xref: /openbmc/linux/fs/ceph/caps.c (revision ca79522c)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15 
16 /*
17  * Capability management
18  *
19  * The Ceph metadata servers control client access to inode metadata
20  * and file data by issuing capabilities, granting clients permission
21  * to read and/or write both inode field and file data to OSDs
22  * (storage nodes).  Each capability consists of a set of bits
23  * indicating which operations are allowed.
24  *
25  * If the client holds a *_SHARED cap, the client has a coherent value
26  * that can be safely read from the cached inode.
27  *
28  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29  * client is allowed to change inode attributes (e.g., file size,
30  * mtime), note its dirty state in the ceph_cap, and asynchronously
31  * flush that metadata change to the MDS.
32  *
33  * In the event of a conflicting operation (perhaps by another
34  * client), the MDS will revoke the conflicting client capabilities.
35  *
36  * In order for a client to cache an inode, it must hold a capability
37  * with at least one MDS server.  When inodes are released, release
38  * notifications are batched and periodically sent en masse to the MDS
39  * cluster to release server state.
40  */
41 
42 
43 /*
44  * Generate readable cap strings for debugging output.
45  */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50 
51 static char *gcap_string(char *s, int c)
52 {
53 	if (c & CEPH_CAP_GSHARED)
54 		*s++ = 's';
55 	if (c & CEPH_CAP_GEXCL)
56 		*s++ = 'x';
57 	if (c & CEPH_CAP_GCACHE)
58 		*s++ = 'c';
59 	if (c & CEPH_CAP_GRD)
60 		*s++ = 'r';
61 	if (c & CEPH_CAP_GWR)
62 		*s++ = 'w';
63 	if (c & CEPH_CAP_GBUFFER)
64 		*s++ = 'b';
65 	if (c & CEPH_CAP_GLAZYIO)
66 		*s++ = 'l';
67 	return s;
68 }
69 
70 const char *ceph_cap_string(int caps)
71 {
72 	int i;
73 	char *s;
74 	int c;
75 
76 	spin_lock(&cap_str_lock);
77 	i = last_cap_str++;
78 	if (last_cap_str == MAX_CAP_STR)
79 		last_cap_str = 0;
80 	spin_unlock(&cap_str_lock);
81 
82 	s = cap_str[i];
83 
84 	if (caps & CEPH_CAP_PIN)
85 		*s++ = 'p';
86 
87 	c = (caps >> CEPH_CAP_SAUTH) & 3;
88 	if (c) {
89 		*s++ = 'A';
90 		s = gcap_string(s, c);
91 	}
92 
93 	c = (caps >> CEPH_CAP_SLINK) & 3;
94 	if (c) {
95 		*s++ = 'L';
96 		s = gcap_string(s, c);
97 	}
98 
99 	c = (caps >> CEPH_CAP_SXATTR) & 3;
100 	if (c) {
101 		*s++ = 'X';
102 		s = gcap_string(s, c);
103 	}
104 
105 	c = caps >> CEPH_CAP_SFILE;
106 	if (c) {
107 		*s++ = 'F';
108 		s = gcap_string(s, c);
109 	}
110 
111 	if (s == cap_str[i])
112 		*s++ = '-';
113 	*s = 0;
114 	return cap_str[i];
115 }
116 
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 	INIT_LIST_HEAD(&mdsc->caps_list);
120 	spin_lock_init(&mdsc->caps_list_lock);
121 }
122 
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 	struct ceph_cap *cap;
126 
127 	spin_lock(&mdsc->caps_list_lock);
128 	while (!list_empty(&mdsc->caps_list)) {
129 		cap = list_first_entry(&mdsc->caps_list,
130 				       struct ceph_cap, caps_item);
131 		list_del(&cap->caps_item);
132 		kmem_cache_free(ceph_cap_cachep, cap);
133 	}
134 	mdsc->caps_total_count = 0;
135 	mdsc->caps_avail_count = 0;
136 	mdsc->caps_use_count = 0;
137 	mdsc->caps_reserve_count = 0;
138 	mdsc->caps_min_count = 0;
139 	spin_unlock(&mdsc->caps_list_lock);
140 }
141 
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 	spin_lock(&mdsc->caps_list_lock);
145 	mdsc->caps_min_count += delta;
146 	BUG_ON(mdsc->caps_min_count < 0);
147 	spin_unlock(&mdsc->caps_list_lock);
148 }
149 
150 int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 		      struct ceph_cap_reservation *ctx, int need)
152 {
153 	int i;
154 	struct ceph_cap *cap;
155 	int have;
156 	int alloc = 0;
157 	LIST_HEAD(newcaps);
158 	int ret = 0;
159 
160 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162 	/* first reserve any caps that are already allocated */
163 	spin_lock(&mdsc->caps_list_lock);
164 	if (mdsc->caps_avail_count >= need)
165 		have = need;
166 	else
167 		have = mdsc->caps_avail_count;
168 	mdsc->caps_avail_count -= have;
169 	mdsc->caps_reserve_count += have;
170 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 					 mdsc->caps_reserve_count +
172 					 mdsc->caps_avail_count);
173 	spin_unlock(&mdsc->caps_list_lock);
174 
175 	for (i = have; i < need; i++) {
176 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 		if (!cap) {
178 			ret = -ENOMEM;
179 			goto out_alloc_count;
180 		}
181 		list_add(&cap->caps_item, &newcaps);
182 		alloc++;
183 	}
184 	BUG_ON(have + alloc != need);
185 
186 	spin_lock(&mdsc->caps_list_lock);
187 	mdsc->caps_total_count += alloc;
188 	mdsc->caps_reserve_count += alloc;
189 	list_splice(&newcaps, &mdsc->caps_list);
190 
191 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 					 mdsc->caps_reserve_count +
193 					 mdsc->caps_avail_count);
194 	spin_unlock(&mdsc->caps_list_lock);
195 
196 	ctx->count = need;
197 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 	return 0;
201 
202 out_alloc_count:
203 	/* we didn't manage to reserve as much as we needed */
204 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 		   ctx, need, have);
206 	return ret;
207 }
208 
209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 			struct ceph_cap_reservation *ctx)
211 {
212 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 	if (ctx->count) {
214 		spin_lock(&mdsc->caps_list_lock);
215 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 		mdsc->caps_reserve_count -= ctx->count;
217 		mdsc->caps_avail_count += ctx->count;
218 		ctx->count = 0;
219 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 		     mdsc->caps_total_count, mdsc->caps_use_count,
221 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 						 mdsc->caps_reserve_count +
224 						 mdsc->caps_avail_count);
225 		spin_unlock(&mdsc->caps_list_lock);
226 	}
227 	return 0;
228 }
229 
230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 				struct ceph_cap_reservation *ctx)
232 {
233 	struct ceph_cap *cap = NULL;
234 
235 	/* temporary, until we do something about cap import/export */
236 	if (!ctx) {
237 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 		if (cap) {
239 			spin_lock(&mdsc->caps_list_lock);
240 			mdsc->caps_use_count++;
241 			mdsc->caps_total_count++;
242 			spin_unlock(&mdsc->caps_list_lock);
243 		}
244 		return cap;
245 	}
246 
247 	spin_lock(&mdsc->caps_list_lock);
248 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
249 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
250 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
251 	BUG_ON(!ctx->count);
252 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
253 	BUG_ON(list_empty(&mdsc->caps_list));
254 
255 	ctx->count--;
256 	mdsc->caps_reserve_count--;
257 	mdsc->caps_use_count++;
258 
259 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
260 	list_del(&cap->caps_item);
261 
262 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
263 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
264 	spin_unlock(&mdsc->caps_list_lock);
265 	return cap;
266 }
267 
268 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
269 {
270 	spin_lock(&mdsc->caps_list_lock);
271 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
272 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
273 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
274 	mdsc->caps_use_count--;
275 	/*
276 	 * Keep some preallocated caps around (ceph_min_count), to
277 	 * avoid lots of free/alloc churn.
278 	 */
279 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
280 				      mdsc->caps_min_count) {
281 		mdsc->caps_total_count--;
282 		kmem_cache_free(ceph_cap_cachep, cap);
283 	} else {
284 		mdsc->caps_avail_count++;
285 		list_add(&cap->caps_item, &mdsc->caps_list);
286 	}
287 
288 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
289 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
290 	spin_unlock(&mdsc->caps_list_lock);
291 }
292 
293 void ceph_reservation_status(struct ceph_fs_client *fsc,
294 			     int *total, int *avail, int *used, int *reserved,
295 			     int *min)
296 {
297 	struct ceph_mds_client *mdsc = fsc->mdsc;
298 
299 	if (total)
300 		*total = mdsc->caps_total_count;
301 	if (avail)
302 		*avail = mdsc->caps_avail_count;
303 	if (used)
304 		*used = mdsc->caps_use_count;
305 	if (reserved)
306 		*reserved = mdsc->caps_reserve_count;
307 	if (min)
308 		*min = mdsc->caps_min_count;
309 }
310 
311 /*
312  * Find ceph_cap for given mds, if any.
313  *
314  * Called with i_ceph_lock held.
315  */
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
317 {
318 	struct ceph_cap *cap;
319 	struct rb_node *n = ci->i_caps.rb_node;
320 
321 	while (n) {
322 		cap = rb_entry(n, struct ceph_cap, ci_node);
323 		if (mds < cap->mds)
324 			n = n->rb_left;
325 		else if (mds > cap->mds)
326 			n = n->rb_right;
327 		else
328 			return cap;
329 	}
330 	return NULL;
331 }
332 
333 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
334 {
335 	struct ceph_cap *cap;
336 
337 	spin_lock(&ci->i_ceph_lock);
338 	cap = __get_cap_for_mds(ci, mds);
339 	spin_unlock(&ci->i_ceph_lock);
340 	return cap;
341 }
342 
343 /*
344  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
345  */
346 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
347 {
348 	struct ceph_cap *cap;
349 	int mds = -1;
350 	struct rb_node *p;
351 
352 	/* prefer mds with WR|BUFFER|EXCL caps */
353 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
354 		cap = rb_entry(p, struct ceph_cap, ci_node);
355 		mds = cap->mds;
356 		if (cap->issued & (CEPH_CAP_FILE_WR |
357 				   CEPH_CAP_FILE_BUFFER |
358 				   CEPH_CAP_FILE_EXCL))
359 			break;
360 	}
361 	return mds;
362 }
363 
364 int ceph_get_cap_mds(struct inode *inode)
365 {
366 	struct ceph_inode_info *ci = ceph_inode(inode);
367 	int mds;
368 	spin_lock(&ci->i_ceph_lock);
369 	mds = __ceph_get_cap_mds(ceph_inode(inode));
370 	spin_unlock(&ci->i_ceph_lock);
371 	return mds;
372 }
373 
374 /*
375  * Called under i_ceph_lock.
376  */
377 static void __insert_cap_node(struct ceph_inode_info *ci,
378 			      struct ceph_cap *new)
379 {
380 	struct rb_node **p = &ci->i_caps.rb_node;
381 	struct rb_node *parent = NULL;
382 	struct ceph_cap *cap = NULL;
383 
384 	while (*p) {
385 		parent = *p;
386 		cap = rb_entry(parent, struct ceph_cap, ci_node);
387 		if (new->mds < cap->mds)
388 			p = &(*p)->rb_left;
389 		else if (new->mds > cap->mds)
390 			p = &(*p)->rb_right;
391 		else
392 			BUG();
393 	}
394 
395 	rb_link_node(&new->ci_node, parent, p);
396 	rb_insert_color(&new->ci_node, &ci->i_caps);
397 }
398 
399 /*
400  * (re)set cap hold timeouts, which control the delayed release
401  * of unused caps back to the MDS.  Should be called on cap use.
402  */
403 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
404 			       struct ceph_inode_info *ci)
405 {
406 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
407 
408 	ci->i_hold_caps_min = round_jiffies(jiffies +
409 					    ma->caps_wanted_delay_min * HZ);
410 	ci->i_hold_caps_max = round_jiffies(jiffies +
411 					    ma->caps_wanted_delay_max * HZ);
412 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
413 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
414 }
415 
416 /*
417  * (Re)queue cap at the end of the delayed cap release list.
418  *
419  * If I_FLUSH is set, leave the inode at the front of the list.
420  *
421  * Caller holds i_ceph_lock
422  *    -> we take mdsc->cap_delay_lock
423  */
424 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
425 				struct ceph_inode_info *ci)
426 {
427 	__cap_set_timeouts(mdsc, ci);
428 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
429 	     ci->i_ceph_flags, ci->i_hold_caps_max);
430 	if (!mdsc->stopping) {
431 		spin_lock(&mdsc->cap_delay_lock);
432 		if (!list_empty(&ci->i_cap_delay_list)) {
433 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
434 				goto no_change;
435 			list_del_init(&ci->i_cap_delay_list);
436 		}
437 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
438 no_change:
439 		spin_unlock(&mdsc->cap_delay_lock);
440 	}
441 }
442 
443 /*
444  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
445  * indicating we should send a cap message to flush dirty metadata
446  * asap, and move to the front of the delayed cap list.
447  */
448 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
449 				      struct ceph_inode_info *ci)
450 {
451 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
452 	spin_lock(&mdsc->cap_delay_lock);
453 	ci->i_ceph_flags |= CEPH_I_FLUSH;
454 	if (!list_empty(&ci->i_cap_delay_list))
455 		list_del_init(&ci->i_cap_delay_list);
456 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
457 	spin_unlock(&mdsc->cap_delay_lock);
458 }
459 
460 /*
461  * Cancel delayed work on cap.
462  *
463  * Caller must hold i_ceph_lock.
464  */
465 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
466 			       struct ceph_inode_info *ci)
467 {
468 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
469 	if (list_empty(&ci->i_cap_delay_list))
470 		return;
471 	spin_lock(&mdsc->cap_delay_lock);
472 	list_del_init(&ci->i_cap_delay_list);
473 	spin_unlock(&mdsc->cap_delay_lock);
474 }
475 
476 /*
477  * Common issue checks for add_cap, handle_cap_grant.
478  */
479 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
480 			      unsigned issued)
481 {
482 	unsigned had = __ceph_caps_issued(ci, NULL);
483 
484 	/*
485 	 * Each time we receive FILE_CACHE anew, we increment
486 	 * i_rdcache_gen.
487 	 */
488 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
489 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
490 		ci->i_rdcache_gen++;
491 
492 	/*
493 	 * if we are newly issued FILE_SHARED, mark dir not complete; we
494 	 * don't know what happened to this directory while we didn't
495 	 * have the cap.
496 	 */
497 	if ((issued & CEPH_CAP_FILE_SHARED) &&
498 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
499 		ci->i_shared_gen++;
500 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
501 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
502 			__ceph_dir_clear_complete(ci);
503 		}
504 	}
505 }
506 
507 /*
508  * Add a capability under the given MDS session.
509  *
510  * Caller should hold session snap_rwsem (read) and s_mutex.
511  *
512  * @fmode is the open file mode, if we are opening a file, otherwise
513  * it is < 0.  (This is so we can atomically add the cap and add an
514  * open file reference to it.)
515  */
516 int ceph_add_cap(struct inode *inode,
517 		 struct ceph_mds_session *session, u64 cap_id,
518 		 int fmode, unsigned issued, unsigned wanted,
519 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
520 		 struct ceph_cap_reservation *caps_reservation)
521 {
522 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
523 	struct ceph_inode_info *ci = ceph_inode(inode);
524 	struct ceph_cap *new_cap = NULL;
525 	struct ceph_cap *cap;
526 	int mds = session->s_mds;
527 	int actual_wanted;
528 
529 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
530 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
531 
532 	/*
533 	 * If we are opening the file, include file mode wanted bits
534 	 * in wanted.
535 	 */
536 	if (fmode >= 0)
537 		wanted |= ceph_caps_for_mode(fmode);
538 
539 retry:
540 	spin_lock(&ci->i_ceph_lock);
541 	cap = __get_cap_for_mds(ci, mds);
542 	if (!cap) {
543 		if (new_cap) {
544 			cap = new_cap;
545 			new_cap = NULL;
546 		} else {
547 			spin_unlock(&ci->i_ceph_lock);
548 			new_cap = get_cap(mdsc, caps_reservation);
549 			if (new_cap == NULL)
550 				return -ENOMEM;
551 			goto retry;
552 		}
553 
554 		cap->issued = 0;
555 		cap->implemented = 0;
556 		cap->mds = mds;
557 		cap->mds_wanted = 0;
558 		cap->mseq = 0;
559 
560 		cap->ci = ci;
561 		__insert_cap_node(ci, cap);
562 
563 		/* clear out old exporting info?  (i.e. on cap import) */
564 		if (ci->i_cap_exporting_mds == mds) {
565 			ci->i_cap_exporting_issued = 0;
566 			ci->i_cap_exporting_mseq = 0;
567 			ci->i_cap_exporting_mds = -1;
568 		}
569 
570 		/* add to session cap list */
571 		cap->session = session;
572 		spin_lock(&session->s_cap_lock);
573 		list_add_tail(&cap->session_caps, &session->s_caps);
574 		session->s_nr_caps++;
575 		spin_unlock(&session->s_cap_lock);
576 	} else if (new_cap)
577 		ceph_put_cap(mdsc, new_cap);
578 
579 	if (!ci->i_snap_realm) {
580 		/*
581 		 * add this inode to the appropriate snap realm
582 		 */
583 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
584 							       realmino);
585 		if (realm) {
586 			ceph_get_snap_realm(mdsc, realm);
587 			spin_lock(&realm->inodes_with_caps_lock);
588 			ci->i_snap_realm = realm;
589 			list_add(&ci->i_snap_realm_item,
590 				 &realm->inodes_with_caps);
591 			spin_unlock(&realm->inodes_with_caps_lock);
592 		} else {
593 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
594 			       realmino);
595 			WARN_ON(!realm);
596 		}
597 	}
598 
599 	__check_cap_issue(ci, cap, issued);
600 
601 	/*
602 	 * If we are issued caps we don't want, or the mds' wanted
603 	 * value appears to be off, queue a check so we'll release
604 	 * later and/or update the mds wanted value.
605 	 */
606 	actual_wanted = __ceph_caps_wanted(ci);
607 	if ((wanted & ~actual_wanted) ||
608 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
609 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
610 		     ceph_cap_string(issued), ceph_cap_string(wanted),
611 		     ceph_cap_string(actual_wanted));
612 		__cap_delay_requeue(mdsc, ci);
613 	}
614 
615 	if (flags & CEPH_CAP_FLAG_AUTH)
616 		ci->i_auth_cap = cap;
617 	else if (ci->i_auth_cap == cap) {
618 		ci->i_auth_cap = NULL;
619 		spin_lock(&mdsc->cap_dirty_lock);
620 		if (!list_empty(&ci->i_dirty_item)) {
621 			dout(" moving %p to cap_dirty_migrating\n", inode);
622 			list_move(&ci->i_dirty_item,
623 				  &mdsc->cap_dirty_migrating);
624 		}
625 		spin_unlock(&mdsc->cap_dirty_lock);
626 	}
627 
628 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
629 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
630 	     ceph_cap_string(issued|cap->issued), seq, mds);
631 	cap->cap_id = cap_id;
632 	cap->issued = issued;
633 	cap->implemented |= issued;
634 	if (mseq > cap->mseq)
635 		cap->mds_wanted = wanted;
636 	else
637 		cap->mds_wanted |= wanted;
638 	cap->seq = seq;
639 	cap->issue_seq = seq;
640 	cap->mseq = mseq;
641 	cap->cap_gen = session->s_cap_gen;
642 
643 	if (fmode >= 0)
644 		__ceph_get_fmode(ci, fmode);
645 	spin_unlock(&ci->i_ceph_lock);
646 	wake_up_all(&ci->i_cap_wq);
647 	return 0;
648 }
649 
650 /*
651  * Return true if cap has not timed out and belongs to the current
652  * generation of the MDS session (i.e. has not gone 'stale' due to
653  * us losing touch with the mds).
654  */
655 static int __cap_is_valid(struct ceph_cap *cap)
656 {
657 	unsigned long ttl;
658 	u32 gen;
659 
660 	spin_lock(&cap->session->s_gen_ttl_lock);
661 	gen = cap->session->s_cap_gen;
662 	ttl = cap->session->s_cap_ttl;
663 	spin_unlock(&cap->session->s_gen_ttl_lock);
664 
665 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
666 		dout("__cap_is_valid %p cap %p issued %s "
667 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
668 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
669 		return 0;
670 	}
671 
672 	return 1;
673 }
674 
675 /*
676  * Return set of valid cap bits issued to us.  Note that caps time
677  * out, and may be invalidated in bulk if the client session times out
678  * and session->s_cap_gen is bumped.
679  */
680 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
681 {
682 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
683 	struct ceph_cap *cap;
684 	struct rb_node *p;
685 
686 	if (implemented)
687 		*implemented = 0;
688 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
689 		cap = rb_entry(p, struct ceph_cap, ci_node);
690 		if (!__cap_is_valid(cap))
691 			continue;
692 		dout("__ceph_caps_issued %p cap %p issued %s\n",
693 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
694 		have |= cap->issued;
695 		if (implemented)
696 			*implemented |= cap->implemented;
697 	}
698 	return have;
699 }
700 
701 /*
702  * Get cap bits issued by caps other than @ocap
703  */
704 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
705 {
706 	int have = ci->i_snap_caps;
707 	struct ceph_cap *cap;
708 	struct rb_node *p;
709 
710 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
711 		cap = rb_entry(p, struct ceph_cap, ci_node);
712 		if (cap == ocap)
713 			continue;
714 		if (!__cap_is_valid(cap))
715 			continue;
716 		have |= cap->issued;
717 	}
718 	return have;
719 }
720 
721 /*
722  * Move a cap to the end of the LRU (oldest caps at list head, newest
723  * at list tail).
724  */
725 static void __touch_cap(struct ceph_cap *cap)
726 {
727 	struct ceph_mds_session *s = cap->session;
728 
729 	spin_lock(&s->s_cap_lock);
730 	if (s->s_cap_iterator == NULL) {
731 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
732 		     s->s_mds);
733 		list_move_tail(&cap->session_caps, &s->s_caps);
734 	} else {
735 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
736 		     &cap->ci->vfs_inode, cap, s->s_mds);
737 	}
738 	spin_unlock(&s->s_cap_lock);
739 }
740 
741 /*
742  * Check if we hold the given mask.  If so, move the cap(s) to the
743  * front of their respective LRUs.  (This is the preferred way for
744  * callers to check for caps they want.)
745  */
746 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
747 {
748 	struct ceph_cap *cap;
749 	struct rb_node *p;
750 	int have = ci->i_snap_caps;
751 
752 	if ((have & mask) == mask) {
753 		dout("__ceph_caps_issued_mask %p snap issued %s"
754 		     " (mask %s)\n", &ci->vfs_inode,
755 		     ceph_cap_string(have),
756 		     ceph_cap_string(mask));
757 		return 1;
758 	}
759 
760 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
761 		cap = rb_entry(p, struct ceph_cap, ci_node);
762 		if (!__cap_is_valid(cap))
763 			continue;
764 		if ((cap->issued & mask) == mask) {
765 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
766 			     " (mask %s)\n", &ci->vfs_inode, cap,
767 			     ceph_cap_string(cap->issued),
768 			     ceph_cap_string(mask));
769 			if (touch)
770 				__touch_cap(cap);
771 			return 1;
772 		}
773 
774 		/* does a combination of caps satisfy mask? */
775 		have |= cap->issued;
776 		if ((have & mask) == mask) {
777 			dout("__ceph_caps_issued_mask %p combo issued %s"
778 			     " (mask %s)\n", &ci->vfs_inode,
779 			     ceph_cap_string(cap->issued),
780 			     ceph_cap_string(mask));
781 			if (touch) {
782 				struct rb_node *q;
783 
784 				/* touch this + preceding caps */
785 				__touch_cap(cap);
786 				for (q = rb_first(&ci->i_caps); q != p;
787 				     q = rb_next(q)) {
788 					cap = rb_entry(q, struct ceph_cap,
789 						       ci_node);
790 					if (!__cap_is_valid(cap))
791 						continue;
792 					__touch_cap(cap);
793 				}
794 			}
795 			return 1;
796 		}
797 	}
798 
799 	return 0;
800 }
801 
802 /*
803  * Return true if mask caps are currently being revoked by an MDS.
804  */
805 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
806 {
807 	struct inode *inode = &ci->vfs_inode;
808 	struct ceph_cap *cap;
809 	struct rb_node *p;
810 	int ret = 0;
811 
812 	spin_lock(&ci->i_ceph_lock);
813 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
814 		cap = rb_entry(p, struct ceph_cap, ci_node);
815 		if (__cap_is_valid(cap) &&
816 		    (cap->implemented & ~cap->issued & mask)) {
817 			ret = 1;
818 			break;
819 		}
820 	}
821 	spin_unlock(&ci->i_ceph_lock);
822 	dout("ceph_caps_revoking %p %s = %d\n", inode,
823 	     ceph_cap_string(mask), ret);
824 	return ret;
825 }
826 
827 int __ceph_caps_used(struct ceph_inode_info *ci)
828 {
829 	int used = 0;
830 	if (ci->i_pin_ref)
831 		used |= CEPH_CAP_PIN;
832 	if (ci->i_rd_ref)
833 		used |= CEPH_CAP_FILE_RD;
834 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
835 		used |= CEPH_CAP_FILE_CACHE;
836 	if (ci->i_wr_ref)
837 		used |= CEPH_CAP_FILE_WR;
838 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
839 		used |= CEPH_CAP_FILE_BUFFER;
840 	return used;
841 }
842 
843 /*
844  * wanted, by virtue of open file modes
845  */
846 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
847 {
848 	int want = 0;
849 	int mode;
850 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
851 		if (ci->i_nr_by_mode[mode])
852 			want |= ceph_caps_for_mode(mode);
853 	return want;
854 }
855 
856 /*
857  * Return caps we have registered with the MDS(s) as 'wanted'.
858  */
859 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
860 {
861 	struct ceph_cap *cap;
862 	struct rb_node *p;
863 	int mds_wanted = 0;
864 
865 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
866 		cap = rb_entry(p, struct ceph_cap, ci_node);
867 		if (!__cap_is_valid(cap))
868 			continue;
869 		mds_wanted |= cap->mds_wanted;
870 	}
871 	return mds_wanted;
872 }
873 
874 /*
875  * called under i_ceph_lock
876  */
877 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
878 {
879 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
880 }
881 
882 /*
883  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
884  *
885  * caller should hold i_ceph_lock.
886  * caller will not hold session s_mutex if called from destroy_inode.
887  */
888 void __ceph_remove_cap(struct ceph_cap *cap)
889 {
890 	struct ceph_mds_session *session = cap->session;
891 	struct ceph_inode_info *ci = cap->ci;
892 	struct ceph_mds_client *mdsc =
893 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
894 	int removed = 0;
895 
896 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
897 
898 	/* remove from session list */
899 	spin_lock(&session->s_cap_lock);
900 	if (session->s_cap_iterator == cap) {
901 		/* not yet, we are iterating over this very cap */
902 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
903 		     cap, cap->session);
904 	} else {
905 		list_del_init(&cap->session_caps);
906 		session->s_nr_caps--;
907 		cap->session = NULL;
908 		removed = 1;
909 	}
910 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
911 	cap->ci = NULL;
912 	spin_unlock(&session->s_cap_lock);
913 
914 	/* remove from inode list */
915 	rb_erase(&cap->ci_node, &ci->i_caps);
916 	if (ci->i_auth_cap == cap)
917 		ci->i_auth_cap = NULL;
918 
919 	if (removed)
920 		ceph_put_cap(mdsc, cap);
921 
922 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
923 		struct ceph_snap_realm *realm = ci->i_snap_realm;
924 		spin_lock(&realm->inodes_with_caps_lock);
925 		list_del_init(&ci->i_snap_realm_item);
926 		ci->i_snap_realm_counter++;
927 		ci->i_snap_realm = NULL;
928 		spin_unlock(&realm->inodes_with_caps_lock);
929 		ceph_put_snap_realm(mdsc, realm);
930 	}
931 	if (!__ceph_is_any_real_caps(ci))
932 		__cap_delay_cancel(mdsc, ci);
933 }
934 
935 /*
936  * Build and send a cap message to the given MDS.
937  *
938  * Caller should be holding s_mutex.
939  */
940 static int send_cap_msg(struct ceph_mds_session *session,
941 			u64 ino, u64 cid, int op,
942 			int caps, int wanted, int dirty,
943 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
944 			u64 size, u64 max_size,
945 			struct timespec *mtime, struct timespec *atime,
946 			u64 time_warp_seq,
947 			kuid_t uid, kgid_t gid, umode_t mode,
948 			u64 xattr_version,
949 			struct ceph_buffer *xattrs_buf,
950 			u64 follows)
951 {
952 	struct ceph_mds_caps *fc;
953 	struct ceph_msg *msg;
954 
955 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
956 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
957 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
958 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
959 	     ceph_cap_string(dirty),
960 	     seq, issue_seq, mseq, follows, size, max_size,
961 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
962 
963 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
964 	if (!msg)
965 		return -ENOMEM;
966 
967 	msg->hdr.tid = cpu_to_le64(flush_tid);
968 
969 	fc = msg->front.iov_base;
970 	memset(fc, 0, sizeof(*fc));
971 
972 	fc->cap_id = cpu_to_le64(cid);
973 	fc->op = cpu_to_le32(op);
974 	fc->seq = cpu_to_le32(seq);
975 	fc->issue_seq = cpu_to_le32(issue_seq);
976 	fc->migrate_seq = cpu_to_le32(mseq);
977 	fc->caps = cpu_to_le32(caps);
978 	fc->wanted = cpu_to_le32(wanted);
979 	fc->dirty = cpu_to_le32(dirty);
980 	fc->ino = cpu_to_le64(ino);
981 	fc->snap_follows = cpu_to_le64(follows);
982 
983 	fc->size = cpu_to_le64(size);
984 	fc->max_size = cpu_to_le64(max_size);
985 	if (mtime)
986 		ceph_encode_timespec(&fc->mtime, mtime);
987 	if (atime)
988 		ceph_encode_timespec(&fc->atime, atime);
989 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
990 
991 	fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
992 	fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
993 	fc->mode = cpu_to_le32(mode);
994 
995 	fc->xattr_version = cpu_to_le64(xattr_version);
996 	if (xattrs_buf) {
997 		msg->middle = ceph_buffer_get(xattrs_buf);
998 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
999 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1000 	}
1001 
1002 	ceph_con_send(&session->s_con, msg);
1003 	return 0;
1004 }
1005 
1006 void __queue_cap_release(struct ceph_mds_session *session,
1007 			 u64 ino, u64 cap_id, u32 migrate_seq,
1008 			 u32 issue_seq)
1009 {
1010 	struct ceph_msg *msg;
1011 	struct ceph_mds_cap_release *head;
1012 	struct ceph_mds_cap_item *item;
1013 
1014 	spin_lock(&session->s_cap_lock);
1015 	BUG_ON(!session->s_num_cap_releases);
1016 	msg = list_first_entry(&session->s_cap_releases,
1017 			       struct ceph_msg, list_head);
1018 
1019 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1020 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1021 
1022 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1023 	head = msg->front.iov_base;
1024 	le32_add_cpu(&head->num, 1);
1025 	item = msg->front.iov_base + msg->front.iov_len;
1026 	item->ino = cpu_to_le64(ino);
1027 	item->cap_id = cpu_to_le64(cap_id);
1028 	item->migrate_seq = cpu_to_le32(migrate_seq);
1029 	item->seq = cpu_to_le32(issue_seq);
1030 
1031 	session->s_num_cap_releases--;
1032 
1033 	msg->front.iov_len += sizeof(*item);
1034 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1035 		dout(" release msg %p full\n", msg);
1036 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1037 	} else {
1038 		dout(" release msg %p at %d/%d (%d)\n", msg,
1039 		     (int)le32_to_cpu(head->num),
1040 		     (int)CEPH_CAPS_PER_RELEASE,
1041 		     (int)msg->front.iov_len);
1042 	}
1043 	spin_unlock(&session->s_cap_lock);
1044 }
1045 
1046 /*
1047  * Queue cap releases when an inode is dropped from our cache.  Since
1048  * inode is about to be destroyed, there is no need for i_ceph_lock.
1049  */
1050 void ceph_queue_caps_release(struct inode *inode)
1051 {
1052 	struct ceph_inode_info *ci = ceph_inode(inode);
1053 	struct rb_node *p;
1054 
1055 	p = rb_first(&ci->i_caps);
1056 	while (p) {
1057 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1058 		struct ceph_mds_session *session = cap->session;
1059 
1060 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1061 				    cap->mseq, cap->issue_seq);
1062 		p = rb_next(p);
1063 		__ceph_remove_cap(cap);
1064 	}
1065 }
1066 
1067 /*
1068  * Send a cap msg on the given inode.  Update our caps state, then
1069  * drop i_ceph_lock and send the message.
1070  *
1071  * Make note of max_size reported/requested from mds, revoked caps
1072  * that have now been implemented.
1073  *
1074  * Make half-hearted attempt ot to invalidate page cache if we are
1075  * dropping RDCACHE.  Note that this will leave behind locked pages
1076  * that we'll then need to deal with elsewhere.
1077  *
1078  * Return non-zero if delayed release, or we experienced an error
1079  * such that the caller should requeue + retry later.
1080  *
1081  * called with i_ceph_lock, then drops it.
1082  * caller should hold snap_rwsem (read), s_mutex.
1083  */
1084 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1085 		      int op, int used, int want, int retain, int flushing,
1086 		      unsigned *pflush_tid)
1087 	__releases(cap->ci->i_ceph_lock)
1088 {
1089 	struct ceph_inode_info *ci = cap->ci;
1090 	struct inode *inode = &ci->vfs_inode;
1091 	u64 cap_id = cap->cap_id;
1092 	int held, revoking, dropping, keep;
1093 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1094 	u64 size, max_size;
1095 	struct timespec mtime, atime;
1096 	int wake = 0;
1097 	umode_t mode;
1098 	kuid_t uid;
1099 	kgid_t gid;
1100 	struct ceph_mds_session *session;
1101 	u64 xattr_version = 0;
1102 	struct ceph_buffer *xattr_blob = NULL;
1103 	int delayed = 0;
1104 	u64 flush_tid = 0;
1105 	int i;
1106 	int ret;
1107 
1108 	held = cap->issued | cap->implemented;
1109 	revoking = cap->implemented & ~cap->issued;
1110 	retain &= ~revoking;
1111 	dropping = cap->issued & ~retain;
1112 
1113 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1114 	     inode, cap, cap->session,
1115 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1116 	     ceph_cap_string(revoking));
1117 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1118 
1119 	session = cap->session;
1120 
1121 	/* don't release wanted unless we've waited a bit. */
1122 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1123 	    time_before(jiffies, ci->i_hold_caps_min)) {
1124 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1125 		     ceph_cap_string(cap->issued),
1126 		     ceph_cap_string(cap->issued & retain),
1127 		     ceph_cap_string(cap->mds_wanted),
1128 		     ceph_cap_string(want));
1129 		want |= cap->mds_wanted;
1130 		retain |= cap->issued;
1131 		delayed = 1;
1132 	}
1133 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1134 
1135 	cap->issued &= retain;  /* drop bits we don't want */
1136 	if (cap->implemented & ~cap->issued) {
1137 		/*
1138 		 * Wake up any waiters on wanted -> needed transition.
1139 		 * This is due to the weird transition from buffered
1140 		 * to sync IO... we need to flush dirty pages _before_
1141 		 * allowing sync writes to avoid reordering.
1142 		 */
1143 		wake = 1;
1144 	}
1145 	cap->implemented &= cap->issued | used;
1146 	cap->mds_wanted = want;
1147 
1148 	if (flushing) {
1149 		/*
1150 		 * assign a tid for flush operations so we can avoid
1151 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1152 		 * clean type races.  track latest tid for every bit
1153 		 * so we can handle flush AxFw, flush Fw, and have the
1154 		 * first ack clean Ax.
1155 		 */
1156 		flush_tid = ++ci->i_cap_flush_last_tid;
1157 		if (pflush_tid)
1158 			*pflush_tid = flush_tid;
1159 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1160 		for (i = 0; i < CEPH_CAP_BITS; i++)
1161 			if (flushing & (1 << i))
1162 				ci->i_cap_flush_tid[i] = flush_tid;
1163 
1164 		follows = ci->i_head_snapc->seq;
1165 	} else {
1166 		follows = 0;
1167 	}
1168 
1169 	keep = cap->implemented;
1170 	seq = cap->seq;
1171 	issue_seq = cap->issue_seq;
1172 	mseq = cap->mseq;
1173 	size = inode->i_size;
1174 	ci->i_reported_size = size;
1175 	max_size = ci->i_wanted_max_size;
1176 	ci->i_requested_max_size = max_size;
1177 	mtime = inode->i_mtime;
1178 	atime = inode->i_atime;
1179 	time_warp_seq = ci->i_time_warp_seq;
1180 	uid = inode->i_uid;
1181 	gid = inode->i_gid;
1182 	mode = inode->i_mode;
1183 
1184 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1185 		__ceph_build_xattrs_blob(ci);
1186 		xattr_blob = ci->i_xattrs.blob;
1187 		xattr_version = ci->i_xattrs.version;
1188 	}
1189 
1190 	spin_unlock(&ci->i_ceph_lock);
1191 
1192 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1193 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1194 		size, max_size, &mtime, &atime, time_warp_seq,
1195 		uid, gid, mode, xattr_version, xattr_blob,
1196 		follows);
1197 	if (ret < 0) {
1198 		dout("error sending cap msg, must requeue %p\n", inode);
1199 		delayed = 1;
1200 	}
1201 
1202 	if (wake)
1203 		wake_up_all(&ci->i_cap_wq);
1204 
1205 	return delayed;
1206 }
1207 
1208 /*
1209  * When a snapshot is taken, clients accumulate dirty metadata on
1210  * inodes with capabilities in ceph_cap_snaps to describe the file
1211  * state at the time the snapshot was taken.  This must be flushed
1212  * asynchronously back to the MDS once sync writes complete and dirty
1213  * data is written out.
1214  *
1215  * Unless @again is true, skip cap_snaps that were already sent to
1216  * the MDS (i.e., during this session).
1217  *
1218  * Called under i_ceph_lock.  Takes s_mutex as needed.
1219  */
1220 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1221 			struct ceph_mds_session **psession,
1222 			int again)
1223 		__releases(ci->i_ceph_lock)
1224 		__acquires(ci->i_ceph_lock)
1225 {
1226 	struct inode *inode = &ci->vfs_inode;
1227 	int mds;
1228 	struct ceph_cap_snap *capsnap;
1229 	u32 mseq;
1230 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1231 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1232 						    session->s_mutex */
1233 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1234 			     i_cap_snaps list, and skip these entries next time
1235 			     around to avoid an infinite loop */
1236 
1237 	if (psession)
1238 		session = *psession;
1239 
1240 	dout("__flush_snaps %p\n", inode);
1241 retry:
1242 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1243 		/* avoid an infiniute loop after retry */
1244 		if (capsnap->follows < next_follows)
1245 			continue;
1246 		/*
1247 		 * we need to wait for sync writes to complete and for dirty
1248 		 * pages to be written out.
1249 		 */
1250 		if (capsnap->dirty_pages || capsnap->writing)
1251 			break;
1252 
1253 		/*
1254 		 * if cap writeback already occurred, we should have dropped
1255 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1256 		 */
1257 		BUG_ON(capsnap->dirty == 0);
1258 
1259 		/* pick mds, take s_mutex */
1260 		if (ci->i_auth_cap == NULL) {
1261 			dout("no auth cap (migrating?), doing nothing\n");
1262 			goto out;
1263 		}
1264 
1265 		/* only flush each capsnap once */
1266 		if (!again && !list_empty(&capsnap->flushing_item)) {
1267 			dout("already flushed %p, skipping\n", capsnap);
1268 			continue;
1269 		}
1270 
1271 		mds = ci->i_auth_cap->session->s_mds;
1272 		mseq = ci->i_auth_cap->mseq;
1273 
1274 		if (session && session->s_mds != mds) {
1275 			dout("oops, wrong session %p mutex\n", session);
1276 			mutex_unlock(&session->s_mutex);
1277 			ceph_put_mds_session(session);
1278 			session = NULL;
1279 		}
1280 		if (!session) {
1281 			spin_unlock(&ci->i_ceph_lock);
1282 			mutex_lock(&mdsc->mutex);
1283 			session = __ceph_lookup_mds_session(mdsc, mds);
1284 			mutex_unlock(&mdsc->mutex);
1285 			if (session) {
1286 				dout("inverting session/ino locks on %p\n",
1287 				     session);
1288 				mutex_lock(&session->s_mutex);
1289 			}
1290 			/*
1291 			 * if session == NULL, we raced against a cap
1292 			 * deletion or migration.  retry, and we'll
1293 			 * get a better @mds value next time.
1294 			 */
1295 			spin_lock(&ci->i_ceph_lock);
1296 			goto retry;
1297 		}
1298 
1299 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1300 		atomic_inc(&capsnap->nref);
1301 		if (!list_empty(&capsnap->flushing_item))
1302 			list_del_init(&capsnap->flushing_item);
1303 		list_add_tail(&capsnap->flushing_item,
1304 			      &session->s_cap_snaps_flushing);
1305 		spin_unlock(&ci->i_ceph_lock);
1306 
1307 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1308 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1309 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1310 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1311 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1312 			     capsnap->size, 0,
1313 			     &capsnap->mtime, &capsnap->atime,
1314 			     capsnap->time_warp_seq,
1315 			     capsnap->uid, capsnap->gid, capsnap->mode,
1316 			     capsnap->xattr_version, capsnap->xattr_blob,
1317 			     capsnap->follows);
1318 
1319 		next_follows = capsnap->follows + 1;
1320 		ceph_put_cap_snap(capsnap);
1321 
1322 		spin_lock(&ci->i_ceph_lock);
1323 		goto retry;
1324 	}
1325 
1326 	/* we flushed them all; remove this inode from the queue */
1327 	spin_lock(&mdsc->snap_flush_lock);
1328 	list_del_init(&ci->i_snap_flush_item);
1329 	spin_unlock(&mdsc->snap_flush_lock);
1330 
1331 out:
1332 	if (psession)
1333 		*psession = session;
1334 	else if (session) {
1335 		mutex_unlock(&session->s_mutex);
1336 		ceph_put_mds_session(session);
1337 	}
1338 }
1339 
1340 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1341 {
1342 	spin_lock(&ci->i_ceph_lock);
1343 	__ceph_flush_snaps(ci, NULL, 0);
1344 	spin_unlock(&ci->i_ceph_lock);
1345 }
1346 
1347 /*
1348  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1349  * Caller is then responsible for calling __mark_inode_dirty with the
1350  * returned flags value.
1351  */
1352 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1353 {
1354 	struct ceph_mds_client *mdsc =
1355 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1356 	struct inode *inode = &ci->vfs_inode;
1357 	int was = ci->i_dirty_caps;
1358 	int dirty = 0;
1359 
1360 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1361 	     ceph_cap_string(mask), ceph_cap_string(was),
1362 	     ceph_cap_string(was | mask));
1363 	ci->i_dirty_caps |= mask;
1364 	if (was == 0) {
1365 		if (!ci->i_head_snapc)
1366 			ci->i_head_snapc = ceph_get_snap_context(
1367 				ci->i_snap_realm->cached_context);
1368 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1369 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1370 		BUG_ON(!list_empty(&ci->i_dirty_item));
1371 		spin_lock(&mdsc->cap_dirty_lock);
1372 		if (ci->i_auth_cap)
1373 			list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1374 		else
1375 			list_add(&ci->i_dirty_item,
1376 				 &mdsc->cap_dirty_migrating);
1377 		spin_unlock(&mdsc->cap_dirty_lock);
1378 		if (ci->i_flushing_caps == 0) {
1379 			ihold(inode);
1380 			dirty |= I_DIRTY_SYNC;
1381 		}
1382 	}
1383 	BUG_ON(list_empty(&ci->i_dirty_item));
1384 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1385 	    (mask & CEPH_CAP_FILE_BUFFER))
1386 		dirty |= I_DIRTY_DATASYNC;
1387 	__cap_delay_requeue(mdsc, ci);
1388 	return dirty;
1389 }
1390 
1391 /*
1392  * Add dirty inode to the flushing list.  Assigned a seq number so we
1393  * can wait for caps to flush without starving.
1394  *
1395  * Called under i_ceph_lock.
1396  */
1397 static int __mark_caps_flushing(struct inode *inode,
1398 				 struct ceph_mds_session *session)
1399 {
1400 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1401 	struct ceph_inode_info *ci = ceph_inode(inode);
1402 	int flushing;
1403 
1404 	BUG_ON(ci->i_dirty_caps == 0);
1405 	BUG_ON(list_empty(&ci->i_dirty_item));
1406 
1407 	flushing = ci->i_dirty_caps;
1408 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1409 	     ceph_cap_string(flushing),
1410 	     ceph_cap_string(ci->i_flushing_caps),
1411 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1412 	ci->i_flushing_caps |= flushing;
1413 	ci->i_dirty_caps = 0;
1414 	dout(" inode %p now !dirty\n", inode);
1415 
1416 	spin_lock(&mdsc->cap_dirty_lock);
1417 	list_del_init(&ci->i_dirty_item);
1418 
1419 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1420 	if (list_empty(&ci->i_flushing_item)) {
1421 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1422 		mdsc->num_cap_flushing++;
1423 		dout(" inode %p now flushing seq %lld\n", inode,
1424 		     ci->i_cap_flush_seq);
1425 	} else {
1426 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1427 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1428 		     ci->i_cap_flush_seq);
1429 	}
1430 	spin_unlock(&mdsc->cap_dirty_lock);
1431 
1432 	return flushing;
1433 }
1434 
1435 /*
1436  * try to invalidate mapping pages without blocking.
1437  */
1438 static int try_nonblocking_invalidate(struct inode *inode)
1439 {
1440 	struct ceph_inode_info *ci = ceph_inode(inode);
1441 	u32 invalidating_gen = ci->i_rdcache_gen;
1442 
1443 	spin_unlock(&ci->i_ceph_lock);
1444 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1445 	spin_lock(&ci->i_ceph_lock);
1446 
1447 	if (inode->i_data.nrpages == 0 &&
1448 	    invalidating_gen == ci->i_rdcache_gen) {
1449 		/* success. */
1450 		dout("try_nonblocking_invalidate %p success\n", inode);
1451 		/* save any racing async invalidate some trouble */
1452 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1453 		return 0;
1454 	}
1455 	dout("try_nonblocking_invalidate %p failed\n", inode);
1456 	return -1;
1457 }
1458 
1459 /*
1460  * Swiss army knife function to examine currently used and wanted
1461  * versus held caps.  Release, flush, ack revoked caps to mds as
1462  * appropriate.
1463  *
1464  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1465  *    cap release further.
1466  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1467  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1468  *    further delay.
1469  */
1470 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1471 		     struct ceph_mds_session *session)
1472 {
1473 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1474 	struct ceph_mds_client *mdsc = fsc->mdsc;
1475 	struct inode *inode = &ci->vfs_inode;
1476 	struct ceph_cap *cap;
1477 	int file_wanted, used, cap_used;
1478 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1479 	int issued, implemented, want, retain, revoking, flushing = 0;
1480 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1481 			   to avoid an infinite loop on retry */
1482 	struct rb_node *p;
1483 	int tried_invalidate = 0;
1484 	int delayed = 0, sent = 0, force_requeue = 0, num;
1485 	int queue_invalidate = 0;
1486 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1487 
1488 	/* if we are unmounting, flush any unused caps immediately. */
1489 	if (mdsc->stopping)
1490 		is_delayed = 1;
1491 
1492 	spin_lock(&ci->i_ceph_lock);
1493 
1494 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1495 		flags |= CHECK_CAPS_FLUSH;
1496 
1497 	/* flush snaps first time around only */
1498 	if (!list_empty(&ci->i_cap_snaps))
1499 		__ceph_flush_snaps(ci, &session, 0);
1500 	goto retry_locked;
1501 retry:
1502 	spin_lock(&ci->i_ceph_lock);
1503 retry_locked:
1504 	file_wanted = __ceph_caps_file_wanted(ci);
1505 	used = __ceph_caps_used(ci);
1506 	want = file_wanted | used;
1507 	issued = __ceph_caps_issued(ci, &implemented);
1508 	revoking = implemented & ~issued;
1509 
1510 	retain = want | CEPH_CAP_PIN;
1511 	if (!mdsc->stopping && inode->i_nlink > 0) {
1512 		if (want) {
1513 			retain |= CEPH_CAP_ANY;       /* be greedy */
1514 		} else {
1515 			retain |= CEPH_CAP_ANY_SHARED;
1516 			/*
1517 			 * keep RD only if we didn't have the file open RW,
1518 			 * because then the mds would revoke it anyway to
1519 			 * journal max_size=0.
1520 			 */
1521 			if (ci->i_max_size == 0)
1522 				retain |= CEPH_CAP_ANY_RD;
1523 		}
1524 	}
1525 
1526 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1527 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1528 	     ceph_cap_string(file_wanted),
1529 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1530 	     ceph_cap_string(ci->i_flushing_caps),
1531 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1532 	     ceph_cap_string(retain),
1533 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1534 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1535 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1536 
1537 	/*
1538 	 * If we no longer need to hold onto old our caps, and we may
1539 	 * have cached pages, but don't want them, then try to invalidate.
1540 	 * If we fail, it's because pages are locked.... try again later.
1541 	 */
1542 	if ((!is_delayed || mdsc->stopping) &&
1543 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1544 	    inode->i_data.nrpages &&                 /* have cached pages */
1545 	    (file_wanted == 0 ||                     /* no open files */
1546 	     (revoking & (CEPH_CAP_FILE_CACHE|
1547 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1548 	    !tried_invalidate) {
1549 		dout("check_caps trying to invalidate on %p\n", inode);
1550 		if (try_nonblocking_invalidate(inode) < 0) {
1551 			if (revoking & (CEPH_CAP_FILE_CACHE|
1552 					CEPH_CAP_FILE_LAZYIO)) {
1553 				dout("check_caps queuing invalidate\n");
1554 				queue_invalidate = 1;
1555 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1556 			} else {
1557 				dout("check_caps failed to invalidate pages\n");
1558 				/* we failed to invalidate pages.  check these
1559 				   caps again later. */
1560 				force_requeue = 1;
1561 				__cap_set_timeouts(mdsc, ci);
1562 			}
1563 		}
1564 		tried_invalidate = 1;
1565 		goto retry_locked;
1566 	}
1567 
1568 	num = 0;
1569 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1570 		cap = rb_entry(p, struct ceph_cap, ci_node);
1571 		num++;
1572 
1573 		/* avoid looping forever */
1574 		if (mds >= cap->mds ||
1575 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1576 			continue;
1577 
1578 		/* NOTE: no side-effects allowed, until we take s_mutex */
1579 
1580 		cap_used = used;
1581 		if (ci->i_auth_cap && cap != ci->i_auth_cap)
1582 			cap_used &= ~ci->i_auth_cap->issued;
1583 
1584 		revoking = cap->implemented & ~cap->issued;
1585 		dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1586 		     cap->mds, cap, ceph_cap_string(cap->issued),
1587 		     ceph_cap_string(cap_used),
1588 		     ceph_cap_string(cap->implemented),
1589 		     ceph_cap_string(revoking));
1590 
1591 		if (cap == ci->i_auth_cap &&
1592 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1593 			/* request larger max_size from MDS? */
1594 			if (ci->i_wanted_max_size > ci->i_max_size &&
1595 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1596 				dout("requesting new max_size\n");
1597 				goto ack;
1598 			}
1599 
1600 			/* approaching file_max? */
1601 			if ((inode->i_size << 1) >= ci->i_max_size &&
1602 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1603 				dout("i_size approaching max_size\n");
1604 				goto ack;
1605 			}
1606 		}
1607 		/* flush anything dirty? */
1608 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1609 		    ci->i_dirty_caps) {
1610 			dout("flushing dirty caps\n");
1611 			goto ack;
1612 		}
1613 
1614 		/* completed revocation? going down and there are no caps? */
1615 		if (revoking && (revoking & cap_used) == 0) {
1616 			dout("completed revocation of %s\n",
1617 			     ceph_cap_string(cap->implemented & ~cap->issued));
1618 			goto ack;
1619 		}
1620 
1621 		/* want more caps from mds? */
1622 		if (want & ~(cap->mds_wanted | cap->issued))
1623 			goto ack;
1624 
1625 		/* things we might delay */
1626 		if ((cap->issued & ~retain) == 0 &&
1627 		    cap->mds_wanted == want)
1628 			continue;     /* nope, all good */
1629 
1630 		if (is_delayed)
1631 			goto ack;
1632 
1633 		/* delay? */
1634 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1635 		    time_before(jiffies, ci->i_hold_caps_max)) {
1636 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1637 			     ceph_cap_string(cap->issued),
1638 			     ceph_cap_string(cap->issued & retain),
1639 			     ceph_cap_string(cap->mds_wanted),
1640 			     ceph_cap_string(want));
1641 			delayed++;
1642 			continue;
1643 		}
1644 
1645 ack:
1646 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1647 			dout(" skipping %p I_NOFLUSH set\n", inode);
1648 			continue;
1649 		}
1650 
1651 		if (session && session != cap->session) {
1652 			dout("oops, wrong session %p mutex\n", session);
1653 			mutex_unlock(&session->s_mutex);
1654 			session = NULL;
1655 		}
1656 		if (!session) {
1657 			session = cap->session;
1658 			if (mutex_trylock(&session->s_mutex) == 0) {
1659 				dout("inverting session/ino locks on %p\n",
1660 				     session);
1661 				spin_unlock(&ci->i_ceph_lock);
1662 				if (took_snap_rwsem) {
1663 					up_read(&mdsc->snap_rwsem);
1664 					took_snap_rwsem = 0;
1665 				}
1666 				mutex_lock(&session->s_mutex);
1667 				goto retry;
1668 			}
1669 		}
1670 		/* take snap_rwsem after session mutex */
1671 		if (!took_snap_rwsem) {
1672 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1673 				dout("inverting snap/in locks on %p\n",
1674 				     inode);
1675 				spin_unlock(&ci->i_ceph_lock);
1676 				down_read(&mdsc->snap_rwsem);
1677 				took_snap_rwsem = 1;
1678 				goto retry;
1679 			}
1680 			took_snap_rwsem = 1;
1681 		}
1682 
1683 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1684 			flushing = __mark_caps_flushing(inode, session);
1685 		else
1686 			flushing = 0;
1687 
1688 		mds = cap->mds;  /* remember mds, so we don't repeat */
1689 		sent++;
1690 
1691 		/* __send_cap drops i_ceph_lock */
1692 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1693 				      want, retain, flushing, NULL);
1694 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1695 	}
1696 
1697 	/*
1698 	 * Reschedule delayed caps release if we delayed anything,
1699 	 * otherwise cancel.
1700 	 */
1701 	if (delayed && is_delayed)
1702 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1703 	if (!delayed && !is_delayed)
1704 		__cap_delay_cancel(mdsc, ci);
1705 	else if (!is_delayed || force_requeue)
1706 		__cap_delay_requeue(mdsc, ci);
1707 
1708 	spin_unlock(&ci->i_ceph_lock);
1709 
1710 	if (queue_invalidate)
1711 		ceph_queue_invalidate(inode);
1712 
1713 	if (session)
1714 		mutex_unlock(&session->s_mutex);
1715 	if (took_snap_rwsem)
1716 		up_read(&mdsc->snap_rwsem);
1717 }
1718 
1719 /*
1720  * Try to flush dirty caps back to the auth mds.
1721  */
1722 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1723 			  unsigned *flush_tid)
1724 {
1725 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1726 	struct ceph_inode_info *ci = ceph_inode(inode);
1727 	int unlock_session = session ? 0 : 1;
1728 	int flushing = 0;
1729 
1730 retry:
1731 	spin_lock(&ci->i_ceph_lock);
1732 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1733 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1734 		goto out;
1735 	}
1736 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1737 		struct ceph_cap *cap = ci->i_auth_cap;
1738 		int used = __ceph_caps_used(ci);
1739 		int want = __ceph_caps_wanted(ci);
1740 		int delayed;
1741 
1742 		if (!session) {
1743 			spin_unlock(&ci->i_ceph_lock);
1744 			session = cap->session;
1745 			mutex_lock(&session->s_mutex);
1746 			goto retry;
1747 		}
1748 		BUG_ON(session != cap->session);
1749 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1750 			goto out;
1751 
1752 		flushing = __mark_caps_flushing(inode, session);
1753 
1754 		/* __send_cap drops i_ceph_lock */
1755 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1756 				     cap->issued | cap->implemented, flushing,
1757 				     flush_tid);
1758 		if (!delayed)
1759 			goto out_unlocked;
1760 
1761 		spin_lock(&ci->i_ceph_lock);
1762 		__cap_delay_requeue(mdsc, ci);
1763 	}
1764 out:
1765 	spin_unlock(&ci->i_ceph_lock);
1766 out_unlocked:
1767 	if (session && unlock_session)
1768 		mutex_unlock(&session->s_mutex);
1769 	return flushing;
1770 }
1771 
1772 /*
1773  * Return true if we've flushed caps through the given flush_tid.
1774  */
1775 static int caps_are_flushed(struct inode *inode, unsigned tid)
1776 {
1777 	struct ceph_inode_info *ci = ceph_inode(inode);
1778 	int i, ret = 1;
1779 
1780 	spin_lock(&ci->i_ceph_lock);
1781 	for (i = 0; i < CEPH_CAP_BITS; i++)
1782 		if ((ci->i_flushing_caps & (1 << i)) &&
1783 		    ci->i_cap_flush_tid[i] <= tid) {
1784 			/* still flushing this bit */
1785 			ret = 0;
1786 			break;
1787 		}
1788 	spin_unlock(&ci->i_ceph_lock);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Wait on any unsafe replies for the given inode.  First wait on the
1794  * newest request, and make that the upper bound.  Then, if there are
1795  * more requests, keep waiting on the oldest as long as it is still older
1796  * than the original request.
1797  */
1798 static void sync_write_wait(struct inode *inode)
1799 {
1800 	struct ceph_inode_info *ci = ceph_inode(inode);
1801 	struct list_head *head = &ci->i_unsafe_writes;
1802 	struct ceph_osd_request *req;
1803 	u64 last_tid;
1804 
1805 	spin_lock(&ci->i_unsafe_lock);
1806 	if (list_empty(head))
1807 		goto out;
1808 
1809 	/* set upper bound as _last_ entry in chain */
1810 	req = list_entry(head->prev, struct ceph_osd_request,
1811 			 r_unsafe_item);
1812 	last_tid = req->r_tid;
1813 
1814 	do {
1815 		ceph_osdc_get_request(req);
1816 		spin_unlock(&ci->i_unsafe_lock);
1817 		dout("sync_write_wait on tid %llu (until %llu)\n",
1818 		     req->r_tid, last_tid);
1819 		wait_for_completion(&req->r_safe_completion);
1820 		spin_lock(&ci->i_unsafe_lock);
1821 		ceph_osdc_put_request(req);
1822 
1823 		/*
1824 		 * from here on look at first entry in chain, since we
1825 		 * only want to wait for anything older than last_tid
1826 		 */
1827 		if (list_empty(head))
1828 			break;
1829 		req = list_entry(head->next, struct ceph_osd_request,
1830 				 r_unsafe_item);
1831 	} while (req->r_tid < last_tid);
1832 out:
1833 	spin_unlock(&ci->i_unsafe_lock);
1834 }
1835 
1836 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1837 {
1838 	struct inode *inode = file->f_mapping->host;
1839 	struct ceph_inode_info *ci = ceph_inode(inode);
1840 	unsigned flush_tid;
1841 	int ret;
1842 	int dirty;
1843 
1844 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1845 	sync_write_wait(inode);
1846 
1847 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1848 	if (ret < 0)
1849 		return ret;
1850 	mutex_lock(&inode->i_mutex);
1851 
1852 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1853 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1854 
1855 	/*
1856 	 * only wait on non-file metadata writeback (the mds
1857 	 * can recover size and mtime, so we don't need to
1858 	 * wait for that)
1859 	 */
1860 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1861 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1862 		ret = wait_event_interruptible(ci->i_cap_wq,
1863 				       caps_are_flushed(inode, flush_tid));
1864 	}
1865 
1866 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1867 	mutex_unlock(&inode->i_mutex);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1873  * queue inode for flush but don't do so immediately, because we can
1874  * get by with fewer MDS messages if we wait for data writeback to
1875  * complete first.
1876  */
1877 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1878 {
1879 	struct ceph_inode_info *ci = ceph_inode(inode);
1880 	unsigned flush_tid;
1881 	int err = 0;
1882 	int dirty;
1883 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1884 
1885 	dout("write_inode %p wait=%d\n", inode, wait);
1886 	if (wait) {
1887 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1888 		if (dirty)
1889 			err = wait_event_interruptible(ci->i_cap_wq,
1890 				       caps_are_flushed(inode, flush_tid));
1891 	} else {
1892 		struct ceph_mds_client *mdsc =
1893 			ceph_sb_to_client(inode->i_sb)->mdsc;
1894 
1895 		spin_lock(&ci->i_ceph_lock);
1896 		if (__ceph_caps_dirty(ci))
1897 			__cap_delay_requeue_front(mdsc, ci);
1898 		spin_unlock(&ci->i_ceph_lock);
1899 	}
1900 	return err;
1901 }
1902 
1903 /*
1904  * After a recovering MDS goes active, we need to resend any caps
1905  * we were flushing.
1906  *
1907  * Caller holds session->s_mutex.
1908  */
1909 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1910 				   struct ceph_mds_session *session)
1911 {
1912 	struct ceph_cap_snap *capsnap;
1913 
1914 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1915 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1916 			    flushing_item) {
1917 		struct ceph_inode_info *ci = capsnap->ci;
1918 		struct inode *inode = &ci->vfs_inode;
1919 		struct ceph_cap *cap;
1920 
1921 		spin_lock(&ci->i_ceph_lock);
1922 		cap = ci->i_auth_cap;
1923 		if (cap && cap->session == session) {
1924 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1925 			     cap, capsnap);
1926 			__ceph_flush_snaps(ci, &session, 1);
1927 		} else {
1928 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1929 			       cap, session->s_mds);
1930 		}
1931 		spin_unlock(&ci->i_ceph_lock);
1932 	}
1933 }
1934 
1935 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1936 			     struct ceph_mds_session *session)
1937 {
1938 	struct ceph_inode_info *ci;
1939 
1940 	kick_flushing_capsnaps(mdsc, session);
1941 
1942 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1943 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1944 		struct inode *inode = &ci->vfs_inode;
1945 		struct ceph_cap *cap;
1946 		int delayed = 0;
1947 
1948 		spin_lock(&ci->i_ceph_lock);
1949 		cap = ci->i_auth_cap;
1950 		if (cap && cap->session == session) {
1951 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1952 			     cap, ceph_cap_string(ci->i_flushing_caps));
1953 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1954 					     __ceph_caps_used(ci),
1955 					     __ceph_caps_wanted(ci),
1956 					     cap->issued | cap->implemented,
1957 					     ci->i_flushing_caps, NULL);
1958 			if (delayed) {
1959 				spin_lock(&ci->i_ceph_lock);
1960 				__cap_delay_requeue(mdsc, ci);
1961 				spin_unlock(&ci->i_ceph_lock);
1962 			}
1963 		} else {
1964 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1965 			       cap, session->s_mds);
1966 			spin_unlock(&ci->i_ceph_lock);
1967 		}
1968 	}
1969 }
1970 
1971 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1972 				     struct ceph_mds_session *session,
1973 				     struct inode *inode)
1974 {
1975 	struct ceph_inode_info *ci = ceph_inode(inode);
1976 	struct ceph_cap *cap;
1977 	int delayed = 0;
1978 
1979 	spin_lock(&ci->i_ceph_lock);
1980 	cap = ci->i_auth_cap;
1981 	dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1982 	     ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1983 	__ceph_flush_snaps(ci, &session, 1);
1984 	if (ci->i_flushing_caps) {
1985 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1986 				     __ceph_caps_used(ci),
1987 				     __ceph_caps_wanted(ci),
1988 				     cap->issued | cap->implemented,
1989 				     ci->i_flushing_caps, NULL);
1990 		if (delayed) {
1991 			spin_lock(&ci->i_ceph_lock);
1992 			__cap_delay_requeue(mdsc, ci);
1993 			spin_unlock(&ci->i_ceph_lock);
1994 		}
1995 	} else {
1996 		spin_unlock(&ci->i_ceph_lock);
1997 	}
1998 }
1999 
2000 
2001 /*
2002  * Take references to capabilities we hold, so that we don't release
2003  * them to the MDS prematurely.
2004  *
2005  * Protected by i_ceph_lock.
2006  */
2007 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2008 {
2009 	if (got & CEPH_CAP_PIN)
2010 		ci->i_pin_ref++;
2011 	if (got & CEPH_CAP_FILE_RD)
2012 		ci->i_rd_ref++;
2013 	if (got & CEPH_CAP_FILE_CACHE)
2014 		ci->i_rdcache_ref++;
2015 	if (got & CEPH_CAP_FILE_WR)
2016 		ci->i_wr_ref++;
2017 	if (got & CEPH_CAP_FILE_BUFFER) {
2018 		if (ci->i_wb_ref == 0)
2019 			ihold(&ci->vfs_inode);
2020 		ci->i_wb_ref++;
2021 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2022 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2023 	}
2024 }
2025 
2026 /*
2027  * Try to grab cap references.  Specify those refs we @want, and the
2028  * minimal set we @need.  Also include the larger offset we are writing
2029  * to (when applicable), and check against max_size here as well.
2030  * Note that caller is responsible for ensuring max_size increases are
2031  * requested from the MDS.
2032  */
2033 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2034 			    int *got, loff_t endoff, int *check_max, int *err)
2035 {
2036 	struct inode *inode = &ci->vfs_inode;
2037 	int ret = 0;
2038 	int have, implemented;
2039 	int file_wanted;
2040 
2041 	dout("get_cap_refs %p need %s want %s\n", inode,
2042 	     ceph_cap_string(need), ceph_cap_string(want));
2043 	spin_lock(&ci->i_ceph_lock);
2044 
2045 	/* make sure file is actually open */
2046 	file_wanted = __ceph_caps_file_wanted(ci);
2047 	if ((file_wanted & need) == 0) {
2048 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2049 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2050 		*err = -EBADF;
2051 		ret = 1;
2052 		goto out;
2053 	}
2054 
2055 	/* finish pending truncate */
2056 	while (ci->i_truncate_pending) {
2057 		spin_unlock(&ci->i_ceph_lock);
2058 		__ceph_do_pending_vmtruncate(inode, !(need & CEPH_CAP_FILE_WR));
2059 		spin_lock(&ci->i_ceph_lock);
2060 	}
2061 
2062 	if (need & CEPH_CAP_FILE_WR) {
2063 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2064 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2065 			     inode, endoff, ci->i_max_size);
2066 			if (endoff > ci->i_wanted_max_size) {
2067 				*check_max = 1;
2068 				ret = 1;
2069 			}
2070 			goto out;
2071 		}
2072 		/*
2073 		 * If a sync write is in progress, we must wait, so that we
2074 		 * can get a final snapshot value for size+mtime.
2075 		 */
2076 		if (__ceph_have_pending_cap_snap(ci)) {
2077 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2078 			goto out;
2079 		}
2080 	}
2081 	have = __ceph_caps_issued(ci, &implemented);
2082 
2083 	if ((have & need) == need) {
2084 		/*
2085 		 * Look at (implemented & ~have & not) so that we keep waiting
2086 		 * on transition from wanted -> needed caps.  This is needed
2087 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2088 		 * going before a prior buffered writeback happens.
2089 		 */
2090 		int not = want & ~(have & need);
2091 		int revoking = implemented & ~have;
2092 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2093 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2094 		     ceph_cap_string(revoking));
2095 		if ((revoking & not) == 0) {
2096 			*got = need | (have & want);
2097 			__take_cap_refs(ci, *got);
2098 			ret = 1;
2099 		}
2100 	} else {
2101 		dout("get_cap_refs %p have %s needed %s\n", inode,
2102 		     ceph_cap_string(have), ceph_cap_string(need));
2103 	}
2104 out:
2105 	spin_unlock(&ci->i_ceph_lock);
2106 	dout("get_cap_refs %p ret %d got %s\n", inode,
2107 	     ret, ceph_cap_string(*got));
2108 	return ret;
2109 }
2110 
2111 /*
2112  * Check the offset we are writing up to against our current
2113  * max_size.  If necessary, tell the MDS we want to write to
2114  * a larger offset.
2115  */
2116 static void check_max_size(struct inode *inode, loff_t endoff)
2117 {
2118 	struct ceph_inode_info *ci = ceph_inode(inode);
2119 	int check = 0;
2120 
2121 	/* do we need to explicitly request a larger max_size? */
2122 	spin_lock(&ci->i_ceph_lock);
2123 	if ((endoff >= ci->i_max_size ||
2124 	     endoff > (inode->i_size << 1)) &&
2125 	    endoff > ci->i_wanted_max_size) {
2126 		dout("write %p at large endoff %llu, req max_size\n",
2127 		     inode, endoff);
2128 		ci->i_wanted_max_size = endoff;
2129 		check = 1;
2130 	}
2131 	spin_unlock(&ci->i_ceph_lock);
2132 	if (check)
2133 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2134 }
2135 
2136 /*
2137  * Wait for caps, and take cap references.  If we can't get a WR cap
2138  * due to a small max_size, make sure we check_max_size (and possibly
2139  * ask the mds) so we don't get hung up indefinitely.
2140  */
2141 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2142 		  loff_t endoff)
2143 {
2144 	int check_max, ret, err;
2145 
2146 retry:
2147 	if (endoff > 0)
2148 		check_max_size(&ci->vfs_inode, endoff);
2149 	check_max = 0;
2150 	err = 0;
2151 	ret = wait_event_interruptible(ci->i_cap_wq,
2152 				       try_get_cap_refs(ci, need, want,
2153 							got, endoff,
2154 							&check_max, &err));
2155 	if (err)
2156 		ret = err;
2157 	if (check_max)
2158 		goto retry;
2159 	return ret;
2160 }
2161 
2162 /*
2163  * Take cap refs.  Caller must already know we hold at least one ref
2164  * on the caps in question or we don't know this is safe.
2165  */
2166 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2167 {
2168 	spin_lock(&ci->i_ceph_lock);
2169 	__take_cap_refs(ci, caps);
2170 	spin_unlock(&ci->i_ceph_lock);
2171 }
2172 
2173 /*
2174  * Release cap refs.
2175  *
2176  * If we released the last ref on any given cap, call ceph_check_caps
2177  * to release (or schedule a release).
2178  *
2179  * If we are releasing a WR cap (from a sync write), finalize any affected
2180  * cap_snap, and wake up any waiters.
2181  */
2182 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2183 {
2184 	struct inode *inode = &ci->vfs_inode;
2185 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2186 	struct ceph_cap_snap *capsnap;
2187 
2188 	spin_lock(&ci->i_ceph_lock);
2189 	if (had & CEPH_CAP_PIN)
2190 		--ci->i_pin_ref;
2191 	if (had & CEPH_CAP_FILE_RD)
2192 		if (--ci->i_rd_ref == 0)
2193 			last++;
2194 	if (had & CEPH_CAP_FILE_CACHE)
2195 		if (--ci->i_rdcache_ref == 0)
2196 			last++;
2197 	if (had & CEPH_CAP_FILE_BUFFER) {
2198 		if (--ci->i_wb_ref == 0) {
2199 			last++;
2200 			put++;
2201 		}
2202 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2203 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2204 	}
2205 	if (had & CEPH_CAP_FILE_WR)
2206 		if (--ci->i_wr_ref == 0) {
2207 			last++;
2208 			if (!list_empty(&ci->i_cap_snaps)) {
2209 				capsnap = list_first_entry(&ci->i_cap_snaps,
2210 						     struct ceph_cap_snap,
2211 						     ci_item);
2212 				if (capsnap->writing) {
2213 					capsnap->writing = 0;
2214 					flushsnaps =
2215 						__ceph_finish_cap_snap(ci,
2216 								       capsnap);
2217 					wake = 1;
2218 				}
2219 			}
2220 		}
2221 	spin_unlock(&ci->i_ceph_lock);
2222 
2223 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2224 	     last ? " last" : "", put ? " put" : "");
2225 
2226 	if (last && !flushsnaps)
2227 		ceph_check_caps(ci, 0, NULL);
2228 	else if (flushsnaps)
2229 		ceph_flush_snaps(ci);
2230 	if (wake)
2231 		wake_up_all(&ci->i_cap_wq);
2232 	if (put)
2233 		iput(inode);
2234 }
2235 
2236 /*
2237  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2238  * context.  Adjust per-snap dirty page accounting as appropriate.
2239  * Once all dirty data for a cap_snap is flushed, flush snapped file
2240  * metadata back to the MDS.  If we dropped the last ref, call
2241  * ceph_check_caps.
2242  */
2243 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2244 				struct ceph_snap_context *snapc)
2245 {
2246 	struct inode *inode = &ci->vfs_inode;
2247 	int last = 0;
2248 	int complete_capsnap = 0;
2249 	int drop_capsnap = 0;
2250 	int found = 0;
2251 	struct ceph_cap_snap *capsnap = NULL;
2252 
2253 	spin_lock(&ci->i_ceph_lock);
2254 	ci->i_wrbuffer_ref -= nr;
2255 	last = !ci->i_wrbuffer_ref;
2256 
2257 	if (ci->i_head_snapc == snapc) {
2258 		ci->i_wrbuffer_ref_head -= nr;
2259 		if (ci->i_wrbuffer_ref_head == 0 &&
2260 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2261 			BUG_ON(!ci->i_head_snapc);
2262 			ceph_put_snap_context(ci->i_head_snapc);
2263 			ci->i_head_snapc = NULL;
2264 		}
2265 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2266 		     inode,
2267 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2268 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2269 		     last ? " LAST" : "");
2270 	} else {
2271 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2272 			if (capsnap->context == snapc) {
2273 				found = 1;
2274 				break;
2275 			}
2276 		}
2277 		BUG_ON(!found);
2278 		capsnap->dirty_pages -= nr;
2279 		if (capsnap->dirty_pages == 0) {
2280 			complete_capsnap = 1;
2281 			if (capsnap->dirty == 0)
2282 				/* cap writeback completed before we created
2283 				 * the cap_snap; no FLUSHSNAP is needed */
2284 				drop_capsnap = 1;
2285 		}
2286 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2287 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2288 		     inode, capsnap, capsnap->context->seq,
2289 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2290 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2291 		     last ? " (wrbuffer last)" : "",
2292 		     complete_capsnap ? " (complete capsnap)" : "",
2293 		     drop_capsnap ? " (drop capsnap)" : "");
2294 		if (drop_capsnap) {
2295 			ceph_put_snap_context(capsnap->context);
2296 			list_del(&capsnap->ci_item);
2297 			list_del(&capsnap->flushing_item);
2298 			ceph_put_cap_snap(capsnap);
2299 		}
2300 	}
2301 
2302 	spin_unlock(&ci->i_ceph_lock);
2303 
2304 	if (last) {
2305 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2306 		iput(inode);
2307 	} else if (complete_capsnap) {
2308 		ceph_flush_snaps(ci);
2309 		wake_up_all(&ci->i_cap_wq);
2310 	}
2311 	if (drop_capsnap)
2312 		iput(inode);
2313 }
2314 
2315 /*
2316  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2317  * actually be a revocation if it specifies a smaller cap set.)
2318  *
2319  * caller holds s_mutex and i_ceph_lock, we drop both.
2320  *
2321  * return value:
2322  *  0 - ok
2323  *  1 - check_caps on auth cap only (writeback)
2324  *  2 - check_caps (ack revoke)
2325  */
2326 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2327 			     struct ceph_mds_session *session,
2328 			     struct ceph_cap *cap,
2329 			     struct ceph_buffer *xattr_buf)
2330 		__releases(ci->i_ceph_lock)
2331 {
2332 	struct ceph_inode_info *ci = ceph_inode(inode);
2333 	int mds = session->s_mds;
2334 	int seq = le32_to_cpu(grant->seq);
2335 	int newcaps = le32_to_cpu(grant->caps);
2336 	int issued, implemented, used, wanted, dirty;
2337 	u64 size = le64_to_cpu(grant->size);
2338 	u64 max_size = le64_to_cpu(grant->max_size);
2339 	struct timespec mtime, atime, ctime;
2340 	int check_caps = 0;
2341 	int wake = 0;
2342 	int writeback = 0;
2343 	int revoked_rdcache = 0;
2344 	int queue_invalidate = 0;
2345 
2346 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2347 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2348 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2349 		inode->i_size);
2350 
2351 	/*
2352 	 * If CACHE is being revoked, and we have no dirty buffers,
2353 	 * try to invalidate (once).  (If there are dirty buffers, we
2354 	 * will invalidate _after_ writeback.)
2355 	 */
2356 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2357 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2358 	    !ci->i_wrbuffer_ref) {
2359 		if (try_nonblocking_invalidate(inode) == 0) {
2360 			revoked_rdcache = 1;
2361 		} else {
2362 			/* there were locked pages.. invalidate later
2363 			   in a separate thread. */
2364 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2365 				queue_invalidate = 1;
2366 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2367 			}
2368 		}
2369 	}
2370 
2371 	/* side effects now are allowed */
2372 
2373 	issued = __ceph_caps_issued(ci, &implemented);
2374 	issued |= implemented | __ceph_caps_dirty(ci);
2375 
2376 	cap->cap_gen = session->s_cap_gen;
2377 
2378 	__check_cap_issue(ci, cap, newcaps);
2379 
2380 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2381 		inode->i_mode = le32_to_cpu(grant->mode);
2382 		inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2383 		inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2384 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2385 		     from_kuid(&init_user_ns, inode->i_uid),
2386 		     from_kgid(&init_user_ns, inode->i_gid));
2387 	}
2388 
2389 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2390 		set_nlink(inode, le32_to_cpu(grant->nlink));
2391 
2392 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2393 		int len = le32_to_cpu(grant->xattr_len);
2394 		u64 version = le64_to_cpu(grant->xattr_version);
2395 
2396 		if (version > ci->i_xattrs.version) {
2397 			dout(" got new xattrs v%llu on %p len %d\n",
2398 			     version, inode, len);
2399 			if (ci->i_xattrs.blob)
2400 				ceph_buffer_put(ci->i_xattrs.blob);
2401 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2402 			ci->i_xattrs.version = version;
2403 		}
2404 	}
2405 
2406 	/* size/ctime/mtime/atime? */
2407 	ceph_fill_file_size(inode, issued,
2408 			    le32_to_cpu(grant->truncate_seq),
2409 			    le64_to_cpu(grant->truncate_size), size);
2410 	ceph_decode_timespec(&mtime, &grant->mtime);
2411 	ceph_decode_timespec(&atime, &grant->atime);
2412 	ceph_decode_timespec(&ctime, &grant->ctime);
2413 	ceph_fill_file_time(inode, issued,
2414 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2415 			    &atime);
2416 
2417 	/* max size increase? */
2418 	if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2419 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2420 		ci->i_max_size = max_size;
2421 		if (max_size >= ci->i_wanted_max_size) {
2422 			ci->i_wanted_max_size = 0;  /* reset */
2423 			ci->i_requested_max_size = 0;
2424 		}
2425 		wake = 1;
2426 	}
2427 
2428 	/* check cap bits */
2429 	wanted = __ceph_caps_wanted(ci);
2430 	used = __ceph_caps_used(ci);
2431 	dirty = __ceph_caps_dirty(ci);
2432 	dout(" my wanted = %s, used = %s, dirty %s\n",
2433 	     ceph_cap_string(wanted),
2434 	     ceph_cap_string(used),
2435 	     ceph_cap_string(dirty));
2436 	if (wanted != le32_to_cpu(grant->wanted)) {
2437 		dout("mds wanted %s -> %s\n",
2438 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2439 		     ceph_cap_string(wanted));
2440 		/* imported cap may not have correct mds_wanted */
2441 		if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2442 			check_caps = 1;
2443 	}
2444 
2445 	cap->seq = seq;
2446 
2447 	/* file layout may have changed */
2448 	ci->i_layout = grant->layout;
2449 
2450 	/* revocation, grant, or no-op? */
2451 	if (cap->issued & ~newcaps) {
2452 		int revoking = cap->issued & ~newcaps;
2453 
2454 		dout("revocation: %s -> %s (revoking %s)\n",
2455 		     ceph_cap_string(cap->issued),
2456 		     ceph_cap_string(newcaps),
2457 		     ceph_cap_string(revoking));
2458 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2459 			writeback = 1;  /* initiate writeback; will delay ack */
2460 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2461 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2462 			 queue_invalidate)
2463 			; /* do nothing yet, invalidation will be queued */
2464 		else if (cap == ci->i_auth_cap)
2465 			check_caps = 1; /* check auth cap only */
2466 		else
2467 			check_caps = 2; /* check all caps */
2468 		cap->issued = newcaps;
2469 		cap->implemented |= newcaps;
2470 	} else if (cap->issued == newcaps) {
2471 		dout("caps unchanged: %s -> %s\n",
2472 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2473 	} else {
2474 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2475 		     ceph_cap_string(newcaps));
2476 		cap->issued = newcaps;
2477 		cap->implemented |= newcaps; /* add bits only, to
2478 					      * avoid stepping on a
2479 					      * pending revocation */
2480 		wake = 1;
2481 	}
2482 	BUG_ON(cap->issued & ~cap->implemented);
2483 
2484 	spin_unlock(&ci->i_ceph_lock);
2485 	if (writeback)
2486 		/*
2487 		 * queue inode for writeback: we can't actually call
2488 		 * filemap_write_and_wait, etc. from message handler
2489 		 * context.
2490 		 */
2491 		ceph_queue_writeback(inode);
2492 	if (queue_invalidate)
2493 		ceph_queue_invalidate(inode);
2494 	if (wake)
2495 		wake_up_all(&ci->i_cap_wq);
2496 
2497 	if (check_caps == 1)
2498 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2499 				session);
2500 	else if (check_caps == 2)
2501 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2502 	else
2503 		mutex_unlock(&session->s_mutex);
2504 }
2505 
2506 /*
2507  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2508  * MDS has been safely committed.
2509  */
2510 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2511 				 struct ceph_mds_caps *m,
2512 				 struct ceph_mds_session *session,
2513 				 struct ceph_cap *cap)
2514 	__releases(ci->i_ceph_lock)
2515 {
2516 	struct ceph_inode_info *ci = ceph_inode(inode);
2517 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2518 	unsigned seq = le32_to_cpu(m->seq);
2519 	int dirty = le32_to_cpu(m->dirty);
2520 	int cleaned = 0;
2521 	int drop = 0;
2522 	int i;
2523 
2524 	for (i = 0; i < CEPH_CAP_BITS; i++)
2525 		if ((dirty & (1 << i)) &&
2526 		    flush_tid == ci->i_cap_flush_tid[i])
2527 			cleaned |= 1 << i;
2528 
2529 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2530 	     " flushing %s -> %s\n",
2531 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2532 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2533 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2534 
2535 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2536 		goto out;
2537 
2538 	ci->i_flushing_caps &= ~cleaned;
2539 
2540 	spin_lock(&mdsc->cap_dirty_lock);
2541 	if (ci->i_flushing_caps == 0) {
2542 		list_del_init(&ci->i_flushing_item);
2543 		if (!list_empty(&session->s_cap_flushing))
2544 			dout(" mds%d still flushing cap on %p\n",
2545 			     session->s_mds,
2546 			     &list_entry(session->s_cap_flushing.next,
2547 					 struct ceph_inode_info,
2548 					 i_flushing_item)->vfs_inode);
2549 		mdsc->num_cap_flushing--;
2550 		wake_up_all(&mdsc->cap_flushing_wq);
2551 		dout(" inode %p now !flushing\n", inode);
2552 
2553 		if (ci->i_dirty_caps == 0) {
2554 			dout(" inode %p now clean\n", inode);
2555 			BUG_ON(!list_empty(&ci->i_dirty_item));
2556 			drop = 1;
2557 			if (ci->i_wrbuffer_ref_head == 0) {
2558 				BUG_ON(!ci->i_head_snapc);
2559 				ceph_put_snap_context(ci->i_head_snapc);
2560 				ci->i_head_snapc = NULL;
2561 			}
2562 		} else {
2563 			BUG_ON(list_empty(&ci->i_dirty_item));
2564 		}
2565 	}
2566 	spin_unlock(&mdsc->cap_dirty_lock);
2567 	wake_up_all(&ci->i_cap_wq);
2568 
2569 out:
2570 	spin_unlock(&ci->i_ceph_lock);
2571 	if (drop)
2572 		iput(inode);
2573 }
2574 
2575 /*
2576  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2577  * throw away our cap_snap.
2578  *
2579  * Caller hold s_mutex.
2580  */
2581 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2582 				     struct ceph_mds_caps *m,
2583 				     struct ceph_mds_session *session)
2584 {
2585 	struct ceph_inode_info *ci = ceph_inode(inode);
2586 	u64 follows = le64_to_cpu(m->snap_follows);
2587 	struct ceph_cap_snap *capsnap;
2588 	int drop = 0;
2589 
2590 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2591 	     inode, ci, session->s_mds, follows);
2592 
2593 	spin_lock(&ci->i_ceph_lock);
2594 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2595 		if (capsnap->follows == follows) {
2596 			if (capsnap->flush_tid != flush_tid) {
2597 				dout(" cap_snap %p follows %lld tid %lld !="
2598 				     " %lld\n", capsnap, follows,
2599 				     flush_tid, capsnap->flush_tid);
2600 				break;
2601 			}
2602 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2603 			dout(" removing %p cap_snap %p follows %lld\n",
2604 			     inode, capsnap, follows);
2605 			ceph_put_snap_context(capsnap->context);
2606 			list_del(&capsnap->ci_item);
2607 			list_del(&capsnap->flushing_item);
2608 			ceph_put_cap_snap(capsnap);
2609 			drop = 1;
2610 			break;
2611 		} else {
2612 			dout(" skipping cap_snap %p follows %lld\n",
2613 			     capsnap, capsnap->follows);
2614 		}
2615 	}
2616 	spin_unlock(&ci->i_ceph_lock);
2617 	if (drop)
2618 		iput(inode);
2619 }
2620 
2621 /*
2622  * Handle TRUNC from MDS, indicating file truncation.
2623  *
2624  * caller hold s_mutex.
2625  */
2626 static void handle_cap_trunc(struct inode *inode,
2627 			     struct ceph_mds_caps *trunc,
2628 			     struct ceph_mds_session *session)
2629 	__releases(ci->i_ceph_lock)
2630 {
2631 	struct ceph_inode_info *ci = ceph_inode(inode);
2632 	int mds = session->s_mds;
2633 	int seq = le32_to_cpu(trunc->seq);
2634 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2635 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2636 	u64 size = le64_to_cpu(trunc->size);
2637 	int implemented = 0;
2638 	int dirty = __ceph_caps_dirty(ci);
2639 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2640 	int queue_trunc = 0;
2641 
2642 	issued |= implemented | dirty;
2643 
2644 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2645 	     inode, mds, seq, truncate_size, truncate_seq);
2646 	queue_trunc = ceph_fill_file_size(inode, issued,
2647 					  truncate_seq, truncate_size, size);
2648 	spin_unlock(&ci->i_ceph_lock);
2649 
2650 	if (queue_trunc)
2651 		ceph_queue_vmtruncate(inode);
2652 }
2653 
2654 /*
2655  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2656  * different one.  If we are the most recent migration we've seen (as
2657  * indicated by mseq), make note of the migrating cap bits for the
2658  * duration (until we see the corresponding IMPORT).
2659  *
2660  * caller holds s_mutex
2661  */
2662 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2663 			      struct ceph_mds_session *session,
2664 			      int *open_target_sessions)
2665 {
2666 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2667 	struct ceph_inode_info *ci = ceph_inode(inode);
2668 	int mds = session->s_mds;
2669 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2670 	struct ceph_cap *cap = NULL, *t;
2671 	struct rb_node *p;
2672 	int remember = 1;
2673 
2674 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2675 	     inode, ci, mds, mseq);
2676 
2677 	spin_lock(&ci->i_ceph_lock);
2678 
2679 	/* make sure we haven't seen a higher mseq */
2680 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2681 		t = rb_entry(p, struct ceph_cap, ci_node);
2682 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2683 			dout(" higher mseq on cap from mds%d\n",
2684 			     t->session->s_mds);
2685 			remember = 0;
2686 		}
2687 		if (t->session->s_mds == mds)
2688 			cap = t;
2689 	}
2690 
2691 	if (cap) {
2692 		if (remember) {
2693 			/* make note */
2694 			ci->i_cap_exporting_mds = mds;
2695 			ci->i_cap_exporting_mseq = mseq;
2696 			ci->i_cap_exporting_issued = cap->issued;
2697 
2698 			/*
2699 			 * make sure we have open sessions with all possible
2700 			 * export targets, so that we get the matching IMPORT
2701 			 */
2702 			*open_target_sessions = 1;
2703 
2704 			/*
2705 			 * we can't flush dirty caps that we've seen the
2706 			 * EXPORT but no IMPORT for
2707 			 */
2708 			spin_lock(&mdsc->cap_dirty_lock);
2709 			if (!list_empty(&ci->i_dirty_item)) {
2710 				dout(" moving %p to cap_dirty_migrating\n",
2711 				     inode);
2712 				list_move(&ci->i_dirty_item,
2713 					  &mdsc->cap_dirty_migrating);
2714 			}
2715 			spin_unlock(&mdsc->cap_dirty_lock);
2716 		}
2717 		__ceph_remove_cap(cap);
2718 	}
2719 	/* else, we already released it */
2720 
2721 	spin_unlock(&ci->i_ceph_lock);
2722 }
2723 
2724 /*
2725  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2726  * clean them up.
2727  *
2728  * caller holds s_mutex.
2729  */
2730 static void handle_cap_import(struct ceph_mds_client *mdsc,
2731 			      struct inode *inode, struct ceph_mds_caps *im,
2732 			      struct ceph_mds_session *session,
2733 			      void *snaptrace, int snaptrace_len)
2734 {
2735 	struct ceph_inode_info *ci = ceph_inode(inode);
2736 	int mds = session->s_mds;
2737 	unsigned issued = le32_to_cpu(im->caps);
2738 	unsigned wanted = le32_to_cpu(im->wanted);
2739 	unsigned seq = le32_to_cpu(im->seq);
2740 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2741 	u64 realmino = le64_to_cpu(im->realm);
2742 	u64 cap_id = le64_to_cpu(im->cap_id);
2743 
2744 	if (ci->i_cap_exporting_mds >= 0 &&
2745 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2746 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2747 		     " - cleared exporting from mds%d\n",
2748 		     inode, ci, mds, mseq,
2749 		     ci->i_cap_exporting_mds);
2750 		ci->i_cap_exporting_issued = 0;
2751 		ci->i_cap_exporting_mseq = 0;
2752 		ci->i_cap_exporting_mds = -1;
2753 
2754 		spin_lock(&mdsc->cap_dirty_lock);
2755 		if (!list_empty(&ci->i_dirty_item)) {
2756 			dout(" moving %p back to cap_dirty\n", inode);
2757 			list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2758 		}
2759 		spin_unlock(&mdsc->cap_dirty_lock);
2760 	} else {
2761 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2762 		     inode, ci, mds, mseq);
2763 	}
2764 
2765 	down_write(&mdsc->snap_rwsem);
2766 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2767 			       false);
2768 	downgrade_write(&mdsc->snap_rwsem);
2769 	ceph_add_cap(inode, session, cap_id, -1,
2770 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2771 		     NULL /* no caps context */);
2772 	kick_flushing_inode_caps(mdsc, session, inode);
2773 	up_read(&mdsc->snap_rwsem);
2774 
2775 	/* make sure we re-request max_size, if necessary */
2776 	spin_lock(&ci->i_ceph_lock);
2777 	ci->i_wanted_max_size = 0;  /* reset */
2778 	ci->i_requested_max_size = 0;
2779 	spin_unlock(&ci->i_ceph_lock);
2780 }
2781 
2782 /*
2783  * Handle a caps message from the MDS.
2784  *
2785  * Identify the appropriate session, inode, and call the right handler
2786  * based on the cap op.
2787  */
2788 void ceph_handle_caps(struct ceph_mds_session *session,
2789 		      struct ceph_msg *msg)
2790 {
2791 	struct ceph_mds_client *mdsc = session->s_mdsc;
2792 	struct super_block *sb = mdsc->fsc->sb;
2793 	struct inode *inode;
2794 	struct ceph_inode_info *ci;
2795 	struct ceph_cap *cap;
2796 	struct ceph_mds_caps *h;
2797 	int mds = session->s_mds;
2798 	int op;
2799 	u32 seq, mseq;
2800 	struct ceph_vino vino;
2801 	u64 cap_id;
2802 	u64 size, max_size;
2803 	u64 tid;
2804 	void *snaptrace;
2805 	size_t snaptrace_len;
2806 	void *flock;
2807 	u32 flock_len;
2808 	int open_target_sessions = 0;
2809 
2810 	dout("handle_caps from mds%d\n", mds);
2811 
2812 	/* decode */
2813 	tid = le64_to_cpu(msg->hdr.tid);
2814 	if (msg->front.iov_len < sizeof(*h))
2815 		goto bad;
2816 	h = msg->front.iov_base;
2817 	op = le32_to_cpu(h->op);
2818 	vino.ino = le64_to_cpu(h->ino);
2819 	vino.snap = CEPH_NOSNAP;
2820 	cap_id = le64_to_cpu(h->cap_id);
2821 	seq = le32_to_cpu(h->seq);
2822 	mseq = le32_to_cpu(h->migrate_seq);
2823 	size = le64_to_cpu(h->size);
2824 	max_size = le64_to_cpu(h->max_size);
2825 
2826 	snaptrace = h + 1;
2827 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2828 
2829 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2830 		void *p, *end;
2831 
2832 		p = snaptrace + snaptrace_len;
2833 		end = msg->front.iov_base + msg->front.iov_len;
2834 		ceph_decode_32_safe(&p, end, flock_len, bad);
2835 		flock = p;
2836 	} else {
2837 		flock = NULL;
2838 		flock_len = 0;
2839 	}
2840 
2841 	mutex_lock(&session->s_mutex);
2842 	session->s_seq++;
2843 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2844 	     (unsigned)seq);
2845 
2846 	if (op == CEPH_CAP_OP_IMPORT)
2847 		ceph_add_cap_releases(mdsc, session);
2848 
2849 	/* lookup ino */
2850 	inode = ceph_find_inode(sb, vino);
2851 	ci = ceph_inode(inode);
2852 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2853 	     vino.snap, inode);
2854 	if (!inode) {
2855 		dout(" i don't have ino %llx\n", vino.ino);
2856 
2857 		if (op == CEPH_CAP_OP_IMPORT)
2858 			__queue_cap_release(session, vino.ino, cap_id,
2859 					    mseq, seq);
2860 		goto flush_cap_releases;
2861 	}
2862 
2863 	/* these will work even if we don't have a cap yet */
2864 	switch (op) {
2865 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2866 		handle_cap_flushsnap_ack(inode, tid, h, session);
2867 		goto done;
2868 
2869 	case CEPH_CAP_OP_EXPORT:
2870 		handle_cap_export(inode, h, session, &open_target_sessions);
2871 		goto done;
2872 
2873 	case CEPH_CAP_OP_IMPORT:
2874 		handle_cap_import(mdsc, inode, h, session,
2875 				  snaptrace, snaptrace_len);
2876 	}
2877 
2878 	/* the rest require a cap */
2879 	spin_lock(&ci->i_ceph_lock);
2880 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2881 	if (!cap) {
2882 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2883 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2884 		spin_unlock(&ci->i_ceph_lock);
2885 		goto flush_cap_releases;
2886 	}
2887 
2888 	/* note that each of these drops i_ceph_lock for us */
2889 	switch (op) {
2890 	case CEPH_CAP_OP_REVOKE:
2891 	case CEPH_CAP_OP_GRANT:
2892 	case CEPH_CAP_OP_IMPORT:
2893 		handle_cap_grant(inode, h, session, cap, msg->middle);
2894 		goto done_unlocked;
2895 
2896 	case CEPH_CAP_OP_FLUSH_ACK:
2897 		handle_cap_flush_ack(inode, tid, h, session, cap);
2898 		break;
2899 
2900 	case CEPH_CAP_OP_TRUNC:
2901 		handle_cap_trunc(inode, h, session);
2902 		break;
2903 
2904 	default:
2905 		spin_unlock(&ci->i_ceph_lock);
2906 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2907 		       ceph_cap_op_name(op));
2908 	}
2909 
2910 	goto done;
2911 
2912 flush_cap_releases:
2913 	/*
2914 	 * send any full release message to try to move things
2915 	 * along for the mds (who clearly thinks we still have this
2916 	 * cap).
2917 	 */
2918 	ceph_add_cap_releases(mdsc, session);
2919 	ceph_send_cap_releases(mdsc, session);
2920 
2921 done:
2922 	mutex_unlock(&session->s_mutex);
2923 done_unlocked:
2924 	if (inode)
2925 		iput(inode);
2926 	if (open_target_sessions)
2927 		ceph_mdsc_open_export_target_sessions(mdsc, session);
2928 	return;
2929 
2930 bad:
2931 	pr_err("ceph_handle_caps: corrupt message\n");
2932 	ceph_msg_dump(msg);
2933 	return;
2934 }
2935 
2936 /*
2937  * Delayed work handler to process end of delayed cap release LRU list.
2938  */
2939 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2940 {
2941 	struct ceph_inode_info *ci;
2942 	int flags = CHECK_CAPS_NODELAY;
2943 
2944 	dout("check_delayed_caps\n");
2945 	while (1) {
2946 		spin_lock(&mdsc->cap_delay_lock);
2947 		if (list_empty(&mdsc->cap_delay_list))
2948 			break;
2949 		ci = list_first_entry(&mdsc->cap_delay_list,
2950 				      struct ceph_inode_info,
2951 				      i_cap_delay_list);
2952 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2953 		    time_before(jiffies, ci->i_hold_caps_max))
2954 			break;
2955 		list_del_init(&ci->i_cap_delay_list);
2956 		spin_unlock(&mdsc->cap_delay_lock);
2957 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2958 		ceph_check_caps(ci, flags, NULL);
2959 	}
2960 	spin_unlock(&mdsc->cap_delay_lock);
2961 }
2962 
2963 /*
2964  * Flush all dirty caps to the mds
2965  */
2966 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2967 {
2968 	struct ceph_inode_info *ci;
2969 	struct inode *inode;
2970 
2971 	dout("flush_dirty_caps\n");
2972 	spin_lock(&mdsc->cap_dirty_lock);
2973 	while (!list_empty(&mdsc->cap_dirty)) {
2974 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2975 				      i_dirty_item);
2976 		inode = &ci->vfs_inode;
2977 		ihold(inode);
2978 		dout("flush_dirty_caps %p\n", inode);
2979 		spin_unlock(&mdsc->cap_dirty_lock);
2980 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2981 		iput(inode);
2982 		spin_lock(&mdsc->cap_dirty_lock);
2983 	}
2984 	spin_unlock(&mdsc->cap_dirty_lock);
2985 	dout("flush_dirty_caps done\n");
2986 }
2987 
2988 /*
2989  * Drop open file reference.  If we were the last open file,
2990  * we may need to release capabilities to the MDS (or schedule
2991  * their delayed release).
2992  */
2993 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2994 {
2995 	struct inode *inode = &ci->vfs_inode;
2996 	int last = 0;
2997 
2998 	spin_lock(&ci->i_ceph_lock);
2999 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3000 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3001 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3002 	if (--ci->i_nr_by_mode[fmode] == 0)
3003 		last++;
3004 	spin_unlock(&ci->i_ceph_lock);
3005 
3006 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
3007 		ceph_check_caps(ci, 0, NULL);
3008 }
3009 
3010 /*
3011  * Helpers for embedding cap and dentry lease releases into mds
3012  * requests.
3013  *
3014  * @force is used by dentry_release (below) to force inclusion of a
3015  * record for the directory inode, even when there aren't any caps to
3016  * drop.
3017  */
3018 int ceph_encode_inode_release(void **p, struct inode *inode,
3019 			      int mds, int drop, int unless, int force)
3020 {
3021 	struct ceph_inode_info *ci = ceph_inode(inode);
3022 	struct ceph_cap *cap;
3023 	struct ceph_mds_request_release *rel = *p;
3024 	int used, dirty;
3025 	int ret = 0;
3026 
3027 	spin_lock(&ci->i_ceph_lock);
3028 	used = __ceph_caps_used(ci);
3029 	dirty = __ceph_caps_dirty(ci);
3030 
3031 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3032 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3033 	     ceph_cap_string(unless));
3034 
3035 	/* only drop unused, clean caps */
3036 	drop &= ~(used | dirty);
3037 
3038 	cap = __get_cap_for_mds(ci, mds);
3039 	if (cap && __cap_is_valid(cap)) {
3040 		if (force ||
3041 		    ((cap->issued & drop) &&
3042 		     (cap->issued & unless) == 0)) {
3043 			if ((cap->issued & drop) &&
3044 			    (cap->issued & unless) == 0) {
3045 				dout("encode_inode_release %p cap %p %s -> "
3046 				     "%s\n", inode, cap,
3047 				     ceph_cap_string(cap->issued),
3048 				     ceph_cap_string(cap->issued & ~drop));
3049 				cap->issued &= ~drop;
3050 				cap->implemented &= ~drop;
3051 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3052 					int wanted = __ceph_caps_wanted(ci);
3053 					dout("  wanted %s -> %s (act %s)\n",
3054 					     ceph_cap_string(cap->mds_wanted),
3055 					     ceph_cap_string(cap->mds_wanted &
3056 							     ~wanted),
3057 					     ceph_cap_string(wanted));
3058 					cap->mds_wanted &= wanted;
3059 				}
3060 			} else {
3061 				dout("encode_inode_release %p cap %p %s"
3062 				     " (force)\n", inode, cap,
3063 				     ceph_cap_string(cap->issued));
3064 			}
3065 
3066 			rel->ino = cpu_to_le64(ceph_ino(inode));
3067 			rel->cap_id = cpu_to_le64(cap->cap_id);
3068 			rel->seq = cpu_to_le32(cap->seq);
3069 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3070 			rel->mseq = cpu_to_le32(cap->mseq);
3071 			rel->caps = cpu_to_le32(cap->issued);
3072 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3073 			rel->dname_len = 0;
3074 			rel->dname_seq = 0;
3075 			*p += sizeof(*rel);
3076 			ret = 1;
3077 		} else {
3078 			dout("encode_inode_release %p cap %p %s\n",
3079 			     inode, cap, ceph_cap_string(cap->issued));
3080 		}
3081 	}
3082 	spin_unlock(&ci->i_ceph_lock);
3083 	return ret;
3084 }
3085 
3086 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3087 			       int mds, int drop, int unless)
3088 {
3089 	struct inode *dir = dentry->d_parent->d_inode;
3090 	struct ceph_mds_request_release *rel = *p;
3091 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3092 	int force = 0;
3093 	int ret;
3094 
3095 	/*
3096 	 * force an record for the directory caps if we have a dentry lease.
3097 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3098 	 * doesn't have to be perfect; the mds will revoke anything we don't
3099 	 * release.
3100 	 */
3101 	spin_lock(&dentry->d_lock);
3102 	if (di->lease_session && di->lease_session->s_mds == mds)
3103 		force = 1;
3104 	spin_unlock(&dentry->d_lock);
3105 
3106 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3107 
3108 	spin_lock(&dentry->d_lock);
3109 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3110 		dout("encode_dentry_release %p mds%d seq %d\n",
3111 		     dentry, mds, (int)di->lease_seq);
3112 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3113 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3114 		*p += dentry->d_name.len;
3115 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3116 		__ceph_mdsc_drop_dentry_lease(dentry);
3117 	}
3118 	spin_unlock(&dentry->d_lock);
3119 	return ret;
3120 }
3121