_ceph_lock) 1237 { 1238 struct inode *inode = &ci->vfs_inode; 1239 int mds; 1240 struct ceph_cap_snap *capsnap; 1241 u32 mseq; 1242 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1243 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1244 session->s_mutex */ 1245 u64 next_follows = 0; /* keep track of how far we've gotten through the 1246 i_cap_snaps list, and skip these entries next time 1247 around to avoid an infinite loop */ 1248 1249 if (psession) 1250 session = *psession; 1251 1252 dout("__flush_snaps %p\n", inode); 1253 retry: 1254 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1255 /* avoid an infiniute loop after retry */ 1256 if (capsnap->follows < next_follows) 1257 continue; 1258 /* 1259 * we need to wait for sync writes to complete and for dirty 1260 * pages to be written out. 1261 */ 1262 if (capsnap->dirty_pages || capsnap->writing) 1263 break; 1264 1265 /* 1266 * if cap writeback already occurred, we should have dropped 1267 * the capsnap in ceph_put_wrbuffer_cap_refs. 1268 */ 1269 BUG_ON(capsnap->dirty == 0); 1270 1271 /* pick mds, take s_mutex */ 1272 if (ci->i_auth_cap == NULL) { 1273 dout("no auth cap (migrating?), doing nothing\n"); 1274 goto out; 1275 } 1276 1277 /* only flush each capsnap once */ 1278 if (!again && !list_empty(&capsnap->flushing_item)) { 1279 dout("already flushed %p, skipping\n", capsnap); 1280 continue; 1281 } 1282 1283 mds = ci->i_auth_cap->session->s_mds; 1284 mseq = ci->i_auth_cap->mseq; 1285 1286 if (session && session->s_mds != mds) { 1287 dout("oops, wrong session %p mutex\n", session); 1288 mutex_unlock(&session->s_mutex); 1289 ceph_put_mds_session(session); 1290 session = NULL; 1291 } 1292 if (!session) { 1293 spin_unlock(&ci->i_ceph_lock); 1294 mutex_lock(&mdsc->mutex); 1295 session = __ceph_lookup_mds_session(mdsc, mds); 1296 mutex_unlock(&mdsc->mutex); 1297 if (session) { 1298 dout("inverting session/ino locks on %p\n", 1299 session); 1300 mutex_lock(&session->s_mutex); 1301 } 1302 /* 1303 * if session == NULL, we raced against a cap 1304 * deletion or migration. retry, and we'll 1305 * get a better @mds value next time. 1306 */ 1307 spin_lock(&ci->i_ceph_lock); 1308 goto retry; 1309 } 1310 1311 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1312 atomic_inc(&capsnap->nref); 1313 if (!list_empty(&capsnap->flushing_item)) 1314 list_del_init(&capsnap->flushing_item); 1315 list_add_tail(&capsnap->flushing_item, 1316 &session->s_cap_snaps_flushing); 1317 spin_unlock(&ci->i_ceph_lock); 1318 1319 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1320 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1321 send_cap_msg(session, ceph_vino(inode).ino, 0, 1322 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1323 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1324 capsnap->size, 0, 1325 &capsnap->mtime, &capsnap->atime, 1326 capsnap->time_warp_seq, 1327 capsnap->uid, capsnap->gid, capsnap->mode, 1328 capsnap->xattr_version, capsnap->xattr_blob, 1329 capsnap->follows); 1330 1331 next_follows = capsnap->follows + 1; 1332 ceph_put_cap_snap(capsnap); 1333 1334 spin_lock(&ci->i_ceph_lock); 1335 goto retry; 1336 } 1337 1338 /* we flushed them all; remove this inode from the queue */ 1339 spin_lock(&mdsc->snap_flush_lock); 1340 list_del_init(&ci->i_snap_flush_item); 1341 spin_unlock(&mdsc->snap_flush_lock); 1342 1343 out: 1344 if (psession) 1345 *psession = session; 1346 else if (session) { 1347 mutex_unlock(&session->s_mutex); 1348 ceph_put_mds_session(session); 1349 } 1350 } 1351 1352 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1353 { 1354 spin_lock(&ci->i_ceph_lock); 1355 __ceph_flush_snaps(ci, NULL, 0); 1356 spin_unlock(&ci->i_ceph_lock); 1357 } 1358 1359 /* 1360 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1361 * Caller is then responsible for calling __mark_inode_dirty with the 1362 * returned flags value. 1363 */ 1364 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1365 { 1366 struct ceph_mds_client *mdsc = 1367 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1368 struct inode *inode = &ci->vfs_inode; 1369 int was = ci->i_dirty_caps; 1370 int dirty = 0; 1371 1372 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1373 ceph_cap_string(mask), ceph_cap_string(was), 1374 ceph_cap_string(was | mask)); 1375 ci->i_dirty_caps |= mask; 1376 if (was == 0) { 1377 if (!ci->i_head_snapc) 1378 ci->i_head_snapc = ceph_get_snap_context( 1379 ci->i_snap_realm->cached_context); 1380 dout(" inode %p now dirty snapc %p auth cap %p\n", 1381 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1382 BUG_ON(!list_empty(&ci->i_dirty_item)); 1383 spin_lock(&mdsc->cap_dirty_lock); 1384 if (ci->i_auth_cap) 1385 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1386 else 1387 list_add(&ci->i_dirty_item, 1388 &mdsc->cap_dirty_migrating); 1389 spin_unlock(&mdsc->cap_dirty_lock); 1390 if (ci->i_flushing_caps == 0) { 1391 ihold(inode); 1392 dirty |= I_DIRTY_SYNC; 1393 } 1394 } 1395 BUG_ON(list_empty(&ci->i_dirty_item)); 1396 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1397 (mask & CEPH_CAP_FILE_BUFFER)) 1398 dirty |= I_DIRTY_DATASYNC; 1399 __cap_delay_requeue(mdsc, ci); 1400 return dirty; 1401 } 1402 1403 /* 1404 * Add dirty inode to the flushing list. Assigned a seq number so we 1405 * can wait for caps to flush without starving. 1406 * 1407 * Called under i_ceph_lock. 1408 */ 1409 static int __mark_caps_flushing(struct inode *inode, 1410 struct ceph_mds_session *session) 1411 { 1412 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1413 struct ceph_inode_info *ci = ceph_inode(inode); 1414 int flushing; 1415 1416 BUG_ON(ci->i_dirty_caps == 0); 1417 BUG_ON(list_empty(&ci->i_dirty_item)); 1418 1419 flushing = ci->i_dirty_caps; 1420 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1421 ceph_cap_string(flushing), 1422 ceph_cap_string(ci->i_flushing_caps), 1423 ceph_cap_string(ci->i_flushing_caps | flushing)); 1424 ci->i_flushing_caps |= flushing; 1425 ci->i_dirty_caps = 0; 1426 dout(" inode %p now !dirty\n", inode); 1427 1428 spin_lock(&mdsc->cap_dirty_lock); 1429 list_del_init(&ci->i_dirty_item); 1430 1431 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1432 if (list_empty(&ci->i_flushing_item)) { 1433 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1434 mdsc->num_cap_flushing++; 1435 dout(" inode %p now flushing seq %lld\n", inode, 1436 ci->i_cap_flush_seq); 1437 } else { 1438 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1439 dout(" inode %p now flushing (more) seq %lld\n", inode, 1440 ci->i_cap_flush_seq); 1441 } 1442 spin_unlock(&mdsc->cap_dirty_lock); 1443 1444 return flushing; 1445 } 1446 1447 /* 1448 * try to invalidate mapping pages without blocking. 1449 */ 1450 static int try_nonblocking_invalidate(struct inode *inode) 1451 { 1452 struct ceph_inode_info *ci = ceph_inode(inode); 1453 u32 invalidating_gen = ci->i_rdcache_gen; 1454 1455 spin_unlock(&ci->i_ceph_lock); 1456 invalidate_mapping_pages(&inode->i_data, 0, -1); 1457 spin_lock(&ci->i_ceph_lock); 1458 1459 if (inode->i_data.nrpages == 0 && 1460 invalidating_gen == ci->i_rdcache_gen) { 1461 /* success. */ 1462 dout("try_nonblocking_invalidate %p success\n", inode); 1463 /* save any racing async invalidate some trouble */ 1464 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1465 return 0; 1466 } 1467 dout("try_nonblocking_invalidate %p failed\n", inode); 1468 return -1; 1469 } 1470 1471 /* 1472 * Swiss army knife function to examine currently used and wanted 1473 * versus held caps. Release, flush, ack revoked caps to mds as 1474 * appropriate. 1475 * 1476 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1477 * cap release further. 1478 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1479 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1480 * further delay. 1481 */ 1482 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1483 struct ceph_mds_session *session) 1484 { 1485 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1486 struct ceph_mds_client *mdsc = fsc->mdsc; 1487 struct inode *inode = &ci->vfs_inode; 1488 struct ceph_cap *cap; 1489 int file_wanted, used, cap_used; 1490 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1491 int issued, implemented, want, retain, revoking, flushing = 0; 1492 int mds = -1; /* keep track of how far we've gone through i_caps list 1493 to avoid an infinite loop on retry */ 1494 struct rb_node *p; 1495 int tried_invalidate = 0; 1496 int delayed = 0, sent = 0, force_requeue = 0, num; 1497 int queue_invalidate = 0; 1498 int is_delayed = flags & CHECK_CAPS_NODELAY; 1499 1500 /* if we are unmounting, flush any unused caps immediately. */ 1501 if (mdsc->stopping) 1502 is_delayed = 1; 1503 1504 spin_lock(&ci->i_ceph_lock); 1505 1506 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1507 flags |= CHECK_CAPS_FLUSH; 1508 1509 /* flush snaps first time around only */ 1510 if (!list_empty(&ci->i_cap_snaps)) 1511 __ceph_flush_snaps(ci, &session, 0); 1512 goto retry_locked; 1513 retry: 1514 spin_lock(&ci->i_ceph_lock); 1515 retry_locked: 1516 file_wanted = __ceph_caps_file_wanted(ci); 1517 used = __ceph_caps_used(ci); 1518 want = file_wanted | used; 1519 issued = __ceph_caps_issued(ci, &implemented); 1520 revoking = implemented & ~issued; 1521 1522 retain = want | CEPH_CAP_PIN; 1523 if (!mdsc->stopping && inode->i_nlink > 0) { 1524 if (want) { 1525 retain |= CEPH_CAP_ANY; /* be greedy */ 1526 } else { 1527 retain |= CEPH_CAP_ANY_SHARED; 1528 /* 1529 * keep RD only if we didn't have the file open RW, 1530 * because then the mds would revoke it anyway to 1531 * journal max_size=0. 1532 */ 1533 if (ci->i_max_size == 0) 1534 retain |= CEPH_CAP_ANY_RD; 1535 } 1536 } 1537 1538 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1539 " issued %s revoking %s retain %s %s%s%s\n", inode, 1540 ceph_cap_string(file_wanted), 1541 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1542 ceph_cap_string(ci->i_flushing_caps), 1543 ceph_cap_string(issued), ceph_cap_string(revoking), 1544 ceph_cap_string(retain), 1545 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1546 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1547 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1548 1549 /* 1550 * If we no longer need to hold onto old our caps, and we may 1551 * have cached pages, but don't want them, then try to invalidate. 1552 * If we fail, it's because pages are locked.... try again later. 1553 */ 1554 if ((!is_delayed || mdsc->stopping) && 1555 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1556 inode->i_data.nrpages && /* have cached pages */ 1557 (file_wanted == 0 || /* no open files */ 1558 (revoking & (CEPH_CAP_FILE_CACHE| 1559 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1560 !tried_invalidate) { 1561 dout("check_caps trying to invalidate on %p\n", inode); 1562 if (try_nonblocking_invalidate(inode) < 0) { 1563 if (revoking & (CEPH_CAP_FILE_CACHE| 1564 CEPH_CAP_FILE_LAZYIO)) { 1565 dout("check_caps queuing invalidate\n"); 1566 queue_invalidate = 1; 1567 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1568 } else { 1569 dout("check_caps failed to invalidate pages\n"); 1570 /* we failed to invalidate pages. check these 1571 caps again later. */ 1572 force_requeue = 1; 1573 __cap_set_timeouts(mdsc, ci); 1574 } 1575 } 1576 tried_invalidate = 1; 1577 goto retry_locked; 1578 } 1579 1580 num = 0; 1581 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1582 cap = rb_entry(p, struct ceph_cap, ci_node); 1583 num++; 1584 1585 /* avoid looping forever */ 1586 if (mds >= cap->mds || 1587 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1588 continue; 1589 1590 /* NOTE: no side-effects allowed, until we take s_mutex */ 1591 1592 cap_used = used; 1593 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1594 cap_used &= ~ci->i_auth_cap->issued; 1595 1596 revoking = cap->implemented & ~cap->issued; 1597 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1598 cap->mds, cap, ceph_cap_string(cap->issued), 1599 ceph_cap_string(cap_used), 1600 ceph_cap_string(cap->implemented), 1601 ceph_cap_string(revoking)); 1602 1603 if (cap == ci->i_auth_cap && 1604 (cap->issued & CEPH_CAP_FILE_WR)) { 1605 /* request larger max_size from MDS? */ 1606 if (ci->i_wanted_max_size > ci->i_max_size && 1607 ci->i_wanted_max_size > ci->i_requested_max_size) { 1608 dout("requesting new max_size\n"); 1609 goto ack; 1610 } 1611 1612 /* approaching file_max? */ 1613 if ((inode->i_size << 1) >= ci->i_max_size && 1614 (ci->i_reported_size << 1) < ci->i_max_size) { 1615 dout("i_size approaching max_size\n"); 1616 goto ack; 1617 } 1618 } 1619 /* flush anything dirty? */ 1620 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1621 ci->i_dirty_caps) { 1622 dout("flushing dirty caps\n"); 1623 goto ack; 1624 } 1625 1626 /* completed revocation? going down and there are no caps? */ 1627 if (revoking && (revoking & cap_used) == 0) { 1628 dout("completed revocation of %s\n", 1629 ceph_cap_string(cap->implemented & ~cap->issued)); 1630 goto ack; 1631 } 1632 1633 /* want more caps from mds? */ 1634 if (want & ~(cap->mds_wanted | cap->issued)) 1635 goto ack; 1636 1637 /* things we might delay */ 1638 if ((cap->issued & ~retain) == 0 && 1639 cap->mds_wanted == want) 1640 continue; /* nope, all good */ 1641 1642 if (is_delayed) 1643 goto ack; 1644 1645 /* delay? */ 1646 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1647 time_before(jiffies, ci->i_hold_caps_max)) { 1648 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1649 ceph_cap_string(cap->issued), 1650 ceph_cap_string(cap->issued & retain), 1651 ceph_cap_string(cap->mds_wanted), 1652 ceph_cap_string(want)); 1653 delayed++; 1654 continue; 1655 } 1656 1657 ack: 1658 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1659 dout(" skipping %p I_NOFLUSH set\n", inode); 1660 continue; 1661 } 1662 1663 if (session && session != cap->session) { 1664 dout("oops, wrong session %p mutex\n", session); 1665 mutex_unlock(&session->s_mutex); 1666 session = NULL; 1667 } 1668 if (!session) { 1669 session = cap->session; 1670 if (mutex_trylock(&session->s_mutex) == 0) { 1671 dout("inverting session/ino locks on %p\n", 1672 session); 1673 spin_unlock(&ci->i_ceph_lock); 1674 if (took_snap_rwsem) { 1675 up_read(&mdsc->snap_rwsem); 1676 took_snap_rwsem = 0; 1677 } 1678 mutex_lock(&session->s_mutex); 1679 goto retry; 1680 } 1681 } 1682 /* take snap_rwsem after session mutex */ 1683 if (!took_snap_rwsem) { 1684 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1685 dout("inverting snap/in locks on %p\n", 1686 inode); 1687 spin_unlock(&ci->i_ceph_lock); 1688 down_read(&mdsc->snap_rwsem); 1689 took_snap_rwsem = 1; 1690 goto retry; 1691 } 1692 took_snap_rwsem = 1; 1693 } 1694 1695 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1696 flushing = __mark_caps_flushing(inode, session); 1697 else 1698 flushing = 0; 1699 1700 mds = cap->mds; /* remember mds, so we don't repeat */ 1701 sent++; 1702 1703 /* __send_cap drops i_ceph_lock */ 1704 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1705 want, retain, flushing, NULL); 1706 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1707 } 1708 1709 /* 1710 * Reschedule delayed caps release if we delayed anything, 1711 * otherwise cancel. 1712 */ 1713 if (delayed && is_delayed) 1714 force_requeue = 1; /* __send_cap delayed release; requeue */ 1715 if (!delayed && !is_delayed) 1716 __cap_delay_cancel(mdsc, ci); 1717 else if (!is_delayed || force_requeue) 1718 __cap_delay_requeue(mdsc, ci); 1719 1720 spin_unlock(&ci->i_ceph_lock); 1721 1722 if (queue_invalidate) 1723 ceph_queue_invalidate(inode); 1724 1725 if (session) 1726 mutex_unlock(&session->s_mutex); 1727 if (took_snap_rwsem) 1728 up_read(&mdsc->snap_rwsem); 1729 } 1730 1731 /* 1732 * Try to flush dirty caps back to the auth mds. 1733 */ 1734 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1735 unsigned *flush_tid) 1736 { 1737 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1738 struct ceph_inode_info *ci = ceph_inode(inode); 1739 int unlock_session = session ? 0 : 1; 1740 int flushing = 0; 1741 1742 retry: 1743 spin_lock(&ci->i_ceph_lock); 1744 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1745 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1746 goto out; 1747 } 1748 if (ci->i_dirty_caps && ci->i_auth_cap) { 1749 struct ceph_cap *cap = ci->i_auth_cap; 1750 int used = __ceph_caps_used(ci); 1751 int want = __ceph_caps_wanted(ci); 1752 int delayed; 1753 1754 if (!session) { 1755 spin_unlock(&ci->i_ceph_lock); 1756 session = cap->session; 1757 mutex_lock(&session->s_mutex); 1758 goto retry; 1759 } 1760 BUG_ON(session != cap->session); 1761 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1762 goto out; 1763 1764 flushing = __mark_caps_flushing(inode, session); 1765 1766 /* __send_cap drops i_ceph_lock */ 1767 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1768 cap->issued | cap->implemented, flushing, 1769 flush_tid); 1770 if (!delayed) 1771 goto out_unlocked; 1772 1773 spin_lock(&ci->i_ceph_lock); 1774 __cap_delay_requeue(mdsc, ci); 1775 } 1776 out: 1777 spin_unlock(&ci->i_ceph_lock); 1778 out_unlocked: 1779 if (session && unlock_session) 1780 mutex_unlock(&session->s_mutex); 1781 return flushing; 1782 } 1783 1784 /* 1785 * Return true if we've flushed caps through the given flush_tid. 1786 */ 1787 static int caps_are_flushed(struct inode *inode, unsigned tid) 1788 { 1789 struct ceph_inode_info *ci = ceph_inode(inode); 1790 int i, ret = 1; 1791 1792 spin_lock(&ci->i_ceph_lock); 1793 for (i = 0; i < CEPH_CAP_BITS; i++) 1794 if ((ci->i_flushing_caps & (1 << i)) && 1795 ci->i_cap_flush_tid[i] <= tid) { 1796 /* still flushing this bit */ 1797 ret = 0; 1798 break; 1799 } 1800 spin_unlock(&ci->i_ceph_lock); 1801 return ret; 1802 } 1803 1804 /* 1805 * Wait on any unsafe replies for the given inode. First wait on the 1806 * newest request, and make that the upper bound. Then, if there are 1807 * more requests, keep waiting on the oldest as long as it is still older 1808 * than the original request. 1809 */ 1810 static void sync_write_wait(struct inode *inode) 1811 { 1812 struct ceph_inode_info *ci = ceph_inode(inode); 1813 struct list_head *head = &ci->i_unsafe_writes; 1814 struct ceph_osd_request *req; 1815 u64 last_tid; 1816 1817 spin_lock(&ci->i_unsafe_lock); 1818 if (list_empty(head)) 1819 goto out; 1820 1821 /* set upper bound as _last_ entry in chain */ 1822 req = list_entry(head->prev, struct ceph_osd_request, 1823 r_unsafe_item); 1824 last_tid = req->r_tid; 1825 1826 do { 1827 ceph_osdc_get_request(req); 1828 spin_unlock(&ci->i_unsafe_lock); 1829 dout("sync_write_wait on tid %llu (until %llu)\n", 1830 req->r_tid, last_tid); 1831 wait_for_completion(&req->r_safe_completion); 1832 spin_lock(&ci->i_unsafe_lock); 1833 ceph_osdc_put_request(req); 1834 1835 /* 1836 * from here on look at first entry in chain, since we 1837 * only want to wait for anything older than last_tid 1838 */ 1839 if (list_empty(head)) 1840 break; 1841 req = list_entry(head->next, struct ceph_osd_request, 1842 r_unsafe_item); 1843 } while (req->r_tid < last_tid); 1844 out: 1845 spin_unlock(&ci->i_unsafe_lock); 1846 } 1847 1848 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1849 { 1850 struct inode *inode = file->f_mapping->host; 1851 struct ceph_inode_info *ci = ceph_inode(inode); 1852 unsigned flush_tid; 1853 int ret; 1854 int dirty; 1855 1856 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1857 sync_write_wait(inode); 1858 1859 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1860 if (ret < 0) 1861 return ret; 1862 mutex_lock(&inode->i_mutex); 1863 1864 dirty = try_flush_caps(inode, NULL, &flush_tid); 1865 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1866 1867 /* 1868 * only wait on non-file metadata writeback (the mds 1869 * can recover size and mtime, so we don't need to 1870 * wait for that) 1871 */ 1872 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1873 dout("fsync waiting for flush_tid %u\n", flush_tid); 1874 ret = wait_event_interruptible(ci->i_cap_wq, 1875 caps_are_flushed(inode, flush_tid)); 1876 } 1877 1878 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1879 mutex_unlock(&inode->i_mutex); 1880 return ret; 1881 } 1882 1883 /* 1884 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1885 * queue inode for flush but don't do so immediately, because we can 1886 * get by with fewer MDS messages if we wait for data writeback to 1887 * complete first. 1888 */ 1889 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1890 { 1891 struct ceph_inode_info *ci = ceph_inode(inode); 1892 unsigned flush_tid; 1893 int err = 0; 1894 int dirty; 1895 int wait = wbc->sync_mode == WB_SYNC_ALL; 1896 1897 dout("write_inode %p wait=%d\n", inode, wait); 1898 if (wait) { 1899 dirty = try_flush_caps(inode, NULL, &flush_tid); 1900 if (dirty) 1901 err = wait_event_interruptible(ci->i_cap_wq, 1902 caps_are_flushed(inode, flush_tid)); 1903 } else { 1904 struct ceph_mds_client *mdsc = 1905 ceph_sb_to_client(inode->i_sb)->mdsc; 1906 1907 spin_lock(&ci->i_ceph_lock); 1908 if (__ceph_caps_dirty(ci)) 1909 __cap_delay_requeue_front(mdsc, ci); 1910 spin_unlock(&ci->i_ceph_lock); 1911 } 1912 return err; 1913 } 1914 1915 /* 1916 * After a recovering MDS goes active, we need to resend any caps 1917 * we were flushing. 1918 * 1919 * Caller holds session->s_mutex. 1920 */ 1921 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1922 struct ceph_mds_session *session) 1923 { 1924 struct ceph_cap_snap *capsnap; 1925 1926 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1927 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1928 flushing_item) { 1929 struct ceph_inode_info *ci = capsnap->ci; 1930 struct inode *inode = &ci->vfs_inode; 1931 struct ceph_cap *cap; 1932 1933 spin_lock(&ci->i_ceph_lock); 1934 cap = ci->i_auth_cap; 1935 if (cap && cap->session == session) { 1936 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1937 cap, capsnap); 1938 __ceph_flush_snaps(ci, &session, 1); 1939 } else { 1940 pr_err("%p auth cap %p not mds%d ???\n", inode, 1941 cap, session->s_mds); 1942 } 1943 spin_unlock(&ci->i_ceph_lock); 1944 } 1945 } 1946 1947 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1948 struct ceph_mds_session *session) 1949 { 1950 struct ceph_inode_info *ci; 1951 1952 kick_flushing_capsnaps(mdsc, session); 1953 1954 dout("kick_flushing_caps mds%d\n", session->s_mds); 1955 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1956 struct inode *inode = &ci->vfs_inode; 1957 struct ceph_cap *cap; 1958 int delayed = 0; 1959 1960 spin_lock(&ci->i_ceph_lock); 1961 cap = ci->i_auth_cap; 1962 if (cap && cap->session == session) { 1963 dout("kick_flushing_caps %p cap %p %s\n", inode, 1964 cap, ceph_cap_string(ci->i_flushing_caps)); 1965 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1966 __ceph_caps_used(ci), 1967 __ceph_caps_wanted(ci), 1968 cap->issued | cap->implemented, 1969 ci->i_flushing_caps, NULL); 1970 if (delayed) { 1971 spin_lock(&ci->i_ceph_lock); 1972 __cap_delay_requeue(mdsc, ci); 1973 spin_unlock(&ci->i_ceph_lock); 1974 } 1975 } else { 1976 pr_err("%p auth cap %p not mds%d ???\n", inode, 1977 cap, session->s_mds); 1978 spin_unlock(&ci->i_ceph_lock); 1979 } 1980 } 1981 } 1982 1983 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1984 struct ceph_mds_session *session, 1985 struct inode *inode) 1986 { 1987 struct ceph_inode_info *ci = ceph_inode(inode); 1988 struct ceph_cap *cap; 1989 int delayed = 0; 1990 1991 spin_lock(&ci->i_ceph_lock); 1992 cap = ci->i_auth_cap; 1993 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1994 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1995 1996 __ceph_flush_snaps(ci, &session, 1); 1997 1998 if (ci->i_flushing_caps) { 1999 spin_lock(&mdsc->cap_dirty_lock); 2000 list_move_tail(&ci->i_flushing_item, 2001 &cap->session->s_cap_flushing); 2002 spin_unlock(&mdsc->cap_dirty_lock); 2003 2004 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2005 __ceph_caps_used(ci), 2006 __ceph_caps_wanted(ci), 2007 cap->issued | cap->implemented, 2008 ci->i_flushing_caps, NULL); 2009 if (delayed) { 2010 spin_lock(&ci->i_ceph_lock); 2011 __cap_delay_requeue(mdsc, ci); 2012 spin_unlock(&ci->i_ceph_lock); 2013 } 2014 } else { 2015 spin_unlock(&ci->i_ceph_lock); 2016 } 2017 } 2018 2019 2020 /* 2021 * Take references to capabilities we hold, so that we don't release 2022 * them to the MDS prematurely. 2023 * 2024 * Protected by i_ceph_lock. 2025 */ 2026 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2027 { 2028 if (got & CEPH_CAP_PIN) 2029 ci->i_pin_ref++; 2030 if (got & CEPH_CAP_FILE_RD) 2031 ci->i_rd_ref++; 2032 if (got & CEPH_CAP_FILE_CACHE) 2033 ci->i_rdcache_ref++; 2034 if (got & CEPH_CAP_FILE_WR) 2035 ci->i_wr_ref++; 2036 if (got & CEPH_CAP_FILE_BUFFER) { 2037 if (ci->i_wb_ref == 0) 2038 ihold(&ci->vfs_inode); 2039 ci->i_wb_ref++; 2040 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2041 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2042 } 2043 } 2044 2045 /* 2046 * Try to grab cap references. Specify those refs we @want, and the 2047 * minimal set we @need. Also include the larger offset we are writing 2048 * to (when applicable), and check against max_size here as well. 2049 * Note that caller is responsible for ensuring max_size increases are 2050 * requested from the MDS. 2051 */ 2052 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2053 int *got, loff_t endoff, int *check_max, int *err) 2054 { 2055 struct inode *inode = &ci->vfs_inode; 2056 int ret = 0; 2057 int have, implemented; 2058 int file_wanted; 2059 2060 dout("get_cap_refs %p need %s want %s\n", inode, 2061 ceph_cap_string(need), ceph_cap_string(want)); 2062 spin_lock(&ci->i_ceph_lock); 2063 2064 /* make sure file is actually open */ 2065 file_wanted = __ceph_caps_file_wanted(ci); 2066 if ((file_wanted & need) == 0) { 2067 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2068 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2069 *err = -EBADF; 2070 ret = 1; 2071 goto out; 2072 } 2073 2074 /* finish pending truncate */ 2075 while (ci->i_truncate_pending) { 2076 spin_unlock(&ci->i_ceph_lock); 2077 __ceph_do_pending_vmtruncate(inode); 2078 spin_lock(&ci->i_ceph_lock); 2079 } 2080 2081 have = __ceph_caps_issued(ci, &implemented); 2082 2083 if (have & need & CEPH_CAP_FILE_WR) { 2084 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2085 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2086 inode, endoff, ci->i_max_size); 2087 if (endoff > ci->i_requested_max_size) { 2088 *check_max = 1; 2089 ret = 1; 2090 } 2091 goto out; 2092 } 2093 /* 2094 * If a sync write is in progress, we must wait, so that we 2095 * can get a final snapshot value for size+mtime. 2096 */ 2097 if (__ceph_have_pending_cap_snap(ci)) { 2098 dout("get_cap_refs %p cap_snap_pending\n", inode); 2099 goto out; 2100 } 2101 } 2102 2103 if ((have & need) == need) { 2104 /* 2105 * Look at (implemented & ~have & not) so that we keep waiting 2106 * on transition from wanted -> needed caps. This is needed 2107 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2108 * going before a prior buffered writeback happens. 2109 */ 2110 int not = want & ~(have & need); 2111 int revoking = implemented & ~have; 2112 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2113 inode, ceph_cap_string(have), ceph_cap_string(not), 2114 ceph_cap_string(revoking)); 2115 if ((revoking & not) == 0) { 2116 *got = need | (have & want); 2117 __take_cap_refs(ci, *got); 2118 ret = 1; 2119 } 2120 } else { 2121 dout("get_cap_refs %p have %s needed %s\n", inode, 2122 ceph_cap_string(have), ceph_cap_string(need)); 2123 } 2124 out: 2125 spin_unlock(&ci->i_ceph_lock); 2126 dout("get_cap_refs %p ret %d got %s\n", inode, 2127 ret, ceph_cap_string(*got)); 2128 return ret; 2129 } 2130 2131 /* 2132 * Check the offset we are writing up to against our current 2133 * max_size. If necessary, tell the MDS we want to write to 2134 * a larger offset. 2135 */ 2136 static void check_max_size(struct inode *inode, loff_t endoff) 2137 { 2138 struct ceph_inode_info *ci = ceph_inode(inode); 2139 int check = 0; 2140 2141 /* do we need to explicitly request a larger max_size? */ 2142 spin_lock(&ci->i_ceph_lock); 2143 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2144 dout("write %p at large endoff %llu, req max_size\n", 2145 inode, endoff); 2146 ci->i_wanted_max_size = endoff; 2147 } 2148 /* duplicate ceph_check_caps()'s logic */ 2149 if (ci->i_auth_cap && 2150 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2151 ci->i_wanted_max_size > ci->i_max_size && 2152 ci->i_wanted_max_size > ci->i_requested_max_size) 2153 check = 1; 2154 spin_unlock(&ci->i_ceph_lock); 2155 if (check) 2156 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2157 } 2158 2159 /* 2160 * Wait for caps, and take cap references. If we can't get a WR cap 2161 * due to a small max_size, make sure we check_max_size (and possibly 2162 * ask the mds) so we don't get hung up indefinitely. 2163 */ 2164 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2165 loff_t endoff) 2166 { 2167 int check_max, ret, err; 2168 2169 retry: 2170 if (endoff > 0) 2171 check_max_size(&ci->vfs_inode, endoff); 2172 check_max = 0; 2173 err = 0; 2174 ret = wait_event_interruptible(ci->i_cap_wq, 2175 try_get_cap_refs(ci, need, want, 2176 got, endoff, 2177 &check_max, &err)); 2178 if (err) 2179 ret = err; 2180 if (check_max) 2181 goto retry; 2182 return ret; 2183 } 2184 2185 /* 2186 * Take cap refs. Caller must already know we hold at least one ref 2187 * on the caps in question or we don't know this is safe. 2188 */ 2189 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2190 { 2191 spin_lock(&ci->i_ceph_lock); 2192 __take_cap_refs(ci, caps); 2193 spin_unlock(&ci->i_ceph_lock); 2194 } 2195 2196 /* 2197 * Release cap refs. 2198 * 2199 * If we released the last ref on any given cap, call ceph_check_caps 2200 * to release (or schedule a release). 2201 * 2202 * If we are releasing a WR cap (from a sync write), finalize any affected 2203 * cap_snap, and wake up any waiters. 2204 */ 2205 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2206 { 2207 struct inode *inode = &ci->vfs_inode; 2208 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2209 struct ceph_cap_snap *capsnap; 2210 2211 spin_lock(&ci->i_ceph_lock); 2212 if (had & CEPH_CAP_PIN) 2213 --ci->i_pin_ref; 2214 if (had & CEPH_CAP_FILE_RD) 2215 if (--ci->i_rd_ref == 0) 2216 last++; 2217 if (had & CEPH_CAP_FILE_CACHE) 2218 if (--ci->i_rdcache_ref == 0) 2219 last++; 2220 if (had & CEPH_CAP_FILE_BUFFER) { 2221 if (--ci->i_wb_ref == 0) { 2222 last++; 2223 put++; 2224 } 2225 dout("put_cap_refs %p wb %d -> %d (?)\n", 2226 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2227 } 2228 if (had & CEPH_CAP_FILE_WR) 2229 if (--ci->i_wr_ref == 0) { 2230 last++; 2231 if (!list_empty(&ci->i_cap_snaps)) { 2232 capsnap = list_first_entry(&ci->i_cap_snaps, 2233 struct ceph_cap_snap, 2234 ci_item); 2235 if (capsnap->writing) { 2236 capsnap->writing = 0; 2237 flushsnaps = 2238 __ceph_finish_cap_snap(ci, 2239 capsnap); 2240 wake = 1; 2241 } 2242 } 2243 } 2244 spin_unlock(&ci->i_ceph_lock); 2245 2246 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2247 last ? " last" : "", put ? " put" : ""); 2248 2249 if (last && !flushsnaps) 2250 ceph_check_caps(ci, 0, NULL); 2251 else if (flushsnaps) 2252 ceph_flush_snaps(ci); 2253 if (wake) 2254 wake_up_all(&ci->i_cap_wq); 2255 if (put) 2256 iput(inode); 2257 } 2258 2259 /* 2260 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2261 * context. Adjust per-snap dirty page accounting as appropriate. 2262 * Once all dirty data for a cap_snap is flushed, flush snapped file 2263 * metadata back to the MDS. If we dropped the last ref, call 2264 * ceph_check_caps. 2265 */ 2266 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2267 struct ceph_snap_context *snapc) 2268 { 2269 struct inode *inode = &ci->vfs_inode; 2270 int last = 0; 2271 int complete_capsnap = 0; 2272 int drop_capsnap = 0; 2273 int found = 0; 2274 struct ceph_cap_snap *capsnap = NULL; 2275 2276 spin_lock(&ci->i_ceph_lock); 2277 ci->i_wrbuffer_ref -= nr; 2278 last = !ci->i_wrbuffer_ref; 2279 2280 if (ci->i_head_snapc == snapc) { 2281 ci->i_wrbuffer_ref_head -= nr; 2282 if (ci->i_wrbuffer_ref_head == 0 && 2283 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2284 BUG_ON(!ci->i_head_snapc); 2285 ceph_put_snap_context(ci->i_head_snapc); 2286 ci->i_head_snapc = NULL; 2287 } 2288 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2289 inode, 2290 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2291 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2292 last ? " LAST" : ""); 2293 } else { 2294 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2295 if (capsnap->context == snapc) { 2296 found = 1; 2297 break; 2298 } 2299 } 2300 BUG_ON(!found); 2301 capsnap->dirty_pages -= nr; 2302 if (capsnap->dirty_pages == 0) { 2303 complete_capsnap = 1; 2304 if (capsnap->dirty == 0) 2305 /* cap writeback completed before we created 2306 * the cap_snap; no FLUSHSNAP is needed */ 2307 drop_capsnap = 1; 2308 } 2309 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2310 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2311 inode, capsnap, capsnap->context->seq, 2312 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2313 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2314 last ? " (wrbuffer last)" : "", 2315 complete_capsnap ? " (complete capsnap)" : "", 2316 drop_capsnap ? " (drop capsnap)" : ""); 2317 if (drop_capsnap) { 2318 ceph_put_snap_context(capsnap->context); 2319 list_del(&capsnap->ci_item); 2320 list_del(&capsnap->flushing_item); 2321 ceph_put_cap_snap(capsnap); 2322 } 2323 } 2324 2325 spin_unlock(&ci->i_ceph_lock); 2326 2327 if (last) { 2328 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2329 iput(inode); 2330 } else if (complete_capsnap) { 2331 ceph_flush_snaps(ci); 2332 wake_up_all(&ci->i_cap_wq); 2333 } 2334 if (drop_capsnap) 2335 iput(inode); 2336 } 2337 2338 /* 2339 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2340 */ 2341 static void invalidate_aliases(struct inode *inode) 2342 { 2343 struct dentry *dn, *prev = NULL; 2344 2345 dout("invalidate_aliases inode %p\n", inode); 2346 d_prune_aliases(inode); 2347 /* 2348 * For non-directory inode, d_find_alias() only returns 2349 * connected dentry. After calling d_invalidate(), the 2350 * dentry become disconnected. 2351 * 2352 * For directory inode, d_find_alias() can return 2353 * disconnected dentry. But directory inode should have 2354 * one alias at most. 2355 */ 2356 while ((dn = d_find_alias(inode))) { 2357 if (dn == prev) { 2358 dput(dn); 2359 break; 2360 } 2361 d_invalidate(dn); 2362 if (prev) 2363 dput(prev); 2364 prev = dn; 2365 } 2366 if (prev) 2367 dput(prev); 2368 } 2369 2370 /* 2371 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2372 * actually be a revocation if it specifies a smaller cap set.) 2373 * 2374 * caller holds s_mutex and i_ceph_lock, we drop both. 2375 * 2376 * return value: 2377 * 0 - ok 2378 * 1 - check_caps on auth cap only (writeback) 2379 * 2 - check_caps (ack revoke) 2380 */ 2381 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2382 struct ceph_mds_session *session, 2383 struct ceph_cap *cap, 2384 struct ceph_buffer *xattr_buf) 2385 __releases(ci->i_ceph_lock) 2386 { 2387 struct ceph_inode_info *ci = ceph_inode(inode); 2388 int mds = session->s_mds; 2389 int seq = le32_to_cpu(grant->seq); 2390 int newcaps = le32_to_cpu(grant->caps); 2391 int issued, implemented, used, wanted, dirty; 2392 u64 size = le64_to_cpu(grant->size); 2393 u64 max_size = le64_to_cpu(grant->max_size); 2394 struct timespec mtime, atime, ctime; 2395 int check_caps = 0; 2396 int wake = 0; 2397 int writeback = 0; 2398 int queue_invalidate = 0; 2399 int deleted_inode = 0; 2400 int queue_revalidate = 0; 2401 2402 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2403 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2404 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2405 inode->i_size); 2406 2407 /* 2408 * If CACHE is being revoked, and we have no dirty buffers, 2409 * try to invalidate (once). (If there are dirty buffers, we 2410 * will invalidate _after_ writeback.) 2411 */ 2412 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2413 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2414 !ci->i_wrbuffer_ref) { 2415 if (try_nonblocking_invalidate(inode)) { 2416 /* there were locked pages.. invalidate later 2417 in a separate thread. */ 2418 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2419 queue_invalidate = 1; 2420 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2421 } 2422 } 2423 2424 ceph_fscache_invalidate(inode); 2425 } 2426 2427 /* side effects now are allowed */ 2428 2429 issued = __ceph_caps_issued(ci, &implemented); 2430 issued |= implemented | __ceph_caps_dirty(ci); 2431 2432 cap->cap_gen = session->s_cap_gen; 2433 2434 __check_cap_issue(ci, cap, newcaps); 2435 2436 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2437 inode->i_mode = le32_to_cpu(grant->mode); 2438 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2439 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2440 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2441 from_kuid(&init_user_ns, inode->i_uid), 2442 from_kgid(&init_user_ns, inode->i_gid)); 2443 } 2444 2445 if ((issued & CEPH_CAP_LINK_EXCL) == 0) { 2446 set_nlink(inode, le32_to_cpu(grant->nlink)); 2447 if (inode->i_nlink == 0 && 2448 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2449 deleted_inode = 1; 2450 } 2451 2452 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2453 int len = le32_to_cpu(grant->xattr_len); 2454 u64 version = le64_to_cpu(grant->xattr_version); 2455 2456 if (version > ci->i_xattrs.version) { 2457 dout(" got new xattrs v%llu on %p len %d\n", 2458 version, inode, len); 2459 if (ci->i_xattrs.blob) 2460 ceph_buffer_put(ci->i_xattrs.blob); 2461 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2462 ci->i_xattrs.version = version; 2463 } 2464 } 2465 2466 /* Do we need to revalidate our fscache cookie. Don't bother on the 2467 * first cache cap as we already validate at cookie creation time. */ 2468 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2469 queue_revalidate = 1; 2470 2471 /* size/ctime/mtime/atime? */ 2472 ceph_fill_file_size(inode, issued, 2473 le32_to_cpu(grant->truncate_seq), 2474 le64_to_cpu(grant->truncate_size), size); 2475 ceph_decode_timespec(&mtime, &grant->mtime); 2476 ceph_decode_timespec(&atime, &grant->atime); 2477 ceph_decode_timespec(&ctime, &grant->ctime); 2478 ceph_fill_file_time(inode, issued, 2479 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2480 &atime); 2481 2482 /* max size increase? */ 2483 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2484 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2485 ci->i_max_size = max_size; 2486 if (max_size >= ci->i_wanted_max_size) { 2487 ci->i_wanted_max_size = 0; /* reset */ 2488 ci->i_requested_max_size = 0; 2489 } 2490 wake = 1; 2491 } 2492 2493 /* check cap bits */ 2494 wanted = __ceph_caps_wanted(ci); 2495 used = __ceph_caps_used(ci); 2496 dirty = __ceph_caps_dirty(ci); 2497 dout(" my wanted = %s, used = %s, dirty %s\n", 2498 ceph_cap_string(wanted), 2499 ceph_cap_string(used), 2500 ceph_cap_string(dirty)); 2501 if (wanted != le32_to_cpu(grant->wanted)) { 2502 dout("mds wanted %s -> %s\n", 2503 ceph_cap_string(le32_to_cpu(grant->wanted)), 2504 ceph_cap_string(wanted)); 2505 /* imported cap may not have correct mds_wanted */ 2506 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2507 check_caps = 1; 2508 } 2509 2510 cap->seq = seq; 2511 2512 /* file layout may have changed */ 2513 ci->i_layout = grant->layout; 2514 2515 /* revocation, grant, or no-op? */ 2516 if (cap->issued & ~newcaps) { 2517 int revoking = cap->issued & ~newcaps; 2518 2519 dout("revocation: %s -> %s (revoking %s)\n", 2520 ceph_cap_string(cap->issued), 2521 ceph_cap_string(newcaps), 2522 ceph_cap_string(revoking)); 2523 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2524 writeback = 1; /* initiate writeback; will delay ack */ 2525 else if (revoking == CEPH_CAP_FILE_CACHE && 2526 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2527 queue_invalidate) 2528 ; /* do nothing yet, invalidation will be queued */ 2529 else if (cap == ci->i_auth_cap) 2530 check_caps = 1; /* check auth cap only */ 2531 else 2532 check_caps = 2; /* check all caps */ 2533 cap->issued = newcaps; 2534 cap->implemented |= newcaps; 2535 } else if (cap->issued == newcaps) { 2536 dout("caps unchanged: %s -> %s\n", 2537 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2538 } else { 2539 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2540 ceph_cap_string(newcaps)); 2541 /* non-auth MDS is revoking the newly grant caps ? */ 2542 if (cap == ci->i_auth_cap && 2543 __ceph_caps_revoking_other(ci, cap, newcaps)) 2544 check_caps = 2; 2545 2546 cap->issued = newcaps; 2547 cap->implemented |= newcaps; /* add bits only, to 2548 * avoid stepping on a 2549 * pending revocation */ 2550 wake = 1; 2551 } 2552 BUG_ON(cap->issued & ~cap->implemented); 2553 2554 spin_unlock(&ci->i_ceph_lock); 2555 2556 if (writeback) 2557 /* 2558 * queue inode for writeback: we can't actually call 2559 * filemap_write_and_wait, etc. from message handler 2560 * context. 2561 */ 2562 ceph_queue_writeback(inode); 2563 if (queue_invalidate) 2564 ceph_queue_invalidate(inode); 2565 if (deleted_inode) 2566 invalidate_aliases(inode); 2567 if (queue_revalidate) 2568 ceph_queue_revalidate(inode); 2569 if (wake) 2570 wake_up_all(&ci->i_cap_wq); 2571 2572 if (check_caps == 1) 2573 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2574 session); 2575 else if (check_caps == 2) 2576 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2577 else 2578 mutex_unlock(&session->s_mutex); 2579 } 2580 2581 /* 2582 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2583 * MDS has been safely committed. 2584 */ 2585 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2586 struct ceph_mds_caps *m, 2587 struct ceph_mds_session *session, 2588 struct ceph_cap *cap) 2589 __releases(ci->i_ceph_lock) 2590 { 2591 struct ceph_inode_info *ci = ceph_inode(inode); 2592 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2593 unsigned seq = le32_to_cpu(m->seq); 2594 int dirty = le32_to_cpu(m->dirty); 2595 int cleaned = 0; 2596 int drop = 0; 2597 int i; 2598 2599 for (i = 0; i < CEPH_CAP_BITS; i++) 2600 if ((dirty & (1 << i)) && 2601 flush_tid == ci->i_cap_flush_tid[i]) 2602 cleaned |= 1 << i; 2603 2604 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2605 " flushing %s -> %s\n", 2606 inode, session->s_mds, seq, ceph_cap_string(dirty), 2607 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2608 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2609 2610 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2611 goto out; 2612 2613 ci->i_flushing_caps &= ~cleaned; 2614 2615 spin_lock(&mdsc->cap_dirty_lock); 2616 if (ci->i_flushing_caps == 0) { 2617 list_del_init(&ci->i_flushing_item); 2618 if (!list_empty(&session->s_cap_flushing)) 2619 dout(" mds%d still flushing cap on %p\n", 2620 session->s_mds, 2621 &list_entry(session->s_cap_flushing.next, 2622 struct ceph_inode_info, 2623 i_flushing_item)->vfs_inode); 2624 mdsc->num_cap_flushing--; 2625 wake_up_all(&mdsc->cap_flushing_wq); 2626 dout(" inode %p now !flushing\n", inode); 2627 2628 if (ci->i_dirty_caps == 0) { 2629 dout(" inode %p now clean\n", inode); 2630 BUG_ON(!list_empty(&ci->i_dirty_item)); 2631 drop = 1; 2632 if (ci->i_wrbuffer_ref_head == 0) { 2633 BUG_ON(!ci->i_head_snapc); 2634 ceph_put_snap_context(ci->i_head_snapc); 2635 ci->i_head_snapc = NULL; 2636 } 2637 } else { 2638 BUG_ON(list_empty(&ci->i_dirty_item)); 2639 } 2640 } 2641 spin_unlock(&mdsc->cap_dirty_lock); 2642 wake_up_all(&ci->i_cap_wq); 2643 2644 out: 2645 spin_unlock(&ci->i_ceph_lock); 2646 if (drop) 2647 iput(inode); 2648 } 2649 2650 /* 2651 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2652 * throw away our cap_snap. 2653 * 2654 * Caller hold s_mutex. 2655 */ 2656 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2657 struct ceph_mds_caps *m, 2658 struct ceph_mds_session *session) 2659 { 2660 struct ceph_inode_info *ci = ceph_inode(inode); 2661 u64 follows = le64_to_cpu(m->snap_follows); 2662 struct ceph_cap_snap *capsnap; 2663 int drop = 0; 2664 2665 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2666 inode, ci, session->s_mds, follows); 2667 2668 spin_lock(&ci->i_ceph_lock); 2669 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2670 if (capsnap->follows == follows) { 2671 if (capsnap->flush_tid != flush_tid) { 2672 dout(" cap_snap %p follows %lld tid %lld !=" 2673 " %lld\n", capsnap, follows, 2674 flush_tid, capsnap->flush_tid); 2675 break; 2676 } 2677 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2678 dout(" removing %p cap_snap %p follows %lld\n", 2679 inode, capsnap, follows); 2680 ceph_put_snap_context(capsnap->context); 2681 list_del(&capsnap->ci_item); 2682 list_del(&capsnap->flushing_item); 2683 ceph_put_cap_snap(capsnap); 2684 drop = 1; 2685 break; 2686 } else { 2687 dout(" skipping cap_snap %p follows %lld\n", 2688 capsnap, capsnap->follows); 2689 } 2690 } 2691 spin_unlock(&ci->i_ceph_lock); 2692 if (drop) 2693 iput(inode); 2694 } 2695 2696 /* 2697 * Handle TRUNC from MDS, indicating file truncation. 2698 * 2699 * caller hold s_mutex. 2700 */ 2701 static void handle_cap_trunc(struct inode *inode, 2702 struct ceph_mds_caps *trunc, 2703 struct ceph_mds_session *session) 2704 __releases(ci->i_ceph_lock) 2705 { 2706 struct ceph_inode_info *ci = ceph_inode(inode); 2707 int mds = session->s_mds; 2708 int seq = le32_to_cpu(trunc->seq); 2709 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2710 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2711 u64 size = le64_to_cpu(trunc->size); 2712 int implemented = 0; 2713 int dirty = __ceph_caps_dirty(ci); 2714 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2715 int queue_trunc = 0; 2716 2717 issued |= implemented | dirty; 2718 2719 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2720 inode, mds, seq, truncate_size, truncate_seq); 2721 queue_trunc = ceph_fill_file_size(inode, issued, 2722 truncate_seq, truncate_size, size); 2723 spin_unlock(&ci->i_ceph_lock); 2724 2725 if (queue_trunc) { 2726 ceph_queue_vmtruncate(inode); 2727 ceph_fscache_invalidate(inode); 2728 } 2729 } 2730 2731 /* 2732 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2733 * different one. If we are the most recent migration we've seen (as 2734 * indicated by mseq), make note of the migrating cap bits for the 2735 * duration (until we see the corresponding IMPORT). 2736 * 2737 * caller holds s_mutex 2738 */ 2739 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2740 struct ceph_mds_session *session, 2741 int *open_target_sessions) 2742 { 2743 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2744 struct ceph_inode_info *ci = ceph_inode(inode); 2745 int mds = session->s_mds; 2746 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2747 struct ceph_cap *cap = NULL, *t; 2748 struct rb_node *p; 2749 int remember = 1; 2750 2751 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2752 inode, ci, mds, mseq); 2753 2754 spin_lock(&ci->i_ceph_lock); 2755 2756 /* make sure we haven't seen a higher mseq */ 2757 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2758 t = rb_entry(p, struct ceph_cap, ci_node); 2759 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2760 dout(" higher mseq on cap from mds%d\n", 2761 t->session->s_mds); 2762 remember = 0; 2763 } 2764 if (t->session->s_mds == mds) 2765 cap = t; 2766 } 2767 2768 if (cap) { 2769 if (remember) { 2770 /* make note */ 2771 ci->i_cap_exporting_mds = mds; 2772 ci->i_cap_exporting_mseq = mseq; 2773 ci->i_cap_exporting_issued = cap->issued; 2774 2775 /* 2776 * make sure we have open sessions with all possible 2777 * export targets, so that we get the matching IMPORT 2778 */ 2779 *open_target_sessions = 1; 2780 2781 /* 2782 * we can't flush dirty caps that we've seen the 2783 * EXPORT but no IMPORT for 2784 */ 2785 spin_lock(&mdsc->cap_dirty_lock); 2786 if (!list_empty(&ci->i_dirty_item)) { 2787 dout(" moving %p to cap_dirty_migrating\n", 2788 inode); 2789 list_move(&ci->i_dirty_item, 2790 &mdsc->cap_dirty_migrating); 2791 } 2792 spin_unlock(&mdsc->cap_dirty_lock); 2793 } 2794 __ceph_remove_cap(cap); 2795 } 2796 /* else, we already released it */ 2797 2798 spin_unlock(&ci->i_ceph_lock); 2799 } 2800 2801 /* 2802 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2803 * clean them up. 2804 * 2805 * caller holds s_mutex. 2806 */ 2807 static void handle_cap_import(struct ceph_mds_client *mdsc, 2808 struct inode *inode, struct ceph_mds_caps *im, 2809 struct ceph_mds_session *session, 2810 void *snaptrace, int snaptrace_len) 2811 { 2812 struct ceph_inode_info *ci = ceph_inode(inode); 2813 int mds = session->s_mds; 2814 unsigned issued = le32_to_cpu(im->caps); 2815 unsigned wanted = le32_to_cpu(im->wanted); 2816 unsigned seq = le32_to_cpu(im->seq); 2817 unsigned mseq = le32_to_cpu(im->migrate_seq); 2818 u64 realmino = le64_to_cpu(im->realm); 2819 u64 cap_id = le64_to_cpu(im->cap_id); 2820 2821 if (ci->i_cap_exporting_mds >= 0 && 2822 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2823 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2824 " - cleared exporting from mds%d\n", 2825 inode, ci, mds, mseq, 2826 ci->i_cap_exporting_mds); 2827 ci->i_cap_exporting_issued = 0; 2828 ci->i_cap_exporting_mseq = 0; 2829 ci->i_cap_exporting_mds = -1; 2830 2831 spin_lock(&mdsc->cap_dirty_lock); 2832 if (!list_empty(&ci->i_dirty_item)) { 2833 dout(" moving %p back to cap_dirty\n", inode); 2834 list_move(&ci->i_dirty_item, &mdsc->cap_dirty); 2835 } 2836 spin_unlock(&mdsc->cap_dirty_lock); 2837 } else { 2838 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2839 inode, ci, mds, mseq); 2840 } 2841 2842 down_write(&mdsc->snap_rwsem); 2843 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2844 false); 2845 downgrade_write(&mdsc->snap_rwsem); 2846 ceph_add_cap(inode, session, cap_id, -1, 2847 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2848 NULL /* no caps context */); 2849 kick_flushing_inode_caps(mdsc, session, inode); 2850 up_read(&mdsc->snap_rwsem); 2851 2852 /* make sure we re-request max_size, if necessary */ 2853 spin_lock(&ci->i_ceph_lock); 2854 ci->i_wanted_max_size = 0; /* reset */ 2855 ci->i_requested_max_size = 0; 2856 spin_unlock(&ci->i_ceph_lock); 2857 } 2858 2859 /* 2860 * Handle a caps message from the MDS. 2861 * 2862 * Identify the appropriate session, inode, and call the right handler 2863 * based on the cap op. 2864 */ 2865 void ceph_handle_caps(struct ceph_mds_session *session, 2866 struct ceph_msg *msg) 2867 { 2868 struct ceph_mds_client *mdsc = session->s_mdsc; 2869 struct super_block *sb = mdsc->fsc->sb; 2870 struct inode *inode; 2871 struct ceph_inode_info *ci; 2872 struct ceph_cap *cap; 2873 struct ceph_mds_caps *h; 2874 int mds = session->s_mds; 2875 int op; 2876 u32 seq, mseq; 2877 struct ceph_vino vino; 2878 u64 cap_id; 2879 u64 size, max_size; 2880 u64 tid; 2881 void *snaptrace; 2882 size_t snaptrace_len; 2883 void *flock; 2884 u32 flock_len; 2885 int open_target_sessions = 0; 2886 2887 dout("handle_caps from mds%d\n", mds); 2888 2889 /* decode */ 2890 tid = le64_to_cpu(msg->hdr.tid); 2891 if (msg->front.iov_len < sizeof(*h)) 2892 goto bad; 2893 h = msg->front.iov_base; 2894 op = le32_to_cpu(h->op); 2895 vino.ino = le64_to_cpu(h->ino); 2896 vino.snap = CEPH_NOSNAP; 2897 cap_id = le64_to_cpu(h->cap_id); 2898 seq = le32_to_cpu(h->seq); 2899 mseq = le32_to_cpu(h->migrate_seq); 2900 size = le64_to_cpu(h->size); 2901 max_size = le64_to_cpu(h->max_size); 2902 2903 snaptrace = h + 1; 2904 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2905 2906 if (le16_to_cpu(msg->hdr.version) >= 2) { 2907 void *p, *end; 2908 2909 p = snaptrace + snaptrace_len; 2910 end = msg->front.iov_base + msg->front.iov_len; 2911 ceph_decode_32_safe(&p, end, flock_len, bad); 2912 flock = p; 2913 } else { 2914 flock = NULL; 2915 flock_len = 0; 2916 } 2917 2918 mutex_lock(&session->s_mutex); 2919 session->s_seq++; 2920 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2921 (unsigned)seq); 2922 2923 if (op == CEPH_CAP_OP_IMPORT) 2924 ceph_add_cap_releases(mdsc, session); 2925 2926 /* lookup ino */ 2927 inode = ceph_find_inode(sb, vino); 2928 ci = ceph_inode(inode); 2929 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2930 vino.snap, inode); 2931 if (!inode) { 2932 dout(" i don't have ino %llx\n", vino.ino); 2933 2934 if (op == CEPH_CAP_OP_IMPORT) 2935 __queue_cap_release(session, vino.ino, cap_id, 2936 mseq, seq); 2937 goto flush_cap_releases; 2938 } 2939 2940 /* these will work even if we don't have a cap yet */ 2941 switch (op) { 2942 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2943 handle_cap_flushsnap_ack(inode, tid, h, session); 2944 goto done; 2945 2946 case CEPH_CAP_OP_EXPORT: 2947 handle_cap_export(inode, h, session, &open_target_sessions); 2948 goto done; 2949 2950 case CEPH_CAP_OP_IMPORT: 2951 handle_cap_import(mdsc, inode, h, session, 2952 snaptrace, snaptrace_len); 2953 } 2954 2955 /* the rest require a cap */ 2956 spin_lock(&ci->i_ceph_lock); 2957 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2958 if (!cap) { 2959 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2960 inode, ceph_ino(inode), ceph_snap(inode), mds); 2961 spin_unlock(&ci->i_ceph_lock); 2962 goto flush_cap_releases; 2963 } 2964 2965 /* note that each of these drops i_ceph_lock for us */ 2966 switch (op) { 2967 case CEPH_CAP_OP_REVOKE: 2968 case CEPH_CAP_OP_GRANT: 2969 case CEPH_CAP_OP_IMPORT: 2970 handle_cap_grant(inode, h, session, cap, msg->middle); 2971 goto done_unlocked; 2972 2973 case CEPH_CAP_OP_FLUSH_ACK: 2974 handle_cap_flush_ack(inode, tid, h, session, cap); 2975 break; 2976 2977 case CEPH_CAP_OP_TRUNC: 2978 handle_cap_trunc(inode, h, session); 2979 break; 2980 2981 default: 2982 spin_unlock(&ci->i_ceph_lock); 2983 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2984 ceph_cap_op_name(op)); 2985 } 2986 2987 goto done; 2988 2989 flush_cap_releases: 2990 /* 2991 * send any full release message to try to move things 2992 * along for the mds (who clearly thinks we still have this 2993 * cap). 2994 */ 2995 ceph_add_cap_releases(mdsc, session); 2996 ceph_send_cap_releases(mdsc, session); 2997 2998 done: 2999 mutex_unlock(&session->s_mutex); 3000 done_unlocked: 3001 if (inode) 3002 iput(inode); 3003 if (open_target_sessions) 3004 ceph_mdsc_open_export_target_sessions(mdsc, session); 3005 return; 3006 3007 bad: 3008 pr_err("ceph_handle_caps: corrupt message\n"); 3009 ceph_msg_dump(msg); 3010 return; 3011 } 3012 3013 /* 3014 * Delayed work handler to process end of delayed cap release LRU list. 3015 */ 3016 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3017 { 3018 struct ceph_inode_info *ci; 3019 int flags = CHECK_CAPS_NODELAY; 3020 3021 dout("check_delayed_caps\n"); 3022 while (1) { 3023 spin_lock(&mdsc->cap_delay_lock); 3024 if (list_empty(&mdsc->cap_delay_list)) 3025 break; 3026 ci = list_first_entry(&mdsc->cap_delay_list, 3027 struct ceph_inode_info, 3028 i_cap_delay_list); 3029 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3030 time_before(jiffies, ci->i_hold_caps_max)) 3031 break; 3032 list_del_init(&ci->i_cap_delay_list); 3033 spin_unlock(&mdsc->cap_delay_lock); 3034 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3035 ceph_check_caps(ci, flags, NULL); 3036 } 3037 spin_unlock(&mdsc->cap_delay_lock); 3038 } 3039 3040 /* 3041 * Flush all dirty caps to the mds 3042 */ 3043 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3044 { 3045 struct ceph_inode_info *ci; 3046 struct inode *inode; 3047 3048 dout("flush_dirty_caps\n"); 3049 spin_lock(&mdsc->cap_dirty_lock); 3050 while (!list_empty(&mdsc->cap_dirty)) { 3051 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3052 i_dirty_item); 3053 inode = &ci->vfs_inode; 3054 ihold(inode); 3055 dout("flush_dirty_caps %p\n", inode); 3056 spin_unlock(&mdsc->cap_dirty_lock); 3057 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3058 iput(inode); 3059 spin_lock(&mdsc->cap_dirty_lock); 3060 } 3061 spin_unlock(&mdsc->cap_dirty_lock); 3062 dout("flush_dirty_caps done\n"); 3063 } 3064 3065 /* 3066 * Drop open file reference. If we were the last open file, 3067 * we may need to release capabilities to the MDS (or schedule 3068 * their delayed release). 3069 */ 3070 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3071 { 3072 struct inode *inode = &ci->vfs_inode; 3073 int last = 0; 3074 3075 spin_lock(&ci->i_ceph_lock); 3076 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3077 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3078 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3079 if (--ci->i_nr_by_mode[fmode] == 0) 3080 last++; 3081 spin_unlock(&ci->i_ceph_lock); 3082 3083 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3084 ceph_check_caps(ci, 0, NULL); 3085 } 3086 3087 /* 3088 * Helpers for embedding cap and dentry lease releases into mds 3089 * requests. 3090 * 3091 * @force is used by dentry_release (below) to force inclusion of a 3092 * record for the directory inode, even when there aren't any caps to 3093 * drop. 3094 */ 3095 int ceph_encode_inode_release(void **p, struct inode *inode, 3096 int mds, int drop, int unless, int force) 3097 { 3098 struct ceph_inode_info *ci = ceph_inode(inode); 3099 struct ceph_cap *cap; 3100 struct ceph_mds_request_release *rel = *p; 3101 int used, dirty; 3102 int ret = 0; 3103 3104 spin_lock(&ci->i_ceph_lock); 3105 used = __ceph_caps_used(ci); 3106 dirty = __ceph_caps_dirty(ci); 3107 3108 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3109 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3110 ceph_cap_string(unless)); 3111 3112 /* only drop unused, clean caps */ 3113 drop &= ~(used | dirty); 3114 3115 cap = __get_cap_for_mds(ci, mds); 3116 if (cap && __cap_is_valid(cap)) { 3117 if (force || 3118 ((cap->issued & drop) && 3119 (cap->issued & unless) == 0)) { 3120 if ((cap->issued & drop) && 3121 (cap->issued & unless) == 0) { 3122 int wanted = __ceph_caps_wanted(ci); 3123 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3124 wanted |= cap->mds_wanted; 3125 dout("encode_inode_release %p cap %p " 3126 "%s -> %s, wanted %s -> %s\n", inode, cap, 3127 ceph_cap_string(cap->issued), 3128 ceph_cap_string(cap->issued & ~drop), 3129 ceph_cap_string(cap->mds_wanted), 3130 ceph_cap_string(wanted)); 3131 3132 cap->issued &= ~drop; 3133 cap->implemented &= ~drop; 3134 cap->mds_wanted = wanted; 3135 } else { 3136 dout("encode_inode_release %p cap %p %s" 3137 " (force)\n", inode, cap, 3138 ceph_cap_string(cap->issued)); 3139 } 3140 3141 rel->ino = cpu_to_le64(ceph_ino(inode)); 3142 rel->cap_id = cpu_to_le64(cap->cap_id); 3143 rel->seq = cpu_to_le32(cap->seq); 3144 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3145 rel->mseq = cpu_to_le32(cap->mseq); 3146 rel->caps = cpu_to_le32(cap->issued); 3147 rel->wanted = cpu_to_le32(cap->mds_wanted); 3148 rel->dname_len = 0; 3149 rel->dname_seq = 0; 3150 *p += sizeof(*rel); 3151 ret = 1; 3152 } else { 3153 dout("encode_inode_release %p cap %p %s\n", 3154 inode, cap, ceph_cap_string(cap->issued)); 3155 } 3156 } 3157 spin_unlock(&ci->i_ceph_lock); 3158 return ret; 3159 } 3160 3161 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3162 int mds, int drop, int unless) 3163 { 3164 struct inode *dir = dentry->d_parent->d_inode; 3165 struct ceph_mds_request_release *rel = *p; 3166 struct ceph_dentry_info *di = ceph_dentry(dentry); 3167 int force = 0; 3168 int ret; 3169 3170 /* 3171 * force an record for the directory caps if we have a dentry lease. 3172 * this is racy (can't take i_ceph_lock and d_lock together), but it 3173 * doesn't have to be perfect; the mds will revoke anything we don't 3174 * release. 3175 */ 3176 spin_lock(&dentry->d_lock); 3177 if (di->lease_session && di->lease_session->s_mds == mds) 3178 force = 1; 3179 spin_unlock(&dentry->d_lock); 3180 3181 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3182 3183 spin_lock(&dentry->d_lock); 3184 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3185 dout("encode_dentry_release %p mds%d seq %d\n", 3186 dentry, mds, (int)di->lease_seq); 3187 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3188 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3189 *p += dentry->d_name.len; 3190 rel->dname_seq = cpu_to_le32(di->lease_seq); 3191 __ceph_mdsc_drop_dentry_lease(dentry); 3192 } 3193 spin_unlock(&dentry->d_lock); 3194 return ret; 3195 } 3196