1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/vmalloc.h> 7 #include <linux/wait.h> 8 9 #include "super.h" 10 #include "decode.h" 11 #include "messenger.h" 12 13 /* 14 * Capability management 15 * 16 * The Ceph metadata servers control client access to inode metadata 17 * and file data by issuing capabilities, granting clients permission 18 * to read and/or write both inode field and file data to OSDs 19 * (storage nodes). Each capability consists of a set of bits 20 * indicating which operations are allowed. 21 * 22 * If the client holds a *_SHARED cap, the client has a coherent value 23 * that can be safely read from the cached inode. 24 * 25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 26 * client is allowed to change inode attributes (e.g., file size, 27 * mtime), note its dirty state in the ceph_cap, and asynchronously 28 * flush that metadata change to the MDS. 29 * 30 * In the event of a conflicting operation (perhaps by another 31 * client), the MDS will revoke the conflicting client capabilities. 32 * 33 * In order for a client to cache an inode, it must hold a capability 34 * with at least one MDS server. When inodes are released, release 35 * notifications are batched and periodically sent en masse to the MDS 36 * cluster to release server state. 37 */ 38 39 40 /* 41 * Generate readable cap strings for debugging output. 42 */ 43 #define MAX_CAP_STR 20 44 static char cap_str[MAX_CAP_STR][40]; 45 static DEFINE_SPINLOCK(cap_str_lock); 46 static int last_cap_str; 47 48 static char *gcap_string(char *s, int c) 49 { 50 if (c & CEPH_CAP_GSHARED) 51 *s++ = 's'; 52 if (c & CEPH_CAP_GEXCL) 53 *s++ = 'x'; 54 if (c & CEPH_CAP_GCACHE) 55 *s++ = 'c'; 56 if (c & CEPH_CAP_GRD) 57 *s++ = 'r'; 58 if (c & CEPH_CAP_GWR) 59 *s++ = 'w'; 60 if (c & CEPH_CAP_GBUFFER) 61 *s++ = 'b'; 62 if (c & CEPH_CAP_GLAZYIO) 63 *s++ = 'l'; 64 return s; 65 } 66 67 const char *ceph_cap_string(int caps) 68 { 69 int i; 70 char *s; 71 int c; 72 73 spin_lock(&cap_str_lock); 74 i = last_cap_str++; 75 if (last_cap_str == MAX_CAP_STR) 76 last_cap_str = 0; 77 spin_unlock(&cap_str_lock); 78 79 s = cap_str[i]; 80 81 if (caps & CEPH_CAP_PIN) 82 *s++ = 'p'; 83 84 c = (caps >> CEPH_CAP_SAUTH) & 3; 85 if (c) { 86 *s++ = 'A'; 87 s = gcap_string(s, c); 88 } 89 90 c = (caps >> CEPH_CAP_SLINK) & 3; 91 if (c) { 92 *s++ = 'L'; 93 s = gcap_string(s, c); 94 } 95 96 c = (caps >> CEPH_CAP_SXATTR) & 3; 97 if (c) { 98 *s++ = 'X'; 99 s = gcap_string(s, c); 100 } 101 102 c = caps >> CEPH_CAP_SFILE; 103 if (c) { 104 *s++ = 'F'; 105 s = gcap_string(s, c); 106 } 107 108 if (s == cap_str[i]) 109 *s++ = '-'; 110 *s = 0; 111 return cap_str[i]; 112 } 113 114 /* 115 * Cap reservations 116 * 117 * Maintain a global pool of preallocated struct ceph_caps, referenced 118 * by struct ceph_caps_reservations. This ensures that we preallocate 119 * memory needed to successfully process an MDS response. (If an MDS 120 * sends us cap information and we fail to process it, we will have 121 * problems due to the client and MDS being out of sync.) 122 * 123 * Reservations are 'owned' by a ceph_cap_reservation context. 124 */ 125 static spinlock_t caps_list_lock; 126 static struct list_head caps_list; /* unused (reserved or unreserved) */ 127 static int caps_total_count; /* total caps allocated */ 128 static int caps_use_count; /* in use */ 129 static int caps_reserve_count; /* unused, reserved */ 130 static int caps_avail_count; /* unused, unreserved */ 131 132 void __init ceph_caps_init(void) 133 { 134 INIT_LIST_HEAD(&caps_list); 135 spin_lock_init(&caps_list_lock); 136 } 137 138 void ceph_caps_finalize(void) 139 { 140 struct ceph_cap *cap; 141 142 spin_lock(&caps_list_lock); 143 while (!list_empty(&caps_list)) { 144 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 145 list_del(&cap->caps_item); 146 kmem_cache_free(ceph_cap_cachep, cap); 147 } 148 caps_total_count = 0; 149 caps_avail_count = 0; 150 caps_use_count = 0; 151 caps_reserve_count = 0; 152 spin_unlock(&caps_list_lock); 153 } 154 155 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 156 { 157 int i; 158 struct ceph_cap *cap; 159 int have; 160 int alloc = 0; 161 LIST_HEAD(newcaps); 162 int ret = 0; 163 164 dout("reserve caps ctx=%p need=%d\n", ctx, need); 165 166 /* first reserve any caps that are already allocated */ 167 spin_lock(&caps_list_lock); 168 if (caps_avail_count >= need) 169 have = need; 170 else 171 have = caps_avail_count; 172 caps_avail_count -= have; 173 caps_reserve_count += have; 174 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 175 caps_avail_count); 176 spin_unlock(&caps_list_lock); 177 178 for (i = have; i < need; i++) { 179 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 180 if (!cap) { 181 ret = -ENOMEM; 182 goto out_alloc_count; 183 } 184 list_add(&cap->caps_item, &newcaps); 185 alloc++; 186 } 187 BUG_ON(have + alloc != need); 188 189 spin_lock(&caps_list_lock); 190 caps_total_count += alloc; 191 caps_reserve_count += alloc; 192 list_splice(&newcaps, &caps_list); 193 194 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 195 caps_avail_count); 196 spin_unlock(&caps_list_lock); 197 198 ctx->count = need; 199 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 200 ctx, caps_total_count, caps_use_count, caps_reserve_count, 201 caps_avail_count); 202 return 0; 203 204 out_alloc_count: 205 /* we didn't manage to reserve as much as we needed */ 206 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 207 ctx, need, have); 208 return ret; 209 } 210 211 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 212 { 213 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 214 if (ctx->count) { 215 spin_lock(&caps_list_lock); 216 BUG_ON(caps_reserve_count < ctx->count); 217 caps_reserve_count -= ctx->count; 218 caps_avail_count += ctx->count; 219 ctx->count = 0; 220 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 221 caps_total_count, caps_use_count, caps_reserve_count, 222 caps_avail_count); 223 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 224 caps_avail_count); 225 spin_unlock(&caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 231 { 232 struct ceph_cap *cap = NULL; 233 234 /* temporary, until we do something about cap import/export */ 235 if (!ctx) 236 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 237 238 spin_lock(&caps_list_lock); 239 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 240 ctx, ctx->count, caps_total_count, caps_use_count, 241 caps_reserve_count, caps_avail_count); 242 BUG_ON(!ctx->count); 243 BUG_ON(ctx->count > caps_reserve_count); 244 BUG_ON(list_empty(&caps_list)); 245 246 ctx->count--; 247 caps_reserve_count--; 248 caps_use_count++; 249 250 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 251 list_del(&cap->caps_item); 252 253 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 254 caps_avail_count); 255 spin_unlock(&caps_list_lock); 256 return cap; 257 } 258 259 static void put_cap(struct ceph_cap *cap, 260 struct ceph_cap_reservation *ctx) 261 { 262 spin_lock(&caps_list_lock); 263 dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 264 ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count, 265 caps_reserve_count, caps_avail_count); 266 caps_use_count--; 267 /* 268 * Keep some preallocated caps around, at least enough to do a 269 * readdir (which needs to preallocate lots of them), to avoid 270 * lots of free/alloc churn. 271 */ 272 if (caps_avail_count >= caps_reserve_count + 273 ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) { 274 caps_total_count--; 275 kmem_cache_free(ceph_cap_cachep, cap); 276 } else { 277 if (ctx) { 278 ctx->count++; 279 caps_reserve_count++; 280 } else { 281 caps_avail_count++; 282 } 283 list_add(&cap->caps_item, &caps_list); 284 } 285 286 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 287 caps_avail_count); 288 spin_unlock(&caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_client *client, 292 int *total, int *avail, int *used, int *reserved) 293 { 294 if (total) 295 *total = caps_total_count; 296 if (avail) 297 *avail = caps_avail_count; 298 if (used) 299 *used = caps_use_count; 300 if (reserved) 301 *reserved = caps_reserve_count; 302 } 303 304 /* 305 * Find ceph_cap for given mds, if any. 306 * 307 * Called with i_lock held. 308 */ 309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 310 { 311 struct ceph_cap *cap; 312 struct rb_node *n = ci->i_caps.rb_node; 313 314 while (n) { 315 cap = rb_entry(n, struct ceph_cap, ci_node); 316 if (mds < cap->mds) 317 n = n->rb_left; 318 else if (mds > cap->mds) 319 n = n->rb_right; 320 else 321 return cap; 322 } 323 return NULL; 324 } 325 326 /* 327 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 328 * -1. 329 */ 330 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 331 { 332 struct ceph_cap *cap; 333 int mds = -1; 334 struct rb_node *p; 335 336 /* prefer mds with WR|WRBUFFER|EXCL caps */ 337 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 338 cap = rb_entry(p, struct ceph_cap, ci_node); 339 mds = cap->mds; 340 if (mseq) 341 *mseq = cap->mseq; 342 if (cap->issued & (CEPH_CAP_FILE_WR | 343 CEPH_CAP_FILE_BUFFER | 344 CEPH_CAP_FILE_EXCL)) 345 break; 346 } 347 return mds; 348 } 349 350 int ceph_get_cap_mds(struct inode *inode) 351 { 352 int mds; 353 spin_lock(&inode->i_lock); 354 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 355 spin_unlock(&inode->i_lock); 356 return mds; 357 } 358 359 /* 360 * Called under i_lock. 361 */ 362 static void __insert_cap_node(struct ceph_inode_info *ci, 363 struct ceph_cap *new) 364 { 365 struct rb_node **p = &ci->i_caps.rb_node; 366 struct rb_node *parent = NULL; 367 struct ceph_cap *cap = NULL; 368 369 while (*p) { 370 parent = *p; 371 cap = rb_entry(parent, struct ceph_cap, ci_node); 372 if (new->mds < cap->mds) 373 p = &(*p)->rb_left; 374 else if (new->mds > cap->mds) 375 p = &(*p)->rb_right; 376 else 377 BUG(); 378 } 379 380 rb_link_node(&new->ci_node, parent, p); 381 rb_insert_color(&new->ci_node, &ci->i_caps); 382 } 383 384 /* 385 * (re)set cap hold timeouts, which control the delayed release 386 * of unused caps back to the MDS. Should be called on cap use. 387 */ 388 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 389 struct ceph_inode_info *ci) 390 { 391 struct ceph_mount_args *ma = mdsc->client->mount_args; 392 393 ci->i_hold_caps_min = round_jiffies(jiffies + 394 ma->caps_wanted_delay_min * HZ); 395 ci->i_hold_caps_max = round_jiffies(jiffies + 396 ma->caps_wanted_delay_max * HZ); 397 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 398 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 399 } 400 401 /* 402 * (Re)queue cap at the end of the delayed cap release list. 403 * 404 * If I_FLUSH is set, leave the inode at the front of the list. 405 * 406 * Caller holds i_lock 407 * -> we take mdsc->cap_delay_lock 408 */ 409 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 410 struct ceph_inode_info *ci) 411 { 412 __cap_set_timeouts(mdsc, ci); 413 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 414 ci->i_ceph_flags, ci->i_hold_caps_max); 415 if (!mdsc->stopping) { 416 spin_lock(&mdsc->cap_delay_lock); 417 if (!list_empty(&ci->i_cap_delay_list)) { 418 if (ci->i_ceph_flags & CEPH_I_FLUSH) 419 goto no_change; 420 list_del_init(&ci->i_cap_delay_list); 421 } 422 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 423 no_change: 424 spin_unlock(&mdsc->cap_delay_lock); 425 } 426 } 427 428 /* 429 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 430 * indicating we should send a cap message to flush dirty metadata 431 * asap, and move to the front of the delayed cap list. 432 */ 433 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 434 struct ceph_inode_info *ci) 435 { 436 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 437 spin_lock(&mdsc->cap_delay_lock); 438 ci->i_ceph_flags |= CEPH_I_FLUSH; 439 if (!list_empty(&ci->i_cap_delay_list)) 440 list_del_init(&ci->i_cap_delay_list); 441 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 442 spin_unlock(&mdsc->cap_delay_lock); 443 } 444 445 /* 446 * Cancel delayed work on cap. 447 * 448 * Caller must hold i_lock. 449 */ 450 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 451 struct ceph_inode_info *ci) 452 { 453 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 454 if (list_empty(&ci->i_cap_delay_list)) 455 return; 456 spin_lock(&mdsc->cap_delay_lock); 457 list_del_init(&ci->i_cap_delay_list); 458 spin_unlock(&mdsc->cap_delay_lock); 459 } 460 461 /* 462 * Common issue checks for add_cap, handle_cap_grant. 463 */ 464 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 465 unsigned issued) 466 { 467 unsigned had = __ceph_caps_issued(ci, NULL); 468 469 /* 470 * Each time we receive FILE_CACHE anew, we increment 471 * i_rdcache_gen. 472 */ 473 if ((issued & CEPH_CAP_FILE_CACHE) && 474 (had & CEPH_CAP_FILE_CACHE) == 0) 475 ci->i_rdcache_gen++; 476 477 /* 478 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 479 * don't know what happened to this directory while we didn't 480 * have the cap. 481 */ 482 if ((issued & CEPH_CAP_FILE_SHARED) && 483 (had & CEPH_CAP_FILE_SHARED) == 0) { 484 ci->i_shared_gen++; 485 if (S_ISDIR(ci->vfs_inode.i_mode)) { 486 dout(" marking %p NOT complete\n", &ci->vfs_inode); 487 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 488 } 489 } 490 } 491 492 /* 493 * Add a capability under the given MDS session. 494 * 495 * Caller should hold session snap_rwsem (read) and s_mutex. 496 * 497 * @fmode is the open file mode, if we are opening a file, otherwise 498 * it is < 0. (This is so we can atomically add the cap and add an 499 * open file reference to it.) 500 */ 501 int ceph_add_cap(struct inode *inode, 502 struct ceph_mds_session *session, u64 cap_id, 503 int fmode, unsigned issued, unsigned wanted, 504 unsigned seq, unsigned mseq, u64 realmino, int flags, 505 struct ceph_cap_reservation *caps_reservation) 506 { 507 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 508 struct ceph_inode_info *ci = ceph_inode(inode); 509 struct ceph_cap *new_cap = NULL; 510 struct ceph_cap *cap; 511 int mds = session->s_mds; 512 int actual_wanted; 513 514 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 515 session->s_mds, cap_id, ceph_cap_string(issued), seq); 516 517 /* 518 * If we are opening the file, include file mode wanted bits 519 * in wanted. 520 */ 521 if (fmode >= 0) 522 wanted |= ceph_caps_for_mode(fmode); 523 524 retry: 525 spin_lock(&inode->i_lock); 526 cap = __get_cap_for_mds(ci, mds); 527 if (!cap) { 528 if (new_cap) { 529 cap = new_cap; 530 new_cap = NULL; 531 } else { 532 spin_unlock(&inode->i_lock); 533 new_cap = get_cap(caps_reservation); 534 if (new_cap == NULL) 535 return -ENOMEM; 536 goto retry; 537 } 538 539 cap->issued = 0; 540 cap->implemented = 0; 541 cap->mds = mds; 542 cap->mds_wanted = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* clear out old exporting info? (i.e. on cap import) */ 548 if (ci->i_cap_exporting_mds == mds) { 549 ci->i_cap_exporting_issued = 0; 550 ci->i_cap_exporting_mseq = 0; 551 ci->i_cap_exporting_mds = -1; 552 } 553 554 /* add to session cap list */ 555 cap->session = session; 556 spin_lock(&session->s_cap_lock); 557 list_add_tail(&cap->session_caps, &session->s_caps); 558 session->s_nr_caps++; 559 spin_unlock(&session->s_cap_lock); 560 } 561 562 if (!ci->i_snap_realm) { 563 /* 564 * add this inode to the appropriate snap realm 565 */ 566 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 567 realmino); 568 if (realm) { 569 ceph_get_snap_realm(mdsc, realm); 570 spin_lock(&realm->inodes_with_caps_lock); 571 ci->i_snap_realm = realm; 572 list_add(&ci->i_snap_realm_item, 573 &realm->inodes_with_caps); 574 spin_unlock(&realm->inodes_with_caps_lock); 575 } else { 576 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 577 realmino); 578 } 579 } 580 581 __check_cap_issue(ci, cap, issued); 582 583 /* 584 * If we are issued caps we don't want, or the mds' wanted 585 * value appears to be off, queue a check so we'll release 586 * later and/or update the mds wanted value. 587 */ 588 actual_wanted = __ceph_caps_wanted(ci); 589 if ((wanted & ~actual_wanted) || 590 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 591 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 592 ceph_cap_string(issued), ceph_cap_string(wanted), 593 ceph_cap_string(actual_wanted)); 594 __cap_delay_requeue(mdsc, ci); 595 } 596 597 if (flags & CEPH_CAP_FLAG_AUTH) 598 ci->i_auth_cap = cap; 599 else if (ci->i_auth_cap == cap) 600 ci->i_auth_cap = NULL; 601 602 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 603 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 604 ceph_cap_string(issued|cap->issued), seq, mds); 605 cap->cap_id = cap_id; 606 cap->issued = issued; 607 cap->implemented |= issued; 608 cap->mds_wanted |= wanted; 609 cap->seq = seq; 610 cap->issue_seq = seq; 611 cap->mseq = mseq; 612 cap->cap_gen = session->s_cap_gen; 613 614 if (fmode >= 0) 615 __ceph_get_fmode(ci, fmode); 616 spin_unlock(&inode->i_lock); 617 wake_up(&ci->i_cap_wq); 618 return 0; 619 } 620 621 /* 622 * Return true if cap has not timed out and belongs to the current 623 * generation of the MDS session (i.e. has not gone 'stale' due to 624 * us losing touch with the mds). 625 */ 626 static int __cap_is_valid(struct ceph_cap *cap) 627 { 628 unsigned long ttl; 629 u32 gen; 630 631 spin_lock(&cap->session->s_cap_lock); 632 gen = cap->session->s_cap_gen; 633 ttl = cap->session->s_cap_ttl; 634 spin_unlock(&cap->session->s_cap_lock); 635 636 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 637 dout("__cap_is_valid %p cap %p issued %s " 638 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 639 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 640 return 0; 641 } 642 643 return 1; 644 } 645 646 /* 647 * Return set of valid cap bits issued to us. Note that caps time 648 * out, and may be invalidated in bulk if the client session times out 649 * and session->s_cap_gen is bumped. 650 */ 651 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 652 { 653 int have = ci->i_snap_caps; 654 struct ceph_cap *cap; 655 struct rb_node *p; 656 657 if (implemented) 658 *implemented = 0; 659 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 660 cap = rb_entry(p, struct ceph_cap, ci_node); 661 if (!__cap_is_valid(cap)) 662 continue; 663 dout("__ceph_caps_issued %p cap %p issued %s\n", 664 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 665 have |= cap->issued; 666 if (implemented) 667 *implemented |= cap->implemented; 668 } 669 return have; 670 } 671 672 /* 673 * Get cap bits issued by caps other than @ocap 674 */ 675 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 676 { 677 int have = ci->i_snap_caps; 678 struct ceph_cap *cap; 679 struct rb_node *p; 680 681 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 682 cap = rb_entry(p, struct ceph_cap, ci_node); 683 if (cap == ocap) 684 continue; 685 if (!__cap_is_valid(cap)) 686 continue; 687 have |= cap->issued; 688 } 689 return have; 690 } 691 692 /* 693 * Move a cap to the end of the LRU (oldest caps at list head, newest 694 * at list tail). 695 */ 696 static void __touch_cap(struct ceph_cap *cap) 697 { 698 struct ceph_mds_session *s = cap->session; 699 700 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 701 s->s_mds); 702 spin_lock(&s->s_cap_lock); 703 list_move_tail(&cap->session_caps, &s->s_caps); 704 spin_unlock(&s->s_cap_lock); 705 } 706 707 /* 708 * Check if we hold the given mask. If so, move the cap(s) to the 709 * front of their respective LRUs. (This is the preferred way for 710 * callers to check for caps they want.) 711 */ 712 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 713 { 714 struct ceph_cap *cap; 715 struct rb_node *p; 716 int have = ci->i_snap_caps; 717 718 if ((have & mask) == mask) { 719 dout("__ceph_caps_issued_mask %p snap issued %s" 720 " (mask %s)\n", &ci->vfs_inode, 721 ceph_cap_string(have), 722 ceph_cap_string(mask)); 723 return 1; 724 } 725 726 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 727 cap = rb_entry(p, struct ceph_cap, ci_node); 728 if (!__cap_is_valid(cap)) 729 continue; 730 if ((cap->issued & mask) == mask) { 731 dout("__ceph_caps_issued_mask %p cap %p issued %s" 732 " (mask %s)\n", &ci->vfs_inode, cap, 733 ceph_cap_string(cap->issued), 734 ceph_cap_string(mask)); 735 if (touch) 736 __touch_cap(cap); 737 return 1; 738 } 739 740 /* does a combination of caps satisfy mask? */ 741 have |= cap->issued; 742 if ((have & mask) == mask) { 743 dout("__ceph_caps_issued_mask %p combo issued %s" 744 " (mask %s)\n", &ci->vfs_inode, 745 ceph_cap_string(cap->issued), 746 ceph_cap_string(mask)); 747 if (touch) { 748 struct rb_node *q; 749 750 /* touch this + preceeding caps */ 751 __touch_cap(cap); 752 for (q = rb_first(&ci->i_caps); q != p; 753 q = rb_next(q)) { 754 cap = rb_entry(q, struct ceph_cap, 755 ci_node); 756 if (!__cap_is_valid(cap)) 757 continue; 758 __touch_cap(cap); 759 } 760 } 761 return 1; 762 } 763 } 764 765 return 0; 766 } 767 768 /* 769 * Return true if mask caps are currently being revoked by an MDS. 770 */ 771 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 772 { 773 struct inode *inode = &ci->vfs_inode; 774 struct ceph_cap *cap; 775 struct rb_node *p; 776 int ret = 0; 777 778 spin_lock(&inode->i_lock); 779 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 780 cap = rb_entry(p, struct ceph_cap, ci_node); 781 if (__cap_is_valid(cap) && 782 (cap->implemented & ~cap->issued & mask)) { 783 ret = 1; 784 break; 785 } 786 } 787 spin_unlock(&inode->i_lock); 788 dout("ceph_caps_revoking %p %s = %d\n", inode, 789 ceph_cap_string(mask), ret); 790 return ret; 791 } 792 793 int __ceph_caps_used(struct ceph_inode_info *ci) 794 { 795 int used = 0; 796 if (ci->i_pin_ref) 797 used |= CEPH_CAP_PIN; 798 if (ci->i_rd_ref) 799 used |= CEPH_CAP_FILE_RD; 800 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 801 used |= CEPH_CAP_FILE_CACHE; 802 if (ci->i_wr_ref) 803 used |= CEPH_CAP_FILE_WR; 804 if (ci->i_wrbuffer_ref) 805 used |= CEPH_CAP_FILE_BUFFER; 806 return used; 807 } 808 809 /* 810 * wanted, by virtue of open file modes 811 */ 812 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 813 { 814 int want = 0; 815 int mode; 816 for (mode = 0; mode < 4; mode++) 817 if (ci->i_nr_by_mode[mode]) 818 want |= ceph_caps_for_mode(mode); 819 return want; 820 } 821 822 /* 823 * Return caps we have registered with the MDS(s) as 'wanted'. 824 */ 825 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 826 { 827 struct ceph_cap *cap; 828 struct rb_node *p; 829 int mds_wanted = 0; 830 831 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 832 cap = rb_entry(p, struct ceph_cap, ci_node); 833 if (!__cap_is_valid(cap)) 834 continue; 835 mds_wanted |= cap->mds_wanted; 836 } 837 return mds_wanted; 838 } 839 840 /* 841 * called under i_lock 842 */ 843 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 844 { 845 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 846 } 847 848 /* 849 * caller should hold i_lock, and session s_mutex. 850 * returns true if this is the last cap. if so, caller should iput. 851 */ 852 void __ceph_remove_cap(struct ceph_cap *cap, 853 struct ceph_cap_reservation *ctx) 854 { 855 struct ceph_mds_session *session = cap->session; 856 struct ceph_inode_info *ci = cap->ci; 857 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 858 859 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 860 861 /* remove from session list */ 862 spin_lock(&session->s_cap_lock); 863 list_del_init(&cap->session_caps); 864 session->s_nr_caps--; 865 spin_unlock(&session->s_cap_lock); 866 867 /* remove from inode list */ 868 rb_erase(&cap->ci_node, &ci->i_caps); 869 cap->session = NULL; 870 if (ci->i_auth_cap == cap) 871 ci->i_auth_cap = NULL; 872 873 put_cap(cap, ctx); 874 875 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 876 struct ceph_snap_realm *realm = ci->i_snap_realm; 877 spin_lock(&realm->inodes_with_caps_lock); 878 list_del_init(&ci->i_snap_realm_item); 879 ci->i_snap_realm_counter++; 880 ci->i_snap_realm = NULL; 881 spin_unlock(&realm->inodes_with_caps_lock); 882 ceph_put_snap_realm(mdsc, realm); 883 } 884 if (!__ceph_is_any_real_caps(ci)) 885 __cap_delay_cancel(mdsc, ci); 886 } 887 888 /* 889 * Build and send a cap message to the given MDS. 890 * 891 * Caller should be holding s_mutex. 892 */ 893 static int send_cap_msg(struct ceph_mds_session *session, 894 u64 ino, u64 cid, int op, 895 int caps, int wanted, int dirty, 896 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 897 u64 size, u64 max_size, 898 struct timespec *mtime, struct timespec *atime, 899 u64 time_warp_seq, 900 uid_t uid, gid_t gid, mode_t mode, 901 u64 xattr_version, 902 struct ceph_buffer *xattrs_buf, 903 u64 follows) 904 { 905 struct ceph_mds_caps *fc; 906 struct ceph_msg *msg; 907 908 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 909 " seq %u/%u mseq %u follows %lld size %llu/%llu" 910 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 911 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 912 ceph_cap_string(dirty), 913 seq, issue_seq, mseq, follows, size, max_size, 914 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 915 916 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL); 917 if (IS_ERR(msg)) 918 return PTR_ERR(msg); 919 920 fc = msg->front.iov_base; 921 922 memset(fc, 0, sizeof(*fc)); 923 924 fc->cap_id = cpu_to_le64(cid); 925 fc->op = cpu_to_le32(op); 926 fc->seq = cpu_to_le32(seq); 927 fc->client_tid = cpu_to_le64(flush_tid); 928 fc->issue_seq = cpu_to_le32(issue_seq); 929 fc->migrate_seq = cpu_to_le32(mseq); 930 fc->caps = cpu_to_le32(caps); 931 fc->wanted = cpu_to_le32(wanted); 932 fc->dirty = cpu_to_le32(dirty); 933 fc->ino = cpu_to_le64(ino); 934 fc->snap_follows = cpu_to_le64(follows); 935 936 fc->size = cpu_to_le64(size); 937 fc->max_size = cpu_to_le64(max_size); 938 if (mtime) 939 ceph_encode_timespec(&fc->mtime, mtime); 940 if (atime) 941 ceph_encode_timespec(&fc->atime, atime); 942 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 943 944 fc->uid = cpu_to_le32(uid); 945 fc->gid = cpu_to_le32(gid); 946 fc->mode = cpu_to_le32(mode); 947 948 fc->xattr_version = cpu_to_le64(xattr_version); 949 if (xattrs_buf) { 950 msg->middle = ceph_buffer_get(xattrs_buf); 951 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 952 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 953 } 954 955 ceph_con_send(&session->s_con, msg); 956 return 0; 957 } 958 959 /* 960 * Queue cap releases when an inode is dropped from our 961 * cache. 962 */ 963 void ceph_queue_caps_release(struct inode *inode) 964 { 965 struct ceph_inode_info *ci = ceph_inode(inode); 966 struct rb_node *p; 967 968 spin_lock(&inode->i_lock); 969 p = rb_first(&ci->i_caps); 970 while (p) { 971 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 972 struct ceph_mds_session *session = cap->session; 973 struct ceph_msg *msg; 974 struct ceph_mds_cap_release *head; 975 struct ceph_mds_cap_item *item; 976 977 spin_lock(&session->s_cap_lock); 978 BUG_ON(!session->s_num_cap_releases); 979 msg = list_first_entry(&session->s_cap_releases, 980 struct ceph_msg, list_head); 981 982 dout(" adding %p release to mds%d msg %p (%d left)\n", 983 inode, session->s_mds, msg, session->s_num_cap_releases); 984 985 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 986 head = msg->front.iov_base; 987 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 988 item = msg->front.iov_base + msg->front.iov_len; 989 item->ino = cpu_to_le64(ceph_ino(inode)); 990 item->cap_id = cpu_to_le64(cap->cap_id); 991 item->migrate_seq = cpu_to_le32(cap->mseq); 992 item->seq = cpu_to_le32(cap->issue_seq); 993 994 session->s_num_cap_releases--; 995 996 msg->front.iov_len += sizeof(*item); 997 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 998 dout(" release msg %p full\n", msg); 999 list_move_tail(&msg->list_head, 1000 &session->s_cap_releases_done); 1001 } else { 1002 dout(" release msg %p at %d/%d (%d)\n", msg, 1003 (int)le32_to_cpu(head->num), 1004 (int)CEPH_CAPS_PER_RELEASE, 1005 (int)msg->front.iov_len); 1006 } 1007 spin_unlock(&session->s_cap_lock); 1008 p = rb_next(p); 1009 __ceph_remove_cap(cap, NULL); 1010 1011 } 1012 spin_unlock(&inode->i_lock); 1013 } 1014 1015 /* 1016 * Send a cap msg on the given inode. Update our caps state, then 1017 * drop i_lock and send the message. 1018 * 1019 * Make note of max_size reported/requested from mds, revoked caps 1020 * that have now been implemented. 1021 * 1022 * Make half-hearted attempt ot to invalidate page cache if we are 1023 * dropping RDCACHE. Note that this will leave behind locked pages 1024 * that we'll then need to deal with elsewhere. 1025 * 1026 * Return non-zero if delayed release, or we experienced an error 1027 * such that the caller should requeue + retry later. 1028 * 1029 * called with i_lock, then drops it. 1030 * caller should hold snap_rwsem (read), s_mutex. 1031 */ 1032 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1033 int op, int used, int want, int retain, int flushing, 1034 unsigned *pflush_tid) 1035 __releases(cap->ci->vfs_inode->i_lock) 1036 { 1037 struct ceph_inode_info *ci = cap->ci; 1038 struct inode *inode = &ci->vfs_inode; 1039 u64 cap_id = cap->cap_id; 1040 int held = cap->issued | cap->implemented; 1041 int revoking = cap->implemented & ~cap->issued; 1042 int dropping = cap->issued & ~retain; 1043 int keep; 1044 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1045 u64 size, max_size; 1046 struct timespec mtime, atime; 1047 int wake = 0; 1048 mode_t mode; 1049 uid_t uid; 1050 gid_t gid; 1051 struct ceph_mds_session *session; 1052 u64 xattr_version = 0; 1053 int delayed = 0; 1054 u64 flush_tid = 0; 1055 int i; 1056 int ret; 1057 1058 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1059 inode, cap, cap->session, 1060 ceph_cap_string(held), ceph_cap_string(held & retain), 1061 ceph_cap_string(revoking)); 1062 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1063 1064 session = cap->session; 1065 1066 /* don't release wanted unless we've waited a bit. */ 1067 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1068 time_before(jiffies, ci->i_hold_caps_min)) { 1069 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1070 ceph_cap_string(cap->issued), 1071 ceph_cap_string(cap->issued & retain), 1072 ceph_cap_string(cap->mds_wanted), 1073 ceph_cap_string(want)); 1074 want |= cap->mds_wanted; 1075 retain |= cap->issued; 1076 delayed = 1; 1077 } 1078 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1079 1080 cap->issued &= retain; /* drop bits we don't want */ 1081 if (cap->implemented & ~cap->issued) { 1082 /* 1083 * Wake up any waiters on wanted -> needed transition. 1084 * This is due to the weird transition from buffered 1085 * to sync IO... we need to flush dirty pages _before_ 1086 * allowing sync writes to avoid reordering. 1087 */ 1088 wake = 1; 1089 } 1090 cap->implemented &= cap->issued | used; 1091 cap->mds_wanted = want; 1092 1093 if (flushing) { 1094 /* 1095 * assign a tid for flush operations so we can avoid 1096 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1097 * clean type races. track latest tid for every bit 1098 * so we can handle flush AxFw, flush Fw, and have the 1099 * first ack clean Ax. 1100 */ 1101 flush_tid = ++ci->i_cap_flush_last_tid; 1102 if (pflush_tid) 1103 *pflush_tid = flush_tid; 1104 dout(" cap_flush_tid %d\n", (int)flush_tid); 1105 for (i = 0; i < CEPH_CAP_BITS; i++) 1106 if (flushing & (1 << i)) 1107 ci->i_cap_flush_tid[i] = flush_tid; 1108 } 1109 1110 keep = cap->implemented; 1111 seq = cap->seq; 1112 issue_seq = cap->issue_seq; 1113 mseq = cap->mseq; 1114 size = inode->i_size; 1115 ci->i_reported_size = size; 1116 max_size = ci->i_wanted_max_size; 1117 ci->i_requested_max_size = max_size; 1118 mtime = inode->i_mtime; 1119 atime = inode->i_atime; 1120 time_warp_seq = ci->i_time_warp_seq; 1121 follows = ci->i_snap_realm->cached_context->seq; 1122 uid = inode->i_uid; 1123 gid = inode->i_gid; 1124 mode = inode->i_mode; 1125 1126 if (dropping & CEPH_CAP_XATTR_EXCL) { 1127 __ceph_build_xattrs_blob(ci); 1128 xattr_version = ci->i_xattrs.version + 1; 1129 } 1130 1131 spin_unlock(&inode->i_lock); 1132 1133 if (dropping & CEPH_CAP_FILE_CACHE) { 1134 /* invalidate what we can */ 1135 dout("invalidating pages on %p\n", inode); 1136 invalidate_mapping_pages(&inode->i_data, 0, -1); 1137 } 1138 1139 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1140 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1141 size, max_size, &mtime, &atime, time_warp_seq, 1142 uid, gid, mode, 1143 xattr_version, 1144 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1145 follows); 1146 if (ret < 0) { 1147 dout("error sending cap msg, must requeue %p\n", inode); 1148 delayed = 1; 1149 } 1150 1151 if (wake) 1152 wake_up(&ci->i_cap_wq); 1153 1154 return delayed; 1155 } 1156 1157 /* 1158 * When a snapshot is taken, clients accumulate dirty metadata on 1159 * inodes with capabilities in ceph_cap_snaps to describe the file 1160 * state at the time the snapshot was taken. This must be flushed 1161 * asynchronously back to the MDS once sync writes complete and dirty 1162 * data is written out. 1163 * 1164 * Called under i_lock. Takes s_mutex as needed. 1165 */ 1166 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1167 struct ceph_mds_session **psession) 1168 { 1169 struct inode *inode = &ci->vfs_inode; 1170 int mds; 1171 struct ceph_cap_snap *capsnap; 1172 u32 mseq; 1173 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1174 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1175 session->s_mutex */ 1176 u64 next_follows = 0; /* keep track of how far we've gotten through the 1177 i_cap_snaps list, and skip these entries next time 1178 around to avoid an infinite loop */ 1179 1180 if (psession) 1181 session = *psession; 1182 1183 dout("__flush_snaps %p\n", inode); 1184 retry: 1185 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1186 /* avoid an infiniute loop after retry */ 1187 if (capsnap->follows < next_follows) 1188 continue; 1189 /* 1190 * we need to wait for sync writes to complete and for dirty 1191 * pages to be written out. 1192 */ 1193 if (capsnap->dirty_pages || capsnap->writing) 1194 continue; 1195 1196 /* pick mds, take s_mutex */ 1197 mds = __ceph_get_cap_mds(ci, &mseq); 1198 if (session && session->s_mds != mds) { 1199 dout("oops, wrong session %p mutex\n", session); 1200 mutex_unlock(&session->s_mutex); 1201 ceph_put_mds_session(session); 1202 session = NULL; 1203 } 1204 if (!session) { 1205 spin_unlock(&inode->i_lock); 1206 mutex_lock(&mdsc->mutex); 1207 session = __ceph_lookup_mds_session(mdsc, mds); 1208 mutex_unlock(&mdsc->mutex); 1209 if (session) { 1210 dout("inverting session/ino locks on %p\n", 1211 session); 1212 mutex_lock(&session->s_mutex); 1213 } 1214 /* 1215 * if session == NULL, we raced against a cap 1216 * deletion. retry, and we'll get a better 1217 * @mds value next time. 1218 */ 1219 spin_lock(&inode->i_lock); 1220 goto retry; 1221 } 1222 1223 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1224 atomic_inc(&capsnap->nref); 1225 if (!list_empty(&capsnap->flushing_item)) 1226 list_del_init(&capsnap->flushing_item); 1227 list_add_tail(&capsnap->flushing_item, 1228 &session->s_cap_snaps_flushing); 1229 spin_unlock(&inode->i_lock); 1230 1231 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1232 inode, capsnap, next_follows, capsnap->size); 1233 send_cap_msg(session, ceph_vino(inode).ino, 0, 1234 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1235 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1236 capsnap->size, 0, 1237 &capsnap->mtime, &capsnap->atime, 1238 capsnap->time_warp_seq, 1239 capsnap->uid, capsnap->gid, capsnap->mode, 1240 0, NULL, 1241 capsnap->follows); 1242 1243 next_follows = capsnap->follows + 1; 1244 ceph_put_cap_snap(capsnap); 1245 1246 spin_lock(&inode->i_lock); 1247 goto retry; 1248 } 1249 1250 /* we flushed them all; remove this inode from the queue */ 1251 spin_lock(&mdsc->snap_flush_lock); 1252 list_del_init(&ci->i_snap_flush_item); 1253 spin_unlock(&mdsc->snap_flush_lock); 1254 1255 if (psession) 1256 *psession = session; 1257 else if (session) { 1258 mutex_unlock(&session->s_mutex); 1259 ceph_put_mds_session(session); 1260 } 1261 } 1262 1263 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1264 { 1265 struct inode *inode = &ci->vfs_inode; 1266 1267 spin_lock(&inode->i_lock); 1268 __ceph_flush_snaps(ci, NULL); 1269 spin_unlock(&inode->i_lock); 1270 } 1271 1272 /* 1273 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1274 * list. 1275 */ 1276 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1277 { 1278 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 1279 struct inode *inode = &ci->vfs_inode; 1280 int was = ci->i_dirty_caps; 1281 int dirty = 0; 1282 1283 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1284 ceph_cap_string(mask), ceph_cap_string(was), 1285 ceph_cap_string(was | mask)); 1286 ci->i_dirty_caps |= mask; 1287 if (was == 0) { 1288 dout(" inode %p now dirty\n", &ci->vfs_inode); 1289 BUG_ON(!list_empty(&ci->i_dirty_item)); 1290 spin_lock(&mdsc->cap_dirty_lock); 1291 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1292 spin_unlock(&mdsc->cap_dirty_lock); 1293 if (ci->i_flushing_caps == 0) { 1294 igrab(inode); 1295 dirty |= I_DIRTY_SYNC; 1296 } 1297 } 1298 BUG_ON(list_empty(&ci->i_dirty_item)); 1299 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1300 (mask & CEPH_CAP_FILE_BUFFER)) 1301 dirty |= I_DIRTY_DATASYNC; 1302 if (dirty) 1303 __mark_inode_dirty(inode, dirty); 1304 __cap_delay_requeue(mdsc, ci); 1305 } 1306 1307 /* 1308 * Add dirty inode to the flushing list. Assigned a seq number so we 1309 * can wait for caps to flush without starving. 1310 * 1311 * Called under i_lock. 1312 */ 1313 static int __mark_caps_flushing(struct inode *inode, 1314 struct ceph_mds_session *session) 1315 { 1316 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1317 struct ceph_inode_info *ci = ceph_inode(inode); 1318 int flushing; 1319 1320 BUG_ON(ci->i_dirty_caps == 0); 1321 BUG_ON(list_empty(&ci->i_dirty_item)); 1322 1323 flushing = ci->i_dirty_caps; 1324 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1325 ceph_cap_string(flushing), 1326 ceph_cap_string(ci->i_flushing_caps), 1327 ceph_cap_string(ci->i_flushing_caps | flushing)); 1328 ci->i_flushing_caps |= flushing; 1329 ci->i_dirty_caps = 0; 1330 dout(" inode %p now !dirty\n", inode); 1331 1332 spin_lock(&mdsc->cap_dirty_lock); 1333 list_del_init(&ci->i_dirty_item); 1334 1335 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1336 if (list_empty(&ci->i_flushing_item)) { 1337 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1338 mdsc->num_cap_flushing++; 1339 dout(" inode %p now flushing seq %lld\n", inode, 1340 ci->i_cap_flush_seq); 1341 } else { 1342 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1343 dout(" inode %p now flushing (more) seq %lld\n", inode, 1344 ci->i_cap_flush_seq); 1345 } 1346 spin_unlock(&mdsc->cap_dirty_lock); 1347 1348 return flushing; 1349 } 1350 1351 /* 1352 * Swiss army knife function to examine currently used and wanted 1353 * versus held caps. Release, flush, ack revoked caps to mds as 1354 * appropriate. 1355 * 1356 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1357 * cap release further. 1358 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1359 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1360 * further delay. 1361 */ 1362 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1363 struct ceph_mds_session *session) 1364 { 1365 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1366 struct ceph_mds_client *mdsc = &client->mdsc; 1367 struct inode *inode = &ci->vfs_inode; 1368 struct ceph_cap *cap; 1369 int file_wanted, used; 1370 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1371 int drop_session_lock = session ? 0 : 1; 1372 int want, retain, revoking, flushing = 0; 1373 int mds = -1; /* keep track of how far we've gone through i_caps list 1374 to avoid an infinite loop on retry */ 1375 struct rb_node *p; 1376 int tried_invalidate = 0; 1377 int delayed = 0, sent = 0, force_requeue = 0, num; 1378 int is_delayed = flags & CHECK_CAPS_NODELAY; 1379 1380 /* if we are unmounting, flush any unused caps immediately. */ 1381 if (mdsc->stopping) 1382 is_delayed = 1; 1383 1384 spin_lock(&inode->i_lock); 1385 1386 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1387 flags |= CHECK_CAPS_FLUSH; 1388 1389 /* flush snaps first time around only */ 1390 if (!list_empty(&ci->i_cap_snaps)) 1391 __ceph_flush_snaps(ci, &session); 1392 goto retry_locked; 1393 retry: 1394 spin_lock(&inode->i_lock); 1395 retry_locked: 1396 file_wanted = __ceph_caps_file_wanted(ci); 1397 used = __ceph_caps_used(ci); 1398 want = file_wanted | used; 1399 1400 retain = want | CEPH_CAP_PIN; 1401 if (!mdsc->stopping && inode->i_nlink > 0) { 1402 if (want) { 1403 retain |= CEPH_CAP_ANY; /* be greedy */ 1404 } else { 1405 retain |= CEPH_CAP_ANY_SHARED; 1406 /* 1407 * keep RD only if we didn't have the file open RW, 1408 * because then the mds would revoke it anyway to 1409 * journal max_size=0. 1410 */ 1411 if (ci->i_max_size == 0) 1412 retain |= CEPH_CAP_ANY_RD; 1413 } 1414 } 1415 1416 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1417 " issued %s retain %s %s%s%s\n", inode, 1418 ceph_cap_string(file_wanted), 1419 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1420 ceph_cap_string(ci->i_flushing_caps), 1421 ceph_cap_string(__ceph_caps_issued(ci, NULL)), 1422 ceph_cap_string(retain), 1423 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1424 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1425 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1426 1427 /* 1428 * If we no longer need to hold onto old our caps, and we may 1429 * have cached pages, but don't want them, then try to invalidate. 1430 * If we fail, it's because pages are locked.... try again later. 1431 */ 1432 if ((!is_delayed || mdsc->stopping) && 1433 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1434 ci->i_rdcache_gen && /* may have cached pages */ 1435 file_wanted == 0 && /* no open files */ 1436 !ci->i_truncate_pending && 1437 !tried_invalidate) { 1438 u32 invalidating_gen = ci->i_rdcache_gen; 1439 int ret; 1440 1441 dout("check_caps trying to invalidate on %p\n", inode); 1442 spin_unlock(&inode->i_lock); 1443 ret = invalidate_inode_pages2(&inode->i_data); 1444 spin_lock(&inode->i_lock); 1445 if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) { 1446 /* success. */ 1447 ci->i_rdcache_gen = 0; 1448 ci->i_rdcache_revoking = 0; 1449 } else { 1450 dout("check_caps failed to invalidate pages\n"); 1451 /* we failed to invalidate pages. check these 1452 caps again later. */ 1453 force_requeue = 1; 1454 __cap_set_timeouts(mdsc, ci); 1455 } 1456 tried_invalidate = 1; 1457 goto retry_locked; 1458 } 1459 1460 num = 0; 1461 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1462 cap = rb_entry(p, struct ceph_cap, ci_node); 1463 num++; 1464 1465 /* avoid looping forever */ 1466 if (mds >= cap->mds || 1467 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1468 continue; 1469 1470 /* NOTE: no side-effects allowed, until we take s_mutex */ 1471 1472 revoking = cap->implemented & ~cap->issued; 1473 if (revoking) 1474 dout("mds%d revoking %s\n", cap->mds, 1475 ceph_cap_string(revoking)); 1476 1477 if (cap == ci->i_auth_cap && 1478 (cap->issued & CEPH_CAP_FILE_WR)) { 1479 /* request larger max_size from MDS? */ 1480 if (ci->i_wanted_max_size > ci->i_max_size && 1481 ci->i_wanted_max_size > ci->i_requested_max_size) { 1482 dout("requesting new max_size\n"); 1483 goto ack; 1484 } 1485 1486 /* approaching file_max? */ 1487 if ((inode->i_size << 1) >= ci->i_max_size && 1488 (ci->i_reported_size << 1) < ci->i_max_size) { 1489 dout("i_size approaching max_size\n"); 1490 goto ack; 1491 } 1492 } 1493 /* flush anything dirty? */ 1494 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1495 ci->i_dirty_caps) { 1496 dout("flushing dirty caps\n"); 1497 goto ack; 1498 } 1499 1500 /* completed revocation? going down and there are no caps? */ 1501 if (revoking && (revoking & used) == 0) { 1502 dout("completed revocation of %s\n", 1503 ceph_cap_string(cap->implemented & ~cap->issued)); 1504 goto ack; 1505 } 1506 1507 /* want more caps from mds? */ 1508 if (want & ~(cap->mds_wanted | cap->issued)) 1509 goto ack; 1510 1511 /* things we might delay */ 1512 if ((cap->issued & ~retain) == 0 && 1513 cap->mds_wanted == want) 1514 continue; /* nope, all good */ 1515 1516 if (is_delayed) 1517 goto ack; 1518 1519 /* delay? */ 1520 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1521 time_before(jiffies, ci->i_hold_caps_max)) { 1522 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1523 ceph_cap_string(cap->issued), 1524 ceph_cap_string(cap->issued & retain), 1525 ceph_cap_string(cap->mds_wanted), 1526 ceph_cap_string(want)); 1527 delayed++; 1528 continue; 1529 } 1530 1531 ack: 1532 if (session && session != cap->session) { 1533 dout("oops, wrong session %p mutex\n", session); 1534 mutex_unlock(&session->s_mutex); 1535 session = NULL; 1536 } 1537 if (!session) { 1538 session = cap->session; 1539 if (mutex_trylock(&session->s_mutex) == 0) { 1540 dout("inverting session/ino locks on %p\n", 1541 session); 1542 spin_unlock(&inode->i_lock); 1543 if (took_snap_rwsem) { 1544 up_read(&mdsc->snap_rwsem); 1545 took_snap_rwsem = 0; 1546 } 1547 mutex_lock(&session->s_mutex); 1548 goto retry; 1549 } 1550 } 1551 /* take snap_rwsem after session mutex */ 1552 if (!took_snap_rwsem) { 1553 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1554 dout("inverting snap/in locks on %p\n", 1555 inode); 1556 spin_unlock(&inode->i_lock); 1557 down_read(&mdsc->snap_rwsem); 1558 took_snap_rwsem = 1; 1559 goto retry; 1560 } 1561 took_snap_rwsem = 1; 1562 } 1563 1564 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1565 flushing = __mark_caps_flushing(inode, session); 1566 1567 mds = cap->mds; /* remember mds, so we don't repeat */ 1568 sent++; 1569 1570 /* __send_cap drops i_lock */ 1571 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1572 retain, flushing, NULL); 1573 goto retry; /* retake i_lock and restart our cap scan. */ 1574 } 1575 1576 /* 1577 * Reschedule delayed caps release if we delayed anything, 1578 * otherwise cancel. 1579 */ 1580 if (delayed && is_delayed) 1581 force_requeue = 1; /* __send_cap delayed release; requeue */ 1582 if (!delayed && !is_delayed) 1583 __cap_delay_cancel(mdsc, ci); 1584 else if (!is_delayed || force_requeue) 1585 __cap_delay_requeue(mdsc, ci); 1586 1587 spin_unlock(&inode->i_lock); 1588 1589 if (session && drop_session_lock) 1590 mutex_unlock(&session->s_mutex); 1591 if (took_snap_rwsem) 1592 up_read(&mdsc->snap_rwsem); 1593 } 1594 1595 /* 1596 * Try to flush dirty caps back to the auth mds. 1597 */ 1598 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1599 unsigned *flush_tid) 1600 { 1601 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1602 struct ceph_inode_info *ci = ceph_inode(inode); 1603 int unlock_session = session ? 0 : 1; 1604 int flushing = 0; 1605 1606 retry: 1607 spin_lock(&inode->i_lock); 1608 if (ci->i_dirty_caps && ci->i_auth_cap) { 1609 struct ceph_cap *cap = ci->i_auth_cap; 1610 int used = __ceph_caps_used(ci); 1611 int want = __ceph_caps_wanted(ci); 1612 int delayed; 1613 1614 if (!session) { 1615 spin_unlock(&inode->i_lock); 1616 session = cap->session; 1617 mutex_lock(&session->s_mutex); 1618 goto retry; 1619 } 1620 BUG_ON(session != cap->session); 1621 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1622 goto out; 1623 1624 flushing = __mark_caps_flushing(inode, session); 1625 1626 /* __send_cap drops i_lock */ 1627 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1628 cap->issued | cap->implemented, flushing, 1629 flush_tid); 1630 if (!delayed) 1631 goto out_unlocked; 1632 1633 spin_lock(&inode->i_lock); 1634 __cap_delay_requeue(mdsc, ci); 1635 } 1636 out: 1637 spin_unlock(&inode->i_lock); 1638 out_unlocked: 1639 if (session && unlock_session) 1640 mutex_unlock(&session->s_mutex); 1641 return flushing; 1642 } 1643 1644 /* 1645 * Return true if we've flushed caps through the given flush_tid. 1646 */ 1647 static int caps_are_flushed(struct inode *inode, unsigned tid) 1648 { 1649 struct ceph_inode_info *ci = ceph_inode(inode); 1650 int dirty, i, ret = 1; 1651 1652 spin_lock(&inode->i_lock); 1653 dirty = __ceph_caps_dirty(ci); 1654 for (i = 0; i < CEPH_CAP_BITS; i++) 1655 if ((ci->i_flushing_caps & (1 << i)) && 1656 ci->i_cap_flush_tid[i] <= tid) { 1657 /* still flushing this bit */ 1658 ret = 0; 1659 break; 1660 } 1661 spin_unlock(&inode->i_lock); 1662 return ret; 1663 } 1664 1665 /* 1666 * Wait on any unsafe replies for the given inode. First wait on the 1667 * newest request, and make that the upper bound. Then, if there are 1668 * more requests, keep waiting on the oldest as long as it is still older 1669 * than the original request. 1670 */ 1671 static void sync_write_wait(struct inode *inode) 1672 { 1673 struct ceph_inode_info *ci = ceph_inode(inode); 1674 struct list_head *head = &ci->i_unsafe_writes; 1675 struct ceph_osd_request *req; 1676 u64 last_tid; 1677 1678 spin_lock(&ci->i_unsafe_lock); 1679 if (list_empty(head)) 1680 goto out; 1681 1682 /* set upper bound as _last_ entry in chain */ 1683 req = list_entry(head->prev, struct ceph_osd_request, 1684 r_unsafe_item); 1685 last_tid = req->r_tid; 1686 1687 do { 1688 ceph_osdc_get_request(req); 1689 spin_unlock(&ci->i_unsafe_lock); 1690 dout("sync_write_wait on tid %llu (until %llu)\n", 1691 req->r_tid, last_tid); 1692 wait_for_completion(&req->r_safe_completion); 1693 spin_lock(&ci->i_unsafe_lock); 1694 ceph_osdc_put_request(req); 1695 1696 /* 1697 * from here on look at first entry in chain, since we 1698 * only want to wait for anything older than last_tid 1699 */ 1700 if (list_empty(head)) 1701 break; 1702 req = list_entry(head->next, struct ceph_osd_request, 1703 r_unsafe_item); 1704 } while (req->r_tid < last_tid); 1705 out: 1706 spin_unlock(&ci->i_unsafe_lock); 1707 } 1708 1709 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) 1710 { 1711 struct inode *inode = dentry->d_inode; 1712 struct ceph_inode_info *ci = ceph_inode(inode); 1713 unsigned flush_tid; 1714 int ret; 1715 int dirty; 1716 1717 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1718 sync_write_wait(inode); 1719 1720 ret = filemap_write_and_wait(inode->i_mapping); 1721 if (ret < 0) 1722 return ret; 1723 1724 dirty = try_flush_caps(inode, NULL, &flush_tid); 1725 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1726 1727 /* 1728 * only wait on non-file metadata writeback (the mds 1729 * can recover size and mtime, so we don't need to 1730 * wait for that) 1731 */ 1732 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1733 dout("fsync waiting for flush_tid %u\n", flush_tid); 1734 ret = wait_event_interruptible(ci->i_cap_wq, 1735 caps_are_flushed(inode, flush_tid)); 1736 } 1737 1738 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1739 return ret; 1740 } 1741 1742 /* 1743 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1744 * queue inode for flush but don't do so immediately, because we can 1745 * get by with fewer MDS messages if we wait for data writeback to 1746 * complete first. 1747 */ 1748 int ceph_write_inode(struct inode *inode, int wait) 1749 { 1750 struct ceph_inode_info *ci = ceph_inode(inode); 1751 unsigned flush_tid; 1752 int err = 0; 1753 int dirty; 1754 1755 dout("write_inode %p wait=%d\n", inode, wait); 1756 if (wait) { 1757 dirty = try_flush_caps(inode, NULL, &flush_tid); 1758 if (dirty) 1759 err = wait_event_interruptible(ci->i_cap_wq, 1760 caps_are_flushed(inode, flush_tid)); 1761 } else { 1762 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1763 1764 spin_lock(&inode->i_lock); 1765 if (__ceph_caps_dirty(ci)) 1766 __cap_delay_requeue_front(mdsc, ci); 1767 spin_unlock(&inode->i_lock); 1768 } 1769 return err; 1770 } 1771 1772 /* 1773 * After a recovering MDS goes active, we need to resend any caps 1774 * we were flushing. 1775 * 1776 * Caller holds session->s_mutex. 1777 */ 1778 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1779 struct ceph_mds_session *session) 1780 { 1781 struct ceph_cap_snap *capsnap; 1782 1783 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1784 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1785 flushing_item) { 1786 struct ceph_inode_info *ci = capsnap->ci; 1787 struct inode *inode = &ci->vfs_inode; 1788 struct ceph_cap *cap; 1789 1790 spin_lock(&inode->i_lock); 1791 cap = ci->i_auth_cap; 1792 if (cap && cap->session == session) { 1793 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1794 cap, capsnap); 1795 __ceph_flush_snaps(ci, &session); 1796 } else { 1797 pr_err("%p auth cap %p not mds%d ???\n", inode, 1798 cap, session->s_mds); 1799 spin_unlock(&inode->i_lock); 1800 } 1801 } 1802 } 1803 1804 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1805 struct ceph_mds_session *session) 1806 { 1807 struct ceph_inode_info *ci; 1808 1809 kick_flushing_capsnaps(mdsc, session); 1810 1811 dout("kick_flushing_caps mds%d\n", session->s_mds); 1812 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1813 struct inode *inode = &ci->vfs_inode; 1814 struct ceph_cap *cap; 1815 int delayed = 0; 1816 1817 spin_lock(&inode->i_lock); 1818 cap = ci->i_auth_cap; 1819 if (cap && cap->session == session) { 1820 dout("kick_flushing_caps %p cap %p %s\n", inode, 1821 cap, ceph_cap_string(ci->i_flushing_caps)); 1822 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1823 __ceph_caps_used(ci), 1824 __ceph_caps_wanted(ci), 1825 cap->issued | cap->implemented, 1826 ci->i_flushing_caps, NULL); 1827 if (delayed) { 1828 spin_lock(&inode->i_lock); 1829 __cap_delay_requeue(mdsc, ci); 1830 spin_unlock(&inode->i_lock); 1831 } 1832 } else { 1833 pr_err("%p auth cap %p not mds%d ???\n", inode, 1834 cap, session->s_mds); 1835 spin_unlock(&inode->i_lock); 1836 } 1837 } 1838 } 1839 1840 1841 /* 1842 * Take references to capabilities we hold, so that we don't release 1843 * them to the MDS prematurely. 1844 * 1845 * Protected by i_lock. 1846 */ 1847 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1848 { 1849 if (got & CEPH_CAP_PIN) 1850 ci->i_pin_ref++; 1851 if (got & CEPH_CAP_FILE_RD) 1852 ci->i_rd_ref++; 1853 if (got & CEPH_CAP_FILE_CACHE) 1854 ci->i_rdcache_ref++; 1855 if (got & CEPH_CAP_FILE_WR) 1856 ci->i_wr_ref++; 1857 if (got & CEPH_CAP_FILE_BUFFER) { 1858 if (ci->i_wrbuffer_ref == 0) 1859 igrab(&ci->vfs_inode); 1860 ci->i_wrbuffer_ref++; 1861 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1862 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1863 } 1864 } 1865 1866 /* 1867 * Try to grab cap references. Specify those refs we @want, and the 1868 * minimal set we @need. Also include the larger offset we are writing 1869 * to (when applicable), and check against max_size here as well. 1870 * Note that caller is responsible for ensuring max_size increases are 1871 * requested from the MDS. 1872 */ 1873 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1874 int *got, loff_t endoff, int *check_max, int *err) 1875 { 1876 struct inode *inode = &ci->vfs_inode; 1877 int ret = 0; 1878 int have, implemented; 1879 1880 dout("get_cap_refs %p need %s want %s\n", inode, 1881 ceph_cap_string(need), ceph_cap_string(want)); 1882 spin_lock(&inode->i_lock); 1883 1884 /* make sure we _have_ some caps! */ 1885 if (!__ceph_is_any_caps(ci)) { 1886 dout("get_cap_refs %p no real caps\n", inode); 1887 *err = -EBADF; 1888 ret = 1; 1889 goto out; 1890 } 1891 1892 if (need & CEPH_CAP_FILE_WR) { 1893 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1894 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1895 inode, endoff, ci->i_max_size); 1896 if (endoff > ci->i_wanted_max_size) { 1897 *check_max = 1; 1898 ret = 1; 1899 } 1900 goto out; 1901 } 1902 /* 1903 * If a sync write is in progress, we must wait, so that we 1904 * can get a final snapshot value for size+mtime. 1905 */ 1906 if (__ceph_have_pending_cap_snap(ci)) { 1907 dout("get_cap_refs %p cap_snap_pending\n", inode); 1908 goto out; 1909 } 1910 } 1911 have = __ceph_caps_issued(ci, &implemented); 1912 1913 /* 1914 * disallow writes while a truncate is pending 1915 */ 1916 if (ci->i_truncate_pending) 1917 have &= ~CEPH_CAP_FILE_WR; 1918 1919 if ((have & need) == need) { 1920 /* 1921 * Look at (implemented & ~have & not) so that we keep waiting 1922 * on transition from wanted -> needed caps. This is needed 1923 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 1924 * going before a prior buffered writeback happens. 1925 */ 1926 int not = want & ~(have & need); 1927 int revoking = implemented & ~have; 1928 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 1929 inode, ceph_cap_string(have), ceph_cap_string(not), 1930 ceph_cap_string(revoking)); 1931 if ((revoking & not) == 0) { 1932 *got = need | (have & want); 1933 __take_cap_refs(ci, *got); 1934 ret = 1; 1935 } 1936 } else { 1937 dout("get_cap_refs %p have %s needed %s\n", inode, 1938 ceph_cap_string(have), ceph_cap_string(need)); 1939 } 1940 out: 1941 spin_unlock(&inode->i_lock); 1942 dout("get_cap_refs %p ret %d got %s\n", inode, 1943 ret, ceph_cap_string(*got)); 1944 return ret; 1945 } 1946 1947 /* 1948 * Check the offset we are writing up to against our current 1949 * max_size. If necessary, tell the MDS we want to write to 1950 * a larger offset. 1951 */ 1952 static void check_max_size(struct inode *inode, loff_t endoff) 1953 { 1954 struct ceph_inode_info *ci = ceph_inode(inode); 1955 int check = 0; 1956 1957 /* do we need to explicitly request a larger max_size? */ 1958 spin_lock(&inode->i_lock); 1959 if ((endoff >= ci->i_max_size || 1960 endoff > (inode->i_size << 1)) && 1961 endoff > ci->i_wanted_max_size) { 1962 dout("write %p at large endoff %llu, req max_size\n", 1963 inode, endoff); 1964 ci->i_wanted_max_size = endoff; 1965 check = 1; 1966 } 1967 spin_unlock(&inode->i_lock); 1968 if (check) 1969 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 1970 } 1971 1972 /* 1973 * Wait for caps, and take cap references. If we can't get a WR cap 1974 * due to a small max_size, make sure we check_max_size (and possibly 1975 * ask the mds) so we don't get hung up indefinitely. 1976 */ 1977 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 1978 loff_t endoff) 1979 { 1980 int check_max, ret, err; 1981 1982 retry: 1983 if (endoff > 0) 1984 check_max_size(&ci->vfs_inode, endoff); 1985 check_max = 0; 1986 err = 0; 1987 ret = wait_event_interruptible(ci->i_cap_wq, 1988 try_get_cap_refs(ci, need, want, 1989 got, endoff, 1990 &check_max, &err)); 1991 if (err) 1992 ret = err; 1993 if (check_max) 1994 goto retry; 1995 return ret; 1996 } 1997 1998 /* 1999 * Take cap refs. Caller must already know we hold at least one ref 2000 * on the caps in question or we don't know this is safe. 2001 */ 2002 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2003 { 2004 spin_lock(&ci->vfs_inode.i_lock); 2005 __take_cap_refs(ci, caps); 2006 spin_unlock(&ci->vfs_inode.i_lock); 2007 } 2008 2009 /* 2010 * Release cap refs. 2011 * 2012 * If we released the last ref on any given cap, call ceph_check_caps 2013 * to release (or schedule a release). 2014 * 2015 * If we are releasing a WR cap (from a sync write), finalize any affected 2016 * cap_snap, and wake up any waiters. 2017 */ 2018 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2019 { 2020 struct inode *inode = &ci->vfs_inode; 2021 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2022 struct ceph_cap_snap *capsnap; 2023 2024 spin_lock(&inode->i_lock); 2025 if (had & CEPH_CAP_PIN) 2026 --ci->i_pin_ref; 2027 if (had & CEPH_CAP_FILE_RD) 2028 if (--ci->i_rd_ref == 0) 2029 last++; 2030 if (had & CEPH_CAP_FILE_CACHE) 2031 if (--ci->i_rdcache_ref == 0) 2032 last++; 2033 if (had & CEPH_CAP_FILE_BUFFER) { 2034 if (--ci->i_wrbuffer_ref == 0) { 2035 last++; 2036 put++; 2037 } 2038 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2039 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2040 } 2041 if (had & CEPH_CAP_FILE_WR) 2042 if (--ci->i_wr_ref == 0) { 2043 last++; 2044 if (!list_empty(&ci->i_cap_snaps)) { 2045 capsnap = list_first_entry(&ci->i_cap_snaps, 2046 struct ceph_cap_snap, 2047 ci_item); 2048 if (capsnap->writing) { 2049 capsnap->writing = 0; 2050 flushsnaps = 2051 __ceph_finish_cap_snap(ci, 2052 capsnap); 2053 wake = 1; 2054 } 2055 } 2056 } 2057 spin_unlock(&inode->i_lock); 2058 2059 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had), 2060 last ? "last" : ""); 2061 2062 if (last && !flushsnaps) 2063 ceph_check_caps(ci, 0, NULL); 2064 else if (flushsnaps) 2065 ceph_flush_snaps(ci); 2066 if (wake) 2067 wake_up(&ci->i_cap_wq); 2068 if (put) 2069 iput(inode); 2070 } 2071 2072 /* 2073 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2074 * context. Adjust per-snap dirty page accounting as appropriate. 2075 * Once all dirty data for a cap_snap is flushed, flush snapped file 2076 * metadata back to the MDS. If we dropped the last ref, call 2077 * ceph_check_caps. 2078 */ 2079 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2080 struct ceph_snap_context *snapc) 2081 { 2082 struct inode *inode = &ci->vfs_inode; 2083 int last = 0; 2084 int last_snap = 0; 2085 int found = 0; 2086 struct ceph_cap_snap *capsnap = NULL; 2087 2088 spin_lock(&inode->i_lock); 2089 ci->i_wrbuffer_ref -= nr; 2090 last = !ci->i_wrbuffer_ref; 2091 2092 if (ci->i_head_snapc == snapc) { 2093 ci->i_wrbuffer_ref_head -= nr; 2094 if (!ci->i_wrbuffer_ref_head) { 2095 ceph_put_snap_context(ci->i_head_snapc); 2096 ci->i_head_snapc = NULL; 2097 } 2098 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2099 inode, 2100 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2101 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2102 last ? " LAST" : ""); 2103 } else { 2104 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2105 if (capsnap->context == snapc) { 2106 found = 1; 2107 capsnap->dirty_pages -= nr; 2108 last_snap = !capsnap->dirty_pages; 2109 break; 2110 } 2111 } 2112 BUG_ON(!found); 2113 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2114 " snap %lld %d/%d -> %d/%d %s%s\n", 2115 inode, capsnap, capsnap->context->seq, 2116 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2117 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2118 last ? " (wrbuffer last)" : "", 2119 last_snap ? " (capsnap last)" : ""); 2120 } 2121 2122 spin_unlock(&inode->i_lock); 2123 2124 if (last) { 2125 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2126 iput(inode); 2127 } else if (last_snap) { 2128 ceph_flush_snaps(ci); 2129 wake_up(&ci->i_cap_wq); 2130 } 2131 } 2132 2133 /* 2134 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2135 * actually be a revocation if it specifies a smaller cap set.) 2136 * 2137 * caller holds s_mutex. 2138 * return value: 2139 * 0 - ok 2140 * 1 - check_caps on auth cap only (writeback) 2141 * 2 - check_caps (ack revoke) 2142 */ 2143 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2144 struct ceph_mds_session *session, 2145 struct ceph_cap *cap, 2146 struct ceph_buffer *xattr_buf) 2147 __releases(inode->i_lock) 2148 2149 { 2150 struct ceph_inode_info *ci = ceph_inode(inode); 2151 int mds = session->s_mds; 2152 int seq = le32_to_cpu(grant->seq); 2153 int newcaps = le32_to_cpu(grant->caps); 2154 int issued, implemented, used, wanted, dirty; 2155 u64 size = le64_to_cpu(grant->size); 2156 u64 max_size = le64_to_cpu(grant->max_size); 2157 struct timespec mtime, atime, ctime; 2158 int reply = 0; 2159 int wake = 0; 2160 int writeback = 0; 2161 int revoked_rdcache = 0; 2162 int invalidate_async = 0; 2163 int tried_invalidate = 0; 2164 int ret; 2165 2166 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2167 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2168 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2169 inode->i_size); 2170 2171 /* 2172 * If CACHE is being revoked, and we have no dirty buffers, 2173 * try to invalidate (once). (If there are dirty buffers, we 2174 * will invalidate _after_ writeback.) 2175 */ 2176 restart: 2177 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2178 !ci->i_wrbuffer_ref && !tried_invalidate) { 2179 dout("CACHE invalidation\n"); 2180 spin_unlock(&inode->i_lock); 2181 tried_invalidate = 1; 2182 2183 ret = invalidate_inode_pages2(&inode->i_data); 2184 spin_lock(&inode->i_lock); 2185 if (ret < 0) { 2186 /* there were locked pages.. invalidate later 2187 in a separate thread. */ 2188 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2189 invalidate_async = 1; 2190 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2191 } 2192 } else { 2193 /* we successfully invalidated those pages */ 2194 revoked_rdcache = 1; 2195 ci->i_rdcache_gen = 0; 2196 ci->i_rdcache_revoking = 0; 2197 } 2198 goto restart; 2199 } 2200 2201 /* side effects now are allowed */ 2202 2203 issued = __ceph_caps_issued(ci, &implemented); 2204 issued |= implemented | __ceph_caps_dirty(ci); 2205 2206 cap->cap_gen = session->s_cap_gen; 2207 2208 __check_cap_issue(ci, cap, newcaps); 2209 2210 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2211 inode->i_mode = le32_to_cpu(grant->mode); 2212 inode->i_uid = le32_to_cpu(grant->uid); 2213 inode->i_gid = le32_to_cpu(grant->gid); 2214 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2215 inode->i_uid, inode->i_gid); 2216 } 2217 2218 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2219 inode->i_nlink = le32_to_cpu(grant->nlink); 2220 2221 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2222 int len = le32_to_cpu(grant->xattr_len); 2223 u64 version = le64_to_cpu(grant->xattr_version); 2224 2225 if (version > ci->i_xattrs.version) { 2226 dout(" got new xattrs v%llu on %p len %d\n", 2227 version, inode, len); 2228 if (ci->i_xattrs.blob) 2229 ceph_buffer_put(ci->i_xattrs.blob); 2230 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2231 ci->i_xattrs.version = version; 2232 } 2233 } 2234 2235 /* size/ctime/mtime/atime? */ 2236 ceph_fill_file_size(inode, issued, 2237 le32_to_cpu(grant->truncate_seq), 2238 le64_to_cpu(grant->truncate_size), size); 2239 ceph_decode_timespec(&mtime, &grant->mtime); 2240 ceph_decode_timespec(&atime, &grant->atime); 2241 ceph_decode_timespec(&ctime, &grant->ctime); 2242 ceph_fill_file_time(inode, issued, 2243 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2244 &atime); 2245 2246 /* max size increase? */ 2247 if (max_size != ci->i_max_size) { 2248 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2249 ci->i_max_size = max_size; 2250 if (max_size >= ci->i_wanted_max_size) { 2251 ci->i_wanted_max_size = 0; /* reset */ 2252 ci->i_requested_max_size = 0; 2253 } 2254 wake = 1; 2255 } 2256 2257 /* check cap bits */ 2258 wanted = __ceph_caps_wanted(ci); 2259 used = __ceph_caps_used(ci); 2260 dirty = __ceph_caps_dirty(ci); 2261 dout(" my wanted = %s, used = %s, dirty %s\n", 2262 ceph_cap_string(wanted), 2263 ceph_cap_string(used), 2264 ceph_cap_string(dirty)); 2265 if (wanted != le32_to_cpu(grant->wanted)) { 2266 dout("mds wanted %s -> %s\n", 2267 ceph_cap_string(le32_to_cpu(grant->wanted)), 2268 ceph_cap_string(wanted)); 2269 grant->wanted = cpu_to_le32(wanted); 2270 } 2271 2272 cap->seq = seq; 2273 2274 /* file layout may have changed */ 2275 ci->i_layout = grant->layout; 2276 2277 /* revocation, grant, or no-op? */ 2278 if (cap->issued & ~newcaps) { 2279 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2280 ceph_cap_string(newcaps)); 2281 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2282 writeback = 1; /* will delay ack */ 2283 else if (dirty & ~newcaps) 2284 reply = 1; /* initiate writeback in check_caps */ 2285 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2286 revoked_rdcache) 2287 reply = 2; /* send revoke ack in check_caps */ 2288 cap->issued = newcaps; 2289 } else if (cap->issued == newcaps) { 2290 dout("caps unchanged: %s -> %s\n", 2291 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2292 } else { 2293 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2294 ceph_cap_string(newcaps)); 2295 cap->issued = newcaps; 2296 cap->implemented |= newcaps; /* add bits only, to 2297 * avoid stepping on a 2298 * pending revocation */ 2299 wake = 1; 2300 } 2301 2302 spin_unlock(&inode->i_lock); 2303 if (writeback) { 2304 /* 2305 * queue inode for writeback: we can't actually call 2306 * filemap_write_and_wait, etc. from message handler 2307 * context. 2308 */ 2309 dout("queueing %p for writeback\n", inode); 2310 if (ceph_queue_writeback(inode)) 2311 igrab(inode); 2312 } 2313 if (invalidate_async) { 2314 dout("queueing %p for page invalidation\n", inode); 2315 if (ceph_queue_page_invalidation(inode)) 2316 igrab(inode); 2317 } 2318 if (wake) 2319 wake_up(&ci->i_cap_wq); 2320 return reply; 2321 } 2322 2323 /* 2324 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2325 * MDS has been safely committed. 2326 */ 2327 static void handle_cap_flush_ack(struct inode *inode, 2328 struct ceph_mds_caps *m, 2329 struct ceph_mds_session *session, 2330 struct ceph_cap *cap) 2331 __releases(inode->i_lock) 2332 { 2333 struct ceph_inode_info *ci = ceph_inode(inode); 2334 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 2335 unsigned seq = le32_to_cpu(m->seq); 2336 int dirty = le32_to_cpu(m->dirty); 2337 int cleaned = 0; 2338 u64 flush_tid = le64_to_cpu(m->client_tid); 2339 int drop = 0; 2340 int i; 2341 2342 for (i = 0; i < CEPH_CAP_BITS; i++) 2343 if ((dirty & (1 << i)) && 2344 flush_tid == ci->i_cap_flush_tid[i]) 2345 cleaned |= 1 << i; 2346 2347 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2348 " flushing %s -> %s\n", 2349 inode, session->s_mds, seq, ceph_cap_string(dirty), 2350 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2351 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2352 2353 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2354 goto out; 2355 2356 ci->i_flushing_caps &= ~cleaned; 2357 2358 spin_lock(&mdsc->cap_dirty_lock); 2359 if (ci->i_flushing_caps == 0) { 2360 list_del_init(&ci->i_flushing_item); 2361 if (!list_empty(&session->s_cap_flushing)) 2362 dout(" mds%d still flushing cap on %p\n", 2363 session->s_mds, 2364 &list_entry(session->s_cap_flushing.next, 2365 struct ceph_inode_info, 2366 i_flushing_item)->vfs_inode); 2367 mdsc->num_cap_flushing--; 2368 wake_up(&mdsc->cap_flushing_wq); 2369 dout(" inode %p now !flushing\n", inode); 2370 2371 if (ci->i_dirty_caps == 0) { 2372 dout(" inode %p now clean\n", inode); 2373 BUG_ON(!list_empty(&ci->i_dirty_item)); 2374 drop = 1; 2375 } else { 2376 BUG_ON(list_empty(&ci->i_dirty_item)); 2377 } 2378 } 2379 spin_unlock(&mdsc->cap_dirty_lock); 2380 wake_up(&ci->i_cap_wq); 2381 2382 out: 2383 spin_unlock(&inode->i_lock); 2384 if (drop) 2385 iput(inode); 2386 } 2387 2388 /* 2389 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2390 * throw away our cap_snap. 2391 * 2392 * Caller hold s_mutex. 2393 */ 2394 static void handle_cap_flushsnap_ack(struct inode *inode, 2395 struct ceph_mds_caps *m, 2396 struct ceph_mds_session *session) 2397 { 2398 struct ceph_inode_info *ci = ceph_inode(inode); 2399 u64 follows = le64_to_cpu(m->snap_follows); 2400 u64 flush_tid = le64_to_cpu(m->client_tid); 2401 struct ceph_cap_snap *capsnap; 2402 int drop = 0; 2403 2404 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2405 inode, ci, session->s_mds, follows); 2406 2407 spin_lock(&inode->i_lock); 2408 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2409 if (capsnap->follows == follows) { 2410 if (capsnap->flush_tid != flush_tid) { 2411 dout(" cap_snap %p follows %lld tid %lld !=" 2412 " %lld\n", capsnap, follows, 2413 flush_tid, capsnap->flush_tid); 2414 break; 2415 } 2416 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2417 dout(" removing cap_snap %p follows %lld\n", 2418 capsnap, follows); 2419 ceph_put_snap_context(capsnap->context); 2420 list_del(&capsnap->ci_item); 2421 list_del(&capsnap->flushing_item); 2422 ceph_put_cap_snap(capsnap); 2423 drop = 1; 2424 break; 2425 } else { 2426 dout(" skipping cap_snap %p follows %lld\n", 2427 capsnap, capsnap->follows); 2428 } 2429 } 2430 spin_unlock(&inode->i_lock); 2431 if (drop) 2432 iput(inode); 2433 } 2434 2435 /* 2436 * Handle TRUNC from MDS, indicating file truncation. 2437 * 2438 * caller hold s_mutex. 2439 */ 2440 static void handle_cap_trunc(struct inode *inode, 2441 struct ceph_mds_caps *trunc, 2442 struct ceph_mds_session *session) 2443 __releases(inode->i_lock) 2444 { 2445 struct ceph_inode_info *ci = ceph_inode(inode); 2446 int mds = session->s_mds; 2447 int seq = le32_to_cpu(trunc->seq); 2448 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2449 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2450 u64 size = le64_to_cpu(trunc->size); 2451 int implemented = 0; 2452 int dirty = __ceph_caps_dirty(ci); 2453 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2454 int queue_trunc = 0; 2455 2456 issued |= implemented | dirty; 2457 2458 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2459 inode, mds, seq, truncate_size, truncate_seq); 2460 queue_trunc = ceph_fill_file_size(inode, issued, 2461 truncate_seq, truncate_size, size); 2462 spin_unlock(&inode->i_lock); 2463 2464 if (queue_trunc) 2465 if (queue_work(ceph_client(inode->i_sb)->trunc_wq, 2466 &ci->i_vmtruncate_work)) 2467 igrab(inode); 2468 } 2469 2470 /* 2471 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2472 * different one. If we are the most recent migration we've seen (as 2473 * indicated by mseq), make note of the migrating cap bits for the 2474 * duration (until we see the corresponding IMPORT). 2475 * 2476 * caller holds s_mutex 2477 */ 2478 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2479 struct ceph_mds_session *session) 2480 { 2481 struct ceph_inode_info *ci = ceph_inode(inode); 2482 int mds = session->s_mds; 2483 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2484 struct ceph_cap *cap = NULL, *t; 2485 struct rb_node *p; 2486 int remember = 1; 2487 2488 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2489 inode, ci, mds, mseq); 2490 2491 spin_lock(&inode->i_lock); 2492 2493 /* make sure we haven't seen a higher mseq */ 2494 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2495 t = rb_entry(p, struct ceph_cap, ci_node); 2496 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2497 dout(" higher mseq on cap from mds%d\n", 2498 t->session->s_mds); 2499 remember = 0; 2500 } 2501 if (t->session->s_mds == mds) 2502 cap = t; 2503 } 2504 2505 if (cap) { 2506 if (remember) { 2507 /* make note */ 2508 ci->i_cap_exporting_mds = mds; 2509 ci->i_cap_exporting_mseq = mseq; 2510 ci->i_cap_exporting_issued = cap->issued; 2511 } 2512 __ceph_remove_cap(cap, NULL); 2513 } else { 2514 WARN_ON(!cap); 2515 } 2516 2517 spin_unlock(&inode->i_lock); 2518 } 2519 2520 /* 2521 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2522 * clean them up. 2523 * 2524 * caller holds s_mutex. 2525 */ 2526 static void handle_cap_import(struct ceph_mds_client *mdsc, 2527 struct inode *inode, struct ceph_mds_caps *im, 2528 struct ceph_mds_session *session, 2529 void *snaptrace, int snaptrace_len) 2530 { 2531 struct ceph_inode_info *ci = ceph_inode(inode); 2532 int mds = session->s_mds; 2533 unsigned issued = le32_to_cpu(im->caps); 2534 unsigned wanted = le32_to_cpu(im->wanted); 2535 unsigned seq = le32_to_cpu(im->seq); 2536 unsigned mseq = le32_to_cpu(im->migrate_seq); 2537 u64 realmino = le64_to_cpu(im->realm); 2538 u64 cap_id = le64_to_cpu(im->cap_id); 2539 2540 if (ci->i_cap_exporting_mds >= 0 && 2541 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2542 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2543 " - cleared exporting from mds%d\n", 2544 inode, ci, mds, mseq, 2545 ci->i_cap_exporting_mds); 2546 ci->i_cap_exporting_issued = 0; 2547 ci->i_cap_exporting_mseq = 0; 2548 ci->i_cap_exporting_mds = -1; 2549 } else { 2550 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2551 inode, ci, mds, mseq); 2552 } 2553 2554 down_write(&mdsc->snap_rwsem); 2555 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2556 false); 2557 downgrade_write(&mdsc->snap_rwsem); 2558 ceph_add_cap(inode, session, cap_id, -1, 2559 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2560 NULL /* no caps context */); 2561 try_flush_caps(inode, session, NULL); 2562 up_read(&mdsc->snap_rwsem); 2563 } 2564 2565 /* 2566 * Handle a caps message from the MDS. 2567 * 2568 * Identify the appropriate session, inode, and call the right handler 2569 * based on the cap op. 2570 */ 2571 void ceph_handle_caps(struct ceph_mds_session *session, 2572 struct ceph_msg *msg) 2573 { 2574 struct ceph_mds_client *mdsc = session->s_mdsc; 2575 struct super_block *sb = mdsc->client->sb; 2576 struct inode *inode; 2577 struct ceph_cap *cap; 2578 struct ceph_mds_caps *h; 2579 int mds = le64_to_cpu(msg->hdr.src.name.num); 2580 int op; 2581 u32 seq; 2582 struct ceph_vino vino; 2583 u64 cap_id; 2584 u64 size, max_size; 2585 int check_caps = 0; 2586 int r; 2587 2588 dout("handle_caps from mds%d\n", mds); 2589 2590 /* decode */ 2591 if (msg->front.iov_len < sizeof(*h)) 2592 goto bad; 2593 h = msg->front.iov_base; 2594 op = le32_to_cpu(h->op); 2595 vino.ino = le64_to_cpu(h->ino); 2596 vino.snap = CEPH_NOSNAP; 2597 cap_id = le64_to_cpu(h->cap_id); 2598 seq = le32_to_cpu(h->seq); 2599 size = le64_to_cpu(h->size); 2600 max_size = le64_to_cpu(h->max_size); 2601 2602 mutex_lock(&session->s_mutex); 2603 session->s_seq++; 2604 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2605 (unsigned)seq); 2606 2607 /* lookup ino */ 2608 inode = ceph_find_inode(sb, vino); 2609 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2610 vino.snap, inode); 2611 if (!inode) { 2612 dout(" i don't have ino %llx\n", vino.ino); 2613 goto done; 2614 } 2615 2616 /* these will work even if we don't have a cap yet */ 2617 switch (op) { 2618 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2619 handle_cap_flushsnap_ack(inode, h, session); 2620 goto done; 2621 2622 case CEPH_CAP_OP_EXPORT: 2623 handle_cap_export(inode, h, session); 2624 goto done; 2625 2626 case CEPH_CAP_OP_IMPORT: 2627 handle_cap_import(mdsc, inode, h, session, 2628 msg->middle, 2629 le32_to_cpu(h->snap_trace_len)); 2630 check_caps = 1; /* we may have sent a RELEASE to the old auth */ 2631 goto done; 2632 } 2633 2634 /* the rest require a cap */ 2635 spin_lock(&inode->i_lock); 2636 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2637 if (!cap) { 2638 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", 2639 inode, ceph_ino(inode), ceph_snap(inode), mds); 2640 spin_unlock(&inode->i_lock); 2641 goto done; 2642 } 2643 2644 /* note that each of these drops i_lock for us */ 2645 switch (op) { 2646 case CEPH_CAP_OP_REVOKE: 2647 case CEPH_CAP_OP_GRANT: 2648 r = handle_cap_grant(inode, h, session, cap, msg->middle); 2649 if (r == 1) 2650 ceph_check_caps(ceph_inode(inode), 2651 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2652 session); 2653 else if (r == 2) 2654 ceph_check_caps(ceph_inode(inode), 2655 CHECK_CAPS_NODELAY, 2656 session); 2657 break; 2658 2659 case CEPH_CAP_OP_FLUSH_ACK: 2660 handle_cap_flush_ack(inode, h, session, cap); 2661 break; 2662 2663 case CEPH_CAP_OP_TRUNC: 2664 handle_cap_trunc(inode, h, session); 2665 break; 2666 2667 default: 2668 spin_unlock(&inode->i_lock); 2669 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2670 ceph_cap_op_name(op)); 2671 } 2672 2673 done: 2674 mutex_unlock(&session->s_mutex); 2675 2676 if (check_caps) 2677 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL); 2678 if (inode) 2679 iput(inode); 2680 return; 2681 2682 bad: 2683 pr_err("ceph_handle_caps: corrupt message\n"); 2684 return; 2685 } 2686 2687 /* 2688 * Delayed work handler to process end of delayed cap release LRU list. 2689 */ 2690 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2691 { 2692 struct ceph_inode_info *ci; 2693 int flags = CHECK_CAPS_NODELAY; 2694 2695 dout("check_delayed_caps\n"); 2696 while (1) { 2697 spin_lock(&mdsc->cap_delay_lock); 2698 if (list_empty(&mdsc->cap_delay_list)) 2699 break; 2700 ci = list_first_entry(&mdsc->cap_delay_list, 2701 struct ceph_inode_info, 2702 i_cap_delay_list); 2703 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2704 time_before(jiffies, ci->i_hold_caps_max)) 2705 break; 2706 list_del_init(&ci->i_cap_delay_list); 2707 spin_unlock(&mdsc->cap_delay_lock); 2708 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2709 ceph_check_caps(ci, flags, NULL); 2710 } 2711 spin_unlock(&mdsc->cap_delay_lock); 2712 } 2713 2714 /* 2715 * Flush all dirty caps to the mds 2716 */ 2717 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2718 { 2719 struct ceph_inode_info *ci; 2720 struct inode *inode; 2721 2722 dout("flush_dirty_caps\n"); 2723 spin_lock(&mdsc->cap_dirty_lock); 2724 while (!list_empty(&mdsc->cap_dirty)) { 2725 ci = list_first_entry(&mdsc->cap_dirty, 2726 struct ceph_inode_info, 2727 i_dirty_item); 2728 inode = igrab(&ci->vfs_inode); 2729 spin_unlock(&mdsc->cap_dirty_lock); 2730 if (inode) { 2731 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2732 NULL); 2733 iput(inode); 2734 } 2735 spin_lock(&mdsc->cap_dirty_lock); 2736 } 2737 spin_unlock(&mdsc->cap_dirty_lock); 2738 } 2739 2740 /* 2741 * Drop open file reference. If we were the last open file, 2742 * we may need to release capabilities to the MDS (or schedule 2743 * their delayed release). 2744 */ 2745 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2746 { 2747 struct inode *inode = &ci->vfs_inode; 2748 int last = 0; 2749 2750 spin_lock(&inode->i_lock); 2751 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2752 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2753 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2754 if (--ci->i_nr_by_mode[fmode] == 0) 2755 last++; 2756 spin_unlock(&inode->i_lock); 2757 2758 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2759 ceph_check_caps(ci, 0, NULL); 2760 } 2761 2762 /* 2763 * Helpers for embedding cap and dentry lease releases into mds 2764 * requests. 2765 * 2766 * @force is used by dentry_release (below) to force inclusion of a 2767 * record for the directory inode, even when there aren't any caps to 2768 * drop. 2769 */ 2770 int ceph_encode_inode_release(void **p, struct inode *inode, 2771 int mds, int drop, int unless, int force) 2772 { 2773 struct ceph_inode_info *ci = ceph_inode(inode); 2774 struct ceph_cap *cap; 2775 struct ceph_mds_request_release *rel = *p; 2776 int ret = 0; 2777 2778 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode, 2779 mds, ceph_cap_string(drop), ceph_cap_string(unless)); 2780 2781 spin_lock(&inode->i_lock); 2782 cap = __get_cap_for_mds(ci, mds); 2783 if (cap && __cap_is_valid(cap)) { 2784 if (force || 2785 ((cap->issued & drop) && 2786 (cap->issued & unless) == 0)) { 2787 if ((cap->issued & drop) && 2788 (cap->issued & unless) == 0) { 2789 dout("encode_inode_release %p cap %p %s -> " 2790 "%s\n", inode, cap, 2791 ceph_cap_string(cap->issued), 2792 ceph_cap_string(cap->issued & ~drop)); 2793 cap->issued &= ~drop; 2794 cap->implemented &= ~drop; 2795 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2796 int wanted = __ceph_caps_wanted(ci); 2797 dout(" wanted %s -> %s (act %s)\n", 2798 ceph_cap_string(cap->mds_wanted), 2799 ceph_cap_string(cap->mds_wanted & 2800 ~wanted), 2801 ceph_cap_string(wanted)); 2802 cap->mds_wanted &= wanted; 2803 } 2804 } else { 2805 dout("encode_inode_release %p cap %p %s" 2806 " (force)\n", inode, cap, 2807 ceph_cap_string(cap->issued)); 2808 } 2809 2810 rel->ino = cpu_to_le64(ceph_ino(inode)); 2811 rel->cap_id = cpu_to_le64(cap->cap_id); 2812 rel->seq = cpu_to_le32(cap->seq); 2813 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2814 rel->mseq = cpu_to_le32(cap->mseq); 2815 rel->caps = cpu_to_le32(cap->issued); 2816 rel->wanted = cpu_to_le32(cap->mds_wanted); 2817 rel->dname_len = 0; 2818 rel->dname_seq = 0; 2819 *p += sizeof(*rel); 2820 ret = 1; 2821 } else { 2822 dout("encode_inode_release %p cap %p %s\n", 2823 inode, cap, ceph_cap_string(cap->issued)); 2824 } 2825 } 2826 spin_unlock(&inode->i_lock); 2827 return ret; 2828 } 2829 2830 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2831 int mds, int drop, int unless) 2832 { 2833 struct inode *dir = dentry->d_parent->d_inode; 2834 struct ceph_mds_request_release *rel = *p; 2835 struct ceph_dentry_info *di = ceph_dentry(dentry); 2836 int force = 0; 2837 int ret; 2838 2839 /* 2840 * force an record for the directory caps if we have a dentry lease. 2841 * this is racy (can't take i_lock and d_lock together), but it 2842 * doesn't have to be perfect; the mds will revoke anything we don't 2843 * release. 2844 */ 2845 spin_lock(&dentry->d_lock); 2846 if (di->lease_session && di->lease_session->s_mds == mds) 2847 force = 1; 2848 spin_unlock(&dentry->d_lock); 2849 2850 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2851 2852 spin_lock(&dentry->d_lock); 2853 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2854 dout("encode_dentry_release %p mds%d seq %d\n", 2855 dentry, mds, (int)di->lease_seq); 2856 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2857 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2858 *p += dentry->d_name.len; 2859 rel->dname_seq = cpu_to_le32(di->lease_seq); 2860 } 2861 spin_unlock(&dentry->d_lock); 2862 return ret; 2863 } 2864