xref: /openbmc/linux/fs/ceph/caps.c (revision cdc35f96)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8 
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12 
13 /*
14  * Capability management
15  *
16  * The Ceph metadata servers control client access to inode metadata
17  * and file data by issuing capabilities, granting clients permission
18  * to read and/or write both inode field and file data to OSDs
19  * (storage nodes).  Each capability consists of a set of bits
20  * indicating which operations are allowed.
21  *
22  * If the client holds a *_SHARED cap, the client has a coherent value
23  * that can be safely read from the cached inode.
24  *
25  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26  * client is allowed to change inode attributes (e.g., file size,
27  * mtime), note its dirty state in the ceph_cap, and asynchronously
28  * flush that metadata change to the MDS.
29  *
30  * In the event of a conflicting operation (perhaps by another
31  * client), the MDS will revoke the conflicting client capabilities.
32  *
33  * In order for a client to cache an inode, it must hold a capability
34  * with at least one MDS server.  When inodes are released, release
35  * notifications are batched and periodically sent en masse to the MDS
36  * cluster to release server state.
37  */
38 
39 
40 /*
41  * Generate readable cap strings for debugging output.
42  */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47 
48 static char *gcap_string(char *s, int c)
49 {
50 	if (c & CEPH_CAP_GSHARED)
51 		*s++ = 's';
52 	if (c & CEPH_CAP_GEXCL)
53 		*s++ = 'x';
54 	if (c & CEPH_CAP_GCACHE)
55 		*s++ = 'c';
56 	if (c & CEPH_CAP_GRD)
57 		*s++ = 'r';
58 	if (c & CEPH_CAP_GWR)
59 		*s++ = 'w';
60 	if (c & CEPH_CAP_GBUFFER)
61 		*s++ = 'b';
62 	if (c & CEPH_CAP_GLAZYIO)
63 		*s++ = 'l';
64 	return s;
65 }
66 
67 const char *ceph_cap_string(int caps)
68 {
69 	int i;
70 	char *s;
71 	int c;
72 
73 	spin_lock(&cap_str_lock);
74 	i = last_cap_str++;
75 	if (last_cap_str == MAX_CAP_STR)
76 		last_cap_str = 0;
77 	spin_unlock(&cap_str_lock);
78 
79 	s = cap_str[i];
80 
81 	if (caps & CEPH_CAP_PIN)
82 		*s++ = 'p';
83 
84 	c = (caps >> CEPH_CAP_SAUTH) & 3;
85 	if (c) {
86 		*s++ = 'A';
87 		s = gcap_string(s, c);
88 	}
89 
90 	c = (caps >> CEPH_CAP_SLINK) & 3;
91 	if (c) {
92 		*s++ = 'L';
93 		s = gcap_string(s, c);
94 	}
95 
96 	c = (caps >> CEPH_CAP_SXATTR) & 3;
97 	if (c) {
98 		*s++ = 'X';
99 		s = gcap_string(s, c);
100 	}
101 
102 	c = caps >> CEPH_CAP_SFILE;
103 	if (c) {
104 		*s++ = 'F';
105 		s = gcap_string(s, c);
106 	}
107 
108 	if (s == cap_str[i])
109 		*s++ = '-';
110 	*s = 0;
111 	return cap_str[i];
112 }
113 
114 /*
115  * Cap reservations
116  *
117  * Maintain a global pool of preallocated struct ceph_caps, referenced
118  * by struct ceph_caps_reservations.  This ensures that we preallocate
119  * memory needed to successfully process an MDS response.  (If an MDS
120  * sends us cap information and we fail to process it, we will have
121  * problems due to the client and MDS being out of sync.)
122  *
123  * Reservations are 'owned' by a ceph_cap_reservation context.
124  */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list;  /* unused (reserved or unreserved) */
127 static int caps_total_count;        /* total caps allocated */
128 static int caps_use_count;          /* in use */
129 static int caps_reserve_count;      /* unused, reserved */
130 static int caps_avail_count;        /* unused, unreserved */
131 
132 void __init ceph_caps_init(void)
133 {
134 	INIT_LIST_HEAD(&caps_list);
135 	spin_lock_init(&caps_list_lock);
136 }
137 
138 void ceph_caps_finalize(void)
139 {
140 	struct ceph_cap *cap;
141 
142 	spin_lock(&caps_list_lock);
143 	while (!list_empty(&caps_list)) {
144 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
145 		list_del(&cap->caps_item);
146 		kmem_cache_free(ceph_cap_cachep, cap);
147 	}
148 	caps_total_count = 0;
149 	caps_avail_count = 0;
150 	caps_use_count = 0;
151 	caps_reserve_count = 0;
152 	spin_unlock(&caps_list_lock);
153 }
154 
155 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
156 {
157 	int i;
158 	struct ceph_cap *cap;
159 	int have;
160 	int alloc = 0;
161 	LIST_HEAD(newcaps);
162 	int ret = 0;
163 
164 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
165 
166 	/* first reserve any caps that are already allocated */
167 	spin_lock(&caps_list_lock);
168 	if (caps_avail_count >= need)
169 		have = need;
170 	else
171 		have = caps_avail_count;
172 	caps_avail_count -= have;
173 	caps_reserve_count += have;
174 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
175 	       caps_avail_count);
176 	spin_unlock(&caps_list_lock);
177 
178 	for (i = have; i < need; i++) {
179 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
180 		if (!cap) {
181 			ret = -ENOMEM;
182 			goto out_alloc_count;
183 		}
184 		list_add(&cap->caps_item, &newcaps);
185 		alloc++;
186 	}
187 	BUG_ON(have + alloc != need);
188 
189 	spin_lock(&caps_list_lock);
190 	caps_total_count += alloc;
191 	caps_reserve_count += alloc;
192 	list_splice(&newcaps, &caps_list);
193 
194 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
195 	       caps_avail_count);
196 	spin_unlock(&caps_list_lock);
197 
198 	ctx->count = need;
199 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
200 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
201 	     caps_avail_count);
202 	return 0;
203 
204 out_alloc_count:
205 	/* we didn't manage to reserve as much as we needed */
206 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
207 		   ctx, need, have);
208 	return ret;
209 }
210 
211 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
212 {
213 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
214 	if (ctx->count) {
215 		spin_lock(&caps_list_lock);
216 		BUG_ON(caps_reserve_count < ctx->count);
217 		caps_reserve_count -= ctx->count;
218 		caps_avail_count += ctx->count;
219 		ctx->count = 0;
220 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
221 		     caps_total_count, caps_use_count, caps_reserve_count,
222 		     caps_avail_count);
223 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
224 		       caps_avail_count);
225 		spin_unlock(&caps_list_lock);
226 	}
227 	return 0;
228 }
229 
230 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
231 {
232 	struct ceph_cap *cap = NULL;
233 
234 	/* temporary, until we do something about cap import/export */
235 	if (!ctx)
236 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237 
238 	spin_lock(&caps_list_lock);
239 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
240 	     ctx, ctx->count, caps_total_count, caps_use_count,
241 	     caps_reserve_count, caps_avail_count);
242 	BUG_ON(!ctx->count);
243 	BUG_ON(ctx->count > caps_reserve_count);
244 	BUG_ON(list_empty(&caps_list));
245 
246 	ctx->count--;
247 	caps_reserve_count--;
248 	caps_use_count++;
249 
250 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
251 	list_del(&cap->caps_item);
252 
253 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
254 	       caps_avail_count);
255 	spin_unlock(&caps_list_lock);
256 	return cap;
257 }
258 
259 static void put_cap(struct ceph_cap *cap,
260 		    struct ceph_cap_reservation *ctx)
261 {
262 	spin_lock(&caps_list_lock);
263 	dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
264 	     ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count,
265 	     caps_reserve_count, caps_avail_count);
266 	caps_use_count--;
267 	/*
268 	 * Keep some preallocated caps around, at least enough to do a
269 	 * readdir (which needs to preallocate lots of them), to avoid
270 	 * lots of free/alloc churn.
271 	 */
272 	if (caps_avail_count >= caps_reserve_count +
273 	    ceph_client(cap->ci->vfs_inode.i_sb)->mount_args.max_readdir) {
274 		caps_total_count--;
275 		kmem_cache_free(ceph_cap_cachep, cap);
276 	} else {
277 		if (ctx) {
278 			ctx->count++;
279 			caps_reserve_count++;
280 		} else {
281 			caps_avail_count++;
282 		}
283 		list_add(&cap->caps_item, &caps_list);
284 	}
285 
286 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
287 	       caps_avail_count);
288 	spin_unlock(&caps_list_lock);
289 }
290 
291 void ceph_reservation_status(struct ceph_client *client,
292 			     int *total, int *avail, int *used, int *reserved)
293 {
294 	if (total)
295 		*total = caps_total_count;
296 	if (avail)
297 		*avail = caps_avail_count;
298 	if (used)
299 		*used = caps_use_count;
300 	if (reserved)
301 		*reserved = caps_reserve_count;
302 }
303 
304 /*
305  * Find ceph_cap for given mds, if any.
306  *
307  * Called with i_lock held.
308  */
309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310 {
311 	struct ceph_cap *cap;
312 	struct rb_node *n = ci->i_caps.rb_node;
313 
314 	while (n) {
315 		cap = rb_entry(n, struct ceph_cap, ci_node);
316 		if (mds < cap->mds)
317 			n = n->rb_left;
318 		else if (mds > cap->mds)
319 			n = n->rb_right;
320 		else
321 			return cap;
322 	}
323 	return NULL;
324 }
325 
326 /*
327  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
328  * -1.
329  */
330 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
331 {
332 	struct ceph_cap *cap;
333 	int mds = -1;
334 	struct rb_node *p;
335 
336 	/* prefer mds with WR|WRBUFFER|EXCL caps */
337 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
338 		cap = rb_entry(p, struct ceph_cap, ci_node);
339 		mds = cap->mds;
340 		if (mseq)
341 			*mseq = cap->mseq;
342 		if (cap->issued & (CEPH_CAP_FILE_WR |
343 				   CEPH_CAP_FILE_BUFFER |
344 				   CEPH_CAP_FILE_EXCL))
345 			break;
346 	}
347 	return mds;
348 }
349 
350 int ceph_get_cap_mds(struct inode *inode)
351 {
352 	int mds;
353 	spin_lock(&inode->i_lock);
354 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
355 	spin_unlock(&inode->i_lock);
356 	return mds;
357 }
358 
359 /*
360  * Called under i_lock.
361  */
362 static void __insert_cap_node(struct ceph_inode_info *ci,
363 			      struct ceph_cap *new)
364 {
365 	struct rb_node **p = &ci->i_caps.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct ceph_cap *cap = NULL;
368 
369 	while (*p) {
370 		parent = *p;
371 		cap = rb_entry(parent, struct ceph_cap, ci_node);
372 		if (new->mds < cap->mds)
373 			p = &(*p)->rb_left;
374 		else if (new->mds > cap->mds)
375 			p = &(*p)->rb_right;
376 		else
377 			BUG();
378 	}
379 
380 	rb_link_node(&new->ci_node, parent, p);
381 	rb_insert_color(&new->ci_node, &ci->i_caps);
382 }
383 
384 /*
385  * (re)set cap hold timeouts, which control the delayed release
386  * of unused caps back to the MDS.  Should be called on cap use.
387  */
388 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
389 			       struct ceph_inode_info *ci)
390 {
391 	struct ceph_mount_args *ma = &mdsc->client->mount_args;
392 
393 	ci->i_hold_caps_min = round_jiffies(jiffies +
394 					    ma->caps_wanted_delay_min * HZ);
395 	ci->i_hold_caps_max = round_jiffies(jiffies +
396 					    ma->caps_wanted_delay_max * HZ);
397 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
398 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
399 }
400 
401 /*
402  * (Re)queue cap at the end of the delayed cap release list.
403  *
404  * If I_FLUSH is set, leave the inode at the front of the list.
405  *
406  * Caller holds i_lock
407  *    -> we take mdsc->cap_delay_lock
408  */
409 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
410 				struct ceph_inode_info *ci)
411 {
412 	__cap_set_timeouts(mdsc, ci);
413 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
414 	     ci->i_ceph_flags, ci->i_hold_caps_max);
415 	if (!mdsc->stopping) {
416 		spin_lock(&mdsc->cap_delay_lock);
417 		if (!list_empty(&ci->i_cap_delay_list)) {
418 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
419 				goto no_change;
420 			list_del_init(&ci->i_cap_delay_list);
421 		}
422 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
423 no_change:
424 		spin_unlock(&mdsc->cap_delay_lock);
425 	}
426 }
427 
428 /*
429  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
430  * indicating we should send a cap message to flush dirty metadata
431  * asap, and move to the front of the delayed cap list.
432  */
433 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
434 				      struct ceph_inode_info *ci)
435 {
436 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
437 	spin_lock(&mdsc->cap_delay_lock);
438 	ci->i_ceph_flags |= CEPH_I_FLUSH;
439 	if (!list_empty(&ci->i_cap_delay_list))
440 		list_del_init(&ci->i_cap_delay_list);
441 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
442 	spin_unlock(&mdsc->cap_delay_lock);
443 }
444 
445 /*
446  * Cancel delayed work on cap.
447  *
448  * Caller must hold i_lock.
449  */
450 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
451 			       struct ceph_inode_info *ci)
452 {
453 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
454 	if (list_empty(&ci->i_cap_delay_list))
455 		return;
456 	spin_lock(&mdsc->cap_delay_lock);
457 	list_del_init(&ci->i_cap_delay_list);
458 	spin_unlock(&mdsc->cap_delay_lock);
459 }
460 
461 /*
462  * Common issue checks for add_cap, handle_cap_grant.
463  */
464 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
465 			      unsigned issued)
466 {
467 	unsigned had = __ceph_caps_issued(ci, NULL);
468 
469 	/*
470 	 * Each time we receive FILE_CACHE anew, we increment
471 	 * i_rdcache_gen.
472 	 */
473 	if ((issued & CEPH_CAP_FILE_CACHE) &&
474 	    (had & CEPH_CAP_FILE_CACHE) == 0)
475 		ci->i_rdcache_gen++;
476 
477 	/*
478 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
479 	 * don't know what happened to this directory while we didn't
480 	 * have the cap.
481 	 */
482 	if ((issued & CEPH_CAP_FILE_SHARED) &&
483 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
484 		ci->i_shared_gen++;
485 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
486 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
487 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
488 		}
489 	}
490 }
491 
492 /*
493  * Add a capability under the given MDS session.
494  *
495  * Caller should hold session snap_rwsem (read) and s_mutex.
496  *
497  * @fmode is the open file mode, if we are opening a file, otherwise
498  * it is < 0.  (This is so we can atomically add the cap and add an
499  * open file reference to it.)
500  */
501 int ceph_add_cap(struct inode *inode,
502 		 struct ceph_mds_session *session, u64 cap_id,
503 		 int fmode, unsigned issued, unsigned wanted,
504 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
505 		 struct ceph_cap_reservation *caps_reservation)
506 {
507 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
508 	struct ceph_inode_info *ci = ceph_inode(inode);
509 	struct ceph_cap *new_cap = NULL;
510 	struct ceph_cap *cap;
511 	int mds = session->s_mds;
512 	int actual_wanted;
513 
514 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
515 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
516 
517 	/*
518 	 * If we are opening the file, include file mode wanted bits
519 	 * in wanted.
520 	 */
521 	if (fmode >= 0)
522 		wanted |= ceph_caps_for_mode(fmode);
523 
524 retry:
525 	spin_lock(&inode->i_lock);
526 	cap = __get_cap_for_mds(ci, mds);
527 	if (!cap) {
528 		if (new_cap) {
529 			cap = new_cap;
530 			new_cap = NULL;
531 		} else {
532 			spin_unlock(&inode->i_lock);
533 			new_cap = get_cap(caps_reservation);
534 			if (new_cap == NULL)
535 				return -ENOMEM;
536 			goto retry;
537 		}
538 
539 		cap->issued = 0;
540 		cap->implemented = 0;
541 		cap->mds = mds;
542 		cap->mds_wanted = 0;
543 
544 		cap->ci = ci;
545 		__insert_cap_node(ci, cap);
546 
547 		/* clear out old exporting info?  (i.e. on cap import) */
548 		if (ci->i_cap_exporting_mds == mds) {
549 			ci->i_cap_exporting_issued = 0;
550 			ci->i_cap_exporting_mseq = 0;
551 			ci->i_cap_exporting_mds = -1;
552 		}
553 
554 		/* add to session cap list */
555 		cap->session = session;
556 		spin_lock(&session->s_cap_lock);
557 		list_add_tail(&cap->session_caps, &session->s_caps);
558 		session->s_nr_caps++;
559 		spin_unlock(&session->s_cap_lock);
560 	}
561 
562 	if (!ci->i_snap_realm) {
563 		/*
564 		 * add this inode to the appropriate snap realm
565 		 */
566 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
567 							       realmino);
568 		if (realm) {
569 			ceph_get_snap_realm(mdsc, realm);
570 			spin_lock(&realm->inodes_with_caps_lock);
571 			ci->i_snap_realm = realm;
572 			list_add(&ci->i_snap_realm_item,
573 				 &realm->inodes_with_caps);
574 			spin_unlock(&realm->inodes_with_caps_lock);
575 		} else {
576 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
577 			       realmino);
578 		}
579 	}
580 
581 	__check_cap_issue(ci, cap, issued);
582 
583 	/*
584 	 * If we are issued caps we don't want, or the mds' wanted
585 	 * value appears to be off, queue a check so we'll release
586 	 * later and/or update the mds wanted value.
587 	 */
588 	actual_wanted = __ceph_caps_wanted(ci);
589 	if ((wanted & ~actual_wanted) ||
590 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
591 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
592 		     ceph_cap_string(issued), ceph_cap_string(wanted),
593 		     ceph_cap_string(actual_wanted));
594 		__cap_delay_requeue(mdsc, ci);
595 	}
596 
597 	if (flags & CEPH_CAP_FLAG_AUTH)
598 		ci->i_auth_cap = cap;
599 	else if (ci->i_auth_cap == cap)
600 		ci->i_auth_cap = NULL;
601 
602 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
603 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
604 	     ceph_cap_string(issued|cap->issued), seq, mds);
605 	cap->cap_id = cap_id;
606 	cap->issued = issued;
607 	cap->implemented |= issued;
608 	cap->mds_wanted |= wanted;
609 	cap->seq = seq;
610 	cap->issue_seq = seq;
611 	cap->mseq = mseq;
612 	cap->gen = session->s_cap_gen;
613 
614 	if (fmode >= 0)
615 		__ceph_get_fmode(ci, fmode);
616 	spin_unlock(&inode->i_lock);
617 	wake_up(&ci->i_cap_wq);
618 	return 0;
619 }
620 
621 /*
622  * Return true if cap has not timed out and belongs to the current
623  * generation of the MDS session (i.e. has not gone 'stale' due to
624  * us losing touch with the mds).
625  */
626 static int __cap_is_valid(struct ceph_cap *cap)
627 {
628 	unsigned long ttl;
629 	u32 gen;
630 
631 	spin_lock(&cap->session->s_cap_lock);
632 	gen = cap->session->s_cap_gen;
633 	ttl = cap->session->s_cap_ttl;
634 	spin_unlock(&cap->session->s_cap_lock);
635 
636 	if (cap->gen < gen || time_after_eq(jiffies, ttl)) {
637 		dout("__cap_is_valid %p cap %p issued %s "
638 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
639 		     cap, ceph_cap_string(cap->issued), cap->gen, gen);
640 		return 0;
641 	}
642 
643 	return 1;
644 }
645 
646 /*
647  * Return set of valid cap bits issued to us.  Note that caps time
648  * out, and may be invalidated in bulk if the client session times out
649  * and session->s_cap_gen is bumped.
650  */
651 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
652 {
653 	int have = ci->i_snap_caps;
654 	struct ceph_cap *cap;
655 	struct rb_node *p;
656 
657 	if (implemented)
658 		*implemented = 0;
659 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
660 		cap = rb_entry(p, struct ceph_cap, ci_node);
661 		if (!__cap_is_valid(cap))
662 			continue;
663 		dout("__ceph_caps_issued %p cap %p issued %s\n",
664 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
665 		have |= cap->issued;
666 		if (implemented)
667 			*implemented |= cap->implemented;
668 	}
669 	return have;
670 }
671 
672 /*
673  * Get cap bits issued by caps other than @ocap
674  */
675 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
676 {
677 	int have = ci->i_snap_caps;
678 	struct ceph_cap *cap;
679 	struct rb_node *p;
680 
681 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
682 		cap = rb_entry(p, struct ceph_cap, ci_node);
683 		if (cap == ocap)
684 			continue;
685 		if (!__cap_is_valid(cap))
686 			continue;
687 		have |= cap->issued;
688 	}
689 	return have;
690 }
691 
692 /*
693  * Move a cap to the end of the LRU (oldest caps at list head, newest
694  * at list tail).
695  */
696 static void __touch_cap(struct ceph_cap *cap)
697 {
698 	struct ceph_mds_session *s = cap->session;
699 
700 	dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
701 	     s->s_mds);
702 	spin_lock(&s->s_cap_lock);
703 	list_move_tail(&cap->session_caps, &s->s_caps);
704 	spin_unlock(&s->s_cap_lock);
705 }
706 
707 /*
708  * Check if we hold the given mask.  If so, move the cap(s) to the
709  * front of their respective LRUs.  (This is the preferred way for
710  * callers to check for caps they want.)
711  */
712 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
713 {
714 	struct ceph_cap *cap;
715 	struct rb_node *p;
716 	int have = ci->i_snap_caps;
717 
718 	if ((have & mask) == mask) {
719 		dout("__ceph_caps_issued_mask %p snap issued %s"
720 		     " (mask %s)\n", &ci->vfs_inode,
721 		     ceph_cap_string(have),
722 		     ceph_cap_string(mask));
723 		return 1;
724 	}
725 
726 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
727 		cap = rb_entry(p, struct ceph_cap, ci_node);
728 		if (!__cap_is_valid(cap))
729 			continue;
730 		if ((cap->issued & mask) == mask) {
731 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
732 			     " (mask %s)\n", &ci->vfs_inode, cap,
733 			     ceph_cap_string(cap->issued),
734 			     ceph_cap_string(mask));
735 			if (touch)
736 				__touch_cap(cap);
737 			return 1;
738 		}
739 
740 		/* does a combination of caps satisfy mask? */
741 		have |= cap->issued;
742 		if ((have & mask) == mask) {
743 			dout("__ceph_caps_issued_mask %p combo issued %s"
744 			     " (mask %s)\n", &ci->vfs_inode,
745 			     ceph_cap_string(cap->issued),
746 			     ceph_cap_string(mask));
747 			if (touch) {
748 				struct rb_node *q;
749 
750 				/* touch this + preceeding caps */
751 				__touch_cap(cap);
752 				for (q = rb_first(&ci->i_caps); q != p;
753 				     q = rb_next(q)) {
754 					cap = rb_entry(q, struct ceph_cap,
755 						       ci_node);
756 					if (!__cap_is_valid(cap))
757 						continue;
758 					__touch_cap(cap);
759 				}
760 			}
761 			return 1;
762 		}
763 	}
764 
765 	return 0;
766 }
767 
768 /*
769  * Return true if mask caps are currently being revoked by an MDS.
770  */
771 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
772 {
773 	struct inode *inode = &ci->vfs_inode;
774 	struct ceph_cap *cap;
775 	struct rb_node *p;
776 	int ret = 0;
777 
778 	spin_lock(&inode->i_lock);
779 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
780 		cap = rb_entry(p, struct ceph_cap, ci_node);
781 		if (__cap_is_valid(cap) &&
782 		    (cap->implemented & ~cap->issued & mask)) {
783 			ret = 1;
784 			break;
785 		}
786 	}
787 	spin_unlock(&inode->i_lock);
788 	dout("ceph_caps_revoking %p %s = %d\n", inode,
789 	     ceph_cap_string(mask), ret);
790 	return ret;
791 }
792 
793 int __ceph_caps_used(struct ceph_inode_info *ci)
794 {
795 	int used = 0;
796 	if (ci->i_pin_ref)
797 		used |= CEPH_CAP_PIN;
798 	if (ci->i_rd_ref)
799 		used |= CEPH_CAP_FILE_RD;
800 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
801 		used |= CEPH_CAP_FILE_CACHE;
802 	if (ci->i_wr_ref)
803 		used |= CEPH_CAP_FILE_WR;
804 	if (ci->i_wrbuffer_ref)
805 		used |= CEPH_CAP_FILE_BUFFER;
806 	return used;
807 }
808 
809 /*
810  * wanted, by virtue of open file modes
811  */
812 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
813 {
814 	int want = 0;
815 	int mode;
816 	for (mode = 0; mode < 4; mode++)
817 		if (ci->i_nr_by_mode[mode])
818 			want |= ceph_caps_for_mode(mode);
819 	return want;
820 }
821 
822 /*
823  * Return caps we have registered with the MDS(s) as 'wanted'.
824  */
825 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
826 {
827 	struct ceph_cap *cap;
828 	struct rb_node *p;
829 	int mds_wanted = 0;
830 
831 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
832 		cap = rb_entry(p, struct ceph_cap, ci_node);
833 		if (!__cap_is_valid(cap))
834 			continue;
835 		mds_wanted |= cap->mds_wanted;
836 	}
837 	return mds_wanted;
838 }
839 
840 /*
841  * called under i_lock
842  */
843 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
844 {
845 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
846 }
847 
848 /*
849  * caller should hold i_lock, and session s_mutex.
850  * returns true if this is the last cap.  if so, caller should iput.
851  */
852 void __ceph_remove_cap(struct ceph_cap *cap,
853 		       struct ceph_cap_reservation *ctx)
854 {
855 	struct ceph_mds_session *session = cap->session;
856 	struct ceph_inode_info *ci = cap->ci;
857 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
858 
859 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
860 
861 	/* remove from session list */
862 	spin_lock(&session->s_cap_lock);
863 	list_del_init(&cap->session_caps);
864 	session->s_nr_caps--;
865 	spin_unlock(&session->s_cap_lock);
866 
867 	/* remove from inode list */
868 	rb_erase(&cap->ci_node, &ci->i_caps);
869 	cap->session = NULL;
870 	if (ci->i_auth_cap == cap)
871 		ci->i_auth_cap = NULL;
872 
873 	put_cap(cap, ctx);
874 
875 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
876 		struct ceph_snap_realm *realm = ci->i_snap_realm;
877 		spin_lock(&realm->inodes_with_caps_lock);
878 		list_del_init(&ci->i_snap_realm_item);
879 		ci->i_snap_realm_counter++;
880 		ci->i_snap_realm = NULL;
881 		spin_unlock(&realm->inodes_with_caps_lock);
882 		ceph_put_snap_realm(mdsc, realm);
883 	}
884 	if (!__ceph_is_any_real_caps(ci))
885 		__cap_delay_cancel(mdsc, ci);
886 }
887 
888 /*
889  * Build and send a cap message to the given MDS.
890  *
891  * Caller should be holding s_mutex.
892  */
893 static int send_cap_msg(struct ceph_mds_session *session,
894 			u64 ino, u64 cid, int op,
895 			int caps, int wanted, int dirty,
896 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
897 			u64 size, u64 max_size,
898 			struct timespec *mtime, struct timespec *atime,
899 			u64 time_warp_seq,
900 			uid_t uid, gid_t gid, mode_t mode,
901 			u64 xattr_version,
902 			struct ceph_buffer *xattrs_buf,
903 			u64 follows)
904 {
905 	struct ceph_mds_caps *fc;
906 	struct ceph_msg *msg;
907 
908 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
909 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
910 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
911 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
912 	     ceph_cap_string(dirty),
913 	     seq, issue_seq, mseq, follows, size, max_size,
914 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
915 
916 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
917 	if (IS_ERR(msg))
918 		return PTR_ERR(msg);
919 
920 	fc = msg->front.iov_base;
921 
922 	memset(fc, 0, sizeof(*fc));
923 
924 	fc->cap_id = cpu_to_le64(cid);
925 	fc->op = cpu_to_le32(op);
926 	fc->seq = cpu_to_le32(seq);
927 	fc->client_tid = cpu_to_le64(flush_tid);
928 	fc->issue_seq = cpu_to_le32(issue_seq);
929 	fc->migrate_seq = cpu_to_le32(mseq);
930 	fc->caps = cpu_to_le32(caps);
931 	fc->wanted = cpu_to_le32(wanted);
932 	fc->dirty = cpu_to_le32(dirty);
933 	fc->ino = cpu_to_le64(ino);
934 	fc->snap_follows = cpu_to_le64(follows);
935 
936 	fc->size = cpu_to_le64(size);
937 	fc->max_size = cpu_to_le64(max_size);
938 	if (mtime)
939 		ceph_encode_timespec(&fc->mtime, mtime);
940 	if (atime)
941 		ceph_encode_timespec(&fc->atime, atime);
942 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
943 
944 	fc->uid = cpu_to_le32(uid);
945 	fc->gid = cpu_to_le32(gid);
946 	fc->mode = cpu_to_le32(mode);
947 
948 	fc->xattr_version = cpu_to_le64(xattr_version);
949 	if (xattrs_buf) {
950 		msg->middle = ceph_buffer_get(xattrs_buf);
951 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
952 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
953 	}
954 
955 	ceph_con_send(&session->s_con, msg);
956 	return 0;
957 }
958 
959 /*
960  * Queue cap releases when an inode is dropped from our
961  * cache.
962  */
963 void ceph_queue_caps_release(struct inode *inode)
964 {
965 	struct ceph_inode_info *ci = ceph_inode(inode);
966 	struct rb_node *p;
967 
968 	spin_lock(&inode->i_lock);
969 	p = rb_first(&ci->i_caps);
970 	while (p) {
971 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
972 		struct ceph_mds_session *session = cap->session;
973 		struct ceph_msg *msg;
974 		struct ceph_mds_cap_release *head;
975 		struct ceph_mds_cap_item *item;
976 
977 		spin_lock(&session->s_cap_lock);
978 		BUG_ON(!session->s_num_cap_releases);
979 		msg = list_first_entry(&session->s_cap_releases,
980 				       struct ceph_msg, list_head);
981 
982 		dout(" adding %p release to mds%d msg %p (%d left)\n",
983 		     inode, session->s_mds, msg, session->s_num_cap_releases);
984 
985 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
986 		head = msg->front.iov_base;
987 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
988 		item = msg->front.iov_base + msg->front.iov_len;
989 		item->ino = cpu_to_le64(ceph_ino(inode));
990 		item->cap_id = cpu_to_le64(cap->cap_id);
991 		item->migrate_seq = cpu_to_le32(cap->mseq);
992 		item->seq = cpu_to_le32(cap->issue_seq);
993 
994 		session->s_num_cap_releases--;
995 
996 		msg->front.iov_len += sizeof(*item);
997 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
998 			dout(" release msg %p full\n", msg);
999 			list_move_tail(&msg->list_head,
1000 				      &session->s_cap_releases_done);
1001 		} else {
1002 			dout(" release msg %p at %d/%d (%d)\n", msg,
1003 			     (int)le32_to_cpu(head->num),
1004 			     (int)CEPH_CAPS_PER_RELEASE,
1005 			     (int)msg->front.iov_len);
1006 		}
1007 		spin_unlock(&session->s_cap_lock);
1008 		p = rb_next(p);
1009 		__ceph_remove_cap(cap, NULL);
1010 
1011 	}
1012 	spin_unlock(&inode->i_lock);
1013 }
1014 
1015 /*
1016  * Send a cap msg on the given inode.  Update our caps state, then
1017  * drop i_lock and send the message.
1018  *
1019  * Make note of max_size reported/requested from mds, revoked caps
1020  * that have now been implemented.
1021  *
1022  * Make half-hearted attempt ot to invalidate page cache if we are
1023  * dropping RDCACHE.  Note that this will leave behind locked pages
1024  * that we'll then need to deal with elsewhere.
1025  *
1026  * Return non-zero if delayed release, or we experienced an error
1027  * such that the caller should requeue + retry later.
1028  *
1029  * called with i_lock, then drops it.
1030  * caller should hold snap_rwsem (read), s_mutex.
1031  */
1032 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1033 		      int op, int used, int want, int retain, int flushing,
1034 		      unsigned *pflush_tid)
1035 	__releases(cap->ci->vfs_inode->i_lock)
1036 {
1037 	struct ceph_inode_info *ci = cap->ci;
1038 	struct inode *inode = &ci->vfs_inode;
1039 	u64 cap_id = cap->cap_id;
1040 	int held = cap->issued | cap->implemented;
1041 	int revoking = cap->implemented & ~cap->issued;
1042 	int dropping = cap->issued & ~retain;
1043 	int keep;
1044 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1045 	u64 size, max_size;
1046 	struct timespec mtime, atime;
1047 	int wake = 0;
1048 	mode_t mode;
1049 	uid_t uid;
1050 	gid_t gid;
1051 	struct ceph_mds_session *session;
1052 	u64 xattr_version = 0;
1053 	int delayed = 0;
1054 	u64 flush_tid = 0;
1055 	int i;
1056 	int ret;
1057 
1058 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1059 	     inode, cap, cap->session,
1060 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1061 	     ceph_cap_string(revoking));
1062 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1063 
1064 	session = cap->session;
1065 
1066 	/* don't release wanted unless we've waited a bit. */
1067 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1068 	    time_before(jiffies, ci->i_hold_caps_min)) {
1069 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1070 		     ceph_cap_string(cap->issued),
1071 		     ceph_cap_string(cap->issued & retain),
1072 		     ceph_cap_string(cap->mds_wanted),
1073 		     ceph_cap_string(want));
1074 		want |= cap->mds_wanted;
1075 		retain |= cap->issued;
1076 		delayed = 1;
1077 	}
1078 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1079 
1080 	cap->issued &= retain;  /* drop bits we don't want */
1081 	if (cap->implemented & ~cap->issued) {
1082 		/*
1083 		 * Wake up any waiters on wanted -> needed transition.
1084 		 * This is due to the weird transition from buffered
1085 		 * to sync IO... we need to flush dirty pages _before_
1086 		 * allowing sync writes to avoid reordering.
1087 		 */
1088 		wake = 1;
1089 	}
1090 	cap->implemented &= cap->issued | used;
1091 	cap->mds_wanted = want;
1092 
1093 	if (flushing) {
1094 		/*
1095 		 * assign a tid for flush operations so we can avoid
1096 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1097 		 * clean type races.  track latest tid for every bit
1098 		 * so we can handle flush AxFw, flush Fw, and have the
1099 		 * first ack clean Ax.
1100 		 */
1101 		flush_tid = ++ci->i_cap_flush_last_tid;
1102 		if (pflush_tid)
1103 			*pflush_tid = flush_tid;
1104 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1105 		for (i = 0; i < CEPH_CAP_BITS; i++)
1106 			if (flushing & (1 << i))
1107 				ci->i_cap_flush_tid[i] = flush_tid;
1108 	}
1109 
1110 	keep = cap->implemented;
1111 	seq = cap->seq;
1112 	issue_seq = cap->issue_seq;
1113 	mseq = cap->mseq;
1114 	size = inode->i_size;
1115 	ci->i_reported_size = size;
1116 	max_size = ci->i_wanted_max_size;
1117 	ci->i_requested_max_size = max_size;
1118 	mtime = inode->i_mtime;
1119 	atime = inode->i_atime;
1120 	time_warp_seq = ci->i_time_warp_seq;
1121 	follows = ci->i_snap_realm->cached_context->seq;
1122 	uid = inode->i_uid;
1123 	gid = inode->i_gid;
1124 	mode = inode->i_mode;
1125 
1126 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1127 		__ceph_build_xattrs_blob(ci);
1128 		xattr_version = ci->i_xattrs.version + 1;
1129 	}
1130 
1131 	spin_unlock(&inode->i_lock);
1132 
1133 	if (dropping & CEPH_CAP_FILE_CACHE) {
1134 		/* invalidate what we can */
1135 		dout("invalidating pages on %p\n", inode);
1136 		invalidate_mapping_pages(&inode->i_data, 0, -1);
1137 	}
1138 
1139 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1140 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1141 		size, max_size, &mtime, &atime, time_warp_seq,
1142 		uid, gid, mode,
1143 		xattr_version,
1144 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1145 		follows);
1146 	if (ret < 0) {
1147 		dout("error sending cap msg, must requeue %p\n", inode);
1148 		delayed = 1;
1149 	}
1150 
1151 	if (wake)
1152 		wake_up(&ci->i_cap_wq);
1153 
1154 	return delayed;
1155 }
1156 
1157 /*
1158  * When a snapshot is taken, clients accumulate dirty metadata on
1159  * inodes with capabilities in ceph_cap_snaps to describe the file
1160  * state at the time the snapshot was taken.  This must be flushed
1161  * asynchronously back to the MDS once sync writes complete and dirty
1162  * data is written out.
1163  *
1164  * Called under i_lock.  Takes s_mutex as needed.
1165  */
1166 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1167 			struct ceph_mds_session **psession)
1168 {
1169 	struct inode *inode = &ci->vfs_inode;
1170 	int mds;
1171 	struct ceph_cap_snap *capsnap;
1172 	u32 mseq;
1173 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1174 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1175 						    session->s_mutex */
1176 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1177 			     i_cap_snaps list, and skip these entries next time
1178 			     around to avoid an infinite loop */
1179 
1180 	if (psession)
1181 		session = *psession;
1182 
1183 	dout("__flush_snaps %p\n", inode);
1184 retry:
1185 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1186 		/* avoid an infiniute loop after retry */
1187 		if (capsnap->follows < next_follows)
1188 			continue;
1189 		/*
1190 		 * we need to wait for sync writes to complete and for dirty
1191 		 * pages to be written out.
1192 		 */
1193 		if (capsnap->dirty_pages || capsnap->writing)
1194 			continue;
1195 
1196 		/* pick mds, take s_mutex */
1197 		mds = __ceph_get_cap_mds(ci, &mseq);
1198 		if (session && session->s_mds != mds) {
1199 			dout("oops, wrong session %p mutex\n", session);
1200 			mutex_unlock(&session->s_mutex);
1201 			ceph_put_mds_session(session);
1202 			session = NULL;
1203 		}
1204 		if (!session) {
1205 			spin_unlock(&inode->i_lock);
1206 			mutex_lock(&mdsc->mutex);
1207 			session = __ceph_lookup_mds_session(mdsc, mds);
1208 			mutex_unlock(&mdsc->mutex);
1209 			if (session) {
1210 				dout("inverting session/ino locks on %p\n",
1211 				     session);
1212 				mutex_lock(&session->s_mutex);
1213 			}
1214 			/*
1215 			 * if session == NULL, we raced against a cap
1216 			 * deletion.  retry, and we'll get a better
1217 			 * @mds value next time.
1218 			 */
1219 			spin_lock(&inode->i_lock);
1220 			goto retry;
1221 		}
1222 
1223 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1224 		atomic_inc(&capsnap->nref);
1225 		if (!list_empty(&capsnap->flushing_item))
1226 			list_del_init(&capsnap->flushing_item);
1227 		list_add_tail(&capsnap->flushing_item,
1228 			      &session->s_cap_snaps_flushing);
1229 		spin_unlock(&inode->i_lock);
1230 
1231 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1232 		     inode, capsnap, next_follows, capsnap->size);
1233 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1234 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1235 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1236 			     capsnap->size, 0,
1237 			     &capsnap->mtime, &capsnap->atime,
1238 			     capsnap->time_warp_seq,
1239 			     capsnap->uid, capsnap->gid, capsnap->mode,
1240 			     0, NULL,
1241 			     capsnap->follows);
1242 
1243 		next_follows = capsnap->follows + 1;
1244 		ceph_put_cap_snap(capsnap);
1245 
1246 		spin_lock(&inode->i_lock);
1247 		goto retry;
1248 	}
1249 
1250 	/* we flushed them all; remove this inode from the queue */
1251 	spin_lock(&mdsc->snap_flush_lock);
1252 	list_del_init(&ci->i_snap_flush_item);
1253 	spin_unlock(&mdsc->snap_flush_lock);
1254 
1255 	if (psession)
1256 		*psession = session;
1257 	else if (session) {
1258 		mutex_unlock(&session->s_mutex);
1259 		ceph_put_mds_session(session);
1260 	}
1261 }
1262 
1263 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1264 {
1265 	struct inode *inode = &ci->vfs_inode;
1266 
1267 	spin_lock(&inode->i_lock);
1268 	__ceph_flush_snaps(ci, NULL);
1269 	spin_unlock(&inode->i_lock);
1270 }
1271 
1272 /*
1273  * Add dirty inode to the flushing list.  Assigned a seq number so we
1274  * can wait for caps to flush without starving.
1275  *
1276  * Called under i_lock.
1277  */
1278 static int __mark_caps_flushing(struct inode *inode,
1279 				 struct ceph_mds_session *session)
1280 {
1281 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1282 	struct ceph_inode_info *ci = ceph_inode(inode);
1283 	int flushing;
1284 
1285 	BUG_ON(ci->i_dirty_caps == 0);
1286 	BUG_ON(list_empty(&ci->i_dirty_item));
1287 
1288 	flushing = ci->i_dirty_caps;
1289 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1290 	     ceph_cap_string(flushing),
1291 	     ceph_cap_string(ci->i_flushing_caps),
1292 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1293 	ci->i_flushing_caps |= flushing;
1294 	ci->i_dirty_caps = 0;
1295 
1296 	spin_lock(&mdsc->cap_dirty_lock);
1297 	if (list_empty(&ci->i_flushing_item)) {
1298 		list_del_init(&ci->i_dirty_item);
1299 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1300 		mdsc->num_cap_flushing++;
1301 		ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1302 		dout(" inode %p now flushing seq %lld\n", &ci->vfs_inode,
1303 		     ci->i_cap_flush_seq);
1304 	}
1305 	spin_unlock(&mdsc->cap_dirty_lock);
1306 
1307 	return flushing;
1308 }
1309 
1310 /*
1311  * Swiss army knife function to examine currently used and wanted
1312  * versus held caps.  Release, flush, ack revoked caps to mds as
1313  * appropriate.
1314  *
1315  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1316  *    cap release further.
1317  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1318  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1319  *    further delay.
1320  */
1321 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1322 		     struct ceph_mds_session *session)
1323 {
1324 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1325 	struct ceph_mds_client *mdsc = &client->mdsc;
1326 	struct inode *inode = &ci->vfs_inode;
1327 	struct ceph_cap *cap;
1328 	int file_wanted, used;
1329 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1330 	int drop_session_lock = session ? 0 : 1;
1331 	int want, retain, revoking, flushing = 0;
1332 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1333 			   to avoid an infinite loop on retry */
1334 	struct rb_node *p;
1335 	int tried_invalidate = 0;
1336 	int delayed = 0, sent = 0, force_requeue = 0, num;
1337 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1338 
1339 	/* if we are unmounting, flush any unused caps immediately. */
1340 	if (mdsc->stopping)
1341 		is_delayed = 1;
1342 
1343 	spin_lock(&inode->i_lock);
1344 
1345 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1346 		flags |= CHECK_CAPS_FLUSH;
1347 
1348 	/* flush snaps first time around only */
1349 	if (!list_empty(&ci->i_cap_snaps))
1350 		__ceph_flush_snaps(ci, &session);
1351 	goto retry_locked;
1352 retry:
1353 	spin_lock(&inode->i_lock);
1354 retry_locked:
1355 	file_wanted = __ceph_caps_file_wanted(ci);
1356 	used = __ceph_caps_used(ci);
1357 	want = file_wanted | used;
1358 
1359 	retain = want | CEPH_CAP_PIN;
1360 	if (!mdsc->stopping && inode->i_nlink > 0) {
1361 		if (want) {
1362 			retain |= CEPH_CAP_ANY;       /* be greedy */
1363 		} else {
1364 			retain |= CEPH_CAP_ANY_SHARED;
1365 			/*
1366 			 * keep RD only if we didn't have the file open RW,
1367 			 * because then the mds would revoke it anyway to
1368 			 * journal max_size=0.
1369 			 */
1370 			if (ci->i_max_size == 0)
1371 				retain |= CEPH_CAP_ANY_RD;
1372 		}
1373 	}
1374 
1375 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1376 	     " issued %s retain %s %s%s%s\n", inode,
1377 	     ceph_cap_string(file_wanted),
1378 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1379 	     ceph_cap_string(ci->i_flushing_caps),
1380 	     ceph_cap_string(__ceph_caps_issued(ci, NULL)),
1381 	     ceph_cap_string(retain),
1382 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1383 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1384 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1385 
1386 	/*
1387 	 * If we no longer need to hold onto old our caps, and we may
1388 	 * have cached pages, but don't want them, then try to invalidate.
1389 	 * If we fail, it's because pages are locked.... try again later.
1390 	 */
1391 	if ((!is_delayed || mdsc->stopping) &&
1392 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1393 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1394 	    file_wanted == 0 &&                      /* no open files */
1395 	    !ci->i_truncate_pending &&
1396 	    !tried_invalidate) {
1397 		u32 invalidating_gen = ci->i_rdcache_gen;
1398 		int ret;
1399 
1400 		dout("check_caps trying to invalidate on %p\n", inode);
1401 		spin_unlock(&inode->i_lock);
1402 		ret = invalidate_inode_pages2(&inode->i_data);
1403 		spin_lock(&inode->i_lock);
1404 		if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) {
1405 			/* success. */
1406 			ci->i_rdcache_gen = 0;
1407 			ci->i_rdcache_revoking = 0;
1408 		} else {
1409 			dout("check_caps failed to invalidate pages\n");
1410 			/* we failed to invalidate pages.  check these
1411 			   caps again later. */
1412 			force_requeue = 1;
1413 			__cap_set_timeouts(mdsc, ci);
1414 		}
1415 		tried_invalidate = 1;
1416 		goto retry_locked;
1417 	}
1418 
1419 	num = 0;
1420 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1421 		cap = rb_entry(p, struct ceph_cap, ci_node);
1422 		num++;
1423 
1424 		/* avoid looping forever */
1425 		if (mds >= cap->mds ||
1426 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1427 			continue;
1428 
1429 		/* NOTE: no side-effects allowed, until we take s_mutex */
1430 
1431 		revoking = cap->implemented & ~cap->issued;
1432 		if (revoking)
1433 			dout("mds%d revoking %s\n", cap->mds,
1434 			     ceph_cap_string(revoking));
1435 
1436 		if (cap == ci->i_auth_cap &&
1437 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1438 			/* request larger max_size from MDS? */
1439 			if (ci->i_wanted_max_size > ci->i_max_size &&
1440 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1441 				dout("requesting new max_size\n");
1442 				goto ack;
1443 			}
1444 
1445 			/* approaching file_max? */
1446 			if ((inode->i_size << 1) >= ci->i_max_size &&
1447 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1448 				dout("i_size approaching max_size\n");
1449 				goto ack;
1450 			}
1451 		}
1452 		/* flush anything dirty? */
1453 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1454 		    ci->i_dirty_caps) {
1455 			dout("flushing dirty caps\n");
1456 			goto ack;
1457 		}
1458 
1459 		/* completed revocation? going down and there are no caps? */
1460 		if (revoking && (revoking & used) == 0) {
1461 			dout("completed revocation of %s\n",
1462 			     ceph_cap_string(cap->implemented & ~cap->issued));
1463 			goto ack;
1464 		}
1465 
1466 		/* want more caps from mds? */
1467 		if (want & ~(cap->mds_wanted | cap->issued))
1468 			goto ack;
1469 
1470 		/* things we might delay */
1471 		if ((cap->issued & ~retain) == 0 &&
1472 		    cap->mds_wanted == want)
1473 			continue;     /* nope, all good */
1474 
1475 		if (is_delayed)
1476 			goto ack;
1477 
1478 		/* delay? */
1479 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1480 		    time_before(jiffies, ci->i_hold_caps_max)) {
1481 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1482 			     ceph_cap_string(cap->issued),
1483 			     ceph_cap_string(cap->issued & retain),
1484 			     ceph_cap_string(cap->mds_wanted),
1485 			     ceph_cap_string(want));
1486 			delayed++;
1487 			continue;
1488 		}
1489 
1490 ack:
1491 		if (session && session != cap->session) {
1492 			dout("oops, wrong session %p mutex\n", session);
1493 			mutex_unlock(&session->s_mutex);
1494 			session = NULL;
1495 		}
1496 		if (!session) {
1497 			session = cap->session;
1498 			if (mutex_trylock(&session->s_mutex) == 0) {
1499 				dout("inverting session/ino locks on %p\n",
1500 				     session);
1501 				spin_unlock(&inode->i_lock);
1502 				if (took_snap_rwsem) {
1503 					up_read(&mdsc->snap_rwsem);
1504 					took_snap_rwsem = 0;
1505 				}
1506 				mutex_lock(&session->s_mutex);
1507 				goto retry;
1508 			}
1509 		}
1510 		/* take snap_rwsem after session mutex */
1511 		if (!took_snap_rwsem) {
1512 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1513 				dout("inverting snap/in locks on %p\n",
1514 				     inode);
1515 				spin_unlock(&inode->i_lock);
1516 				down_read(&mdsc->snap_rwsem);
1517 				took_snap_rwsem = 1;
1518 				goto retry;
1519 			}
1520 			took_snap_rwsem = 1;
1521 		}
1522 
1523 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1524 			flushing = __mark_caps_flushing(inode, session);
1525 
1526 		mds = cap->mds;  /* remember mds, so we don't repeat */
1527 		sent++;
1528 
1529 		/* __send_cap drops i_lock */
1530 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1531 				      retain, flushing, NULL);
1532 		goto retry; /* retake i_lock and restart our cap scan. */
1533 	}
1534 
1535 	/*
1536 	 * Reschedule delayed caps release if we delayed anything,
1537 	 * otherwise cancel.
1538 	 */
1539 	if (delayed && is_delayed)
1540 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1541 	if (!delayed && !is_delayed)
1542 		__cap_delay_cancel(mdsc, ci);
1543 	else if (!is_delayed || force_requeue)
1544 		__cap_delay_requeue(mdsc, ci);
1545 
1546 	spin_unlock(&inode->i_lock);
1547 
1548 	if (session && drop_session_lock)
1549 		mutex_unlock(&session->s_mutex);
1550 	if (took_snap_rwsem)
1551 		up_read(&mdsc->snap_rwsem);
1552 }
1553 
1554 /*
1555  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1556  * list.
1557  */
1558 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1559 {
1560 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1561 	struct inode *inode = &ci->vfs_inode;
1562 	int was = __ceph_caps_dirty(ci);
1563 	int dirty = 0;
1564 
1565 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1566 	     ceph_cap_string(mask), ceph_cap_string(ci->i_dirty_caps),
1567 	     ceph_cap_string(ci->i_dirty_caps | mask));
1568 	ci->i_dirty_caps |= mask;
1569 	if (!was) {
1570 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1571 		spin_lock(&mdsc->cap_dirty_lock);
1572 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1573 		spin_unlock(&mdsc->cap_dirty_lock);
1574 		igrab(inode);
1575 		dirty |= I_DIRTY_SYNC;
1576 	}
1577 	if ((was & CEPH_CAP_FILE_BUFFER) &&
1578 	    (mask & CEPH_CAP_FILE_BUFFER))
1579 		dirty |= I_DIRTY_DATASYNC;
1580 	if (dirty)
1581 		__mark_inode_dirty(inode, dirty);
1582 	__cap_delay_requeue(mdsc, ci);
1583 	return was;
1584 }
1585 
1586 /*
1587  * Try to flush dirty caps back to the auth mds.
1588  */
1589 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1590 			  unsigned *flush_tid)
1591 {
1592 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1593 	struct ceph_inode_info *ci = ceph_inode(inode);
1594 	int unlock_session = session ? 0 : 1;
1595 	int flushing = 0;
1596 
1597 retry:
1598 	spin_lock(&inode->i_lock);
1599 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1600 		struct ceph_cap *cap = ci->i_auth_cap;
1601 		int used = __ceph_caps_used(ci);
1602 		int want = __ceph_caps_wanted(ci);
1603 		int delayed;
1604 
1605 		if (!session) {
1606 			spin_unlock(&inode->i_lock);
1607 			session = cap->session;
1608 			mutex_lock(&session->s_mutex);
1609 			goto retry;
1610 		}
1611 		BUG_ON(session != cap->session);
1612 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1613 			goto out;
1614 
1615 		flushing = __mark_caps_flushing(inode, session);
1616 
1617 		/* __send_cap drops i_lock */
1618 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1619 				     cap->issued | cap->implemented, flushing,
1620 				     flush_tid);
1621 		if (!delayed)
1622 			goto out_unlocked;
1623 
1624 		spin_lock(&inode->i_lock);
1625 		__cap_delay_requeue(mdsc, ci);
1626 	}
1627 out:
1628 	spin_unlock(&inode->i_lock);
1629 out_unlocked:
1630 	if (session && unlock_session)
1631 		mutex_unlock(&session->s_mutex);
1632 	return flushing;
1633 }
1634 
1635 /*
1636  * Return true if we've flushed caps through the given flush_tid.
1637  */
1638 static int caps_are_flushed(struct inode *inode, unsigned tid)
1639 {
1640 	struct ceph_inode_info *ci = ceph_inode(inode);
1641 	int dirty, i, ret = 1;
1642 
1643 	spin_lock(&inode->i_lock);
1644 	dirty = __ceph_caps_dirty(ci);
1645 	for (i = 0; i < CEPH_CAP_BITS; i++)
1646 		if ((ci->i_flushing_caps & (1 << i)) &&
1647 		    ci->i_cap_flush_tid[i] <= tid) {
1648 			/* still flushing this bit */
1649 			ret = 0;
1650 			break;
1651 		}
1652 	spin_unlock(&inode->i_lock);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Wait on any unsafe replies for the given inode.  First wait on the
1658  * newest request, and make that the upper bound.  Then, if there are
1659  * more requests, keep waiting on the oldest as long as it is still older
1660  * than the original request.
1661  */
1662 static void sync_write_wait(struct inode *inode)
1663 {
1664 	struct ceph_inode_info *ci = ceph_inode(inode);
1665 	struct list_head *head = &ci->i_unsafe_writes;
1666 	struct ceph_osd_request *req;
1667 	u64 last_tid;
1668 
1669 	spin_lock(&ci->i_unsafe_lock);
1670 	if (list_empty(head))
1671 		goto out;
1672 
1673 	/* set upper bound as _last_ entry in chain */
1674 	req = list_entry(head->prev, struct ceph_osd_request,
1675 			 r_unsafe_item);
1676 	last_tid = req->r_tid;
1677 
1678 	do {
1679 		ceph_osdc_get_request(req);
1680 		spin_unlock(&ci->i_unsafe_lock);
1681 		dout("sync_write_wait on tid %llu (until %llu)\n",
1682 		     req->r_tid, last_tid);
1683 		wait_for_completion(&req->r_safe_completion);
1684 		spin_lock(&ci->i_unsafe_lock);
1685 		ceph_osdc_put_request(req);
1686 
1687 		/*
1688 		 * from here on look at first entry in chain, since we
1689 		 * only want to wait for anything older than last_tid
1690 		 */
1691 		if (list_empty(head))
1692 			break;
1693 		req = list_entry(head->next, struct ceph_osd_request,
1694 				 r_unsafe_item);
1695 	} while (req->r_tid < last_tid);
1696 out:
1697 	spin_unlock(&ci->i_unsafe_lock);
1698 }
1699 
1700 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1701 {
1702 	struct inode *inode = dentry->d_inode;
1703 	struct ceph_inode_info *ci = ceph_inode(inode);
1704 	unsigned flush_tid;
1705 	int ret;
1706 	int dirty;
1707 
1708 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1709 	sync_write_wait(inode);
1710 
1711 	ret = filemap_write_and_wait(inode->i_mapping);
1712 	if (ret < 0)
1713 		return ret;
1714 
1715 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1716 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1717 
1718 	/*
1719 	 * only wait on non-file metadata writeback (the mds
1720 	 * can recover size and mtime, so we don't need to
1721 	 * wait for that)
1722 	 */
1723 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1724 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1725 		ret = wait_event_interruptible(ci->i_cap_wq,
1726 				       caps_are_flushed(inode, flush_tid));
1727 	}
1728 
1729 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1730 	return ret;
1731 }
1732 
1733 /*
1734  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1735  * queue inode for flush but don't do so immediately, because we can
1736  * get by with fewer MDS messages if we wait for data writeback to
1737  * complete first.
1738  */
1739 int ceph_write_inode(struct inode *inode, int wait)
1740 {
1741 	struct ceph_inode_info *ci = ceph_inode(inode);
1742 	unsigned flush_tid;
1743 	int err = 0;
1744 	int dirty;
1745 
1746 	dout("write_inode %p wait=%d\n", inode, wait);
1747 	if (wait) {
1748 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1749 		if (dirty)
1750 			err = wait_event_interruptible(ci->i_cap_wq,
1751 				       caps_are_flushed(inode, flush_tid));
1752 	} else {
1753 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1754 
1755 		spin_lock(&inode->i_lock);
1756 		if (__ceph_caps_dirty(ci))
1757 			__cap_delay_requeue_front(mdsc, ci);
1758 		spin_unlock(&inode->i_lock);
1759 	}
1760 	return err;
1761 }
1762 
1763 /*
1764  * After a recovering MDS goes active, we need to resend any caps
1765  * we were flushing.
1766  *
1767  * Caller holds session->s_mutex.
1768  */
1769 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1770 				   struct ceph_mds_session *session)
1771 {
1772 	struct ceph_cap_snap *capsnap;
1773 
1774 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1775 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1776 			    flushing_item) {
1777 		struct ceph_inode_info *ci = capsnap->ci;
1778 		struct inode *inode = &ci->vfs_inode;
1779 		struct ceph_cap *cap;
1780 
1781 		spin_lock(&inode->i_lock);
1782 		cap = ci->i_auth_cap;
1783 		if (cap && cap->session == session) {
1784 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1785 			     cap, capsnap);
1786 			__ceph_flush_snaps(ci, &session);
1787 		} else {
1788 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1789 			       cap, session->s_mds);
1790 			spin_unlock(&inode->i_lock);
1791 		}
1792 	}
1793 }
1794 
1795 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1796 			     struct ceph_mds_session *session)
1797 {
1798 	struct ceph_inode_info *ci;
1799 
1800 	kick_flushing_capsnaps(mdsc, session);
1801 
1802 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1803 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1804 		struct inode *inode = &ci->vfs_inode;
1805 		struct ceph_cap *cap;
1806 		int delayed = 0;
1807 
1808 		spin_lock(&inode->i_lock);
1809 		cap = ci->i_auth_cap;
1810 		if (cap && cap->session == session) {
1811 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1812 			     cap, ceph_cap_string(ci->i_flushing_caps));
1813 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1814 					     __ceph_caps_used(ci),
1815 					     __ceph_caps_wanted(ci),
1816 					     cap->issued | cap->implemented,
1817 					     ci->i_flushing_caps, NULL);
1818 			if (delayed) {
1819 				spin_lock(&inode->i_lock);
1820 				__cap_delay_requeue(mdsc, ci);
1821 				spin_unlock(&inode->i_lock);
1822 			}
1823 		} else {
1824 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1825 			       cap, session->s_mds);
1826 			spin_unlock(&inode->i_lock);
1827 		}
1828 	}
1829 }
1830 
1831 
1832 /*
1833  * Take references to capabilities we hold, so that we don't release
1834  * them to the MDS prematurely.
1835  *
1836  * Protected by i_lock.
1837  */
1838 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1839 {
1840 	if (got & CEPH_CAP_PIN)
1841 		ci->i_pin_ref++;
1842 	if (got & CEPH_CAP_FILE_RD)
1843 		ci->i_rd_ref++;
1844 	if (got & CEPH_CAP_FILE_CACHE)
1845 		ci->i_rdcache_ref++;
1846 	if (got & CEPH_CAP_FILE_WR)
1847 		ci->i_wr_ref++;
1848 	if (got & CEPH_CAP_FILE_BUFFER) {
1849 		if (ci->i_wrbuffer_ref == 0)
1850 			igrab(&ci->vfs_inode);
1851 		ci->i_wrbuffer_ref++;
1852 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1853 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1854 	}
1855 }
1856 
1857 /*
1858  * Try to grab cap references.  Specify those refs we @want, and the
1859  * minimal set we @need.  Also include the larger offset we are writing
1860  * to (when applicable), and check against max_size here as well.
1861  * Note that caller is responsible for ensuring max_size increases are
1862  * requested from the MDS.
1863  */
1864 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1865 			    int *got, loff_t endoff, int *check_max, int *err)
1866 {
1867 	struct inode *inode = &ci->vfs_inode;
1868 	int ret = 0;
1869 	int have, implemented;
1870 
1871 	dout("get_cap_refs %p need %s want %s\n", inode,
1872 	     ceph_cap_string(need), ceph_cap_string(want));
1873 	spin_lock(&inode->i_lock);
1874 
1875 	/* make sure we _have_ some caps! */
1876 	if (!__ceph_is_any_caps(ci)) {
1877 		dout("get_cap_refs %p no real caps\n", inode);
1878 		*err = -EBADF;
1879 		ret = 1;
1880 		goto out;
1881 	}
1882 
1883 	if (need & CEPH_CAP_FILE_WR) {
1884 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1885 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1886 			     inode, endoff, ci->i_max_size);
1887 			if (endoff > ci->i_wanted_max_size) {
1888 				*check_max = 1;
1889 				ret = 1;
1890 			}
1891 			goto out;
1892 		}
1893 		/*
1894 		 * If a sync write is in progress, we must wait, so that we
1895 		 * can get a final snapshot value for size+mtime.
1896 		 */
1897 		if (__ceph_have_pending_cap_snap(ci)) {
1898 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1899 			goto out;
1900 		}
1901 	}
1902 	have = __ceph_caps_issued(ci, &implemented);
1903 
1904 	/*
1905 	 * disallow writes while a truncate is pending
1906 	 */
1907 	if (ci->i_truncate_pending)
1908 		have &= ~CEPH_CAP_FILE_WR;
1909 
1910 	if ((have & need) == need) {
1911 		/*
1912 		 * Look at (implemented & ~have & not) so that we keep waiting
1913 		 * on transition from wanted -> needed caps.  This is needed
1914 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1915 		 * going before a prior buffered writeback happens.
1916 		 */
1917 		int not = want & ~(have & need);
1918 		int revoking = implemented & ~have;
1919 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1920 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1921 		     ceph_cap_string(revoking));
1922 		if ((revoking & not) == 0) {
1923 			*got = need | (have & want);
1924 			__take_cap_refs(ci, *got);
1925 			ret = 1;
1926 		}
1927 	} else {
1928 		dout("get_cap_refs %p have %s needed %s\n", inode,
1929 		     ceph_cap_string(have), ceph_cap_string(need));
1930 	}
1931 out:
1932 	spin_unlock(&inode->i_lock);
1933 	dout("get_cap_refs %p ret %d got %s\n", inode,
1934 	     ret, ceph_cap_string(*got));
1935 	return ret;
1936 }
1937 
1938 /*
1939  * Check the offset we are writing up to against our current
1940  * max_size.  If necessary, tell the MDS we want to write to
1941  * a larger offset.
1942  */
1943 static void check_max_size(struct inode *inode, loff_t endoff)
1944 {
1945 	struct ceph_inode_info *ci = ceph_inode(inode);
1946 	int check = 0;
1947 
1948 	/* do we need to explicitly request a larger max_size? */
1949 	spin_lock(&inode->i_lock);
1950 	if ((endoff >= ci->i_max_size ||
1951 	     endoff > (inode->i_size << 1)) &&
1952 	    endoff > ci->i_wanted_max_size) {
1953 		dout("write %p at large endoff %llu, req max_size\n",
1954 		     inode, endoff);
1955 		ci->i_wanted_max_size = endoff;
1956 		check = 1;
1957 	}
1958 	spin_unlock(&inode->i_lock);
1959 	if (check)
1960 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
1961 }
1962 
1963 /*
1964  * Wait for caps, and take cap references.  If we can't get a WR cap
1965  * due to a small max_size, make sure we check_max_size (and possibly
1966  * ask the mds) so we don't get hung up indefinitely.
1967  */
1968 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
1969 		  loff_t endoff)
1970 {
1971 	int check_max, ret, err;
1972 
1973 retry:
1974 	if (endoff > 0)
1975 		check_max_size(&ci->vfs_inode, endoff);
1976 	check_max = 0;
1977 	err = 0;
1978 	ret = wait_event_interruptible(ci->i_cap_wq,
1979 				       try_get_cap_refs(ci, need, want,
1980 							got, endoff,
1981 							&check_max, &err));
1982 	if (err)
1983 		ret = err;
1984 	if (check_max)
1985 		goto retry;
1986 	return ret;
1987 }
1988 
1989 /*
1990  * Take cap refs.  Caller must already know we hold at least one ref
1991  * on the caps in question or we don't know this is safe.
1992  */
1993 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
1994 {
1995 	spin_lock(&ci->vfs_inode.i_lock);
1996 	__take_cap_refs(ci, caps);
1997 	spin_unlock(&ci->vfs_inode.i_lock);
1998 }
1999 
2000 /*
2001  * Release cap refs.
2002  *
2003  * If we released the last ref on any given cap, call ceph_check_caps
2004  * to release (or schedule a release).
2005  *
2006  * If we are releasing a WR cap (from a sync write), finalize any affected
2007  * cap_snap, and wake up any waiters.
2008  */
2009 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2010 {
2011 	struct inode *inode = &ci->vfs_inode;
2012 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2013 	struct ceph_cap_snap *capsnap;
2014 
2015 	spin_lock(&inode->i_lock);
2016 	if (had & CEPH_CAP_PIN)
2017 		--ci->i_pin_ref;
2018 	if (had & CEPH_CAP_FILE_RD)
2019 		if (--ci->i_rd_ref == 0)
2020 			last++;
2021 	if (had & CEPH_CAP_FILE_CACHE)
2022 		if (--ci->i_rdcache_ref == 0)
2023 			last++;
2024 	if (had & CEPH_CAP_FILE_BUFFER) {
2025 		if (--ci->i_wrbuffer_ref == 0) {
2026 			last++;
2027 			put++;
2028 		}
2029 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2030 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2031 	}
2032 	if (had & CEPH_CAP_FILE_WR)
2033 		if (--ci->i_wr_ref == 0) {
2034 			last++;
2035 			if (!list_empty(&ci->i_cap_snaps)) {
2036 				capsnap = list_first_entry(&ci->i_cap_snaps,
2037 						     struct ceph_cap_snap,
2038 						     ci_item);
2039 				if (capsnap->writing) {
2040 					capsnap->writing = 0;
2041 					flushsnaps =
2042 						__ceph_finish_cap_snap(ci,
2043 								       capsnap);
2044 					wake = 1;
2045 				}
2046 			}
2047 		}
2048 	spin_unlock(&inode->i_lock);
2049 
2050 	dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2051 	     last ? "last" : "");
2052 
2053 	if (last && !flushsnaps)
2054 		ceph_check_caps(ci, 0, NULL);
2055 	else if (flushsnaps)
2056 		ceph_flush_snaps(ci);
2057 	if (wake)
2058 		wake_up(&ci->i_cap_wq);
2059 	if (put)
2060 		iput(inode);
2061 }
2062 
2063 /*
2064  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2065  * context.  Adjust per-snap dirty page accounting as appropriate.
2066  * Once all dirty data for a cap_snap is flushed, flush snapped file
2067  * metadata back to the MDS.  If we dropped the last ref, call
2068  * ceph_check_caps.
2069  */
2070 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2071 				struct ceph_snap_context *snapc)
2072 {
2073 	struct inode *inode = &ci->vfs_inode;
2074 	int last = 0;
2075 	int last_snap = 0;
2076 	int found = 0;
2077 	struct ceph_cap_snap *capsnap = NULL;
2078 
2079 	spin_lock(&inode->i_lock);
2080 	ci->i_wrbuffer_ref -= nr;
2081 	last = !ci->i_wrbuffer_ref;
2082 
2083 	if (ci->i_head_snapc == snapc) {
2084 		ci->i_wrbuffer_ref_head -= nr;
2085 		if (!ci->i_wrbuffer_ref_head) {
2086 			ceph_put_snap_context(ci->i_head_snapc);
2087 			ci->i_head_snapc = NULL;
2088 		}
2089 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2090 		     inode,
2091 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2092 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2093 		     last ? " LAST" : "");
2094 	} else {
2095 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2096 			if (capsnap->context == snapc) {
2097 				found = 1;
2098 				capsnap->dirty_pages -= nr;
2099 				last_snap = !capsnap->dirty_pages;
2100 				break;
2101 			}
2102 		}
2103 		BUG_ON(!found);
2104 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2105 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2106 		     inode, capsnap, capsnap->context->seq,
2107 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2108 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2109 		     last ? " (wrbuffer last)" : "",
2110 		     last_snap ? " (capsnap last)" : "");
2111 	}
2112 
2113 	spin_unlock(&inode->i_lock);
2114 
2115 	if (last) {
2116 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2117 		iput(inode);
2118 	} else if (last_snap) {
2119 		ceph_flush_snaps(ci);
2120 		wake_up(&ci->i_cap_wq);
2121 	}
2122 }
2123 
2124 /*
2125  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2126  * actually be a revocation if it specifies a smaller cap set.)
2127  *
2128  * caller holds s_mutex.
2129  * return value:
2130  *  0 - ok
2131  *  1 - check_caps on auth cap only (writeback)
2132  *  2 - check_caps (ack revoke)
2133  */
2134 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2135 			    struct ceph_mds_session *session,
2136 			    struct ceph_cap *cap,
2137 			    struct ceph_buffer *xattr_buf)
2138 	__releases(inode->i_lock)
2139 
2140 {
2141 	struct ceph_inode_info *ci = ceph_inode(inode);
2142 	int mds = session->s_mds;
2143 	int seq = le32_to_cpu(grant->seq);
2144 	int newcaps = le32_to_cpu(grant->caps);
2145 	int issued, implemented, used, wanted, dirty;
2146 	u64 size = le64_to_cpu(grant->size);
2147 	u64 max_size = le64_to_cpu(grant->max_size);
2148 	struct timespec mtime, atime, ctime;
2149 	int reply = 0;
2150 	int wake = 0;
2151 	int writeback = 0;
2152 	int revoked_rdcache = 0;
2153 	int invalidate_async = 0;
2154 	int tried_invalidate = 0;
2155 	int ret;
2156 
2157 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2158 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2159 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2160 		inode->i_size);
2161 
2162 	/*
2163 	 * If CACHE is being revoked, and we have no dirty buffers,
2164 	 * try to invalidate (once).  (If there are dirty buffers, we
2165 	 * will invalidate _after_ writeback.)
2166 	 */
2167 restart:
2168 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2169 	    !ci->i_wrbuffer_ref && !tried_invalidate) {
2170 		dout("CACHE invalidation\n");
2171 		spin_unlock(&inode->i_lock);
2172 		tried_invalidate = 1;
2173 
2174 		ret = invalidate_inode_pages2(&inode->i_data);
2175 		spin_lock(&inode->i_lock);
2176 		if (ret < 0) {
2177 			/* there were locked pages.. invalidate later
2178 			   in a separate thread. */
2179 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2180 				invalidate_async = 1;
2181 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2182 			}
2183 		} else {
2184 			/* we successfully invalidated those pages */
2185 			revoked_rdcache = 1;
2186 			ci->i_rdcache_gen = 0;
2187 			ci->i_rdcache_revoking = 0;
2188 		}
2189 		goto restart;
2190 	}
2191 
2192 	/* side effects now are allowed */
2193 
2194 	issued = __ceph_caps_issued(ci, &implemented);
2195 	issued |= implemented | __ceph_caps_dirty(ci);
2196 
2197 	cap->gen = session->s_cap_gen;
2198 
2199 	__check_cap_issue(ci, cap, newcaps);
2200 
2201 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2202 		inode->i_mode = le32_to_cpu(grant->mode);
2203 		inode->i_uid = le32_to_cpu(grant->uid);
2204 		inode->i_gid = le32_to_cpu(grant->gid);
2205 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2206 		     inode->i_uid, inode->i_gid);
2207 	}
2208 
2209 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2210 		inode->i_nlink = le32_to_cpu(grant->nlink);
2211 
2212 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2213 		int len = le32_to_cpu(grant->xattr_len);
2214 		u64 version = le64_to_cpu(grant->xattr_version);
2215 
2216 		if (version > ci->i_xattrs.version) {
2217 			dout(" got new xattrs v%llu on %p len %d\n",
2218 			     version, inode, len);
2219 			if (ci->i_xattrs.blob)
2220 				ceph_buffer_put(ci->i_xattrs.blob);
2221 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2222 			ci->i_xattrs.version = version;
2223 		}
2224 	}
2225 
2226 	/* size/ctime/mtime/atime? */
2227 	ceph_fill_file_size(inode, issued,
2228 			    le32_to_cpu(grant->truncate_seq),
2229 			    le64_to_cpu(grant->truncate_size), size);
2230 	ceph_decode_timespec(&mtime, &grant->mtime);
2231 	ceph_decode_timespec(&atime, &grant->atime);
2232 	ceph_decode_timespec(&ctime, &grant->ctime);
2233 	ceph_fill_file_time(inode, issued,
2234 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2235 			    &atime);
2236 
2237 	/* max size increase? */
2238 	if (max_size != ci->i_max_size) {
2239 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2240 		ci->i_max_size = max_size;
2241 		if (max_size >= ci->i_wanted_max_size) {
2242 			ci->i_wanted_max_size = 0;  /* reset */
2243 			ci->i_requested_max_size = 0;
2244 		}
2245 		wake = 1;
2246 	}
2247 
2248 	/* check cap bits */
2249 	wanted = __ceph_caps_wanted(ci);
2250 	used = __ceph_caps_used(ci);
2251 	dirty = __ceph_caps_dirty(ci);
2252 	dout(" my wanted = %s, used = %s, dirty %s\n",
2253 	     ceph_cap_string(wanted),
2254 	     ceph_cap_string(used),
2255 	     ceph_cap_string(dirty));
2256 	if (wanted != le32_to_cpu(grant->wanted)) {
2257 		dout("mds wanted %s -> %s\n",
2258 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2259 		     ceph_cap_string(wanted));
2260 		grant->wanted = cpu_to_le32(wanted);
2261 	}
2262 
2263 	cap->seq = seq;
2264 
2265 	/* file layout may have changed */
2266 	ci->i_layout = grant->layout;
2267 
2268 	/* revocation, grant, or no-op? */
2269 	if (cap->issued & ~newcaps) {
2270 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2271 		     ceph_cap_string(newcaps));
2272 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2273 			writeback = 1; /* will delay ack */
2274 		else if (dirty & ~newcaps)
2275 			reply = 1;     /* initiate writeback in check_caps */
2276 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2277 			   revoked_rdcache)
2278 			reply = 2;     /* send revoke ack in check_caps */
2279 		cap->issued = newcaps;
2280 	} else if (cap->issued == newcaps) {
2281 		dout("caps unchanged: %s -> %s\n",
2282 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2283 	} else {
2284 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2285 		     ceph_cap_string(newcaps));
2286 		cap->issued = newcaps;
2287 		cap->implemented |= newcaps; /* add bits only, to
2288 					      * avoid stepping on a
2289 					      * pending revocation */
2290 		wake = 1;
2291 	}
2292 
2293 	spin_unlock(&inode->i_lock);
2294 	if (writeback) {
2295 		/*
2296 		 * queue inode for writeback: we can't actually call
2297 		 * filemap_write_and_wait, etc. from message handler
2298 		 * context.
2299 		 */
2300 		dout("queueing %p for writeback\n", inode);
2301 		if (ceph_queue_writeback(inode))
2302 			igrab(inode);
2303 	}
2304 	if (invalidate_async) {
2305 		dout("queueing %p for page invalidation\n", inode);
2306 		if (ceph_queue_page_invalidation(inode))
2307 			igrab(inode);
2308 	}
2309 	if (wake)
2310 		wake_up(&ci->i_cap_wq);
2311 	return reply;
2312 }
2313 
2314 /*
2315  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2316  * MDS has been safely committed.
2317  */
2318 static void handle_cap_flush_ack(struct inode *inode,
2319 				 struct ceph_mds_caps *m,
2320 				 struct ceph_mds_session *session,
2321 				 struct ceph_cap *cap)
2322 	__releases(inode->i_lock)
2323 {
2324 	struct ceph_inode_info *ci = ceph_inode(inode);
2325 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2326 	unsigned seq = le32_to_cpu(m->seq);
2327 	int dirty = le32_to_cpu(m->dirty);
2328 	int cleaned = 0;
2329 	u64 flush_tid = le64_to_cpu(m->client_tid);
2330 	int old_dirty = 0, new_dirty = 0;
2331 	int i;
2332 
2333 	for (i = 0; i < CEPH_CAP_BITS; i++)
2334 		if ((dirty & (1 << i)) &&
2335 		    flush_tid == ci->i_cap_flush_tid[i])
2336 			cleaned |= 1 << i;
2337 
2338 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2339 	     " flushing %s -> %s\n",
2340 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2341 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2342 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2343 
2344 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2345 		goto out;
2346 
2347 	old_dirty = ci->i_dirty_caps | ci->i_flushing_caps;
2348 	ci->i_flushing_caps &= ~cleaned;
2349 	new_dirty = ci->i_dirty_caps | ci->i_flushing_caps;
2350 
2351 	spin_lock(&mdsc->cap_dirty_lock);
2352 	if (ci->i_flushing_caps == 0) {
2353 		list_del_init(&ci->i_flushing_item);
2354 		if (!list_empty(&session->s_cap_flushing))
2355 			dout(" mds%d still flushing cap on %p\n",
2356 			     session->s_mds,
2357 			     &list_entry(session->s_cap_flushing.next,
2358 					 struct ceph_inode_info,
2359 					 i_flushing_item)->vfs_inode);
2360 		mdsc->num_cap_flushing--;
2361 		wake_up(&mdsc->cap_flushing_wq);
2362 		dout(" inode %p now !flushing\n", inode);
2363 	}
2364 	if (old_dirty && !new_dirty) {
2365 		dout(" inode %p now clean\n", inode);
2366 		list_del_init(&ci->i_dirty_item);
2367 	}
2368 	spin_unlock(&mdsc->cap_dirty_lock);
2369 	wake_up(&ci->i_cap_wq);
2370 
2371 out:
2372 	spin_unlock(&inode->i_lock);
2373 	if (old_dirty && !new_dirty)
2374 		iput(inode);
2375 }
2376 
2377 /*
2378  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2379  * throw away our cap_snap.
2380  *
2381  * Caller hold s_mutex.
2382  */
2383 static void handle_cap_flushsnap_ack(struct inode *inode,
2384 				     struct ceph_mds_caps *m,
2385 				     struct ceph_mds_session *session)
2386 {
2387 	struct ceph_inode_info *ci = ceph_inode(inode);
2388 	u64 follows = le64_to_cpu(m->snap_follows);
2389 	u64 flush_tid = le64_to_cpu(m->client_tid);
2390 	struct ceph_cap_snap *capsnap;
2391 	int drop = 0;
2392 
2393 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2394 	     inode, ci, session->s_mds, follows);
2395 
2396 	spin_lock(&inode->i_lock);
2397 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2398 		if (capsnap->follows == follows) {
2399 			if (capsnap->flush_tid != flush_tid) {
2400 				dout(" cap_snap %p follows %lld tid %lld !="
2401 				     " %lld\n", capsnap, follows,
2402 				     flush_tid, capsnap->flush_tid);
2403 				break;
2404 			}
2405 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2406 			dout(" removing cap_snap %p follows %lld\n",
2407 			     capsnap, follows);
2408 			ceph_put_snap_context(capsnap->context);
2409 			list_del(&capsnap->ci_item);
2410 			list_del(&capsnap->flushing_item);
2411 			ceph_put_cap_snap(capsnap);
2412 			drop = 1;
2413 			break;
2414 		} else {
2415 			dout(" skipping cap_snap %p follows %lld\n",
2416 			     capsnap, capsnap->follows);
2417 		}
2418 	}
2419 	spin_unlock(&inode->i_lock);
2420 	if (drop)
2421 		iput(inode);
2422 }
2423 
2424 /*
2425  * Handle TRUNC from MDS, indicating file truncation.
2426  *
2427  * caller hold s_mutex.
2428  */
2429 static void handle_cap_trunc(struct inode *inode,
2430 			     struct ceph_mds_caps *trunc,
2431 			     struct ceph_mds_session *session)
2432 	__releases(inode->i_lock)
2433 {
2434 	struct ceph_inode_info *ci = ceph_inode(inode);
2435 	int mds = session->s_mds;
2436 	int seq = le32_to_cpu(trunc->seq);
2437 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2438 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2439 	u64 size = le64_to_cpu(trunc->size);
2440 	int implemented = 0;
2441 	int dirty = __ceph_caps_dirty(ci);
2442 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2443 	int queue_trunc = 0;
2444 
2445 	issued |= implemented | dirty;
2446 
2447 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2448 	     inode, mds, seq, truncate_size, truncate_seq);
2449 	queue_trunc = ceph_fill_file_size(inode, issued,
2450 					  truncate_seq, truncate_size, size);
2451 	spin_unlock(&inode->i_lock);
2452 
2453 	if (queue_trunc)
2454 		if (queue_work(ceph_client(inode->i_sb)->trunc_wq,
2455 			       &ci->i_vmtruncate_work))
2456 			igrab(inode);
2457 }
2458 
2459 /*
2460  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2461  * different one.  If we are the most recent migration we've seen (as
2462  * indicated by mseq), make note of the migrating cap bits for the
2463  * duration (until we see the corresponding IMPORT).
2464  *
2465  * caller holds s_mutex
2466  */
2467 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2468 			      struct ceph_mds_session *session)
2469 {
2470 	struct ceph_inode_info *ci = ceph_inode(inode);
2471 	int mds = session->s_mds;
2472 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2473 	struct ceph_cap *cap = NULL, *t;
2474 	struct rb_node *p;
2475 	int remember = 1;
2476 
2477 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2478 	     inode, ci, mds, mseq);
2479 
2480 	spin_lock(&inode->i_lock);
2481 
2482 	/* make sure we haven't seen a higher mseq */
2483 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2484 		t = rb_entry(p, struct ceph_cap, ci_node);
2485 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2486 			dout(" higher mseq on cap from mds%d\n",
2487 			     t->session->s_mds);
2488 			remember = 0;
2489 		}
2490 		if (t->session->s_mds == mds)
2491 			cap = t;
2492 	}
2493 
2494 	if (cap) {
2495 		if (remember) {
2496 			/* make note */
2497 			ci->i_cap_exporting_mds = mds;
2498 			ci->i_cap_exporting_mseq = mseq;
2499 			ci->i_cap_exporting_issued = cap->issued;
2500 		}
2501 		__ceph_remove_cap(cap, NULL);
2502 	} else {
2503 		WARN_ON(!cap);
2504 	}
2505 
2506 	spin_unlock(&inode->i_lock);
2507 }
2508 
2509 /*
2510  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2511  * clean them up.
2512  *
2513  * caller holds s_mutex.
2514  */
2515 static void handle_cap_import(struct ceph_mds_client *mdsc,
2516 			      struct inode *inode, struct ceph_mds_caps *im,
2517 			      struct ceph_mds_session *session,
2518 			      void *snaptrace, int snaptrace_len)
2519 {
2520 	struct ceph_inode_info *ci = ceph_inode(inode);
2521 	int mds = session->s_mds;
2522 	unsigned issued = le32_to_cpu(im->caps);
2523 	unsigned wanted = le32_to_cpu(im->wanted);
2524 	unsigned seq = le32_to_cpu(im->seq);
2525 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2526 	u64 realmino = le64_to_cpu(im->realm);
2527 	u64 cap_id = le64_to_cpu(im->cap_id);
2528 
2529 	if (ci->i_cap_exporting_mds >= 0 &&
2530 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2531 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2532 		     " - cleared exporting from mds%d\n",
2533 		     inode, ci, mds, mseq,
2534 		     ci->i_cap_exporting_mds);
2535 		ci->i_cap_exporting_issued = 0;
2536 		ci->i_cap_exporting_mseq = 0;
2537 		ci->i_cap_exporting_mds = -1;
2538 	} else {
2539 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2540 		     inode, ci, mds, mseq);
2541 	}
2542 
2543 	down_write(&mdsc->snap_rwsem);
2544 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2545 			       false);
2546 	downgrade_write(&mdsc->snap_rwsem);
2547 	ceph_add_cap(inode, session, cap_id, -1,
2548 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2549 		     NULL /* no caps context */);
2550 	try_flush_caps(inode, session, NULL);
2551 	up_read(&mdsc->snap_rwsem);
2552 }
2553 
2554 /*
2555  * Handle a caps message from the MDS.
2556  *
2557  * Identify the appropriate session, inode, and call the right handler
2558  * based on the cap op.
2559  */
2560 void ceph_handle_caps(struct ceph_mds_session *session,
2561 		      struct ceph_msg *msg)
2562 {
2563 	struct ceph_mds_client *mdsc = session->s_mdsc;
2564 	struct super_block *sb = mdsc->client->sb;
2565 	struct inode *inode;
2566 	struct ceph_cap *cap;
2567 	struct ceph_mds_caps *h;
2568 	int mds = le64_to_cpu(msg->hdr.src.name.num);
2569 	int op;
2570 	u32 seq;
2571 	struct ceph_vino vino;
2572 	u64 cap_id;
2573 	u64 size, max_size;
2574 	int check_caps = 0;
2575 	int r;
2576 
2577 	dout("handle_caps from mds%d\n", mds);
2578 
2579 	/* decode */
2580 	if (msg->front.iov_len < sizeof(*h))
2581 		goto bad;
2582 	h = msg->front.iov_base;
2583 	op = le32_to_cpu(h->op);
2584 	vino.ino = le64_to_cpu(h->ino);
2585 	vino.snap = CEPH_NOSNAP;
2586 	cap_id = le64_to_cpu(h->cap_id);
2587 	seq = le32_to_cpu(h->seq);
2588 	size = le64_to_cpu(h->size);
2589 	max_size = le64_to_cpu(h->max_size);
2590 
2591 	mutex_lock(&session->s_mutex);
2592 	session->s_seq++;
2593 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2594 	     (unsigned)seq);
2595 
2596 	/* lookup ino */
2597 	inode = ceph_find_inode(sb, vino);
2598 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2599 	     vino.snap, inode);
2600 	if (!inode) {
2601 		dout(" i don't have ino %llx\n", vino.ino);
2602 		goto done;
2603 	}
2604 
2605 	/* these will work even if we don't have a cap yet */
2606 	switch (op) {
2607 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2608 		handle_cap_flushsnap_ack(inode, h, session);
2609 		goto done;
2610 
2611 	case CEPH_CAP_OP_EXPORT:
2612 		handle_cap_export(inode, h, session);
2613 		goto done;
2614 
2615 	case CEPH_CAP_OP_IMPORT:
2616 		handle_cap_import(mdsc, inode, h, session,
2617 				  msg->middle,
2618 				  le32_to_cpu(h->snap_trace_len));
2619 		check_caps = 1; /* we may have sent a RELEASE to the old auth */
2620 		goto done;
2621 	}
2622 
2623 	/* the rest require a cap */
2624 	spin_lock(&inode->i_lock);
2625 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2626 	if (!cap) {
2627 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2628 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2629 		spin_unlock(&inode->i_lock);
2630 		goto done;
2631 	}
2632 
2633 	/* note that each of these drops i_lock for us */
2634 	switch (op) {
2635 	case CEPH_CAP_OP_REVOKE:
2636 	case CEPH_CAP_OP_GRANT:
2637 		r = handle_cap_grant(inode, h, session, cap, msg->middle);
2638 		if (r == 1)
2639 			ceph_check_caps(ceph_inode(inode),
2640 					CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2641 					session);
2642 		else if (r == 2)
2643 			ceph_check_caps(ceph_inode(inode),
2644 					CHECK_CAPS_NODELAY,
2645 					session);
2646 		break;
2647 
2648 	case CEPH_CAP_OP_FLUSH_ACK:
2649 		handle_cap_flush_ack(inode, h, session, cap);
2650 		break;
2651 
2652 	case CEPH_CAP_OP_TRUNC:
2653 		handle_cap_trunc(inode, h, session);
2654 		break;
2655 
2656 	default:
2657 		spin_unlock(&inode->i_lock);
2658 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2659 		       ceph_cap_op_name(op));
2660 	}
2661 
2662 done:
2663 	mutex_unlock(&session->s_mutex);
2664 
2665 	if (check_caps)
2666 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2667 	if (inode)
2668 		iput(inode);
2669 	return;
2670 
2671 bad:
2672 	pr_err("ceph_handle_caps: corrupt message\n");
2673 	return;
2674 }
2675 
2676 /*
2677  * Delayed work handler to process end of delayed cap release LRU list.
2678  */
2679 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc, int flushdirty)
2680 {
2681 	struct ceph_inode_info *ci;
2682 	int flags = CHECK_CAPS_NODELAY;
2683 
2684 	if (flushdirty)
2685 		flags |= CHECK_CAPS_FLUSH;
2686 
2687 	dout("check_delayed_caps\n");
2688 	while (1) {
2689 		spin_lock(&mdsc->cap_delay_lock);
2690 		if (list_empty(&mdsc->cap_delay_list))
2691 			break;
2692 		ci = list_first_entry(&mdsc->cap_delay_list,
2693 				      struct ceph_inode_info,
2694 				      i_cap_delay_list);
2695 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2696 		    time_before(jiffies, ci->i_hold_caps_max))
2697 			break;
2698 		list_del_init(&ci->i_cap_delay_list);
2699 		spin_unlock(&mdsc->cap_delay_lock);
2700 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2701 		ceph_check_caps(ci, flags, NULL);
2702 	}
2703 	spin_unlock(&mdsc->cap_delay_lock);
2704 }
2705 
2706 /*
2707  * Drop open file reference.  If we were the last open file,
2708  * we may need to release capabilities to the MDS (or schedule
2709  * their delayed release).
2710  */
2711 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2712 {
2713 	struct inode *inode = &ci->vfs_inode;
2714 	int last = 0;
2715 
2716 	spin_lock(&inode->i_lock);
2717 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2718 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2719 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2720 	if (--ci->i_nr_by_mode[fmode] == 0)
2721 		last++;
2722 	spin_unlock(&inode->i_lock);
2723 
2724 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2725 		ceph_check_caps(ci, 0, NULL);
2726 }
2727 
2728 /*
2729  * Helpers for embedding cap and dentry lease releases into mds
2730  * requests.
2731  *
2732  * @force is used by dentry_release (below) to force inclusion of a
2733  * record for the directory inode, even when there aren't any caps to
2734  * drop.
2735  */
2736 int ceph_encode_inode_release(void **p, struct inode *inode,
2737 			      int mds, int drop, int unless, int force)
2738 {
2739 	struct ceph_inode_info *ci = ceph_inode(inode);
2740 	struct ceph_cap *cap;
2741 	struct ceph_mds_request_release *rel = *p;
2742 	int ret = 0;
2743 
2744 	dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2745 	     mds, ceph_cap_string(drop), ceph_cap_string(unless));
2746 
2747 	spin_lock(&inode->i_lock);
2748 	cap = __get_cap_for_mds(ci, mds);
2749 	if (cap && __cap_is_valid(cap)) {
2750 		if (force ||
2751 		    ((cap->issued & drop) &&
2752 		     (cap->issued & unless) == 0)) {
2753 			if ((cap->issued & drop) &&
2754 			    (cap->issued & unless) == 0) {
2755 				dout("encode_inode_release %p cap %p %s -> "
2756 				     "%s\n", inode, cap,
2757 				     ceph_cap_string(cap->issued),
2758 				     ceph_cap_string(cap->issued & ~drop));
2759 				cap->issued &= ~drop;
2760 				cap->implemented &= ~drop;
2761 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2762 					int wanted = __ceph_caps_wanted(ci);
2763 					dout("  wanted %s -> %s (act %s)\n",
2764 					     ceph_cap_string(cap->mds_wanted),
2765 					     ceph_cap_string(cap->mds_wanted &
2766 							     ~wanted),
2767 					     ceph_cap_string(wanted));
2768 					cap->mds_wanted &= wanted;
2769 				}
2770 			} else {
2771 				dout("encode_inode_release %p cap %p %s"
2772 				     " (force)\n", inode, cap,
2773 				     ceph_cap_string(cap->issued));
2774 			}
2775 
2776 			rel->ino = cpu_to_le64(ceph_ino(inode));
2777 			rel->cap_id = cpu_to_le64(cap->cap_id);
2778 			rel->seq = cpu_to_le32(cap->seq);
2779 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2780 			rel->mseq = cpu_to_le32(cap->mseq);
2781 			rel->caps = cpu_to_le32(cap->issued);
2782 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2783 			rel->dname_len = 0;
2784 			rel->dname_seq = 0;
2785 			*p += sizeof(*rel);
2786 			ret = 1;
2787 		} else {
2788 			dout("encode_inode_release %p cap %p %s\n",
2789 			     inode, cap, ceph_cap_string(cap->issued));
2790 		}
2791 	}
2792 	spin_unlock(&inode->i_lock);
2793 	return ret;
2794 }
2795 
2796 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2797 			       int mds, int drop, int unless)
2798 {
2799 	struct inode *dir = dentry->d_parent->d_inode;
2800 	struct ceph_mds_request_release *rel = *p;
2801 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2802 	int force = 0;
2803 	int ret;
2804 
2805 	/*
2806 	 * force an record for the directory caps if we have a dentry lease.
2807 	 * this is racy (can't take i_lock and d_lock together), but it
2808 	 * doesn't have to be perfect; the mds will revoke anything we don't
2809 	 * release.
2810 	 */
2811 	spin_lock(&dentry->d_lock);
2812 	if (di->lease_session && di->lease_session->s_mds == mds)
2813 		force = 1;
2814 	spin_unlock(&dentry->d_lock);
2815 
2816 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2817 
2818 	spin_lock(&dentry->d_lock);
2819 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2820 		dout("encode_dentry_release %p mds%d seq %d\n",
2821 		     dentry, mds, (int)di->lease_seq);
2822 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2823 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2824 		*p += dentry->d_name.len;
2825 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2826 	}
2827 	spin_unlock(&dentry->d_lock);
2828 	return ret;
2829 }
2830