xref: /openbmc/linux/fs/ceph/caps.c (revision d5532ee7)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "decode.h"
13 #include "messenger.h"
14 
15 /*
16  * Capability management
17  *
18  * The Ceph metadata servers control client access to inode metadata
19  * and file data by issuing capabilities, granting clients permission
20  * to read and/or write both inode field and file data to OSDs
21  * (storage nodes).  Each capability consists of a set of bits
22  * indicating which operations are allowed.
23  *
24  * If the client holds a *_SHARED cap, the client has a coherent value
25  * that can be safely read from the cached inode.
26  *
27  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28  * client is allowed to change inode attributes (e.g., file size,
29  * mtime), note its dirty state in the ceph_cap, and asynchronously
30  * flush that metadata change to the MDS.
31  *
32  * In the event of a conflicting operation (perhaps by another
33  * client), the MDS will revoke the conflicting client capabilities.
34  *
35  * In order for a client to cache an inode, it must hold a capability
36  * with at least one MDS server.  When inodes are released, release
37  * notifications are batched and periodically sent en masse to the MDS
38  * cluster to release server state.
39  */
40 
41 
42 /*
43  * Generate readable cap strings for debugging output.
44  */
45 #define MAX_CAP_STR 20
46 static char cap_str[MAX_CAP_STR][40];
47 static DEFINE_SPINLOCK(cap_str_lock);
48 static int last_cap_str;
49 
50 static char *gcap_string(char *s, int c)
51 {
52 	if (c & CEPH_CAP_GSHARED)
53 		*s++ = 's';
54 	if (c & CEPH_CAP_GEXCL)
55 		*s++ = 'x';
56 	if (c & CEPH_CAP_GCACHE)
57 		*s++ = 'c';
58 	if (c & CEPH_CAP_GRD)
59 		*s++ = 'r';
60 	if (c & CEPH_CAP_GWR)
61 		*s++ = 'w';
62 	if (c & CEPH_CAP_GBUFFER)
63 		*s++ = 'b';
64 	if (c & CEPH_CAP_GLAZYIO)
65 		*s++ = 'l';
66 	return s;
67 }
68 
69 const char *ceph_cap_string(int caps)
70 {
71 	int i;
72 	char *s;
73 	int c;
74 
75 	spin_lock(&cap_str_lock);
76 	i = last_cap_str++;
77 	if (last_cap_str == MAX_CAP_STR)
78 		last_cap_str = 0;
79 	spin_unlock(&cap_str_lock);
80 
81 	s = cap_str[i];
82 
83 	if (caps & CEPH_CAP_PIN)
84 		*s++ = 'p';
85 
86 	c = (caps >> CEPH_CAP_SAUTH) & 3;
87 	if (c) {
88 		*s++ = 'A';
89 		s = gcap_string(s, c);
90 	}
91 
92 	c = (caps >> CEPH_CAP_SLINK) & 3;
93 	if (c) {
94 		*s++ = 'L';
95 		s = gcap_string(s, c);
96 	}
97 
98 	c = (caps >> CEPH_CAP_SXATTR) & 3;
99 	if (c) {
100 		*s++ = 'X';
101 		s = gcap_string(s, c);
102 	}
103 
104 	c = caps >> CEPH_CAP_SFILE;
105 	if (c) {
106 		*s++ = 'F';
107 		s = gcap_string(s, c);
108 	}
109 
110 	if (s == cap_str[i])
111 		*s++ = '-';
112 	*s = 0;
113 	return cap_str[i];
114 }
115 
116 void ceph_caps_init(struct ceph_mds_client *mdsc)
117 {
118 	INIT_LIST_HEAD(&mdsc->caps_list);
119 	spin_lock_init(&mdsc->caps_list_lock);
120 }
121 
122 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
123 {
124 	struct ceph_cap *cap;
125 
126 	spin_lock(&mdsc->caps_list_lock);
127 	while (!list_empty(&mdsc->caps_list)) {
128 		cap = list_first_entry(&mdsc->caps_list,
129 				       struct ceph_cap, caps_item);
130 		list_del(&cap->caps_item);
131 		kmem_cache_free(ceph_cap_cachep, cap);
132 	}
133 	mdsc->caps_total_count = 0;
134 	mdsc->caps_avail_count = 0;
135 	mdsc->caps_use_count = 0;
136 	mdsc->caps_reserve_count = 0;
137 	mdsc->caps_min_count = 0;
138 	spin_unlock(&mdsc->caps_list_lock);
139 }
140 
141 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
142 {
143 	spin_lock(&mdsc->caps_list_lock);
144 	mdsc->caps_min_count += delta;
145 	BUG_ON(mdsc->caps_min_count < 0);
146 	spin_unlock(&mdsc->caps_list_lock);
147 }
148 
149 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
150 		      struct ceph_cap_reservation *ctx, int need)
151 {
152 	int i;
153 	struct ceph_cap *cap;
154 	int have;
155 	int alloc = 0;
156 	LIST_HEAD(newcaps);
157 	int ret = 0;
158 
159 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
160 
161 	/* first reserve any caps that are already allocated */
162 	spin_lock(&mdsc->caps_list_lock);
163 	if (mdsc->caps_avail_count >= need)
164 		have = need;
165 	else
166 		have = mdsc->caps_avail_count;
167 	mdsc->caps_avail_count -= have;
168 	mdsc->caps_reserve_count += have;
169 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
170 					 mdsc->caps_reserve_count +
171 					 mdsc->caps_avail_count);
172 	spin_unlock(&mdsc->caps_list_lock);
173 
174 	for (i = have; i < need; i++) {
175 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
176 		if (!cap) {
177 			ret = -ENOMEM;
178 			goto out_alloc_count;
179 		}
180 		list_add(&cap->caps_item, &newcaps);
181 		alloc++;
182 	}
183 	BUG_ON(have + alloc != need);
184 
185 	spin_lock(&mdsc->caps_list_lock);
186 	mdsc->caps_total_count += alloc;
187 	mdsc->caps_reserve_count += alloc;
188 	list_splice(&newcaps, &mdsc->caps_list);
189 
190 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
191 					 mdsc->caps_reserve_count +
192 					 mdsc->caps_avail_count);
193 	spin_unlock(&mdsc->caps_list_lock);
194 
195 	ctx->count = need;
196 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
197 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
198 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
199 	return 0;
200 
201 out_alloc_count:
202 	/* we didn't manage to reserve as much as we needed */
203 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
204 		   ctx, need, have);
205 	return ret;
206 }
207 
208 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
209 			struct ceph_cap_reservation *ctx)
210 {
211 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
212 	if (ctx->count) {
213 		spin_lock(&mdsc->caps_list_lock);
214 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
215 		mdsc->caps_reserve_count -= ctx->count;
216 		mdsc->caps_avail_count += ctx->count;
217 		ctx->count = 0;
218 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
219 		     mdsc->caps_total_count, mdsc->caps_use_count,
220 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
221 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
222 						 mdsc->caps_reserve_count +
223 						 mdsc->caps_avail_count);
224 		spin_unlock(&mdsc->caps_list_lock);
225 	}
226 	return 0;
227 }
228 
229 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
230 				struct ceph_cap_reservation *ctx)
231 {
232 	struct ceph_cap *cap = NULL;
233 
234 	/* temporary, until we do something about cap import/export */
235 	if (!ctx) {
236 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237 		if (cap) {
238 			mdsc->caps_use_count++;
239 			mdsc->caps_total_count++;
240 		}
241 		return cap;
242 	}
243 
244 	spin_lock(&mdsc->caps_list_lock);
245 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
246 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
247 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
248 	BUG_ON(!ctx->count);
249 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
250 	BUG_ON(list_empty(&mdsc->caps_list));
251 
252 	ctx->count--;
253 	mdsc->caps_reserve_count--;
254 	mdsc->caps_use_count++;
255 
256 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
257 	list_del(&cap->caps_item);
258 
259 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
260 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
261 	spin_unlock(&mdsc->caps_list_lock);
262 	return cap;
263 }
264 
265 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
266 {
267 	spin_lock(&mdsc->caps_list_lock);
268 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
269 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
270 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
271 	mdsc->caps_use_count--;
272 	/*
273 	 * Keep some preallocated caps around (ceph_min_count), to
274 	 * avoid lots of free/alloc churn.
275 	 */
276 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
277 				      mdsc->caps_min_count) {
278 		mdsc->caps_total_count--;
279 		kmem_cache_free(ceph_cap_cachep, cap);
280 	} else {
281 		mdsc->caps_avail_count++;
282 		list_add(&cap->caps_item, &mdsc->caps_list);
283 	}
284 
285 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
286 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
287 	spin_unlock(&mdsc->caps_list_lock);
288 }
289 
290 void ceph_reservation_status(struct ceph_client *client,
291 			     int *total, int *avail, int *used, int *reserved,
292 			     int *min)
293 {
294 	struct ceph_mds_client *mdsc = &client->mdsc;
295 
296 	if (total)
297 		*total = mdsc->caps_total_count;
298 	if (avail)
299 		*avail = mdsc->caps_avail_count;
300 	if (used)
301 		*used = mdsc->caps_use_count;
302 	if (reserved)
303 		*reserved = mdsc->caps_reserve_count;
304 	if (min)
305 		*min = mdsc->caps_min_count;
306 }
307 
308 /*
309  * Find ceph_cap for given mds, if any.
310  *
311  * Called with i_lock held.
312  */
313 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
314 {
315 	struct ceph_cap *cap;
316 	struct rb_node *n = ci->i_caps.rb_node;
317 
318 	while (n) {
319 		cap = rb_entry(n, struct ceph_cap, ci_node);
320 		if (mds < cap->mds)
321 			n = n->rb_left;
322 		else if (mds > cap->mds)
323 			n = n->rb_right;
324 		else
325 			return cap;
326 	}
327 	return NULL;
328 }
329 
330 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
331 {
332 	struct ceph_cap *cap;
333 
334 	spin_lock(&ci->vfs_inode.i_lock);
335 	cap = __get_cap_for_mds(ci, mds);
336 	spin_unlock(&ci->vfs_inode.i_lock);
337 	return cap;
338 }
339 
340 /*
341  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
342  */
343 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
344 {
345 	struct ceph_cap *cap;
346 	int mds = -1;
347 	struct rb_node *p;
348 
349 	/* prefer mds with WR|BUFFER|EXCL caps */
350 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
351 		cap = rb_entry(p, struct ceph_cap, ci_node);
352 		mds = cap->mds;
353 		if (cap->issued & (CEPH_CAP_FILE_WR |
354 				   CEPH_CAP_FILE_BUFFER |
355 				   CEPH_CAP_FILE_EXCL))
356 			break;
357 	}
358 	return mds;
359 }
360 
361 int ceph_get_cap_mds(struct inode *inode)
362 {
363 	int mds;
364 	spin_lock(&inode->i_lock);
365 	mds = __ceph_get_cap_mds(ceph_inode(inode));
366 	spin_unlock(&inode->i_lock);
367 	return mds;
368 }
369 
370 /*
371  * Called under i_lock.
372  */
373 static void __insert_cap_node(struct ceph_inode_info *ci,
374 			      struct ceph_cap *new)
375 {
376 	struct rb_node **p = &ci->i_caps.rb_node;
377 	struct rb_node *parent = NULL;
378 	struct ceph_cap *cap = NULL;
379 
380 	while (*p) {
381 		parent = *p;
382 		cap = rb_entry(parent, struct ceph_cap, ci_node);
383 		if (new->mds < cap->mds)
384 			p = &(*p)->rb_left;
385 		else if (new->mds > cap->mds)
386 			p = &(*p)->rb_right;
387 		else
388 			BUG();
389 	}
390 
391 	rb_link_node(&new->ci_node, parent, p);
392 	rb_insert_color(&new->ci_node, &ci->i_caps);
393 }
394 
395 /*
396  * (re)set cap hold timeouts, which control the delayed release
397  * of unused caps back to the MDS.  Should be called on cap use.
398  */
399 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
400 			       struct ceph_inode_info *ci)
401 {
402 	struct ceph_mount_args *ma = mdsc->client->mount_args;
403 
404 	ci->i_hold_caps_min = round_jiffies(jiffies +
405 					    ma->caps_wanted_delay_min * HZ);
406 	ci->i_hold_caps_max = round_jiffies(jiffies +
407 					    ma->caps_wanted_delay_max * HZ);
408 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
409 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
410 }
411 
412 /*
413  * (Re)queue cap at the end of the delayed cap release list.
414  *
415  * If I_FLUSH is set, leave the inode at the front of the list.
416  *
417  * Caller holds i_lock
418  *    -> we take mdsc->cap_delay_lock
419  */
420 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
421 				struct ceph_inode_info *ci)
422 {
423 	__cap_set_timeouts(mdsc, ci);
424 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
425 	     ci->i_ceph_flags, ci->i_hold_caps_max);
426 	if (!mdsc->stopping) {
427 		spin_lock(&mdsc->cap_delay_lock);
428 		if (!list_empty(&ci->i_cap_delay_list)) {
429 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
430 				goto no_change;
431 			list_del_init(&ci->i_cap_delay_list);
432 		}
433 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
434 no_change:
435 		spin_unlock(&mdsc->cap_delay_lock);
436 	}
437 }
438 
439 /*
440  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
441  * indicating we should send a cap message to flush dirty metadata
442  * asap, and move to the front of the delayed cap list.
443  */
444 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
445 				      struct ceph_inode_info *ci)
446 {
447 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
448 	spin_lock(&mdsc->cap_delay_lock);
449 	ci->i_ceph_flags |= CEPH_I_FLUSH;
450 	if (!list_empty(&ci->i_cap_delay_list))
451 		list_del_init(&ci->i_cap_delay_list);
452 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
453 	spin_unlock(&mdsc->cap_delay_lock);
454 }
455 
456 /*
457  * Cancel delayed work on cap.
458  *
459  * Caller must hold i_lock.
460  */
461 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
462 			       struct ceph_inode_info *ci)
463 {
464 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
465 	if (list_empty(&ci->i_cap_delay_list))
466 		return;
467 	spin_lock(&mdsc->cap_delay_lock);
468 	list_del_init(&ci->i_cap_delay_list);
469 	spin_unlock(&mdsc->cap_delay_lock);
470 }
471 
472 /*
473  * Common issue checks for add_cap, handle_cap_grant.
474  */
475 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
476 			      unsigned issued)
477 {
478 	unsigned had = __ceph_caps_issued(ci, NULL);
479 
480 	/*
481 	 * Each time we receive FILE_CACHE anew, we increment
482 	 * i_rdcache_gen.
483 	 */
484 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
485 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
486 		ci->i_rdcache_gen++;
487 
488 	/*
489 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
490 	 * don't know what happened to this directory while we didn't
491 	 * have the cap.
492 	 */
493 	if ((issued & CEPH_CAP_FILE_SHARED) &&
494 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
495 		ci->i_shared_gen++;
496 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
497 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
498 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
499 		}
500 	}
501 }
502 
503 /*
504  * Add a capability under the given MDS session.
505  *
506  * Caller should hold session snap_rwsem (read) and s_mutex.
507  *
508  * @fmode is the open file mode, if we are opening a file, otherwise
509  * it is < 0.  (This is so we can atomically add the cap and add an
510  * open file reference to it.)
511  */
512 int ceph_add_cap(struct inode *inode,
513 		 struct ceph_mds_session *session, u64 cap_id,
514 		 int fmode, unsigned issued, unsigned wanted,
515 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
516 		 struct ceph_cap_reservation *caps_reservation)
517 {
518 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
519 	struct ceph_inode_info *ci = ceph_inode(inode);
520 	struct ceph_cap *new_cap = NULL;
521 	struct ceph_cap *cap;
522 	int mds = session->s_mds;
523 	int actual_wanted;
524 
525 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
527 
528 	/*
529 	 * If we are opening the file, include file mode wanted bits
530 	 * in wanted.
531 	 */
532 	if (fmode >= 0)
533 		wanted |= ceph_caps_for_mode(fmode);
534 
535 retry:
536 	spin_lock(&inode->i_lock);
537 	cap = __get_cap_for_mds(ci, mds);
538 	if (!cap) {
539 		if (new_cap) {
540 			cap = new_cap;
541 			new_cap = NULL;
542 		} else {
543 			spin_unlock(&inode->i_lock);
544 			new_cap = get_cap(mdsc, caps_reservation);
545 			if (new_cap == NULL)
546 				return -ENOMEM;
547 			goto retry;
548 		}
549 
550 		cap->issued = 0;
551 		cap->implemented = 0;
552 		cap->mds = mds;
553 		cap->mds_wanted = 0;
554 
555 		cap->ci = ci;
556 		__insert_cap_node(ci, cap);
557 
558 		/* clear out old exporting info?  (i.e. on cap import) */
559 		if (ci->i_cap_exporting_mds == mds) {
560 			ci->i_cap_exporting_issued = 0;
561 			ci->i_cap_exporting_mseq = 0;
562 			ci->i_cap_exporting_mds = -1;
563 		}
564 
565 		/* add to session cap list */
566 		cap->session = session;
567 		spin_lock(&session->s_cap_lock);
568 		list_add_tail(&cap->session_caps, &session->s_caps);
569 		session->s_nr_caps++;
570 		spin_unlock(&session->s_cap_lock);
571 	}
572 
573 	if (!ci->i_snap_realm) {
574 		/*
575 		 * add this inode to the appropriate snap realm
576 		 */
577 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 							       realmino);
579 		if (realm) {
580 			ceph_get_snap_realm(mdsc, realm);
581 			spin_lock(&realm->inodes_with_caps_lock);
582 			ci->i_snap_realm = realm;
583 			list_add(&ci->i_snap_realm_item,
584 				 &realm->inodes_with_caps);
585 			spin_unlock(&realm->inodes_with_caps_lock);
586 		} else {
587 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
588 			       realmino);
589 			WARN_ON(!realm);
590 		}
591 	}
592 
593 	__check_cap_issue(ci, cap, issued);
594 
595 	/*
596 	 * If we are issued caps we don't want, or the mds' wanted
597 	 * value appears to be off, queue a check so we'll release
598 	 * later and/or update the mds wanted value.
599 	 */
600 	actual_wanted = __ceph_caps_wanted(ci);
601 	if ((wanted & ~actual_wanted) ||
602 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
603 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
604 		     ceph_cap_string(issued), ceph_cap_string(wanted),
605 		     ceph_cap_string(actual_wanted));
606 		__cap_delay_requeue(mdsc, ci);
607 	}
608 
609 	if (flags & CEPH_CAP_FLAG_AUTH)
610 		ci->i_auth_cap = cap;
611 	else if (ci->i_auth_cap == cap)
612 		ci->i_auth_cap = NULL;
613 
614 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
615 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
616 	     ceph_cap_string(issued|cap->issued), seq, mds);
617 	cap->cap_id = cap_id;
618 	cap->issued = issued;
619 	cap->implemented |= issued;
620 	cap->mds_wanted |= wanted;
621 	cap->seq = seq;
622 	cap->issue_seq = seq;
623 	cap->mseq = mseq;
624 	cap->cap_gen = session->s_cap_gen;
625 
626 	if (fmode >= 0)
627 		__ceph_get_fmode(ci, fmode);
628 	spin_unlock(&inode->i_lock);
629 	wake_up_all(&ci->i_cap_wq);
630 	return 0;
631 }
632 
633 /*
634  * Return true if cap has not timed out and belongs to the current
635  * generation of the MDS session (i.e. has not gone 'stale' due to
636  * us losing touch with the mds).
637  */
638 static int __cap_is_valid(struct ceph_cap *cap)
639 {
640 	unsigned long ttl;
641 	u32 gen;
642 
643 	spin_lock(&cap->session->s_cap_lock);
644 	gen = cap->session->s_cap_gen;
645 	ttl = cap->session->s_cap_ttl;
646 	spin_unlock(&cap->session->s_cap_lock);
647 
648 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
649 		dout("__cap_is_valid %p cap %p issued %s "
650 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
651 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
652 		return 0;
653 	}
654 
655 	return 1;
656 }
657 
658 /*
659  * Return set of valid cap bits issued to us.  Note that caps time
660  * out, and may be invalidated in bulk if the client session times out
661  * and session->s_cap_gen is bumped.
662  */
663 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
664 {
665 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
666 	struct ceph_cap *cap;
667 	struct rb_node *p;
668 
669 	if (implemented)
670 		*implemented = 0;
671 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
672 		cap = rb_entry(p, struct ceph_cap, ci_node);
673 		if (!__cap_is_valid(cap))
674 			continue;
675 		dout("__ceph_caps_issued %p cap %p issued %s\n",
676 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
677 		have |= cap->issued;
678 		if (implemented)
679 			*implemented |= cap->implemented;
680 	}
681 	return have;
682 }
683 
684 /*
685  * Get cap bits issued by caps other than @ocap
686  */
687 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
688 {
689 	int have = ci->i_snap_caps;
690 	struct ceph_cap *cap;
691 	struct rb_node *p;
692 
693 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
694 		cap = rb_entry(p, struct ceph_cap, ci_node);
695 		if (cap == ocap)
696 			continue;
697 		if (!__cap_is_valid(cap))
698 			continue;
699 		have |= cap->issued;
700 	}
701 	return have;
702 }
703 
704 /*
705  * Move a cap to the end of the LRU (oldest caps at list head, newest
706  * at list tail).
707  */
708 static void __touch_cap(struct ceph_cap *cap)
709 {
710 	struct ceph_mds_session *s = cap->session;
711 
712 	spin_lock(&s->s_cap_lock);
713 	if (s->s_cap_iterator == NULL) {
714 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
715 		     s->s_mds);
716 		list_move_tail(&cap->session_caps, &s->s_caps);
717 	} else {
718 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
719 		     &cap->ci->vfs_inode, cap, s->s_mds);
720 	}
721 	spin_unlock(&s->s_cap_lock);
722 }
723 
724 /*
725  * Check if we hold the given mask.  If so, move the cap(s) to the
726  * front of their respective LRUs.  (This is the preferred way for
727  * callers to check for caps they want.)
728  */
729 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
730 {
731 	struct ceph_cap *cap;
732 	struct rb_node *p;
733 	int have = ci->i_snap_caps;
734 
735 	if ((have & mask) == mask) {
736 		dout("__ceph_caps_issued_mask %p snap issued %s"
737 		     " (mask %s)\n", &ci->vfs_inode,
738 		     ceph_cap_string(have),
739 		     ceph_cap_string(mask));
740 		return 1;
741 	}
742 
743 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
744 		cap = rb_entry(p, struct ceph_cap, ci_node);
745 		if (!__cap_is_valid(cap))
746 			continue;
747 		if ((cap->issued & mask) == mask) {
748 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
749 			     " (mask %s)\n", &ci->vfs_inode, cap,
750 			     ceph_cap_string(cap->issued),
751 			     ceph_cap_string(mask));
752 			if (touch)
753 				__touch_cap(cap);
754 			return 1;
755 		}
756 
757 		/* does a combination of caps satisfy mask? */
758 		have |= cap->issued;
759 		if ((have & mask) == mask) {
760 			dout("__ceph_caps_issued_mask %p combo issued %s"
761 			     " (mask %s)\n", &ci->vfs_inode,
762 			     ceph_cap_string(cap->issued),
763 			     ceph_cap_string(mask));
764 			if (touch) {
765 				struct rb_node *q;
766 
767 				/* touch this + preceeding caps */
768 				__touch_cap(cap);
769 				for (q = rb_first(&ci->i_caps); q != p;
770 				     q = rb_next(q)) {
771 					cap = rb_entry(q, struct ceph_cap,
772 						       ci_node);
773 					if (!__cap_is_valid(cap))
774 						continue;
775 					__touch_cap(cap);
776 				}
777 			}
778 			return 1;
779 		}
780 	}
781 
782 	return 0;
783 }
784 
785 /*
786  * Return true if mask caps are currently being revoked by an MDS.
787  */
788 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
789 {
790 	struct inode *inode = &ci->vfs_inode;
791 	struct ceph_cap *cap;
792 	struct rb_node *p;
793 	int ret = 0;
794 
795 	spin_lock(&inode->i_lock);
796 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
797 		cap = rb_entry(p, struct ceph_cap, ci_node);
798 		if (__cap_is_valid(cap) &&
799 		    (cap->implemented & ~cap->issued & mask)) {
800 			ret = 1;
801 			break;
802 		}
803 	}
804 	spin_unlock(&inode->i_lock);
805 	dout("ceph_caps_revoking %p %s = %d\n", inode,
806 	     ceph_cap_string(mask), ret);
807 	return ret;
808 }
809 
810 int __ceph_caps_used(struct ceph_inode_info *ci)
811 {
812 	int used = 0;
813 	if (ci->i_pin_ref)
814 		used |= CEPH_CAP_PIN;
815 	if (ci->i_rd_ref)
816 		used |= CEPH_CAP_FILE_RD;
817 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
818 		used |= CEPH_CAP_FILE_CACHE;
819 	if (ci->i_wr_ref)
820 		used |= CEPH_CAP_FILE_WR;
821 	if (ci->i_wrbuffer_ref)
822 		used |= CEPH_CAP_FILE_BUFFER;
823 	return used;
824 }
825 
826 /*
827  * wanted, by virtue of open file modes
828  */
829 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
830 {
831 	int want = 0;
832 	int mode;
833 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
834 		if (ci->i_nr_by_mode[mode])
835 			want |= ceph_caps_for_mode(mode);
836 	return want;
837 }
838 
839 /*
840  * Return caps we have registered with the MDS(s) as 'wanted'.
841  */
842 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
843 {
844 	struct ceph_cap *cap;
845 	struct rb_node *p;
846 	int mds_wanted = 0;
847 
848 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
849 		cap = rb_entry(p, struct ceph_cap, ci_node);
850 		if (!__cap_is_valid(cap))
851 			continue;
852 		mds_wanted |= cap->mds_wanted;
853 	}
854 	return mds_wanted;
855 }
856 
857 /*
858  * called under i_lock
859  */
860 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
861 {
862 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
863 }
864 
865 /*
866  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
867  *
868  * caller should hold i_lock.
869  * caller will not hold session s_mutex if called from destroy_inode.
870  */
871 void __ceph_remove_cap(struct ceph_cap *cap)
872 {
873 	struct ceph_mds_session *session = cap->session;
874 	struct ceph_inode_info *ci = cap->ci;
875 	struct ceph_mds_client *mdsc =
876 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
877 	int removed = 0;
878 
879 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
880 
881 	/* remove from session list */
882 	spin_lock(&session->s_cap_lock);
883 	if (session->s_cap_iterator == cap) {
884 		/* not yet, we are iterating over this very cap */
885 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
886 		     cap, cap->session);
887 	} else {
888 		list_del_init(&cap->session_caps);
889 		session->s_nr_caps--;
890 		cap->session = NULL;
891 		removed = 1;
892 	}
893 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
894 	cap->ci = NULL;
895 	spin_unlock(&session->s_cap_lock);
896 
897 	/* remove from inode list */
898 	rb_erase(&cap->ci_node, &ci->i_caps);
899 	if (ci->i_auth_cap == cap)
900 		ci->i_auth_cap = NULL;
901 
902 	if (removed)
903 		ceph_put_cap(mdsc, cap);
904 
905 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
906 		struct ceph_snap_realm *realm = ci->i_snap_realm;
907 		spin_lock(&realm->inodes_with_caps_lock);
908 		list_del_init(&ci->i_snap_realm_item);
909 		ci->i_snap_realm_counter++;
910 		ci->i_snap_realm = NULL;
911 		spin_unlock(&realm->inodes_with_caps_lock);
912 		ceph_put_snap_realm(mdsc, realm);
913 	}
914 	if (!__ceph_is_any_real_caps(ci))
915 		__cap_delay_cancel(mdsc, ci);
916 }
917 
918 /*
919  * Build and send a cap message to the given MDS.
920  *
921  * Caller should be holding s_mutex.
922  */
923 static int send_cap_msg(struct ceph_mds_session *session,
924 			u64 ino, u64 cid, int op,
925 			int caps, int wanted, int dirty,
926 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
927 			u64 size, u64 max_size,
928 			struct timespec *mtime, struct timespec *atime,
929 			u64 time_warp_seq,
930 			uid_t uid, gid_t gid, mode_t mode,
931 			u64 xattr_version,
932 			struct ceph_buffer *xattrs_buf,
933 			u64 follows)
934 {
935 	struct ceph_mds_caps *fc;
936 	struct ceph_msg *msg;
937 
938 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
939 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
940 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
941 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
942 	     ceph_cap_string(dirty),
943 	     seq, issue_seq, mseq, follows, size, max_size,
944 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
945 
946 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
947 	if (!msg)
948 		return -ENOMEM;
949 
950 	msg->hdr.tid = cpu_to_le64(flush_tid);
951 
952 	fc = msg->front.iov_base;
953 	memset(fc, 0, sizeof(*fc));
954 
955 	fc->cap_id = cpu_to_le64(cid);
956 	fc->op = cpu_to_le32(op);
957 	fc->seq = cpu_to_le32(seq);
958 	fc->issue_seq = cpu_to_le32(issue_seq);
959 	fc->migrate_seq = cpu_to_le32(mseq);
960 	fc->caps = cpu_to_le32(caps);
961 	fc->wanted = cpu_to_le32(wanted);
962 	fc->dirty = cpu_to_le32(dirty);
963 	fc->ino = cpu_to_le64(ino);
964 	fc->snap_follows = cpu_to_le64(follows);
965 
966 	fc->size = cpu_to_le64(size);
967 	fc->max_size = cpu_to_le64(max_size);
968 	if (mtime)
969 		ceph_encode_timespec(&fc->mtime, mtime);
970 	if (atime)
971 		ceph_encode_timespec(&fc->atime, atime);
972 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
973 
974 	fc->uid = cpu_to_le32(uid);
975 	fc->gid = cpu_to_le32(gid);
976 	fc->mode = cpu_to_le32(mode);
977 
978 	fc->xattr_version = cpu_to_le64(xattr_version);
979 	if (xattrs_buf) {
980 		msg->middle = ceph_buffer_get(xattrs_buf);
981 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
982 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 	}
984 
985 	ceph_con_send(&session->s_con, msg);
986 	return 0;
987 }
988 
989 static void __queue_cap_release(struct ceph_mds_session *session,
990 				u64 ino, u64 cap_id, u32 migrate_seq,
991 				u32 issue_seq)
992 {
993 	struct ceph_msg *msg;
994 	struct ceph_mds_cap_release *head;
995 	struct ceph_mds_cap_item *item;
996 
997 	spin_lock(&session->s_cap_lock);
998 	BUG_ON(!session->s_num_cap_releases);
999 	msg = list_first_entry(&session->s_cap_releases,
1000 			       struct ceph_msg, list_head);
1001 
1002 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1003 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1004 
1005 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1006 	head = msg->front.iov_base;
1007 	head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1008 	item = msg->front.iov_base + msg->front.iov_len;
1009 	item->ino = cpu_to_le64(ino);
1010 	item->cap_id = cpu_to_le64(cap_id);
1011 	item->migrate_seq = cpu_to_le32(migrate_seq);
1012 	item->seq = cpu_to_le32(issue_seq);
1013 
1014 	session->s_num_cap_releases--;
1015 
1016 	msg->front.iov_len += sizeof(*item);
1017 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1018 		dout(" release msg %p full\n", msg);
1019 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1020 	} else {
1021 		dout(" release msg %p at %d/%d (%d)\n", msg,
1022 		     (int)le32_to_cpu(head->num),
1023 		     (int)CEPH_CAPS_PER_RELEASE,
1024 		     (int)msg->front.iov_len);
1025 	}
1026 	spin_unlock(&session->s_cap_lock);
1027 }
1028 
1029 /*
1030  * Queue cap releases when an inode is dropped from our cache.  Since
1031  * inode is about to be destroyed, there is no need for i_lock.
1032  */
1033 void ceph_queue_caps_release(struct inode *inode)
1034 {
1035 	struct ceph_inode_info *ci = ceph_inode(inode);
1036 	struct rb_node *p;
1037 
1038 	p = rb_first(&ci->i_caps);
1039 	while (p) {
1040 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1041 		struct ceph_mds_session *session = cap->session;
1042 
1043 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1044 				    cap->mseq, cap->issue_seq);
1045 		p = rb_next(p);
1046 		__ceph_remove_cap(cap);
1047 	}
1048 }
1049 
1050 /*
1051  * Send a cap msg on the given inode.  Update our caps state, then
1052  * drop i_lock and send the message.
1053  *
1054  * Make note of max_size reported/requested from mds, revoked caps
1055  * that have now been implemented.
1056  *
1057  * Make half-hearted attempt ot to invalidate page cache if we are
1058  * dropping RDCACHE.  Note that this will leave behind locked pages
1059  * that we'll then need to deal with elsewhere.
1060  *
1061  * Return non-zero if delayed release, or we experienced an error
1062  * such that the caller should requeue + retry later.
1063  *
1064  * called with i_lock, then drops it.
1065  * caller should hold snap_rwsem (read), s_mutex.
1066  */
1067 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1068 		      int op, int used, int want, int retain, int flushing,
1069 		      unsigned *pflush_tid)
1070 	__releases(cap->ci->vfs_inode->i_lock)
1071 {
1072 	struct ceph_inode_info *ci = cap->ci;
1073 	struct inode *inode = &ci->vfs_inode;
1074 	u64 cap_id = cap->cap_id;
1075 	int held, revoking, dropping, keep;
1076 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1077 	u64 size, max_size;
1078 	struct timespec mtime, atime;
1079 	int wake = 0;
1080 	mode_t mode;
1081 	uid_t uid;
1082 	gid_t gid;
1083 	struct ceph_mds_session *session;
1084 	u64 xattr_version = 0;
1085 	struct ceph_buffer *xattr_blob = NULL;
1086 	int delayed = 0;
1087 	u64 flush_tid = 0;
1088 	int i;
1089 	int ret;
1090 
1091 	held = cap->issued | cap->implemented;
1092 	revoking = cap->implemented & ~cap->issued;
1093 	retain &= ~revoking;
1094 	dropping = cap->issued & ~retain;
1095 
1096 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1097 	     inode, cap, cap->session,
1098 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1099 	     ceph_cap_string(revoking));
1100 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1101 
1102 	session = cap->session;
1103 
1104 	/* don't release wanted unless we've waited a bit. */
1105 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1106 	    time_before(jiffies, ci->i_hold_caps_min)) {
1107 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1108 		     ceph_cap_string(cap->issued),
1109 		     ceph_cap_string(cap->issued & retain),
1110 		     ceph_cap_string(cap->mds_wanted),
1111 		     ceph_cap_string(want));
1112 		want |= cap->mds_wanted;
1113 		retain |= cap->issued;
1114 		delayed = 1;
1115 	}
1116 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1117 
1118 	cap->issued &= retain;  /* drop bits we don't want */
1119 	if (cap->implemented & ~cap->issued) {
1120 		/*
1121 		 * Wake up any waiters on wanted -> needed transition.
1122 		 * This is due to the weird transition from buffered
1123 		 * to sync IO... we need to flush dirty pages _before_
1124 		 * allowing sync writes to avoid reordering.
1125 		 */
1126 		wake = 1;
1127 	}
1128 	cap->implemented &= cap->issued | used;
1129 	cap->mds_wanted = want;
1130 
1131 	if (flushing) {
1132 		/*
1133 		 * assign a tid for flush operations so we can avoid
1134 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1135 		 * clean type races.  track latest tid for every bit
1136 		 * so we can handle flush AxFw, flush Fw, and have the
1137 		 * first ack clean Ax.
1138 		 */
1139 		flush_tid = ++ci->i_cap_flush_last_tid;
1140 		if (pflush_tid)
1141 			*pflush_tid = flush_tid;
1142 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1143 		for (i = 0; i < CEPH_CAP_BITS; i++)
1144 			if (flushing & (1 << i))
1145 				ci->i_cap_flush_tid[i] = flush_tid;
1146 
1147 		follows = ci->i_head_snapc->seq;
1148 	} else {
1149 		follows = 0;
1150 	}
1151 
1152 	keep = cap->implemented;
1153 	seq = cap->seq;
1154 	issue_seq = cap->issue_seq;
1155 	mseq = cap->mseq;
1156 	size = inode->i_size;
1157 	ci->i_reported_size = size;
1158 	max_size = ci->i_wanted_max_size;
1159 	ci->i_requested_max_size = max_size;
1160 	mtime = inode->i_mtime;
1161 	atime = inode->i_atime;
1162 	time_warp_seq = ci->i_time_warp_seq;
1163 	uid = inode->i_uid;
1164 	gid = inode->i_gid;
1165 	mode = inode->i_mode;
1166 
1167 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1168 		__ceph_build_xattrs_blob(ci);
1169 		xattr_blob = ci->i_xattrs.blob;
1170 		xattr_version = ci->i_xattrs.version;
1171 	}
1172 
1173 	spin_unlock(&inode->i_lock);
1174 
1175 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1176 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1177 		size, max_size, &mtime, &atime, time_warp_seq,
1178 		uid, gid, mode, xattr_version, xattr_blob,
1179 		follows);
1180 	if (ret < 0) {
1181 		dout("error sending cap msg, must requeue %p\n", inode);
1182 		delayed = 1;
1183 	}
1184 
1185 	if (wake)
1186 		wake_up_all(&ci->i_cap_wq);
1187 
1188 	return delayed;
1189 }
1190 
1191 /*
1192  * When a snapshot is taken, clients accumulate dirty metadata on
1193  * inodes with capabilities in ceph_cap_snaps to describe the file
1194  * state at the time the snapshot was taken.  This must be flushed
1195  * asynchronously back to the MDS once sync writes complete and dirty
1196  * data is written out.
1197  *
1198  * Unless @again is true, skip cap_snaps that were already sent to
1199  * the MDS (i.e., during this session).
1200  *
1201  * Called under i_lock.  Takes s_mutex as needed.
1202  */
1203 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1204 			struct ceph_mds_session **psession,
1205 			int again)
1206 		__releases(ci->vfs_inode->i_lock)
1207 		__acquires(ci->vfs_inode->i_lock)
1208 {
1209 	struct inode *inode = &ci->vfs_inode;
1210 	int mds;
1211 	struct ceph_cap_snap *capsnap;
1212 	u32 mseq;
1213 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1214 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1215 						    session->s_mutex */
1216 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1217 			     i_cap_snaps list, and skip these entries next time
1218 			     around to avoid an infinite loop */
1219 
1220 	if (psession)
1221 		session = *psession;
1222 
1223 	dout("__flush_snaps %p\n", inode);
1224 retry:
1225 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1226 		/* avoid an infiniute loop after retry */
1227 		if (capsnap->follows < next_follows)
1228 			continue;
1229 		/*
1230 		 * we need to wait for sync writes to complete and for dirty
1231 		 * pages to be written out.
1232 		 */
1233 		if (capsnap->dirty_pages || capsnap->writing)
1234 			break;
1235 
1236 		/*
1237 		 * if cap writeback already occurred, we should have dropped
1238 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1239 		 */
1240 		BUG_ON(capsnap->dirty == 0);
1241 
1242 		/* pick mds, take s_mutex */
1243 		if (ci->i_auth_cap == NULL) {
1244 			dout("no auth cap (migrating?), doing nothing\n");
1245 			goto out;
1246 		}
1247 
1248 		/* only flush each capsnap once */
1249 		if (!again && !list_empty(&capsnap->flushing_item)) {
1250 			dout("already flushed %p, skipping\n", capsnap);
1251 			continue;
1252 		}
1253 
1254 		mds = ci->i_auth_cap->session->s_mds;
1255 		mseq = ci->i_auth_cap->mseq;
1256 
1257 		if (session && session->s_mds != mds) {
1258 			dout("oops, wrong session %p mutex\n", session);
1259 			mutex_unlock(&session->s_mutex);
1260 			ceph_put_mds_session(session);
1261 			session = NULL;
1262 		}
1263 		if (!session) {
1264 			spin_unlock(&inode->i_lock);
1265 			mutex_lock(&mdsc->mutex);
1266 			session = __ceph_lookup_mds_session(mdsc, mds);
1267 			mutex_unlock(&mdsc->mutex);
1268 			if (session) {
1269 				dout("inverting session/ino locks on %p\n",
1270 				     session);
1271 				mutex_lock(&session->s_mutex);
1272 			}
1273 			/*
1274 			 * if session == NULL, we raced against a cap
1275 			 * deletion or migration.  retry, and we'll
1276 			 * get a better @mds value next time.
1277 			 */
1278 			spin_lock(&inode->i_lock);
1279 			goto retry;
1280 		}
1281 
1282 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1283 		atomic_inc(&capsnap->nref);
1284 		if (!list_empty(&capsnap->flushing_item))
1285 			list_del_init(&capsnap->flushing_item);
1286 		list_add_tail(&capsnap->flushing_item,
1287 			      &session->s_cap_snaps_flushing);
1288 		spin_unlock(&inode->i_lock);
1289 
1290 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1291 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1292 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1293 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1294 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1295 			     capsnap->size, 0,
1296 			     &capsnap->mtime, &capsnap->atime,
1297 			     capsnap->time_warp_seq,
1298 			     capsnap->uid, capsnap->gid, capsnap->mode,
1299 			     capsnap->xattr_version, capsnap->xattr_blob,
1300 			     capsnap->follows);
1301 
1302 		next_follows = capsnap->follows + 1;
1303 		ceph_put_cap_snap(capsnap);
1304 
1305 		spin_lock(&inode->i_lock);
1306 		goto retry;
1307 	}
1308 
1309 	/* we flushed them all; remove this inode from the queue */
1310 	spin_lock(&mdsc->snap_flush_lock);
1311 	list_del_init(&ci->i_snap_flush_item);
1312 	spin_unlock(&mdsc->snap_flush_lock);
1313 
1314 out:
1315 	if (psession)
1316 		*psession = session;
1317 	else if (session) {
1318 		mutex_unlock(&session->s_mutex);
1319 		ceph_put_mds_session(session);
1320 	}
1321 }
1322 
1323 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1324 {
1325 	struct inode *inode = &ci->vfs_inode;
1326 
1327 	spin_lock(&inode->i_lock);
1328 	__ceph_flush_snaps(ci, NULL, 0);
1329 	spin_unlock(&inode->i_lock);
1330 }
1331 
1332 /*
1333  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1334  * list.
1335  */
1336 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1337 {
1338 	struct ceph_mds_client *mdsc =
1339 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1340 	struct inode *inode = &ci->vfs_inode;
1341 	int was = ci->i_dirty_caps;
1342 	int dirty = 0;
1343 
1344 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1345 	     ceph_cap_string(mask), ceph_cap_string(was),
1346 	     ceph_cap_string(was | mask));
1347 	ci->i_dirty_caps |= mask;
1348 	if (was == 0) {
1349 		if (!ci->i_head_snapc)
1350 			ci->i_head_snapc = ceph_get_snap_context(
1351 				ci->i_snap_realm->cached_context);
1352 		dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
1353 			ci->i_head_snapc);
1354 		BUG_ON(!list_empty(&ci->i_dirty_item));
1355 		spin_lock(&mdsc->cap_dirty_lock);
1356 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1357 		spin_unlock(&mdsc->cap_dirty_lock);
1358 		if (ci->i_flushing_caps == 0) {
1359 			igrab(inode);
1360 			dirty |= I_DIRTY_SYNC;
1361 		}
1362 	}
1363 	BUG_ON(list_empty(&ci->i_dirty_item));
1364 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1365 	    (mask & CEPH_CAP_FILE_BUFFER))
1366 		dirty |= I_DIRTY_DATASYNC;
1367 	if (dirty)
1368 		__mark_inode_dirty(inode, dirty);
1369 	__cap_delay_requeue(mdsc, ci);
1370 }
1371 
1372 /*
1373  * Add dirty inode to the flushing list.  Assigned a seq number so we
1374  * can wait for caps to flush without starving.
1375  *
1376  * Called under i_lock.
1377  */
1378 static int __mark_caps_flushing(struct inode *inode,
1379 				 struct ceph_mds_session *session)
1380 {
1381 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1382 	struct ceph_inode_info *ci = ceph_inode(inode);
1383 	int flushing;
1384 
1385 	BUG_ON(ci->i_dirty_caps == 0);
1386 	BUG_ON(list_empty(&ci->i_dirty_item));
1387 
1388 	flushing = ci->i_dirty_caps;
1389 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1390 	     ceph_cap_string(flushing),
1391 	     ceph_cap_string(ci->i_flushing_caps),
1392 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1393 	ci->i_flushing_caps |= flushing;
1394 	ci->i_dirty_caps = 0;
1395 	dout(" inode %p now !dirty\n", inode);
1396 
1397 	spin_lock(&mdsc->cap_dirty_lock);
1398 	list_del_init(&ci->i_dirty_item);
1399 
1400 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1401 	if (list_empty(&ci->i_flushing_item)) {
1402 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1403 		mdsc->num_cap_flushing++;
1404 		dout(" inode %p now flushing seq %lld\n", inode,
1405 		     ci->i_cap_flush_seq);
1406 	} else {
1407 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1408 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1409 		     ci->i_cap_flush_seq);
1410 	}
1411 	spin_unlock(&mdsc->cap_dirty_lock);
1412 
1413 	return flushing;
1414 }
1415 
1416 /*
1417  * try to invalidate mapping pages without blocking.
1418  */
1419 static int mapping_is_empty(struct address_space *mapping)
1420 {
1421 	struct page *page = find_get_page(mapping, 0);
1422 
1423 	if (!page)
1424 		return 1;
1425 
1426 	put_page(page);
1427 	return 0;
1428 }
1429 
1430 static int try_nonblocking_invalidate(struct inode *inode)
1431 {
1432 	struct ceph_inode_info *ci = ceph_inode(inode);
1433 	u32 invalidating_gen = ci->i_rdcache_gen;
1434 
1435 	spin_unlock(&inode->i_lock);
1436 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1437 	spin_lock(&inode->i_lock);
1438 
1439 	if (mapping_is_empty(&inode->i_data) &&
1440 	    invalidating_gen == ci->i_rdcache_gen) {
1441 		/* success. */
1442 		dout("try_nonblocking_invalidate %p success\n", inode);
1443 		ci->i_rdcache_gen = 0;
1444 		ci->i_rdcache_revoking = 0;
1445 		return 0;
1446 	}
1447 	dout("try_nonblocking_invalidate %p failed\n", inode);
1448 	return -1;
1449 }
1450 
1451 /*
1452  * Swiss army knife function to examine currently used and wanted
1453  * versus held caps.  Release, flush, ack revoked caps to mds as
1454  * appropriate.
1455  *
1456  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1457  *    cap release further.
1458  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1459  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1460  *    further delay.
1461  */
1462 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1463 		     struct ceph_mds_session *session)
1464 {
1465 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1466 	struct ceph_mds_client *mdsc = &client->mdsc;
1467 	struct inode *inode = &ci->vfs_inode;
1468 	struct ceph_cap *cap;
1469 	int file_wanted, used;
1470 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1471 	int issued, implemented, want, retain, revoking, flushing = 0;
1472 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1473 			   to avoid an infinite loop on retry */
1474 	struct rb_node *p;
1475 	int tried_invalidate = 0;
1476 	int delayed = 0, sent = 0, force_requeue = 0, num;
1477 	int queue_invalidate = 0;
1478 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1479 
1480 	/* if we are unmounting, flush any unused caps immediately. */
1481 	if (mdsc->stopping)
1482 		is_delayed = 1;
1483 
1484 	spin_lock(&inode->i_lock);
1485 
1486 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1487 		flags |= CHECK_CAPS_FLUSH;
1488 
1489 	/* flush snaps first time around only */
1490 	if (!list_empty(&ci->i_cap_snaps))
1491 		__ceph_flush_snaps(ci, &session, 0);
1492 	goto retry_locked;
1493 retry:
1494 	spin_lock(&inode->i_lock);
1495 retry_locked:
1496 	file_wanted = __ceph_caps_file_wanted(ci);
1497 	used = __ceph_caps_used(ci);
1498 	want = file_wanted | used;
1499 	issued = __ceph_caps_issued(ci, &implemented);
1500 	revoking = implemented & ~issued;
1501 
1502 	retain = want | CEPH_CAP_PIN;
1503 	if (!mdsc->stopping && inode->i_nlink > 0) {
1504 		if (want) {
1505 			retain |= CEPH_CAP_ANY;       /* be greedy */
1506 		} else {
1507 			retain |= CEPH_CAP_ANY_SHARED;
1508 			/*
1509 			 * keep RD only if we didn't have the file open RW,
1510 			 * because then the mds would revoke it anyway to
1511 			 * journal max_size=0.
1512 			 */
1513 			if (ci->i_max_size == 0)
1514 				retain |= CEPH_CAP_ANY_RD;
1515 		}
1516 	}
1517 
1518 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1519 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1520 	     ceph_cap_string(file_wanted),
1521 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1522 	     ceph_cap_string(ci->i_flushing_caps),
1523 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1524 	     ceph_cap_string(retain),
1525 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1526 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1527 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1528 
1529 	/*
1530 	 * If we no longer need to hold onto old our caps, and we may
1531 	 * have cached pages, but don't want them, then try to invalidate.
1532 	 * If we fail, it's because pages are locked.... try again later.
1533 	 */
1534 	if ((!is_delayed || mdsc->stopping) &&
1535 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1536 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1537 	    (file_wanted == 0 ||                     /* no open files */
1538 	     (revoking & (CEPH_CAP_FILE_CACHE|
1539 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1540 	    !tried_invalidate) {
1541 		dout("check_caps trying to invalidate on %p\n", inode);
1542 		if (try_nonblocking_invalidate(inode) < 0) {
1543 			if (revoking & (CEPH_CAP_FILE_CACHE|
1544 					CEPH_CAP_FILE_LAZYIO)) {
1545 				dout("check_caps queuing invalidate\n");
1546 				queue_invalidate = 1;
1547 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1548 			} else {
1549 				dout("check_caps failed to invalidate pages\n");
1550 				/* we failed to invalidate pages.  check these
1551 				   caps again later. */
1552 				force_requeue = 1;
1553 				__cap_set_timeouts(mdsc, ci);
1554 			}
1555 		}
1556 		tried_invalidate = 1;
1557 		goto retry_locked;
1558 	}
1559 
1560 	num = 0;
1561 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1562 		cap = rb_entry(p, struct ceph_cap, ci_node);
1563 		num++;
1564 
1565 		/* avoid looping forever */
1566 		if (mds >= cap->mds ||
1567 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1568 			continue;
1569 
1570 		/* NOTE: no side-effects allowed, until we take s_mutex */
1571 
1572 		revoking = cap->implemented & ~cap->issued;
1573 		if (revoking)
1574 			dout(" mds%d revoking %s\n", cap->mds,
1575 			     ceph_cap_string(revoking));
1576 
1577 		if (cap == ci->i_auth_cap &&
1578 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1579 			/* request larger max_size from MDS? */
1580 			if (ci->i_wanted_max_size > ci->i_max_size &&
1581 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1582 				dout("requesting new max_size\n");
1583 				goto ack;
1584 			}
1585 
1586 			/* approaching file_max? */
1587 			if ((inode->i_size << 1) >= ci->i_max_size &&
1588 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1589 				dout("i_size approaching max_size\n");
1590 				goto ack;
1591 			}
1592 		}
1593 		/* flush anything dirty? */
1594 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1595 		    ci->i_dirty_caps) {
1596 			dout("flushing dirty caps\n");
1597 			goto ack;
1598 		}
1599 
1600 		/* completed revocation? going down and there are no caps? */
1601 		if (revoking && (revoking & used) == 0) {
1602 			dout("completed revocation of %s\n",
1603 			     ceph_cap_string(cap->implemented & ~cap->issued));
1604 			goto ack;
1605 		}
1606 
1607 		/* want more caps from mds? */
1608 		if (want & ~(cap->mds_wanted | cap->issued))
1609 			goto ack;
1610 
1611 		/* things we might delay */
1612 		if ((cap->issued & ~retain) == 0 &&
1613 		    cap->mds_wanted == want)
1614 			continue;     /* nope, all good */
1615 
1616 		if (is_delayed)
1617 			goto ack;
1618 
1619 		/* delay? */
1620 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1621 		    time_before(jiffies, ci->i_hold_caps_max)) {
1622 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1623 			     ceph_cap_string(cap->issued),
1624 			     ceph_cap_string(cap->issued & retain),
1625 			     ceph_cap_string(cap->mds_wanted),
1626 			     ceph_cap_string(want));
1627 			delayed++;
1628 			continue;
1629 		}
1630 
1631 ack:
1632 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1633 			dout(" skipping %p I_NOFLUSH set\n", inode);
1634 			continue;
1635 		}
1636 
1637 		if (session && session != cap->session) {
1638 			dout("oops, wrong session %p mutex\n", session);
1639 			mutex_unlock(&session->s_mutex);
1640 			session = NULL;
1641 		}
1642 		if (!session) {
1643 			session = cap->session;
1644 			if (mutex_trylock(&session->s_mutex) == 0) {
1645 				dout("inverting session/ino locks on %p\n",
1646 				     session);
1647 				spin_unlock(&inode->i_lock);
1648 				if (took_snap_rwsem) {
1649 					up_read(&mdsc->snap_rwsem);
1650 					took_snap_rwsem = 0;
1651 				}
1652 				mutex_lock(&session->s_mutex);
1653 				goto retry;
1654 			}
1655 		}
1656 		/* take snap_rwsem after session mutex */
1657 		if (!took_snap_rwsem) {
1658 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1659 				dout("inverting snap/in locks on %p\n",
1660 				     inode);
1661 				spin_unlock(&inode->i_lock);
1662 				down_read(&mdsc->snap_rwsem);
1663 				took_snap_rwsem = 1;
1664 				goto retry;
1665 			}
1666 			took_snap_rwsem = 1;
1667 		}
1668 
1669 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1670 			flushing = __mark_caps_flushing(inode, session);
1671 
1672 		mds = cap->mds;  /* remember mds, so we don't repeat */
1673 		sent++;
1674 
1675 		/* __send_cap drops i_lock */
1676 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1677 				      retain, flushing, NULL);
1678 		goto retry; /* retake i_lock and restart our cap scan. */
1679 	}
1680 
1681 	/*
1682 	 * Reschedule delayed caps release if we delayed anything,
1683 	 * otherwise cancel.
1684 	 */
1685 	if (delayed && is_delayed)
1686 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1687 	if (!delayed && !is_delayed)
1688 		__cap_delay_cancel(mdsc, ci);
1689 	else if (!is_delayed || force_requeue)
1690 		__cap_delay_requeue(mdsc, ci);
1691 
1692 	spin_unlock(&inode->i_lock);
1693 
1694 	if (queue_invalidate)
1695 		ceph_queue_invalidate(inode);
1696 
1697 	if (session)
1698 		mutex_unlock(&session->s_mutex);
1699 	if (took_snap_rwsem)
1700 		up_read(&mdsc->snap_rwsem);
1701 }
1702 
1703 /*
1704  * Try to flush dirty caps back to the auth mds.
1705  */
1706 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1707 			  unsigned *flush_tid)
1708 {
1709 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1710 	struct ceph_inode_info *ci = ceph_inode(inode);
1711 	int unlock_session = session ? 0 : 1;
1712 	int flushing = 0;
1713 
1714 retry:
1715 	spin_lock(&inode->i_lock);
1716 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1717 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1718 		goto out;
1719 	}
1720 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1721 		struct ceph_cap *cap = ci->i_auth_cap;
1722 		int used = __ceph_caps_used(ci);
1723 		int want = __ceph_caps_wanted(ci);
1724 		int delayed;
1725 
1726 		if (!session) {
1727 			spin_unlock(&inode->i_lock);
1728 			session = cap->session;
1729 			mutex_lock(&session->s_mutex);
1730 			goto retry;
1731 		}
1732 		BUG_ON(session != cap->session);
1733 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1734 			goto out;
1735 
1736 		flushing = __mark_caps_flushing(inode, session);
1737 
1738 		/* __send_cap drops i_lock */
1739 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1740 				     cap->issued | cap->implemented, flushing,
1741 				     flush_tid);
1742 		if (!delayed)
1743 			goto out_unlocked;
1744 
1745 		spin_lock(&inode->i_lock);
1746 		__cap_delay_requeue(mdsc, ci);
1747 	}
1748 out:
1749 	spin_unlock(&inode->i_lock);
1750 out_unlocked:
1751 	if (session && unlock_session)
1752 		mutex_unlock(&session->s_mutex);
1753 	return flushing;
1754 }
1755 
1756 /*
1757  * Return true if we've flushed caps through the given flush_tid.
1758  */
1759 static int caps_are_flushed(struct inode *inode, unsigned tid)
1760 {
1761 	struct ceph_inode_info *ci = ceph_inode(inode);
1762 	int i, ret = 1;
1763 
1764 	spin_lock(&inode->i_lock);
1765 	for (i = 0; i < CEPH_CAP_BITS; i++)
1766 		if ((ci->i_flushing_caps & (1 << i)) &&
1767 		    ci->i_cap_flush_tid[i] <= tid) {
1768 			/* still flushing this bit */
1769 			ret = 0;
1770 			break;
1771 		}
1772 	spin_unlock(&inode->i_lock);
1773 	return ret;
1774 }
1775 
1776 /*
1777  * Wait on any unsafe replies for the given inode.  First wait on the
1778  * newest request, and make that the upper bound.  Then, if there are
1779  * more requests, keep waiting on the oldest as long as it is still older
1780  * than the original request.
1781  */
1782 static void sync_write_wait(struct inode *inode)
1783 {
1784 	struct ceph_inode_info *ci = ceph_inode(inode);
1785 	struct list_head *head = &ci->i_unsafe_writes;
1786 	struct ceph_osd_request *req;
1787 	u64 last_tid;
1788 
1789 	spin_lock(&ci->i_unsafe_lock);
1790 	if (list_empty(head))
1791 		goto out;
1792 
1793 	/* set upper bound as _last_ entry in chain */
1794 	req = list_entry(head->prev, struct ceph_osd_request,
1795 			 r_unsafe_item);
1796 	last_tid = req->r_tid;
1797 
1798 	do {
1799 		ceph_osdc_get_request(req);
1800 		spin_unlock(&ci->i_unsafe_lock);
1801 		dout("sync_write_wait on tid %llu (until %llu)\n",
1802 		     req->r_tid, last_tid);
1803 		wait_for_completion(&req->r_safe_completion);
1804 		spin_lock(&ci->i_unsafe_lock);
1805 		ceph_osdc_put_request(req);
1806 
1807 		/*
1808 		 * from here on look at first entry in chain, since we
1809 		 * only want to wait for anything older than last_tid
1810 		 */
1811 		if (list_empty(head))
1812 			break;
1813 		req = list_entry(head->next, struct ceph_osd_request,
1814 				 r_unsafe_item);
1815 	} while (req->r_tid < last_tid);
1816 out:
1817 	spin_unlock(&ci->i_unsafe_lock);
1818 }
1819 
1820 int ceph_fsync(struct file *file, int datasync)
1821 {
1822 	struct inode *inode = file->f_mapping->host;
1823 	struct ceph_inode_info *ci = ceph_inode(inode);
1824 	unsigned flush_tid;
1825 	int ret;
1826 	int dirty;
1827 
1828 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1829 	sync_write_wait(inode);
1830 
1831 	ret = filemap_write_and_wait(inode->i_mapping);
1832 	if (ret < 0)
1833 		return ret;
1834 
1835 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1836 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1837 
1838 	/*
1839 	 * only wait on non-file metadata writeback (the mds
1840 	 * can recover size and mtime, so we don't need to
1841 	 * wait for that)
1842 	 */
1843 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1844 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1845 		ret = wait_event_interruptible(ci->i_cap_wq,
1846 				       caps_are_flushed(inode, flush_tid));
1847 	}
1848 
1849 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1850 	return ret;
1851 }
1852 
1853 /*
1854  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1855  * queue inode for flush but don't do so immediately, because we can
1856  * get by with fewer MDS messages if we wait for data writeback to
1857  * complete first.
1858  */
1859 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1860 {
1861 	struct ceph_inode_info *ci = ceph_inode(inode);
1862 	unsigned flush_tid;
1863 	int err = 0;
1864 	int dirty;
1865 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1866 
1867 	dout("write_inode %p wait=%d\n", inode, wait);
1868 	if (wait) {
1869 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1870 		if (dirty)
1871 			err = wait_event_interruptible(ci->i_cap_wq,
1872 				       caps_are_flushed(inode, flush_tid));
1873 	} else {
1874 		struct ceph_mds_client *mdsc =
1875 			&ceph_sb_to_client(inode->i_sb)->mdsc;
1876 
1877 		spin_lock(&inode->i_lock);
1878 		if (__ceph_caps_dirty(ci))
1879 			__cap_delay_requeue_front(mdsc, ci);
1880 		spin_unlock(&inode->i_lock);
1881 	}
1882 	return err;
1883 }
1884 
1885 /*
1886  * After a recovering MDS goes active, we need to resend any caps
1887  * we were flushing.
1888  *
1889  * Caller holds session->s_mutex.
1890  */
1891 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1892 				   struct ceph_mds_session *session)
1893 {
1894 	struct ceph_cap_snap *capsnap;
1895 
1896 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1897 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1898 			    flushing_item) {
1899 		struct ceph_inode_info *ci = capsnap->ci;
1900 		struct inode *inode = &ci->vfs_inode;
1901 		struct ceph_cap *cap;
1902 
1903 		spin_lock(&inode->i_lock);
1904 		cap = ci->i_auth_cap;
1905 		if (cap && cap->session == session) {
1906 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1907 			     cap, capsnap);
1908 			__ceph_flush_snaps(ci, &session, 1);
1909 		} else {
1910 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1911 			       cap, session->s_mds);
1912 		}
1913 		spin_unlock(&inode->i_lock);
1914 	}
1915 }
1916 
1917 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1918 			     struct ceph_mds_session *session)
1919 {
1920 	struct ceph_inode_info *ci;
1921 
1922 	kick_flushing_capsnaps(mdsc, session);
1923 
1924 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1925 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1926 		struct inode *inode = &ci->vfs_inode;
1927 		struct ceph_cap *cap;
1928 		int delayed = 0;
1929 
1930 		spin_lock(&inode->i_lock);
1931 		cap = ci->i_auth_cap;
1932 		if (cap && cap->session == session) {
1933 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1934 			     cap, ceph_cap_string(ci->i_flushing_caps));
1935 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1936 					     __ceph_caps_used(ci),
1937 					     __ceph_caps_wanted(ci),
1938 					     cap->issued | cap->implemented,
1939 					     ci->i_flushing_caps, NULL);
1940 			if (delayed) {
1941 				spin_lock(&inode->i_lock);
1942 				__cap_delay_requeue(mdsc, ci);
1943 				spin_unlock(&inode->i_lock);
1944 			}
1945 		} else {
1946 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1947 			       cap, session->s_mds);
1948 			spin_unlock(&inode->i_lock);
1949 		}
1950 	}
1951 }
1952 
1953 
1954 /*
1955  * Take references to capabilities we hold, so that we don't release
1956  * them to the MDS prematurely.
1957  *
1958  * Protected by i_lock.
1959  */
1960 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1961 {
1962 	if (got & CEPH_CAP_PIN)
1963 		ci->i_pin_ref++;
1964 	if (got & CEPH_CAP_FILE_RD)
1965 		ci->i_rd_ref++;
1966 	if (got & CEPH_CAP_FILE_CACHE)
1967 		ci->i_rdcache_ref++;
1968 	if (got & CEPH_CAP_FILE_WR)
1969 		ci->i_wr_ref++;
1970 	if (got & CEPH_CAP_FILE_BUFFER) {
1971 		if (ci->i_wrbuffer_ref == 0)
1972 			igrab(&ci->vfs_inode);
1973 		ci->i_wrbuffer_ref++;
1974 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1975 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1976 	}
1977 }
1978 
1979 /*
1980  * Try to grab cap references.  Specify those refs we @want, and the
1981  * minimal set we @need.  Also include the larger offset we are writing
1982  * to (when applicable), and check against max_size here as well.
1983  * Note that caller is responsible for ensuring max_size increases are
1984  * requested from the MDS.
1985  */
1986 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1987 			    int *got, loff_t endoff, int *check_max, int *err)
1988 {
1989 	struct inode *inode = &ci->vfs_inode;
1990 	int ret = 0;
1991 	int have, implemented;
1992 	int file_wanted;
1993 
1994 	dout("get_cap_refs %p need %s want %s\n", inode,
1995 	     ceph_cap_string(need), ceph_cap_string(want));
1996 	spin_lock(&inode->i_lock);
1997 
1998 	/* make sure file is actually open */
1999 	file_wanted = __ceph_caps_file_wanted(ci);
2000 	if ((file_wanted & need) == 0) {
2001 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2002 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2003 		*err = -EBADF;
2004 		ret = 1;
2005 		goto out;
2006 	}
2007 
2008 	if (need & CEPH_CAP_FILE_WR) {
2009 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2010 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2011 			     inode, endoff, ci->i_max_size);
2012 			if (endoff > ci->i_wanted_max_size) {
2013 				*check_max = 1;
2014 				ret = 1;
2015 			}
2016 			goto out;
2017 		}
2018 		/*
2019 		 * If a sync write is in progress, we must wait, so that we
2020 		 * can get a final snapshot value for size+mtime.
2021 		 */
2022 		if (__ceph_have_pending_cap_snap(ci)) {
2023 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2024 			goto out;
2025 		}
2026 	}
2027 	have = __ceph_caps_issued(ci, &implemented);
2028 
2029 	/*
2030 	 * disallow writes while a truncate is pending
2031 	 */
2032 	if (ci->i_truncate_pending)
2033 		have &= ~CEPH_CAP_FILE_WR;
2034 
2035 	if ((have & need) == need) {
2036 		/*
2037 		 * Look at (implemented & ~have & not) so that we keep waiting
2038 		 * on transition from wanted -> needed caps.  This is needed
2039 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2040 		 * going before a prior buffered writeback happens.
2041 		 */
2042 		int not = want & ~(have & need);
2043 		int revoking = implemented & ~have;
2044 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2045 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2046 		     ceph_cap_string(revoking));
2047 		if ((revoking & not) == 0) {
2048 			*got = need | (have & want);
2049 			__take_cap_refs(ci, *got);
2050 			ret = 1;
2051 		}
2052 	} else {
2053 		dout("get_cap_refs %p have %s needed %s\n", inode,
2054 		     ceph_cap_string(have), ceph_cap_string(need));
2055 	}
2056 out:
2057 	spin_unlock(&inode->i_lock);
2058 	dout("get_cap_refs %p ret %d got %s\n", inode,
2059 	     ret, ceph_cap_string(*got));
2060 	return ret;
2061 }
2062 
2063 /*
2064  * Check the offset we are writing up to against our current
2065  * max_size.  If necessary, tell the MDS we want to write to
2066  * a larger offset.
2067  */
2068 static void check_max_size(struct inode *inode, loff_t endoff)
2069 {
2070 	struct ceph_inode_info *ci = ceph_inode(inode);
2071 	int check = 0;
2072 
2073 	/* do we need to explicitly request a larger max_size? */
2074 	spin_lock(&inode->i_lock);
2075 	if ((endoff >= ci->i_max_size ||
2076 	     endoff > (inode->i_size << 1)) &&
2077 	    endoff > ci->i_wanted_max_size) {
2078 		dout("write %p at large endoff %llu, req max_size\n",
2079 		     inode, endoff);
2080 		ci->i_wanted_max_size = endoff;
2081 		check = 1;
2082 	}
2083 	spin_unlock(&inode->i_lock);
2084 	if (check)
2085 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2086 }
2087 
2088 /*
2089  * Wait for caps, and take cap references.  If we can't get a WR cap
2090  * due to a small max_size, make sure we check_max_size (and possibly
2091  * ask the mds) so we don't get hung up indefinitely.
2092  */
2093 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2094 		  loff_t endoff)
2095 {
2096 	int check_max, ret, err;
2097 
2098 retry:
2099 	if (endoff > 0)
2100 		check_max_size(&ci->vfs_inode, endoff);
2101 	check_max = 0;
2102 	err = 0;
2103 	ret = wait_event_interruptible(ci->i_cap_wq,
2104 				       try_get_cap_refs(ci, need, want,
2105 							got, endoff,
2106 							&check_max, &err));
2107 	if (err)
2108 		ret = err;
2109 	if (check_max)
2110 		goto retry;
2111 	return ret;
2112 }
2113 
2114 /*
2115  * Take cap refs.  Caller must already know we hold at least one ref
2116  * on the caps in question or we don't know this is safe.
2117  */
2118 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2119 {
2120 	spin_lock(&ci->vfs_inode.i_lock);
2121 	__take_cap_refs(ci, caps);
2122 	spin_unlock(&ci->vfs_inode.i_lock);
2123 }
2124 
2125 /*
2126  * Release cap refs.
2127  *
2128  * If we released the last ref on any given cap, call ceph_check_caps
2129  * to release (or schedule a release).
2130  *
2131  * If we are releasing a WR cap (from a sync write), finalize any affected
2132  * cap_snap, and wake up any waiters.
2133  */
2134 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2135 {
2136 	struct inode *inode = &ci->vfs_inode;
2137 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2138 	struct ceph_cap_snap *capsnap;
2139 
2140 	spin_lock(&inode->i_lock);
2141 	if (had & CEPH_CAP_PIN)
2142 		--ci->i_pin_ref;
2143 	if (had & CEPH_CAP_FILE_RD)
2144 		if (--ci->i_rd_ref == 0)
2145 			last++;
2146 	if (had & CEPH_CAP_FILE_CACHE)
2147 		if (--ci->i_rdcache_ref == 0)
2148 			last++;
2149 	if (had & CEPH_CAP_FILE_BUFFER) {
2150 		if (--ci->i_wrbuffer_ref == 0) {
2151 			last++;
2152 			put++;
2153 		}
2154 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2155 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2156 	}
2157 	if (had & CEPH_CAP_FILE_WR)
2158 		if (--ci->i_wr_ref == 0) {
2159 			last++;
2160 			if (!list_empty(&ci->i_cap_snaps)) {
2161 				capsnap = list_first_entry(&ci->i_cap_snaps,
2162 						     struct ceph_cap_snap,
2163 						     ci_item);
2164 				if (capsnap->writing) {
2165 					capsnap->writing = 0;
2166 					flushsnaps =
2167 						__ceph_finish_cap_snap(ci,
2168 								       capsnap);
2169 					wake = 1;
2170 				}
2171 			}
2172 		}
2173 	spin_unlock(&inode->i_lock);
2174 
2175 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2176 	     last ? " last" : "", put ? " put" : "");
2177 
2178 	if (last && !flushsnaps)
2179 		ceph_check_caps(ci, 0, NULL);
2180 	else if (flushsnaps)
2181 		ceph_flush_snaps(ci);
2182 	if (wake)
2183 		wake_up_all(&ci->i_cap_wq);
2184 	if (put)
2185 		iput(inode);
2186 }
2187 
2188 /*
2189  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2190  * context.  Adjust per-snap dirty page accounting as appropriate.
2191  * Once all dirty data for a cap_snap is flushed, flush snapped file
2192  * metadata back to the MDS.  If we dropped the last ref, call
2193  * ceph_check_caps.
2194  */
2195 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2196 				struct ceph_snap_context *snapc)
2197 {
2198 	struct inode *inode = &ci->vfs_inode;
2199 	int last = 0;
2200 	int complete_capsnap = 0;
2201 	int drop_capsnap = 0;
2202 	int found = 0;
2203 	struct ceph_cap_snap *capsnap = NULL;
2204 
2205 	spin_lock(&inode->i_lock);
2206 	ci->i_wrbuffer_ref -= nr;
2207 	last = !ci->i_wrbuffer_ref;
2208 
2209 	if (ci->i_head_snapc == snapc) {
2210 		ci->i_wrbuffer_ref_head -= nr;
2211 		if (ci->i_wrbuffer_ref_head == 0 &&
2212 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2213 			BUG_ON(!ci->i_head_snapc);
2214 			ceph_put_snap_context(ci->i_head_snapc);
2215 			ci->i_head_snapc = NULL;
2216 		}
2217 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2218 		     inode,
2219 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2220 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2221 		     last ? " LAST" : "");
2222 	} else {
2223 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2224 			if (capsnap->context == snapc) {
2225 				found = 1;
2226 				break;
2227 			}
2228 		}
2229 		BUG_ON(!found);
2230 		capsnap->dirty_pages -= nr;
2231 		if (capsnap->dirty_pages == 0) {
2232 			complete_capsnap = 1;
2233 			if (capsnap->dirty == 0)
2234 				/* cap writeback completed before we created
2235 				 * the cap_snap; no FLUSHSNAP is needed */
2236 				drop_capsnap = 1;
2237 		}
2238 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2239 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2240 		     inode, capsnap, capsnap->context->seq,
2241 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2242 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2243 		     last ? " (wrbuffer last)" : "",
2244 		     complete_capsnap ? " (complete capsnap)" : "",
2245 		     drop_capsnap ? " (drop capsnap)" : "");
2246 		if (drop_capsnap) {
2247 			ceph_put_snap_context(capsnap->context);
2248 			list_del(&capsnap->ci_item);
2249 			list_del(&capsnap->flushing_item);
2250 			ceph_put_cap_snap(capsnap);
2251 		}
2252 	}
2253 
2254 	spin_unlock(&inode->i_lock);
2255 
2256 	if (last) {
2257 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2258 		iput(inode);
2259 	} else if (complete_capsnap) {
2260 		ceph_flush_snaps(ci);
2261 		wake_up_all(&ci->i_cap_wq);
2262 	}
2263 	if (drop_capsnap)
2264 		iput(inode);
2265 }
2266 
2267 /*
2268  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2269  * actually be a revocation if it specifies a smaller cap set.)
2270  *
2271  * caller holds s_mutex and i_lock, we drop both.
2272  *
2273  * return value:
2274  *  0 - ok
2275  *  1 - check_caps on auth cap only (writeback)
2276  *  2 - check_caps (ack revoke)
2277  */
2278 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2279 			     struct ceph_mds_session *session,
2280 			     struct ceph_cap *cap,
2281 			     struct ceph_buffer *xattr_buf)
2282 		__releases(inode->i_lock)
2283 {
2284 	struct ceph_inode_info *ci = ceph_inode(inode);
2285 	int mds = session->s_mds;
2286 	unsigned seq = le32_to_cpu(grant->seq);
2287 	unsigned issue_seq = le32_to_cpu(grant->issue_seq);
2288 	int newcaps = le32_to_cpu(grant->caps);
2289 	int issued, implemented, used, wanted, dirty;
2290 	u64 size = le64_to_cpu(grant->size);
2291 	u64 max_size = le64_to_cpu(grant->max_size);
2292 	struct timespec mtime, atime, ctime;
2293 	int check_caps = 0;
2294 	int wake = 0;
2295 	int writeback = 0;
2296 	int revoked_rdcache = 0;
2297 	int queue_invalidate = 0;
2298 
2299 	dout("handle_cap_grant inode %p cap %p mds%d seq %u/%u %s\n",
2300 	     inode, cap, mds, seq, issue_seq, ceph_cap_string(newcaps));
2301 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2302 		inode->i_size);
2303 
2304 	/*
2305 	 * If CACHE is being revoked, and we have no dirty buffers,
2306 	 * try to invalidate (once).  (If there are dirty buffers, we
2307 	 * will invalidate _after_ writeback.)
2308 	 */
2309 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2310 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2311 	    !ci->i_wrbuffer_ref) {
2312 		if (try_nonblocking_invalidate(inode) == 0) {
2313 			revoked_rdcache = 1;
2314 		} else {
2315 			/* there were locked pages.. invalidate later
2316 			   in a separate thread. */
2317 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2318 				queue_invalidate = 1;
2319 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2320 			}
2321 		}
2322 	}
2323 
2324 	/* side effects now are allowed */
2325 
2326 	issued = __ceph_caps_issued(ci, &implemented);
2327 	issued |= implemented | __ceph_caps_dirty(ci);
2328 
2329 	cap->cap_gen = session->s_cap_gen;
2330 
2331 	__check_cap_issue(ci, cap, newcaps);
2332 
2333 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2334 		inode->i_mode = le32_to_cpu(grant->mode);
2335 		inode->i_uid = le32_to_cpu(grant->uid);
2336 		inode->i_gid = le32_to_cpu(grant->gid);
2337 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2338 		     inode->i_uid, inode->i_gid);
2339 	}
2340 
2341 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2342 		inode->i_nlink = le32_to_cpu(grant->nlink);
2343 
2344 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2345 		int len = le32_to_cpu(grant->xattr_len);
2346 		u64 version = le64_to_cpu(grant->xattr_version);
2347 
2348 		if (version > ci->i_xattrs.version) {
2349 			dout(" got new xattrs v%llu on %p len %d\n",
2350 			     version, inode, len);
2351 			if (ci->i_xattrs.blob)
2352 				ceph_buffer_put(ci->i_xattrs.blob);
2353 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2354 			ci->i_xattrs.version = version;
2355 		}
2356 	}
2357 
2358 	/* size/ctime/mtime/atime? */
2359 	ceph_fill_file_size(inode, issued,
2360 			    le32_to_cpu(grant->truncate_seq),
2361 			    le64_to_cpu(grant->truncate_size), size);
2362 	ceph_decode_timespec(&mtime, &grant->mtime);
2363 	ceph_decode_timespec(&atime, &grant->atime);
2364 	ceph_decode_timespec(&ctime, &grant->ctime);
2365 	ceph_fill_file_time(inode, issued,
2366 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2367 			    &atime);
2368 
2369 	/* max size increase? */
2370 	if (max_size != ci->i_max_size) {
2371 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2372 		ci->i_max_size = max_size;
2373 		if (max_size >= ci->i_wanted_max_size) {
2374 			ci->i_wanted_max_size = 0;  /* reset */
2375 			ci->i_requested_max_size = 0;
2376 		}
2377 		wake = 1;
2378 	}
2379 
2380 	/* check cap bits */
2381 	wanted = __ceph_caps_wanted(ci);
2382 	used = __ceph_caps_used(ci);
2383 	dirty = __ceph_caps_dirty(ci);
2384 	dout(" my wanted = %s, used = %s, dirty %s\n",
2385 	     ceph_cap_string(wanted),
2386 	     ceph_cap_string(used),
2387 	     ceph_cap_string(dirty));
2388 	if (wanted != le32_to_cpu(grant->wanted)) {
2389 		dout("mds wanted %s -> %s\n",
2390 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2391 		     ceph_cap_string(wanted));
2392 		grant->wanted = cpu_to_le32(wanted);
2393 	}
2394 
2395 	cap->seq = seq;
2396 	cap->issue_seq = issue_seq;
2397 
2398 	/* file layout may have changed */
2399 	ci->i_layout = grant->layout;
2400 
2401 	/* revocation, grant, or no-op? */
2402 	if (cap->issued & ~newcaps) {
2403 		int revoking = cap->issued & ~newcaps;
2404 
2405 		dout("revocation: %s -> %s (revoking %s)\n",
2406 		     ceph_cap_string(cap->issued),
2407 		     ceph_cap_string(newcaps),
2408 		     ceph_cap_string(revoking));
2409 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2410 			writeback = 1;  /* initiate writeback; will delay ack */
2411 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2412 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2413 			 queue_invalidate)
2414 			; /* do nothing yet, invalidation will be queued */
2415 		else if (cap == ci->i_auth_cap)
2416 			check_caps = 1; /* check auth cap only */
2417 		else
2418 			check_caps = 2; /* check all caps */
2419 		cap->issued = newcaps;
2420 		cap->implemented |= newcaps;
2421 	} else if (cap->issued == newcaps) {
2422 		dout("caps unchanged: %s -> %s\n",
2423 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2424 	} else {
2425 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2426 		     ceph_cap_string(newcaps));
2427 		cap->issued = newcaps;
2428 		cap->implemented |= newcaps; /* add bits only, to
2429 					      * avoid stepping on a
2430 					      * pending revocation */
2431 		wake = 1;
2432 	}
2433 	BUG_ON(cap->issued & ~cap->implemented);
2434 
2435 	spin_unlock(&inode->i_lock);
2436 	if (writeback)
2437 		/*
2438 		 * queue inode for writeback: we can't actually call
2439 		 * filemap_write_and_wait, etc. from message handler
2440 		 * context.
2441 		 */
2442 		ceph_queue_writeback(inode);
2443 	if (queue_invalidate)
2444 		ceph_queue_invalidate(inode);
2445 	if (wake)
2446 		wake_up_all(&ci->i_cap_wq);
2447 
2448 	if (check_caps == 1)
2449 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2450 				session);
2451 	else if (check_caps == 2)
2452 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2453 	else
2454 		mutex_unlock(&session->s_mutex);
2455 }
2456 
2457 /*
2458  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2459  * MDS has been safely committed.
2460  */
2461 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2462 				 struct ceph_mds_caps *m,
2463 				 struct ceph_mds_session *session,
2464 				 struct ceph_cap *cap)
2465 	__releases(inode->i_lock)
2466 {
2467 	struct ceph_inode_info *ci = ceph_inode(inode);
2468 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
2469 	unsigned seq = le32_to_cpu(m->seq);
2470 	int dirty = le32_to_cpu(m->dirty);
2471 	int cleaned = 0;
2472 	int drop = 0;
2473 	int i;
2474 
2475 	for (i = 0; i < CEPH_CAP_BITS; i++)
2476 		if ((dirty & (1 << i)) &&
2477 		    flush_tid == ci->i_cap_flush_tid[i])
2478 			cleaned |= 1 << i;
2479 
2480 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2481 	     " flushing %s -> %s\n",
2482 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2483 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2484 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2485 
2486 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2487 		goto out;
2488 
2489 	ci->i_flushing_caps &= ~cleaned;
2490 
2491 	spin_lock(&mdsc->cap_dirty_lock);
2492 	if (ci->i_flushing_caps == 0) {
2493 		list_del_init(&ci->i_flushing_item);
2494 		if (!list_empty(&session->s_cap_flushing))
2495 			dout(" mds%d still flushing cap on %p\n",
2496 			     session->s_mds,
2497 			     &list_entry(session->s_cap_flushing.next,
2498 					 struct ceph_inode_info,
2499 					 i_flushing_item)->vfs_inode);
2500 		mdsc->num_cap_flushing--;
2501 		wake_up_all(&mdsc->cap_flushing_wq);
2502 		dout(" inode %p now !flushing\n", inode);
2503 
2504 		if (ci->i_dirty_caps == 0) {
2505 			dout(" inode %p now clean\n", inode);
2506 			BUG_ON(!list_empty(&ci->i_dirty_item));
2507 			drop = 1;
2508 			if (ci->i_wrbuffer_ref_head == 0) {
2509 				BUG_ON(!ci->i_head_snapc);
2510 				ceph_put_snap_context(ci->i_head_snapc);
2511 				ci->i_head_snapc = NULL;
2512 			}
2513 		} else {
2514 			BUG_ON(list_empty(&ci->i_dirty_item));
2515 		}
2516 	}
2517 	spin_unlock(&mdsc->cap_dirty_lock);
2518 	wake_up_all(&ci->i_cap_wq);
2519 
2520 out:
2521 	spin_unlock(&inode->i_lock);
2522 	if (drop)
2523 		iput(inode);
2524 }
2525 
2526 /*
2527  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2528  * throw away our cap_snap.
2529  *
2530  * Caller hold s_mutex.
2531  */
2532 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2533 				     struct ceph_mds_caps *m,
2534 				     struct ceph_mds_session *session)
2535 {
2536 	struct ceph_inode_info *ci = ceph_inode(inode);
2537 	u64 follows = le64_to_cpu(m->snap_follows);
2538 	struct ceph_cap_snap *capsnap;
2539 	int drop = 0;
2540 
2541 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2542 	     inode, ci, session->s_mds, follows);
2543 
2544 	spin_lock(&inode->i_lock);
2545 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2546 		if (capsnap->follows == follows) {
2547 			if (capsnap->flush_tid != flush_tid) {
2548 				dout(" cap_snap %p follows %lld tid %lld !="
2549 				     " %lld\n", capsnap, follows,
2550 				     flush_tid, capsnap->flush_tid);
2551 				break;
2552 			}
2553 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2554 			dout(" removing %p cap_snap %p follows %lld\n",
2555 			     inode, capsnap, follows);
2556 			ceph_put_snap_context(capsnap->context);
2557 			list_del(&capsnap->ci_item);
2558 			list_del(&capsnap->flushing_item);
2559 			ceph_put_cap_snap(capsnap);
2560 			drop = 1;
2561 			break;
2562 		} else {
2563 			dout(" skipping cap_snap %p follows %lld\n",
2564 			     capsnap, capsnap->follows);
2565 		}
2566 	}
2567 	spin_unlock(&inode->i_lock);
2568 	if (drop)
2569 		iput(inode);
2570 }
2571 
2572 /*
2573  * Handle TRUNC from MDS, indicating file truncation.
2574  *
2575  * caller hold s_mutex.
2576  */
2577 static void handle_cap_trunc(struct inode *inode,
2578 			     struct ceph_mds_caps *trunc,
2579 			     struct ceph_mds_session *session)
2580 	__releases(inode->i_lock)
2581 {
2582 	struct ceph_inode_info *ci = ceph_inode(inode);
2583 	int mds = session->s_mds;
2584 	int seq = le32_to_cpu(trunc->seq);
2585 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2586 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2587 	u64 size = le64_to_cpu(trunc->size);
2588 	int implemented = 0;
2589 	int dirty = __ceph_caps_dirty(ci);
2590 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2591 	int queue_trunc = 0;
2592 
2593 	issued |= implemented | dirty;
2594 
2595 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2596 	     inode, mds, seq, truncate_size, truncate_seq);
2597 	queue_trunc = ceph_fill_file_size(inode, issued,
2598 					  truncate_seq, truncate_size, size);
2599 	spin_unlock(&inode->i_lock);
2600 
2601 	if (queue_trunc)
2602 		ceph_queue_vmtruncate(inode);
2603 }
2604 
2605 /*
2606  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2607  * different one.  If we are the most recent migration we've seen (as
2608  * indicated by mseq), make note of the migrating cap bits for the
2609  * duration (until we see the corresponding IMPORT).
2610  *
2611  * caller holds s_mutex
2612  */
2613 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2614 			      struct ceph_mds_session *session,
2615 			      int *open_target_sessions)
2616 {
2617 	struct ceph_inode_info *ci = ceph_inode(inode);
2618 	int mds = session->s_mds;
2619 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2620 	struct ceph_cap *cap = NULL, *t;
2621 	struct rb_node *p;
2622 	int remember = 1;
2623 
2624 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2625 	     inode, ci, mds, mseq);
2626 
2627 	spin_lock(&inode->i_lock);
2628 
2629 	/* make sure we haven't seen a higher mseq */
2630 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2631 		t = rb_entry(p, struct ceph_cap, ci_node);
2632 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2633 			dout(" higher mseq on cap from mds%d\n",
2634 			     t->session->s_mds);
2635 			remember = 0;
2636 		}
2637 		if (t->session->s_mds == mds)
2638 			cap = t;
2639 	}
2640 
2641 	if (cap) {
2642 		if (remember) {
2643 			/* make note */
2644 			ci->i_cap_exporting_mds = mds;
2645 			ci->i_cap_exporting_mseq = mseq;
2646 			ci->i_cap_exporting_issued = cap->issued;
2647 
2648 			/*
2649 			 * make sure we have open sessions with all possible
2650 			 * export targets, so that we get the matching IMPORT
2651 			 */
2652 			*open_target_sessions = 1;
2653 		}
2654 		__ceph_remove_cap(cap);
2655 	}
2656 	/* else, we already released it */
2657 
2658 	spin_unlock(&inode->i_lock);
2659 }
2660 
2661 /*
2662  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2663  * clean them up.
2664  *
2665  * caller holds s_mutex.
2666  */
2667 static void handle_cap_import(struct ceph_mds_client *mdsc,
2668 			      struct inode *inode, struct ceph_mds_caps *im,
2669 			      struct ceph_mds_session *session,
2670 			      void *snaptrace, int snaptrace_len)
2671 {
2672 	struct ceph_inode_info *ci = ceph_inode(inode);
2673 	int mds = session->s_mds;
2674 	unsigned issued = le32_to_cpu(im->caps);
2675 	unsigned wanted = le32_to_cpu(im->wanted);
2676 	unsigned seq = le32_to_cpu(im->seq);
2677 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2678 	u64 realmino = le64_to_cpu(im->realm);
2679 	u64 cap_id = le64_to_cpu(im->cap_id);
2680 
2681 	if (ci->i_cap_exporting_mds >= 0 &&
2682 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2683 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2684 		     " - cleared exporting from mds%d\n",
2685 		     inode, ci, mds, mseq,
2686 		     ci->i_cap_exporting_mds);
2687 		ci->i_cap_exporting_issued = 0;
2688 		ci->i_cap_exporting_mseq = 0;
2689 		ci->i_cap_exporting_mds = -1;
2690 	} else {
2691 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2692 		     inode, ci, mds, mseq);
2693 	}
2694 
2695 	down_write(&mdsc->snap_rwsem);
2696 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2697 			       false);
2698 	downgrade_write(&mdsc->snap_rwsem);
2699 	ceph_add_cap(inode, session, cap_id, -1,
2700 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2701 		     NULL /* no caps context */);
2702 	try_flush_caps(inode, session, NULL);
2703 	up_read(&mdsc->snap_rwsem);
2704 }
2705 
2706 /*
2707  * Handle a caps message from the MDS.
2708  *
2709  * Identify the appropriate session, inode, and call the right handler
2710  * based on the cap op.
2711  */
2712 void ceph_handle_caps(struct ceph_mds_session *session,
2713 		      struct ceph_msg *msg)
2714 {
2715 	struct ceph_mds_client *mdsc = session->s_mdsc;
2716 	struct super_block *sb = mdsc->client->sb;
2717 	struct inode *inode;
2718 	struct ceph_cap *cap;
2719 	struct ceph_mds_caps *h;
2720 	int mds = session->s_mds;
2721 	int op;
2722 	u32 seq, mseq;
2723 	struct ceph_vino vino;
2724 	u64 cap_id;
2725 	u64 size, max_size;
2726 	u64 tid;
2727 	void *snaptrace;
2728 	size_t snaptrace_len;
2729 	void *flock;
2730 	u32 flock_len;
2731 	int open_target_sessions = 0;
2732 
2733 	dout("handle_caps from mds%d\n", mds);
2734 
2735 	/* decode */
2736 	tid = le64_to_cpu(msg->hdr.tid);
2737 	if (msg->front.iov_len < sizeof(*h))
2738 		goto bad;
2739 	h = msg->front.iov_base;
2740 	op = le32_to_cpu(h->op);
2741 	vino.ino = le64_to_cpu(h->ino);
2742 	vino.snap = CEPH_NOSNAP;
2743 	cap_id = le64_to_cpu(h->cap_id);
2744 	seq = le32_to_cpu(h->seq);
2745 	mseq = le32_to_cpu(h->migrate_seq);
2746 	size = le64_to_cpu(h->size);
2747 	max_size = le64_to_cpu(h->max_size);
2748 
2749 	snaptrace = h + 1;
2750 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2751 
2752 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2753 		void *p, *end;
2754 
2755 		p = snaptrace + snaptrace_len;
2756 		end = msg->front.iov_base + msg->front.iov_len;
2757 		ceph_decode_32_safe(&p, end, flock_len, bad);
2758 		flock = p;
2759 	} else {
2760 		flock = NULL;
2761 		flock_len = 0;
2762 	}
2763 
2764 	mutex_lock(&session->s_mutex);
2765 	session->s_seq++;
2766 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2767 	     (unsigned)seq);
2768 
2769 	/* lookup ino */
2770 	inode = ceph_find_inode(sb, vino);
2771 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2772 	     vino.snap, inode);
2773 	if (!inode) {
2774 		dout(" i don't have ino %llx\n", vino.ino);
2775 
2776 		if (op == CEPH_CAP_OP_IMPORT)
2777 			__queue_cap_release(session, vino.ino, cap_id,
2778 					    mseq, seq);
2779 		goto flush_cap_releases;
2780 	}
2781 
2782 	/* these will work even if we don't have a cap yet */
2783 	switch (op) {
2784 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2785 		handle_cap_flushsnap_ack(inode, tid, h, session);
2786 		goto done;
2787 
2788 	case CEPH_CAP_OP_EXPORT:
2789 		handle_cap_export(inode, h, session, &open_target_sessions);
2790 		goto done;
2791 
2792 	case CEPH_CAP_OP_IMPORT:
2793 		handle_cap_import(mdsc, inode, h, session,
2794 				  snaptrace, snaptrace_len);
2795 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2796 				session);
2797 		goto done_unlocked;
2798 	}
2799 
2800 	/* the rest require a cap */
2801 	spin_lock(&inode->i_lock);
2802 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2803 	if (!cap) {
2804 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2805 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2806 		spin_unlock(&inode->i_lock);
2807 		goto flush_cap_releases;
2808 	}
2809 
2810 	/* note that each of these drops i_lock for us */
2811 	switch (op) {
2812 	case CEPH_CAP_OP_REVOKE:
2813 	case CEPH_CAP_OP_GRANT:
2814 		handle_cap_grant(inode, h, session, cap, msg->middle);
2815 		goto done_unlocked;
2816 
2817 	case CEPH_CAP_OP_FLUSH_ACK:
2818 		handle_cap_flush_ack(inode, tid, h, session, cap);
2819 		break;
2820 
2821 	case CEPH_CAP_OP_TRUNC:
2822 		handle_cap_trunc(inode, h, session);
2823 		break;
2824 
2825 	default:
2826 		spin_unlock(&inode->i_lock);
2827 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2828 		       ceph_cap_op_name(op));
2829 	}
2830 
2831 	goto done;
2832 
2833 flush_cap_releases:
2834 	/*
2835 	 * send any full release message to try to move things
2836 	 * along for the mds (who clearly thinks we still have this
2837 	 * cap).
2838 	 */
2839 	ceph_add_cap_releases(mdsc, session);
2840 	ceph_send_cap_releases(mdsc, session);
2841 
2842 done:
2843 	mutex_unlock(&session->s_mutex);
2844 done_unlocked:
2845 	if (inode)
2846 		iput(inode);
2847 	if (open_target_sessions)
2848 		ceph_mdsc_open_export_target_sessions(mdsc, session);
2849 	return;
2850 
2851 bad:
2852 	pr_err("ceph_handle_caps: corrupt message\n");
2853 	ceph_msg_dump(msg);
2854 	return;
2855 }
2856 
2857 /*
2858  * Delayed work handler to process end of delayed cap release LRU list.
2859  */
2860 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2861 {
2862 	struct ceph_inode_info *ci;
2863 	int flags = CHECK_CAPS_NODELAY;
2864 
2865 	dout("check_delayed_caps\n");
2866 	while (1) {
2867 		spin_lock(&mdsc->cap_delay_lock);
2868 		if (list_empty(&mdsc->cap_delay_list))
2869 			break;
2870 		ci = list_first_entry(&mdsc->cap_delay_list,
2871 				      struct ceph_inode_info,
2872 				      i_cap_delay_list);
2873 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2874 		    time_before(jiffies, ci->i_hold_caps_max))
2875 			break;
2876 		list_del_init(&ci->i_cap_delay_list);
2877 		spin_unlock(&mdsc->cap_delay_lock);
2878 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2879 		ceph_check_caps(ci, flags, NULL);
2880 	}
2881 	spin_unlock(&mdsc->cap_delay_lock);
2882 }
2883 
2884 /*
2885  * Flush all dirty caps to the mds
2886  */
2887 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2888 {
2889 	struct ceph_inode_info *ci, *nci = NULL;
2890 	struct inode *inode, *ninode = NULL;
2891 	struct list_head *p, *n;
2892 
2893 	dout("flush_dirty_caps\n");
2894 	spin_lock(&mdsc->cap_dirty_lock);
2895 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2896 		if (nci) {
2897 			ci = nci;
2898 			inode = ninode;
2899 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2900 			dout("flush_dirty_caps inode %p (was next inode)\n",
2901 			     inode);
2902 		} else {
2903 			ci = list_entry(p, struct ceph_inode_info,
2904 					i_dirty_item);
2905 			inode = igrab(&ci->vfs_inode);
2906 			BUG_ON(!inode);
2907 			dout("flush_dirty_caps inode %p\n", inode);
2908 		}
2909 		if (n != &mdsc->cap_dirty) {
2910 			nci = list_entry(n, struct ceph_inode_info,
2911 					 i_dirty_item);
2912 			ninode = igrab(&nci->vfs_inode);
2913 			BUG_ON(!ninode);
2914 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2915 			dout("flush_dirty_caps next inode %p, noflush\n",
2916 			     ninode);
2917 		} else {
2918 			nci = NULL;
2919 			ninode = NULL;
2920 		}
2921 		spin_unlock(&mdsc->cap_dirty_lock);
2922 		if (inode) {
2923 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2924 					NULL);
2925 			iput(inode);
2926 		}
2927 		spin_lock(&mdsc->cap_dirty_lock);
2928 	}
2929 	spin_unlock(&mdsc->cap_dirty_lock);
2930 }
2931 
2932 /*
2933  * Drop open file reference.  If we were the last open file,
2934  * we may need to release capabilities to the MDS (or schedule
2935  * their delayed release).
2936  */
2937 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2938 {
2939 	struct inode *inode = &ci->vfs_inode;
2940 	int last = 0;
2941 
2942 	spin_lock(&inode->i_lock);
2943 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2944 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2945 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2946 	if (--ci->i_nr_by_mode[fmode] == 0)
2947 		last++;
2948 	spin_unlock(&inode->i_lock);
2949 
2950 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2951 		ceph_check_caps(ci, 0, NULL);
2952 }
2953 
2954 /*
2955  * Helpers for embedding cap and dentry lease releases into mds
2956  * requests.
2957  *
2958  * @force is used by dentry_release (below) to force inclusion of a
2959  * record for the directory inode, even when there aren't any caps to
2960  * drop.
2961  */
2962 int ceph_encode_inode_release(void **p, struct inode *inode,
2963 			      int mds, int drop, int unless, int force)
2964 {
2965 	struct ceph_inode_info *ci = ceph_inode(inode);
2966 	struct ceph_cap *cap;
2967 	struct ceph_mds_request_release *rel = *p;
2968 	int used, dirty;
2969 	int ret = 0;
2970 
2971 	spin_lock(&inode->i_lock);
2972 	used = __ceph_caps_used(ci);
2973 	dirty = __ceph_caps_dirty(ci);
2974 
2975 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
2976 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
2977 	     ceph_cap_string(unless));
2978 
2979 	/* only drop unused, clean caps */
2980 	drop &= ~(used | dirty);
2981 
2982 	cap = __get_cap_for_mds(ci, mds);
2983 	if (cap && __cap_is_valid(cap)) {
2984 		if (force ||
2985 		    ((cap->issued & drop) &&
2986 		     (cap->issued & unless) == 0)) {
2987 			if ((cap->issued & drop) &&
2988 			    (cap->issued & unless) == 0) {
2989 				dout("encode_inode_release %p cap %p %s -> "
2990 				     "%s\n", inode, cap,
2991 				     ceph_cap_string(cap->issued),
2992 				     ceph_cap_string(cap->issued & ~drop));
2993 				cap->issued &= ~drop;
2994 				cap->implemented &= ~drop;
2995 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2996 					int wanted = __ceph_caps_wanted(ci);
2997 					dout("  wanted %s -> %s (act %s)\n",
2998 					     ceph_cap_string(cap->mds_wanted),
2999 					     ceph_cap_string(cap->mds_wanted &
3000 							     ~wanted),
3001 					     ceph_cap_string(wanted));
3002 					cap->mds_wanted &= wanted;
3003 				}
3004 			} else {
3005 				dout("encode_inode_release %p cap %p %s"
3006 				     " (force)\n", inode, cap,
3007 				     ceph_cap_string(cap->issued));
3008 			}
3009 
3010 			rel->ino = cpu_to_le64(ceph_ino(inode));
3011 			rel->cap_id = cpu_to_le64(cap->cap_id);
3012 			rel->seq = cpu_to_le32(cap->seq);
3013 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3014 			rel->mseq = cpu_to_le32(cap->mseq);
3015 			rel->caps = cpu_to_le32(cap->issued);
3016 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3017 			rel->dname_len = 0;
3018 			rel->dname_seq = 0;
3019 			*p += sizeof(*rel);
3020 			ret = 1;
3021 		} else {
3022 			dout("encode_inode_release %p cap %p %s\n",
3023 			     inode, cap, ceph_cap_string(cap->issued));
3024 		}
3025 	}
3026 	spin_unlock(&inode->i_lock);
3027 	return ret;
3028 }
3029 
3030 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3031 			       int mds, int drop, int unless)
3032 {
3033 	struct inode *dir = dentry->d_parent->d_inode;
3034 	struct ceph_mds_request_release *rel = *p;
3035 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3036 	int force = 0;
3037 	int ret;
3038 
3039 	/*
3040 	 * force an record for the directory caps if we have a dentry lease.
3041 	 * this is racy (can't take i_lock and d_lock together), but it
3042 	 * doesn't have to be perfect; the mds will revoke anything we don't
3043 	 * release.
3044 	 */
3045 	spin_lock(&dentry->d_lock);
3046 	if (di->lease_session && di->lease_session->s_mds == mds)
3047 		force = 1;
3048 	spin_unlock(&dentry->d_lock);
3049 
3050 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3051 
3052 	spin_lock(&dentry->d_lock);
3053 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3054 		dout("encode_dentry_release %p mds%d seq %d\n",
3055 		     dentry, mds, (int)di->lease_seq);
3056 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3057 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3058 		*p += dentry->d_name.len;
3059 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3060 		__ceph_mdsc_drop_dentry_lease(dentry);
3061 	}
3062 	spin_unlock(&dentry->d_lock);
3063 	return ret;
3064 }
3065