1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include <linux/ceph/decode.h> 14 #include <linux/ceph/messenger.h> 15 16 /* 17 * Capability management 18 * 19 * The Ceph metadata servers control client access to inode metadata 20 * and file data by issuing capabilities, granting clients permission 21 * to read and/or write both inode field and file data to OSDs 22 * (storage nodes). Each capability consists of a set of bits 23 * indicating which operations are allowed. 24 * 25 * If the client holds a *_SHARED cap, the client has a coherent value 26 * that can be safely read from the cached inode. 27 * 28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 29 * client is allowed to change inode attributes (e.g., file size, 30 * mtime), note its dirty state in the ceph_cap, and asynchronously 31 * flush that metadata change to the MDS. 32 * 33 * In the event of a conflicting operation (perhaps by another 34 * client), the MDS will revoke the conflicting client capabilities. 35 * 36 * In order for a client to cache an inode, it must hold a capability 37 * with at least one MDS server. When inodes are released, release 38 * notifications are batched and periodically sent en masse to the MDS 39 * cluster to release server state. 40 */ 41 42 43 /* 44 * Generate readable cap strings for debugging output. 45 */ 46 #define MAX_CAP_STR 20 47 static char cap_str[MAX_CAP_STR][40]; 48 static DEFINE_SPINLOCK(cap_str_lock); 49 static int last_cap_str; 50 51 static char *gcap_string(char *s, int c) 52 { 53 if (c & CEPH_CAP_GSHARED) 54 *s++ = 's'; 55 if (c & CEPH_CAP_GEXCL) 56 *s++ = 'x'; 57 if (c & CEPH_CAP_GCACHE) 58 *s++ = 'c'; 59 if (c & CEPH_CAP_GRD) 60 *s++ = 'r'; 61 if (c & CEPH_CAP_GWR) 62 *s++ = 'w'; 63 if (c & CEPH_CAP_GBUFFER) 64 *s++ = 'b'; 65 if (c & CEPH_CAP_GLAZYIO) 66 *s++ = 'l'; 67 return s; 68 } 69 70 const char *ceph_cap_string(int caps) 71 { 72 int i; 73 char *s; 74 int c; 75 76 spin_lock(&cap_str_lock); 77 i = last_cap_str++; 78 if (last_cap_str == MAX_CAP_STR) 79 last_cap_str = 0; 80 spin_unlock(&cap_str_lock); 81 82 s = cap_str[i]; 83 84 if (caps & CEPH_CAP_PIN) 85 *s++ = 'p'; 86 87 c = (caps >> CEPH_CAP_SAUTH) & 3; 88 if (c) { 89 *s++ = 'A'; 90 s = gcap_string(s, c); 91 } 92 93 c = (caps >> CEPH_CAP_SLINK) & 3; 94 if (c) { 95 *s++ = 'L'; 96 s = gcap_string(s, c); 97 } 98 99 c = (caps >> CEPH_CAP_SXATTR) & 3; 100 if (c) { 101 *s++ = 'X'; 102 s = gcap_string(s, c); 103 } 104 105 c = caps >> CEPH_CAP_SFILE; 106 if (c) { 107 *s++ = 'F'; 108 s = gcap_string(s, c); 109 } 110 111 if (s == cap_str[i]) 112 *s++ = '-'; 113 *s = 0; 114 return cap_str[i]; 115 } 116 117 void ceph_caps_init(struct ceph_mds_client *mdsc) 118 { 119 INIT_LIST_HEAD(&mdsc->caps_list); 120 spin_lock_init(&mdsc->caps_list_lock); 121 } 122 123 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 124 { 125 struct ceph_cap *cap; 126 127 spin_lock(&mdsc->caps_list_lock); 128 while (!list_empty(&mdsc->caps_list)) { 129 cap = list_first_entry(&mdsc->caps_list, 130 struct ceph_cap, caps_item); 131 list_del(&cap->caps_item); 132 kmem_cache_free(ceph_cap_cachep, cap); 133 } 134 mdsc->caps_total_count = 0; 135 mdsc->caps_avail_count = 0; 136 mdsc->caps_use_count = 0; 137 mdsc->caps_reserve_count = 0; 138 mdsc->caps_min_count = 0; 139 spin_unlock(&mdsc->caps_list_lock); 140 } 141 142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 143 { 144 spin_lock(&mdsc->caps_list_lock); 145 mdsc->caps_min_count += delta; 146 BUG_ON(mdsc->caps_min_count < 0); 147 spin_unlock(&mdsc->caps_list_lock); 148 } 149 150 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 151 struct ceph_cap_reservation *ctx, int need) 152 { 153 int i; 154 struct ceph_cap *cap; 155 int have; 156 int alloc = 0; 157 LIST_HEAD(newcaps); 158 int ret = 0; 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) { 178 ret = -ENOMEM; 179 goto out_alloc_count; 180 } 181 list_add(&cap->caps_item, &newcaps); 182 alloc++; 183 } 184 BUG_ON(have + alloc != need); 185 186 spin_lock(&mdsc->caps_list_lock); 187 mdsc->caps_total_count += alloc; 188 mdsc->caps_reserve_count += alloc; 189 list_splice(&newcaps, &mdsc->caps_list); 190 191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 192 mdsc->caps_reserve_count + 193 mdsc->caps_avail_count); 194 spin_unlock(&mdsc->caps_list_lock); 195 196 ctx->count = need; 197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 198 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 199 mdsc->caps_reserve_count, mdsc->caps_avail_count); 200 return 0; 201 202 out_alloc_count: 203 /* we didn't manage to reserve as much as we needed */ 204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 205 ctx, need, have); 206 return ret; 207 } 208 209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 210 struct ceph_cap_reservation *ctx) 211 { 212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 213 if (ctx->count) { 214 spin_lock(&mdsc->caps_list_lock); 215 BUG_ON(mdsc->caps_reserve_count < ctx->count); 216 mdsc->caps_reserve_count -= ctx->count; 217 mdsc->caps_avail_count += ctx->count; 218 ctx->count = 0; 219 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 220 mdsc->caps_total_count, mdsc->caps_use_count, 221 mdsc->caps_reserve_count, mdsc->caps_avail_count); 222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 223 mdsc->caps_reserve_count + 224 mdsc->caps_avail_count); 225 spin_unlock(&mdsc->caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 231 struct ceph_cap_reservation *ctx) 232 { 233 struct ceph_cap *cap = NULL; 234 235 /* temporary, until we do something about cap import/export */ 236 if (!ctx) { 237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 238 if (cap) { 239 mdsc->caps_use_count++; 240 mdsc->caps_total_count++; 241 } 242 return cap; 243 } 244 245 spin_lock(&mdsc->caps_list_lock); 246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 248 mdsc->caps_reserve_count, mdsc->caps_avail_count); 249 BUG_ON(!ctx->count); 250 BUG_ON(ctx->count > mdsc->caps_reserve_count); 251 BUG_ON(list_empty(&mdsc->caps_list)); 252 253 ctx->count--; 254 mdsc->caps_reserve_count--; 255 mdsc->caps_use_count++; 256 257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 258 list_del(&cap->caps_item); 259 260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 261 mdsc->caps_reserve_count + mdsc->caps_avail_count); 262 spin_unlock(&mdsc->caps_list_lock); 263 return cap; 264 } 265 266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 267 { 268 spin_lock(&mdsc->caps_list_lock); 269 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 270 cap, mdsc->caps_total_count, mdsc->caps_use_count, 271 mdsc->caps_reserve_count, mdsc->caps_avail_count); 272 mdsc->caps_use_count--; 273 /* 274 * Keep some preallocated caps around (ceph_min_count), to 275 * avoid lots of free/alloc churn. 276 */ 277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 278 mdsc->caps_min_count) { 279 mdsc->caps_total_count--; 280 kmem_cache_free(ceph_cap_cachep, cap); 281 } else { 282 mdsc->caps_avail_count++; 283 list_add(&cap->caps_item, &mdsc->caps_list); 284 } 285 286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 287 mdsc->caps_reserve_count + mdsc->caps_avail_count); 288 spin_unlock(&mdsc->caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_fs_client *fsc, 292 int *total, int *avail, int *used, int *reserved, 293 int *min) 294 { 295 struct ceph_mds_client *mdsc = fsc->mdsc; 296 297 if (total) 298 *total = mdsc->caps_total_count; 299 if (avail) 300 *avail = mdsc->caps_avail_count; 301 if (used) 302 *used = mdsc->caps_use_count; 303 if (reserved) 304 *reserved = mdsc->caps_reserve_count; 305 if (min) 306 *min = mdsc->caps_min_count; 307 } 308 309 /* 310 * Find ceph_cap for given mds, if any. 311 * 312 * Called with i_lock held. 313 */ 314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 315 { 316 struct ceph_cap *cap; 317 struct rb_node *n = ci->i_caps.rb_node; 318 319 while (n) { 320 cap = rb_entry(n, struct ceph_cap, ci_node); 321 if (mds < cap->mds) 322 n = n->rb_left; 323 else if (mds > cap->mds) 324 n = n->rb_right; 325 else 326 return cap; 327 } 328 return NULL; 329 } 330 331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 332 { 333 struct ceph_cap *cap; 334 335 spin_lock(&ci->vfs_inode.i_lock); 336 cap = __get_cap_for_mds(ci, mds); 337 spin_unlock(&ci->vfs_inode.i_lock); 338 return cap; 339 } 340 341 /* 342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 343 */ 344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 345 { 346 struct ceph_cap *cap; 347 int mds = -1; 348 struct rb_node *p; 349 350 /* prefer mds with WR|BUFFER|EXCL caps */ 351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 352 cap = rb_entry(p, struct ceph_cap, ci_node); 353 mds = cap->mds; 354 if (cap->issued & (CEPH_CAP_FILE_WR | 355 CEPH_CAP_FILE_BUFFER | 356 CEPH_CAP_FILE_EXCL)) 357 break; 358 } 359 return mds; 360 } 361 362 int ceph_get_cap_mds(struct inode *inode) 363 { 364 int mds; 365 spin_lock(&inode->i_lock); 366 mds = __ceph_get_cap_mds(ceph_inode(inode)); 367 spin_unlock(&inode->i_lock); 368 return mds; 369 } 370 371 /* 372 * Called under i_lock. 373 */ 374 static void __insert_cap_node(struct ceph_inode_info *ci, 375 struct ceph_cap *new) 376 { 377 struct rb_node **p = &ci->i_caps.rb_node; 378 struct rb_node *parent = NULL; 379 struct ceph_cap *cap = NULL; 380 381 while (*p) { 382 parent = *p; 383 cap = rb_entry(parent, struct ceph_cap, ci_node); 384 if (new->mds < cap->mds) 385 p = &(*p)->rb_left; 386 else if (new->mds > cap->mds) 387 p = &(*p)->rb_right; 388 else 389 BUG(); 390 } 391 392 rb_link_node(&new->ci_node, parent, p); 393 rb_insert_color(&new->ci_node, &ci->i_caps); 394 } 395 396 /* 397 * (re)set cap hold timeouts, which control the delayed release 398 * of unused caps back to the MDS. Should be called on cap use. 399 */ 400 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 401 struct ceph_inode_info *ci) 402 { 403 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 404 405 ci->i_hold_caps_min = round_jiffies(jiffies + 406 ma->caps_wanted_delay_min * HZ); 407 ci->i_hold_caps_max = round_jiffies(jiffies + 408 ma->caps_wanted_delay_max * HZ); 409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 410 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 411 } 412 413 /* 414 * (Re)queue cap at the end of the delayed cap release list. 415 * 416 * If I_FLUSH is set, leave the inode at the front of the list. 417 * 418 * Caller holds i_lock 419 * -> we take mdsc->cap_delay_lock 420 */ 421 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 422 struct ceph_inode_info *ci) 423 { 424 __cap_set_timeouts(mdsc, ci); 425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 426 ci->i_ceph_flags, ci->i_hold_caps_max); 427 if (!mdsc->stopping) { 428 spin_lock(&mdsc->cap_delay_lock); 429 if (!list_empty(&ci->i_cap_delay_list)) { 430 if (ci->i_ceph_flags & CEPH_I_FLUSH) 431 goto no_change; 432 list_del_init(&ci->i_cap_delay_list); 433 } 434 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 435 no_change: 436 spin_unlock(&mdsc->cap_delay_lock); 437 } 438 } 439 440 /* 441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 442 * indicating we should send a cap message to flush dirty metadata 443 * asap, and move to the front of the delayed cap list. 444 */ 445 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 446 struct ceph_inode_info *ci) 447 { 448 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 449 spin_lock(&mdsc->cap_delay_lock); 450 ci->i_ceph_flags |= CEPH_I_FLUSH; 451 if (!list_empty(&ci->i_cap_delay_list)) 452 list_del_init(&ci->i_cap_delay_list); 453 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 454 spin_unlock(&mdsc->cap_delay_lock); 455 } 456 457 /* 458 * Cancel delayed work on cap. 459 * 460 * Caller must hold i_lock. 461 */ 462 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 463 struct ceph_inode_info *ci) 464 { 465 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 466 if (list_empty(&ci->i_cap_delay_list)) 467 return; 468 spin_lock(&mdsc->cap_delay_lock); 469 list_del_init(&ci->i_cap_delay_list); 470 spin_unlock(&mdsc->cap_delay_lock); 471 } 472 473 /* 474 * Common issue checks for add_cap, handle_cap_grant. 475 */ 476 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 477 unsigned issued) 478 { 479 unsigned had = __ceph_caps_issued(ci, NULL); 480 481 /* 482 * Each time we receive FILE_CACHE anew, we increment 483 * i_rdcache_gen. 484 */ 485 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 486 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 487 ci->i_rdcache_gen++; 488 489 /* 490 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 491 * don't know what happened to this directory while we didn't 492 * have the cap. 493 */ 494 if ((issued & CEPH_CAP_FILE_SHARED) && 495 (had & CEPH_CAP_FILE_SHARED) == 0) { 496 ci->i_shared_gen++; 497 if (S_ISDIR(ci->vfs_inode.i_mode)) { 498 dout(" marking %p NOT complete\n", &ci->vfs_inode); 499 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 500 } 501 } 502 } 503 504 /* 505 * Add a capability under the given MDS session. 506 * 507 * Caller should hold session snap_rwsem (read) and s_mutex. 508 * 509 * @fmode is the open file mode, if we are opening a file, otherwise 510 * it is < 0. (This is so we can atomically add the cap and add an 511 * open file reference to it.) 512 */ 513 int ceph_add_cap(struct inode *inode, 514 struct ceph_mds_session *session, u64 cap_id, 515 int fmode, unsigned issued, unsigned wanted, 516 unsigned seq, unsigned mseq, u64 realmino, int flags, 517 struct ceph_cap_reservation *caps_reservation) 518 { 519 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 520 struct ceph_inode_info *ci = ceph_inode(inode); 521 struct ceph_cap *new_cap = NULL; 522 struct ceph_cap *cap; 523 int mds = session->s_mds; 524 int actual_wanted; 525 526 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 527 session->s_mds, cap_id, ceph_cap_string(issued), seq); 528 529 /* 530 * If we are opening the file, include file mode wanted bits 531 * in wanted. 532 */ 533 if (fmode >= 0) 534 wanted |= ceph_caps_for_mode(fmode); 535 536 retry: 537 spin_lock(&inode->i_lock); 538 cap = __get_cap_for_mds(ci, mds); 539 if (!cap) { 540 if (new_cap) { 541 cap = new_cap; 542 new_cap = NULL; 543 } else { 544 spin_unlock(&inode->i_lock); 545 new_cap = get_cap(mdsc, caps_reservation); 546 if (new_cap == NULL) 547 return -ENOMEM; 548 goto retry; 549 } 550 551 cap->issued = 0; 552 cap->implemented = 0; 553 cap->mds = mds; 554 cap->mds_wanted = 0; 555 556 cap->ci = ci; 557 __insert_cap_node(ci, cap); 558 559 /* clear out old exporting info? (i.e. on cap import) */ 560 if (ci->i_cap_exporting_mds == mds) { 561 ci->i_cap_exporting_issued = 0; 562 ci->i_cap_exporting_mseq = 0; 563 ci->i_cap_exporting_mds = -1; 564 } 565 566 /* add to session cap list */ 567 cap->session = session; 568 spin_lock(&session->s_cap_lock); 569 list_add_tail(&cap->session_caps, &session->s_caps); 570 session->s_nr_caps++; 571 spin_unlock(&session->s_cap_lock); 572 } 573 574 if (!ci->i_snap_realm) { 575 /* 576 * add this inode to the appropriate snap realm 577 */ 578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 579 realmino); 580 if (realm) { 581 ceph_get_snap_realm(mdsc, realm); 582 spin_lock(&realm->inodes_with_caps_lock); 583 ci->i_snap_realm = realm; 584 list_add(&ci->i_snap_realm_item, 585 &realm->inodes_with_caps); 586 spin_unlock(&realm->inodes_with_caps_lock); 587 } else { 588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 589 realmino); 590 WARN_ON(!realm); 591 } 592 } 593 594 __check_cap_issue(ci, cap, issued); 595 596 /* 597 * If we are issued caps we don't want, or the mds' wanted 598 * value appears to be off, queue a check so we'll release 599 * later and/or update the mds wanted value. 600 */ 601 actual_wanted = __ceph_caps_wanted(ci); 602 if ((wanted & ~actual_wanted) || 603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 604 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 605 ceph_cap_string(issued), ceph_cap_string(wanted), 606 ceph_cap_string(actual_wanted)); 607 __cap_delay_requeue(mdsc, ci); 608 } 609 610 if (flags & CEPH_CAP_FLAG_AUTH) 611 ci->i_auth_cap = cap; 612 else if (ci->i_auth_cap == cap) 613 ci->i_auth_cap = NULL; 614 615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 617 ceph_cap_string(issued|cap->issued), seq, mds); 618 cap->cap_id = cap_id; 619 cap->issued = issued; 620 cap->implemented |= issued; 621 cap->mds_wanted |= wanted; 622 cap->seq = seq; 623 cap->issue_seq = seq; 624 cap->mseq = mseq; 625 cap->cap_gen = session->s_cap_gen; 626 627 if (fmode >= 0) 628 __ceph_get_fmode(ci, fmode); 629 spin_unlock(&inode->i_lock); 630 wake_up_all(&ci->i_cap_wq); 631 return 0; 632 } 633 634 /* 635 * Return true if cap has not timed out and belongs to the current 636 * generation of the MDS session (i.e. has not gone 'stale' due to 637 * us losing touch with the mds). 638 */ 639 static int __cap_is_valid(struct ceph_cap *cap) 640 { 641 unsigned long ttl; 642 u32 gen; 643 644 spin_lock(&cap->session->s_cap_lock); 645 gen = cap->session->s_cap_gen; 646 ttl = cap->session->s_cap_ttl; 647 spin_unlock(&cap->session->s_cap_lock); 648 649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 650 dout("__cap_is_valid %p cap %p issued %s " 651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 653 return 0; 654 } 655 656 return 1; 657 } 658 659 /* 660 * Return set of valid cap bits issued to us. Note that caps time 661 * out, and may be invalidated in bulk if the client session times out 662 * and session->s_cap_gen is bumped. 663 */ 664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 665 { 666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 667 struct ceph_cap *cap; 668 struct rb_node *p; 669 670 if (implemented) 671 *implemented = 0; 672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 673 cap = rb_entry(p, struct ceph_cap, ci_node); 674 if (!__cap_is_valid(cap)) 675 continue; 676 dout("__ceph_caps_issued %p cap %p issued %s\n", 677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 678 have |= cap->issued; 679 if (implemented) 680 *implemented |= cap->implemented; 681 } 682 return have; 683 } 684 685 /* 686 * Get cap bits issued by caps other than @ocap 687 */ 688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 689 { 690 int have = ci->i_snap_caps; 691 struct ceph_cap *cap; 692 struct rb_node *p; 693 694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 695 cap = rb_entry(p, struct ceph_cap, ci_node); 696 if (cap == ocap) 697 continue; 698 if (!__cap_is_valid(cap)) 699 continue; 700 have |= cap->issued; 701 } 702 return have; 703 } 704 705 /* 706 * Move a cap to the end of the LRU (oldest caps at list head, newest 707 * at list tail). 708 */ 709 static void __touch_cap(struct ceph_cap *cap) 710 { 711 struct ceph_mds_session *s = cap->session; 712 713 spin_lock(&s->s_cap_lock); 714 if (s->s_cap_iterator == NULL) { 715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 716 s->s_mds); 717 list_move_tail(&cap->session_caps, &s->s_caps); 718 } else { 719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 720 &cap->ci->vfs_inode, cap, s->s_mds); 721 } 722 spin_unlock(&s->s_cap_lock); 723 } 724 725 /* 726 * Check if we hold the given mask. If so, move the cap(s) to the 727 * front of their respective LRUs. (This is the preferred way for 728 * callers to check for caps they want.) 729 */ 730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 731 { 732 struct ceph_cap *cap; 733 struct rb_node *p; 734 int have = ci->i_snap_caps; 735 736 if ((have & mask) == mask) { 737 dout("__ceph_caps_issued_mask %p snap issued %s" 738 " (mask %s)\n", &ci->vfs_inode, 739 ceph_cap_string(have), 740 ceph_cap_string(mask)); 741 return 1; 742 } 743 744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 745 cap = rb_entry(p, struct ceph_cap, ci_node); 746 if (!__cap_is_valid(cap)) 747 continue; 748 if ((cap->issued & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p cap %p issued %s" 750 " (mask %s)\n", &ci->vfs_inode, cap, 751 ceph_cap_string(cap->issued), 752 ceph_cap_string(mask)); 753 if (touch) 754 __touch_cap(cap); 755 return 1; 756 } 757 758 /* does a combination of caps satisfy mask? */ 759 have |= cap->issued; 760 if ((have & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p combo issued %s" 762 " (mask %s)\n", &ci->vfs_inode, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) { 766 struct rb_node *q; 767 768 /* touch this + preceeding caps */ 769 __touch_cap(cap); 770 for (q = rb_first(&ci->i_caps); q != p; 771 q = rb_next(q)) { 772 cap = rb_entry(q, struct ceph_cap, 773 ci_node); 774 if (!__cap_is_valid(cap)) 775 continue; 776 __touch_cap(cap); 777 } 778 } 779 return 1; 780 } 781 } 782 783 return 0; 784 } 785 786 /* 787 * Return true if mask caps are currently being revoked by an MDS. 788 */ 789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 790 { 791 struct inode *inode = &ci->vfs_inode; 792 struct ceph_cap *cap; 793 struct rb_node *p; 794 int ret = 0; 795 796 spin_lock(&inode->i_lock); 797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 798 cap = rb_entry(p, struct ceph_cap, ci_node); 799 if (__cap_is_valid(cap) && 800 (cap->implemented & ~cap->issued & mask)) { 801 ret = 1; 802 break; 803 } 804 } 805 spin_unlock(&inode->i_lock); 806 dout("ceph_caps_revoking %p %s = %d\n", inode, 807 ceph_cap_string(mask), ret); 808 return ret; 809 } 810 811 int __ceph_caps_used(struct ceph_inode_info *ci) 812 { 813 int used = 0; 814 if (ci->i_pin_ref) 815 used |= CEPH_CAP_PIN; 816 if (ci->i_rd_ref) 817 used |= CEPH_CAP_FILE_RD; 818 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 819 used |= CEPH_CAP_FILE_CACHE; 820 if (ci->i_wr_ref) 821 used |= CEPH_CAP_FILE_WR; 822 if (ci->i_wrbuffer_ref) 823 used |= CEPH_CAP_FILE_BUFFER; 824 return used; 825 } 826 827 /* 828 * wanted, by virtue of open file modes 829 */ 830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 831 { 832 int want = 0; 833 int mode; 834 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 835 if (ci->i_nr_by_mode[mode]) 836 want |= ceph_caps_for_mode(mode); 837 return want; 838 } 839 840 /* 841 * Return caps we have registered with the MDS(s) as 'wanted'. 842 */ 843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 844 { 845 struct ceph_cap *cap; 846 struct rb_node *p; 847 int mds_wanted = 0; 848 849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 850 cap = rb_entry(p, struct ceph_cap, ci_node); 851 if (!__cap_is_valid(cap)) 852 continue; 853 mds_wanted |= cap->mds_wanted; 854 } 855 return mds_wanted; 856 } 857 858 /* 859 * called under i_lock 860 */ 861 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 862 { 863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 864 } 865 866 /* 867 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 868 * 869 * caller should hold i_lock. 870 * caller will not hold session s_mutex if called from destroy_inode. 871 */ 872 void __ceph_remove_cap(struct ceph_cap *cap) 873 { 874 struct ceph_mds_session *session = cap->session; 875 struct ceph_inode_info *ci = cap->ci; 876 struct ceph_mds_client *mdsc = 877 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 878 int removed = 0; 879 880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 881 882 /* remove from session list */ 883 spin_lock(&session->s_cap_lock); 884 if (session->s_cap_iterator == cap) { 885 /* not yet, we are iterating over this very cap */ 886 dout("__ceph_remove_cap delaying %p removal from session %p\n", 887 cap, cap->session); 888 } else { 889 list_del_init(&cap->session_caps); 890 session->s_nr_caps--; 891 cap->session = NULL; 892 removed = 1; 893 } 894 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 895 cap->ci = NULL; 896 spin_unlock(&session->s_cap_lock); 897 898 /* remove from inode list */ 899 rb_erase(&cap->ci_node, &ci->i_caps); 900 if (ci->i_auth_cap == cap) 901 ci->i_auth_cap = NULL; 902 903 if (removed) 904 ceph_put_cap(mdsc, cap); 905 906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 907 struct ceph_snap_realm *realm = ci->i_snap_realm; 908 spin_lock(&realm->inodes_with_caps_lock); 909 list_del_init(&ci->i_snap_realm_item); 910 ci->i_snap_realm_counter++; 911 ci->i_snap_realm = NULL; 912 spin_unlock(&realm->inodes_with_caps_lock); 913 ceph_put_snap_realm(mdsc, realm); 914 } 915 if (!__ceph_is_any_real_caps(ci)) 916 __cap_delay_cancel(mdsc, ci); 917 } 918 919 /* 920 * Build and send a cap message to the given MDS. 921 * 922 * Caller should be holding s_mutex. 923 */ 924 static int send_cap_msg(struct ceph_mds_session *session, 925 u64 ino, u64 cid, int op, 926 int caps, int wanted, int dirty, 927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 928 u64 size, u64 max_size, 929 struct timespec *mtime, struct timespec *atime, 930 u64 time_warp_seq, 931 uid_t uid, gid_t gid, mode_t mode, 932 u64 xattr_version, 933 struct ceph_buffer *xattrs_buf, 934 u64 follows) 935 { 936 struct ceph_mds_caps *fc; 937 struct ceph_msg *msg; 938 939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 940 " seq %u/%u mseq %u follows %lld size %llu/%llu" 941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 943 ceph_cap_string(dirty), 944 seq, issue_seq, mseq, follows, size, max_size, 945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 946 947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 948 if (!msg) 949 return -ENOMEM; 950 951 msg->hdr.tid = cpu_to_le64(flush_tid); 952 953 fc = msg->front.iov_base; 954 memset(fc, 0, sizeof(*fc)); 955 956 fc->cap_id = cpu_to_le64(cid); 957 fc->op = cpu_to_le32(op); 958 fc->seq = cpu_to_le32(seq); 959 fc->issue_seq = cpu_to_le32(issue_seq); 960 fc->migrate_seq = cpu_to_le32(mseq); 961 fc->caps = cpu_to_le32(caps); 962 fc->wanted = cpu_to_le32(wanted); 963 fc->dirty = cpu_to_le32(dirty); 964 fc->ino = cpu_to_le64(ino); 965 fc->snap_follows = cpu_to_le64(follows); 966 967 fc->size = cpu_to_le64(size); 968 fc->max_size = cpu_to_le64(max_size); 969 if (mtime) 970 ceph_encode_timespec(&fc->mtime, mtime); 971 if (atime) 972 ceph_encode_timespec(&fc->atime, atime); 973 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 974 975 fc->uid = cpu_to_le32(uid); 976 fc->gid = cpu_to_le32(gid); 977 fc->mode = cpu_to_le32(mode); 978 979 fc->xattr_version = cpu_to_le64(xattr_version); 980 if (xattrs_buf) { 981 msg->middle = ceph_buffer_get(xattrs_buf); 982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 984 } 985 986 ceph_con_send(&session->s_con, msg); 987 return 0; 988 } 989 990 static void __queue_cap_release(struct ceph_mds_session *session, 991 u64 ino, u64 cap_id, u32 migrate_seq, 992 u32 issue_seq) 993 { 994 struct ceph_msg *msg; 995 struct ceph_mds_cap_release *head; 996 struct ceph_mds_cap_item *item; 997 998 spin_lock(&session->s_cap_lock); 999 BUG_ON(!session->s_num_cap_releases); 1000 msg = list_first_entry(&session->s_cap_releases, 1001 struct ceph_msg, list_head); 1002 1003 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1004 ino, session->s_mds, msg, session->s_num_cap_releases); 1005 1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1007 head = msg->front.iov_base; 1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1009 item = msg->front.iov_base + msg->front.iov_len; 1010 item->ino = cpu_to_le64(ino); 1011 item->cap_id = cpu_to_le64(cap_id); 1012 item->migrate_seq = cpu_to_le32(migrate_seq); 1013 item->seq = cpu_to_le32(issue_seq); 1014 1015 session->s_num_cap_releases--; 1016 1017 msg->front.iov_len += sizeof(*item); 1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1019 dout(" release msg %p full\n", msg); 1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1021 } else { 1022 dout(" release msg %p at %d/%d (%d)\n", msg, 1023 (int)le32_to_cpu(head->num), 1024 (int)CEPH_CAPS_PER_RELEASE, 1025 (int)msg->front.iov_len); 1026 } 1027 spin_unlock(&session->s_cap_lock); 1028 } 1029 1030 /* 1031 * Queue cap releases when an inode is dropped from our cache. Since 1032 * inode is about to be destroyed, there is no need for i_lock. 1033 */ 1034 void ceph_queue_caps_release(struct inode *inode) 1035 { 1036 struct ceph_inode_info *ci = ceph_inode(inode); 1037 struct rb_node *p; 1038 1039 p = rb_first(&ci->i_caps); 1040 while (p) { 1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1042 struct ceph_mds_session *session = cap->session; 1043 1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1045 cap->mseq, cap->issue_seq); 1046 p = rb_next(p); 1047 __ceph_remove_cap(cap); 1048 } 1049 } 1050 1051 /* 1052 * Send a cap msg on the given inode. Update our caps state, then 1053 * drop i_lock and send the message. 1054 * 1055 * Make note of max_size reported/requested from mds, revoked caps 1056 * that have now been implemented. 1057 * 1058 * Make half-hearted attempt ot to invalidate page cache if we are 1059 * dropping RDCACHE. Note that this will leave behind locked pages 1060 * that we'll then need to deal with elsewhere. 1061 * 1062 * Return non-zero if delayed release, or we experienced an error 1063 * such that the caller should requeue + retry later. 1064 * 1065 * called with i_lock, then drops it. 1066 * caller should hold snap_rwsem (read), s_mutex. 1067 */ 1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1069 int op, int used, int want, int retain, int flushing, 1070 unsigned *pflush_tid) 1071 __releases(cap->ci->vfs_inode->i_lock) 1072 { 1073 struct ceph_inode_info *ci = cap->ci; 1074 struct inode *inode = &ci->vfs_inode; 1075 u64 cap_id = cap->cap_id; 1076 int held, revoking, dropping, keep; 1077 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1078 u64 size, max_size; 1079 struct timespec mtime, atime; 1080 int wake = 0; 1081 mode_t mode; 1082 uid_t uid; 1083 gid_t gid; 1084 struct ceph_mds_session *session; 1085 u64 xattr_version = 0; 1086 struct ceph_buffer *xattr_blob = NULL; 1087 int delayed = 0; 1088 u64 flush_tid = 0; 1089 int i; 1090 int ret; 1091 1092 held = cap->issued | cap->implemented; 1093 revoking = cap->implemented & ~cap->issued; 1094 retain &= ~revoking; 1095 dropping = cap->issued & ~retain; 1096 1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1098 inode, cap, cap->session, 1099 ceph_cap_string(held), ceph_cap_string(held & retain), 1100 ceph_cap_string(revoking)); 1101 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1102 1103 session = cap->session; 1104 1105 /* don't release wanted unless we've waited a bit. */ 1106 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1107 time_before(jiffies, ci->i_hold_caps_min)) { 1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1109 ceph_cap_string(cap->issued), 1110 ceph_cap_string(cap->issued & retain), 1111 ceph_cap_string(cap->mds_wanted), 1112 ceph_cap_string(want)); 1113 want |= cap->mds_wanted; 1114 retain |= cap->issued; 1115 delayed = 1; 1116 } 1117 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1118 1119 cap->issued &= retain; /* drop bits we don't want */ 1120 if (cap->implemented & ~cap->issued) { 1121 /* 1122 * Wake up any waiters on wanted -> needed transition. 1123 * This is due to the weird transition from buffered 1124 * to sync IO... we need to flush dirty pages _before_ 1125 * allowing sync writes to avoid reordering. 1126 */ 1127 wake = 1; 1128 } 1129 cap->implemented &= cap->issued | used; 1130 cap->mds_wanted = want; 1131 1132 if (flushing) { 1133 /* 1134 * assign a tid for flush operations so we can avoid 1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1136 * clean type races. track latest tid for every bit 1137 * so we can handle flush AxFw, flush Fw, and have the 1138 * first ack clean Ax. 1139 */ 1140 flush_tid = ++ci->i_cap_flush_last_tid; 1141 if (pflush_tid) 1142 *pflush_tid = flush_tid; 1143 dout(" cap_flush_tid %d\n", (int)flush_tid); 1144 for (i = 0; i < CEPH_CAP_BITS; i++) 1145 if (flushing & (1 << i)) 1146 ci->i_cap_flush_tid[i] = flush_tid; 1147 1148 follows = ci->i_head_snapc->seq; 1149 } else { 1150 follows = 0; 1151 } 1152 1153 keep = cap->implemented; 1154 seq = cap->seq; 1155 issue_seq = cap->issue_seq; 1156 mseq = cap->mseq; 1157 size = inode->i_size; 1158 ci->i_reported_size = size; 1159 max_size = ci->i_wanted_max_size; 1160 ci->i_requested_max_size = max_size; 1161 mtime = inode->i_mtime; 1162 atime = inode->i_atime; 1163 time_warp_seq = ci->i_time_warp_seq; 1164 uid = inode->i_uid; 1165 gid = inode->i_gid; 1166 mode = inode->i_mode; 1167 1168 if (flushing & CEPH_CAP_XATTR_EXCL) { 1169 __ceph_build_xattrs_blob(ci); 1170 xattr_blob = ci->i_xattrs.blob; 1171 xattr_version = ci->i_xattrs.version; 1172 } 1173 1174 spin_unlock(&inode->i_lock); 1175 1176 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1177 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1178 size, max_size, &mtime, &atime, time_warp_seq, 1179 uid, gid, mode, xattr_version, xattr_blob, 1180 follows); 1181 if (ret < 0) { 1182 dout("error sending cap msg, must requeue %p\n", inode); 1183 delayed = 1; 1184 } 1185 1186 if (wake) 1187 wake_up_all(&ci->i_cap_wq); 1188 1189 return delayed; 1190 } 1191 1192 /* 1193 * When a snapshot is taken, clients accumulate dirty metadata on 1194 * inodes with capabilities in ceph_cap_snaps to describe the file 1195 * state at the time the snapshot was taken. This must be flushed 1196 * asynchronously back to the MDS once sync writes complete and dirty 1197 * data is written out. 1198 * 1199 * Unless @again is true, skip cap_snaps that were already sent to 1200 * the MDS (i.e., during this session). 1201 * 1202 * Called under i_lock. Takes s_mutex as needed. 1203 */ 1204 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1205 struct ceph_mds_session **psession, 1206 int again) 1207 __releases(ci->vfs_inode->i_lock) 1208 __acquires(ci->vfs_inode->i_lock) 1209 { 1210 struct inode *inode = &ci->vfs_inode; 1211 int mds; 1212 struct ceph_cap_snap *capsnap; 1213 u32 mseq; 1214 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1215 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1216 session->s_mutex */ 1217 u64 next_follows = 0; /* keep track of how far we've gotten through the 1218 i_cap_snaps list, and skip these entries next time 1219 around to avoid an infinite loop */ 1220 1221 if (psession) 1222 session = *psession; 1223 1224 dout("__flush_snaps %p\n", inode); 1225 retry: 1226 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1227 /* avoid an infiniute loop after retry */ 1228 if (capsnap->follows < next_follows) 1229 continue; 1230 /* 1231 * we need to wait for sync writes to complete and for dirty 1232 * pages to be written out. 1233 */ 1234 if (capsnap->dirty_pages || capsnap->writing) 1235 break; 1236 1237 /* 1238 * if cap writeback already occurred, we should have dropped 1239 * the capsnap in ceph_put_wrbuffer_cap_refs. 1240 */ 1241 BUG_ON(capsnap->dirty == 0); 1242 1243 /* pick mds, take s_mutex */ 1244 if (ci->i_auth_cap == NULL) { 1245 dout("no auth cap (migrating?), doing nothing\n"); 1246 goto out; 1247 } 1248 1249 /* only flush each capsnap once */ 1250 if (!again && !list_empty(&capsnap->flushing_item)) { 1251 dout("already flushed %p, skipping\n", capsnap); 1252 continue; 1253 } 1254 1255 mds = ci->i_auth_cap->session->s_mds; 1256 mseq = ci->i_auth_cap->mseq; 1257 1258 if (session && session->s_mds != mds) { 1259 dout("oops, wrong session %p mutex\n", session); 1260 mutex_unlock(&session->s_mutex); 1261 ceph_put_mds_session(session); 1262 session = NULL; 1263 } 1264 if (!session) { 1265 spin_unlock(&inode->i_lock); 1266 mutex_lock(&mdsc->mutex); 1267 session = __ceph_lookup_mds_session(mdsc, mds); 1268 mutex_unlock(&mdsc->mutex); 1269 if (session) { 1270 dout("inverting session/ino locks on %p\n", 1271 session); 1272 mutex_lock(&session->s_mutex); 1273 } 1274 /* 1275 * if session == NULL, we raced against a cap 1276 * deletion or migration. retry, and we'll 1277 * get a better @mds value next time. 1278 */ 1279 spin_lock(&inode->i_lock); 1280 goto retry; 1281 } 1282 1283 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1284 atomic_inc(&capsnap->nref); 1285 if (!list_empty(&capsnap->flushing_item)) 1286 list_del_init(&capsnap->flushing_item); 1287 list_add_tail(&capsnap->flushing_item, 1288 &session->s_cap_snaps_flushing); 1289 spin_unlock(&inode->i_lock); 1290 1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1292 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1293 send_cap_msg(session, ceph_vino(inode).ino, 0, 1294 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1295 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1296 capsnap->size, 0, 1297 &capsnap->mtime, &capsnap->atime, 1298 capsnap->time_warp_seq, 1299 capsnap->uid, capsnap->gid, capsnap->mode, 1300 capsnap->xattr_version, capsnap->xattr_blob, 1301 capsnap->follows); 1302 1303 next_follows = capsnap->follows + 1; 1304 ceph_put_cap_snap(capsnap); 1305 1306 spin_lock(&inode->i_lock); 1307 goto retry; 1308 } 1309 1310 /* we flushed them all; remove this inode from the queue */ 1311 spin_lock(&mdsc->snap_flush_lock); 1312 list_del_init(&ci->i_snap_flush_item); 1313 spin_unlock(&mdsc->snap_flush_lock); 1314 1315 out: 1316 if (psession) 1317 *psession = session; 1318 else if (session) { 1319 mutex_unlock(&session->s_mutex); 1320 ceph_put_mds_session(session); 1321 } 1322 } 1323 1324 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1325 { 1326 struct inode *inode = &ci->vfs_inode; 1327 1328 spin_lock(&inode->i_lock); 1329 __ceph_flush_snaps(ci, NULL, 0); 1330 spin_unlock(&inode->i_lock); 1331 } 1332 1333 /* 1334 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1335 * list. 1336 */ 1337 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1338 { 1339 struct ceph_mds_client *mdsc = 1340 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1341 struct inode *inode = &ci->vfs_inode; 1342 int was = ci->i_dirty_caps; 1343 int dirty = 0; 1344 1345 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1346 ceph_cap_string(mask), ceph_cap_string(was), 1347 ceph_cap_string(was | mask)); 1348 ci->i_dirty_caps |= mask; 1349 if (was == 0) { 1350 if (!ci->i_head_snapc) 1351 ci->i_head_snapc = ceph_get_snap_context( 1352 ci->i_snap_realm->cached_context); 1353 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode, 1354 ci->i_head_snapc); 1355 BUG_ON(!list_empty(&ci->i_dirty_item)); 1356 spin_lock(&mdsc->cap_dirty_lock); 1357 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1358 spin_unlock(&mdsc->cap_dirty_lock); 1359 if (ci->i_flushing_caps == 0) { 1360 igrab(inode); 1361 dirty |= I_DIRTY_SYNC; 1362 } 1363 } 1364 BUG_ON(list_empty(&ci->i_dirty_item)); 1365 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1366 (mask & CEPH_CAP_FILE_BUFFER)) 1367 dirty |= I_DIRTY_DATASYNC; 1368 if (dirty) 1369 __mark_inode_dirty(inode, dirty); 1370 __cap_delay_requeue(mdsc, ci); 1371 } 1372 1373 /* 1374 * Add dirty inode to the flushing list. Assigned a seq number so we 1375 * can wait for caps to flush without starving. 1376 * 1377 * Called under i_lock. 1378 */ 1379 static int __mark_caps_flushing(struct inode *inode, 1380 struct ceph_mds_session *session) 1381 { 1382 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1383 struct ceph_inode_info *ci = ceph_inode(inode); 1384 int flushing; 1385 1386 BUG_ON(ci->i_dirty_caps == 0); 1387 BUG_ON(list_empty(&ci->i_dirty_item)); 1388 1389 flushing = ci->i_dirty_caps; 1390 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1391 ceph_cap_string(flushing), 1392 ceph_cap_string(ci->i_flushing_caps), 1393 ceph_cap_string(ci->i_flushing_caps | flushing)); 1394 ci->i_flushing_caps |= flushing; 1395 ci->i_dirty_caps = 0; 1396 dout(" inode %p now !dirty\n", inode); 1397 1398 spin_lock(&mdsc->cap_dirty_lock); 1399 list_del_init(&ci->i_dirty_item); 1400 1401 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1402 if (list_empty(&ci->i_flushing_item)) { 1403 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1404 mdsc->num_cap_flushing++; 1405 dout(" inode %p now flushing seq %lld\n", inode, 1406 ci->i_cap_flush_seq); 1407 } else { 1408 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1409 dout(" inode %p now flushing (more) seq %lld\n", inode, 1410 ci->i_cap_flush_seq); 1411 } 1412 spin_unlock(&mdsc->cap_dirty_lock); 1413 1414 return flushing; 1415 } 1416 1417 /* 1418 * try to invalidate mapping pages without blocking. 1419 */ 1420 static int try_nonblocking_invalidate(struct inode *inode) 1421 { 1422 struct ceph_inode_info *ci = ceph_inode(inode); 1423 u32 invalidating_gen = ci->i_rdcache_gen; 1424 1425 spin_unlock(&inode->i_lock); 1426 invalidate_mapping_pages(&inode->i_data, 0, -1); 1427 spin_lock(&inode->i_lock); 1428 1429 if (inode->i_data.nrpages == 0 && 1430 invalidating_gen == ci->i_rdcache_gen) { 1431 /* success. */ 1432 dout("try_nonblocking_invalidate %p success\n", inode); 1433 /* save any racing async invalidate some trouble */ 1434 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1435 return 0; 1436 } 1437 dout("try_nonblocking_invalidate %p failed\n", inode); 1438 return -1; 1439 } 1440 1441 /* 1442 * Swiss army knife function to examine currently used and wanted 1443 * versus held caps. Release, flush, ack revoked caps to mds as 1444 * appropriate. 1445 * 1446 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1447 * cap release further. 1448 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1449 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1450 * further delay. 1451 */ 1452 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1453 struct ceph_mds_session *session) 1454 { 1455 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1456 struct ceph_mds_client *mdsc = fsc->mdsc; 1457 struct inode *inode = &ci->vfs_inode; 1458 struct ceph_cap *cap; 1459 int file_wanted, used; 1460 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1461 int issued, implemented, want, retain, revoking, flushing = 0; 1462 int mds = -1; /* keep track of how far we've gone through i_caps list 1463 to avoid an infinite loop on retry */ 1464 struct rb_node *p; 1465 int tried_invalidate = 0; 1466 int delayed = 0, sent = 0, force_requeue = 0, num; 1467 int queue_invalidate = 0; 1468 int is_delayed = flags & CHECK_CAPS_NODELAY; 1469 1470 /* if we are unmounting, flush any unused caps immediately. */ 1471 if (mdsc->stopping) 1472 is_delayed = 1; 1473 1474 spin_lock(&inode->i_lock); 1475 1476 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1477 flags |= CHECK_CAPS_FLUSH; 1478 1479 /* flush snaps first time around only */ 1480 if (!list_empty(&ci->i_cap_snaps)) 1481 __ceph_flush_snaps(ci, &session, 0); 1482 goto retry_locked; 1483 retry: 1484 spin_lock(&inode->i_lock); 1485 retry_locked: 1486 file_wanted = __ceph_caps_file_wanted(ci); 1487 used = __ceph_caps_used(ci); 1488 want = file_wanted | used; 1489 issued = __ceph_caps_issued(ci, &implemented); 1490 revoking = implemented & ~issued; 1491 1492 retain = want | CEPH_CAP_PIN; 1493 if (!mdsc->stopping && inode->i_nlink > 0) { 1494 if (want) { 1495 retain |= CEPH_CAP_ANY; /* be greedy */ 1496 } else { 1497 retain |= CEPH_CAP_ANY_SHARED; 1498 /* 1499 * keep RD only if we didn't have the file open RW, 1500 * because then the mds would revoke it anyway to 1501 * journal max_size=0. 1502 */ 1503 if (ci->i_max_size == 0) 1504 retain |= CEPH_CAP_ANY_RD; 1505 } 1506 } 1507 1508 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1509 " issued %s revoking %s retain %s %s%s%s\n", inode, 1510 ceph_cap_string(file_wanted), 1511 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1512 ceph_cap_string(ci->i_flushing_caps), 1513 ceph_cap_string(issued), ceph_cap_string(revoking), 1514 ceph_cap_string(retain), 1515 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1516 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1517 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1518 1519 /* 1520 * If we no longer need to hold onto old our caps, and we may 1521 * have cached pages, but don't want them, then try to invalidate. 1522 * If we fail, it's because pages are locked.... try again later. 1523 */ 1524 if ((!is_delayed || mdsc->stopping) && 1525 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1526 inode->i_data.nrpages && /* have cached pages */ 1527 (file_wanted == 0 || /* no open files */ 1528 (revoking & (CEPH_CAP_FILE_CACHE| 1529 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1530 !tried_invalidate) { 1531 dout("check_caps trying to invalidate on %p\n", inode); 1532 if (try_nonblocking_invalidate(inode) < 0) { 1533 if (revoking & (CEPH_CAP_FILE_CACHE| 1534 CEPH_CAP_FILE_LAZYIO)) { 1535 dout("check_caps queuing invalidate\n"); 1536 queue_invalidate = 1; 1537 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1538 } else { 1539 dout("check_caps failed to invalidate pages\n"); 1540 /* we failed to invalidate pages. check these 1541 caps again later. */ 1542 force_requeue = 1; 1543 __cap_set_timeouts(mdsc, ci); 1544 } 1545 } 1546 tried_invalidate = 1; 1547 goto retry_locked; 1548 } 1549 1550 num = 0; 1551 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1552 cap = rb_entry(p, struct ceph_cap, ci_node); 1553 num++; 1554 1555 /* avoid looping forever */ 1556 if (mds >= cap->mds || 1557 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1558 continue; 1559 1560 /* NOTE: no side-effects allowed, until we take s_mutex */ 1561 1562 revoking = cap->implemented & ~cap->issued; 1563 dout(" mds%d cap %p issued %s implemented %s revoking %s\n", 1564 cap->mds, cap, ceph_cap_string(cap->issued), 1565 ceph_cap_string(cap->implemented), 1566 ceph_cap_string(revoking)); 1567 1568 if (cap == ci->i_auth_cap && 1569 (cap->issued & CEPH_CAP_FILE_WR)) { 1570 /* request larger max_size from MDS? */ 1571 if (ci->i_wanted_max_size > ci->i_max_size && 1572 ci->i_wanted_max_size > ci->i_requested_max_size) { 1573 dout("requesting new max_size\n"); 1574 goto ack; 1575 } 1576 1577 /* approaching file_max? */ 1578 if ((inode->i_size << 1) >= ci->i_max_size && 1579 (ci->i_reported_size << 1) < ci->i_max_size) { 1580 dout("i_size approaching max_size\n"); 1581 goto ack; 1582 } 1583 } 1584 /* flush anything dirty? */ 1585 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1586 ci->i_dirty_caps) { 1587 dout("flushing dirty caps\n"); 1588 goto ack; 1589 } 1590 1591 /* completed revocation? going down and there are no caps? */ 1592 if (revoking && (revoking & used) == 0) { 1593 dout("completed revocation of %s\n", 1594 ceph_cap_string(cap->implemented & ~cap->issued)); 1595 goto ack; 1596 } 1597 1598 /* want more caps from mds? */ 1599 if (want & ~(cap->mds_wanted | cap->issued)) 1600 goto ack; 1601 1602 /* things we might delay */ 1603 if ((cap->issued & ~retain) == 0 && 1604 cap->mds_wanted == want) 1605 continue; /* nope, all good */ 1606 1607 if (is_delayed) 1608 goto ack; 1609 1610 /* delay? */ 1611 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1612 time_before(jiffies, ci->i_hold_caps_max)) { 1613 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1614 ceph_cap_string(cap->issued), 1615 ceph_cap_string(cap->issued & retain), 1616 ceph_cap_string(cap->mds_wanted), 1617 ceph_cap_string(want)); 1618 delayed++; 1619 continue; 1620 } 1621 1622 ack: 1623 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1624 dout(" skipping %p I_NOFLUSH set\n", inode); 1625 continue; 1626 } 1627 1628 if (session && session != cap->session) { 1629 dout("oops, wrong session %p mutex\n", session); 1630 mutex_unlock(&session->s_mutex); 1631 session = NULL; 1632 } 1633 if (!session) { 1634 session = cap->session; 1635 if (mutex_trylock(&session->s_mutex) == 0) { 1636 dout("inverting session/ino locks on %p\n", 1637 session); 1638 spin_unlock(&inode->i_lock); 1639 if (took_snap_rwsem) { 1640 up_read(&mdsc->snap_rwsem); 1641 took_snap_rwsem = 0; 1642 } 1643 mutex_lock(&session->s_mutex); 1644 goto retry; 1645 } 1646 } 1647 /* take snap_rwsem after session mutex */ 1648 if (!took_snap_rwsem) { 1649 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1650 dout("inverting snap/in locks on %p\n", 1651 inode); 1652 spin_unlock(&inode->i_lock); 1653 down_read(&mdsc->snap_rwsem); 1654 took_snap_rwsem = 1; 1655 goto retry; 1656 } 1657 took_snap_rwsem = 1; 1658 } 1659 1660 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1661 flushing = __mark_caps_flushing(inode, session); 1662 else 1663 flushing = 0; 1664 1665 mds = cap->mds; /* remember mds, so we don't repeat */ 1666 sent++; 1667 1668 /* __send_cap drops i_lock */ 1669 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1670 retain, flushing, NULL); 1671 goto retry; /* retake i_lock and restart our cap scan. */ 1672 } 1673 1674 /* 1675 * Reschedule delayed caps release if we delayed anything, 1676 * otherwise cancel. 1677 */ 1678 if (delayed && is_delayed) 1679 force_requeue = 1; /* __send_cap delayed release; requeue */ 1680 if (!delayed && !is_delayed) 1681 __cap_delay_cancel(mdsc, ci); 1682 else if (!is_delayed || force_requeue) 1683 __cap_delay_requeue(mdsc, ci); 1684 1685 spin_unlock(&inode->i_lock); 1686 1687 if (queue_invalidate) 1688 ceph_queue_invalidate(inode); 1689 1690 if (session) 1691 mutex_unlock(&session->s_mutex); 1692 if (took_snap_rwsem) 1693 up_read(&mdsc->snap_rwsem); 1694 } 1695 1696 /* 1697 * Try to flush dirty caps back to the auth mds. 1698 */ 1699 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1700 unsigned *flush_tid) 1701 { 1702 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1703 struct ceph_inode_info *ci = ceph_inode(inode); 1704 int unlock_session = session ? 0 : 1; 1705 int flushing = 0; 1706 1707 retry: 1708 spin_lock(&inode->i_lock); 1709 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1710 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1711 goto out; 1712 } 1713 if (ci->i_dirty_caps && ci->i_auth_cap) { 1714 struct ceph_cap *cap = ci->i_auth_cap; 1715 int used = __ceph_caps_used(ci); 1716 int want = __ceph_caps_wanted(ci); 1717 int delayed; 1718 1719 if (!session) { 1720 spin_unlock(&inode->i_lock); 1721 session = cap->session; 1722 mutex_lock(&session->s_mutex); 1723 goto retry; 1724 } 1725 BUG_ON(session != cap->session); 1726 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1727 goto out; 1728 1729 flushing = __mark_caps_flushing(inode, session); 1730 1731 /* __send_cap drops i_lock */ 1732 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1733 cap->issued | cap->implemented, flushing, 1734 flush_tid); 1735 if (!delayed) 1736 goto out_unlocked; 1737 1738 spin_lock(&inode->i_lock); 1739 __cap_delay_requeue(mdsc, ci); 1740 } 1741 out: 1742 spin_unlock(&inode->i_lock); 1743 out_unlocked: 1744 if (session && unlock_session) 1745 mutex_unlock(&session->s_mutex); 1746 return flushing; 1747 } 1748 1749 /* 1750 * Return true if we've flushed caps through the given flush_tid. 1751 */ 1752 static int caps_are_flushed(struct inode *inode, unsigned tid) 1753 { 1754 struct ceph_inode_info *ci = ceph_inode(inode); 1755 int i, ret = 1; 1756 1757 spin_lock(&inode->i_lock); 1758 for (i = 0; i < CEPH_CAP_BITS; i++) 1759 if ((ci->i_flushing_caps & (1 << i)) && 1760 ci->i_cap_flush_tid[i] <= tid) { 1761 /* still flushing this bit */ 1762 ret = 0; 1763 break; 1764 } 1765 spin_unlock(&inode->i_lock); 1766 return ret; 1767 } 1768 1769 /* 1770 * Wait on any unsafe replies for the given inode. First wait on the 1771 * newest request, and make that the upper bound. Then, if there are 1772 * more requests, keep waiting on the oldest as long as it is still older 1773 * than the original request. 1774 */ 1775 static void sync_write_wait(struct inode *inode) 1776 { 1777 struct ceph_inode_info *ci = ceph_inode(inode); 1778 struct list_head *head = &ci->i_unsafe_writes; 1779 struct ceph_osd_request *req; 1780 u64 last_tid; 1781 1782 spin_lock(&ci->i_unsafe_lock); 1783 if (list_empty(head)) 1784 goto out; 1785 1786 /* set upper bound as _last_ entry in chain */ 1787 req = list_entry(head->prev, struct ceph_osd_request, 1788 r_unsafe_item); 1789 last_tid = req->r_tid; 1790 1791 do { 1792 ceph_osdc_get_request(req); 1793 spin_unlock(&ci->i_unsafe_lock); 1794 dout("sync_write_wait on tid %llu (until %llu)\n", 1795 req->r_tid, last_tid); 1796 wait_for_completion(&req->r_safe_completion); 1797 spin_lock(&ci->i_unsafe_lock); 1798 ceph_osdc_put_request(req); 1799 1800 /* 1801 * from here on look at first entry in chain, since we 1802 * only want to wait for anything older than last_tid 1803 */ 1804 if (list_empty(head)) 1805 break; 1806 req = list_entry(head->next, struct ceph_osd_request, 1807 r_unsafe_item); 1808 } while (req->r_tid < last_tid); 1809 out: 1810 spin_unlock(&ci->i_unsafe_lock); 1811 } 1812 1813 int ceph_fsync(struct file *file, int datasync) 1814 { 1815 struct inode *inode = file->f_mapping->host; 1816 struct ceph_inode_info *ci = ceph_inode(inode); 1817 unsigned flush_tid; 1818 int ret; 1819 int dirty; 1820 1821 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1822 sync_write_wait(inode); 1823 1824 ret = filemap_write_and_wait(inode->i_mapping); 1825 if (ret < 0) 1826 return ret; 1827 1828 dirty = try_flush_caps(inode, NULL, &flush_tid); 1829 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1830 1831 /* 1832 * only wait on non-file metadata writeback (the mds 1833 * can recover size and mtime, so we don't need to 1834 * wait for that) 1835 */ 1836 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1837 dout("fsync waiting for flush_tid %u\n", flush_tid); 1838 ret = wait_event_interruptible(ci->i_cap_wq, 1839 caps_are_flushed(inode, flush_tid)); 1840 } 1841 1842 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1843 return ret; 1844 } 1845 1846 /* 1847 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1848 * queue inode for flush but don't do so immediately, because we can 1849 * get by with fewer MDS messages if we wait for data writeback to 1850 * complete first. 1851 */ 1852 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1853 { 1854 struct ceph_inode_info *ci = ceph_inode(inode); 1855 unsigned flush_tid; 1856 int err = 0; 1857 int dirty; 1858 int wait = wbc->sync_mode == WB_SYNC_ALL; 1859 1860 dout("write_inode %p wait=%d\n", inode, wait); 1861 if (wait) { 1862 dirty = try_flush_caps(inode, NULL, &flush_tid); 1863 if (dirty) 1864 err = wait_event_interruptible(ci->i_cap_wq, 1865 caps_are_flushed(inode, flush_tid)); 1866 } else { 1867 struct ceph_mds_client *mdsc = 1868 ceph_sb_to_client(inode->i_sb)->mdsc; 1869 1870 spin_lock(&inode->i_lock); 1871 if (__ceph_caps_dirty(ci)) 1872 __cap_delay_requeue_front(mdsc, ci); 1873 spin_unlock(&inode->i_lock); 1874 } 1875 return err; 1876 } 1877 1878 /* 1879 * After a recovering MDS goes active, we need to resend any caps 1880 * we were flushing. 1881 * 1882 * Caller holds session->s_mutex. 1883 */ 1884 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1885 struct ceph_mds_session *session) 1886 { 1887 struct ceph_cap_snap *capsnap; 1888 1889 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1890 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1891 flushing_item) { 1892 struct ceph_inode_info *ci = capsnap->ci; 1893 struct inode *inode = &ci->vfs_inode; 1894 struct ceph_cap *cap; 1895 1896 spin_lock(&inode->i_lock); 1897 cap = ci->i_auth_cap; 1898 if (cap && cap->session == session) { 1899 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1900 cap, capsnap); 1901 __ceph_flush_snaps(ci, &session, 1); 1902 } else { 1903 pr_err("%p auth cap %p not mds%d ???\n", inode, 1904 cap, session->s_mds); 1905 } 1906 spin_unlock(&inode->i_lock); 1907 } 1908 } 1909 1910 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1911 struct ceph_mds_session *session) 1912 { 1913 struct ceph_inode_info *ci; 1914 1915 kick_flushing_capsnaps(mdsc, session); 1916 1917 dout("kick_flushing_caps mds%d\n", session->s_mds); 1918 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1919 struct inode *inode = &ci->vfs_inode; 1920 struct ceph_cap *cap; 1921 int delayed = 0; 1922 1923 spin_lock(&inode->i_lock); 1924 cap = ci->i_auth_cap; 1925 if (cap && cap->session == session) { 1926 dout("kick_flushing_caps %p cap %p %s\n", inode, 1927 cap, ceph_cap_string(ci->i_flushing_caps)); 1928 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1929 __ceph_caps_used(ci), 1930 __ceph_caps_wanted(ci), 1931 cap->issued | cap->implemented, 1932 ci->i_flushing_caps, NULL); 1933 if (delayed) { 1934 spin_lock(&inode->i_lock); 1935 __cap_delay_requeue(mdsc, ci); 1936 spin_unlock(&inode->i_lock); 1937 } 1938 } else { 1939 pr_err("%p auth cap %p not mds%d ???\n", inode, 1940 cap, session->s_mds); 1941 spin_unlock(&inode->i_lock); 1942 } 1943 } 1944 } 1945 1946 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1947 struct ceph_mds_session *session, 1948 struct inode *inode) 1949 { 1950 struct ceph_inode_info *ci = ceph_inode(inode); 1951 struct ceph_cap *cap; 1952 int delayed = 0; 1953 1954 spin_lock(&inode->i_lock); 1955 cap = ci->i_auth_cap; 1956 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1957 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1958 __ceph_flush_snaps(ci, &session, 1); 1959 if (ci->i_flushing_caps) { 1960 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1961 __ceph_caps_used(ci), 1962 __ceph_caps_wanted(ci), 1963 cap->issued | cap->implemented, 1964 ci->i_flushing_caps, NULL); 1965 if (delayed) { 1966 spin_lock(&inode->i_lock); 1967 __cap_delay_requeue(mdsc, ci); 1968 spin_unlock(&inode->i_lock); 1969 } 1970 } else { 1971 spin_unlock(&inode->i_lock); 1972 } 1973 } 1974 1975 1976 /* 1977 * Take references to capabilities we hold, so that we don't release 1978 * them to the MDS prematurely. 1979 * 1980 * Protected by i_lock. 1981 */ 1982 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1983 { 1984 if (got & CEPH_CAP_PIN) 1985 ci->i_pin_ref++; 1986 if (got & CEPH_CAP_FILE_RD) 1987 ci->i_rd_ref++; 1988 if (got & CEPH_CAP_FILE_CACHE) 1989 ci->i_rdcache_ref++; 1990 if (got & CEPH_CAP_FILE_WR) 1991 ci->i_wr_ref++; 1992 if (got & CEPH_CAP_FILE_BUFFER) { 1993 if (ci->i_wrbuffer_ref == 0) 1994 igrab(&ci->vfs_inode); 1995 ci->i_wrbuffer_ref++; 1996 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1997 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1998 } 1999 } 2000 2001 /* 2002 * Try to grab cap references. Specify those refs we @want, and the 2003 * minimal set we @need. Also include the larger offset we are writing 2004 * to (when applicable), and check against max_size here as well. 2005 * Note that caller is responsible for ensuring max_size increases are 2006 * requested from the MDS. 2007 */ 2008 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2009 int *got, loff_t endoff, int *check_max, int *err) 2010 { 2011 struct inode *inode = &ci->vfs_inode; 2012 int ret = 0; 2013 int have, implemented; 2014 int file_wanted; 2015 2016 dout("get_cap_refs %p need %s want %s\n", inode, 2017 ceph_cap_string(need), ceph_cap_string(want)); 2018 spin_lock(&inode->i_lock); 2019 2020 /* make sure file is actually open */ 2021 file_wanted = __ceph_caps_file_wanted(ci); 2022 if ((file_wanted & need) == 0) { 2023 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2024 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2025 *err = -EBADF; 2026 ret = 1; 2027 goto out; 2028 } 2029 2030 if (need & CEPH_CAP_FILE_WR) { 2031 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2032 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2033 inode, endoff, ci->i_max_size); 2034 if (endoff > ci->i_wanted_max_size) { 2035 *check_max = 1; 2036 ret = 1; 2037 } 2038 goto out; 2039 } 2040 /* 2041 * If a sync write is in progress, we must wait, so that we 2042 * can get a final snapshot value for size+mtime. 2043 */ 2044 if (__ceph_have_pending_cap_snap(ci)) { 2045 dout("get_cap_refs %p cap_snap_pending\n", inode); 2046 goto out; 2047 } 2048 } 2049 have = __ceph_caps_issued(ci, &implemented); 2050 2051 /* 2052 * disallow writes while a truncate is pending 2053 */ 2054 if (ci->i_truncate_pending) 2055 have &= ~CEPH_CAP_FILE_WR; 2056 2057 if ((have & need) == need) { 2058 /* 2059 * Look at (implemented & ~have & not) so that we keep waiting 2060 * on transition from wanted -> needed caps. This is needed 2061 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2062 * going before a prior buffered writeback happens. 2063 */ 2064 int not = want & ~(have & need); 2065 int revoking = implemented & ~have; 2066 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2067 inode, ceph_cap_string(have), ceph_cap_string(not), 2068 ceph_cap_string(revoking)); 2069 if ((revoking & not) == 0) { 2070 *got = need | (have & want); 2071 __take_cap_refs(ci, *got); 2072 ret = 1; 2073 } 2074 } else { 2075 dout("get_cap_refs %p have %s needed %s\n", inode, 2076 ceph_cap_string(have), ceph_cap_string(need)); 2077 } 2078 out: 2079 spin_unlock(&inode->i_lock); 2080 dout("get_cap_refs %p ret %d got %s\n", inode, 2081 ret, ceph_cap_string(*got)); 2082 return ret; 2083 } 2084 2085 /* 2086 * Check the offset we are writing up to against our current 2087 * max_size. If necessary, tell the MDS we want to write to 2088 * a larger offset. 2089 */ 2090 static void check_max_size(struct inode *inode, loff_t endoff) 2091 { 2092 struct ceph_inode_info *ci = ceph_inode(inode); 2093 int check = 0; 2094 2095 /* do we need to explicitly request a larger max_size? */ 2096 spin_lock(&inode->i_lock); 2097 if ((endoff >= ci->i_max_size || 2098 endoff > (inode->i_size << 1)) && 2099 endoff > ci->i_wanted_max_size) { 2100 dout("write %p at large endoff %llu, req max_size\n", 2101 inode, endoff); 2102 ci->i_wanted_max_size = endoff; 2103 check = 1; 2104 } 2105 spin_unlock(&inode->i_lock); 2106 if (check) 2107 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2108 } 2109 2110 /* 2111 * Wait for caps, and take cap references. If we can't get a WR cap 2112 * due to a small max_size, make sure we check_max_size (and possibly 2113 * ask the mds) so we don't get hung up indefinitely. 2114 */ 2115 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2116 loff_t endoff) 2117 { 2118 int check_max, ret, err; 2119 2120 retry: 2121 if (endoff > 0) 2122 check_max_size(&ci->vfs_inode, endoff); 2123 check_max = 0; 2124 err = 0; 2125 ret = wait_event_interruptible(ci->i_cap_wq, 2126 try_get_cap_refs(ci, need, want, 2127 got, endoff, 2128 &check_max, &err)); 2129 if (err) 2130 ret = err; 2131 if (check_max) 2132 goto retry; 2133 return ret; 2134 } 2135 2136 /* 2137 * Take cap refs. Caller must already know we hold at least one ref 2138 * on the caps in question or we don't know this is safe. 2139 */ 2140 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2141 { 2142 spin_lock(&ci->vfs_inode.i_lock); 2143 __take_cap_refs(ci, caps); 2144 spin_unlock(&ci->vfs_inode.i_lock); 2145 } 2146 2147 /* 2148 * Release cap refs. 2149 * 2150 * If we released the last ref on any given cap, call ceph_check_caps 2151 * to release (or schedule a release). 2152 * 2153 * If we are releasing a WR cap (from a sync write), finalize any affected 2154 * cap_snap, and wake up any waiters. 2155 */ 2156 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2157 { 2158 struct inode *inode = &ci->vfs_inode; 2159 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2160 struct ceph_cap_snap *capsnap; 2161 2162 spin_lock(&inode->i_lock); 2163 if (had & CEPH_CAP_PIN) 2164 --ci->i_pin_ref; 2165 if (had & CEPH_CAP_FILE_RD) 2166 if (--ci->i_rd_ref == 0) 2167 last++; 2168 if (had & CEPH_CAP_FILE_CACHE) 2169 if (--ci->i_rdcache_ref == 0) 2170 last++; 2171 if (had & CEPH_CAP_FILE_BUFFER) { 2172 if (--ci->i_wrbuffer_ref == 0) { 2173 last++; 2174 put++; 2175 } 2176 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2177 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2178 } 2179 if (had & CEPH_CAP_FILE_WR) 2180 if (--ci->i_wr_ref == 0) { 2181 last++; 2182 if (!list_empty(&ci->i_cap_snaps)) { 2183 capsnap = list_first_entry(&ci->i_cap_snaps, 2184 struct ceph_cap_snap, 2185 ci_item); 2186 if (capsnap->writing) { 2187 capsnap->writing = 0; 2188 flushsnaps = 2189 __ceph_finish_cap_snap(ci, 2190 capsnap); 2191 wake = 1; 2192 } 2193 } 2194 } 2195 spin_unlock(&inode->i_lock); 2196 2197 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2198 last ? " last" : "", put ? " put" : ""); 2199 2200 if (last && !flushsnaps) 2201 ceph_check_caps(ci, 0, NULL); 2202 else if (flushsnaps) 2203 ceph_flush_snaps(ci); 2204 if (wake) 2205 wake_up_all(&ci->i_cap_wq); 2206 if (put) 2207 iput(inode); 2208 } 2209 2210 /* 2211 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2212 * context. Adjust per-snap dirty page accounting as appropriate. 2213 * Once all dirty data for a cap_snap is flushed, flush snapped file 2214 * metadata back to the MDS. If we dropped the last ref, call 2215 * ceph_check_caps. 2216 */ 2217 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2218 struct ceph_snap_context *snapc) 2219 { 2220 struct inode *inode = &ci->vfs_inode; 2221 int last = 0; 2222 int complete_capsnap = 0; 2223 int drop_capsnap = 0; 2224 int found = 0; 2225 struct ceph_cap_snap *capsnap = NULL; 2226 2227 spin_lock(&inode->i_lock); 2228 ci->i_wrbuffer_ref -= nr; 2229 last = !ci->i_wrbuffer_ref; 2230 2231 if (ci->i_head_snapc == snapc) { 2232 ci->i_wrbuffer_ref_head -= nr; 2233 if (ci->i_wrbuffer_ref_head == 0 && 2234 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2235 BUG_ON(!ci->i_head_snapc); 2236 ceph_put_snap_context(ci->i_head_snapc); 2237 ci->i_head_snapc = NULL; 2238 } 2239 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2240 inode, 2241 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2242 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2243 last ? " LAST" : ""); 2244 } else { 2245 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2246 if (capsnap->context == snapc) { 2247 found = 1; 2248 break; 2249 } 2250 } 2251 BUG_ON(!found); 2252 capsnap->dirty_pages -= nr; 2253 if (capsnap->dirty_pages == 0) { 2254 complete_capsnap = 1; 2255 if (capsnap->dirty == 0) 2256 /* cap writeback completed before we created 2257 * the cap_snap; no FLUSHSNAP is needed */ 2258 drop_capsnap = 1; 2259 } 2260 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2261 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2262 inode, capsnap, capsnap->context->seq, 2263 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2264 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2265 last ? " (wrbuffer last)" : "", 2266 complete_capsnap ? " (complete capsnap)" : "", 2267 drop_capsnap ? " (drop capsnap)" : ""); 2268 if (drop_capsnap) { 2269 ceph_put_snap_context(capsnap->context); 2270 list_del(&capsnap->ci_item); 2271 list_del(&capsnap->flushing_item); 2272 ceph_put_cap_snap(capsnap); 2273 } 2274 } 2275 2276 spin_unlock(&inode->i_lock); 2277 2278 if (last) { 2279 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2280 iput(inode); 2281 } else if (complete_capsnap) { 2282 ceph_flush_snaps(ci); 2283 wake_up_all(&ci->i_cap_wq); 2284 } 2285 if (drop_capsnap) 2286 iput(inode); 2287 } 2288 2289 /* 2290 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2291 * actually be a revocation if it specifies a smaller cap set.) 2292 * 2293 * caller holds s_mutex and i_lock, we drop both. 2294 * 2295 * return value: 2296 * 0 - ok 2297 * 1 - check_caps on auth cap only (writeback) 2298 * 2 - check_caps (ack revoke) 2299 */ 2300 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2301 struct ceph_mds_session *session, 2302 struct ceph_cap *cap, 2303 struct ceph_buffer *xattr_buf) 2304 __releases(inode->i_lock) 2305 { 2306 struct ceph_inode_info *ci = ceph_inode(inode); 2307 int mds = session->s_mds; 2308 int seq = le32_to_cpu(grant->seq); 2309 int newcaps = le32_to_cpu(grant->caps); 2310 int issued, implemented, used, wanted, dirty; 2311 u64 size = le64_to_cpu(grant->size); 2312 u64 max_size = le64_to_cpu(grant->max_size); 2313 struct timespec mtime, atime, ctime; 2314 int check_caps = 0; 2315 int wake = 0; 2316 int writeback = 0; 2317 int revoked_rdcache = 0; 2318 int queue_invalidate = 0; 2319 2320 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2321 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2322 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2323 inode->i_size); 2324 2325 /* 2326 * If CACHE is being revoked, and we have no dirty buffers, 2327 * try to invalidate (once). (If there are dirty buffers, we 2328 * will invalidate _after_ writeback.) 2329 */ 2330 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2331 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2332 !ci->i_wrbuffer_ref) { 2333 if (try_nonblocking_invalidate(inode) == 0) { 2334 revoked_rdcache = 1; 2335 } else { 2336 /* there were locked pages.. invalidate later 2337 in a separate thread. */ 2338 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2339 queue_invalidate = 1; 2340 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2341 } 2342 } 2343 } 2344 2345 /* side effects now are allowed */ 2346 2347 issued = __ceph_caps_issued(ci, &implemented); 2348 issued |= implemented | __ceph_caps_dirty(ci); 2349 2350 cap->cap_gen = session->s_cap_gen; 2351 2352 __check_cap_issue(ci, cap, newcaps); 2353 2354 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2355 inode->i_mode = le32_to_cpu(grant->mode); 2356 inode->i_uid = le32_to_cpu(grant->uid); 2357 inode->i_gid = le32_to_cpu(grant->gid); 2358 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2359 inode->i_uid, inode->i_gid); 2360 } 2361 2362 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2363 inode->i_nlink = le32_to_cpu(grant->nlink); 2364 2365 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2366 int len = le32_to_cpu(grant->xattr_len); 2367 u64 version = le64_to_cpu(grant->xattr_version); 2368 2369 if (version > ci->i_xattrs.version) { 2370 dout(" got new xattrs v%llu on %p len %d\n", 2371 version, inode, len); 2372 if (ci->i_xattrs.blob) 2373 ceph_buffer_put(ci->i_xattrs.blob); 2374 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2375 ci->i_xattrs.version = version; 2376 } 2377 } 2378 2379 /* size/ctime/mtime/atime? */ 2380 ceph_fill_file_size(inode, issued, 2381 le32_to_cpu(grant->truncate_seq), 2382 le64_to_cpu(grant->truncate_size), size); 2383 ceph_decode_timespec(&mtime, &grant->mtime); 2384 ceph_decode_timespec(&atime, &grant->atime); 2385 ceph_decode_timespec(&ctime, &grant->ctime); 2386 ceph_fill_file_time(inode, issued, 2387 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2388 &atime); 2389 2390 /* max size increase? */ 2391 if (max_size != ci->i_max_size) { 2392 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2393 ci->i_max_size = max_size; 2394 if (max_size >= ci->i_wanted_max_size) { 2395 ci->i_wanted_max_size = 0; /* reset */ 2396 ci->i_requested_max_size = 0; 2397 } 2398 wake = 1; 2399 } 2400 2401 /* check cap bits */ 2402 wanted = __ceph_caps_wanted(ci); 2403 used = __ceph_caps_used(ci); 2404 dirty = __ceph_caps_dirty(ci); 2405 dout(" my wanted = %s, used = %s, dirty %s\n", 2406 ceph_cap_string(wanted), 2407 ceph_cap_string(used), 2408 ceph_cap_string(dirty)); 2409 if (wanted != le32_to_cpu(grant->wanted)) { 2410 dout("mds wanted %s -> %s\n", 2411 ceph_cap_string(le32_to_cpu(grant->wanted)), 2412 ceph_cap_string(wanted)); 2413 grant->wanted = cpu_to_le32(wanted); 2414 } 2415 2416 cap->seq = seq; 2417 2418 /* file layout may have changed */ 2419 ci->i_layout = grant->layout; 2420 2421 /* revocation, grant, or no-op? */ 2422 if (cap->issued & ~newcaps) { 2423 int revoking = cap->issued & ~newcaps; 2424 2425 dout("revocation: %s -> %s (revoking %s)\n", 2426 ceph_cap_string(cap->issued), 2427 ceph_cap_string(newcaps), 2428 ceph_cap_string(revoking)); 2429 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2430 writeback = 1; /* initiate writeback; will delay ack */ 2431 else if (revoking == CEPH_CAP_FILE_CACHE && 2432 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2433 queue_invalidate) 2434 ; /* do nothing yet, invalidation will be queued */ 2435 else if (cap == ci->i_auth_cap) 2436 check_caps = 1; /* check auth cap only */ 2437 else 2438 check_caps = 2; /* check all caps */ 2439 cap->issued = newcaps; 2440 cap->implemented |= newcaps; 2441 } else if (cap->issued == newcaps) { 2442 dout("caps unchanged: %s -> %s\n", 2443 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2444 } else { 2445 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2446 ceph_cap_string(newcaps)); 2447 cap->issued = newcaps; 2448 cap->implemented |= newcaps; /* add bits only, to 2449 * avoid stepping on a 2450 * pending revocation */ 2451 wake = 1; 2452 } 2453 BUG_ON(cap->issued & ~cap->implemented); 2454 2455 spin_unlock(&inode->i_lock); 2456 if (writeback) 2457 /* 2458 * queue inode for writeback: we can't actually call 2459 * filemap_write_and_wait, etc. from message handler 2460 * context. 2461 */ 2462 ceph_queue_writeback(inode); 2463 if (queue_invalidate) 2464 ceph_queue_invalidate(inode); 2465 if (wake) 2466 wake_up_all(&ci->i_cap_wq); 2467 2468 if (check_caps == 1) 2469 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2470 session); 2471 else if (check_caps == 2) 2472 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2473 else 2474 mutex_unlock(&session->s_mutex); 2475 } 2476 2477 /* 2478 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2479 * MDS has been safely committed. 2480 */ 2481 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2482 struct ceph_mds_caps *m, 2483 struct ceph_mds_session *session, 2484 struct ceph_cap *cap) 2485 __releases(inode->i_lock) 2486 { 2487 struct ceph_inode_info *ci = ceph_inode(inode); 2488 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2489 unsigned seq = le32_to_cpu(m->seq); 2490 int dirty = le32_to_cpu(m->dirty); 2491 int cleaned = 0; 2492 int drop = 0; 2493 int i; 2494 2495 for (i = 0; i < CEPH_CAP_BITS; i++) 2496 if ((dirty & (1 << i)) && 2497 flush_tid == ci->i_cap_flush_tid[i]) 2498 cleaned |= 1 << i; 2499 2500 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2501 " flushing %s -> %s\n", 2502 inode, session->s_mds, seq, ceph_cap_string(dirty), 2503 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2504 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2505 2506 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2507 goto out; 2508 2509 ci->i_flushing_caps &= ~cleaned; 2510 2511 spin_lock(&mdsc->cap_dirty_lock); 2512 if (ci->i_flushing_caps == 0) { 2513 list_del_init(&ci->i_flushing_item); 2514 if (!list_empty(&session->s_cap_flushing)) 2515 dout(" mds%d still flushing cap on %p\n", 2516 session->s_mds, 2517 &list_entry(session->s_cap_flushing.next, 2518 struct ceph_inode_info, 2519 i_flushing_item)->vfs_inode); 2520 mdsc->num_cap_flushing--; 2521 wake_up_all(&mdsc->cap_flushing_wq); 2522 dout(" inode %p now !flushing\n", inode); 2523 2524 if (ci->i_dirty_caps == 0) { 2525 dout(" inode %p now clean\n", inode); 2526 BUG_ON(!list_empty(&ci->i_dirty_item)); 2527 drop = 1; 2528 if (ci->i_wrbuffer_ref_head == 0) { 2529 BUG_ON(!ci->i_head_snapc); 2530 ceph_put_snap_context(ci->i_head_snapc); 2531 ci->i_head_snapc = NULL; 2532 } 2533 } else { 2534 BUG_ON(list_empty(&ci->i_dirty_item)); 2535 } 2536 } 2537 spin_unlock(&mdsc->cap_dirty_lock); 2538 wake_up_all(&ci->i_cap_wq); 2539 2540 out: 2541 spin_unlock(&inode->i_lock); 2542 if (drop) 2543 iput(inode); 2544 } 2545 2546 /* 2547 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2548 * throw away our cap_snap. 2549 * 2550 * Caller hold s_mutex. 2551 */ 2552 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2553 struct ceph_mds_caps *m, 2554 struct ceph_mds_session *session) 2555 { 2556 struct ceph_inode_info *ci = ceph_inode(inode); 2557 u64 follows = le64_to_cpu(m->snap_follows); 2558 struct ceph_cap_snap *capsnap; 2559 int drop = 0; 2560 2561 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2562 inode, ci, session->s_mds, follows); 2563 2564 spin_lock(&inode->i_lock); 2565 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2566 if (capsnap->follows == follows) { 2567 if (capsnap->flush_tid != flush_tid) { 2568 dout(" cap_snap %p follows %lld tid %lld !=" 2569 " %lld\n", capsnap, follows, 2570 flush_tid, capsnap->flush_tid); 2571 break; 2572 } 2573 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2574 dout(" removing %p cap_snap %p follows %lld\n", 2575 inode, capsnap, follows); 2576 ceph_put_snap_context(capsnap->context); 2577 list_del(&capsnap->ci_item); 2578 list_del(&capsnap->flushing_item); 2579 ceph_put_cap_snap(capsnap); 2580 drop = 1; 2581 break; 2582 } else { 2583 dout(" skipping cap_snap %p follows %lld\n", 2584 capsnap, capsnap->follows); 2585 } 2586 } 2587 spin_unlock(&inode->i_lock); 2588 if (drop) 2589 iput(inode); 2590 } 2591 2592 /* 2593 * Handle TRUNC from MDS, indicating file truncation. 2594 * 2595 * caller hold s_mutex. 2596 */ 2597 static void handle_cap_trunc(struct inode *inode, 2598 struct ceph_mds_caps *trunc, 2599 struct ceph_mds_session *session) 2600 __releases(inode->i_lock) 2601 { 2602 struct ceph_inode_info *ci = ceph_inode(inode); 2603 int mds = session->s_mds; 2604 int seq = le32_to_cpu(trunc->seq); 2605 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2606 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2607 u64 size = le64_to_cpu(trunc->size); 2608 int implemented = 0; 2609 int dirty = __ceph_caps_dirty(ci); 2610 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2611 int queue_trunc = 0; 2612 2613 issued |= implemented | dirty; 2614 2615 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2616 inode, mds, seq, truncate_size, truncate_seq); 2617 queue_trunc = ceph_fill_file_size(inode, issued, 2618 truncate_seq, truncate_size, size); 2619 spin_unlock(&inode->i_lock); 2620 2621 if (queue_trunc) 2622 ceph_queue_vmtruncate(inode); 2623 } 2624 2625 /* 2626 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2627 * different one. If we are the most recent migration we've seen (as 2628 * indicated by mseq), make note of the migrating cap bits for the 2629 * duration (until we see the corresponding IMPORT). 2630 * 2631 * caller holds s_mutex 2632 */ 2633 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2634 struct ceph_mds_session *session, 2635 int *open_target_sessions) 2636 { 2637 struct ceph_inode_info *ci = ceph_inode(inode); 2638 int mds = session->s_mds; 2639 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2640 struct ceph_cap *cap = NULL, *t; 2641 struct rb_node *p; 2642 int remember = 1; 2643 2644 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2645 inode, ci, mds, mseq); 2646 2647 spin_lock(&inode->i_lock); 2648 2649 /* make sure we haven't seen a higher mseq */ 2650 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2651 t = rb_entry(p, struct ceph_cap, ci_node); 2652 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2653 dout(" higher mseq on cap from mds%d\n", 2654 t->session->s_mds); 2655 remember = 0; 2656 } 2657 if (t->session->s_mds == mds) 2658 cap = t; 2659 } 2660 2661 if (cap) { 2662 if (remember) { 2663 /* make note */ 2664 ci->i_cap_exporting_mds = mds; 2665 ci->i_cap_exporting_mseq = mseq; 2666 ci->i_cap_exporting_issued = cap->issued; 2667 2668 /* 2669 * make sure we have open sessions with all possible 2670 * export targets, so that we get the matching IMPORT 2671 */ 2672 *open_target_sessions = 1; 2673 } 2674 __ceph_remove_cap(cap); 2675 } 2676 /* else, we already released it */ 2677 2678 spin_unlock(&inode->i_lock); 2679 } 2680 2681 /* 2682 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2683 * clean them up. 2684 * 2685 * caller holds s_mutex. 2686 */ 2687 static void handle_cap_import(struct ceph_mds_client *mdsc, 2688 struct inode *inode, struct ceph_mds_caps *im, 2689 struct ceph_mds_session *session, 2690 void *snaptrace, int snaptrace_len) 2691 { 2692 struct ceph_inode_info *ci = ceph_inode(inode); 2693 int mds = session->s_mds; 2694 unsigned issued = le32_to_cpu(im->caps); 2695 unsigned wanted = le32_to_cpu(im->wanted); 2696 unsigned seq = le32_to_cpu(im->seq); 2697 unsigned mseq = le32_to_cpu(im->migrate_seq); 2698 u64 realmino = le64_to_cpu(im->realm); 2699 u64 cap_id = le64_to_cpu(im->cap_id); 2700 2701 if (ci->i_cap_exporting_mds >= 0 && 2702 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2703 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2704 " - cleared exporting from mds%d\n", 2705 inode, ci, mds, mseq, 2706 ci->i_cap_exporting_mds); 2707 ci->i_cap_exporting_issued = 0; 2708 ci->i_cap_exporting_mseq = 0; 2709 ci->i_cap_exporting_mds = -1; 2710 } else { 2711 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2712 inode, ci, mds, mseq); 2713 } 2714 2715 down_write(&mdsc->snap_rwsem); 2716 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2717 false); 2718 downgrade_write(&mdsc->snap_rwsem); 2719 ceph_add_cap(inode, session, cap_id, -1, 2720 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2721 NULL /* no caps context */); 2722 kick_flushing_inode_caps(mdsc, session, inode); 2723 up_read(&mdsc->snap_rwsem); 2724 2725 /* make sure we re-request max_size, if necessary */ 2726 spin_lock(&inode->i_lock); 2727 ci->i_requested_max_size = 0; 2728 spin_unlock(&inode->i_lock); 2729 } 2730 2731 /* 2732 * Handle a caps message from the MDS. 2733 * 2734 * Identify the appropriate session, inode, and call the right handler 2735 * based on the cap op. 2736 */ 2737 void ceph_handle_caps(struct ceph_mds_session *session, 2738 struct ceph_msg *msg) 2739 { 2740 struct ceph_mds_client *mdsc = session->s_mdsc; 2741 struct super_block *sb = mdsc->fsc->sb; 2742 struct inode *inode; 2743 struct ceph_cap *cap; 2744 struct ceph_mds_caps *h; 2745 int mds = session->s_mds; 2746 int op; 2747 u32 seq, mseq; 2748 struct ceph_vino vino; 2749 u64 cap_id; 2750 u64 size, max_size; 2751 u64 tid; 2752 void *snaptrace; 2753 size_t snaptrace_len; 2754 void *flock; 2755 u32 flock_len; 2756 int open_target_sessions = 0; 2757 2758 dout("handle_caps from mds%d\n", mds); 2759 2760 /* decode */ 2761 tid = le64_to_cpu(msg->hdr.tid); 2762 if (msg->front.iov_len < sizeof(*h)) 2763 goto bad; 2764 h = msg->front.iov_base; 2765 op = le32_to_cpu(h->op); 2766 vino.ino = le64_to_cpu(h->ino); 2767 vino.snap = CEPH_NOSNAP; 2768 cap_id = le64_to_cpu(h->cap_id); 2769 seq = le32_to_cpu(h->seq); 2770 mseq = le32_to_cpu(h->migrate_seq); 2771 size = le64_to_cpu(h->size); 2772 max_size = le64_to_cpu(h->max_size); 2773 2774 snaptrace = h + 1; 2775 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2776 2777 if (le16_to_cpu(msg->hdr.version) >= 2) { 2778 void *p, *end; 2779 2780 p = snaptrace + snaptrace_len; 2781 end = msg->front.iov_base + msg->front.iov_len; 2782 ceph_decode_32_safe(&p, end, flock_len, bad); 2783 flock = p; 2784 } else { 2785 flock = NULL; 2786 flock_len = 0; 2787 } 2788 2789 mutex_lock(&session->s_mutex); 2790 session->s_seq++; 2791 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2792 (unsigned)seq); 2793 2794 /* lookup ino */ 2795 inode = ceph_find_inode(sb, vino); 2796 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2797 vino.snap, inode); 2798 if (!inode) { 2799 dout(" i don't have ino %llx\n", vino.ino); 2800 2801 if (op == CEPH_CAP_OP_IMPORT) 2802 __queue_cap_release(session, vino.ino, cap_id, 2803 mseq, seq); 2804 goto flush_cap_releases; 2805 } 2806 2807 /* these will work even if we don't have a cap yet */ 2808 switch (op) { 2809 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2810 handle_cap_flushsnap_ack(inode, tid, h, session); 2811 goto done; 2812 2813 case CEPH_CAP_OP_EXPORT: 2814 handle_cap_export(inode, h, session, &open_target_sessions); 2815 goto done; 2816 2817 case CEPH_CAP_OP_IMPORT: 2818 handle_cap_import(mdsc, inode, h, session, 2819 snaptrace, snaptrace_len); 2820 ceph_check_caps(ceph_inode(inode), 0, session); 2821 goto done_unlocked; 2822 } 2823 2824 /* the rest require a cap */ 2825 spin_lock(&inode->i_lock); 2826 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2827 if (!cap) { 2828 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2829 inode, ceph_ino(inode), ceph_snap(inode), mds); 2830 spin_unlock(&inode->i_lock); 2831 goto flush_cap_releases; 2832 } 2833 2834 /* note that each of these drops i_lock for us */ 2835 switch (op) { 2836 case CEPH_CAP_OP_REVOKE: 2837 case CEPH_CAP_OP_GRANT: 2838 handle_cap_grant(inode, h, session, cap, msg->middle); 2839 goto done_unlocked; 2840 2841 case CEPH_CAP_OP_FLUSH_ACK: 2842 handle_cap_flush_ack(inode, tid, h, session, cap); 2843 break; 2844 2845 case CEPH_CAP_OP_TRUNC: 2846 handle_cap_trunc(inode, h, session); 2847 break; 2848 2849 default: 2850 spin_unlock(&inode->i_lock); 2851 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2852 ceph_cap_op_name(op)); 2853 } 2854 2855 goto done; 2856 2857 flush_cap_releases: 2858 /* 2859 * send any full release message to try to move things 2860 * along for the mds (who clearly thinks we still have this 2861 * cap). 2862 */ 2863 ceph_add_cap_releases(mdsc, session); 2864 ceph_send_cap_releases(mdsc, session); 2865 2866 done: 2867 mutex_unlock(&session->s_mutex); 2868 done_unlocked: 2869 if (inode) 2870 iput(inode); 2871 if (open_target_sessions) 2872 ceph_mdsc_open_export_target_sessions(mdsc, session); 2873 return; 2874 2875 bad: 2876 pr_err("ceph_handle_caps: corrupt message\n"); 2877 ceph_msg_dump(msg); 2878 return; 2879 } 2880 2881 /* 2882 * Delayed work handler to process end of delayed cap release LRU list. 2883 */ 2884 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2885 { 2886 struct ceph_inode_info *ci; 2887 int flags = CHECK_CAPS_NODELAY; 2888 2889 dout("check_delayed_caps\n"); 2890 while (1) { 2891 spin_lock(&mdsc->cap_delay_lock); 2892 if (list_empty(&mdsc->cap_delay_list)) 2893 break; 2894 ci = list_first_entry(&mdsc->cap_delay_list, 2895 struct ceph_inode_info, 2896 i_cap_delay_list); 2897 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2898 time_before(jiffies, ci->i_hold_caps_max)) 2899 break; 2900 list_del_init(&ci->i_cap_delay_list); 2901 spin_unlock(&mdsc->cap_delay_lock); 2902 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2903 ceph_check_caps(ci, flags, NULL); 2904 } 2905 spin_unlock(&mdsc->cap_delay_lock); 2906 } 2907 2908 /* 2909 * Flush all dirty caps to the mds 2910 */ 2911 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2912 { 2913 struct ceph_inode_info *ci, *nci = NULL; 2914 struct inode *inode, *ninode = NULL; 2915 struct list_head *p, *n; 2916 2917 dout("flush_dirty_caps\n"); 2918 spin_lock(&mdsc->cap_dirty_lock); 2919 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2920 if (nci) { 2921 ci = nci; 2922 inode = ninode; 2923 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2924 dout("flush_dirty_caps inode %p (was next inode)\n", 2925 inode); 2926 } else { 2927 ci = list_entry(p, struct ceph_inode_info, 2928 i_dirty_item); 2929 inode = igrab(&ci->vfs_inode); 2930 BUG_ON(!inode); 2931 dout("flush_dirty_caps inode %p\n", inode); 2932 } 2933 if (n != &mdsc->cap_dirty) { 2934 nci = list_entry(n, struct ceph_inode_info, 2935 i_dirty_item); 2936 ninode = igrab(&nci->vfs_inode); 2937 BUG_ON(!ninode); 2938 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2939 dout("flush_dirty_caps next inode %p, noflush\n", 2940 ninode); 2941 } else { 2942 nci = NULL; 2943 ninode = NULL; 2944 } 2945 spin_unlock(&mdsc->cap_dirty_lock); 2946 if (inode) { 2947 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2948 NULL); 2949 iput(inode); 2950 } 2951 spin_lock(&mdsc->cap_dirty_lock); 2952 } 2953 spin_unlock(&mdsc->cap_dirty_lock); 2954 } 2955 2956 /* 2957 * Drop open file reference. If we were the last open file, 2958 * we may need to release capabilities to the MDS (or schedule 2959 * their delayed release). 2960 */ 2961 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2962 { 2963 struct inode *inode = &ci->vfs_inode; 2964 int last = 0; 2965 2966 spin_lock(&inode->i_lock); 2967 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2968 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2969 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2970 if (--ci->i_nr_by_mode[fmode] == 0) 2971 last++; 2972 spin_unlock(&inode->i_lock); 2973 2974 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2975 ceph_check_caps(ci, 0, NULL); 2976 } 2977 2978 /* 2979 * Helpers for embedding cap and dentry lease releases into mds 2980 * requests. 2981 * 2982 * @force is used by dentry_release (below) to force inclusion of a 2983 * record for the directory inode, even when there aren't any caps to 2984 * drop. 2985 */ 2986 int ceph_encode_inode_release(void **p, struct inode *inode, 2987 int mds, int drop, int unless, int force) 2988 { 2989 struct ceph_inode_info *ci = ceph_inode(inode); 2990 struct ceph_cap *cap; 2991 struct ceph_mds_request_release *rel = *p; 2992 int used, dirty; 2993 int ret = 0; 2994 2995 spin_lock(&inode->i_lock); 2996 used = __ceph_caps_used(ci); 2997 dirty = __ceph_caps_dirty(ci); 2998 2999 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3000 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3001 ceph_cap_string(unless)); 3002 3003 /* only drop unused, clean caps */ 3004 drop &= ~(used | dirty); 3005 3006 cap = __get_cap_for_mds(ci, mds); 3007 if (cap && __cap_is_valid(cap)) { 3008 if (force || 3009 ((cap->issued & drop) && 3010 (cap->issued & unless) == 0)) { 3011 if ((cap->issued & drop) && 3012 (cap->issued & unless) == 0) { 3013 dout("encode_inode_release %p cap %p %s -> " 3014 "%s\n", inode, cap, 3015 ceph_cap_string(cap->issued), 3016 ceph_cap_string(cap->issued & ~drop)); 3017 cap->issued &= ~drop; 3018 cap->implemented &= ~drop; 3019 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 3020 int wanted = __ceph_caps_wanted(ci); 3021 dout(" wanted %s -> %s (act %s)\n", 3022 ceph_cap_string(cap->mds_wanted), 3023 ceph_cap_string(cap->mds_wanted & 3024 ~wanted), 3025 ceph_cap_string(wanted)); 3026 cap->mds_wanted &= wanted; 3027 } 3028 } else { 3029 dout("encode_inode_release %p cap %p %s" 3030 " (force)\n", inode, cap, 3031 ceph_cap_string(cap->issued)); 3032 } 3033 3034 rel->ino = cpu_to_le64(ceph_ino(inode)); 3035 rel->cap_id = cpu_to_le64(cap->cap_id); 3036 rel->seq = cpu_to_le32(cap->seq); 3037 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3038 rel->mseq = cpu_to_le32(cap->mseq); 3039 rel->caps = cpu_to_le32(cap->issued); 3040 rel->wanted = cpu_to_le32(cap->mds_wanted); 3041 rel->dname_len = 0; 3042 rel->dname_seq = 0; 3043 *p += sizeof(*rel); 3044 ret = 1; 3045 } else { 3046 dout("encode_inode_release %p cap %p %s\n", 3047 inode, cap, ceph_cap_string(cap->issued)); 3048 } 3049 } 3050 spin_unlock(&inode->i_lock); 3051 return ret; 3052 } 3053 3054 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3055 int mds, int drop, int unless) 3056 { 3057 struct inode *dir = dentry->d_parent->d_inode; 3058 struct ceph_mds_request_release *rel = *p; 3059 struct ceph_dentry_info *di = ceph_dentry(dentry); 3060 int force = 0; 3061 int ret; 3062 3063 /* 3064 * force an record for the directory caps if we have a dentry lease. 3065 * this is racy (can't take i_lock and d_lock together), but it 3066 * doesn't have to be perfect; the mds will revoke anything we don't 3067 * release. 3068 */ 3069 spin_lock(&dentry->d_lock); 3070 if (di->lease_session && di->lease_session->s_mds == mds) 3071 force = 1; 3072 spin_unlock(&dentry->d_lock); 3073 3074 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3075 3076 spin_lock(&dentry->d_lock); 3077 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3078 dout("encode_dentry_release %p mds%d seq %d\n", 3079 dentry, mds, (int)di->lease_seq); 3080 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3081 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3082 *p += dentry->d_name.len; 3083 rel->dname_seq = cpu_to_le32(di->lease_seq); 3084 __ceph_mdsc_drop_dentry_lease(dentry); 3085 } 3086 spin_unlock(&dentry->d_lock); 3087 return ret; 3088 } 3089