xref: /openbmc/linux/fs/ceph/caps.c (revision ca460cc2)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16 
17 /*
18  * Capability management
19  *
20  * The Ceph metadata servers control client access to inode metadata
21  * and file data by issuing capabilities, granting clients permission
22  * to read and/or write both inode field and file data to OSDs
23  * (storage nodes).  Each capability consists of a set of bits
24  * indicating which operations are allowed.
25  *
26  * If the client holds a *_SHARED cap, the client has a coherent value
27  * that can be safely read from the cached inode.
28  *
29  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30  * client is allowed to change inode attributes (e.g., file size,
31  * mtime), note its dirty state in the ceph_cap, and asynchronously
32  * flush that metadata change to the MDS.
33  *
34  * In the event of a conflicting operation (perhaps by another
35  * client), the MDS will revoke the conflicting client capabilities.
36  *
37  * In order for a client to cache an inode, it must hold a capability
38  * with at least one MDS server.  When inodes are released, release
39  * notifications are batched and periodically sent en masse to the MDS
40  * cluster to release server state.
41  */
42 
43 
44 /*
45  * Generate readable cap strings for debugging output.
46  */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51 
52 static char *gcap_string(char *s, int c)
53 {
54 	if (c & CEPH_CAP_GSHARED)
55 		*s++ = 's';
56 	if (c & CEPH_CAP_GEXCL)
57 		*s++ = 'x';
58 	if (c & CEPH_CAP_GCACHE)
59 		*s++ = 'c';
60 	if (c & CEPH_CAP_GRD)
61 		*s++ = 'r';
62 	if (c & CEPH_CAP_GWR)
63 		*s++ = 'w';
64 	if (c & CEPH_CAP_GBUFFER)
65 		*s++ = 'b';
66 	if (c & CEPH_CAP_GLAZYIO)
67 		*s++ = 'l';
68 	return s;
69 }
70 
71 const char *ceph_cap_string(int caps)
72 {
73 	int i;
74 	char *s;
75 	int c;
76 
77 	spin_lock(&cap_str_lock);
78 	i = last_cap_str++;
79 	if (last_cap_str == MAX_CAP_STR)
80 		last_cap_str = 0;
81 	spin_unlock(&cap_str_lock);
82 
83 	s = cap_str[i];
84 
85 	if (caps & CEPH_CAP_PIN)
86 		*s++ = 'p';
87 
88 	c = (caps >> CEPH_CAP_SAUTH) & 3;
89 	if (c) {
90 		*s++ = 'A';
91 		s = gcap_string(s, c);
92 	}
93 
94 	c = (caps >> CEPH_CAP_SLINK) & 3;
95 	if (c) {
96 		*s++ = 'L';
97 		s = gcap_string(s, c);
98 	}
99 
100 	c = (caps >> CEPH_CAP_SXATTR) & 3;
101 	if (c) {
102 		*s++ = 'X';
103 		s = gcap_string(s, c);
104 	}
105 
106 	c = caps >> CEPH_CAP_SFILE;
107 	if (c) {
108 		*s++ = 'F';
109 		s = gcap_string(s, c);
110 	}
111 
112 	if (s == cap_str[i])
113 		*s++ = '-';
114 	*s = 0;
115 	return cap_str[i];
116 }
117 
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 	INIT_LIST_HEAD(&mdsc->caps_list);
121 	spin_lock_init(&mdsc->caps_list_lock);
122 }
123 
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 	struct ceph_cap *cap;
127 
128 	spin_lock(&mdsc->caps_list_lock);
129 	while (!list_empty(&mdsc->caps_list)) {
130 		cap = list_first_entry(&mdsc->caps_list,
131 				       struct ceph_cap, caps_item);
132 		list_del(&cap->caps_item);
133 		kmem_cache_free(ceph_cap_cachep, cap);
134 	}
135 	mdsc->caps_total_count = 0;
136 	mdsc->caps_avail_count = 0;
137 	mdsc->caps_use_count = 0;
138 	mdsc->caps_reserve_count = 0;
139 	mdsc->caps_min_count = 0;
140 	spin_unlock(&mdsc->caps_list_lock);
141 }
142 
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 	spin_lock(&mdsc->caps_list_lock);
146 	mdsc->caps_min_count += delta;
147 	BUG_ON(mdsc->caps_min_count < 0);
148 	spin_unlock(&mdsc->caps_list_lock);
149 }
150 
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 		      struct ceph_cap_reservation *ctx, int need)
153 {
154 	int i;
155 	struct ceph_cap *cap;
156 	int have;
157 	int alloc = 0;
158 	LIST_HEAD(newcaps);
159 
160 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162 	/* first reserve any caps that are already allocated */
163 	spin_lock(&mdsc->caps_list_lock);
164 	if (mdsc->caps_avail_count >= need)
165 		have = need;
166 	else
167 		have = mdsc->caps_avail_count;
168 	mdsc->caps_avail_count -= have;
169 	mdsc->caps_reserve_count += have;
170 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 					 mdsc->caps_reserve_count +
172 					 mdsc->caps_avail_count);
173 	spin_unlock(&mdsc->caps_list_lock);
174 
175 	for (i = have; i < need; i++) {
176 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 		if (!cap)
178 			break;
179 		list_add(&cap->caps_item, &newcaps);
180 		alloc++;
181 	}
182 	/* we didn't manage to reserve as much as we needed */
183 	if (have + alloc != need)
184 		pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 			ctx, need, have + alloc);
186 
187 	spin_lock(&mdsc->caps_list_lock);
188 	mdsc->caps_total_count += alloc;
189 	mdsc->caps_reserve_count += alloc;
190 	list_splice(&newcaps, &mdsc->caps_list);
191 
192 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 					 mdsc->caps_reserve_count +
194 					 mdsc->caps_avail_count);
195 	spin_unlock(&mdsc->caps_list_lock);
196 
197 	ctx->count = need;
198 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202 
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 			struct ceph_cap_reservation *ctx)
205 {
206 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 	if (ctx->count) {
208 		spin_lock(&mdsc->caps_list_lock);
209 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 		mdsc->caps_reserve_count -= ctx->count;
211 		mdsc->caps_avail_count += ctx->count;
212 		ctx->count = 0;
213 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 		     mdsc->caps_total_count, mdsc->caps_use_count,
215 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 						 mdsc->caps_reserve_count +
218 						 mdsc->caps_avail_count);
219 		spin_unlock(&mdsc->caps_list_lock);
220 	}
221 	return 0;
222 }
223 
224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
225 			      struct ceph_cap_reservation *ctx)
226 {
227 	struct ceph_cap *cap = NULL;
228 
229 	/* temporary, until we do something about cap import/export */
230 	if (!ctx) {
231 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 		if (cap) {
233 			spin_lock(&mdsc->caps_list_lock);
234 			mdsc->caps_use_count++;
235 			mdsc->caps_total_count++;
236 			spin_unlock(&mdsc->caps_list_lock);
237 		}
238 		return cap;
239 	}
240 
241 	spin_lock(&mdsc->caps_list_lock);
242 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 	BUG_ON(!ctx->count);
246 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 	BUG_ON(list_empty(&mdsc->caps_list));
248 
249 	ctx->count--;
250 	mdsc->caps_reserve_count--;
251 	mdsc->caps_use_count++;
252 
253 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 	list_del(&cap->caps_item);
255 
256 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 	spin_unlock(&mdsc->caps_list_lock);
259 	return cap;
260 }
261 
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 	spin_lock(&mdsc->caps_list_lock);
265 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 	mdsc->caps_use_count--;
269 	/*
270 	 * Keep some preallocated caps around (ceph_min_count), to
271 	 * avoid lots of free/alloc churn.
272 	 */
273 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 				      mdsc->caps_min_count) {
275 		mdsc->caps_total_count--;
276 		kmem_cache_free(ceph_cap_cachep, cap);
277 	} else {
278 		mdsc->caps_avail_count++;
279 		list_add(&cap->caps_item, &mdsc->caps_list);
280 	}
281 
282 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 	spin_unlock(&mdsc->caps_list_lock);
285 }
286 
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 			     int *total, int *avail, int *used, int *reserved,
289 			     int *min)
290 {
291 	struct ceph_mds_client *mdsc = fsc->mdsc;
292 
293 	if (total)
294 		*total = mdsc->caps_total_count;
295 	if (avail)
296 		*avail = mdsc->caps_avail_count;
297 	if (used)
298 		*used = mdsc->caps_use_count;
299 	if (reserved)
300 		*reserved = mdsc->caps_reserve_count;
301 	if (min)
302 		*min = mdsc->caps_min_count;
303 }
304 
305 /*
306  * Find ceph_cap for given mds, if any.
307  *
308  * Called with i_ceph_lock held.
309  */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 	struct ceph_cap *cap;
313 	struct rb_node *n = ci->i_caps.rb_node;
314 
315 	while (n) {
316 		cap = rb_entry(n, struct ceph_cap, ci_node);
317 		if (mds < cap->mds)
318 			n = n->rb_left;
319 		else if (mds > cap->mds)
320 			n = n->rb_right;
321 		else
322 			return cap;
323 	}
324 	return NULL;
325 }
326 
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 	struct ceph_cap *cap;
330 
331 	spin_lock(&ci->i_ceph_lock);
332 	cap = __get_cap_for_mds(ci, mds);
333 	spin_unlock(&ci->i_ceph_lock);
334 	return cap;
335 }
336 
337 /*
338  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339  */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 	struct ceph_cap *cap;
343 	int mds = -1;
344 	struct rb_node *p;
345 
346 	/* prefer mds with WR|BUFFER|EXCL caps */
347 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 		cap = rb_entry(p, struct ceph_cap, ci_node);
349 		mds = cap->mds;
350 		if (cap->issued & (CEPH_CAP_FILE_WR |
351 				   CEPH_CAP_FILE_BUFFER |
352 				   CEPH_CAP_FILE_EXCL))
353 			break;
354 	}
355 	return mds;
356 }
357 
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 	struct ceph_inode_info *ci = ceph_inode(inode);
361 	int mds;
362 	spin_lock(&ci->i_ceph_lock);
363 	mds = __ceph_get_cap_mds(ceph_inode(inode));
364 	spin_unlock(&ci->i_ceph_lock);
365 	return mds;
366 }
367 
368 /*
369  * Called under i_ceph_lock.
370  */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 			      struct ceph_cap *new)
373 {
374 	struct rb_node **p = &ci->i_caps.rb_node;
375 	struct rb_node *parent = NULL;
376 	struct ceph_cap *cap = NULL;
377 
378 	while (*p) {
379 		parent = *p;
380 		cap = rb_entry(parent, struct ceph_cap, ci_node);
381 		if (new->mds < cap->mds)
382 			p = &(*p)->rb_left;
383 		else if (new->mds > cap->mds)
384 			p = &(*p)->rb_right;
385 		else
386 			BUG();
387 	}
388 
389 	rb_link_node(&new->ci_node, parent, p);
390 	rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392 
393 /*
394  * (re)set cap hold timeouts, which control the delayed release
395  * of unused caps back to the MDS.  Should be called on cap use.
396  */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 			       struct ceph_inode_info *ci)
399 {
400 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401 
402 	ci->i_hold_caps_min = round_jiffies(jiffies +
403 					    ma->caps_wanted_delay_min * HZ);
404 	ci->i_hold_caps_max = round_jiffies(jiffies +
405 					    ma->caps_wanted_delay_max * HZ);
406 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409 
410 /*
411  * (Re)queue cap at the end of the delayed cap release list.
412  *
413  * If I_FLUSH is set, leave the inode at the front of the list.
414  *
415  * Caller holds i_ceph_lock
416  *    -> we take mdsc->cap_delay_lock
417  */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 				struct ceph_inode_info *ci)
420 {
421 	__cap_set_timeouts(mdsc, ci);
422 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 	     ci->i_ceph_flags, ci->i_hold_caps_max);
424 	if (!mdsc->stopping) {
425 		spin_lock(&mdsc->cap_delay_lock);
426 		if (!list_empty(&ci->i_cap_delay_list)) {
427 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 				goto no_change;
429 			list_del_init(&ci->i_cap_delay_list);
430 		}
431 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 		spin_unlock(&mdsc->cap_delay_lock);
434 	}
435 }
436 
437 /*
438  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
439  * indicating we should send a cap message to flush dirty metadata
440  * asap, and move to the front of the delayed cap list.
441  */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 				      struct ceph_inode_info *ci)
444 {
445 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 	spin_lock(&mdsc->cap_delay_lock);
447 	ci->i_ceph_flags |= CEPH_I_FLUSH;
448 	if (!list_empty(&ci->i_cap_delay_list))
449 		list_del_init(&ci->i_cap_delay_list);
450 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 	spin_unlock(&mdsc->cap_delay_lock);
452 }
453 
454 /*
455  * Cancel delayed work on cap.
456  *
457  * Caller must hold i_ceph_lock.
458  */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 			       struct ceph_inode_info *ci)
461 {
462 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 	if (list_empty(&ci->i_cap_delay_list))
464 		return;
465 	spin_lock(&mdsc->cap_delay_lock);
466 	list_del_init(&ci->i_cap_delay_list);
467 	spin_unlock(&mdsc->cap_delay_lock);
468 }
469 
470 /*
471  * Common issue checks for add_cap, handle_cap_grant.
472  */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 			      unsigned issued)
475 {
476 	unsigned had = __ceph_caps_issued(ci, NULL);
477 
478 	/*
479 	 * Each time we receive FILE_CACHE anew, we increment
480 	 * i_rdcache_gen.
481 	 */
482 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 		ci->i_rdcache_gen++;
485 	}
486 
487 	/*
488 	 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 	 * don't know what happened to this directory while we didn't
490 	 * have the cap.
491 	 */
492 	if ((issued & CEPH_CAP_FILE_SHARED) &&
493 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
494 		ci->i_shared_gen++;
495 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 			__ceph_dir_clear_complete(ci);
498 		}
499 	}
500 }
501 
502 /*
503  * Add a capability under the given MDS session.
504  *
505  * Caller should hold session snap_rwsem (read) and s_mutex.
506  *
507  * @fmode is the open file mode, if we are opening a file, otherwise
508  * it is < 0.  (This is so we can atomically add the cap and add an
509  * open file reference to it.)
510  */
511 void ceph_add_cap(struct inode *inode,
512 		  struct ceph_mds_session *session, u64 cap_id,
513 		  int fmode, unsigned issued, unsigned wanted,
514 		  unsigned seq, unsigned mseq, u64 realmino, int flags,
515 		  struct ceph_cap **new_cap)
516 {
517 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 	struct ceph_inode_info *ci = ceph_inode(inode);
519 	struct ceph_cap *cap;
520 	int mds = session->s_mds;
521 	int actual_wanted;
522 
523 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
524 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
525 
526 	/*
527 	 * If we are opening the file, include file mode wanted bits
528 	 * in wanted.
529 	 */
530 	if (fmode >= 0)
531 		wanted |= ceph_caps_for_mode(fmode);
532 
533 	cap = __get_cap_for_mds(ci, mds);
534 	if (!cap) {
535 		cap = *new_cap;
536 		*new_cap = NULL;
537 
538 		cap->issued = 0;
539 		cap->implemented = 0;
540 		cap->mds = mds;
541 		cap->mds_wanted = 0;
542 		cap->mseq = 0;
543 
544 		cap->ci = ci;
545 		__insert_cap_node(ci, cap);
546 
547 		/* add to session cap list */
548 		cap->session = session;
549 		spin_lock(&session->s_cap_lock);
550 		list_add_tail(&cap->session_caps, &session->s_caps);
551 		session->s_nr_caps++;
552 		spin_unlock(&session->s_cap_lock);
553 	} else {
554 		/*
555 		 * auth mds of the inode changed. we received the cap export
556 		 * message, but still haven't received the cap import message.
557 		 * handle_cap_export() updated the new auth MDS' cap.
558 		 *
559 		 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
560 		 * a message that was send before the cap import message. So
561 		 * don't remove caps.
562 		 */
563 		if (ceph_seq_cmp(seq, cap->seq) <= 0) {
564 			WARN_ON(cap != ci->i_auth_cap);
565 			WARN_ON(cap->cap_id != cap_id);
566 			seq = cap->seq;
567 			mseq = cap->mseq;
568 			issued |= cap->issued;
569 			flags |= CEPH_CAP_FLAG_AUTH;
570 		}
571 	}
572 
573 	if (!ci->i_snap_realm) {
574 		/*
575 		 * add this inode to the appropriate snap realm
576 		 */
577 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 							       realmino);
579 		if (realm) {
580 			ceph_get_snap_realm(mdsc, realm);
581 			spin_lock(&realm->inodes_with_caps_lock);
582 			ci->i_snap_realm = realm;
583 			list_add(&ci->i_snap_realm_item,
584 				 &realm->inodes_with_caps);
585 			spin_unlock(&realm->inodes_with_caps_lock);
586 		} else {
587 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
588 			       realmino);
589 			WARN_ON(!realm);
590 		}
591 	}
592 
593 	__check_cap_issue(ci, cap, issued);
594 
595 	/*
596 	 * If we are issued caps we don't want, or the mds' wanted
597 	 * value appears to be off, queue a check so we'll release
598 	 * later and/or update the mds wanted value.
599 	 */
600 	actual_wanted = __ceph_caps_wanted(ci);
601 	if ((wanted & ~actual_wanted) ||
602 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
603 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
604 		     ceph_cap_string(issued), ceph_cap_string(wanted),
605 		     ceph_cap_string(actual_wanted));
606 		__cap_delay_requeue(mdsc, ci);
607 	}
608 
609 	if (flags & CEPH_CAP_FLAG_AUTH) {
610 		if (ci->i_auth_cap == NULL ||
611 		    ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
612 			ci->i_auth_cap = cap;
613 			cap->mds_wanted = wanted;
614 		}
615 	} else {
616 		WARN_ON(ci->i_auth_cap == cap);
617 	}
618 
619 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
620 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
621 	     ceph_cap_string(issued|cap->issued), seq, mds);
622 	cap->cap_id = cap_id;
623 	cap->issued = issued;
624 	cap->implemented |= issued;
625 	if (ceph_seq_cmp(mseq, cap->mseq) > 0)
626 		cap->mds_wanted = wanted;
627 	else
628 		cap->mds_wanted |= wanted;
629 	cap->seq = seq;
630 	cap->issue_seq = seq;
631 	cap->mseq = mseq;
632 	cap->cap_gen = session->s_cap_gen;
633 
634 	if (fmode >= 0)
635 		__ceph_get_fmode(ci, fmode);
636 }
637 
638 /*
639  * Return true if cap has not timed out and belongs to the current
640  * generation of the MDS session (i.e. has not gone 'stale' due to
641  * us losing touch with the mds).
642  */
643 static int __cap_is_valid(struct ceph_cap *cap)
644 {
645 	unsigned long ttl;
646 	u32 gen;
647 
648 	spin_lock(&cap->session->s_gen_ttl_lock);
649 	gen = cap->session->s_cap_gen;
650 	ttl = cap->session->s_cap_ttl;
651 	spin_unlock(&cap->session->s_gen_ttl_lock);
652 
653 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
654 		dout("__cap_is_valid %p cap %p issued %s "
655 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
656 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
657 		return 0;
658 	}
659 
660 	return 1;
661 }
662 
663 /*
664  * Return set of valid cap bits issued to us.  Note that caps time
665  * out, and may be invalidated in bulk if the client session times out
666  * and session->s_cap_gen is bumped.
667  */
668 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
669 {
670 	int have = ci->i_snap_caps;
671 	struct ceph_cap *cap;
672 	struct rb_node *p;
673 
674 	if (implemented)
675 		*implemented = 0;
676 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
677 		cap = rb_entry(p, struct ceph_cap, ci_node);
678 		if (!__cap_is_valid(cap))
679 			continue;
680 		dout("__ceph_caps_issued %p cap %p issued %s\n",
681 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
682 		have |= cap->issued;
683 		if (implemented)
684 			*implemented |= cap->implemented;
685 	}
686 	/*
687 	 * exclude caps issued by non-auth MDS, but are been revoking
688 	 * by the auth MDS. The non-auth MDS should be revoking/exporting
689 	 * these caps, but the message is delayed.
690 	 */
691 	if (ci->i_auth_cap) {
692 		cap = ci->i_auth_cap;
693 		have &= ~cap->implemented | cap->issued;
694 	}
695 	return have;
696 }
697 
698 /*
699  * Get cap bits issued by caps other than @ocap
700  */
701 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
702 {
703 	int have = ci->i_snap_caps;
704 	struct ceph_cap *cap;
705 	struct rb_node *p;
706 
707 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
708 		cap = rb_entry(p, struct ceph_cap, ci_node);
709 		if (cap == ocap)
710 			continue;
711 		if (!__cap_is_valid(cap))
712 			continue;
713 		have |= cap->issued;
714 	}
715 	return have;
716 }
717 
718 /*
719  * Move a cap to the end of the LRU (oldest caps at list head, newest
720  * at list tail).
721  */
722 static void __touch_cap(struct ceph_cap *cap)
723 {
724 	struct ceph_mds_session *s = cap->session;
725 
726 	spin_lock(&s->s_cap_lock);
727 	if (s->s_cap_iterator == NULL) {
728 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
729 		     s->s_mds);
730 		list_move_tail(&cap->session_caps, &s->s_caps);
731 	} else {
732 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
733 		     &cap->ci->vfs_inode, cap, s->s_mds);
734 	}
735 	spin_unlock(&s->s_cap_lock);
736 }
737 
738 /*
739  * Check if we hold the given mask.  If so, move the cap(s) to the
740  * front of their respective LRUs.  (This is the preferred way for
741  * callers to check for caps they want.)
742  */
743 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
744 {
745 	struct ceph_cap *cap;
746 	struct rb_node *p;
747 	int have = ci->i_snap_caps;
748 
749 	if ((have & mask) == mask) {
750 		dout("__ceph_caps_issued_mask %p snap issued %s"
751 		     " (mask %s)\n", &ci->vfs_inode,
752 		     ceph_cap_string(have),
753 		     ceph_cap_string(mask));
754 		return 1;
755 	}
756 
757 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
758 		cap = rb_entry(p, struct ceph_cap, ci_node);
759 		if (!__cap_is_valid(cap))
760 			continue;
761 		if ((cap->issued & mask) == mask) {
762 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
763 			     " (mask %s)\n", &ci->vfs_inode, cap,
764 			     ceph_cap_string(cap->issued),
765 			     ceph_cap_string(mask));
766 			if (touch)
767 				__touch_cap(cap);
768 			return 1;
769 		}
770 
771 		/* does a combination of caps satisfy mask? */
772 		have |= cap->issued;
773 		if ((have & mask) == mask) {
774 			dout("__ceph_caps_issued_mask %p combo issued %s"
775 			     " (mask %s)\n", &ci->vfs_inode,
776 			     ceph_cap_string(cap->issued),
777 			     ceph_cap_string(mask));
778 			if (touch) {
779 				struct rb_node *q;
780 
781 				/* touch this + preceding caps */
782 				__touch_cap(cap);
783 				for (q = rb_first(&ci->i_caps); q != p;
784 				     q = rb_next(q)) {
785 					cap = rb_entry(q, struct ceph_cap,
786 						       ci_node);
787 					if (!__cap_is_valid(cap))
788 						continue;
789 					__touch_cap(cap);
790 				}
791 			}
792 			return 1;
793 		}
794 	}
795 
796 	return 0;
797 }
798 
799 /*
800  * Return true if mask caps are currently being revoked by an MDS.
801  */
802 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
803 			       struct ceph_cap *ocap, int mask)
804 {
805 	struct ceph_cap *cap;
806 	struct rb_node *p;
807 
808 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
809 		cap = rb_entry(p, struct ceph_cap, ci_node);
810 		if (cap != ocap &&
811 		    (cap->implemented & ~cap->issued & mask))
812 			return 1;
813 	}
814 	return 0;
815 }
816 
817 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
818 {
819 	struct inode *inode = &ci->vfs_inode;
820 	int ret;
821 
822 	spin_lock(&ci->i_ceph_lock);
823 	ret = __ceph_caps_revoking_other(ci, NULL, mask);
824 	spin_unlock(&ci->i_ceph_lock);
825 	dout("ceph_caps_revoking %p %s = %d\n", inode,
826 	     ceph_cap_string(mask), ret);
827 	return ret;
828 }
829 
830 int __ceph_caps_used(struct ceph_inode_info *ci)
831 {
832 	int used = 0;
833 	if (ci->i_pin_ref)
834 		used |= CEPH_CAP_PIN;
835 	if (ci->i_rd_ref)
836 		used |= CEPH_CAP_FILE_RD;
837 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
838 		used |= CEPH_CAP_FILE_CACHE;
839 	if (ci->i_wr_ref)
840 		used |= CEPH_CAP_FILE_WR;
841 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
842 		used |= CEPH_CAP_FILE_BUFFER;
843 	return used;
844 }
845 
846 /*
847  * wanted, by virtue of open file modes
848  */
849 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
850 {
851 	int want = 0;
852 	int mode;
853 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
854 		if (ci->i_nr_by_mode[mode])
855 			want |= ceph_caps_for_mode(mode);
856 	return want;
857 }
858 
859 /*
860  * Return caps we have registered with the MDS(s) as 'wanted'.
861  */
862 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
863 {
864 	struct ceph_cap *cap;
865 	struct rb_node *p;
866 	int mds_wanted = 0;
867 
868 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
869 		cap = rb_entry(p, struct ceph_cap, ci_node);
870 		if (!__cap_is_valid(cap))
871 			continue;
872 		if (cap == ci->i_auth_cap)
873 			mds_wanted |= cap->mds_wanted;
874 		else
875 			mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
876 	}
877 	return mds_wanted;
878 }
879 
880 /*
881  * called under i_ceph_lock
882  */
883 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
884 {
885 	return !RB_EMPTY_ROOT(&ci->i_caps);
886 }
887 
888 int ceph_is_any_caps(struct inode *inode)
889 {
890 	struct ceph_inode_info *ci = ceph_inode(inode);
891 	int ret;
892 
893 	spin_lock(&ci->i_ceph_lock);
894 	ret = __ceph_is_any_caps(ci);
895 	spin_unlock(&ci->i_ceph_lock);
896 
897 	return ret;
898 }
899 
900 /*
901  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
902  *
903  * caller should hold i_ceph_lock.
904  * caller will not hold session s_mutex if called from destroy_inode.
905  */
906 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
907 {
908 	struct ceph_mds_session *session = cap->session;
909 	struct ceph_inode_info *ci = cap->ci;
910 	struct ceph_mds_client *mdsc =
911 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
912 	int removed = 0;
913 
914 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
915 
916 	/* remove from session list */
917 	spin_lock(&session->s_cap_lock);
918 	/*
919 	 * s_cap_reconnect is protected by s_cap_lock. no one changes
920 	 * s_cap_gen while session is in the reconnect state.
921 	 */
922 	if (queue_release &&
923 	    (!session->s_cap_reconnect ||
924 	     cap->cap_gen == session->s_cap_gen))
925 		__queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
926 				    cap->mseq, cap->issue_seq);
927 
928 	if (session->s_cap_iterator == cap) {
929 		/* not yet, we are iterating over this very cap */
930 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
931 		     cap, cap->session);
932 	} else {
933 		list_del_init(&cap->session_caps);
934 		session->s_nr_caps--;
935 		cap->session = NULL;
936 		removed = 1;
937 	}
938 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
939 	cap->ci = NULL;
940 	spin_unlock(&session->s_cap_lock);
941 
942 	/* remove from inode list */
943 	rb_erase(&cap->ci_node, &ci->i_caps);
944 	if (ci->i_auth_cap == cap)
945 		ci->i_auth_cap = NULL;
946 
947 	if (removed)
948 		ceph_put_cap(mdsc, cap);
949 
950 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
951 		struct ceph_snap_realm *realm = ci->i_snap_realm;
952 		spin_lock(&realm->inodes_with_caps_lock);
953 		list_del_init(&ci->i_snap_realm_item);
954 		ci->i_snap_realm_counter++;
955 		ci->i_snap_realm = NULL;
956 		spin_unlock(&realm->inodes_with_caps_lock);
957 		ceph_put_snap_realm(mdsc, realm);
958 	}
959 	if (!__ceph_is_any_real_caps(ci))
960 		__cap_delay_cancel(mdsc, ci);
961 }
962 
963 /*
964  * Build and send a cap message to the given MDS.
965  *
966  * Caller should be holding s_mutex.
967  */
968 static int send_cap_msg(struct ceph_mds_session *session,
969 			u64 ino, u64 cid, int op,
970 			int caps, int wanted, int dirty,
971 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
972 			u64 size, u64 max_size,
973 			struct timespec *mtime, struct timespec *atime,
974 			u64 time_warp_seq,
975 			kuid_t uid, kgid_t gid, umode_t mode,
976 			u64 xattr_version,
977 			struct ceph_buffer *xattrs_buf,
978 			u64 follows)
979 {
980 	struct ceph_mds_caps *fc;
981 	struct ceph_msg *msg;
982 
983 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
984 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
985 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
986 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
987 	     ceph_cap_string(dirty),
988 	     seq, issue_seq, mseq, follows, size, max_size,
989 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
990 
991 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
992 	if (!msg)
993 		return -ENOMEM;
994 
995 	msg->hdr.tid = cpu_to_le64(flush_tid);
996 
997 	fc = msg->front.iov_base;
998 	memset(fc, 0, sizeof(*fc));
999 
1000 	fc->cap_id = cpu_to_le64(cid);
1001 	fc->op = cpu_to_le32(op);
1002 	fc->seq = cpu_to_le32(seq);
1003 	fc->issue_seq = cpu_to_le32(issue_seq);
1004 	fc->migrate_seq = cpu_to_le32(mseq);
1005 	fc->caps = cpu_to_le32(caps);
1006 	fc->wanted = cpu_to_le32(wanted);
1007 	fc->dirty = cpu_to_le32(dirty);
1008 	fc->ino = cpu_to_le64(ino);
1009 	fc->snap_follows = cpu_to_le64(follows);
1010 
1011 	fc->size = cpu_to_le64(size);
1012 	fc->max_size = cpu_to_le64(max_size);
1013 	if (mtime)
1014 		ceph_encode_timespec(&fc->mtime, mtime);
1015 	if (atime)
1016 		ceph_encode_timespec(&fc->atime, atime);
1017 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1018 
1019 	fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1020 	fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1021 	fc->mode = cpu_to_le32(mode);
1022 
1023 	fc->xattr_version = cpu_to_le64(xattr_version);
1024 	if (xattrs_buf) {
1025 		msg->middle = ceph_buffer_get(xattrs_buf);
1026 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1027 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1028 	}
1029 
1030 	ceph_con_send(&session->s_con, msg);
1031 	return 0;
1032 }
1033 
1034 void __queue_cap_release(struct ceph_mds_session *session,
1035 			 u64 ino, u64 cap_id, u32 migrate_seq,
1036 			 u32 issue_seq)
1037 {
1038 	struct ceph_msg *msg;
1039 	struct ceph_mds_cap_release *head;
1040 	struct ceph_mds_cap_item *item;
1041 
1042 	BUG_ON(!session->s_num_cap_releases);
1043 	msg = list_first_entry(&session->s_cap_releases,
1044 			       struct ceph_msg, list_head);
1045 
1046 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1047 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1048 
1049 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1050 	head = msg->front.iov_base;
1051 	le32_add_cpu(&head->num, 1);
1052 	item = msg->front.iov_base + msg->front.iov_len;
1053 	item->ino = cpu_to_le64(ino);
1054 	item->cap_id = cpu_to_le64(cap_id);
1055 	item->migrate_seq = cpu_to_le32(migrate_seq);
1056 	item->seq = cpu_to_le32(issue_seq);
1057 
1058 	session->s_num_cap_releases--;
1059 
1060 	msg->front.iov_len += sizeof(*item);
1061 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1062 		dout(" release msg %p full\n", msg);
1063 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1064 	} else {
1065 		dout(" release msg %p at %d/%d (%d)\n", msg,
1066 		     (int)le32_to_cpu(head->num),
1067 		     (int)CEPH_CAPS_PER_RELEASE,
1068 		     (int)msg->front.iov_len);
1069 	}
1070 }
1071 
1072 /*
1073  * Queue cap releases when an inode is dropped from our cache.  Since
1074  * inode is about to be destroyed, there is no need for i_ceph_lock.
1075  */
1076 void ceph_queue_caps_release(struct inode *inode)
1077 {
1078 	struct ceph_inode_info *ci = ceph_inode(inode);
1079 	struct rb_node *p;
1080 
1081 	p = rb_first(&ci->i_caps);
1082 	while (p) {
1083 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1084 		p = rb_next(p);
1085 		__ceph_remove_cap(cap, true);
1086 	}
1087 }
1088 
1089 /*
1090  * Send a cap msg on the given inode.  Update our caps state, then
1091  * drop i_ceph_lock and send the message.
1092  *
1093  * Make note of max_size reported/requested from mds, revoked caps
1094  * that have now been implemented.
1095  *
1096  * Make half-hearted attempt ot to invalidate page cache if we are
1097  * dropping RDCACHE.  Note that this will leave behind locked pages
1098  * that we'll then need to deal with elsewhere.
1099  *
1100  * Return non-zero if delayed release, or we experienced an error
1101  * such that the caller should requeue + retry later.
1102  *
1103  * called with i_ceph_lock, then drops it.
1104  * caller should hold snap_rwsem (read), s_mutex.
1105  */
1106 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1107 		      int op, int used, int want, int retain, int flushing,
1108 		      unsigned *pflush_tid)
1109 	__releases(cap->ci->i_ceph_lock)
1110 {
1111 	struct ceph_inode_info *ci = cap->ci;
1112 	struct inode *inode = &ci->vfs_inode;
1113 	u64 cap_id = cap->cap_id;
1114 	int held, revoking, dropping, keep;
1115 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1116 	u64 size, max_size;
1117 	struct timespec mtime, atime;
1118 	int wake = 0;
1119 	umode_t mode;
1120 	kuid_t uid;
1121 	kgid_t gid;
1122 	struct ceph_mds_session *session;
1123 	u64 xattr_version = 0;
1124 	struct ceph_buffer *xattr_blob = NULL;
1125 	int delayed = 0;
1126 	u64 flush_tid = 0;
1127 	int i;
1128 	int ret;
1129 
1130 	held = cap->issued | cap->implemented;
1131 	revoking = cap->implemented & ~cap->issued;
1132 	retain &= ~revoking;
1133 	dropping = cap->issued & ~retain;
1134 
1135 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1136 	     inode, cap, cap->session,
1137 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1138 	     ceph_cap_string(revoking));
1139 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1140 
1141 	session = cap->session;
1142 
1143 	/* don't release wanted unless we've waited a bit. */
1144 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1145 	    time_before(jiffies, ci->i_hold_caps_min)) {
1146 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1147 		     ceph_cap_string(cap->issued),
1148 		     ceph_cap_string(cap->issued & retain),
1149 		     ceph_cap_string(cap->mds_wanted),
1150 		     ceph_cap_string(want));
1151 		want |= cap->mds_wanted;
1152 		retain |= cap->issued;
1153 		delayed = 1;
1154 	}
1155 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1156 
1157 	cap->issued &= retain;  /* drop bits we don't want */
1158 	if (cap->implemented & ~cap->issued) {
1159 		/*
1160 		 * Wake up any waiters on wanted -> needed transition.
1161 		 * This is due to the weird transition from buffered
1162 		 * to sync IO... we need to flush dirty pages _before_
1163 		 * allowing sync writes to avoid reordering.
1164 		 */
1165 		wake = 1;
1166 	}
1167 	cap->implemented &= cap->issued | used;
1168 	cap->mds_wanted = want;
1169 
1170 	if (flushing) {
1171 		/*
1172 		 * assign a tid for flush operations so we can avoid
1173 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1174 		 * clean type races.  track latest tid for every bit
1175 		 * so we can handle flush AxFw, flush Fw, and have the
1176 		 * first ack clean Ax.
1177 		 */
1178 		flush_tid = ++ci->i_cap_flush_last_tid;
1179 		if (pflush_tid)
1180 			*pflush_tid = flush_tid;
1181 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1182 		for (i = 0; i < CEPH_CAP_BITS; i++)
1183 			if (flushing & (1 << i))
1184 				ci->i_cap_flush_tid[i] = flush_tid;
1185 
1186 		follows = ci->i_head_snapc->seq;
1187 	} else {
1188 		follows = 0;
1189 	}
1190 
1191 	keep = cap->implemented;
1192 	seq = cap->seq;
1193 	issue_seq = cap->issue_seq;
1194 	mseq = cap->mseq;
1195 	size = inode->i_size;
1196 	ci->i_reported_size = size;
1197 	max_size = ci->i_wanted_max_size;
1198 	ci->i_requested_max_size = max_size;
1199 	mtime = inode->i_mtime;
1200 	atime = inode->i_atime;
1201 	time_warp_seq = ci->i_time_warp_seq;
1202 	uid = inode->i_uid;
1203 	gid = inode->i_gid;
1204 	mode = inode->i_mode;
1205 
1206 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1207 		__ceph_build_xattrs_blob(ci);
1208 		xattr_blob = ci->i_xattrs.blob;
1209 		xattr_version = ci->i_xattrs.version;
1210 	}
1211 
1212 	spin_unlock(&ci->i_ceph_lock);
1213 
1214 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1215 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1216 		size, max_size, &mtime, &atime, time_warp_seq,
1217 		uid, gid, mode, xattr_version, xattr_blob,
1218 		follows);
1219 	if (ret < 0) {
1220 		dout("error sending cap msg, must requeue %p\n", inode);
1221 		delayed = 1;
1222 	}
1223 
1224 	if (wake)
1225 		wake_up_all(&ci->i_cap_wq);
1226 
1227 	return delayed;
1228 }
1229 
1230 /*
1231  * When a snapshot is taken, clients accumulate dirty metadata on
1232  * inodes with capabilities in ceph_cap_snaps to describe the file
1233  * state at the time the snapshot was taken.  This must be flushed
1234  * asynchronously back to the MDS once sync writes complete and dirty
1235  * data is written out.
1236  *
1237  * Unless @again is true, skip cap_snaps that were already sent to
1238  * the MDS (i.e., during this session).
1239  *
1240  * Called under i_ceph_lock.  Takes s_mutex as needed.
1241  */
1242 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1243 			struct ceph_mds_session **psession,
1244 			int again)
1245 		__releases(ci->i_ceph_lock)
1246 		__acquires(ci->i_ceph_lock)
1247 {
1248 	struct inode *inode = &ci->vfs_inode;
1249 	int mds;
1250 	struct ceph_cap_snap *capsnap;
1251 	u32 mseq;
1252 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1253 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1254 						    session->s_mutex */
1255 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1256 			     i_cap_snaps list, and skip these entries next time
1257 			     around to avoid an infinite loop */
1258 
1259 	if (psession)
1260 		session = *psession;
1261 
1262 	dout("__flush_snaps %p\n", inode);
1263 retry:
1264 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1265 		/* avoid an infiniute loop after retry */
1266 		if (capsnap->follows < next_follows)
1267 			continue;
1268 		/*
1269 		 * we need to wait for sync writes to complete and for dirty
1270 		 * pages to be written out.
1271 		 */
1272 		if (capsnap->dirty_pages || capsnap->writing)
1273 			break;
1274 
1275 		/*
1276 		 * if cap writeback already occurred, we should have dropped
1277 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1278 		 */
1279 		BUG_ON(capsnap->dirty == 0);
1280 
1281 		/* pick mds, take s_mutex */
1282 		if (ci->i_auth_cap == NULL) {
1283 			dout("no auth cap (migrating?), doing nothing\n");
1284 			goto out;
1285 		}
1286 
1287 		/* only flush each capsnap once */
1288 		if (!again && !list_empty(&capsnap->flushing_item)) {
1289 			dout("already flushed %p, skipping\n", capsnap);
1290 			continue;
1291 		}
1292 
1293 		mds = ci->i_auth_cap->session->s_mds;
1294 		mseq = ci->i_auth_cap->mseq;
1295 
1296 		if (session && session->s_mds != mds) {
1297 			dout("oops, wrong session %p mutex\n", session);
1298 			mutex_unlock(&session->s_mutex);
1299 			ceph_put_mds_session(session);
1300 			session = NULL;
1301 		}
1302 		if (!session) {
1303 			spin_unlock(&ci->i_ceph_lock);
1304 			mutex_lock(&mdsc->mutex);
1305 			session = __ceph_lookup_mds_session(mdsc, mds);
1306 			mutex_unlock(&mdsc->mutex);
1307 			if (session) {
1308 				dout("inverting session/ino locks on %p\n",
1309 				     session);
1310 				mutex_lock(&session->s_mutex);
1311 			}
1312 			/*
1313 			 * if session == NULL, we raced against a cap
1314 			 * deletion or migration.  retry, and we'll
1315 			 * get a better @mds value next time.
1316 			 */
1317 			spin_lock(&ci->i_ceph_lock);
1318 			goto retry;
1319 		}
1320 
1321 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1322 		atomic_inc(&capsnap->nref);
1323 		if (!list_empty(&capsnap->flushing_item))
1324 			list_del_init(&capsnap->flushing_item);
1325 		list_add_tail(&capsnap->flushing_item,
1326 			      &session->s_cap_snaps_flushing);
1327 		spin_unlock(&ci->i_ceph_lock);
1328 
1329 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1330 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1331 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1332 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1333 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1334 			     capsnap->size, 0,
1335 			     &capsnap->mtime, &capsnap->atime,
1336 			     capsnap->time_warp_seq,
1337 			     capsnap->uid, capsnap->gid, capsnap->mode,
1338 			     capsnap->xattr_version, capsnap->xattr_blob,
1339 			     capsnap->follows);
1340 
1341 		next_follows = capsnap->follows + 1;
1342 		ceph_put_cap_snap(capsnap);
1343 
1344 		spin_lock(&ci->i_ceph_lock);
1345 		goto retry;
1346 	}
1347 
1348 	/* we flushed them all; remove this inode from the queue */
1349 	spin_lock(&mdsc->snap_flush_lock);
1350 	list_del_init(&ci->i_snap_flush_item);
1351 	spin_unlock(&mdsc->snap_flush_lock);
1352 
1353 out:
1354 	if (psession)
1355 		*psession = session;
1356 	else if (session) {
1357 		mutex_unlock(&session->s_mutex);
1358 		ceph_put_mds_session(session);
1359 	}
1360 }
1361 
1362 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1363 {
1364 	spin_lock(&ci->i_ceph_lock);
1365 	__ceph_flush_snaps(ci, NULL, 0);
1366 	spin_unlock(&ci->i_ceph_lock);
1367 }
1368 
1369 /*
1370  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1371  * Caller is then responsible for calling __mark_inode_dirty with the
1372  * returned flags value.
1373  */
1374 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1375 {
1376 	struct ceph_mds_client *mdsc =
1377 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1378 	struct inode *inode = &ci->vfs_inode;
1379 	int was = ci->i_dirty_caps;
1380 	int dirty = 0;
1381 
1382 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1383 	     ceph_cap_string(mask), ceph_cap_string(was),
1384 	     ceph_cap_string(was | mask));
1385 	ci->i_dirty_caps |= mask;
1386 	if (was == 0) {
1387 		if (!ci->i_head_snapc)
1388 			ci->i_head_snapc = ceph_get_snap_context(
1389 				ci->i_snap_realm->cached_context);
1390 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1391 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1392 		WARN_ON(!ci->i_auth_cap);
1393 		BUG_ON(!list_empty(&ci->i_dirty_item));
1394 		spin_lock(&mdsc->cap_dirty_lock);
1395 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1396 		spin_unlock(&mdsc->cap_dirty_lock);
1397 		if (ci->i_flushing_caps == 0) {
1398 			ihold(inode);
1399 			dirty |= I_DIRTY_SYNC;
1400 		}
1401 	}
1402 	BUG_ON(list_empty(&ci->i_dirty_item));
1403 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1404 	    (mask & CEPH_CAP_FILE_BUFFER))
1405 		dirty |= I_DIRTY_DATASYNC;
1406 	__cap_delay_requeue(mdsc, ci);
1407 	return dirty;
1408 }
1409 
1410 /*
1411  * Add dirty inode to the flushing list.  Assigned a seq number so we
1412  * can wait for caps to flush without starving.
1413  *
1414  * Called under i_ceph_lock.
1415  */
1416 static int __mark_caps_flushing(struct inode *inode,
1417 				 struct ceph_mds_session *session)
1418 {
1419 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1420 	struct ceph_inode_info *ci = ceph_inode(inode);
1421 	int flushing;
1422 
1423 	BUG_ON(ci->i_dirty_caps == 0);
1424 	BUG_ON(list_empty(&ci->i_dirty_item));
1425 
1426 	flushing = ci->i_dirty_caps;
1427 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1428 	     ceph_cap_string(flushing),
1429 	     ceph_cap_string(ci->i_flushing_caps),
1430 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1431 	ci->i_flushing_caps |= flushing;
1432 	ci->i_dirty_caps = 0;
1433 	dout(" inode %p now !dirty\n", inode);
1434 
1435 	spin_lock(&mdsc->cap_dirty_lock);
1436 	list_del_init(&ci->i_dirty_item);
1437 
1438 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1439 	if (list_empty(&ci->i_flushing_item)) {
1440 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1441 		mdsc->num_cap_flushing++;
1442 		dout(" inode %p now flushing seq %lld\n", inode,
1443 		     ci->i_cap_flush_seq);
1444 	} else {
1445 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1446 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1447 		     ci->i_cap_flush_seq);
1448 	}
1449 	spin_unlock(&mdsc->cap_dirty_lock);
1450 
1451 	return flushing;
1452 }
1453 
1454 /*
1455  * try to invalidate mapping pages without blocking.
1456  */
1457 static int try_nonblocking_invalidate(struct inode *inode)
1458 {
1459 	struct ceph_inode_info *ci = ceph_inode(inode);
1460 	u32 invalidating_gen = ci->i_rdcache_gen;
1461 
1462 	spin_unlock(&ci->i_ceph_lock);
1463 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1464 	spin_lock(&ci->i_ceph_lock);
1465 
1466 	if (inode->i_data.nrpages == 0 &&
1467 	    invalidating_gen == ci->i_rdcache_gen) {
1468 		/* success. */
1469 		dout("try_nonblocking_invalidate %p success\n", inode);
1470 		/* save any racing async invalidate some trouble */
1471 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1472 		return 0;
1473 	}
1474 	dout("try_nonblocking_invalidate %p failed\n", inode);
1475 	return -1;
1476 }
1477 
1478 /*
1479  * Swiss army knife function to examine currently used and wanted
1480  * versus held caps.  Release, flush, ack revoked caps to mds as
1481  * appropriate.
1482  *
1483  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1484  *    cap release further.
1485  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1486  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1487  *    further delay.
1488  */
1489 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1490 		     struct ceph_mds_session *session)
1491 {
1492 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1493 	struct ceph_mds_client *mdsc = fsc->mdsc;
1494 	struct inode *inode = &ci->vfs_inode;
1495 	struct ceph_cap *cap;
1496 	int file_wanted, used, cap_used;
1497 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1498 	int issued, implemented, want, retain, revoking, flushing = 0;
1499 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1500 			   to avoid an infinite loop on retry */
1501 	struct rb_node *p;
1502 	int tried_invalidate = 0;
1503 	int delayed = 0, sent = 0, force_requeue = 0, num;
1504 	int queue_invalidate = 0;
1505 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1506 
1507 	/* if we are unmounting, flush any unused caps immediately. */
1508 	if (mdsc->stopping)
1509 		is_delayed = 1;
1510 
1511 	spin_lock(&ci->i_ceph_lock);
1512 
1513 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1514 		flags |= CHECK_CAPS_FLUSH;
1515 
1516 	/* flush snaps first time around only */
1517 	if (!list_empty(&ci->i_cap_snaps))
1518 		__ceph_flush_snaps(ci, &session, 0);
1519 	goto retry_locked;
1520 retry:
1521 	spin_lock(&ci->i_ceph_lock);
1522 retry_locked:
1523 	file_wanted = __ceph_caps_file_wanted(ci);
1524 	used = __ceph_caps_used(ci);
1525 	want = file_wanted | used;
1526 	issued = __ceph_caps_issued(ci, &implemented);
1527 	revoking = implemented & ~issued;
1528 
1529 	retain = want | CEPH_CAP_PIN;
1530 	if (!mdsc->stopping && inode->i_nlink > 0) {
1531 		if (want) {
1532 			retain |= CEPH_CAP_ANY;       /* be greedy */
1533 		} else {
1534 			retain |= CEPH_CAP_ANY_SHARED;
1535 			/*
1536 			 * keep RD only if we didn't have the file open RW,
1537 			 * because then the mds would revoke it anyway to
1538 			 * journal max_size=0.
1539 			 */
1540 			if (ci->i_max_size == 0)
1541 				retain |= CEPH_CAP_ANY_RD;
1542 		}
1543 	}
1544 
1545 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1546 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1547 	     ceph_cap_string(file_wanted),
1548 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1549 	     ceph_cap_string(ci->i_flushing_caps),
1550 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1551 	     ceph_cap_string(retain),
1552 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1553 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1554 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1555 
1556 	/*
1557 	 * If we no longer need to hold onto old our caps, and we may
1558 	 * have cached pages, but don't want them, then try to invalidate.
1559 	 * If we fail, it's because pages are locked.... try again later.
1560 	 */
1561 	if ((!is_delayed || mdsc->stopping) &&
1562 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1563 	    inode->i_data.nrpages &&                 /* have cached pages */
1564 	    (file_wanted == 0 ||                     /* no open files */
1565 	     (revoking & (CEPH_CAP_FILE_CACHE|
1566 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1567 	    !tried_invalidate) {
1568 		dout("check_caps trying to invalidate on %p\n", inode);
1569 		if (try_nonblocking_invalidate(inode) < 0) {
1570 			if (revoking & (CEPH_CAP_FILE_CACHE|
1571 					CEPH_CAP_FILE_LAZYIO)) {
1572 				dout("check_caps queuing invalidate\n");
1573 				queue_invalidate = 1;
1574 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1575 			} else {
1576 				dout("check_caps failed to invalidate pages\n");
1577 				/* we failed to invalidate pages.  check these
1578 				   caps again later. */
1579 				force_requeue = 1;
1580 				__cap_set_timeouts(mdsc, ci);
1581 			}
1582 		}
1583 		tried_invalidate = 1;
1584 		goto retry_locked;
1585 	}
1586 
1587 	num = 0;
1588 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1589 		cap = rb_entry(p, struct ceph_cap, ci_node);
1590 		num++;
1591 
1592 		/* avoid looping forever */
1593 		if (mds >= cap->mds ||
1594 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1595 			continue;
1596 
1597 		/* NOTE: no side-effects allowed, until we take s_mutex */
1598 
1599 		cap_used = used;
1600 		if (ci->i_auth_cap && cap != ci->i_auth_cap)
1601 			cap_used &= ~ci->i_auth_cap->issued;
1602 
1603 		revoking = cap->implemented & ~cap->issued;
1604 		dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1605 		     cap->mds, cap, ceph_cap_string(cap->issued),
1606 		     ceph_cap_string(cap_used),
1607 		     ceph_cap_string(cap->implemented),
1608 		     ceph_cap_string(revoking));
1609 
1610 		if (cap == ci->i_auth_cap &&
1611 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1612 			/* request larger max_size from MDS? */
1613 			if (ci->i_wanted_max_size > ci->i_max_size &&
1614 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1615 				dout("requesting new max_size\n");
1616 				goto ack;
1617 			}
1618 
1619 			/* approaching file_max? */
1620 			if ((inode->i_size << 1) >= ci->i_max_size &&
1621 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1622 				dout("i_size approaching max_size\n");
1623 				goto ack;
1624 			}
1625 		}
1626 		/* flush anything dirty? */
1627 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1628 		    ci->i_dirty_caps) {
1629 			dout("flushing dirty caps\n");
1630 			goto ack;
1631 		}
1632 
1633 		/* completed revocation? going down and there are no caps? */
1634 		if (revoking && (revoking & cap_used) == 0) {
1635 			dout("completed revocation of %s\n",
1636 			     ceph_cap_string(cap->implemented & ~cap->issued));
1637 			goto ack;
1638 		}
1639 
1640 		/* want more caps from mds? */
1641 		if (want & ~(cap->mds_wanted | cap->issued))
1642 			goto ack;
1643 
1644 		/* things we might delay */
1645 		if ((cap->issued & ~retain) == 0 &&
1646 		    cap->mds_wanted == want)
1647 			continue;     /* nope, all good */
1648 
1649 		if (is_delayed)
1650 			goto ack;
1651 
1652 		/* delay? */
1653 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1654 		    time_before(jiffies, ci->i_hold_caps_max)) {
1655 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1656 			     ceph_cap_string(cap->issued),
1657 			     ceph_cap_string(cap->issued & retain),
1658 			     ceph_cap_string(cap->mds_wanted),
1659 			     ceph_cap_string(want));
1660 			delayed++;
1661 			continue;
1662 		}
1663 
1664 ack:
1665 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1666 			dout(" skipping %p I_NOFLUSH set\n", inode);
1667 			continue;
1668 		}
1669 
1670 		if (session && session != cap->session) {
1671 			dout("oops, wrong session %p mutex\n", session);
1672 			mutex_unlock(&session->s_mutex);
1673 			session = NULL;
1674 		}
1675 		if (!session) {
1676 			session = cap->session;
1677 			if (mutex_trylock(&session->s_mutex) == 0) {
1678 				dout("inverting session/ino locks on %p\n",
1679 				     session);
1680 				spin_unlock(&ci->i_ceph_lock);
1681 				if (took_snap_rwsem) {
1682 					up_read(&mdsc->snap_rwsem);
1683 					took_snap_rwsem = 0;
1684 				}
1685 				mutex_lock(&session->s_mutex);
1686 				goto retry;
1687 			}
1688 		}
1689 		/* take snap_rwsem after session mutex */
1690 		if (!took_snap_rwsem) {
1691 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1692 				dout("inverting snap/in locks on %p\n",
1693 				     inode);
1694 				spin_unlock(&ci->i_ceph_lock);
1695 				down_read(&mdsc->snap_rwsem);
1696 				took_snap_rwsem = 1;
1697 				goto retry;
1698 			}
1699 			took_snap_rwsem = 1;
1700 		}
1701 
1702 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1703 			flushing = __mark_caps_flushing(inode, session);
1704 		else
1705 			flushing = 0;
1706 
1707 		mds = cap->mds;  /* remember mds, so we don't repeat */
1708 		sent++;
1709 
1710 		/* __send_cap drops i_ceph_lock */
1711 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1712 				      want, retain, flushing, NULL);
1713 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1714 	}
1715 
1716 	/*
1717 	 * Reschedule delayed caps release if we delayed anything,
1718 	 * otherwise cancel.
1719 	 */
1720 	if (delayed && is_delayed)
1721 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1722 	if (!delayed && !is_delayed)
1723 		__cap_delay_cancel(mdsc, ci);
1724 	else if (!is_delayed || force_requeue)
1725 		__cap_delay_requeue(mdsc, ci);
1726 
1727 	spin_unlock(&ci->i_ceph_lock);
1728 
1729 	if (queue_invalidate)
1730 		ceph_queue_invalidate(inode);
1731 
1732 	if (session)
1733 		mutex_unlock(&session->s_mutex);
1734 	if (took_snap_rwsem)
1735 		up_read(&mdsc->snap_rwsem);
1736 }
1737 
1738 /*
1739  * Try to flush dirty caps back to the auth mds.
1740  */
1741 static int try_flush_caps(struct inode *inode, unsigned *flush_tid)
1742 {
1743 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1744 	struct ceph_inode_info *ci = ceph_inode(inode);
1745 	int flushing = 0;
1746 	struct ceph_mds_session *session = NULL;
1747 
1748 retry:
1749 	spin_lock(&ci->i_ceph_lock);
1750 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1751 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1752 		goto out;
1753 	}
1754 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1755 		struct ceph_cap *cap = ci->i_auth_cap;
1756 		int used = __ceph_caps_used(ci);
1757 		int want = __ceph_caps_wanted(ci);
1758 		int delayed;
1759 
1760 		if (!session || session != cap->session) {
1761 			spin_unlock(&ci->i_ceph_lock);
1762 			if (session)
1763 				mutex_unlock(&session->s_mutex);
1764 			session = cap->session;
1765 			mutex_lock(&session->s_mutex);
1766 			goto retry;
1767 		}
1768 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1769 			goto out;
1770 
1771 		flushing = __mark_caps_flushing(inode, session);
1772 
1773 		/* __send_cap drops i_ceph_lock */
1774 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1775 				     cap->issued | cap->implemented, flushing,
1776 				     flush_tid);
1777 		if (!delayed)
1778 			goto out_unlocked;
1779 
1780 		spin_lock(&ci->i_ceph_lock);
1781 		__cap_delay_requeue(mdsc, ci);
1782 	}
1783 out:
1784 	spin_unlock(&ci->i_ceph_lock);
1785 out_unlocked:
1786 	if (session)
1787 		mutex_unlock(&session->s_mutex);
1788 	return flushing;
1789 }
1790 
1791 /*
1792  * Return true if we've flushed caps through the given flush_tid.
1793  */
1794 static int caps_are_flushed(struct inode *inode, unsigned tid)
1795 {
1796 	struct ceph_inode_info *ci = ceph_inode(inode);
1797 	int i, ret = 1;
1798 
1799 	spin_lock(&ci->i_ceph_lock);
1800 	for (i = 0; i < CEPH_CAP_BITS; i++)
1801 		if ((ci->i_flushing_caps & (1 << i)) &&
1802 		    ci->i_cap_flush_tid[i] <= tid) {
1803 			/* still flushing this bit */
1804 			ret = 0;
1805 			break;
1806 		}
1807 	spin_unlock(&ci->i_ceph_lock);
1808 	return ret;
1809 }
1810 
1811 /*
1812  * Wait on any unsafe replies for the given inode.  First wait on the
1813  * newest request, and make that the upper bound.  Then, if there are
1814  * more requests, keep waiting on the oldest as long as it is still older
1815  * than the original request.
1816  */
1817 static void sync_write_wait(struct inode *inode)
1818 {
1819 	struct ceph_inode_info *ci = ceph_inode(inode);
1820 	struct list_head *head = &ci->i_unsafe_writes;
1821 	struct ceph_osd_request *req;
1822 	u64 last_tid;
1823 
1824 	spin_lock(&ci->i_unsafe_lock);
1825 	if (list_empty(head))
1826 		goto out;
1827 
1828 	/* set upper bound as _last_ entry in chain */
1829 	req = list_entry(head->prev, struct ceph_osd_request,
1830 			 r_unsafe_item);
1831 	last_tid = req->r_tid;
1832 
1833 	do {
1834 		ceph_osdc_get_request(req);
1835 		spin_unlock(&ci->i_unsafe_lock);
1836 		dout("sync_write_wait on tid %llu (until %llu)\n",
1837 		     req->r_tid, last_tid);
1838 		wait_for_completion(&req->r_safe_completion);
1839 		spin_lock(&ci->i_unsafe_lock);
1840 		ceph_osdc_put_request(req);
1841 
1842 		/*
1843 		 * from here on look at first entry in chain, since we
1844 		 * only want to wait for anything older than last_tid
1845 		 */
1846 		if (list_empty(head))
1847 			break;
1848 		req = list_entry(head->next, struct ceph_osd_request,
1849 				 r_unsafe_item);
1850 	} while (req->r_tid < last_tid);
1851 out:
1852 	spin_unlock(&ci->i_unsafe_lock);
1853 }
1854 
1855 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1856 {
1857 	struct inode *inode = file->f_mapping->host;
1858 	struct ceph_inode_info *ci = ceph_inode(inode);
1859 	unsigned flush_tid;
1860 	int ret;
1861 	int dirty;
1862 
1863 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1864 	sync_write_wait(inode);
1865 
1866 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1867 	if (ret < 0)
1868 		return ret;
1869 	mutex_lock(&inode->i_mutex);
1870 
1871 	dirty = try_flush_caps(inode, &flush_tid);
1872 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1873 
1874 	/*
1875 	 * only wait on non-file metadata writeback (the mds
1876 	 * can recover size and mtime, so we don't need to
1877 	 * wait for that)
1878 	 */
1879 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1880 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1881 		ret = wait_event_interruptible(ci->i_cap_wq,
1882 				       caps_are_flushed(inode, flush_tid));
1883 	}
1884 
1885 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1886 	mutex_unlock(&inode->i_mutex);
1887 	return ret;
1888 }
1889 
1890 /*
1891  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1892  * queue inode for flush but don't do so immediately, because we can
1893  * get by with fewer MDS messages if we wait for data writeback to
1894  * complete first.
1895  */
1896 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1897 {
1898 	struct ceph_inode_info *ci = ceph_inode(inode);
1899 	unsigned flush_tid;
1900 	int err = 0;
1901 	int dirty;
1902 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1903 
1904 	dout("write_inode %p wait=%d\n", inode, wait);
1905 	if (wait) {
1906 		dirty = try_flush_caps(inode, &flush_tid);
1907 		if (dirty)
1908 			err = wait_event_interruptible(ci->i_cap_wq,
1909 				       caps_are_flushed(inode, flush_tid));
1910 	} else {
1911 		struct ceph_mds_client *mdsc =
1912 			ceph_sb_to_client(inode->i_sb)->mdsc;
1913 
1914 		spin_lock(&ci->i_ceph_lock);
1915 		if (__ceph_caps_dirty(ci))
1916 			__cap_delay_requeue_front(mdsc, ci);
1917 		spin_unlock(&ci->i_ceph_lock);
1918 	}
1919 	return err;
1920 }
1921 
1922 /*
1923  * After a recovering MDS goes active, we need to resend any caps
1924  * we were flushing.
1925  *
1926  * Caller holds session->s_mutex.
1927  */
1928 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1929 				   struct ceph_mds_session *session)
1930 {
1931 	struct ceph_cap_snap *capsnap;
1932 
1933 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1934 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1935 			    flushing_item) {
1936 		struct ceph_inode_info *ci = capsnap->ci;
1937 		struct inode *inode = &ci->vfs_inode;
1938 		struct ceph_cap *cap;
1939 
1940 		spin_lock(&ci->i_ceph_lock);
1941 		cap = ci->i_auth_cap;
1942 		if (cap && cap->session == session) {
1943 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1944 			     cap, capsnap);
1945 			__ceph_flush_snaps(ci, &session, 1);
1946 		} else {
1947 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1948 			       cap, session->s_mds);
1949 		}
1950 		spin_unlock(&ci->i_ceph_lock);
1951 	}
1952 }
1953 
1954 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1955 			     struct ceph_mds_session *session)
1956 {
1957 	struct ceph_inode_info *ci;
1958 
1959 	kick_flushing_capsnaps(mdsc, session);
1960 
1961 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1962 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1963 		struct inode *inode = &ci->vfs_inode;
1964 		struct ceph_cap *cap;
1965 		int delayed = 0;
1966 
1967 		spin_lock(&ci->i_ceph_lock);
1968 		cap = ci->i_auth_cap;
1969 		if (cap && cap->session == session) {
1970 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1971 			     cap, ceph_cap_string(ci->i_flushing_caps));
1972 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1973 					     __ceph_caps_used(ci),
1974 					     __ceph_caps_wanted(ci),
1975 					     cap->issued | cap->implemented,
1976 					     ci->i_flushing_caps, NULL);
1977 			if (delayed) {
1978 				spin_lock(&ci->i_ceph_lock);
1979 				__cap_delay_requeue(mdsc, ci);
1980 				spin_unlock(&ci->i_ceph_lock);
1981 			}
1982 		} else {
1983 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1984 			       cap, session->s_mds);
1985 			spin_unlock(&ci->i_ceph_lock);
1986 		}
1987 	}
1988 }
1989 
1990 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1991 				     struct ceph_mds_session *session,
1992 				     struct inode *inode)
1993 {
1994 	struct ceph_inode_info *ci = ceph_inode(inode);
1995 	struct ceph_cap *cap;
1996 	int delayed = 0;
1997 
1998 	spin_lock(&ci->i_ceph_lock);
1999 	cap = ci->i_auth_cap;
2000 	dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
2001 	     ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2002 
2003 	__ceph_flush_snaps(ci, &session, 1);
2004 
2005 	if (ci->i_flushing_caps) {
2006 		spin_lock(&mdsc->cap_dirty_lock);
2007 		list_move_tail(&ci->i_flushing_item,
2008 			       &cap->session->s_cap_flushing);
2009 		spin_unlock(&mdsc->cap_dirty_lock);
2010 
2011 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2012 				     __ceph_caps_used(ci),
2013 				     __ceph_caps_wanted(ci),
2014 				     cap->issued | cap->implemented,
2015 				     ci->i_flushing_caps, NULL);
2016 		if (delayed) {
2017 			spin_lock(&ci->i_ceph_lock);
2018 			__cap_delay_requeue(mdsc, ci);
2019 			spin_unlock(&ci->i_ceph_lock);
2020 		}
2021 	} else {
2022 		spin_unlock(&ci->i_ceph_lock);
2023 	}
2024 }
2025 
2026 
2027 /*
2028  * Take references to capabilities we hold, so that we don't release
2029  * them to the MDS prematurely.
2030  *
2031  * Protected by i_ceph_lock.
2032  */
2033 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2034 {
2035 	if (got & CEPH_CAP_PIN)
2036 		ci->i_pin_ref++;
2037 	if (got & CEPH_CAP_FILE_RD)
2038 		ci->i_rd_ref++;
2039 	if (got & CEPH_CAP_FILE_CACHE)
2040 		ci->i_rdcache_ref++;
2041 	if (got & CEPH_CAP_FILE_WR)
2042 		ci->i_wr_ref++;
2043 	if (got & CEPH_CAP_FILE_BUFFER) {
2044 		if (ci->i_wb_ref == 0)
2045 			ihold(&ci->vfs_inode);
2046 		ci->i_wb_ref++;
2047 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2048 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2049 	}
2050 }
2051 
2052 /*
2053  * Try to grab cap references.  Specify those refs we @want, and the
2054  * minimal set we @need.  Also include the larger offset we are writing
2055  * to (when applicable), and check against max_size here as well.
2056  * Note that caller is responsible for ensuring max_size increases are
2057  * requested from the MDS.
2058  */
2059 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2060 			    int *got, loff_t endoff, int *check_max, int *err)
2061 {
2062 	struct inode *inode = &ci->vfs_inode;
2063 	int ret = 0;
2064 	int have, implemented;
2065 	int file_wanted;
2066 
2067 	dout("get_cap_refs %p need %s want %s\n", inode,
2068 	     ceph_cap_string(need), ceph_cap_string(want));
2069 	spin_lock(&ci->i_ceph_lock);
2070 
2071 	/* make sure file is actually open */
2072 	file_wanted = __ceph_caps_file_wanted(ci);
2073 	if ((file_wanted & need) == 0) {
2074 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2075 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2076 		*err = -EBADF;
2077 		ret = 1;
2078 		goto out;
2079 	}
2080 
2081 	/* finish pending truncate */
2082 	while (ci->i_truncate_pending) {
2083 		spin_unlock(&ci->i_ceph_lock);
2084 		__ceph_do_pending_vmtruncate(inode);
2085 		spin_lock(&ci->i_ceph_lock);
2086 	}
2087 
2088 	have = __ceph_caps_issued(ci, &implemented);
2089 
2090 	if (have & need & CEPH_CAP_FILE_WR) {
2091 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2092 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2093 			     inode, endoff, ci->i_max_size);
2094 			if (endoff > ci->i_requested_max_size) {
2095 				*check_max = 1;
2096 				ret = 1;
2097 			}
2098 			goto out;
2099 		}
2100 		/*
2101 		 * If a sync write is in progress, we must wait, so that we
2102 		 * can get a final snapshot value for size+mtime.
2103 		 */
2104 		if (__ceph_have_pending_cap_snap(ci)) {
2105 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2106 			goto out;
2107 		}
2108 	}
2109 
2110 	if ((have & need) == need) {
2111 		/*
2112 		 * Look at (implemented & ~have & not) so that we keep waiting
2113 		 * on transition from wanted -> needed caps.  This is needed
2114 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2115 		 * going before a prior buffered writeback happens.
2116 		 */
2117 		int not = want & ~(have & need);
2118 		int revoking = implemented & ~have;
2119 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2120 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2121 		     ceph_cap_string(revoking));
2122 		if ((revoking & not) == 0) {
2123 			*got = need | (have & want);
2124 			__take_cap_refs(ci, *got);
2125 			ret = 1;
2126 		}
2127 	} else {
2128 		dout("get_cap_refs %p have %s needed %s\n", inode,
2129 		     ceph_cap_string(have), ceph_cap_string(need));
2130 	}
2131 out:
2132 	spin_unlock(&ci->i_ceph_lock);
2133 	dout("get_cap_refs %p ret %d got %s\n", inode,
2134 	     ret, ceph_cap_string(*got));
2135 	return ret;
2136 }
2137 
2138 /*
2139  * Check the offset we are writing up to against our current
2140  * max_size.  If necessary, tell the MDS we want to write to
2141  * a larger offset.
2142  */
2143 static void check_max_size(struct inode *inode, loff_t endoff)
2144 {
2145 	struct ceph_inode_info *ci = ceph_inode(inode);
2146 	int check = 0;
2147 
2148 	/* do we need to explicitly request a larger max_size? */
2149 	spin_lock(&ci->i_ceph_lock);
2150 	if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2151 		dout("write %p at large endoff %llu, req max_size\n",
2152 		     inode, endoff);
2153 		ci->i_wanted_max_size = endoff;
2154 	}
2155 	/* duplicate ceph_check_caps()'s logic */
2156 	if (ci->i_auth_cap &&
2157 	    (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2158 	    ci->i_wanted_max_size > ci->i_max_size &&
2159 	    ci->i_wanted_max_size > ci->i_requested_max_size)
2160 		check = 1;
2161 	spin_unlock(&ci->i_ceph_lock);
2162 	if (check)
2163 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2164 }
2165 
2166 /*
2167  * Wait for caps, and take cap references.  If we can't get a WR cap
2168  * due to a small max_size, make sure we check_max_size (and possibly
2169  * ask the mds) so we don't get hung up indefinitely.
2170  */
2171 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2172 		  loff_t endoff)
2173 {
2174 	int check_max, ret, err;
2175 
2176 retry:
2177 	if (endoff > 0)
2178 		check_max_size(&ci->vfs_inode, endoff);
2179 	check_max = 0;
2180 	err = 0;
2181 	ret = wait_event_interruptible(ci->i_cap_wq,
2182 				       try_get_cap_refs(ci, need, want,
2183 							got, endoff,
2184 							&check_max, &err));
2185 	if (err)
2186 		ret = err;
2187 	if (check_max)
2188 		goto retry;
2189 	return ret;
2190 }
2191 
2192 /*
2193  * Take cap refs.  Caller must already know we hold at least one ref
2194  * on the caps in question or we don't know this is safe.
2195  */
2196 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2197 {
2198 	spin_lock(&ci->i_ceph_lock);
2199 	__take_cap_refs(ci, caps);
2200 	spin_unlock(&ci->i_ceph_lock);
2201 }
2202 
2203 /*
2204  * Release cap refs.
2205  *
2206  * If we released the last ref on any given cap, call ceph_check_caps
2207  * to release (or schedule a release).
2208  *
2209  * If we are releasing a WR cap (from a sync write), finalize any affected
2210  * cap_snap, and wake up any waiters.
2211  */
2212 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2213 {
2214 	struct inode *inode = &ci->vfs_inode;
2215 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2216 	struct ceph_cap_snap *capsnap;
2217 
2218 	spin_lock(&ci->i_ceph_lock);
2219 	if (had & CEPH_CAP_PIN)
2220 		--ci->i_pin_ref;
2221 	if (had & CEPH_CAP_FILE_RD)
2222 		if (--ci->i_rd_ref == 0)
2223 			last++;
2224 	if (had & CEPH_CAP_FILE_CACHE)
2225 		if (--ci->i_rdcache_ref == 0)
2226 			last++;
2227 	if (had & CEPH_CAP_FILE_BUFFER) {
2228 		if (--ci->i_wb_ref == 0) {
2229 			last++;
2230 			put++;
2231 		}
2232 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2233 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2234 	}
2235 	if (had & CEPH_CAP_FILE_WR)
2236 		if (--ci->i_wr_ref == 0) {
2237 			last++;
2238 			if (!list_empty(&ci->i_cap_snaps)) {
2239 				capsnap = list_first_entry(&ci->i_cap_snaps,
2240 						     struct ceph_cap_snap,
2241 						     ci_item);
2242 				if (capsnap->writing) {
2243 					capsnap->writing = 0;
2244 					flushsnaps =
2245 						__ceph_finish_cap_snap(ci,
2246 								       capsnap);
2247 					wake = 1;
2248 				}
2249 			}
2250 		}
2251 	spin_unlock(&ci->i_ceph_lock);
2252 
2253 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2254 	     last ? " last" : "", put ? " put" : "");
2255 
2256 	if (last && !flushsnaps)
2257 		ceph_check_caps(ci, 0, NULL);
2258 	else if (flushsnaps)
2259 		ceph_flush_snaps(ci);
2260 	if (wake)
2261 		wake_up_all(&ci->i_cap_wq);
2262 	if (put)
2263 		iput(inode);
2264 }
2265 
2266 /*
2267  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2268  * context.  Adjust per-snap dirty page accounting as appropriate.
2269  * Once all dirty data for a cap_snap is flushed, flush snapped file
2270  * metadata back to the MDS.  If we dropped the last ref, call
2271  * ceph_check_caps.
2272  */
2273 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2274 				struct ceph_snap_context *snapc)
2275 {
2276 	struct inode *inode = &ci->vfs_inode;
2277 	int last = 0;
2278 	int complete_capsnap = 0;
2279 	int drop_capsnap = 0;
2280 	int found = 0;
2281 	struct ceph_cap_snap *capsnap = NULL;
2282 
2283 	spin_lock(&ci->i_ceph_lock);
2284 	ci->i_wrbuffer_ref -= nr;
2285 	last = !ci->i_wrbuffer_ref;
2286 
2287 	if (ci->i_head_snapc == snapc) {
2288 		ci->i_wrbuffer_ref_head -= nr;
2289 		if (ci->i_wrbuffer_ref_head == 0 &&
2290 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2291 			BUG_ON(!ci->i_head_snapc);
2292 			ceph_put_snap_context(ci->i_head_snapc);
2293 			ci->i_head_snapc = NULL;
2294 		}
2295 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2296 		     inode,
2297 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2298 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2299 		     last ? " LAST" : "");
2300 	} else {
2301 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2302 			if (capsnap->context == snapc) {
2303 				found = 1;
2304 				break;
2305 			}
2306 		}
2307 		BUG_ON(!found);
2308 		capsnap->dirty_pages -= nr;
2309 		if (capsnap->dirty_pages == 0) {
2310 			complete_capsnap = 1;
2311 			if (capsnap->dirty == 0)
2312 				/* cap writeback completed before we created
2313 				 * the cap_snap; no FLUSHSNAP is needed */
2314 				drop_capsnap = 1;
2315 		}
2316 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2317 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2318 		     inode, capsnap, capsnap->context->seq,
2319 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2320 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2321 		     last ? " (wrbuffer last)" : "",
2322 		     complete_capsnap ? " (complete capsnap)" : "",
2323 		     drop_capsnap ? " (drop capsnap)" : "");
2324 		if (drop_capsnap) {
2325 			ceph_put_snap_context(capsnap->context);
2326 			list_del(&capsnap->ci_item);
2327 			list_del(&capsnap->flushing_item);
2328 			ceph_put_cap_snap(capsnap);
2329 		}
2330 	}
2331 
2332 	spin_unlock(&ci->i_ceph_lock);
2333 
2334 	if (last) {
2335 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2336 		iput(inode);
2337 	} else if (complete_capsnap) {
2338 		ceph_flush_snaps(ci);
2339 		wake_up_all(&ci->i_cap_wq);
2340 	}
2341 	if (drop_capsnap)
2342 		iput(inode);
2343 }
2344 
2345 /*
2346  * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2347  */
2348 static void invalidate_aliases(struct inode *inode)
2349 {
2350 	struct dentry *dn, *prev = NULL;
2351 
2352 	dout("invalidate_aliases inode %p\n", inode);
2353 	d_prune_aliases(inode);
2354 	/*
2355 	 * For non-directory inode, d_find_alias() only returns
2356 	 * hashed dentry. After calling d_invalidate(), the
2357 	 * dentry becomes unhashed.
2358 	 *
2359 	 * For directory inode, d_find_alias() can return
2360 	 * unhashed dentry. But directory inode should have
2361 	 * one alias at most.
2362 	 */
2363 	while ((dn = d_find_alias(inode))) {
2364 		if (dn == prev) {
2365 			dput(dn);
2366 			break;
2367 		}
2368 		d_invalidate(dn);
2369 		if (prev)
2370 			dput(prev);
2371 		prev = dn;
2372 	}
2373 	if (prev)
2374 		dput(prev);
2375 }
2376 
2377 /*
2378  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2379  * actually be a revocation if it specifies a smaller cap set.)
2380  *
2381  * caller holds s_mutex and i_ceph_lock, we drop both.
2382  */
2383 static void handle_cap_grant(struct ceph_mds_client *mdsc,
2384 			     struct inode *inode, struct ceph_mds_caps *grant,
2385 			     void *snaptrace, int snaptrace_len,
2386 			     struct ceph_buffer *xattr_buf,
2387 			     struct ceph_mds_session *session,
2388 			     struct ceph_cap *cap, int issued)
2389 	__releases(ci->i_ceph_lock)
2390 {
2391 	struct ceph_inode_info *ci = ceph_inode(inode);
2392 	int mds = session->s_mds;
2393 	int seq = le32_to_cpu(grant->seq);
2394 	int newcaps = le32_to_cpu(grant->caps);
2395 	int used, wanted, dirty;
2396 	u64 size = le64_to_cpu(grant->size);
2397 	u64 max_size = le64_to_cpu(grant->max_size);
2398 	struct timespec mtime, atime, ctime;
2399 	int check_caps = 0;
2400 	bool wake = false;
2401 	bool writeback = false;
2402 	bool queue_trunc = false;
2403 	bool queue_invalidate = false;
2404 	bool queue_revalidate = false;
2405 	bool deleted_inode = false;
2406 
2407 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2408 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2409 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2410 		inode->i_size);
2411 
2412 
2413 	/*
2414 	 * auth mds of the inode changed. we received the cap export message,
2415 	 * but still haven't received the cap import message. handle_cap_export
2416 	 * updated the new auth MDS' cap.
2417 	 *
2418 	 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2419 	 * that was sent before the cap import message. So don't remove caps.
2420 	 */
2421 	if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2422 		WARN_ON(cap != ci->i_auth_cap);
2423 		WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2424 		seq = cap->seq;
2425 		newcaps |= cap->issued;
2426 	}
2427 
2428 	/*
2429 	 * If CACHE is being revoked, and we have no dirty buffers,
2430 	 * try to invalidate (once).  (If there are dirty buffers, we
2431 	 * will invalidate _after_ writeback.)
2432 	 */
2433 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2434 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2435 	    !ci->i_wrbuffer_ref) {
2436 		if (try_nonblocking_invalidate(inode)) {
2437 			/* there were locked pages.. invalidate later
2438 			   in a separate thread. */
2439 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2440 				queue_invalidate = true;
2441 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2442 			}
2443 		}
2444 
2445 		ceph_fscache_invalidate(inode);
2446 	}
2447 
2448 	/* side effects now are allowed */
2449 	cap->cap_gen = session->s_cap_gen;
2450 	cap->seq = seq;
2451 
2452 	__check_cap_issue(ci, cap, newcaps);
2453 
2454 	if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2455 	    (issued & CEPH_CAP_AUTH_EXCL) == 0) {
2456 		inode->i_mode = le32_to_cpu(grant->mode);
2457 		inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2458 		inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2459 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2460 		     from_kuid(&init_user_ns, inode->i_uid),
2461 		     from_kgid(&init_user_ns, inode->i_gid));
2462 	}
2463 
2464 	if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2465 	    (issued & CEPH_CAP_LINK_EXCL) == 0) {
2466 		set_nlink(inode, le32_to_cpu(grant->nlink));
2467 		if (inode->i_nlink == 0 &&
2468 		    (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2469 			deleted_inode = true;
2470 	}
2471 
2472 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2473 		int len = le32_to_cpu(grant->xattr_len);
2474 		u64 version = le64_to_cpu(grant->xattr_version);
2475 
2476 		if (version > ci->i_xattrs.version) {
2477 			dout(" got new xattrs v%llu on %p len %d\n",
2478 			     version, inode, len);
2479 			if (ci->i_xattrs.blob)
2480 				ceph_buffer_put(ci->i_xattrs.blob);
2481 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2482 			ci->i_xattrs.version = version;
2483 			ceph_forget_all_cached_acls(inode);
2484 		}
2485 	}
2486 
2487 	/* Do we need to revalidate our fscache cookie. Don't bother on the
2488 	 * first cache cap as we already validate at cookie creation time. */
2489 	if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2490 		queue_revalidate = true;
2491 
2492 	if (newcaps & CEPH_CAP_ANY_RD) {
2493 		/* ctime/mtime/atime? */
2494 		ceph_decode_timespec(&mtime, &grant->mtime);
2495 		ceph_decode_timespec(&atime, &grant->atime);
2496 		ceph_decode_timespec(&ctime, &grant->ctime);
2497 		ceph_fill_file_time(inode, issued,
2498 				    le32_to_cpu(grant->time_warp_seq),
2499 				    &ctime, &mtime, &atime);
2500 	}
2501 
2502 	if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
2503 		/* file layout may have changed */
2504 		ci->i_layout = grant->layout;
2505 		/* size/truncate_seq? */
2506 		queue_trunc = ceph_fill_file_size(inode, issued,
2507 					le32_to_cpu(grant->truncate_seq),
2508 					le64_to_cpu(grant->truncate_size),
2509 					size);
2510 		/* max size increase? */
2511 		if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2512 			dout("max_size %lld -> %llu\n",
2513 			     ci->i_max_size, max_size);
2514 			ci->i_max_size = max_size;
2515 			if (max_size >= ci->i_wanted_max_size) {
2516 				ci->i_wanted_max_size = 0;  /* reset */
2517 				ci->i_requested_max_size = 0;
2518 			}
2519 			wake = true;
2520 		}
2521 	}
2522 
2523 	/* check cap bits */
2524 	wanted = __ceph_caps_wanted(ci);
2525 	used = __ceph_caps_used(ci);
2526 	dirty = __ceph_caps_dirty(ci);
2527 	dout(" my wanted = %s, used = %s, dirty %s\n",
2528 	     ceph_cap_string(wanted),
2529 	     ceph_cap_string(used),
2530 	     ceph_cap_string(dirty));
2531 	if (wanted != le32_to_cpu(grant->wanted)) {
2532 		dout("mds wanted %s -> %s\n",
2533 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2534 		     ceph_cap_string(wanted));
2535 		/* imported cap may not have correct mds_wanted */
2536 		if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2537 			check_caps = 1;
2538 	}
2539 
2540 	/* revocation, grant, or no-op? */
2541 	if (cap->issued & ~newcaps) {
2542 		int revoking = cap->issued & ~newcaps;
2543 
2544 		dout("revocation: %s -> %s (revoking %s)\n",
2545 		     ceph_cap_string(cap->issued),
2546 		     ceph_cap_string(newcaps),
2547 		     ceph_cap_string(revoking));
2548 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2549 			writeback = true;  /* initiate writeback; will delay ack */
2550 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2551 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2552 			 queue_invalidate)
2553 			; /* do nothing yet, invalidation will be queued */
2554 		else if (cap == ci->i_auth_cap)
2555 			check_caps = 1; /* check auth cap only */
2556 		else
2557 			check_caps = 2; /* check all caps */
2558 		cap->issued = newcaps;
2559 		cap->implemented |= newcaps;
2560 	} else if (cap->issued == newcaps) {
2561 		dout("caps unchanged: %s -> %s\n",
2562 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2563 	} else {
2564 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2565 		     ceph_cap_string(newcaps));
2566 		/* non-auth MDS is revoking the newly grant caps ? */
2567 		if (cap == ci->i_auth_cap &&
2568 		    __ceph_caps_revoking_other(ci, cap, newcaps))
2569 		    check_caps = 2;
2570 
2571 		cap->issued = newcaps;
2572 		cap->implemented |= newcaps; /* add bits only, to
2573 					      * avoid stepping on a
2574 					      * pending revocation */
2575 		wake = true;
2576 	}
2577 	BUG_ON(cap->issued & ~cap->implemented);
2578 
2579 	spin_unlock(&ci->i_ceph_lock);
2580 
2581 	if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
2582 		down_write(&mdsc->snap_rwsem);
2583 		ceph_update_snap_trace(mdsc, snaptrace,
2584 				       snaptrace + snaptrace_len, false);
2585 		downgrade_write(&mdsc->snap_rwsem);
2586 		kick_flushing_inode_caps(mdsc, session, inode);
2587 		up_read(&mdsc->snap_rwsem);
2588 		if (newcaps & ~issued)
2589 			wake = true;
2590 	}
2591 
2592 	if (queue_trunc) {
2593 		ceph_queue_vmtruncate(inode);
2594 		ceph_queue_revalidate(inode);
2595 	} else if (queue_revalidate)
2596 		ceph_queue_revalidate(inode);
2597 
2598 	if (writeback)
2599 		/*
2600 		 * queue inode for writeback: we can't actually call
2601 		 * filemap_write_and_wait, etc. from message handler
2602 		 * context.
2603 		 */
2604 		ceph_queue_writeback(inode);
2605 	if (queue_invalidate)
2606 		ceph_queue_invalidate(inode);
2607 	if (deleted_inode)
2608 		invalidate_aliases(inode);
2609 	if (wake)
2610 		wake_up_all(&ci->i_cap_wq);
2611 
2612 	if (check_caps == 1)
2613 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2614 				session);
2615 	else if (check_caps == 2)
2616 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2617 	else
2618 		mutex_unlock(&session->s_mutex);
2619 }
2620 
2621 /*
2622  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2623  * MDS has been safely committed.
2624  */
2625 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2626 				 struct ceph_mds_caps *m,
2627 				 struct ceph_mds_session *session,
2628 				 struct ceph_cap *cap)
2629 	__releases(ci->i_ceph_lock)
2630 {
2631 	struct ceph_inode_info *ci = ceph_inode(inode);
2632 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2633 	unsigned seq = le32_to_cpu(m->seq);
2634 	int dirty = le32_to_cpu(m->dirty);
2635 	int cleaned = 0;
2636 	int drop = 0;
2637 	int i;
2638 
2639 	for (i = 0; i < CEPH_CAP_BITS; i++)
2640 		if ((dirty & (1 << i)) &&
2641 		    (u16)flush_tid == ci->i_cap_flush_tid[i])
2642 			cleaned |= 1 << i;
2643 
2644 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2645 	     " flushing %s -> %s\n",
2646 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2647 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2648 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2649 
2650 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2651 		goto out;
2652 
2653 	ci->i_flushing_caps &= ~cleaned;
2654 
2655 	spin_lock(&mdsc->cap_dirty_lock);
2656 	if (ci->i_flushing_caps == 0) {
2657 		list_del_init(&ci->i_flushing_item);
2658 		if (!list_empty(&session->s_cap_flushing))
2659 			dout(" mds%d still flushing cap on %p\n",
2660 			     session->s_mds,
2661 			     &list_entry(session->s_cap_flushing.next,
2662 					 struct ceph_inode_info,
2663 					 i_flushing_item)->vfs_inode);
2664 		mdsc->num_cap_flushing--;
2665 		wake_up_all(&mdsc->cap_flushing_wq);
2666 		dout(" inode %p now !flushing\n", inode);
2667 
2668 		if (ci->i_dirty_caps == 0) {
2669 			dout(" inode %p now clean\n", inode);
2670 			BUG_ON(!list_empty(&ci->i_dirty_item));
2671 			drop = 1;
2672 			if (ci->i_wrbuffer_ref_head == 0) {
2673 				BUG_ON(!ci->i_head_snapc);
2674 				ceph_put_snap_context(ci->i_head_snapc);
2675 				ci->i_head_snapc = NULL;
2676 			}
2677 		} else {
2678 			BUG_ON(list_empty(&ci->i_dirty_item));
2679 		}
2680 	}
2681 	spin_unlock(&mdsc->cap_dirty_lock);
2682 	wake_up_all(&ci->i_cap_wq);
2683 
2684 out:
2685 	spin_unlock(&ci->i_ceph_lock);
2686 	if (drop)
2687 		iput(inode);
2688 }
2689 
2690 /*
2691  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2692  * throw away our cap_snap.
2693  *
2694  * Caller hold s_mutex.
2695  */
2696 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2697 				     struct ceph_mds_caps *m,
2698 				     struct ceph_mds_session *session)
2699 {
2700 	struct ceph_inode_info *ci = ceph_inode(inode);
2701 	u64 follows = le64_to_cpu(m->snap_follows);
2702 	struct ceph_cap_snap *capsnap;
2703 	int drop = 0;
2704 
2705 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2706 	     inode, ci, session->s_mds, follows);
2707 
2708 	spin_lock(&ci->i_ceph_lock);
2709 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2710 		if (capsnap->follows == follows) {
2711 			if (capsnap->flush_tid != flush_tid) {
2712 				dout(" cap_snap %p follows %lld tid %lld !="
2713 				     " %lld\n", capsnap, follows,
2714 				     flush_tid, capsnap->flush_tid);
2715 				break;
2716 			}
2717 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2718 			dout(" removing %p cap_snap %p follows %lld\n",
2719 			     inode, capsnap, follows);
2720 			ceph_put_snap_context(capsnap->context);
2721 			list_del(&capsnap->ci_item);
2722 			list_del(&capsnap->flushing_item);
2723 			ceph_put_cap_snap(capsnap);
2724 			drop = 1;
2725 			break;
2726 		} else {
2727 			dout(" skipping cap_snap %p follows %lld\n",
2728 			     capsnap, capsnap->follows);
2729 		}
2730 	}
2731 	spin_unlock(&ci->i_ceph_lock);
2732 	if (drop)
2733 		iput(inode);
2734 }
2735 
2736 /*
2737  * Handle TRUNC from MDS, indicating file truncation.
2738  *
2739  * caller hold s_mutex.
2740  */
2741 static void handle_cap_trunc(struct inode *inode,
2742 			     struct ceph_mds_caps *trunc,
2743 			     struct ceph_mds_session *session)
2744 	__releases(ci->i_ceph_lock)
2745 {
2746 	struct ceph_inode_info *ci = ceph_inode(inode);
2747 	int mds = session->s_mds;
2748 	int seq = le32_to_cpu(trunc->seq);
2749 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2750 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2751 	u64 size = le64_to_cpu(trunc->size);
2752 	int implemented = 0;
2753 	int dirty = __ceph_caps_dirty(ci);
2754 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2755 	int queue_trunc = 0;
2756 
2757 	issued |= implemented | dirty;
2758 
2759 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2760 	     inode, mds, seq, truncate_size, truncate_seq);
2761 	queue_trunc = ceph_fill_file_size(inode, issued,
2762 					  truncate_seq, truncate_size, size);
2763 	spin_unlock(&ci->i_ceph_lock);
2764 
2765 	if (queue_trunc) {
2766 		ceph_queue_vmtruncate(inode);
2767 		ceph_fscache_invalidate(inode);
2768 	}
2769 }
2770 
2771 /*
2772  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2773  * different one.  If we are the most recent migration we've seen (as
2774  * indicated by mseq), make note of the migrating cap bits for the
2775  * duration (until we see the corresponding IMPORT).
2776  *
2777  * caller holds s_mutex
2778  */
2779 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2780 			      struct ceph_mds_cap_peer *ph,
2781 			      struct ceph_mds_session *session)
2782 {
2783 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2784 	struct ceph_mds_session *tsession = NULL;
2785 	struct ceph_cap *cap, *tcap, *new_cap = NULL;
2786 	struct ceph_inode_info *ci = ceph_inode(inode);
2787 	u64 t_cap_id;
2788 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2789 	unsigned t_seq, t_mseq;
2790 	int target, issued;
2791 	int mds = session->s_mds;
2792 
2793 	if (ph) {
2794 		t_cap_id = le64_to_cpu(ph->cap_id);
2795 		t_seq = le32_to_cpu(ph->seq);
2796 		t_mseq = le32_to_cpu(ph->mseq);
2797 		target = le32_to_cpu(ph->mds);
2798 	} else {
2799 		t_cap_id = t_seq = t_mseq = 0;
2800 		target = -1;
2801 	}
2802 
2803 	dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
2804 	     inode, ci, mds, mseq, target);
2805 retry:
2806 	spin_lock(&ci->i_ceph_lock);
2807 	cap = __get_cap_for_mds(ci, mds);
2808 	if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
2809 		goto out_unlock;
2810 
2811 	if (target < 0) {
2812 		__ceph_remove_cap(cap, false);
2813 		goto out_unlock;
2814 	}
2815 
2816 	/*
2817 	 * now we know we haven't received the cap import message yet
2818 	 * because the exported cap still exist.
2819 	 */
2820 
2821 	issued = cap->issued;
2822 	WARN_ON(issued != cap->implemented);
2823 
2824 	tcap = __get_cap_for_mds(ci, target);
2825 	if (tcap) {
2826 		/* already have caps from the target */
2827 		if (tcap->cap_id != t_cap_id ||
2828 		    ceph_seq_cmp(tcap->seq, t_seq) < 0) {
2829 			dout(" updating import cap %p mds%d\n", tcap, target);
2830 			tcap->cap_id = t_cap_id;
2831 			tcap->seq = t_seq - 1;
2832 			tcap->issue_seq = t_seq - 1;
2833 			tcap->mseq = t_mseq;
2834 			tcap->issued |= issued;
2835 			tcap->implemented |= issued;
2836 			if (cap == ci->i_auth_cap)
2837 				ci->i_auth_cap = tcap;
2838 			if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
2839 				spin_lock(&mdsc->cap_dirty_lock);
2840 				list_move_tail(&ci->i_flushing_item,
2841 					       &tcap->session->s_cap_flushing);
2842 				spin_unlock(&mdsc->cap_dirty_lock);
2843 			}
2844 		}
2845 		__ceph_remove_cap(cap, false);
2846 		goto out_unlock;
2847 	} else if (tsession) {
2848 		/* add placeholder for the export tagert */
2849 		int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
2850 		ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
2851 			     t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
2852 
2853 		__ceph_remove_cap(cap, false);
2854 		goto out_unlock;
2855 	}
2856 
2857 	spin_unlock(&ci->i_ceph_lock);
2858 	mutex_unlock(&session->s_mutex);
2859 
2860 	/* open target session */
2861 	tsession = ceph_mdsc_open_export_target_session(mdsc, target);
2862 	if (!IS_ERR(tsession)) {
2863 		if (mds > target) {
2864 			mutex_lock(&session->s_mutex);
2865 			mutex_lock_nested(&tsession->s_mutex,
2866 					  SINGLE_DEPTH_NESTING);
2867 		} else {
2868 			mutex_lock(&tsession->s_mutex);
2869 			mutex_lock_nested(&session->s_mutex,
2870 					  SINGLE_DEPTH_NESTING);
2871 		}
2872 		ceph_add_cap_releases(mdsc, tsession);
2873 		new_cap = ceph_get_cap(mdsc, NULL);
2874 	} else {
2875 		WARN_ON(1);
2876 		tsession = NULL;
2877 		target = -1;
2878 	}
2879 	goto retry;
2880 
2881 out_unlock:
2882 	spin_unlock(&ci->i_ceph_lock);
2883 	mutex_unlock(&session->s_mutex);
2884 	if (tsession) {
2885 		mutex_unlock(&tsession->s_mutex);
2886 		ceph_put_mds_session(tsession);
2887 	}
2888 	if (new_cap)
2889 		ceph_put_cap(mdsc, new_cap);
2890 }
2891 
2892 /*
2893  * Handle cap IMPORT.
2894  *
2895  * caller holds s_mutex. acquires i_ceph_lock
2896  */
2897 static void handle_cap_import(struct ceph_mds_client *mdsc,
2898 			      struct inode *inode, struct ceph_mds_caps *im,
2899 			      struct ceph_mds_cap_peer *ph,
2900 			      struct ceph_mds_session *session,
2901 			      struct ceph_cap **target_cap, int *old_issued)
2902 	__acquires(ci->i_ceph_lock)
2903 {
2904 	struct ceph_inode_info *ci = ceph_inode(inode);
2905 	struct ceph_cap *cap, *ocap, *new_cap = NULL;
2906 	int mds = session->s_mds;
2907 	int issued;
2908 	unsigned caps = le32_to_cpu(im->caps);
2909 	unsigned wanted = le32_to_cpu(im->wanted);
2910 	unsigned seq = le32_to_cpu(im->seq);
2911 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2912 	u64 realmino = le64_to_cpu(im->realm);
2913 	u64 cap_id = le64_to_cpu(im->cap_id);
2914 	u64 p_cap_id;
2915 	int peer;
2916 
2917 	if (ph) {
2918 		p_cap_id = le64_to_cpu(ph->cap_id);
2919 		peer = le32_to_cpu(ph->mds);
2920 	} else {
2921 		p_cap_id = 0;
2922 		peer = -1;
2923 	}
2924 
2925 	dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
2926 	     inode, ci, mds, mseq, peer);
2927 
2928 retry:
2929 	spin_lock(&ci->i_ceph_lock);
2930 	cap = __get_cap_for_mds(ci, mds);
2931 	if (!cap) {
2932 		if (!new_cap) {
2933 			spin_unlock(&ci->i_ceph_lock);
2934 			new_cap = ceph_get_cap(mdsc, NULL);
2935 			goto retry;
2936 		}
2937 		cap = new_cap;
2938 	} else {
2939 		if (new_cap) {
2940 			ceph_put_cap(mdsc, new_cap);
2941 			new_cap = NULL;
2942 		}
2943 	}
2944 
2945 	__ceph_caps_issued(ci, &issued);
2946 	issued |= __ceph_caps_dirty(ci);
2947 
2948 	ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq,
2949 		     realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
2950 
2951 	ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
2952 	if (ocap && ocap->cap_id == p_cap_id) {
2953 		dout(" remove export cap %p mds%d flags %d\n",
2954 		     ocap, peer, ph->flags);
2955 		if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
2956 		    (ocap->seq != le32_to_cpu(ph->seq) ||
2957 		     ocap->mseq != le32_to_cpu(ph->mseq))) {
2958 			pr_err("handle_cap_import: mismatched seq/mseq: "
2959 			       "ino (%llx.%llx) mds%d seq %d mseq %d "
2960 			       "importer mds%d has peer seq %d mseq %d\n",
2961 			       ceph_vinop(inode), peer, ocap->seq,
2962 			       ocap->mseq, mds, le32_to_cpu(ph->seq),
2963 			       le32_to_cpu(ph->mseq));
2964 		}
2965 		__ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
2966 	}
2967 
2968 	/* make sure we re-request max_size, if necessary */
2969 	ci->i_wanted_max_size = 0;
2970 	ci->i_requested_max_size = 0;
2971 
2972 	*old_issued = issued;
2973 	*target_cap = cap;
2974 }
2975 
2976 /*
2977  * Handle a caps message from the MDS.
2978  *
2979  * Identify the appropriate session, inode, and call the right handler
2980  * based on the cap op.
2981  */
2982 void ceph_handle_caps(struct ceph_mds_session *session,
2983 		      struct ceph_msg *msg)
2984 {
2985 	struct ceph_mds_client *mdsc = session->s_mdsc;
2986 	struct super_block *sb = mdsc->fsc->sb;
2987 	struct inode *inode;
2988 	struct ceph_inode_info *ci;
2989 	struct ceph_cap *cap;
2990 	struct ceph_mds_caps *h;
2991 	struct ceph_mds_cap_peer *peer = NULL;
2992 	int mds = session->s_mds;
2993 	int op, issued;
2994 	u32 seq, mseq;
2995 	struct ceph_vino vino;
2996 	u64 cap_id;
2997 	u64 size, max_size;
2998 	u64 tid;
2999 	void *snaptrace;
3000 	size_t snaptrace_len;
3001 	void *flock;
3002 	void *end;
3003 	u32 flock_len;
3004 
3005 	dout("handle_caps from mds%d\n", mds);
3006 
3007 	/* decode */
3008 	end = msg->front.iov_base + msg->front.iov_len;
3009 	tid = le64_to_cpu(msg->hdr.tid);
3010 	if (msg->front.iov_len < sizeof(*h))
3011 		goto bad;
3012 	h = msg->front.iov_base;
3013 	op = le32_to_cpu(h->op);
3014 	vino.ino = le64_to_cpu(h->ino);
3015 	vino.snap = CEPH_NOSNAP;
3016 	cap_id = le64_to_cpu(h->cap_id);
3017 	seq = le32_to_cpu(h->seq);
3018 	mseq = le32_to_cpu(h->migrate_seq);
3019 	size = le64_to_cpu(h->size);
3020 	max_size = le64_to_cpu(h->max_size);
3021 
3022 	snaptrace = h + 1;
3023 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
3024 
3025 	if (le16_to_cpu(msg->hdr.version) >= 2) {
3026 		void *p = snaptrace + snaptrace_len;
3027 		ceph_decode_32_safe(&p, end, flock_len, bad);
3028 		if (p + flock_len > end)
3029 			goto bad;
3030 		flock = p;
3031 	} else {
3032 		flock = NULL;
3033 		flock_len = 0;
3034 	}
3035 
3036 	if (le16_to_cpu(msg->hdr.version) >= 3) {
3037 		if (op == CEPH_CAP_OP_IMPORT) {
3038 			void *p = flock + flock_len;
3039 			if (p + sizeof(*peer) > end)
3040 				goto bad;
3041 			peer = p;
3042 		} else if (op == CEPH_CAP_OP_EXPORT) {
3043 			/* recorded in unused fields */
3044 			peer = (void *)&h->size;
3045 		}
3046 	}
3047 
3048 	/* lookup ino */
3049 	inode = ceph_find_inode(sb, vino);
3050 	ci = ceph_inode(inode);
3051 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3052 	     vino.snap, inode);
3053 
3054 	mutex_lock(&session->s_mutex);
3055 	session->s_seq++;
3056 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3057 	     (unsigned)seq);
3058 
3059 	if (op == CEPH_CAP_OP_IMPORT)
3060 		ceph_add_cap_releases(mdsc, session);
3061 
3062 	if (!inode) {
3063 		dout(" i don't have ino %llx\n", vino.ino);
3064 
3065 		if (op == CEPH_CAP_OP_IMPORT) {
3066 			spin_lock(&session->s_cap_lock);
3067 			__queue_cap_release(session, vino.ino, cap_id,
3068 					    mseq, seq);
3069 			spin_unlock(&session->s_cap_lock);
3070 		}
3071 		goto flush_cap_releases;
3072 	}
3073 
3074 	/* these will work even if we don't have a cap yet */
3075 	switch (op) {
3076 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
3077 		handle_cap_flushsnap_ack(inode, tid, h, session);
3078 		goto done;
3079 
3080 	case CEPH_CAP_OP_EXPORT:
3081 		handle_cap_export(inode, h, peer, session);
3082 		goto done_unlocked;
3083 
3084 	case CEPH_CAP_OP_IMPORT:
3085 		handle_cap_import(mdsc, inode, h, peer, session,
3086 				  &cap, &issued);
3087 		handle_cap_grant(mdsc, inode, h,  snaptrace, snaptrace_len,
3088 				 msg->middle, session, cap, issued);
3089 		goto done_unlocked;
3090 	}
3091 
3092 	/* the rest require a cap */
3093 	spin_lock(&ci->i_ceph_lock);
3094 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
3095 	if (!cap) {
3096 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
3097 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
3098 		spin_unlock(&ci->i_ceph_lock);
3099 		goto flush_cap_releases;
3100 	}
3101 
3102 	/* note that each of these drops i_ceph_lock for us */
3103 	switch (op) {
3104 	case CEPH_CAP_OP_REVOKE:
3105 	case CEPH_CAP_OP_GRANT:
3106 		__ceph_caps_issued(ci, &issued);
3107 		issued |= __ceph_caps_dirty(ci);
3108 		handle_cap_grant(mdsc, inode, h, NULL, 0, msg->middle,
3109 				 session, cap, issued);
3110 		goto done_unlocked;
3111 
3112 	case CEPH_CAP_OP_FLUSH_ACK:
3113 		handle_cap_flush_ack(inode, tid, h, session, cap);
3114 		break;
3115 
3116 	case CEPH_CAP_OP_TRUNC:
3117 		handle_cap_trunc(inode, h, session);
3118 		break;
3119 
3120 	default:
3121 		spin_unlock(&ci->i_ceph_lock);
3122 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3123 		       ceph_cap_op_name(op));
3124 	}
3125 
3126 	goto done;
3127 
3128 flush_cap_releases:
3129 	/*
3130 	 * send any full release message to try to move things
3131 	 * along for the mds (who clearly thinks we still have this
3132 	 * cap).
3133 	 */
3134 	ceph_add_cap_releases(mdsc, session);
3135 	ceph_send_cap_releases(mdsc, session);
3136 
3137 done:
3138 	mutex_unlock(&session->s_mutex);
3139 done_unlocked:
3140 	if (inode)
3141 		iput(inode);
3142 	return;
3143 
3144 bad:
3145 	pr_err("ceph_handle_caps: corrupt message\n");
3146 	ceph_msg_dump(msg);
3147 	return;
3148 }
3149 
3150 /*
3151  * Delayed work handler to process end of delayed cap release LRU list.
3152  */
3153 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3154 {
3155 	struct ceph_inode_info *ci;
3156 	int flags = CHECK_CAPS_NODELAY;
3157 
3158 	dout("check_delayed_caps\n");
3159 	while (1) {
3160 		spin_lock(&mdsc->cap_delay_lock);
3161 		if (list_empty(&mdsc->cap_delay_list))
3162 			break;
3163 		ci = list_first_entry(&mdsc->cap_delay_list,
3164 				      struct ceph_inode_info,
3165 				      i_cap_delay_list);
3166 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3167 		    time_before(jiffies, ci->i_hold_caps_max))
3168 			break;
3169 		list_del_init(&ci->i_cap_delay_list);
3170 		spin_unlock(&mdsc->cap_delay_lock);
3171 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3172 		ceph_check_caps(ci, flags, NULL);
3173 	}
3174 	spin_unlock(&mdsc->cap_delay_lock);
3175 }
3176 
3177 /*
3178  * Flush all dirty caps to the mds
3179  */
3180 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3181 {
3182 	struct ceph_inode_info *ci;
3183 	struct inode *inode;
3184 
3185 	dout("flush_dirty_caps\n");
3186 	spin_lock(&mdsc->cap_dirty_lock);
3187 	while (!list_empty(&mdsc->cap_dirty)) {
3188 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3189 				      i_dirty_item);
3190 		inode = &ci->vfs_inode;
3191 		ihold(inode);
3192 		dout("flush_dirty_caps %p\n", inode);
3193 		spin_unlock(&mdsc->cap_dirty_lock);
3194 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3195 		iput(inode);
3196 		spin_lock(&mdsc->cap_dirty_lock);
3197 	}
3198 	spin_unlock(&mdsc->cap_dirty_lock);
3199 	dout("flush_dirty_caps done\n");
3200 }
3201 
3202 /*
3203  * Drop open file reference.  If we were the last open file,
3204  * we may need to release capabilities to the MDS (or schedule
3205  * their delayed release).
3206  */
3207 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3208 {
3209 	struct inode *inode = &ci->vfs_inode;
3210 	int last = 0;
3211 
3212 	spin_lock(&ci->i_ceph_lock);
3213 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3214 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3215 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3216 	if (--ci->i_nr_by_mode[fmode] == 0)
3217 		last++;
3218 	spin_unlock(&ci->i_ceph_lock);
3219 
3220 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
3221 		ceph_check_caps(ci, 0, NULL);
3222 }
3223 
3224 /*
3225  * Helpers for embedding cap and dentry lease releases into mds
3226  * requests.
3227  *
3228  * @force is used by dentry_release (below) to force inclusion of a
3229  * record for the directory inode, even when there aren't any caps to
3230  * drop.
3231  */
3232 int ceph_encode_inode_release(void **p, struct inode *inode,
3233 			      int mds, int drop, int unless, int force)
3234 {
3235 	struct ceph_inode_info *ci = ceph_inode(inode);
3236 	struct ceph_cap *cap;
3237 	struct ceph_mds_request_release *rel = *p;
3238 	int used, dirty;
3239 	int ret = 0;
3240 
3241 	spin_lock(&ci->i_ceph_lock);
3242 	used = __ceph_caps_used(ci);
3243 	dirty = __ceph_caps_dirty(ci);
3244 
3245 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3246 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3247 	     ceph_cap_string(unless));
3248 
3249 	/* only drop unused, clean caps */
3250 	drop &= ~(used | dirty);
3251 
3252 	cap = __get_cap_for_mds(ci, mds);
3253 	if (cap && __cap_is_valid(cap)) {
3254 		if (force ||
3255 		    ((cap->issued & drop) &&
3256 		     (cap->issued & unless) == 0)) {
3257 			if ((cap->issued & drop) &&
3258 			    (cap->issued & unless) == 0) {
3259 				int wanted = __ceph_caps_wanted(ci);
3260 				if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3261 					wanted |= cap->mds_wanted;
3262 				dout("encode_inode_release %p cap %p "
3263 				     "%s -> %s, wanted %s -> %s\n", inode, cap,
3264 				     ceph_cap_string(cap->issued),
3265 				     ceph_cap_string(cap->issued & ~drop),
3266 				     ceph_cap_string(cap->mds_wanted),
3267 				     ceph_cap_string(wanted));
3268 
3269 				cap->issued &= ~drop;
3270 				cap->implemented &= ~drop;
3271 				cap->mds_wanted = wanted;
3272 			} else {
3273 				dout("encode_inode_release %p cap %p %s"
3274 				     " (force)\n", inode, cap,
3275 				     ceph_cap_string(cap->issued));
3276 			}
3277 
3278 			rel->ino = cpu_to_le64(ceph_ino(inode));
3279 			rel->cap_id = cpu_to_le64(cap->cap_id);
3280 			rel->seq = cpu_to_le32(cap->seq);
3281 			rel->issue_seq = cpu_to_le32(cap->issue_seq);
3282 			rel->mseq = cpu_to_le32(cap->mseq);
3283 			rel->caps = cpu_to_le32(cap->implemented);
3284 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3285 			rel->dname_len = 0;
3286 			rel->dname_seq = 0;
3287 			*p += sizeof(*rel);
3288 			ret = 1;
3289 		} else {
3290 			dout("encode_inode_release %p cap %p %s\n",
3291 			     inode, cap, ceph_cap_string(cap->issued));
3292 		}
3293 	}
3294 	spin_unlock(&ci->i_ceph_lock);
3295 	return ret;
3296 }
3297 
3298 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3299 			       int mds, int drop, int unless)
3300 {
3301 	struct inode *dir = dentry->d_parent->d_inode;
3302 	struct ceph_mds_request_release *rel = *p;
3303 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3304 	int force = 0;
3305 	int ret;
3306 
3307 	/*
3308 	 * force an record for the directory caps if we have a dentry lease.
3309 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3310 	 * doesn't have to be perfect; the mds will revoke anything we don't
3311 	 * release.
3312 	 */
3313 	spin_lock(&dentry->d_lock);
3314 	if (di->lease_session && di->lease_session->s_mds == mds)
3315 		force = 1;
3316 	spin_unlock(&dentry->d_lock);
3317 
3318 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3319 
3320 	spin_lock(&dentry->d_lock);
3321 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3322 		dout("encode_dentry_release %p mds%d seq %d\n",
3323 		     dentry, mds, (int)di->lease_seq);
3324 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3325 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3326 		*p += dentry->d_name.len;
3327 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3328 		__ceph_mdsc_drop_dentry_lease(dentry);
3329 	}
3330 	spin_unlock(&dentry->d_lock);
3331 	return ret;
3332 }
3333