xref: /openbmc/linux/fs/ceph/caps.c (revision d0b73b48)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15 
16 /*
17  * Capability management
18  *
19  * The Ceph metadata servers control client access to inode metadata
20  * and file data by issuing capabilities, granting clients permission
21  * to read and/or write both inode field and file data to OSDs
22  * (storage nodes).  Each capability consists of a set of bits
23  * indicating which operations are allowed.
24  *
25  * If the client holds a *_SHARED cap, the client has a coherent value
26  * that can be safely read from the cached inode.
27  *
28  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29  * client is allowed to change inode attributes (e.g., file size,
30  * mtime), note its dirty state in the ceph_cap, and asynchronously
31  * flush that metadata change to the MDS.
32  *
33  * In the event of a conflicting operation (perhaps by another
34  * client), the MDS will revoke the conflicting client capabilities.
35  *
36  * In order for a client to cache an inode, it must hold a capability
37  * with at least one MDS server.  When inodes are released, release
38  * notifications are batched and periodically sent en masse to the MDS
39  * cluster to release server state.
40  */
41 
42 
43 /*
44  * Generate readable cap strings for debugging output.
45  */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50 
51 static char *gcap_string(char *s, int c)
52 {
53 	if (c & CEPH_CAP_GSHARED)
54 		*s++ = 's';
55 	if (c & CEPH_CAP_GEXCL)
56 		*s++ = 'x';
57 	if (c & CEPH_CAP_GCACHE)
58 		*s++ = 'c';
59 	if (c & CEPH_CAP_GRD)
60 		*s++ = 'r';
61 	if (c & CEPH_CAP_GWR)
62 		*s++ = 'w';
63 	if (c & CEPH_CAP_GBUFFER)
64 		*s++ = 'b';
65 	if (c & CEPH_CAP_GLAZYIO)
66 		*s++ = 'l';
67 	return s;
68 }
69 
70 const char *ceph_cap_string(int caps)
71 {
72 	int i;
73 	char *s;
74 	int c;
75 
76 	spin_lock(&cap_str_lock);
77 	i = last_cap_str++;
78 	if (last_cap_str == MAX_CAP_STR)
79 		last_cap_str = 0;
80 	spin_unlock(&cap_str_lock);
81 
82 	s = cap_str[i];
83 
84 	if (caps & CEPH_CAP_PIN)
85 		*s++ = 'p';
86 
87 	c = (caps >> CEPH_CAP_SAUTH) & 3;
88 	if (c) {
89 		*s++ = 'A';
90 		s = gcap_string(s, c);
91 	}
92 
93 	c = (caps >> CEPH_CAP_SLINK) & 3;
94 	if (c) {
95 		*s++ = 'L';
96 		s = gcap_string(s, c);
97 	}
98 
99 	c = (caps >> CEPH_CAP_SXATTR) & 3;
100 	if (c) {
101 		*s++ = 'X';
102 		s = gcap_string(s, c);
103 	}
104 
105 	c = caps >> CEPH_CAP_SFILE;
106 	if (c) {
107 		*s++ = 'F';
108 		s = gcap_string(s, c);
109 	}
110 
111 	if (s == cap_str[i])
112 		*s++ = '-';
113 	*s = 0;
114 	return cap_str[i];
115 }
116 
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 	INIT_LIST_HEAD(&mdsc->caps_list);
120 	spin_lock_init(&mdsc->caps_list_lock);
121 }
122 
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 	struct ceph_cap *cap;
126 
127 	spin_lock(&mdsc->caps_list_lock);
128 	while (!list_empty(&mdsc->caps_list)) {
129 		cap = list_first_entry(&mdsc->caps_list,
130 				       struct ceph_cap, caps_item);
131 		list_del(&cap->caps_item);
132 		kmem_cache_free(ceph_cap_cachep, cap);
133 	}
134 	mdsc->caps_total_count = 0;
135 	mdsc->caps_avail_count = 0;
136 	mdsc->caps_use_count = 0;
137 	mdsc->caps_reserve_count = 0;
138 	mdsc->caps_min_count = 0;
139 	spin_unlock(&mdsc->caps_list_lock);
140 }
141 
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 	spin_lock(&mdsc->caps_list_lock);
145 	mdsc->caps_min_count += delta;
146 	BUG_ON(mdsc->caps_min_count < 0);
147 	spin_unlock(&mdsc->caps_list_lock);
148 }
149 
150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 		      struct ceph_cap_reservation *ctx, int need)
152 {
153 	int i;
154 	struct ceph_cap *cap;
155 	int have;
156 	int alloc = 0;
157 	LIST_HEAD(newcaps);
158 	int ret = 0;
159 
160 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162 	/* first reserve any caps that are already allocated */
163 	spin_lock(&mdsc->caps_list_lock);
164 	if (mdsc->caps_avail_count >= need)
165 		have = need;
166 	else
167 		have = mdsc->caps_avail_count;
168 	mdsc->caps_avail_count -= have;
169 	mdsc->caps_reserve_count += have;
170 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 					 mdsc->caps_reserve_count +
172 					 mdsc->caps_avail_count);
173 	spin_unlock(&mdsc->caps_list_lock);
174 
175 	for (i = have; i < need; i++) {
176 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 		if (!cap) {
178 			ret = -ENOMEM;
179 			goto out_alloc_count;
180 		}
181 		list_add(&cap->caps_item, &newcaps);
182 		alloc++;
183 	}
184 	BUG_ON(have + alloc != need);
185 
186 	spin_lock(&mdsc->caps_list_lock);
187 	mdsc->caps_total_count += alloc;
188 	mdsc->caps_reserve_count += alloc;
189 	list_splice(&newcaps, &mdsc->caps_list);
190 
191 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 					 mdsc->caps_reserve_count +
193 					 mdsc->caps_avail_count);
194 	spin_unlock(&mdsc->caps_list_lock);
195 
196 	ctx->count = need;
197 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 	return 0;
201 
202 out_alloc_count:
203 	/* we didn't manage to reserve as much as we needed */
204 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 		   ctx, need, have);
206 	return ret;
207 }
208 
209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 			struct ceph_cap_reservation *ctx)
211 {
212 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 	if (ctx->count) {
214 		spin_lock(&mdsc->caps_list_lock);
215 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 		mdsc->caps_reserve_count -= ctx->count;
217 		mdsc->caps_avail_count += ctx->count;
218 		ctx->count = 0;
219 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 		     mdsc->caps_total_count, mdsc->caps_use_count,
221 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 						 mdsc->caps_reserve_count +
224 						 mdsc->caps_avail_count);
225 		spin_unlock(&mdsc->caps_list_lock);
226 	}
227 	return 0;
228 }
229 
230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 				struct ceph_cap_reservation *ctx)
232 {
233 	struct ceph_cap *cap = NULL;
234 
235 	/* temporary, until we do something about cap import/export */
236 	if (!ctx) {
237 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 		if (cap) {
239 			spin_lock(&mdsc->caps_list_lock);
240 			mdsc->caps_use_count++;
241 			mdsc->caps_total_count++;
242 			spin_unlock(&mdsc->caps_list_lock);
243 		}
244 		return cap;
245 	}
246 
247 	spin_lock(&mdsc->caps_list_lock);
248 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
249 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
250 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
251 	BUG_ON(!ctx->count);
252 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
253 	BUG_ON(list_empty(&mdsc->caps_list));
254 
255 	ctx->count--;
256 	mdsc->caps_reserve_count--;
257 	mdsc->caps_use_count++;
258 
259 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
260 	list_del(&cap->caps_item);
261 
262 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
263 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
264 	spin_unlock(&mdsc->caps_list_lock);
265 	return cap;
266 }
267 
268 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
269 {
270 	spin_lock(&mdsc->caps_list_lock);
271 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
272 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
273 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
274 	mdsc->caps_use_count--;
275 	/*
276 	 * Keep some preallocated caps around (ceph_min_count), to
277 	 * avoid lots of free/alloc churn.
278 	 */
279 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
280 				      mdsc->caps_min_count) {
281 		mdsc->caps_total_count--;
282 		kmem_cache_free(ceph_cap_cachep, cap);
283 	} else {
284 		mdsc->caps_avail_count++;
285 		list_add(&cap->caps_item, &mdsc->caps_list);
286 	}
287 
288 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
289 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
290 	spin_unlock(&mdsc->caps_list_lock);
291 }
292 
293 void ceph_reservation_status(struct ceph_fs_client *fsc,
294 			     int *total, int *avail, int *used, int *reserved,
295 			     int *min)
296 {
297 	struct ceph_mds_client *mdsc = fsc->mdsc;
298 
299 	if (total)
300 		*total = mdsc->caps_total_count;
301 	if (avail)
302 		*avail = mdsc->caps_avail_count;
303 	if (used)
304 		*used = mdsc->caps_use_count;
305 	if (reserved)
306 		*reserved = mdsc->caps_reserve_count;
307 	if (min)
308 		*min = mdsc->caps_min_count;
309 }
310 
311 /*
312  * Find ceph_cap for given mds, if any.
313  *
314  * Called with i_ceph_lock held.
315  */
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
317 {
318 	struct ceph_cap *cap;
319 	struct rb_node *n = ci->i_caps.rb_node;
320 
321 	while (n) {
322 		cap = rb_entry(n, struct ceph_cap, ci_node);
323 		if (mds < cap->mds)
324 			n = n->rb_left;
325 		else if (mds > cap->mds)
326 			n = n->rb_right;
327 		else
328 			return cap;
329 	}
330 	return NULL;
331 }
332 
333 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
334 {
335 	struct ceph_cap *cap;
336 
337 	spin_lock(&ci->i_ceph_lock);
338 	cap = __get_cap_for_mds(ci, mds);
339 	spin_unlock(&ci->i_ceph_lock);
340 	return cap;
341 }
342 
343 /*
344  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
345  */
346 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
347 {
348 	struct ceph_cap *cap;
349 	int mds = -1;
350 	struct rb_node *p;
351 
352 	/* prefer mds with WR|BUFFER|EXCL caps */
353 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
354 		cap = rb_entry(p, struct ceph_cap, ci_node);
355 		mds = cap->mds;
356 		if (cap->issued & (CEPH_CAP_FILE_WR |
357 				   CEPH_CAP_FILE_BUFFER |
358 				   CEPH_CAP_FILE_EXCL))
359 			break;
360 	}
361 	return mds;
362 }
363 
364 int ceph_get_cap_mds(struct inode *inode)
365 {
366 	struct ceph_inode_info *ci = ceph_inode(inode);
367 	int mds;
368 	spin_lock(&ci->i_ceph_lock);
369 	mds = __ceph_get_cap_mds(ceph_inode(inode));
370 	spin_unlock(&ci->i_ceph_lock);
371 	return mds;
372 }
373 
374 /*
375  * Called under i_ceph_lock.
376  */
377 static void __insert_cap_node(struct ceph_inode_info *ci,
378 			      struct ceph_cap *new)
379 {
380 	struct rb_node **p = &ci->i_caps.rb_node;
381 	struct rb_node *parent = NULL;
382 	struct ceph_cap *cap = NULL;
383 
384 	while (*p) {
385 		parent = *p;
386 		cap = rb_entry(parent, struct ceph_cap, ci_node);
387 		if (new->mds < cap->mds)
388 			p = &(*p)->rb_left;
389 		else if (new->mds > cap->mds)
390 			p = &(*p)->rb_right;
391 		else
392 			BUG();
393 	}
394 
395 	rb_link_node(&new->ci_node, parent, p);
396 	rb_insert_color(&new->ci_node, &ci->i_caps);
397 }
398 
399 /*
400  * (re)set cap hold timeouts, which control the delayed release
401  * of unused caps back to the MDS.  Should be called on cap use.
402  */
403 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
404 			       struct ceph_inode_info *ci)
405 {
406 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
407 
408 	ci->i_hold_caps_min = round_jiffies(jiffies +
409 					    ma->caps_wanted_delay_min * HZ);
410 	ci->i_hold_caps_max = round_jiffies(jiffies +
411 					    ma->caps_wanted_delay_max * HZ);
412 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
413 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
414 }
415 
416 /*
417  * (Re)queue cap at the end of the delayed cap release list.
418  *
419  * If I_FLUSH is set, leave the inode at the front of the list.
420  *
421  * Caller holds i_ceph_lock
422  *    -> we take mdsc->cap_delay_lock
423  */
424 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
425 				struct ceph_inode_info *ci)
426 {
427 	__cap_set_timeouts(mdsc, ci);
428 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
429 	     ci->i_ceph_flags, ci->i_hold_caps_max);
430 	if (!mdsc->stopping) {
431 		spin_lock(&mdsc->cap_delay_lock);
432 		if (!list_empty(&ci->i_cap_delay_list)) {
433 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
434 				goto no_change;
435 			list_del_init(&ci->i_cap_delay_list);
436 		}
437 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
438 no_change:
439 		spin_unlock(&mdsc->cap_delay_lock);
440 	}
441 }
442 
443 /*
444  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
445  * indicating we should send a cap message to flush dirty metadata
446  * asap, and move to the front of the delayed cap list.
447  */
448 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
449 				      struct ceph_inode_info *ci)
450 {
451 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
452 	spin_lock(&mdsc->cap_delay_lock);
453 	ci->i_ceph_flags |= CEPH_I_FLUSH;
454 	if (!list_empty(&ci->i_cap_delay_list))
455 		list_del_init(&ci->i_cap_delay_list);
456 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
457 	spin_unlock(&mdsc->cap_delay_lock);
458 }
459 
460 /*
461  * Cancel delayed work on cap.
462  *
463  * Caller must hold i_ceph_lock.
464  */
465 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
466 			       struct ceph_inode_info *ci)
467 {
468 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
469 	if (list_empty(&ci->i_cap_delay_list))
470 		return;
471 	spin_lock(&mdsc->cap_delay_lock);
472 	list_del_init(&ci->i_cap_delay_list);
473 	spin_unlock(&mdsc->cap_delay_lock);
474 }
475 
476 /*
477  * Common issue checks for add_cap, handle_cap_grant.
478  */
479 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
480 			      unsigned issued)
481 {
482 	unsigned had = __ceph_caps_issued(ci, NULL);
483 
484 	/*
485 	 * Each time we receive FILE_CACHE anew, we increment
486 	 * i_rdcache_gen.
487 	 */
488 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
489 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
490 		ci->i_rdcache_gen++;
491 
492 	/*
493 	 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
494 	 * don't know what happened to this directory while we didn't
495 	 * have the cap.
496 	 */
497 	if ((issued & CEPH_CAP_FILE_SHARED) &&
498 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
499 		ci->i_shared_gen++;
500 		if (S_ISDIR(ci->vfs_inode.i_mode))
501 			ceph_dir_clear_complete(&ci->vfs_inode);
502 	}
503 }
504 
505 /*
506  * Add a capability under the given MDS session.
507  *
508  * Caller should hold session snap_rwsem (read) and s_mutex.
509  *
510  * @fmode is the open file mode, if we are opening a file, otherwise
511  * it is < 0.  (This is so we can atomically add the cap and add an
512  * open file reference to it.)
513  */
514 int ceph_add_cap(struct inode *inode,
515 		 struct ceph_mds_session *session, u64 cap_id,
516 		 int fmode, unsigned issued, unsigned wanted,
517 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
518 		 struct ceph_cap_reservation *caps_reservation)
519 {
520 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
521 	struct ceph_inode_info *ci = ceph_inode(inode);
522 	struct ceph_cap *new_cap = NULL;
523 	struct ceph_cap *cap;
524 	int mds = session->s_mds;
525 	int actual_wanted;
526 
527 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
528 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
529 
530 	/*
531 	 * If we are opening the file, include file mode wanted bits
532 	 * in wanted.
533 	 */
534 	if (fmode >= 0)
535 		wanted |= ceph_caps_for_mode(fmode);
536 
537 retry:
538 	spin_lock(&ci->i_ceph_lock);
539 	cap = __get_cap_for_mds(ci, mds);
540 	if (!cap) {
541 		if (new_cap) {
542 			cap = new_cap;
543 			new_cap = NULL;
544 		} else {
545 			spin_unlock(&ci->i_ceph_lock);
546 			new_cap = get_cap(mdsc, caps_reservation);
547 			if (new_cap == NULL)
548 				return -ENOMEM;
549 			goto retry;
550 		}
551 
552 		cap->issued = 0;
553 		cap->implemented = 0;
554 		cap->mds = mds;
555 		cap->mds_wanted = 0;
556 
557 		cap->ci = ci;
558 		__insert_cap_node(ci, cap);
559 
560 		/* clear out old exporting info?  (i.e. on cap import) */
561 		if (ci->i_cap_exporting_mds == mds) {
562 			ci->i_cap_exporting_issued = 0;
563 			ci->i_cap_exporting_mseq = 0;
564 			ci->i_cap_exporting_mds = -1;
565 		}
566 
567 		/* add to session cap list */
568 		cap->session = session;
569 		spin_lock(&session->s_cap_lock);
570 		list_add_tail(&cap->session_caps, &session->s_caps);
571 		session->s_nr_caps++;
572 		spin_unlock(&session->s_cap_lock);
573 	} else if (new_cap)
574 		ceph_put_cap(mdsc, new_cap);
575 
576 	if (!ci->i_snap_realm) {
577 		/*
578 		 * add this inode to the appropriate snap realm
579 		 */
580 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
581 							       realmino);
582 		if (realm) {
583 			ceph_get_snap_realm(mdsc, realm);
584 			spin_lock(&realm->inodes_with_caps_lock);
585 			ci->i_snap_realm = realm;
586 			list_add(&ci->i_snap_realm_item,
587 				 &realm->inodes_with_caps);
588 			spin_unlock(&realm->inodes_with_caps_lock);
589 		} else {
590 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
591 			       realmino);
592 			WARN_ON(!realm);
593 		}
594 	}
595 
596 	__check_cap_issue(ci, cap, issued);
597 
598 	/*
599 	 * If we are issued caps we don't want, or the mds' wanted
600 	 * value appears to be off, queue a check so we'll release
601 	 * later and/or update the mds wanted value.
602 	 */
603 	actual_wanted = __ceph_caps_wanted(ci);
604 	if ((wanted & ~actual_wanted) ||
605 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
606 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
607 		     ceph_cap_string(issued), ceph_cap_string(wanted),
608 		     ceph_cap_string(actual_wanted));
609 		__cap_delay_requeue(mdsc, ci);
610 	}
611 
612 	if (flags & CEPH_CAP_FLAG_AUTH)
613 		ci->i_auth_cap = cap;
614 	else if (ci->i_auth_cap == cap)
615 		ci->i_auth_cap = NULL;
616 
617 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
618 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
619 	     ceph_cap_string(issued|cap->issued), seq, mds);
620 	cap->cap_id = cap_id;
621 	cap->issued = issued;
622 	cap->implemented |= issued;
623 	cap->mds_wanted |= wanted;
624 	cap->seq = seq;
625 	cap->issue_seq = seq;
626 	cap->mseq = mseq;
627 	cap->cap_gen = session->s_cap_gen;
628 
629 	if (fmode >= 0)
630 		__ceph_get_fmode(ci, fmode);
631 	spin_unlock(&ci->i_ceph_lock);
632 	wake_up_all(&ci->i_cap_wq);
633 	return 0;
634 }
635 
636 /*
637  * Return true if cap has not timed out and belongs to the current
638  * generation of the MDS session (i.e. has not gone 'stale' due to
639  * us losing touch with the mds).
640  */
641 static int __cap_is_valid(struct ceph_cap *cap)
642 {
643 	unsigned long ttl;
644 	u32 gen;
645 
646 	spin_lock(&cap->session->s_gen_ttl_lock);
647 	gen = cap->session->s_cap_gen;
648 	ttl = cap->session->s_cap_ttl;
649 	spin_unlock(&cap->session->s_gen_ttl_lock);
650 
651 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
652 		dout("__cap_is_valid %p cap %p issued %s "
653 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
654 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
655 		return 0;
656 	}
657 
658 	return 1;
659 }
660 
661 /*
662  * Return set of valid cap bits issued to us.  Note that caps time
663  * out, and may be invalidated in bulk if the client session times out
664  * and session->s_cap_gen is bumped.
665  */
666 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
667 {
668 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
669 	struct ceph_cap *cap;
670 	struct rb_node *p;
671 
672 	if (implemented)
673 		*implemented = 0;
674 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
675 		cap = rb_entry(p, struct ceph_cap, ci_node);
676 		if (!__cap_is_valid(cap))
677 			continue;
678 		dout("__ceph_caps_issued %p cap %p issued %s\n",
679 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
680 		have |= cap->issued;
681 		if (implemented)
682 			*implemented |= cap->implemented;
683 	}
684 	return have;
685 }
686 
687 /*
688  * Get cap bits issued by caps other than @ocap
689  */
690 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
691 {
692 	int have = ci->i_snap_caps;
693 	struct ceph_cap *cap;
694 	struct rb_node *p;
695 
696 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
697 		cap = rb_entry(p, struct ceph_cap, ci_node);
698 		if (cap == ocap)
699 			continue;
700 		if (!__cap_is_valid(cap))
701 			continue;
702 		have |= cap->issued;
703 	}
704 	return have;
705 }
706 
707 /*
708  * Move a cap to the end of the LRU (oldest caps at list head, newest
709  * at list tail).
710  */
711 static void __touch_cap(struct ceph_cap *cap)
712 {
713 	struct ceph_mds_session *s = cap->session;
714 
715 	spin_lock(&s->s_cap_lock);
716 	if (s->s_cap_iterator == NULL) {
717 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
718 		     s->s_mds);
719 		list_move_tail(&cap->session_caps, &s->s_caps);
720 	} else {
721 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
722 		     &cap->ci->vfs_inode, cap, s->s_mds);
723 	}
724 	spin_unlock(&s->s_cap_lock);
725 }
726 
727 /*
728  * Check if we hold the given mask.  If so, move the cap(s) to the
729  * front of their respective LRUs.  (This is the preferred way for
730  * callers to check for caps they want.)
731  */
732 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
733 {
734 	struct ceph_cap *cap;
735 	struct rb_node *p;
736 	int have = ci->i_snap_caps;
737 
738 	if ((have & mask) == mask) {
739 		dout("__ceph_caps_issued_mask %p snap issued %s"
740 		     " (mask %s)\n", &ci->vfs_inode,
741 		     ceph_cap_string(have),
742 		     ceph_cap_string(mask));
743 		return 1;
744 	}
745 
746 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
747 		cap = rb_entry(p, struct ceph_cap, ci_node);
748 		if (!__cap_is_valid(cap))
749 			continue;
750 		if ((cap->issued & mask) == mask) {
751 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
752 			     " (mask %s)\n", &ci->vfs_inode, cap,
753 			     ceph_cap_string(cap->issued),
754 			     ceph_cap_string(mask));
755 			if (touch)
756 				__touch_cap(cap);
757 			return 1;
758 		}
759 
760 		/* does a combination of caps satisfy mask? */
761 		have |= cap->issued;
762 		if ((have & mask) == mask) {
763 			dout("__ceph_caps_issued_mask %p combo issued %s"
764 			     " (mask %s)\n", &ci->vfs_inode,
765 			     ceph_cap_string(cap->issued),
766 			     ceph_cap_string(mask));
767 			if (touch) {
768 				struct rb_node *q;
769 
770 				/* touch this + preceding caps */
771 				__touch_cap(cap);
772 				for (q = rb_first(&ci->i_caps); q != p;
773 				     q = rb_next(q)) {
774 					cap = rb_entry(q, struct ceph_cap,
775 						       ci_node);
776 					if (!__cap_is_valid(cap))
777 						continue;
778 					__touch_cap(cap);
779 				}
780 			}
781 			return 1;
782 		}
783 	}
784 
785 	return 0;
786 }
787 
788 /*
789  * Return true if mask caps are currently being revoked by an MDS.
790  */
791 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
792 {
793 	struct inode *inode = &ci->vfs_inode;
794 	struct ceph_cap *cap;
795 	struct rb_node *p;
796 	int ret = 0;
797 
798 	spin_lock(&ci->i_ceph_lock);
799 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
800 		cap = rb_entry(p, struct ceph_cap, ci_node);
801 		if (__cap_is_valid(cap) &&
802 		    (cap->implemented & ~cap->issued & mask)) {
803 			ret = 1;
804 			break;
805 		}
806 	}
807 	spin_unlock(&ci->i_ceph_lock);
808 	dout("ceph_caps_revoking %p %s = %d\n", inode,
809 	     ceph_cap_string(mask), ret);
810 	return ret;
811 }
812 
813 int __ceph_caps_used(struct ceph_inode_info *ci)
814 {
815 	int used = 0;
816 	if (ci->i_pin_ref)
817 		used |= CEPH_CAP_PIN;
818 	if (ci->i_rd_ref)
819 		used |= CEPH_CAP_FILE_RD;
820 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
821 		used |= CEPH_CAP_FILE_CACHE;
822 	if (ci->i_wr_ref)
823 		used |= CEPH_CAP_FILE_WR;
824 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
825 		used |= CEPH_CAP_FILE_BUFFER;
826 	return used;
827 }
828 
829 /*
830  * wanted, by virtue of open file modes
831  */
832 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
833 {
834 	int want = 0;
835 	int mode;
836 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
837 		if (ci->i_nr_by_mode[mode])
838 			want |= ceph_caps_for_mode(mode);
839 	return want;
840 }
841 
842 /*
843  * Return caps we have registered with the MDS(s) as 'wanted'.
844  */
845 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
846 {
847 	struct ceph_cap *cap;
848 	struct rb_node *p;
849 	int mds_wanted = 0;
850 
851 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
852 		cap = rb_entry(p, struct ceph_cap, ci_node);
853 		if (!__cap_is_valid(cap))
854 			continue;
855 		mds_wanted |= cap->mds_wanted;
856 	}
857 	return mds_wanted;
858 }
859 
860 /*
861  * called under i_ceph_lock
862  */
863 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
864 {
865 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
866 }
867 
868 /*
869  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
870  *
871  * caller should hold i_ceph_lock.
872  * caller will not hold session s_mutex if called from destroy_inode.
873  */
874 void __ceph_remove_cap(struct ceph_cap *cap)
875 {
876 	struct ceph_mds_session *session = cap->session;
877 	struct ceph_inode_info *ci = cap->ci;
878 	struct ceph_mds_client *mdsc =
879 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
880 	int removed = 0;
881 
882 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
883 
884 	/* remove from session list */
885 	spin_lock(&session->s_cap_lock);
886 	if (session->s_cap_iterator == cap) {
887 		/* not yet, we are iterating over this very cap */
888 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
889 		     cap, cap->session);
890 	} else {
891 		list_del_init(&cap->session_caps);
892 		session->s_nr_caps--;
893 		cap->session = NULL;
894 		removed = 1;
895 	}
896 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
897 	cap->ci = NULL;
898 	spin_unlock(&session->s_cap_lock);
899 
900 	/* remove from inode list */
901 	rb_erase(&cap->ci_node, &ci->i_caps);
902 	if (ci->i_auth_cap == cap)
903 		ci->i_auth_cap = NULL;
904 
905 	if (removed)
906 		ceph_put_cap(mdsc, cap);
907 
908 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
909 		struct ceph_snap_realm *realm = ci->i_snap_realm;
910 		spin_lock(&realm->inodes_with_caps_lock);
911 		list_del_init(&ci->i_snap_realm_item);
912 		ci->i_snap_realm_counter++;
913 		ci->i_snap_realm = NULL;
914 		spin_unlock(&realm->inodes_with_caps_lock);
915 		ceph_put_snap_realm(mdsc, realm);
916 	}
917 	if (!__ceph_is_any_real_caps(ci))
918 		__cap_delay_cancel(mdsc, ci);
919 }
920 
921 /*
922  * Build and send a cap message to the given MDS.
923  *
924  * Caller should be holding s_mutex.
925  */
926 static int send_cap_msg(struct ceph_mds_session *session,
927 			u64 ino, u64 cid, int op,
928 			int caps, int wanted, int dirty,
929 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
930 			u64 size, u64 max_size,
931 			struct timespec *mtime, struct timespec *atime,
932 			u64 time_warp_seq,
933 			uid_t uid, gid_t gid, umode_t mode,
934 			u64 xattr_version,
935 			struct ceph_buffer *xattrs_buf,
936 			u64 follows)
937 {
938 	struct ceph_mds_caps *fc;
939 	struct ceph_msg *msg;
940 
941 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
942 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
943 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
944 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
945 	     ceph_cap_string(dirty),
946 	     seq, issue_seq, mseq, follows, size, max_size,
947 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
948 
949 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
950 	if (!msg)
951 		return -ENOMEM;
952 
953 	msg->hdr.tid = cpu_to_le64(flush_tid);
954 
955 	fc = msg->front.iov_base;
956 	memset(fc, 0, sizeof(*fc));
957 
958 	fc->cap_id = cpu_to_le64(cid);
959 	fc->op = cpu_to_le32(op);
960 	fc->seq = cpu_to_le32(seq);
961 	fc->issue_seq = cpu_to_le32(issue_seq);
962 	fc->migrate_seq = cpu_to_le32(mseq);
963 	fc->caps = cpu_to_le32(caps);
964 	fc->wanted = cpu_to_le32(wanted);
965 	fc->dirty = cpu_to_le32(dirty);
966 	fc->ino = cpu_to_le64(ino);
967 	fc->snap_follows = cpu_to_le64(follows);
968 
969 	fc->size = cpu_to_le64(size);
970 	fc->max_size = cpu_to_le64(max_size);
971 	if (mtime)
972 		ceph_encode_timespec(&fc->mtime, mtime);
973 	if (atime)
974 		ceph_encode_timespec(&fc->atime, atime);
975 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
976 
977 	fc->uid = cpu_to_le32(uid);
978 	fc->gid = cpu_to_le32(gid);
979 	fc->mode = cpu_to_le32(mode);
980 
981 	fc->xattr_version = cpu_to_le64(xattr_version);
982 	if (xattrs_buf) {
983 		msg->middle = ceph_buffer_get(xattrs_buf);
984 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
985 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
986 	}
987 
988 	ceph_con_send(&session->s_con, msg);
989 	return 0;
990 }
991 
992 static void __queue_cap_release(struct ceph_mds_session *session,
993 				u64 ino, u64 cap_id, u32 migrate_seq,
994 				u32 issue_seq)
995 {
996 	struct ceph_msg *msg;
997 	struct ceph_mds_cap_release *head;
998 	struct ceph_mds_cap_item *item;
999 
1000 	spin_lock(&session->s_cap_lock);
1001 	BUG_ON(!session->s_num_cap_releases);
1002 	msg = list_first_entry(&session->s_cap_releases,
1003 			       struct ceph_msg, list_head);
1004 
1005 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1006 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1007 
1008 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1009 	head = msg->front.iov_base;
1010 	le32_add_cpu(&head->num, 1);
1011 	item = msg->front.iov_base + msg->front.iov_len;
1012 	item->ino = cpu_to_le64(ino);
1013 	item->cap_id = cpu_to_le64(cap_id);
1014 	item->migrate_seq = cpu_to_le32(migrate_seq);
1015 	item->seq = cpu_to_le32(issue_seq);
1016 
1017 	session->s_num_cap_releases--;
1018 
1019 	msg->front.iov_len += sizeof(*item);
1020 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1021 		dout(" release msg %p full\n", msg);
1022 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1023 	} else {
1024 		dout(" release msg %p at %d/%d (%d)\n", msg,
1025 		     (int)le32_to_cpu(head->num),
1026 		     (int)CEPH_CAPS_PER_RELEASE,
1027 		     (int)msg->front.iov_len);
1028 	}
1029 	spin_unlock(&session->s_cap_lock);
1030 }
1031 
1032 /*
1033  * Queue cap releases when an inode is dropped from our cache.  Since
1034  * inode is about to be destroyed, there is no need for i_ceph_lock.
1035  */
1036 void ceph_queue_caps_release(struct inode *inode)
1037 {
1038 	struct ceph_inode_info *ci = ceph_inode(inode);
1039 	struct rb_node *p;
1040 
1041 	p = rb_first(&ci->i_caps);
1042 	while (p) {
1043 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1044 		struct ceph_mds_session *session = cap->session;
1045 
1046 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1047 				    cap->mseq, cap->issue_seq);
1048 		p = rb_next(p);
1049 		__ceph_remove_cap(cap);
1050 	}
1051 }
1052 
1053 /*
1054  * Send a cap msg on the given inode.  Update our caps state, then
1055  * drop i_ceph_lock and send the message.
1056  *
1057  * Make note of max_size reported/requested from mds, revoked caps
1058  * that have now been implemented.
1059  *
1060  * Make half-hearted attempt ot to invalidate page cache if we are
1061  * dropping RDCACHE.  Note that this will leave behind locked pages
1062  * that we'll then need to deal with elsewhere.
1063  *
1064  * Return non-zero if delayed release, or we experienced an error
1065  * such that the caller should requeue + retry later.
1066  *
1067  * called with i_ceph_lock, then drops it.
1068  * caller should hold snap_rwsem (read), s_mutex.
1069  */
1070 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1071 		      int op, int used, int want, int retain, int flushing,
1072 		      unsigned *pflush_tid)
1073 	__releases(cap->ci->i_ceph_lock)
1074 {
1075 	struct ceph_inode_info *ci = cap->ci;
1076 	struct inode *inode = &ci->vfs_inode;
1077 	u64 cap_id = cap->cap_id;
1078 	int held, revoking, dropping, keep;
1079 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1080 	u64 size, max_size;
1081 	struct timespec mtime, atime;
1082 	int wake = 0;
1083 	umode_t mode;
1084 	uid_t uid;
1085 	gid_t gid;
1086 	struct ceph_mds_session *session;
1087 	u64 xattr_version = 0;
1088 	struct ceph_buffer *xattr_blob = NULL;
1089 	int delayed = 0;
1090 	u64 flush_tid = 0;
1091 	int i;
1092 	int ret;
1093 
1094 	held = cap->issued | cap->implemented;
1095 	revoking = cap->implemented & ~cap->issued;
1096 	retain &= ~revoking;
1097 	dropping = cap->issued & ~retain;
1098 
1099 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1100 	     inode, cap, cap->session,
1101 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1102 	     ceph_cap_string(revoking));
1103 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1104 
1105 	session = cap->session;
1106 
1107 	/* don't release wanted unless we've waited a bit. */
1108 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1109 	    time_before(jiffies, ci->i_hold_caps_min)) {
1110 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1111 		     ceph_cap_string(cap->issued),
1112 		     ceph_cap_string(cap->issued & retain),
1113 		     ceph_cap_string(cap->mds_wanted),
1114 		     ceph_cap_string(want));
1115 		want |= cap->mds_wanted;
1116 		retain |= cap->issued;
1117 		delayed = 1;
1118 	}
1119 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1120 
1121 	cap->issued &= retain;  /* drop bits we don't want */
1122 	if (cap->implemented & ~cap->issued) {
1123 		/*
1124 		 * Wake up any waiters on wanted -> needed transition.
1125 		 * This is due to the weird transition from buffered
1126 		 * to sync IO... we need to flush dirty pages _before_
1127 		 * allowing sync writes to avoid reordering.
1128 		 */
1129 		wake = 1;
1130 	}
1131 	cap->implemented &= cap->issued | used;
1132 	cap->mds_wanted = want;
1133 
1134 	if (flushing) {
1135 		/*
1136 		 * assign a tid for flush operations so we can avoid
1137 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1138 		 * clean type races.  track latest tid for every bit
1139 		 * so we can handle flush AxFw, flush Fw, and have the
1140 		 * first ack clean Ax.
1141 		 */
1142 		flush_tid = ++ci->i_cap_flush_last_tid;
1143 		if (pflush_tid)
1144 			*pflush_tid = flush_tid;
1145 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1146 		for (i = 0; i < CEPH_CAP_BITS; i++)
1147 			if (flushing & (1 << i))
1148 				ci->i_cap_flush_tid[i] = flush_tid;
1149 
1150 		follows = ci->i_head_snapc->seq;
1151 	} else {
1152 		follows = 0;
1153 	}
1154 
1155 	keep = cap->implemented;
1156 	seq = cap->seq;
1157 	issue_seq = cap->issue_seq;
1158 	mseq = cap->mseq;
1159 	size = inode->i_size;
1160 	ci->i_reported_size = size;
1161 	max_size = ci->i_wanted_max_size;
1162 	ci->i_requested_max_size = max_size;
1163 	mtime = inode->i_mtime;
1164 	atime = inode->i_atime;
1165 	time_warp_seq = ci->i_time_warp_seq;
1166 	uid = inode->i_uid;
1167 	gid = inode->i_gid;
1168 	mode = inode->i_mode;
1169 
1170 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1171 		__ceph_build_xattrs_blob(ci);
1172 		xattr_blob = ci->i_xattrs.blob;
1173 		xattr_version = ci->i_xattrs.version;
1174 	}
1175 
1176 	spin_unlock(&ci->i_ceph_lock);
1177 
1178 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1179 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1180 		size, max_size, &mtime, &atime, time_warp_seq,
1181 		uid, gid, mode, xattr_version, xattr_blob,
1182 		follows);
1183 	if (ret < 0) {
1184 		dout("error sending cap msg, must requeue %p\n", inode);
1185 		delayed = 1;
1186 	}
1187 
1188 	if (wake)
1189 		wake_up_all(&ci->i_cap_wq);
1190 
1191 	return delayed;
1192 }
1193 
1194 /*
1195  * When a snapshot is taken, clients accumulate dirty metadata on
1196  * inodes with capabilities in ceph_cap_snaps to describe the file
1197  * state at the time the snapshot was taken.  This must be flushed
1198  * asynchronously back to the MDS once sync writes complete and dirty
1199  * data is written out.
1200  *
1201  * Unless @again is true, skip cap_snaps that were already sent to
1202  * the MDS (i.e., during this session).
1203  *
1204  * Called under i_ceph_lock.  Takes s_mutex as needed.
1205  */
1206 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1207 			struct ceph_mds_session **psession,
1208 			int again)
1209 		__releases(ci->i_ceph_lock)
1210 		__acquires(ci->i_ceph_lock)
1211 {
1212 	struct inode *inode = &ci->vfs_inode;
1213 	int mds;
1214 	struct ceph_cap_snap *capsnap;
1215 	u32 mseq;
1216 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1217 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1218 						    session->s_mutex */
1219 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1220 			     i_cap_snaps list, and skip these entries next time
1221 			     around to avoid an infinite loop */
1222 
1223 	if (psession)
1224 		session = *psession;
1225 
1226 	dout("__flush_snaps %p\n", inode);
1227 retry:
1228 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1229 		/* avoid an infiniute loop after retry */
1230 		if (capsnap->follows < next_follows)
1231 			continue;
1232 		/*
1233 		 * we need to wait for sync writes to complete and for dirty
1234 		 * pages to be written out.
1235 		 */
1236 		if (capsnap->dirty_pages || capsnap->writing)
1237 			break;
1238 
1239 		/*
1240 		 * if cap writeback already occurred, we should have dropped
1241 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1242 		 */
1243 		BUG_ON(capsnap->dirty == 0);
1244 
1245 		/* pick mds, take s_mutex */
1246 		if (ci->i_auth_cap == NULL) {
1247 			dout("no auth cap (migrating?), doing nothing\n");
1248 			goto out;
1249 		}
1250 
1251 		/* only flush each capsnap once */
1252 		if (!again && !list_empty(&capsnap->flushing_item)) {
1253 			dout("already flushed %p, skipping\n", capsnap);
1254 			continue;
1255 		}
1256 
1257 		mds = ci->i_auth_cap->session->s_mds;
1258 		mseq = ci->i_auth_cap->mseq;
1259 
1260 		if (session && session->s_mds != mds) {
1261 			dout("oops, wrong session %p mutex\n", session);
1262 			mutex_unlock(&session->s_mutex);
1263 			ceph_put_mds_session(session);
1264 			session = NULL;
1265 		}
1266 		if (!session) {
1267 			spin_unlock(&ci->i_ceph_lock);
1268 			mutex_lock(&mdsc->mutex);
1269 			session = __ceph_lookup_mds_session(mdsc, mds);
1270 			mutex_unlock(&mdsc->mutex);
1271 			if (session) {
1272 				dout("inverting session/ino locks on %p\n",
1273 				     session);
1274 				mutex_lock(&session->s_mutex);
1275 			}
1276 			/*
1277 			 * if session == NULL, we raced against a cap
1278 			 * deletion or migration.  retry, and we'll
1279 			 * get a better @mds value next time.
1280 			 */
1281 			spin_lock(&ci->i_ceph_lock);
1282 			goto retry;
1283 		}
1284 
1285 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1286 		atomic_inc(&capsnap->nref);
1287 		if (!list_empty(&capsnap->flushing_item))
1288 			list_del_init(&capsnap->flushing_item);
1289 		list_add_tail(&capsnap->flushing_item,
1290 			      &session->s_cap_snaps_flushing);
1291 		spin_unlock(&ci->i_ceph_lock);
1292 
1293 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1294 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1295 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1296 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1297 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1298 			     capsnap->size, 0,
1299 			     &capsnap->mtime, &capsnap->atime,
1300 			     capsnap->time_warp_seq,
1301 			     capsnap->uid, capsnap->gid, capsnap->mode,
1302 			     capsnap->xattr_version, capsnap->xattr_blob,
1303 			     capsnap->follows);
1304 
1305 		next_follows = capsnap->follows + 1;
1306 		ceph_put_cap_snap(capsnap);
1307 
1308 		spin_lock(&ci->i_ceph_lock);
1309 		goto retry;
1310 	}
1311 
1312 	/* we flushed them all; remove this inode from the queue */
1313 	spin_lock(&mdsc->snap_flush_lock);
1314 	list_del_init(&ci->i_snap_flush_item);
1315 	spin_unlock(&mdsc->snap_flush_lock);
1316 
1317 out:
1318 	if (psession)
1319 		*psession = session;
1320 	else if (session) {
1321 		mutex_unlock(&session->s_mutex);
1322 		ceph_put_mds_session(session);
1323 	}
1324 }
1325 
1326 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1327 {
1328 	spin_lock(&ci->i_ceph_lock);
1329 	__ceph_flush_snaps(ci, NULL, 0);
1330 	spin_unlock(&ci->i_ceph_lock);
1331 }
1332 
1333 /*
1334  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1335  * Caller is then responsible for calling __mark_inode_dirty with the
1336  * returned flags value.
1337  */
1338 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1339 {
1340 	struct ceph_mds_client *mdsc =
1341 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1342 	struct inode *inode = &ci->vfs_inode;
1343 	int was = ci->i_dirty_caps;
1344 	int dirty = 0;
1345 
1346 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1347 	     ceph_cap_string(mask), ceph_cap_string(was),
1348 	     ceph_cap_string(was | mask));
1349 	ci->i_dirty_caps |= mask;
1350 	if (was == 0) {
1351 		if (!ci->i_head_snapc)
1352 			ci->i_head_snapc = ceph_get_snap_context(
1353 				ci->i_snap_realm->cached_context);
1354 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1355 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1356 		BUG_ON(!list_empty(&ci->i_dirty_item));
1357 		spin_lock(&mdsc->cap_dirty_lock);
1358 		if (ci->i_auth_cap)
1359 			list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1360 		else
1361 			list_add(&ci->i_dirty_item,
1362 				 &mdsc->cap_dirty_migrating);
1363 		spin_unlock(&mdsc->cap_dirty_lock);
1364 		if (ci->i_flushing_caps == 0) {
1365 			ihold(inode);
1366 			dirty |= I_DIRTY_SYNC;
1367 		}
1368 	}
1369 	BUG_ON(list_empty(&ci->i_dirty_item));
1370 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1371 	    (mask & CEPH_CAP_FILE_BUFFER))
1372 		dirty |= I_DIRTY_DATASYNC;
1373 	__cap_delay_requeue(mdsc, ci);
1374 	return dirty;
1375 }
1376 
1377 /*
1378  * Add dirty inode to the flushing list.  Assigned a seq number so we
1379  * can wait for caps to flush without starving.
1380  *
1381  * Called under i_ceph_lock.
1382  */
1383 static int __mark_caps_flushing(struct inode *inode,
1384 				 struct ceph_mds_session *session)
1385 {
1386 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1387 	struct ceph_inode_info *ci = ceph_inode(inode);
1388 	int flushing;
1389 
1390 	BUG_ON(ci->i_dirty_caps == 0);
1391 	BUG_ON(list_empty(&ci->i_dirty_item));
1392 
1393 	flushing = ci->i_dirty_caps;
1394 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1395 	     ceph_cap_string(flushing),
1396 	     ceph_cap_string(ci->i_flushing_caps),
1397 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1398 	ci->i_flushing_caps |= flushing;
1399 	ci->i_dirty_caps = 0;
1400 	dout(" inode %p now !dirty\n", inode);
1401 
1402 	spin_lock(&mdsc->cap_dirty_lock);
1403 	list_del_init(&ci->i_dirty_item);
1404 
1405 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1406 	if (list_empty(&ci->i_flushing_item)) {
1407 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1408 		mdsc->num_cap_flushing++;
1409 		dout(" inode %p now flushing seq %lld\n", inode,
1410 		     ci->i_cap_flush_seq);
1411 	} else {
1412 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1413 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1414 		     ci->i_cap_flush_seq);
1415 	}
1416 	spin_unlock(&mdsc->cap_dirty_lock);
1417 
1418 	return flushing;
1419 }
1420 
1421 /*
1422  * try to invalidate mapping pages without blocking.
1423  */
1424 static int try_nonblocking_invalidate(struct inode *inode)
1425 {
1426 	struct ceph_inode_info *ci = ceph_inode(inode);
1427 	u32 invalidating_gen = ci->i_rdcache_gen;
1428 
1429 	spin_unlock(&ci->i_ceph_lock);
1430 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1431 	spin_lock(&ci->i_ceph_lock);
1432 
1433 	if (inode->i_data.nrpages == 0 &&
1434 	    invalidating_gen == ci->i_rdcache_gen) {
1435 		/* success. */
1436 		dout("try_nonblocking_invalidate %p success\n", inode);
1437 		/* save any racing async invalidate some trouble */
1438 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1439 		return 0;
1440 	}
1441 	dout("try_nonblocking_invalidate %p failed\n", inode);
1442 	return -1;
1443 }
1444 
1445 /*
1446  * Swiss army knife function to examine currently used and wanted
1447  * versus held caps.  Release, flush, ack revoked caps to mds as
1448  * appropriate.
1449  *
1450  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1451  *    cap release further.
1452  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1453  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1454  *    further delay.
1455  */
1456 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1457 		     struct ceph_mds_session *session)
1458 {
1459 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1460 	struct ceph_mds_client *mdsc = fsc->mdsc;
1461 	struct inode *inode = &ci->vfs_inode;
1462 	struct ceph_cap *cap;
1463 	int file_wanted, used;
1464 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1465 	int issued, implemented, want, retain, revoking, flushing = 0;
1466 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1467 			   to avoid an infinite loop on retry */
1468 	struct rb_node *p;
1469 	int tried_invalidate = 0;
1470 	int delayed = 0, sent = 0, force_requeue = 0, num;
1471 	int queue_invalidate = 0;
1472 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1473 
1474 	/* if we are unmounting, flush any unused caps immediately. */
1475 	if (mdsc->stopping)
1476 		is_delayed = 1;
1477 
1478 	spin_lock(&ci->i_ceph_lock);
1479 
1480 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1481 		flags |= CHECK_CAPS_FLUSH;
1482 
1483 	/* flush snaps first time around only */
1484 	if (!list_empty(&ci->i_cap_snaps))
1485 		__ceph_flush_snaps(ci, &session, 0);
1486 	goto retry_locked;
1487 retry:
1488 	spin_lock(&ci->i_ceph_lock);
1489 retry_locked:
1490 	file_wanted = __ceph_caps_file_wanted(ci);
1491 	used = __ceph_caps_used(ci);
1492 	want = file_wanted | used;
1493 	issued = __ceph_caps_issued(ci, &implemented);
1494 	revoking = implemented & ~issued;
1495 
1496 	retain = want | CEPH_CAP_PIN;
1497 	if (!mdsc->stopping && inode->i_nlink > 0) {
1498 		if (want) {
1499 			retain |= CEPH_CAP_ANY;       /* be greedy */
1500 		} else {
1501 			retain |= CEPH_CAP_ANY_SHARED;
1502 			/*
1503 			 * keep RD only if we didn't have the file open RW,
1504 			 * because then the mds would revoke it anyway to
1505 			 * journal max_size=0.
1506 			 */
1507 			if (ci->i_max_size == 0)
1508 				retain |= CEPH_CAP_ANY_RD;
1509 		}
1510 	}
1511 
1512 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1513 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1514 	     ceph_cap_string(file_wanted),
1515 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1516 	     ceph_cap_string(ci->i_flushing_caps),
1517 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1518 	     ceph_cap_string(retain),
1519 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1520 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1521 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1522 
1523 	/*
1524 	 * If we no longer need to hold onto old our caps, and we may
1525 	 * have cached pages, but don't want them, then try to invalidate.
1526 	 * If we fail, it's because pages are locked.... try again later.
1527 	 */
1528 	if ((!is_delayed || mdsc->stopping) &&
1529 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1530 	    inode->i_data.nrpages &&                 /* have cached pages */
1531 	    (file_wanted == 0 ||                     /* no open files */
1532 	     (revoking & (CEPH_CAP_FILE_CACHE|
1533 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1534 	    !tried_invalidate) {
1535 		dout("check_caps trying to invalidate on %p\n", inode);
1536 		if (try_nonblocking_invalidate(inode) < 0) {
1537 			if (revoking & (CEPH_CAP_FILE_CACHE|
1538 					CEPH_CAP_FILE_LAZYIO)) {
1539 				dout("check_caps queuing invalidate\n");
1540 				queue_invalidate = 1;
1541 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1542 			} else {
1543 				dout("check_caps failed to invalidate pages\n");
1544 				/* we failed to invalidate pages.  check these
1545 				   caps again later. */
1546 				force_requeue = 1;
1547 				__cap_set_timeouts(mdsc, ci);
1548 			}
1549 		}
1550 		tried_invalidate = 1;
1551 		goto retry_locked;
1552 	}
1553 
1554 	num = 0;
1555 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1556 		cap = rb_entry(p, struct ceph_cap, ci_node);
1557 		num++;
1558 
1559 		/* avoid looping forever */
1560 		if (mds >= cap->mds ||
1561 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1562 			continue;
1563 
1564 		/* NOTE: no side-effects allowed, until we take s_mutex */
1565 
1566 		revoking = cap->implemented & ~cap->issued;
1567 		dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1568 		     cap->mds, cap, ceph_cap_string(cap->issued),
1569 		     ceph_cap_string(cap->implemented),
1570 		     ceph_cap_string(revoking));
1571 
1572 		if (cap == ci->i_auth_cap &&
1573 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1574 			/* request larger max_size from MDS? */
1575 			if (ci->i_wanted_max_size > ci->i_max_size &&
1576 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1577 				dout("requesting new max_size\n");
1578 				goto ack;
1579 			}
1580 
1581 			/* approaching file_max? */
1582 			if ((inode->i_size << 1) >= ci->i_max_size &&
1583 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1584 				dout("i_size approaching max_size\n");
1585 				goto ack;
1586 			}
1587 		}
1588 		/* flush anything dirty? */
1589 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1590 		    ci->i_dirty_caps) {
1591 			dout("flushing dirty caps\n");
1592 			goto ack;
1593 		}
1594 
1595 		/* completed revocation? going down and there are no caps? */
1596 		if (revoking && (revoking & used) == 0) {
1597 			dout("completed revocation of %s\n",
1598 			     ceph_cap_string(cap->implemented & ~cap->issued));
1599 			goto ack;
1600 		}
1601 
1602 		/* want more caps from mds? */
1603 		if (want & ~(cap->mds_wanted | cap->issued))
1604 			goto ack;
1605 
1606 		/* things we might delay */
1607 		if ((cap->issued & ~retain) == 0 &&
1608 		    cap->mds_wanted == want)
1609 			continue;     /* nope, all good */
1610 
1611 		if (is_delayed)
1612 			goto ack;
1613 
1614 		/* delay? */
1615 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1616 		    time_before(jiffies, ci->i_hold_caps_max)) {
1617 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1618 			     ceph_cap_string(cap->issued),
1619 			     ceph_cap_string(cap->issued & retain),
1620 			     ceph_cap_string(cap->mds_wanted),
1621 			     ceph_cap_string(want));
1622 			delayed++;
1623 			continue;
1624 		}
1625 
1626 ack:
1627 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1628 			dout(" skipping %p I_NOFLUSH set\n", inode);
1629 			continue;
1630 		}
1631 
1632 		if (session && session != cap->session) {
1633 			dout("oops, wrong session %p mutex\n", session);
1634 			mutex_unlock(&session->s_mutex);
1635 			session = NULL;
1636 		}
1637 		if (!session) {
1638 			session = cap->session;
1639 			if (mutex_trylock(&session->s_mutex) == 0) {
1640 				dout("inverting session/ino locks on %p\n",
1641 				     session);
1642 				spin_unlock(&ci->i_ceph_lock);
1643 				if (took_snap_rwsem) {
1644 					up_read(&mdsc->snap_rwsem);
1645 					took_snap_rwsem = 0;
1646 				}
1647 				mutex_lock(&session->s_mutex);
1648 				goto retry;
1649 			}
1650 		}
1651 		/* take snap_rwsem after session mutex */
1652 		if (!took_snap_rwsem) {
1653 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1654 				dout("inverting snap/in locks on %p\n",
1655 				     inode);
1656 				spin_unlock(&ci->i_ceph_lock);
1657 				down_read(&mdsc->snap_rwsem);
1658 				took_snap_rwsem = 1;
1659 				goto retry;
1660 			}
1661 			took_snap_rwsem = 1;
1662 		}
1663 
1664 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1665 			flushing = __mark_caps_flushing(inode, session);
1666 		else
1667 			flushing = 0;
1668 
1669 		mds = cap->mds;  /* remember mds, so we don't repeat */
1670 		sent++;
1671 
1672 		/* __send_cap drops i_ceph_lock */
1673 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1674 				      retain, flushing, NULL);
1675 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1676 	}
1677 
1678 	/*
1679 	 * Reschedule delayed caps release if we delayed anything,
1680 	 * otherwise cancel.
1681 	 */
1682 	if (delayed && is_delayed)
1683 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1684 	if (!delayed && !is_delayed)
1685 		__cap_delay_cancel(mdsc, ci);
1686 	else if (!is_delayed || force_requeue)
1687 		__cap_delay_requeue(mdsc, ci);
1688 
1689 	spin_unlock(&ci->i_ceph_lock);
1690 
1691 	if (queue_invalidate)
1692 		ceph_queue_invalidate(inode);
1693 
1694 	if (session)
1695 		mutex_unlock(&session->s_mutex);
1696 	if (took_snap_rwsem)
1697 		up_read(&mdsc->snap_rwsem);
1698 }
1699 
1700 /*
1701  * Try to flush dirty caps back to the auth mds.
1702  */
1703 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1704 			  unsigned *flush_tid)
1705 {
1706 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1707 	struct ceph_inode_info *ci = ceph_inode(inode);
1708 	int unlock_session = session ? 0 : 1;
1709 	int flushing = 0;
1710 
1711 retry:
1712 	spin_lock(&ci->i_ceph_lock);
1713 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1714 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1715 		goto out;
1716 	}
1717 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1718 		struct ceph_cap *cap = ci->i_auth_cap;
1719 		int used = __ceph_caps_used(ci);
1720 		int want = __ceph_caps_wanted(ci);
1721 		int delayed;
1722 
1723 		if (!session) {
1724 			spin_unlock(&ci->i_ceph_lock);
1725 			session = cap->session;
1726 			mutex_lock(&session->s_mutex);
1727 			goto retry;
1728 		}
1729 		BUG_ON(session != cap->session);
1730 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1731 			goto out;
1732 
1733 		flushing = __mark_caps_flushing(inode, session);
1734 
1735 		/* __send_cap drops i_ceph_lock */
1736 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1737 				     cap->issued | cap->implemented, flushing,
1738 				     flush_tid);
1739 		if (!delayed)
1740 			goto out_unlocked;
1741 
1742 		spin_lock(&ci->i_ceph_lock);
1743 		__cap_delay_requeue(mdsc, ci);
1744 	}
1745 out:
1746 	spin_unlock(&ci->i_ceph_lock);
1747 out_unlocked:
1748 	if (session && unlock_session)
1749 		mutex_unlock(&session->s_mutex);
1750 	return flushing;
1751 }
1752 
1753 /*
1754  * Return true if we've flushed caps through the given flush_tid.
1755  */
1756 static int caps_are_flushed(struct inode *inode, unsigned tid)
1757 {
1758 	struct ceph_inode_info *ci = ceph_inode(inode);
1759 	int i, ret = 1;
1760 
1761 	spin_lock(&ci->i_ceph_lock);
1762 	for (i = 0; i < CEPH_CAP_BITS; i++)
1763 		if ((ci->i_flushing_caps & (1 << i)) &&
1764 		    ci->i_cap_flush_tid[i] <= tid) {
1765 			/* still flushing this bit */
1766 			ret = 0;
1767 			break;
1768 		}
1769 	spin_unlock(&ci->i_ceph_lock);
1770 	return ret;
1771 }
1772 
1773 /*
1774  * Wait on any unsafe replies for the given inode.  First wait on the
1775  * newest request, and make that the upper bound.  Then, if there are
1776  * more requests, keep waiting on the oldest as long as it is still older
1777  * than the original request.
1778  */
1779 static void sync_write_wait(struct inode *inode)
1780 {
1781 	struct ceph_inode_info *ci = ceph_inode(inode);
1782 	struct list_head *head = &ci->i_unsafe_writes;
1783 	struct ceph_osd_request *req;
1784 	u64 last_tid;
1785 
1786 	spin_lock(&ci->i_unsafe_lock);
1787 	if (list_empty(head))
1788 		goto out;
1789 
1790 	/* set upper bound as _last_ entry in chain */
1791 	req = list_entry(head->prev, struct ceph_osd_request,
1792 			 r_unsafe_item);
1793 	last_tid = req->r_tid;
1794 
1795 	do {
1796 		ceph_osdc_get_request(req);
1797 		spin_unlock(&ci->i_unsafe_lock);
1798 		dout("sync_write_wait on tid %llu (until %llu)\n",
1799 		     req->r_tid, last_tid);
1800 		wait_for_completion(&req->r_safe_completion);
1801 		spin_lock(&ci->i_unsafe_lock);
1802 		ceph_osdc_put_request(req);
1803 
1804 		/*
1805 		 * from here on look at first entry in chain, since we
1806 		 * only want to wait for anything older than last_tid
1807 		 */
1808 		if (list_empty(head))
1809 			break;
1810 		req = list_entry(head->next, struct ceph_osd_request,
1811 				 r_unsafe_item);
1812 	} while (req->r_tid < last_tid);
1813 out:
1814 	spin_unlock(&ci->i_unsafe_lock);
1815 }
1816 
1817 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1818 {
1819 	struct inode *inode = file->f_mapping->host;
1820 	struct ceph_inode_info *ci = ceph_inode(inode);
1821 	unsigned flush_tid;
1822 	int ret;
1823 	int dirty;
1824 
1825 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1826 	sync_write_wait(inode);
1827 
1828 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1829 	if (ret < 0)
1830 		return ret;
1831 	mutex_lock(&inode->i_mutex);
1832 
1833 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1834 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1835 
1836 	/*
1837 	 * only wait on non-file metadata writeback (the mds
1838 	 * can recover size and mtime, so we don't need to
1839 	 * wait for that)
1840 	 */
1841 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1842 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1843 		ret = wait_event_interruptible(ci->i_cap_wq,
1844 				       caps_are_flushed(inode, flush_tid));
1845 	}
1846 
1847 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1848 	mutex_unlock(&inode->i_mutex);
1849 	return ret;
1850 }
1851 
1852 /*
1853  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1854  * queue inode for flush but don't do so immediately, because we can
1855  * get by with fewer MDS messages if we wait for data writeback to
1856  * complete first.
1857  */
1858 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1859 {
1860 	struct ceph_inode_info *ci = ceph_inode(inode);
1861 	unsigned flush_tid;
1862 	int err = 0;
1863 	int dirty;
1864 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1865 
1866 	dout("write_inode %p wait=%d\n", inode, wait);
1867 	if (wait) {
1868 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1869 		if (dirty)
1870 			err = wait_event_interruptible(ci->i_cap_wq,
1871 				       caps_are_flushed(inode, flush_tid));
1872 	} else {
1873 		struct ceph_mds_client *mdsc =
1874 			ceph_sb_to_client(inode->i_sb)->mdsc;
1875 
1876 		spin_lock(&ci->i_ceph_lock);
1877 		if (__ceph_caps_dirty(ci))
1878 			__cap_delay_requeue_front(mdsc, ci);
1879 		spin_unlock(&ci->i_ceph_lock);
1880 	}
1881 	return err;
1882 }
1883 
1884 /*
1885  * After a recovering MDS goes active, we need to resend any caps
1886  * we were flushing.
1887  *
1888  * Caller holds session->s_mutex.
1889  */
1890 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1891 				   struct ceph_mds_session *session)
1892 {
1893 	struct ceph_cap_snap *capsnap;
1894 
1895 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1896 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1897 			    flushing_item) {
1898 		struct ceph_inode_info *ci = capsnap->ci;
1899 		struct inode *inode = &ci->vfs_inode;
1900 		struct ceph_cap *cap;
1901 
1902 		spin_lock(&ci->i_ceph_lock);
1903 		cap = ci->i_auth_cap;
1904 		if (cap && cap->session == session) {
1905 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1906 			     cap, capsnap);
1907 			__ceph_flush_snaps(ci, &session, 1);
1908 		} else {
1909 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1910 			       cap, session->s_mds);
1911 		}
1912 		spin_unlock(&ci->i_ceph_lock);
1913 	}
1914 }
1915 
1916 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1917 			     struct ceph_mds_session *session)
1918 {
1919 	struct ceph_inode_info *ci;
1920 
1921 	kick_flushing_capsnaps(mdsc, session);
1922 
1923 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1924 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1925 		struct inode *inode = &ci->vfs_inode;
1926 		struct ceph_cap *cap;
1927 		int delayed = 0;
1928 
1929 		spin_lock(&ci->i_ceph_lock);
1930 		cap = ci->i_auth_cap;
1931 		if (cap && cap->session == session) {
1932 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1933 			     cap, ceph_cap_string(ci->i_flushing_caps));
1934 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1935 					     __ceph_caps_used(ci),
1936 					     __ceph_caps_wanted(ci),
1937 					     cap->issued | cap->implemented,
1938 					     ci->i_flushing_caps, NULL);
1939 			if (delayed) {
1940 				spin_lock(&ci->i_ceph_lock);
1941 				__cap_delay_requeue(mdsc, ci);
1942 				spin_unlock(&ci->i_ceph_lock);
1943 			}
1944 		} else {
1945 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1946 			       cap, session->s_mds);
1947 			spin_unlock(&ci->i_ceph_lock);
1948 		}
1949 	}
1950 }
1951 
1952 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1953 				     struct ceph_mds_session *session,
1954 				     struct inode *inode)
1955 {
1956 	struct ceph_inode_info *ci = ceph_inode(inode);
1957 	struct ceph_cap *cap;
1958 	int delayed = 0;
1959 
1960 	spin_lock(&ci->i_ceph_lock);
1961 	cap = ci->i_auth_cap;
1962 	dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1963 	     ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1964 	__ceph_flush_snaps(ci, &session, 1);
1965 	if (ci->i_flushing_caps) {
1966 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1967 				     __ceph_caps_used(ci),
1968 				     __ceph_caps_wanted(ci),
1969 				     cap->issued | cap->implemented,
1970 				     ci->i_flushing_caps, NULL);
1971 		if (delayed) {
1972 			spin_lock(&ci->i_ceph_lock);
1973 			__cap_delay_requeue(mdsc, ci);
1974 			spin_unlock(&ci->i_ceph_lock);
1975 		}
1976 	} else {
1977 		spin_unlock(&ci->i_ceph_lock);
1978 	}
1979 }
1980 
1981 
1982 /*
1983  * Take references to capabilities we hold, so that we don't release
1984  * them to the MDS prematurely.
1985  *
1986  * Protected by i_ceph_lock.
1987  */
1988 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1989 {
1990 	if (got & CEPH_CAP_PIN)
1991 		ci->i_pin_ref++;
1992 	if (got & CEPH_CAP_FILE_RD)
1993 		ci->i_rd_ref++;
1994 	if (got & CEPH_CAP_FILE_CACHE)
1995 		ci->i_rdcache_ref++;
1996 	if (got & CEPH_CAP_FILE_WR)
1997 		ci->i_wr_ref++;
1998 	if (got & CEPH_CAP_FILE_BUFFER) {
1999 		if (ci->i_wb_ref == 0)
2000 			ihold(&ci->vfs_inode);
2001 		ci->i_wb_ref++;
2002 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2003 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2004 	}
2005 }
2006 
2007 /*
2008  * Try to grab cap references.  Specify those refs we @want, and the
2009  * minimal set we @need.  Also include the larger offset we are writing
2010  * to (when applicable), and check against max_size here as well.
2011  * Note that caller is responsible for ensuring max_size increases are
2012  * requested from the MDS.
2013  */
2014 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2015 			    int *got, loff_t endoff, int *check_max, int *err)
2016 {
2017 	struct inode *inode = &ci->vfs_inode;
2018 	int ret = 0;
2019 	int have, implemented;
2020 	int file_wanted;
2021 
2022 	dout("get_cap_refs %p need %s want %s\n", inode,
2023 	     ceph_cap_string(need), ceph_cap_string(want));
2024 	spin_lock(&ci->i_ceph_lock);
2025 
2026 	/* make sure file is actually open */
2027 	file_wanted = __ceph_caps_file_wanted(ci);
2028 	if ((file_wanted & need) == 0) {
2029 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2030 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2031 		*err = -EBADF;
2032 		ret = 1;
2033 		goto out;
2034 	}
2035 
2036 	if (need & CEPH_CAP_FILE_WR) {
2037 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2038 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2039 			     inode, endoff, ci->i_max_size);
2040 			if (endoff > ci->i_wanted_max_size) {
2041 				*check_max = 1;
2042 				ret = 1;
2043 			}
2044 			goto out;
2045 		}
2046 		/*
2047 		 * If a sync write is in progress, we must wait, so that we
2048 		 * can get a final snapshot value for size+mtime.
2049 		 */
2050 		if (__ceph_have_pending_cap_snap(ci)) {
2051 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2052 			goto out;
2053 		}
2054 	}
2055 	have = __ceph_caps_issued(ci, &implemented);
2056 
2057 	/*
2058 	 * disallow writes while a truncate is pending
2059 	 */
2060 	if (ci->i_truncate_pending)
2061 		have &= ~CEPH_CAP_FILE_WR;
2062 
2063 	if ((have & need) == need) {
2064 		/*
2065 		 * Look at (implemented & ~have & not) so that we keep waiting
2066 		 * on transition from wanted -> needed caps.  This is needed
2067 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2068 		 * going before a prior buffered writeback happens.
2069 		 */
2070 		int not = want & ~(have & need);
2071 		int revoking = implemented & ~have;
2072 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2073 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2074 		     ceph_cap_string(revoking));
2075 		if ((revoking & not) == 0) {
2076 			*got = need | (have & want);
2077 			__take_cap_refs(ci, *got);
2078 			ret = 1;
2079 		}
2080 	} else {
2081 		dout("get_cap_refs %p have %s needed %s\n", inode,
2082 		     ceph_cap_string(have), ceph_cap_string(need));
2083 	}
2084 out:
2085 	spin_unlock(&ci->i_ceph_lock);
2086 	dout("get_cap_refs %p ret %d got %s\n", inode,
2087 	     ret, ceph_cap_string(*got));
2088 	return ret;
2089 }
2090 
2091 /*
2092  * Check the offset we are writing up to against our current
2093  * max_size.  If necessary, tell the MDS we want to write to
2094  * a larger offset.
2095  */
2096 static void check_max_size(struct inode *inode, loff_t endoff)
2097 {
2098 	struct ceph_inode_info *ci = ceph_inode(inode);
2099 	int check = 0;
2100 
2101 	/* do we need to explicitly request a larger max_size? */
2102 	spin_lock(&ci->i_ceph_lock);
2103 	if ((endoff >= ci->i_max_size ||
2104 	     endoff > (inode->i_size << 1)) &&
2105 	    endoff > ci->i_wanted_max_size) {
2106 		dout("write %p at large endoff %llu, req max_size\n",
2107 		     inode, endoff);
2108 		ci->i_wanted_max_size = endoff;
2109 		check = 1;
2110 	}
2111 	spin_unlock(&ci->i_ceph_lock);
2112 	if (check)
2113 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2114 }
2115 
2116 /*
2117  * Wait for caps, and take cap references.  If we can't get a WR cap
2118  * due to a small max_size, make sure we check_max_size (and possibly
2119  * ask the mds) so we don't get hung up indefinitely.
2120  */
2121 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2122 		  loff_t endoff)
2123 {
2124 	int check_max, ret, err;
2125 
2126 retry:
2127 	if (endoff > 0)
2128 		check_max_size(&ci->vfs_inode, endoff);
2129 	check_max = 0;
2130 	err = 0;
2131 	ret = wait_event_interruptible(ci->i_cap_wq,
2132 				       try_get_cap_refs(ci, need, want,
2133 							got, endoff,
2134 							&check_max, &err));
2135 	if (err)
2136 		ret = err;
2137 	if (check_max)
2138 		goto retry;
2139 	return ret;
2140 }
2141 
2142 /*
2143  * Take cap refs.  Caller must already know we hold at least one ref
2144  * on the caps in question or we don't know this is safe.
2145  */
2146 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2147 {
2148 	spin_lock(&ci->i_ceph_lock);
2149 	__take_cap_refs(ci, caps);
2150 	spin_unlock(&ci->i_ceph_lock);
2151 }
2152 
2153 /*
2154  * Release cap refs.
2155  *
2156  * If we released the last ref on any given cap, call ceph_check_caps
2157  * to release (or schedule a release).
2158  *
2159  * If we are releasing a WR cap (from a sync write), finalize any affected
2160  * cap_snap, and wake up any waiters.
2161  */
2162 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2163 {
2164 	struct inode *inode = &ci->vfs_inode;
2165 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2166 	struct ceph_cap_snap *capsnap;
2167 
2168 	spin_lock(&ci->i_ceph_lock);
2169 	if (had & CEPH_CAP_PIN)
2170 		--ci->i_pin_ref;
2171 	if (had & CEPH_CAP_FILE_RD)
2172 		if (--ci->i_rd_ref == 0)
2173 			last++;
2174 	if (had & CEPH_CAP_FILE_CACHE)
2175 		if (--ci->i_rdcache_ref == 0)
2176 			last++;
2177 	if (had & CEPH_CAP_FILE_BUFFER) {
2178 		if (--ci->i_wb_ref == 0) {
2179 			last++;
2180 			put++;
2181 		}
2182 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2183 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2184 	}
2185 	if (had & CEPH_CAP_FILE_WR)
2186 		if (--ci->i_wr_ref == 0) {
2187 			last++;
2188 			if (!list_empty(&ci->i_cap_snaps)) {
2189 				capsnap = list_first_entry(&ci->i_cap_snaps,
2190 						     struct ceph_cap_snap,
2191 						     ci_item);
2192 				if (capsnap->writing) {
2193 					capsnap->writing = 0;
2194 					flushsnaps =
2195 						__ceph_finish_cap_snap(ci,
2196 								       capsnap);
2197 					wake = 1;
2198 				}
2199 			}
2200 		}
2201 	spin_unlock(&ci->i_ceph_lock);
2202 
2203 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2204 	     last ? " last" : "", put ? " put" : "");
2205 
2206 	if (last && !flushsnaps)
2207 		ceph_check_caps(ci, 0, NULL);
2208 	else if (flushsnaps)
2209 		ceph_flush_snaps(ci);
2210 	if (wake)
2211 		wake_up_all(&ci->i_cap_wq);
2212 	if (put)
2213 		iput(inode);
2214 }
2215 
2216 /*
2217  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2218  * context.  Adjust per-snap dirty page accounting as appropriate.
2219  * Once all dirty data for a cap_snap is flushed, flush snapped file
2220  * metadata back to the MDS.  If we dropped the last ref, call
2221  * ceph_check_caps.
2222  */
2223 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2224 				struct ceph_snap_context *snapc)
2225 {
2226 	struct inode *inode = &ci->vfs_inode;
2227 	int last = 0;
2228 	int complete_capsnap = 0;
2229 	int drop_capsnap = 0;
2230 	int found = 0;
2231 	struct ceph_cap_snap *capsnap = NULL;
2232 
2233 	spin_lock(&ci->i_ceph_lock);
2234 	ci->i_wrbuffer_ref -= nr;
2235 	last = !ci->i_wrbuffer_ref;
2236 
2237 	if (ci->i_head_snapc == snapc) {
2238 		ci->i_wrbuffer_ref_head -= nr;
2239 		if (ci->i_wrbuffer_ref_head == 0 &&
2240 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2241 			BUG_ON(!ci->i_head_snapc);
2242 			ceph_put_snap_context(ci->i_head_snapc);
2243 			ci->i_head_snapc = NULL;
2244 		}
2245 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2246 		     inode,
2247 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2248 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2249 		     last ? " LAST" : "");
2250 	} else {
2251 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2252 			if (capsnap->context == snapc) {
2253 				found = 1;
2254 				break;
2255 			}
2256 		}
2257 		BUG_ON(!found);
2258 		capsnap->dirty_pages -= nr;
2259 		if (capsnap->dirty_pages == 0) {
2260 			complete_capsnap = 1;
2261 			if (capsnap->dirty == 0)
2262 				/* cap writeback completed before we created
2263 				 * the cap_snap; no FLUSHSNAP is needed */
2264 				drop_capsnap = 1;
2265 		}
2266 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2267 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2268 		     inode, capsnap, capsnap->context->seq,
2269 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2270 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2271 		     last ? " (wrbuffer last)" : "",
2272 		     complete_capsnap ? " (complete capsnap)" : "",
2273 		     drop_capsnap ? " (drop capsnap)" : "");
2274 		if (drop_capsnap) {
2275 			ceph_put_snap_context(capsnap->context);
2276 			list_del(&capsnap->ci_item);
2277 			list_del(&capsnap->flushing_item);
2278 			ceph_put_cap_snap(capsnap);
2279 		}
2280 	}
2281 
2282 	spin_unlock(&ci->i_ceph_lock);
2283 
2284 	if (last) {
2285 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2286 		iput(inode);
2287 	} else if (complete_capsnap) {
2288 		ceph_flush_snaps(ci);
2289 		wake_up_all(&ci->i_cap_wq);
2290 	}
2291 	if (drop_capsnap)
2292 		iput(inode);
2293 }
2294 
2295 /*
2296  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2297  * actually be a revocation if it specifies a smaller cap set.)
2298  *
2299  * caller holds s_mutex and i_ceph_lock, we drop both.
2300  *
2301  * return value:
2302  *  0 - ok
2303  *  1 - check_caps on auth cap only (writeback)
2304  *  2 - check_caps (ack revoke)
2305  */
2306 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2307 			     struct ceph_mds_session *session,
2308 			     struct ceph_cap *cap,
2309 			     struct ceph_buffer *xattr_buf)
2310 		__releases(ci->i_ceph_lock)
2311 {
2312 	struct ceph_inode_info *ci = ceph_inode(inode);
2313 	int mds = session->s_mds;
2314 	int seq = le32_to_cpu(grant->seq);
2315 	int newcaps = le32_to_cpu(grant->caps);
2316 	int issued, implemented, used, wanted, dirty;
2317 	u64 size = le64_to_cpu(grant->size);
2318 	u64 max_size = le64_to_cpu(grant->max_size);
2319 	struct timespec mtime, atime, ctime;
2320 	int check_caps = 0;
2321 	int wake = 0;
2322 	int writeback = 0;
2323 	int revoked_rdcache = 0;
2324 	int queue_invalidate = 0;
2325 
2326 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2327 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2328 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2329 		inode->i_size);
2330 
2331 	/*
2332 	 * If CACHE is being revoked, and we have no dirty buffers,
2333 	 * try to invalidate (once).  (If there are dirty buffers, we
2334 	 * will invalidate _after_ writeback.)
2335 	 */
2336 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2337 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2338 	    !ci->i_wrbuffer_ref) {
2339 		if (try_nonblocking_invalidate(inode) == 0) {
2340 			revoked_rdcache = 1;
2341 		} else {
2342 			/* there were locked pages.. invalidate later
2343 			   in a separate thread. */
2344 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2345 				queue_invalidate = 1;
2346 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2347 			}
2348 		}
2349 	}
2350 
2351 	/* side effects now are allowed */
2352 
2353 	issued = __ceph_caps_issued(ci, &implemented);
2354 	issued |= implemented | __ceph_caps_dirty(ci);
2355 
2356 	cap->cap_gen = session->s_cap_gen;
2357 
2358 	__check_cap_issue(ci, cap, newcaps);
2359 
2360 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2361 		inode->i_mode = le32_to_cpu(grant->mode);
2362 		inode->i_uid = le32_to_cpu(grant->uid);
2363 		inode->i_gid = le32_to_cpu(grant->gid);
2364 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2365 		     inode->i_uid, inode->i_gid);
2366 	}
2367 
2368 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2369 		set_nlink(inode, le32_to_cpu(grant->nlink));
2370 
2371 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2372 		int len = le32_to_cpu(grant->xattr_len);
2373 		u64 version = le64_to_cpu(grant->xattr_version);
2374 
2375 		if (version > ci->i_xattrs.version) {
2376 			dout(" got new xattrs v%llu on %p len %d\n",
2377 			     version, inode, len);
2378 			if (ci->i_xattrs.blob)
2379 				ceph_buffer_put(ci->i_xattrs.blob);
2380 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2381 			ci->i_xattrs.version = version;
2382 		}
2383 	}
2384 
2385 	/* size/ctime/mtime/atime? */
2386 	ceph_fill_file_size(inode, issued,
2387 			    le32_to_cpu(grant->truncate_seq),
2388 			    le64_to_cpu(grant->truncate_size), size);
2389 	ceph_decode_timespec(&mtime, &grant->mtime);
2390 	ceph_decode_timespec(&atime, &grant->atime);
2391 	ceph_decode_timespec(&ctime, &grant->ctime);
2392 	ceph_fill_file_time(inode, issued,
2393 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2394 			    &atime);
2395 
2396 	/* max size increase? */
2397 	if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2398 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2399 		ci->i_max_size = max_size;
2400 		if (max_size >= ci->i_wanted_max_size) {
2401 			ci->i_wanted_max_size = 0;  /* reset */
2402 			ci->i_requested_max_size = 0;
2403 		}
2404 		wake = 1;
2405 	}
2406 
2407 	/* check cap bits */
2408 	wanted = __ceph_caps_wanted(ci);
2409 	used = __ceph_caps_used(ci);
2410 	dirty = __ceph_caps_dirty(ci);
2411 	dout(" my wanted = %s, used = %s, dirty %s\n",
2412 	     ceph_cap_string(wanted),
2413 	     ceph_cap_string(used),
2414 	     ceph_cap_string(dirty));
2415 	if (wanted != le32_to_cpu(grant->wanted)) {
2416 		dout("mds wanted %s -> %s\n",
2417 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2418 		     ceph_cap_string(wanted));
2419 		grant->wanted = cpu_to_le32(wanted);
2420 	}
2421 
2422 	cap->seq = seq;
2423 
2424 	/* file layout may have changed */
2425 	ci->i_layout = grant->layout;
2426 
2427 	/* revocation, grant, or no-op? */
2428 	if (cap->issued & ~newcaps) {
2429 		int revoking = cap->issued & ~newcaps;
2430 
2431 		dout("revocation: %s -> %s (revoking %s)\n",
2432 		     ceph_cap_string(cap->issued),
2433 		     ceph_cap_string(newcaps),
2434 		     ceph_cap_string(revoking));
2435 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2436 			writeback = 1;  /* initiate writeback; will delay ack */
2437 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2438 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2439 			 queue_invalidate)
2440 			; /* do nothing yet, invalidation will be queued */
2441 		else if (cap == ci->i_auth_cap)
2442 			check_caps = 1; /* check auth cap only */
2443 		else
2444 			check_caps = 2; /* check all caps */
2445 		cap->issued = newcaps;
2446 		cap->implemented |= newcaps;
2447 	} else if (cap->issued == newcaps) {
2448 		dout("caps unchanged: %s -> %s\n",
2449 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2450 	} else {
2451 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2452 		     ceph_cap_string(newcaps));
2453 		cap->issued = newcaps;
2454 		cap->implemented |= newcaps; /* add bits only, to
2455 					      * avoid stepping on a
2456 					      * pending revocation */
2457 		wake = 1;
2458 	}
2459 	BUG_ON(cap->issued & ~cap->implemented);
2460 
2461 	spin_unlock(&ci->i_ceph_lock);
2462 	if (writeback)
2463 		/*
2464 		 * queue inode for writeback: we can't actually call
2465 		 * filemap_write_and_wait, etc. from message handler
2466 		 * context.
2467 		 */
2468 		ceph_queue_writeback(inode);
2469 	if (queue_invalidate)
2470 		ceph_queue_invalidate(inode);
2471 	if (wake)
2472 		wake_up_all(&ci->i_cap_wq);
2473 
2474 	if (check_caps == 1)
2475 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2476 				session);
2477 	else if (check_caps == 2)
2478 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2479 	else
2480 		mutex_unlock(&session->s_mutex);
2481 }
2482 
2483 /*
2484  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2485  * MDS has been safely committed.
2486  */
2487 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2488 				 struct ceph_mds_caps *m,
2489 				 struct ceph_mds_session *session,
2490 				 struct ceph_cap *cap)
2491 	__releases(ci->i_ceph_lock)
2492 {
2493 	struct ceph_inode_info *ci = ceph_inode(inode);
2494 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2495 	unsigned seq = le32_to_cpu(m->seq);
2496 	int dirty = le32_to_cpu(m->dirty);
2497 	int cleaned = 0;
2498 	int drop = 0;
2499 	int i;
2500 
2501 	for (i = 0; i < CEPH_CAP_BITS; i++)
2502 		if ((dirty & (1 << i)) &&
2503 		    flush_tid == ci->i_cap_flush_tid[i])
2504 			cleaned |= 1 << i;
2505 
2506 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2507 	     " flushing %s -> %s\n",
2508 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2509 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2510 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2511 
2512 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2513 		goto out;
2514 
2515 	ci->i_flushing_caps &= ~cleaned;
2516 
2517 	spin_lock(&mdsc->cap_dirty_lock);
2518 	if (ci->i_flushing_caps == 0) {
2519 		list_del_init(&ci->i_flushing_item);
2520 		if (!list_empty(&session->s_cap_flushing))
2521 			dout(" mds%d still flushing cap on %p\n",
2522 			     session->s_mds,
2523 			     &list_entry(session->s_cap_flushing.next,
2524 					 struct ceph_inode_info,
2525 					 i_flushing_item)->vfs_inode);
2526 		mdsc->num_cap_flushing--;
2527 		wake_up_all(&mdsc->cap_flushing_wq);
2528 		dout(" inode %p now !flushing\n", inode);
2529 
2530 		if (ci->i_dirty_caps == 0) {
2531 			dout(" inode %p now clean\n", inode);
2532 			BUG_ON(!list_empty(&ci->i_dirty_item));
2533 			drop = 1;
2534 			if (ci->i_wrbuffer_ref_head == 0) {
2535 				BUG_ON(!ci->i_head_snapc);
2536 				ceph_put_snap_context(ci->i_head_snapc);
2537 				ci->i_head_snapc = NULL;
2538 			}
2539 		} else {
2540 			BUG_ON(list_empty(&ci->i_dirty_item));
2541 		}
2542 	}
2543 	spin_unlock(&mdsc->cap_dirty_lock);
2544 	wake_up_all(&ci->i_cap_wq);
2545 
2546 out:
2547 	spin_unlock(&ci->i_ceph_lock);
2548 	if (drop)
2549 		iput(inode);
2550 }
2551 
2552 /*
2553  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2554  * throw away our cap_snap.
2555  *
2556  * Caller hold s_mutex.
2557  */
2558 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2559 				     struct ceph_mds_caps *m,
2560 				     struct ceph_mds_session *session)
2561 {
2562 	struct ceph_inode_info *ci = ceph_inode(inode);
2563 	u64 follows = le64_to_cpu(m->snap_follows);
2564 	struct ceph_cap_snap *capsnap;
2565 	int drop = 0;
2566 
2567 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2568 	     inode, ci, session->s_mds, follows);
2569 
2570 	spin_lock(&ci->i_ceph_lock);
2571 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2572 		if (capsnap->follows == follows) {
2573 			if (capsnap->flush_tid != flush_tid) {
2574 				dout(" cap_snap %p follows %lld tid %lld !="
2575 				     " %lld\n", capsnap, follows,
2576 				     flush_tid, capsnap->flush_tid);
2577 				break;
2578 			}
2579 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2580 			dout(" removing %p cap_snap %p follows %lld\n",
2581 			     inode, capsnap, follows);
2582 			ceph_put_snap_context(capsnap->context);
2583 			list_del(&capsnap->ci_item);
2584 			list_del(&capsnap->flushing_item);
2585 			ceph_put_cap_snap(capsnap);
2586 			drop = 1;
2587 			break;
2588 		} else {
2589 			dout(" skipping cap_snap %p follows %lld\n",
2590 			     capsnap, capsnap->follows);
2591 		}
2592 	}
2593 	spin_unlock(&ci->i_ceph_lock);
2594 	if (drop)
2595 		iput(inode);
2596 }
2597 
2598 /*
2599  * Handle TRUNC from MDS, indicating file truncation.
2600  *
2601  * caller hold s_mutex.
2602  */
2603 static void handle_cap_trunc(struct inode *inode,
2604 			     struct ceph_mds_caps *trunc,
2605 			     struct ceph_mds_session *session)
2606 	__releases(ci->i_ceph_lock)
2607 {
2608 	struct ceph_inode_info *ci = ceph_inode(inode);
2609 	int mds = session->s_mds;
2610 	int seq = le32_to_cpu(trunc->seq);
2611 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2612 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2613 	u64 size = le64_to_cpu(trunc->size);
2614 	int implemented = 0;
2615 	int dirty = __ceph_caps_dirty(ci);
2616 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2617 	int queue_trunc = 0;
2618 
2619 	issued |= implemented | dirty;
2620 
2621 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2622 	     inode, mds, seq, truncate_size, truncate_seq);
2623 	queue_trunc = ceph_fill_file_size(inode, issued,
2624 					  truncate_seq, truncate_size, size);
2625 	spin_unlock(&ci->i_ceph_lock);
2626 
2627 	if (queue_trunc)
2628 		ceph_queue_vmtruncate(inode);
2629 }
2630 
2631 /*
2632  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2633  * different one.  If we are the most recent migration we've seen (as
2634  * indicated by mseq), make note of the migrating cap bits for the
2635  * duration (until we see the corresponding IMPORT).
2636  *
2637  * caller holds s_mutex
2638  */
2639 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2640 			      struct ceph_mds_session *session,
2641 			      int *open_target_sessions)
2642 {
2643 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2644 	struct ceph_inode_info *ci = ceph_inode(inode);
2645 	int mds = session->s_mds;
2646 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2647 	struct ceph_cap *cap = NULL, *t;
2648 	struct rb_node *p;
2649 	int remember = 1;
2650 
2651 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2652 	     inode, ci, mds, mseq);
2653 
2654 	spin_lock(&ci->i_ceph_lock);
2655 
2656 	/* make sure we haven't seen a higher mseq */
2657 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2658 		t = rb_entry(p, struct ceph_cap, ci_node);
2659 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2660 			dout(" higher mseq on cap from mds%d\n",
2661 			     t->session->s_mds);
2662 			remember = 0;
2663 		}
2664 		if (t->session->s_mds == mds)
2665 			cap = t;
2666 	}
2667 
2668 	if (cap) {
2669 		if (remember) {
2670 			/* make note */
2671 			ci->i_cap_exporting_mds = mds;
2672 			ci->i_cap_exporting_mseq = mseq;
2673 			ci->i_cap_exporting_issued = cap->issued;
2674 
2675 			/*
2676 			 * make sure we have open sessions with all possible
2677 			 * export targets, so that we get the matching IMPORT
2678 			 */
2679 			*open_target_sessions = 1;
2680 
2681 			/*
2682 			 * we can't flush dirty caps that we've seen the
2683 			 * EXPORT but no IMPORT for
2684 			 */
2685 			spin_lock(&mdsc->cap_dirty_lock);
2686 			if (!list_empty(&ci->i_dirty_item)) {
2687 				dout(" moving %p to cap_dirty_migrating\n",
2688 				     inode);
2689 				list_move(&ci->i_dirty_item,
2690 					  &mdsc->cap_dirty_migrating);
2691 			}
2692 			spin_unlock(&mdsc->cap_dirty_lock);
2693 		}
2694 		__ceph_remove_cap(cap);
2695 	}
2696 	/* else, we already released it */
2697 
2698 	spin_unlock(&ci->i_ceph_lock);
2699 }
2700 
2701 /*
2702  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2703  * clean them up.
2704  *
2705  * caller holds s_mutex.
2706  */
2707 static void handle_cap_import(struct ceph_mds_client *mdsc,
2708 			      struct inode *inode, struct ceph_mds_caps *im,
2709 			      struct ceph_mds_session *session,
2710 			      void *snaptrace, int snaptrace_len)
2711 {
2712 	struct ceph_inode_info *ci = ceph_inode(inode);
2713 	int mds = session->s_mds;
2714 	unsigned issued = le32_to_cpu(im->caps);
2715 	unsigned wanted = le32_to_cpu(im->wanted);
2716 	unsigned seq = le32_to_cpu(im->seq);
2717 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2718 	u64 realmino = le64_to_cpu(im->realm);
2719 	u64 cap_id = le64_to_cpu(im->cap_id);
2720 
2721 	if (ci->i_cap_exporting_mds >= 0 &&
2722 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2723 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2724 		     " - cleared exporting from mds%d\n",
2725 		     inode, ci, mds, mseq,
2726 		     ci->i_cap_exporting_mds);
2727 		ci->i_cap_exporting_issued = 0;
2728 		ci->i_cap_exporting_mseq = 0;
2729 		ci->i_cap_exporting_mds = -1;
2730 
2731 		spin_lock(&mdsc->cap_dirty_lock);
2732 		if (!list_empty(&ci->i_dirty_item)) {
2733 			dout(" moving %p back to cap_dirty\n", inode);
2734 			list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2735 		}
2736 		spin_unlock(&mdsc->cap_dirty_lock);
2737 	} else {
2738 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2739 		     inode, ci, mds, mseq);
2740 	}
2741 
2742 	down_write(&mdsc->snap_rwsem);
2743 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2744 			       false);
2745 	downgrade_write(&mdsc->snap_rwsem);
2746 	ceph_add_cap(inode, session, cap_id, -1,
2747 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2748 		     NULL /* no caps context */);
2749 	kick_flushing_inode_caps(mdsc, session, inode);
2750 	up_read(&mdsc->snap_rwsem);
2751 
2752 	/* make sure we re-request max_size, if necessary */
2753 	spin_lock(&ci->i_ceph_lock);
2754 	ci->i_wanted_max_size = 0;  /* reset */
2755 	ci->i_requested_max_size = 0;
2756 	spin_unlock(&ci->i_ceph_lock);
2757 }
2758 
2759 /*
2760  * Handle a caps message from the MDS.
2761  *
2762  * Identify the appropriate session, inode, and call the right handler
2763  * based on the cap op.
2764  */
2765 void ceph_handle_caps(struct ceph_mds_session *session,
2766 		      struct ceph_msg *msg)
2767 {
2768 	struct ceph_mds_client *mdsc = session->s_mdsc;
2769 	struct super_block *sb = mdsc->fsc->sb;
2770 	struct inode *inode;
2771 	struct ceph_inode_info *ci;
2772 	struct ceph_cap *cap;
2773 	struct ceph_mds_caps *h;
2774 	int mds = session->s_mds;
2775 	int op;
2776 	u32 seq, mseq;
2777 	struct ceph_vino vino;
2778 	u64 cap_id;
2779 	u64 size, max_size;
2780 	u64 tid;
2781 	void *snaptrace;
2782 	size_t snaptrace_len;
2783 	void *flock;
2784 	u32 flock_len;
2785 	int open_target_sessions = 0;
2786 
2787 	dout("handle_caps from mds%d\n", mds);
2788 
2789 	/* decode */
2790 	tid = le64_to_cpu(msg->hdr.tid);
2791 	if (msg->front.iov_len < sizeof(*h))
2792 		goto bad;
2793 	h = msg->front.iov_base;
2794 	op = le32_to_cpu(h->op);
2795 	vino.ino = le64_to_cpu(h->ino);
2796 	vino.snap = CEPH_NOSNAP;
2797 	cap_id = le64_to_cpu(h->cap_id);
2798 	seq = le32_to_cpu(h->seq);
2799 	mseq = le32_to_cpu(h->migrate_seq);
2800 	size = le64_to_cpu(h->size);
2801 	max_size = le64_to_cpu(h->max_size);
2802 
2803 	snaptrace = h + 1;
2804 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2805 
2806 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2807 		void *p, *end;
2808 
2809 		p = snaptrace + snaptrace_len;
2810 		end = msg->front.iov_base + msg->front.iov_len;
2811 		ceph_decode_32_safe(&p, end, flock_len, bad);
2812 		flock = p;
2813 	} else {
2814 		flock = NULL;
2815 		flock_len = 0;
2816 	}
2817 
2818 	mutex_lock(&session->s_mutex);
2819 	session->s_seq++;
2820 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2821 	     (unsigned)seq);
2822 
2823 	/* lookup ino */
2824 	inode = ceph_find_inode(sb, vino);
2825 	ci = ceph_inode(inode);
2826 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2827 	     vino.snap, inode);
2828 	if (!inode) {
2829 		dout(" i don't have ino %llx\n", vino.ino);
2830 
2831 		if (op == CEPH_CAP_OP_IMPORT)
2832 			__queue_cap_release(session, vino.ino, cap_id,
2833 					    mseq, seq);
2834 		goto flush_cap_releases;
2835 	}
2836 
2837 	/* these will work even if we don't have a cap yet */
2838 	switch (op) {
2839 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2840 		handle_cap_flushsnap_ack(inode, tid, h, session);
2841 		goto done;
2842 
2843 	case CEPH_CAP_OP_EXPORT:
2844 		handle_cap_export(inode, h, session, &open_target_sessions);
2845 		goto done;
2846 
2847 	case CEPH_CAP_OP_IMPORT:
2848 		handle_cap_import(mdsc, inode, h, session,
2849 				  snaptrace, snaptrace_len);
2850 	}
2851 
2852 	/* the rest require a cap */
2853 	spin_lock(&ci->i_ceph_lock);
2854 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2855 	if (!cap) {
2856 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2857 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2858 		spin_unlock(&ci->i_ceph_lock);
2859 		goto flush_cap_releases;
2860 	}
2861 
2862 	/* note that each of these drops i_ceph_lock for us */
2863 	switch (op) {
2864 	case CEPH_CAP_OP_REVOKE:
2865 	case CEPH_CAP_OP_GRANT:
2866 	case CEPH_CAP_OP_IMPORT:
2867 		handle_cap_grant(inode, h, session, cap, msg->middle);
2868 		goto done_unlocked;
2869 
2870 	case CEPH_CAP_OP_FLUSH_ACK:
2871 		handle_cap_flush_ack(inode, tid, h, session, cap);
2872 		break;
2873 
2874 	case CEPH_CAP_OP_TRUNC:
2875 		handle_cap_trunc(inode, h, session);
2876 		break;
2877 
2878 	default:
2879 		spin_unlock(&ci->i_ceph_lock);
2880 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2881 		       ceph_cap_op_name(op));
2882 	}
2883 
2884 	goto done;
2885 
2886 flush_cap_releases:
2887 	/*
2888 	 * send any full release message to try to move things
2889 	 * along for the mds (who clearly thinks we still have this
2890 	 * cap).
2891 	 */
2892 	ceph_add_cap_releases(mdsc, session);
2893 	ceph_send_cap_releases(mdsc, session);
2894 
2895 done:
2896 	mutex_unlock(&session->s_mutex);
2897 done_unlocked:
2898 	if (inode)
2899 		iput(inode);
2900 	if (open_target_sessions)
2901 		ceph_mdsc_open_export_target_sessions(mdsc, session);
2902 	return;
2903 
2904 bad:
2905 	pr_err("ceph_handle_caps: corrupt message\n");
2906 	ceph_msg_dump(msg);
2907 	return;
2908 }
2909 
2910 /*
2911  * Delayed work handler to process end of delayed cap release LRU list.
2912  */
2913 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2914 {
2915 	struct ceph_inode_info *ci;
2916 	int flags = CHECK_CAPS_NODELAY;
2917 
2918 	dout("check_delayed_caps\n");
2919 	while (1) {
2920 		spin_lock(&mdsc->cap_delay_lock);
2921 		if (list_empty(&mdsc->cap_delay_list))
2922 			break;
2923 		ci = list_first_entry(&mdsc->cap_delay_list,
2924 				      struct ceph_inode_info,
2925 				      i_cap_delay_list);
2926 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2927 		    time_before(jiffies, ci->i_hold_caps_max))
2928 			break;
2929 		list_del_init(&ci->i_cap_delay_list);
2930 		spin_unlock(&mdsc->cap_delay_lock);
2931 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2932 		ceph_check_caps(ci, flags, NULL);
2933 	}
2934 	spin_unlock(&mdsc->cap_delay_lock);
2935 }
2936 
2937 /*
2938  * Flush all dirty caps to the mds
2939  */
2940 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2941 {
2942 	struct ceph_inode_info *ci;
2943 	struct inode *inode;
2944 
2945 	dout("flush_dirty_caps\n");
2946 	spin_lock(&mdsc->cap_dirty_lock);
2947 	while (!list_empty(&mdsc->cap_dirty)) {
2948 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2949 				      i_dirty_item);
2950 		inode = &ci->vfs_inode;
2951 		ihold(inode);
2952 		dout("flush_dirty_caps %p\n", inode);
2953 		spin_unlock(&mdsc->cap_dirty_lock);
2954 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2955 		iput(inode);
2956 		spin_lock(&mdsc->cap_dirty_lock);
2957 	}
2958 	spin_unlock(&mdsc->cap_dirty_lock);
2959 	dout("flush_dirty_caps done\n");
2960 }
2961 
2962 /*
2963  * Drop open file reference.  If we were the last open file,
2964  * we may need to release capabilities to the MDS (or schedule
2965  * their delayed release).
2966  */
2967 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2968 {
2969 	struct inode *inode = &ci->vfs_inode;
2970 	int last = 0;
2971 
2972 	spin_lock(&ci->i_ceph_lock);
2973 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2974 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2975 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2976 	if (--ci->i_nr_by_mode[fmode] == 0)
2977 		last++;
2978 	spin_unlock(&ci->i_ceph_lock);
2979 
2980 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2981 		ceph_check_caps(ci, 0, NULL);
2982 }
2983 
2984 /*
2985  * Helpers for embedding cap and dentry lease releases into mds
2986  * requests.
2987  *
2988  * @force is used by dentry_release (below) to force inclusion of a
2989  * record for the directory inode, even when there aren't any caps to
2990  * drop.
2991  */
2992 int ceph_encode_inode_release(void **p, struct inode *inode,
2993 			      int mds, int drop, int unless, int force)
2994 {
2995 	struct ceph_inode_info *ci = ceph_inode(inode);
2996 	struct ceph_cap *cap;
2997 	struct ceph_mds_request_release *rel = *p;
2998 	int used, dirty;
2999 	int ret = 0;
3000 
3001 	spin_lock(&ci->i_ceph_lock);
3002 	used = __ceph_caps_used(ci);
3003 	dirty = __ceph_caps_dirty(ci);
3004 
3005 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3006 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3007 	     ceph_cap_string(unless));
3008 
3009 	/* only drop unused, clean caps */
3010 	drop &= ~(used | dirty);
3011 
3012 	cap = __get_cap_for_mds(ci, mds);
3013 	if (cap && __cap_is_valid(cap)) {
3014 		if (force ||
3015 		    ((cap->issued & drop) &&
3016 		     (cap->issued & unless) == 0)) {
3017 			if ((cap->issued & drop) &&
3018 			    (cap->issued & unless) == 0) {
3019 				dout("encode_inode_release %p cap %p %s -> "
3020 				     "%s\n", inode, cap,
3021 				     ceph_cap_string(cap->issued),
3022 				     ceph_cap_string(cap->issued & ~drop));
3023 				cap->issued &= ~drop;
3024 				cap->implemented &= ~drop;
3025 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3026 					int wanted = __ceph_caps_wanted(ci);
3027 					dout("  wanted %s -> %s (act %s)\n",
3028 					     ceph_cap_string(cap->mds_wanted),
3029 					     ceph_cap_string(cap->mds_wanted &
3030 							     ~wanted),
3031 					     ceph_cap_string(wanted));
3032 					cap->mds_wanted &= wanted;
3033 				}
3034 			} else {
3035 				dout("encode_inode_release %p cap %p %s"
3036 				     " (force)\n", inode, cap,
3037 				     ceph_cap_string(cap->issued));
3038 			}
3039 
3040 			rel->ino = cpu_to_le64(ceph_ino(inode));
3041 			rel->cap_id = cpu_to_le64(cap->cap_id);
3042 			rel->seq = cpu_to_le32(cap->seq);
3043 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3044 			rel->mseq = cpu_to_le32(cap->mseq);
3045 			rel->caps = cpu_to_le32(cap->issued);
3046 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3047 			rel->dname_len = 0;
3048 			rel->dname_seq = 0;
3049 			*p += sizeof(*rel);
3050 			ret = 1;
3051 		} else {
3052 			dout("encode_inode_release %p cap %p %s\n",
3053 			     inode, cap, ceph_cap_string(cap->issued));
3054 		}
3055 	}
3056 	spin_unlock(&ci->i_ceph_lock);
3057 	return ret;
3058 }
3059 
3060 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3061 			       int mds, int drop, int unless)
3062 {
3063 	struct inode *dir = dentry->d_parent->d_inode;
3064 	struct ceph_mds_request_release *rel = *p;
3065 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3066 	int force = 0;
3067 	int ret;
3068 
3069 	/*
3070 	 * force an record for the directory caps if we have a dentry lease.
3071 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3072 	 * doesn't have to be perfect; the mds will revoke anything we don't
3073 	 * release.
3074 	 */
3075 	spin_lock(&dentry->d_lock);
3076 	if (di->lease_session && di->lease_session->s_mds == mds)
3077 		force = 1;
3078 	spin_unlock(&dentry->d_lock);
3079 
3080 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3081 
3082 	spin_lock(&dentry->d_lock);
3083 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3084 		dout("encode_dentry_release %p mds%d seq %d\n",
3085 		     dentry, mds, (int)di->lease_seq);
3086 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3087 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3088 		*p += dentry->d_name.len;
3089 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3090 		__ceph_mdsc_drop_dentry_lease(dentry);
3091 	}
3092 	spin_unlock(&dentry->d_lock);
3093 	return ret;
3094 }
3095