xref: /openbmc/linux/fs/ceph/caps.c (revision c1d45424)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
15 
16 /*
17  * Capability management
18  *
19  * The Ceph metadata servers control client access to inode metadata
20  * and file data by issuing capabilities, granting clients permission
21  * to read and/or write both inode field and file data to OSDs
22  * (storage nodes).  Each capability consists of a set of bits
23  * indicating which operations are allowed.
24  *
25  * If the client holds a *_SHARED cap, the client has a coherent value
26  * that can be safely read from the cached inode.
27  *
28  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29  * client is allowed to change inode attributes (e.g., file size,
30  * mtime), note its dirty state in the ceph_cap, and asynchronously
31  * flush that metadata change to the MDS.
32  *
33  * In the event of a conflicting operation (perhaps by another
34  * client), the MDS will revoke the conflicting client capabilities.
35  *
36  * In order for a client to cache an inode, it must hold a capability
37  * with at least one MDS server.  When inodes are released, release
38  * notifications are batched and periodically sent en masse to the MDS
39  * cluster to release server state.
40  */
41 
42 
43 /*
44  * Generate readable cap strings for debugging output.
45  */
46 #define MAX_CAP_STR 20
47 static char cap_str[MAX_CAP_STR][40];
48 static DEFINE_SPINLOCK(cap_str_lock);
49 static int last_cap_str;
50 
51 static char *gcap_string(char *s, int c)
52 {
53 	if (c & CEPH_CAP_GSHARED)
54 		*s++ = 's';
55 	if (c & CEPH_CAP_GEXCL)
56 		*s++ = 'x';
57 	if (c & CEPH_CAP_GCACHE)
58 		*s++ = 'c';
59 	if (c & CEPH_CAP_GRD)
60 		*s++ = 'r';
61 	if (c & CEPH_CAP_GWR)
62 		*s++ = 'w';
63 	if (c & CEPH_CAP_GBUFFER)
64 		*s++ = 'b';
65 	if (c & CEPH_CAP_GLAZYIO)
66 		*s++ = 'l';
67 	return s;
68 }
69 
70 const char *ceph_cap_string(int caps)
71 {
72 	int i;
73 	char *s;
74 	int c;
75 
76 	spin_lock(&cap_str_lock);
77 	i = last_cap_str++;
78 	if (last_cap_str == MAX_CAP_STR)
79 		last_cap_str = 0;
80 	spin_unlock(&cap_str_lock);
81 
82 	s = cap_str[i];
83 
84 	if (caps & CEPH_CAP_PIN)
85 		*s++ = 'p';
86 
87 	c = (caps >> CEPH_CAP_SAUTH) & 3;
88 	if (c) {
89 		*s++ = 'A';
90 		s = gcap_string(s, c);
91 	}
92 
93 	c = (caps >> CEPH_CAP_SLINK) & 3;
94 	if (c) {
95 		*s++ = 'L';
96 		s = gcap_string(s, c);
97 	}
98 
99 	c = (caps >> CEPH_CAP_SXATTR) & 3;
100 	if (c) {
101 		*s++ = 'X';
102 		s = gcap_string(s, c);
103 	}
104 
105 	c = caps >> CEPH_CAP_SFILE;
106 	if (c) {
107 		*s++ = 'F';
108 		s = gcap_string(s, c);
109 	}
110 
111 	if (s == cap_str[i])
112 		*s++ = '-';
113 	*s = 0;
114 	return cap_str[i];
115 }
116 
117 void ceph_caps_init(struct ceph_mds_client *mdsc)
118 {
119 	INIT_LIST_HEAD(&mdsc->caps_list);
120 	spin_lock_init(&mdsc->caps_list_lock);
121 }
122 
123 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124 {
125 	struct ceph_cap *cap;
126 
127 	spin_lock(&mdsc->caps_list_lock);
128 	while (!list_empty(&mdsc->caps_list)) {
129 		cap = list_first_entry(&mdsc->caps_list,
130 				       struct ceph_cap, caps_item);
131 		list_del(&cap->caps_item);
132 		kmem_cache_free(ceph_cap_cachep, cap);
133 	}
134 	mdsc->caps_total_count = 0;
135 	mdsc->caps_avail_count = 0;
136 	mdsc->caps_use_count = 0;
137 	mdsc->caps_reserve_count = 0;
138 	mdsc->caps_min_count = 0;
139 	spin_unlock(&mdsc->caps_list_lock);
140 }
141 
142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143 {
144 	spin_lock(&mdsc->caps_list_lock);
145 	mdsc->caps_min_count += delta;
146 	BUG_ON(mdsc->caps_min_count < 0);
147 	spin_unlock(&mdsc->caps_list_lock);
148 }
149 
150 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 		      struct ceph_cap_reservation *ctx, int need)
152 {
153 	int i;
154 	struct ceph_cap *cap;
155 	int have;
156 	int alloc = 0;
157 	LIST_HEAD(newcaps);
158 
159 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
160 
161 	/* first reserve any caps that are already allocated */
162 	spin_lock(&mdsc->caps_list_lock);
163 	if (mdsc->caps_avail_count >= need)
164 		have = need;
165 	else
166 		have = mdsc->caps_avail_count;
167 	mdsc->caps_avail_count -= have;
168 	mdsc->caps_reserve_count += have;
169 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
170 					 mdsc->caps_reserve_count +
171 					 mdsc->caps_avail_count);
172 	spin_unlock(&mdsc->caps_list_lock);
173 
174 	for (i = have; i < need; i++) {
175 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
176 		if (!cap)
177 			break;
178 		list_add(&cap->caps_item, &newcaps);
179 		alloc++;
180 	}
181 	/* we didn't manage to reserve as much as we needed */
182 	if (have + alloc != need)
183 		pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
184 			ctx, need, have + alloc);
185 
186 	spin_lock(&mdsc->caps_list_lock);
187 	mdsc->caps_total_count += alloc;
188 	mdsc->caps_reserve_count += alloc;
189 	list_splice(&newcaps, &mdsc->caps_list);
190 
191 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 					 mdsc->caps_reserve_count +
193 					 mdsc->caps_avail_count);
194 	spin_unlock(&mdsc->caps_list_lock);
195 
196 	ctx->count = need;
197 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 }
201 
202 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
203 			struct ceph_cap_reservation *ctx)
204 {
205 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
206 	if (ctx->count) {
207 		spin_lock(&mdsc->caps_list_lock);
208 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
209 		mdsc->caps_reserve_count -= ctx->count;
210 		mdsc->caps_avail_count += ctx->count;
211 		ctx->count = 0;
212 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
213 		     mdsc->caps_total_count, mdsc->caps_use_count,
214 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
215 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
216 						 mdsc->caps_reserve_count +
217 						 mdsc->caps_avail_count);
218 		spin_unlock(&mdsc->caps_list_lock);
219 	}
220 	return 0;
221 }
222 
223 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
224 				struct ceph_cap_reservation *ctx)
225 {
226 	struct ceph_cap *cap = NULL;
227 
228 	/* temporary, until we do something about cap import/export */
229 	if (!ctx) {
230 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
231 		if (cap) {
232 			spin_lock(&mdsc->caps_list_lock);
233 			mdsc->caps_use_count++;
234 			mdsc->caps_total_count++;
235 			spin_unlock(&mdsc->caps_list_lock);
236 		}
237 		return cap;
238 	}
239 
240 	spin_lock(&mdsc->caps_list_lock);
241 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
242 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
243 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
244 	BUG_ON(!ctx->count);
245 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
246 	BUG_ON(list_empty(&mdsc->caps_list));
247 
248 	ctx->count--;
249 	mdsc->caps_reserve_count--;
250 	mdsc->caps_use_count++;
251 
252 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
253 	list_del(&cap->caps_item);
254 
255 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
256 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
257 	spin_unlock(&mdsc->caps_list_lock);
258 	return cap;
259 }
260 
261 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
262 {
263 	spin_lock(&mdsc->caps_list_lock);
264 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
265 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
266 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
267 	mdsc->caps_use_count--;
268 	/*
269 	 * Keep some preallocated caps around (ceph_min_count), to
270 	 * avoid lots of free/alloc churn.
271 	 */
272 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
273 				      mdsc->caps_min_count) {
274 		mdsc->caps_total_count--;
275 		kmem_cache_free(ceph_cap_cachep, cap);
276 	} else {
277 		mdsc->caps_avail_count++;
278 		list_add(&cap->caps_item, &mdsc->caps_list);
279 	}
280 
281 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
282 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
283 	spin_unlock(&mdsc->caps_list_lock);
284 }
285 
286 void ceph_reservation_status(struct ceph_fs_client *fsc,
287 			     int *total, int *avail, int *used, int *reserved,
288 			     int *min)
289 {
290 	struct ceph_mds_client *mdsc = fsc->mdsc;
291 
292 	if (total)
293 		*total = mdsc->caps_total_count;
294 	if (avail)
295 		*avail = mdsc->caps_avail_count;
296 	if (used)
297 		*used = mdsc->caps_use_count;
298 	if (reserved)
299 		*reserved = mdsc->caps_reserve_count;
300 	if (min)
301 		*min = mdsc->caps_min_count;
302 }
303 
304 /*
305  * Find ceph_cap for given mds, if any.
306  *
307  * Called with i_ceph_lock held.
308  */
309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310 {
311 	struct ceph_cap *cap;
312 	struct rb_node *n = ci->i_caps.rb_node;
313 
314 	while (n) {
315 		cap = rb_entry(n, struct ceph_cap, ci_node);
316 		if (mds < cap->mds)
317 			n = n->rb_left;
318 		else if (mds > cap->mds)
319 			n = n->rb_right;
320 		else
321 			return cap;
322 	}
323 	return NULL;
324 }
325 
326 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
327 {
328 	struct ceph_cap *cap;
329 
330 	spin_lock(&ci->i_ceph_lock);
331 	cap = __get_cap_for_mds(ci, mds);
332 	spin_unlock(&ci->i_ceph_lock);
333 	return cap;
334 }
335 
336 /*
337  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
338  */
339 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
340 {
341 	struct ceph_cap *cap;
342 	int mds = -1;
343 	struct rb_node *p;
344 
345 	/* prefer mds with WR|BUFFER|EXCL caps */
346 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
347 		cap = rb_entry(p, struct ceph_cap, ci_node);
348 		mds = cap->mds;
349 		if (cap->issued & (CEPH_CAP_FILE_WR |
350 				   CEPH_CAP_FILE_BUFFER |
351 				   CEPH_CAP_FILE_EXCL))
352 			break;
353 	}
354 	return mds;
355 }
356 
357 int ceph_get_cap_mds(struct inode *inode)
358 {
359 	struct ceph_inode_info *ci = ceph_inode(inode);
360 	int mds;
361 	spin_lock(&ci->i_ceph_lock);
362 	mds = __ceph_get_cap_mds(ceph_inode(inode));
363 	spin_unlock(&ci->i_ceph_lock);
364 	return mds;
365 }
366 
367 /*
368  * Called under i_ceph_lock.
369  */
370 static void __insert_cap_node(struct ceph_inode_info *ci,
371 			      struct ceph_cap *new)
372 {
373 	struct rb_node **p = &ci->i_caps.rb_node;
374 	struct rb_node *parent = NULL;
375 	struct ceph_cap *cap = NULL;
376 
377 	while (*p) {
378 		parent = *p;
379 		cap = rb_entry(parent, struct ceph_cap, ci_node);
380 		if (new->mds < cap->mds)
381 			p = &(*p)->rb_left;
382 		else if (new->mds > cap->mds)
383 			p = &(*p)->rb_right;
384 		else
385 			BUG();
386 	}
387 
388 	rb_link_node(&new->ci_node, parent, p);
389 	rb_insert_color(&new->ci_node, &ci->i_caps);
390 }
391 
392 /*
393  * (re)set cap hold timeouts, which control the delayed release
394  * of unused caps back to the MDS.  Should be called on cap use.
395  */
396 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
397 			       struct ceph_inode_info *ci)
398 {
399 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
400 
401 	ci->i_hold_caps_min = round_jiffies(jiffies +
402 					    ma->caps_wanted_delay_min * HZ);
403 	ci->i_hold_caps_max = round_jiffies(jiffies +
404 					    ma->caps_wanted_delay_max * HZ);
405 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
406 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
407 }
408 
409 /*
410  * (Re)queue cap at the end of the delayed cap release list.
411  *
412  * If I_FLUSH is set, leave the inode at the front of the list.
413  *
414  * Caller holds i_ceph_lock
415  *    -> we take mdsc->cap_delay_lock
416  */
417 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
418 				struct ceph_inode_info *ci)
419 {
420 	__cap_set_timeouts(mdsc, ci);
421 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
422 	     ci->i_ceph_flags, ci->i_hold_caps_max);
423 	if (!mdsc->stopping) {
424 		spin_lock(&mdsc->cap_delay_lock);
425 		if (!list_empty(&ci->i_cap_delay_list)) {
426 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
427 				goto no_change;
428 			list_del_init(&ci->i_cap_delay_list);
429 		}
430 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
431 no_change:
432 		spin_unlock(&mdsc->cap_delay_lock);
433 	}
434 }
435 
436 /*
437  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
438  * indicating we should send a cap message to flush dirty metadata
439  * asap, and move to the front of the delayed cap list.
440  */
441 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
442 				      struct ceph_inode_info *ci)
443 {
444 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
445 	spin_lock(&mdsc->cap_delay_lock);
446 	ci->i_ceph_flags |= CEPH_I_FLUSH;
447 	if (!list_empty(&ci->i_cap_delay_list))
448 		list_del_init(&ci->i_cap_delay_list);
449 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
450 	spin_unlock(&mdsc->cap_delay_lock);
451 }
452 
453 /*
454  * Cancel delayed work on cap.
455  *
456  * Caller must hold i_ceph_lock.
457  */
458 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
459 			       struct ceph_inode_info *ci)
460 {
461 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
462 	if (list_empty(&ci->i_cap_delay_list))
463 		return;
464 	spin_lock(&mdsc->cap_delay_lock);
465 	list_del_init(&ci->i_cap_delay_list);
466 	spin_unlock(&mdsc->cap_delay_lock);
467 }
468 
469 /*
470  * Common issue checks for add_cap, handle_cap_grant.
471  */
472 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
473 			      unsigned issued)
474 {
475 	unsigned had = __ceph_caps_issued(ci, NULL);
476 
477 	/*
478 	 * Each time we receive FILE_CACHE anew, we increment
479 	 * i_rdcache_gen.
480 	 */
481 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
482 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
483 		ci->i_rdcache_gen++;
484 
485 	/*
486 	 * if we are newly issued FILE_SHARED, mark dir not complete; we
487 	 * don't know what happened to this directory while we didn't
488 	 * have the cap.
489 	 */
490 	if ((issued & CEPH_CAP_FILE_SHARED) &&
491 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
492 		ci->i_shared_gen++;
493 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
494 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
495 			__ceph_dir_clear_complete(ci);
496 		}
497 	}
498 }
499 
500 /*
501  * Add a capability under the given MDS session.
502  *
503  * Caller should hold session snap_rwsem (read) and s_mutex.
504  *
505  * @fmode is the open file mode, if we are opening a file, otherwise
506  * it is < 0.  (This is so we can atomically add the cap and add an
507  * open file reference to it.)
508  */
509 int ceph_add_cap(struct inode *inode,
510 		 struct ceph_mds_session *session, u64 cap_id,
511 		 int fmode, unsigned issued, unsigned wanted,
512 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
513 		 struct ceph_cap_reservation *caps_reservation)
514 {
515 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
516 	struct ceph_inode_info *ci = ceph_inode(inode);
517 	struct ceph_cap *new_cap = NULL;
518 	struct ceph_cap *cap;
519 	int mds = session->s_mds;
520 	int actual_wanted;
521 
522 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
523 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
524 
525 	/*
526 	 * If we are opening the file, include file mode wanted bits
527 	 * in wanted.
528 	 */
529 	if (fmode >= 0)
530 		wanted |= ceph_caps_for_mode(fmode);
531 
532 retry:
533 	spin_lock(&ci->i_ceph_lock);
534 	cap = __get_cap_for_mds(ci, mds);
535 	if (!cap) {
536 		if (new_cap) {
537 			cap = new_cap;
538 			new_cap = NULL;
539 		} else {
540 			spin_unlock(&ci->i_ceph_lock);
541 			new_cap = get_cap(mdsc, caps_reservation);
542 			if (new_cap == NULL)
543 				return -ENOMEM;
544 			goto retry;
545 		}
546 
547 		cap->issued = 0;
548 		cap->implemented = 0;
549 		cap->mds = mds;
550 		cap->mds_wanted = 0;
551 		cap->mseq = 0;
552 
553 		cap->ci = ci;
554 		__insert_cap_node(ci, cap);
555 
556 		/* clear out old exporting info?  (i.e. on cap import) */
557 		if (ci->i_cap_exporting_mds == mds) {
558 			ci->i_cap_exporting_issued = 0;
559 			ci->i_cap_exporting_mseq = 0;
560 			ci->i_cap_exporting_mds = -1;
561 		}
562 
563 		/* add to session cap list */
564 		cap->session = session;
565 		spin_lock(&session->s_cap_lock);
566 		list_add_tail(&cap->session_caps, &session->s_caps);
567 		session->s_nr_caps++;
568 		spin_unlock(&session->s_cap_lock);
569 	} else if (new_cap)
570 		ceph_put_cap(mdsc, new_cap);
571 
572 	if (!ci->i_snap_realm) {
573 		/*
574 		 * add this inode to the appropriate snap realm
575 		 */
576 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
577 							       realmino);
578 		if (realm) {
579 			ceph_get_snap_realm(mdsc, realm);
580 			spin_lock(&realm->inodes_with_caps_lock);
581 			ci->i_snap_realm = realm;
582 			list_add(&ci->i_snap_realm_item,
583 				 &realm->inodes_with_caps);
584 			spin_unlock(&realm->inodes_with_caps_lock);
585 		} else {
586 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
587 			       realmino);
588 			WARN_ON(!realm);
589 		}
590 	}
591 
592 	__check_cap_issue(ci, cap, issued);
593 
594 	/*
595 	 * If we are issued caps we don't want, or the mds' wanted
596 	 * value appears to be off, queue a check so we'll release
597 	 * later and/or update the mds wanted value.
598 	 */
599 	actual_wanted = __ceph_caps_wanted(ci);
600 	if ((wanted & ~actual_wanted) ||
601 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
602 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
603 		     ceph_cap_string(issued), ceph_cap_string(wanted),
604 		     ceph_cap_string(actual_wanted));
605 		__cap_delay_requeue(mdsc, ci);
606 	}
607 
608 	if (flags & CEPH_CAP_FLAG_AUTH) {
609 		if (ci->i_auth_cap == NULL ||
610 		    ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
611 			ci->i_auth_cap = cap;
612 	} else if (ci->i_auth_cap == cap) {
613 		ci->i_auth_cap = NULL;
614 		spin_lock(&mdsc->cap_dirty_lock);
615 		if (!list_empty(&ci->i_dirty_item)) {
616 			dout(" moving %p to cap_dirty_migrating\n", inode);
617 			list_move(&ci->i_dirty_item,
618 				  &mdsc->cap_dirty_migrating);
619 		}
620 		spin_unlock(&mdsc->cap_dirty_lock);
621 	}
622 
623 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
624 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
625 	     ceph_cap_string(issued|cap->issued), seq, mds);
626 	cap->cap_id = cap_id;
627 	cap->issued = issued;
628 	cap->implemented |= issued;
629 	if (mseq > cap->mseq)
630 		cap->mds_wanted = wanted;
631 	else
632 		cap->mds_wanted |= wanted;
633 	cap->seq = seq;
634 	cap->issue_seq = seq;
635 	cap->mseq = mseq;
636 	cap->cap_gen = session->s_cap_gen;
637 
638 	if (fmode >= 0)
639 		__ceph_get_fmode(ci, fmode);
640 	spin_unlock(&ci->i_ceph_lock);
641 	wake_up_all(&ci->i_cap_wq);
642 	return 0;
643 }
644 
645 /*
646  * Return true if cap has not timed out and belongs to the current
647  * generation of the MDS session (i.e. has not gone 'stale' due to
648  * us losing touch with the mds).
649  */
650 static int __cap_is_valid(struct ceph_cap *cap)
651 {
652 	unsigned long ttl;
653 	u32 gen;
654 
655 	spin_lock(&cap->session->s_gen_ttl_lock);
656 	gen = cap->session->s_cap_gen;
657 	ttl = cap->session->s_cap_ttl;
658 	spin_unlock(&cap->session->s_gen_ttl_lock);
659 
660 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
661 		dout("__cap_is_valid %p cap %p issued %s "
662 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
663 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
664 		return 0;
665 	}
666 
667 	return 1;
668 }
669 
670 /*
671  * Return set of valid cap bits issued to us.  Note that caps time
672  * out, and may be invalidated in bulk if the client session times out
673  * and session->s_cap_gen is bumped.
674  */
675 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
676 {
677 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
678 	struct ceph_cap *cap;
679 	struct rb_node *p;
680 
681 	if (implemented)
682 		*implemented = 0;
683 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
684 		cap = rb_entry(p, struct ceph_cap, ci_node);
685 		if (!__cap_is_valid(cap))
686 			continue;
687 		dout("__ceph_caps_issued %p cap %p issued %s\n",
688 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
689 		have |= cap->issued;
690 		if (implemented)
691 			*implemented |= cap->implemented;
692 	}
693 	/*
694 	 * exclude caps issued by non-auth MDS, but are been revoking
695 	 * by the auth MDS. The non-auth MDS should be revoking/exporting
696 	 * these caps, but the message is delayed.
697 	 */
698 	if (ci->i_auth_cap) {
699 		cap = ci->i_auth_cap;
700 		have &= ~cap->implemented | cap->issued;
701 	}
702 	return have;
703 }
704 
705 /*
706  * Get cap bits issued by caps other than @ocap
707  */
708 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
709 {
710 	int have = ci->i_snap_caps;
711 	struct ceph_cap *cap;
712 	struct rb_node *p;
713 
714 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
715 		cap = rb_entry(p, struct ceph_cap, ci_node);
716 		if (cap == ocap)
717 			continue;
718 		if (!__cap_is_valid(cap))
719 			continue;
720 		have |= cap->issued;
721 	}
722 	return have;
723 }
724 
725 /*
726  * Move a cap to the end of the LRU (oldest caps at list head, newest
727  * at list tail).
728  */
729 static void __touch_cap(struct ceph_cap *cap)
730 {
731 	struct ceph_mds_session *s = cap->session;
732 
733 	spin_lock(&s->s_cap_lock);
734 	if (s->s_cap_iterator == NULL) {
735 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
736 		     s->s_mds);
737 		list_move_tail(&cap->session_caps, &s->s_caps);
738 	} else {
739 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
740 		     &cap->ci->vfs_inode, cap, s->s_mds);
741 	}
742 	spin_unlock(&s->s_cap_lock);
743 }
744 
745 /*
746  * Check if we hold the given mask.  If so, move the cap(s) to the
747  * front of their respective LRUs.  (This is the preferred way for
748  * callers to check for caps they want.)
749  */
750 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
751 {
752 	struct ceph_cap *cap;
753 	struct rb_node *p;
754 	int have = ci->i_snap_caps;
755 
756 	if ((have & mask) == mask) {
757 		dout("__ceph_caps_issued_mask %p snap issued %s"
758 		     " (mask %s)\n", &ci->vfs_inode,
759 		     ceph_cap_string(have),
760 		     ceph_cap_string(mask));
761 		return 1;
762 	}
763 
764 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
765 		cap = rb_entry(p, struct ceph_cap, ci_node);
766 		if (!__cap_is_valid(cap))
767 			continue;
768 		if ((cap->issued & mask) == mask) {
769 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
770 			     " (mask %s)\n", &ci->vfs_inode, cap,
771 			     ceph_cap_string(cap->issued),
772 			     ceph_cap_string(mask));
773 			if (touch)
774 				__touch_cap(cap);
775 			return 1;
776 		}
777 
778 		/* does a combination of caps satisfy mask? */
779 		have |= cap->issued;
780 		if ((have & mask) == mask) {
781 			dout("__ceph_caps_issued_mask %p combo issued %s"
782 			     " (mask %s)\n", &ci->vfs_inode,
783 			     ceph_cap_string(cap->issued),
784 			     ceph_cap_string(mask));
785 			if (touch) {
786 				struct rb_node *q;
787 
788 				/* touch this + preceding caps */
789 				__touch_cap(cap);
790 				for (q = rb_first(&ci->i_caps); q != p;
791 				     q = rb_next(q)) {
792 					cap = rb_entry(q, struct ceph_cap,
793 						       ci_node);
794 					if (!__cap_is_valid(cap))
795 						continue;
796 					__touch_cap(cap);
797 				}
798 			}
799 			return 1;
800 		}
801 	}
802 
803 	return 0;
804 }
805 
806 /*
807  * Return true if mask caps are currently being revoked by an MDS.
808  */
809 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
810 			       struct ceph_cap *ocap, int mask)
811 {
812 	struct ceph_cap *cap;
813 	struct rb_node *p;
814 
815 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
816 		cap = rb_entry(p, struct ceph_cap, ci_node);
817 		if (cap != ocap && __cap_is_valid(cap) &&
818 		    (cap->implemented & ~cap->issued & mask))
819 			return 1;
820 	}
821 	return 0;
822 }
823 
824 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
825 {
826 	struct inode *inode = &ci->vfs_inode;
827 	int ret;
828 
829 	spin_lock(&ci->i_ceph_lock);
830 	ret = __ceph_caps_revoking_other(ci, NULL, mask);
831 	spin_unlock(&ci->i_ceph_lock);
832 	dout("ceph_caps_revoking %p %s = %d\n", inode,
833 	     ceph_cap_string(mask), ret);
834 	return ret;
835 }
836 
837 int __ceph_caps_used(struct ceph_inode_info *ci)
838 {
839 	int used = 0;
840 	if (ci->i_pin_ref)
841 		used |= CEPH_CAP_PIN;
842 	if (ci->i_rd_ref)
843 		used |= CEPH_CAP_FILE_RD;
844 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
845 		used |= CEPH_CAP_FILE_CACHE;
846 	if (ci->i_wr_ref)
847 		used |= CEPH_CAP_FILE_WR;
848 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
849 		used |= CEPH_CAP_FILE_BUFFER;
850 	return used;
851 }
852 
853 /*
854  * wanted, by virtue of open file modes
855  */
856 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
857 {
858 	int want = 0;
859 	int mode;
860 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
861 		if (ci->i_nr_by_mode[mode])
862 			want |= ceph_caps_for_mode(mode);
863 	return want;
864 }
865 
866 /*
867  * Return caps we have registered with the MDS(s) as 'wanted'.
868  */
869 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
870 {
871 	struct ceph_cap *cap;
872 	struct rb_node *p;
873 	int mds_wanted = 0;
874 
875 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
876 		cap = rb_entry(p, struct ceph_cap, ci_node);
877 		if (!__cap_is_valid(cap))
878 			continue;
879 		mds_wanted |= cap->mds_wanted;
880 	}
881 	return mds_wanted;
882 }
883 
884 /*
885  * called under i_ceph_lock
886  */
887 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
888 {
889 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
890 }
891 
892 /*
893  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
894  *
895  * caller should hold i_ceph_lock.
896  * caller will not hold session s_mutex if called from destroy_inode.
897  */
898 void __ceph_remove_cap(struct ceph_cap *cap)
899 {
900 	struct ceph_mds_session *session = cap->session;
901 	struct ceph_inode_info *ci = cap->ci;
902 	struct ceph_mds_client *mdsc =
903 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
904 	int removed = 0;
905 
906 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
907 
908 	/* remove from session list */
909 	spin_lock(&session->s_cap_lock);
910 	if (session->s_cap_iterator == cap) {
911 		/* not yet, we are iterating over this very cap */
912 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
913 		     cap, cap->session);
914 	} else {
915 		list_del_init(&cap->session_caps);
916 		session->s_nr_caps--;
917 		cap->session = NULL;
918 		removed = 1;
919 	}
920 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
921 	cap->ci = NULL;
922 	spin_unlock(&session->s_cap_lock);
923 
924 	/* remove from inode list */
925 	rb_erase(&cap->ci_node, &ci->i_caps);
926 	if (ci->i_auth_cap == cap)
927 		ci->i_auth_cap = NULL;
928 
929 	if (removed)
930 		ceph_put_cap(mdsc, cap);
931 
932 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
933 		struct ceph_snap_realm *realm = ci->i_snap_realm;
934 		spin_lock(&realm->inodes_with_caps_lock);
935 		list_del_init(&ci->i_snap_realm_item);
936 		ci->i_snap_realm_counter++;
937 		ci->i_snap_realm = NULL;
938 		spin_unlock(&realm->inodes_with_caps_lock);
939 		ceph_put_snap_realm(mdsc, realm);
940 	}
941 	if (!__ceph_is_any_real_caps(ci))
942 		__cap_delay_cancel(mdsc, ci);
943 }
944 
945 /*
946  * Build and send a cap message to the given MDS.
947  *
948  * Caller should be holding s_mutex.
949  */
950 static int send_cap_msg(struct ceph_mds_session *session,
951 			u64 ino, u64 cid, int op,
952 			int caps, int wanted, int dirty,
953 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
954 			u64 size, u64 max_size,
955 			struct timespec *mtime, struct timespec *atime,
956 			u64 time_warp_seq,
957 			kuid_t uid, kgid_t gid, umode_t mode,
958 			u64 xattr_version,
959 			struct ceph_buffer *xattrs_buf,
960 			u64 follows)
961 {
962 	struct ceph_mds_caps *fc;
963 	struct ceph_msg *msg;
964 
965 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
966 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
967 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
968 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
969 	     ceph_cap_string(dirty),
970 	     seq, issue_seq, mseq, follows, size, max_size,
971 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
972 
973 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
974 	if (!msg)
975 		return -ENOMEM;
976 
977 	msg->hdr.tid = cpu_to_le64(flush_tid);
978 
979 	fc = msg->front.iov_base;
980 	memset(fc, 0, sizeof(*fc));
981 
982 	fc->cap_id = cpu_to_le64(cid);
983 	fc->op = cpu_to_le32(op);
984 	fc->seq = cpu_to_le32(seq);
985 	fc->issue_seq = cpu_to_le32(issue_seq);
986 	fc->migrate_seq = cpu_to_le32(mseq);
987 	fc->caps = cpu_to_le32(caps);
988 	fc->wanted = cpu_to_le32(wanted);
989 	fc->dirty = cpu_to_le32(dirty);
990 	fc->ino = cpu_to_le64(ino);
991 	fc->snap_follows = cpu_to_le64(follows);
992 
993 	fc->size = cpu_to_le64(size);
994 	fc->max_size = cpu_to_le64(max_size);
995 	if (mtime)
996 		ceph_encode_timespec(&fc->mtime, mtime);
997 	if (atime)
998 		ceph_encode_timespec(&fc->atime, atime);
999 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1000 
1001 	fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1002 	fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1003 	fc->mode = cpu_to_le32(mode);
1004 
1005 	fc->xattr_version = cpu_to_le64(xattr_version);
1006 	if (xattrs_buf) {
1007 		msg->middle = ceph_buffer_get(xattrs_buf);
1008 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1009 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1010 	}
1011 
1012 	ceph_con_send(&session->s_con, msg);
1013 	return 0;
1014 }
1015 
1016 void __queue_cap_release(struct ceph_mds_session *session,
1017 			 u64 ino, u64 cap_id, u32 migrate_seq,
1018 			 u32 issue_seq)
1019 {
1020 	struct ceph_msg *msg;
1021 	struct ceph_mds_cap_release *head;
1022 	struct ceph_mds_cap_item *item;
1023 
1024 	spin_lock(&session->s_cap_lock);
1025 	BUG_ON(!session->s_num_cap_releases);
1026 	msg = list_first_entry(&session->s_cap_releases,
1027 			       struct ceph_msg, list_head);
1028 
1029 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1030 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1031 
1032 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1033 	head = msg->front.iov_base;
1034 	le32_add_cpu(&head->num, 1);
1035 	item = msg->front.iov_base + msg->front.iov_len;
1036 	item->ino = cpu_to_le64(ino);
1037 	item->cap_id = cpu_to_le64(cap_id);
1038 	item->migrate_seq = cpu_to_le32(migrate_seq);
1039 	item->seq = cpu_to_le32(issue_seq);
1040 
1041 	session->s_num_cap_releases--;
1042 
1043 	msg->front.iov_len += sizeof(*item);
1044 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1045 		dout(" release msg %p full\n", msg);
1046 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1047 	} else {
1048 		dout(" release msg %p at %d/%d (%d)\n", msg,
1049 		     (int)le32_to_cpu(head->num),
1050 		     (int)CEPH_CAPS_PER_RELEASE,
1051 		     (int)msg->front.iov_len);
1052 	}
1053 	spin_unlock(&session->s_cap_lock);
1054 }
1055 
1056 /*
1057  * Queue cap releases when an inode is dropped from our cache.  Since
1058  * inode is about to be destroyed, there is no need for i_ceph_lock.
1059  */
1060 void ceph_queue_caps_release(struct inode *inode)
1061 {
1062 	struct ceph_inode_info *ci = ceph_inode(inode);
1063 	struct rb_node *p;
1064 
1065 	p = rb_first(&ci->i_caps);
1066 	while (p) {
1067 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1068 		struct ceph_mds_session *session = cap->session;
1069 
1070 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1071 				    cap->mseq, cap->issue_seq);
1072 		p = rb_next(p);
1073 		__ceph_remove_cap(cap);
1074 	}
1075 }
1076 
1077 /*
1078  * Send a cap msg on the given inode.  Update our caps state, then
1079  * drop i_ceph_lock and send the message.
1080  *
1081  * Make note of max_size reported/requested from mds, revoked caps
1082  * that have now been implemented.
1083  *
1084  * Make half-hearted attempt ot to invalidate page cache if we are
1085  * dropping RDCACHE.  Note that this will leave behind locked pages
1086  * that we'll then need to deal with elsewhere.
1087  *
1088  * Return non-zero if delayed release, or we experienced an error
1089  * such that the caller should requeue + retry later.
1090  *
1091  * called with i_ceph_lock, then drops it.
1092  * caller should hold snap_rwsem (read), s_mutex.
1093  */
1094 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1095 		      int op, int used, int want, int retain, int flushing,
1096 		      unsigned *pflush_tid)
1097 	__releases(cap->ci->i_ceph_lock)
1098 {
1099 	struct ceph_inode_info *ci = cap->ci;
1100 	struct inode *inode = &ci->vfs_inode;
1101 	u64 cap_id = cap->cap_id;
1102 	int held, revoking, dropping, keep;
1103 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1104 	u64 size, max_size;
1105 	struct timespec mtime, atime;
1106 	int wake = 0;
1107 	umode_t mode;
1108 	kuid_t uid;
1109 	kgid_t gid;
1110 	struct ceph_mds_session *session;
1111 	u64 xattr_version = 0;
1112 	struct ceph_buffer *xattr_blob = NULL;
1113 	int delayed = 0;
1114 	u64 flush_tid = 0;
1115 	int i;
1116 	int ret;
1117 
1118 	held = cap->issued | cap->implemented;
1119 	revoking = cap->implemented & ~cap->issued;
1120 	retain &= ~revoking;
1121 	dropping = cap->issued & ~retain;
1122 
1123 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1124 	     inode, cap, cap->session,
1125 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1126 	     ceph_cap_string(revoking));
1127 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1128 
1129 	session = cap->session;
1130 
1131 	/* don't release wanted unless we've waited a bit. */
1132 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1133 	    time_before(jiffies, ci->i_hold_caps_min)) {
1134 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1135 		     ceph_cap_string(cap->issued),
1136 		     ceph_cap_string(cap->issued & retain),
1137 		     ceph_cap_string(cap->mds_wanted),
1138 		     ceph_cap_string(want));
1139 		want |= cap->mds_wanted;
1140 		retain |= cap->issued;
1141 		delayed = 1;
1142 	}
1143 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1144 
1145 	cap->issued &= retain;  /* drop bits we don't want */
1146 	if (cap->implemented & ~cap->issued) {
1147 		/*
1148 		 * Wake up any waiters on wanted -> needed transition.
1149 		 * This is due to the weird transition from buffered
1150 		 * to sync IO... we need to flush dirty pages _before_
1151 		 * allowing sync writes to avoid reordering.
1152 		 */
1153 		wake = 1;
1154 	}
1155 	cap->implemented &= cap->issued | used;
1156 	cap->mds_wanted = want;
1157 
1158 	if (flushing) {
1159 		/*
1160 		 * assign a tid for flush operations so we can avoid
1161 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1162 		 * clean type races.  track latest tid for every bit
1163 		 * so we can handle flush AxFw, flush Fw, and have the
1164 		 * first ack clean Ax.
1165 		 */
1166 		flush_tid = ++ci->i_cap_flush_last_tid;
1167 		if (pflush_tid)
1168 			*pflush_tid = flush_tid;
1169 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1170 		for (i = 0; i < CEPH_CAP_BITS; i++)
1171 			if (flushing & (1 << i))
1172 				ci->i_cap_flush_tid[i] = flush_tid;
1173 
1174 		follows = ci->i_head_snapc->seq;
1175 	} else {
1176 		follows = 0;
1177 	}
1178 
1179 	keep = cap->implemented;
1180 	seq = cap->seq;
1181 	issue_seq = cap->issue_seq;
1182 	mseq = cap->mseq;
1183 	size = inode->i_size;
1184 	ci->i_reported_size = size;
1185 	max_size = ci->i_wanted_max_size;
1186 	ci->i_requested_max_size = max_size;
1187 	mtime = inode->i_mtime;
1188 	atime = inode->i_atime;
1189 	time_warp_seq = ci->i_time_warp_seq;
1190 	uid = inode->i_uid;
1191 	gid = inode->i_gid;
1192 	mode = inode->i_mode;
1193 
1194 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1195 		__ceph_build_xattrs_blob(ci);
1196 		xattr_blob = ci->i_xattrs.blob;
1197 		xattr_version = ci->i_xattrs.version;
1198 	}
1199 
1200 	spin_unlock(&ci->i_ceph_lock);
1201 
1202 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1203 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1204 		size, max_size, &mtime, &atime, time_warp_seq,
1205 		uid, gid, mode, xattr_version, xattr_blob,
1206 		follows);
1207 	if (ret < 0) {
1208 		dout("error sending cap msg, must requeue %p\n", inode);
1209 		delayed = 1;
1210 	}
1211 
1212 	if (wake)
1213 		wake_up_all(&ci->i_cap_wq);
1214 
1215 	return delayed;
1216 }
1217 
1218 /*
1219  * When a snapshot is taken, clients accumulate dirty metadata on
1220  * inodes with capabilities in ceph_cap_snaps to describe the file
1221  * state at the time the snapshot was taken.  This must be flushed
1222  * asynchronously back to the MDS once sync writes complete and dirty
1223  * data is written out.
1224  *
1225  * Unless @again is true, skip cap_snaps that were already sent to
1226  * the MDS (i.e., during this session).
1227  *
1228  * Called under i_ceph_lock.  Takes s_mutex as needed.
1229  */
1230 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1231 			struct ceph_mds_session **psession,
1232 			int again)
1233 		__releases(ci->i_ceph_lock)
1234 		__acquires(ci->i_ceph_lock)
1235 {
1236 	struct inode *inode = &ci->vfs_inode;
1237 	int mds;
1238 	struct ceph_cap_snap *capsnap;
1239 	u32 mseq;
1240 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1241 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1242 						    session->s_mutex */
1243 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1244 			     i_cap_snaps list, and skip these entries next time
1245 			     around to avoid an infinite loop */
1246 
1247 	if (psession)
1248 		session = *psession;
1249 
1250 	dout("__flush_snaps %p\n", inode);
1251 retry:
1252 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1253 		/* avoid an infiniute loop after retry */
1254 		if (capsnap->follows < next_follows)
1255 			continue;
1256 		/*
1257 		 * we need to wait for sync writes to complete and for dirty
1258 		 * pages to be written out.
1259 		 */
1260 		if (capsnap->dirty_pages || capsnap->writing)
1261 			break;
1262 
1263 		/*
1264 		 * if cap writeback already occurred, we should have dropped
1265 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1266 		 */
1267 		BUG_ON(capsnap->dirty == 0);
1268 
1269 		/* pick mds, take s_mutex */
1270 		if (ci->i_auth_cap == NULL) {
1271 			dout("no auth cap (migrating?), doing nothing\n");
1272 			goto out;
1273 		}
1274 
1275 		/* only flush each capsnap once */
1276 		if (!again && !list_empty(&capsnap->flushing_item)) {
1277 			dout("already flushed %p, skipping\n", capsnap);
1278 			continue;
1279 		}
1280 
1281 		mds = ci->i_auth_cap->session->s_mds;
1282 		mseq = ci->i_auth_cap->mseq;
1283 
1284 		if (session && session->s_mds != mds) {
1285 			dout("oops, wrong session %p mutex\n", session);
1286 			mutex_unlock(&session->s_mutex);
1287 			ceph_put_mds_session(session);
1288 			session = NULL;
1289 		}
1290 		if (!session) {
1291 			spin_unlock(&ci->i_ceph_lock);
1292 			mutex_lock(&mdsc->mutex);
1293 			session = __ceph_lookup_mds_session(mdsc, mds);
1294 			mutex_unlock(&mdsc->mutex);
1295 			if (session) {
1296 				dout("inverting session/ino locks on %p\n",
1297 				     session);
1298 				mutex_lock(&session->s_mutex);
1299 			}
1300 			/*
1301 			 * if session == NULL, we raced against a cap
1302 			 * deletion or migration.  retry, and we'll
1303 			 * get a better @mds value next time.
1304 			 */
1305 			spin_lock(&ci->i_ceph_lock);
1306 			goto retry;
1307 		}
1308 
1309 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1310 		atomic_inc(&capsnap->nref);
1311 		if (!list_empty(&capsnap->flushing_item))
1312 			list_del_init(&capsnap->flushing_item);
1313 		list_add_tail(&capsnap->flushing_item,
1314 			      &session->s_cap_snaps_flushing);
1315 		spin_unlock(&ci->i_ceph_lock);
1316 
1317 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1318 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1319 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1320 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1321 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1322 			     capsnap->size, 0,
1323 			     &capsnap->mtime, &capsnap->atime,
1324 			     capsnap->time_warp_seq,
1325 			     capsnap->uid, capsnap->gid, capsnap->mode,
1326 			     capsnap->xattr_version, capsnap->xattr_blob,
1327 			     capsnap->follows);
1328 
1329 		next_follows = capsnap->follows + 1;
1330 		ceph_put_cap_snap(capsnap);
1331 
1332 		spin_lock(&ci->i_ceph_lock);
1333 		goto retry;
1334 	}
1335 
1336 	/* we flushed them all; remove this inode from the queue */
1337 	spin_lock(&mdsc->snap_flush_lock);
1338 	list_del_init(&ci->i_snap_flush_item);
1339 	spin_unlock(&mdsc->snap_flush_lock);
1340 
1341 out:
1342 	if (psession)
1343 		*psession = session;
1344 	else if (session) {
1345 		mutex_unlock(&session->s_mutex);
1346 		ceph_put_mds_session(session);
1347 	}
1348 }
1349 
1350 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1351 {
1352 	spin_lock(&ci->i_ceph_lock);
1353 	__ceph_flush_snaps(ci, NULL, 0);
1354 	spin_unlock(&ci->i_ceph_lock);
1355 }
1356 
1357 /*
1358  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1359  * Caller is then responsible for calling __mark_inode_dirty with the
1360  * returned flags value.
1361  */
1362 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1363 {
1364 	struct ceph_mds_client *mdsc =
1365 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1366 	struct inode *inode = &ci->vfs_inode;
1367 	int was = ci->i_dirty_caps;
1368 	int dirty = 0;
1369 
1370 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1371 	     ceph_cap_string(mask), ceph_cap_string(was),
1372 	     ceph_cap_string(was | mask));
1373 	ci->i_dirty_caps |= mask;
1374 	if (was == 0) {
1375 		if (!ci->i_head_snapc)
1376 			ci->i_head_snapc = ceph_get_snap_context(
1377 				ci->i_snap_realm->cached_context);
1378 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1379 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1380 		BUG_ON(!list_empty(&ci->i_dirty_item));
1381 		spin_lock(&mdsc->cap_dirty_lock);
1382 		if (ci->i_auth_cap)
1383 			list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1384 		else
1385 			list_add(&ci->i_dirty_item,
1386 				 &mdsc->cap_dirty_migrating);
1387 		spin_unlock(&mdsc->cap_dirty_lock);
1388 		if (ci->i_flushing_caps == 0) {
1389 			ihold(inode);
1390 			dirty |= I_DIRTY_SYNC;
1391 		}
1392 	}
1393 	BUG_ON(list_empty(&ci->i_dirty_item));
1394 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1395 	    (mask & CEPH_CAP_FILE_BUFFER))
1396 		dirty |= I_DIRTY_DATASYNC;
1397 	__cap_delay_requeue(mdsc, ci);
1398 	return dirty;
1399 }
1400 
1401 /*
1402  * Add dirty inode to the flushing list.  Assigned a seq number so we
1403  * can wait for caps to flush without starving.
1404  *
1405  * Called under i_ceph_lock.
1406  */
1407 static int __mark_caps_flushing(struct inode *inode,
1408 				 struct ceph_mds_session *session)
1409 {
1410 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1411 	struct ceph_inode_info *ci = ceph_inode(inode);
1412 	int flushing;
1413 
1414 	BUG_ON(ci->i_dirty_caps == 0);
1415 	BUG_ON(list_empty(&ci->i_dirty_item));
1416 
1417 	flushing = ci->i_dirty_caps;
1418 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1419 	     ceph_cap_string(flushing),
1420 	     ceph_cap_string(ci->i_flushing_caps),
1421 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1422 	ci->i_flushing_caps |= flushing;
1423 	ci->i_dirty_caps = 0;
1424 	dout(" inode %p now !dirty\n", inode);
1425 
1426 	spin_lock(&mdsc->cap_dirty_lock);
1427 	list_del_init(&ci->i_dirty_item);
1428 
1429 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1430 	if (list_empty(&ci->i_flushing_item)) {
1431 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1432 		mdsc->num_cap_flushing++;
1433 		dout(" inode %p now flushing seq %lld\n", inode,
1434 		     ci->i_cap_flush_seq);
1435 	} else {
1436 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1437 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1438 		     ci->i_cap_flush_seq);
1439 	}
1440 	spin_unlock(&mdsc->cap_dirty_lock);
1441 
1442 	return flushing;
1443 }
1444 
1445 /*
1446  * try to invalidate mapping pages without blocking.
1447  */
1448 static int try_nonblocking_invalidate(struct inode *inode)
1449 {
1450 	struct ceph_inode_info *ci = ceph_inode(inode);
1451 	u32 invalidating_gen = ci->i_rdcache_gen;
1452 
1453 	spin_unlock(&ci->i_ceph_lock);
1454 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1455 	spin_lock(&ci->i_ceph_lock);
1456 
1457 	if (inode->i_data.nrpages == 0 &&
1458 	    invalidating_gen == ci->i_rdcache_gen) {
1459 		/* success. */
1460 		dout("try_nonblocking_invalidate %p success\n", inode);
1461 		/* save any racing async invalidate some trouble */
1462 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1463 		return 0;
1464 	}
1465 	dout("try_nonblocking_invalidate %p failed\n", inode);
1466 	return -1;
1467 }
1468 
1469 /*
1470  * Swiss army knife function to examine currently used and wanted
1471  * versus held caps.  Release, flush, ack revoked caps to mds as
1472  * appropriate.
1473  *
1474  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1475  *    cap release further.
1476  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1477  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1478  *    further delay.
1479  */
1480 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1481 		     struct ceph_mds_session *session)
1482 {
1483 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1484 	struct ceph_mds_client *mdsc = fsc->mdsc;
1485 	struct inode *inode = &ci->vfs_inode;
1486 	struct ceph_cap *cap;
1487 	int file_wanted, used, cap_used;
1488 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1489 	int issued, implemented, want, retain, revoking, flushing = 0;
1490 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1491 			   to avoid an infinite loop on retry */
1492 	struct rb_node *p;
1493 	int tried_invalidate = 0;
1494 	int delayed = 0, sent = 0, force_requeue = 0, num;
1495 	int queue_invalidate = 0;
1496 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1497 
1498 	/* if we are unmounting, flush any unused caps immediately. */
1499 	if (mdsc->stopping)
1500 		is_delayed = 1;
1501 
1502 	spin_lock(&ci->i_ceph_lock);
1503 
1504 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1505 		flags |= CHECK_CAPS_FLUSH;
1506 
1507 	/* flush snaps first time around only */
1508 	if (!list_empty(&ci->i_cap_snaps))
1509 		__ceph_flush_snaps(ci, &session, 0);
1510 	goto retry_locked;
1511 retry:
1512 	spin_lock(&ci->i_ceph_lock);
1513 retry_locked:
1514 	file_wanted = __ceph_caps_file_wanted(ci);
1515 	used = __ceph_caps_used(ci);
1516 	want = file_wanted | used;
1517 	issued = __ceph_caps_issued(ci, &implemented);
1518 	revoking = implemented & ~issued;
1519 
1520 	retain = want | CEPH_CAP_PIN;
1521 	if (!mdsc->stopping && inode->i_nlink > 0) {
1522 		if (want) {
1523 			retain |= CEPH_CAP_ANY;       /* be greedy */
1524 		} else {
1525 			retain |= CEPH_CAP_ANY_SHARED;
1526 			/*
1527 			 * keep RD only if we didn't have the file open RW,
1528 			 * because then the mds would revoke it anyway to
1529 			 * journal max_size=0.
1530 			 */
1531 			if (ci->i_max_size == 0)
1532 				retain |= CEPH_CAP_ANY_RD;
1533 		}
1534 	}
1535 
1536 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1537 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1538 	     ceph_cap_string(file_wanted),
1539 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1540 	     ceph_cap_string(ci->i_flushing_caps),
1541 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1542 	     ceph_cap_string(retain),
1543 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1544 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1545 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1546 
1547 	/*
1548 	 * If we no longer need to hold onto old our caps, and we may
1549 	 * have cached pages, but don't want them, then try to invalidate.
1550 	 * If we fail, it's because pages are locked.... try again later.
1551 	 */
1552 	if ((!is_delayed || mdsc->stopping) &&
1553 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1554 	    inode->i_data.nrpages &&                 /* have cached pages */
1555 	    (file_wanted == 0 ||                     /* no open files */
1556 	     (revoking & (CEPH_CAP_FILE_CACHE|
1557 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1558 	    !tried_invalidate) {
1559 		dout("check_caps trying to invalidate on %p\n", inode);
1560 		if (try_nonblocking_invalidate(inode) < 0) {
1561 			if (revoking & (CEPH_CAP_FILE_CACHE|
1562 					CEPH_CAP_FILE_LAZYIO)) {
1563 				dout("check_caps queuing invalidate\n");
1564 				queue_invalidate = 1;
1565 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1566 			} else {
1567 				dout("check_caps failed to invalidate pages\n");
1568 				/* we failed to invalidate pages.  check these
1569 				   caps again later. */
1570 				force_requeue = 1;
1571 				__cap_set_timeouts(mdsc, ci);
1572 			}
1573 		}
1574 		tried_invalidate = 1;
1575 		goto retry_locked;
1576 	}
1577 
1578 	num = 0;
1579 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1580 		cap = rb_entry(p, struct ceph_cap, ci_node);
1581 		num++;
1582 
1583 		/* avoid looping forever */
1584 		if (mds >= cap->mds ||
1585 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1586 			continue;
1587 
1588 		/* NOTE: no side-effects allowed, until we take s_mutex */
1589 
1590 		cap_used = used;
1591 		if (ci->i_auth_cap && cap != ci->i_auth_cap)
1592 			cap_used &= ~ci->i_auth_cap->issued;
1593 
1594 		revoking = cap->implemented & ~cap->issued;
1595 		dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1596 		     cap->mds, cap, ceph_cap_string(cap->issued),
1597 		     ceph_cap_string(cap_used),
1598 		     ceph_cap_string(cap->implemented),
1599 		     ceph_cap_string(revoking));
1600 
1601 		if (cap == ci->i_auth_cap &&
1602 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1603 			/* request larger max_size from MDS? */
1604 			if (ci->i_wanted_max_size > ci->i_max_size &&
1605 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1606 				dout("requesting new max_size\n");
1607 				goto ack;
1608 			}
1609 
1610 			/* approaching file_max? */
1611 			if ((inode->i_size << 1) >= ci->i_max_size &&
1612 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1613 				dout("i_size approaching max_size\n");
1614 				goto ack;
1615 			}
1616 		}
1617 		/* flush anything dirty? */
1618 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1619 		    ci->i_dirty_caps) {
1620 			dout("flushing dirty caps\n");
1621 			goto ack;
1622 		}
1623 
1624 		/* completed revocation? going down and there are no caps? */
1625 		if (revoking && (revoking & cap_used) == 0) {
1626 			dout("completed revocation of %s\n",
1627 			     ceph_cap_string(cap->implemented & ~cap->issued));
1628 			goto ack;
1629 		}
1630 
1631 		/* want more caps from mds? */
1632 		if (want & ~(cap->mds_wanted | cap->issued))
1633 			goto ack;
1634 
1635 		/* things we might delay */
1636 		if ((cap->issued & ~retain) == 0 &&
1637 		    cap->mds_wanted == want)
1638 			continue;     /* nope, all good */
1639 
1640 		if (is_delayed)
1641 			goto ack;
1642 
1643 		/* delay? */
1644 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1645 		    time_before(jiffies, ci->i_hold_caps_max)) {
1646 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1647 			     ceph_cap_string(cap->issued),
1648 			     ceph_cap_string(cap->issued & retain),
1649 			     ceph_cap_string(cap->mds_wanted),
1650 			     ceph_cap_string(want));
1651 			delayed++;
1652 			continue;
1653 		}
1654 
1655 ack:
1656 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1657 			dout(" skipping %p I_NOFLUSH set\n", inode);
1658 			continue;
1659 		}
1660 
1661 		if (session && session != cap->session) {
1662 			dout("oops, wrong session %p mutex\n", session);
1663 			mutex_unlock(&session->s_mutex);
1664 			session = NULL;
1665 		}
1666 		if (!session) {
1667 			session = cap->session;
1668 			if (mutex_trylock(&session->s_mutex) == 0) {
1669 				dout("inverting session/ino locks on %p\n",
1670 				     session);
1671 				spin_unlock(&ci->i_ceph_lock);
1672 				if (took_snap_rwsem) {
1673 					up_read(&mdsc->snap_rwsem);
1674 					took_snap_rwsem = 0;
1675 				}
1676 				mutex_lock(&session->s_mutex);
1677 				goto retry;
1678 			}
1679 		}
1680 		/* take snap_rwsem after session mutex */
1681 		if (!took_snap_rwsem) {
1682 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1683 				dout("inverting snap/in locks on %p\n",
1684 				     inode);
1685 				spin_unlock(&ci->i_ceph_lock);
1686 				down_read(&mdsc->snap_rwsem);
1687 				took_snap_rwsem = 1;
1688 				goto retry;
1689 			}
1690 			took_snap_rwsem = 1;
1691 		}
1692 
1693 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1694 			flushing = __mark_caps_flushing(inode, session);
1695 		else
1696 			flushing = 0;
1697 
1698 		mds = cap->mds;  /* remember mds, so we don't repeat */
1699 		sent++;
1700 
1701 		/* __send_cap drops i_ceph_lock */
1702 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1703 				      want, retain, flushing, NULL);
1704 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1705 	}
1706 
1707 	/*
1708 	 * Reschedule delayed caps release if we delayed anything,
1709 	 * otherwise cancel.
1710 	 */
1711 	if (delayed && is_delayed)
1712 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1713 	if (!delayed && !is_delayed)
1714 		__cap_delay_cancel(mdsc, ci);
1715 	else if (!is_delayed || force_requeue)
1716 		__cap_delay_requeue(mdsc, ci);
1717 
1718 	spin_unlock(&ci->i_ceph_lock);
1719 
1720 	if (queue_invalidate)
1721 		ceph_queue_invalidate(inode);
1722 
1723 	if (session)
1724 		mutex_unlock(&session->s_mutex);
1725 	if (took_snap_rwsem)
1726 		up_read(&mdsc->snap_rwsem);
1727 }
1728 
1729 /*
1730  * Try to flush dirty caps back to the auth mds.
1731  */
1732 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1733 			  unsigned *flush_tid)
1734 {
1735 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1736 	struct ceph_inode_info *ci = ceph_inode(inode);
1737 	int unlock_session = session ? 0 : 1;
1738 	int flushing = 0;
1739 
1740 retry:
1741 	spin_lock(&ci->i_ceph_lock);
1742 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1743 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1744 		goto out;
1745 	}
1746 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1747 		struct ceph_cap *cap = ci->i_auth_cap;
1748 		int used = __ceph_caps_used(ci);
1749 		int want = __ceph_caps_wanted(ci);
1750 		int delayed;
1751 
1752 		if (!session) {
1753 			spin_unlock(&ci->i_ceph_lock);
1754 			session = cap->session;
1755 			mutex_lock(&session->s_mutex);
1756 			goto retry;
1757 		}
1758 		BUG_ON(session != cap->session);
1759 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1760 			goto out;
1761 
1762 		flushing = __mark_caps_flushing(inode, session);
1763 
1764 		/* __send_cap drops i_ceph_lock */
1765 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1766 				     cap->issued | cap->implemented, flushing,
1767 				     flush_tid);
1768 		if (!delayed)
1769 			goto out_unlocked;
1770 
1771 		spin_lock(&ci->i_ceph_lock);
1772 		__cap_delay_requeue(mdsc, ci);
1773 	}
1774 out:
1775 	spin_unlock(&ci->i_ceph_lock);
1776 out_unlocked:
1777 	if (session && unlock_session)
1778 		mutex_unlock(&session->s_mutex);
1779 	return flushing;
1780 }
1781 
1782 /*
1783  * Return true if we've flushed caps through the given flush_tid.
1784  */
1785 static int caps_are_flushed(struct inode *inode, unsigned tid)
1786 {
1787 	struct ceph_inode_info *ci = ceph_inode(inode);
1788 	int i, ret = 1;
1789 
1790 	spin_lock(&ci->i_ceph_lock);
1791 	for (i = 0; i < CEPH_CAP_BITS; i++)
1792 		if ((ci->i_flushing_caps & (1 << i)) &&
1793 		    ci->i_cap_flush_tid[i] <= tid) {
1794 			/* still flushing this bit */
1795 			ret = 0;
1796 			break;
1797 		}
1798 	spin_unlock(&ci->i_ceph_lock);
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Wait on any unsafe replies for the given inode.  First wait on the
1804  * newest request, and make that the upper bound.  Then, if there are
1805  * more requests, keep waiting on the oldest as long as it is still older
1806  * than the original request.
1807  */
1808 static void sync_write_wait(struct inode *inode)
1809 {
1810 	struct ceph_inode_info *ci = ceph_inode(inode);
1811 	struct list_head *head = &ci->i_unsafe_writes;
1812 	struct ceph_osd_request *req;
1813 	u64 last_tid;
1814 
1815 	spin_lock(&ci->i_unsafe_lock);
1816 	if (list_empty(head))
1817 		goto out;
1818 
1819 	/* set upper bound as _last_ entry in chain */
1820 	req = list_entry(head->prev, struct ceph_osd_request,
1821 			 r_unsafe_item);
1822 	last_tid = req->r_tid;
1823 
1824 	do {
1825 		ceph_osdc_get_request(req);
1826 		spin_unlock(&ci->i_unsafe_lock);
1827 		dout("sync_write_wait on tid %llu (until %llu)\n",
1828 		     req->r_tid, last_tid);
1829 		wait_for_completion(&req->r_safe_completion);
1830 		spin_lock(&ci->i_unsafe_lock);
1831 		ceph_osdc_put_request(req);
1832 
1833 		/*
1834 		 * from here on look at first entry in chain, since we
1835 		 * only want to wait for anything older than last_tid
1836 		 */
1837 		if (list_empty(head))
1838 			break;
1839 		req = list_entry(head->next, struct ceph_osd_request,
1840 				 r_unsafe_item);
1841 	} while (req->r_tid < last_tid);
1842 out:
1843 	spin_unlock(&ci->i_unsafe_lock);
1844 }
1845 
1846 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1847 {
1848 	struct inode *inode = file->f_mapping->host;
1849 	struct ceph_inode_info *ci = ceph_inode(inode);
1850 	unsigned flush_tid;
1851 	int ret;
1852 	int dirty;
1853 
1854 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1855 	sync_write_wait(inode);
1856 
1857 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1858 	if (ret < 0)
1859 		return ret;
1860 	mutex_lock(&inode->i_mutex);
1861 
1862 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1863 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1864 
1865 	/*
1866 	 * only wait on non-file metadata writeback (the mds
1867 	 * can recover size and mtime, so we don't need to
1868 	 * wait for that)
1869 	 */
1870 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1871 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1872 		ret = wait_event_interruptible(ci->i_cap_wq,
1873 				       caps_are_flushed(inode, flush_tid));
1874 	}
1875 
1876 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1877 	mutex_unlock(&inode->i_mutex);
1878 	return ret;
1879 }
1880 
1881 /*
1882  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1883  * queue inode for flush but don't do so immediately, because we can
1884  * get by with fewer MDS messages if we wait for data writeback to
1885  * complete first.
1886  */
1887 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1888 {
1889 	struct ceph_inode_info *ci = ceph_inode(inode);
1890 	unsigned flush_tid;
1891 	int err = 0;
1892 	int dirty;
1893 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1894 
1895 	dout("write_inode %p wait=%d\n", inode, wait);
1896 	if (wait) {
1897 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1898 		if (dirty)
1899 			err = wait_event_interruptible(ci->i_cap_wq,
1900 				       caps_are_flushed(inode, flush_tid));
1901 	} else {
1902 		struct ceph_mds_client *mdsc =
1903 			ceph_sb_to_client(inode->i_sb)->mdsc;
1904 
1905 		spin_lock(&ci->i_ceph_lock);
1906 		if (__ceph_caps_dirty(ci))
1907 			__cap_delay_requeue_front(mdsc, ci);
1908 		spin_unlock(&ci->i_ceph_lock);
1909 	}
1910 	return err;
1911 }
1912 
1913 /*
1914  * After a recovering MDS goes active, we need to resend any caps
1915  * we were flushing.
1916  *
1917  * Caller holds session->s_mutex.
1918  */
1919 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1920 				   struct ceph_mds_session *session)
1921 {
1922 	struct ceph_cap_snap *capsnap;
1923 
1924 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1925 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1926 			    flushing_item) {
1927 		struct ceph_inode_info *ci = capsnap->ci;
1928 		struct inode *inode = &ci->vfs_inode;
1929 		struct ceph_cap *cap;
1930 
1931 		spin_lock(&ci->i_ceph_lock);
1932 		cap = ci->i_auth_cap;
1933 		if (cap && cap->session == session) {
1934 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1935 			     cap, capsnap);
1936 			__ceph_flush_snaps(ci, &session, 1);
1937 		} else {
1938 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1939 			       cap, session->s_mds);
1940 		}
1941 		spin_unlock(&ci->i_ceph_lock);
1942 	}
1943 }
1944 
1945 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1946 			     struct ceph_mds_session *session)
1947 {
1948 	struct ceph_inode_info *ci;
1949 
1950 	kick_flushing_capsnaps(mdsc, session);
1951 
1952 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1953 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1954 		struct inode *inode = &ci->vfs_inode;
1955 		struct ceph_cap *cap;
1956 		int delayed = 0;
1957 
1958 		spin_lock(&ci->i_ceph_lock);
1959 		cap = ci->i_auth_cap;
1960 		if (cap && cap->session == session) {
1961 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1962 			     cap, ceph_cap_string(ci->i_flushing_caps));
1963 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1964 					     __ceph_caps_used(ci),
1965 					     __ceph_caps_wanted(ci),
1966 					     cap->issued | cap->implemented,
1967 					     ci->i_flushing_caps, NULL);
1968 			if (delayed) {
1969 				spin_lock(&ci->i_ceph_lock);
1970 				__cap_delay_requeue(mdsc, ci);
1971 				spin_unlock(&ci->i_ceph_lock);
1972 			}
1973 		} else {
1974 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1975 			       cap, session->s_mds);
1976 			spin_unlock(&ci->i_ceph_lock);
1977 		}
1978 	}
1979 }
1980 
1981 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1982 				     struct ceph_mds_session *session,
1983 				     struct inode *inode)
1984 {
1985 	struct ceph_inode_info *ci = ceph_inode(inode);
1986 	struct ceph_cap *cap;
1987 	int delayed = 0;
1988 
1989 	spin_lock(&ci->i_ceph_lock);
1990 	cap = ci->i_auth_cap;
1991 	dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1992 	     ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1993 
1994 	__ceph_flush_snaps(ci, &session, 1);
1995 
1996 	if (ci->i_flushing_caps) {
1997 		spin_lock(&mdsc->cap_dirty_lock);
1998 		list_move_tail(&ci->i_flushing_item,
1999 			       &cap->session->s_cap_flushing);
2000 		spin_unlock(&mdsc->cap_dirty_lock);
2001 
2002 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2003 				     __ceph_caps_used(ci),
2004 				     __ceph_caps_wanted(ci),
2005 				     cap->issued | cap->implemented,
2006 				     ci->i_flushing_caps, NULL);
2007 		if (delayed) {
2008 			spin_lock(&ci->i_ceph_lock);
2009 			__cap_delay_requeue(mdsc, ci);
2010 			spin_unlock(&ci->i_ceph_lock);
2011 		}
2012 	} else {
2013 		spin_unlock(&ci->i_ceph_lock);
2014 	}
2015 }
2016 
2017 
2018 /*
2019  * Take references to capabilities we hold, so that we don't release
2020  * them to the MDS prematurely.
2021  *
2022  * Protected by i_ceph_lock.
2023  */
2024 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2025 {
2026 	if (got & CEPH_CAP_PIN)
2027 		ci->i_pin_ref++;
2028 	if (got & CEPH_CAP_FILE_RD)
2029 		ci->i_rd_ref++;
2030 	if (got & CEPH_CAP_FILE_CACHE)
2031 		ci->i_rdcache_ref++;
2032 	if (got & CEPH_CAP_FILE_WR)
2033 		ci->i_wr_ref++;
2034 	if (got & CEPH_CAP_FILE_BUFFER) {
2035 		if (ci->i_wb_ref == 0)
2036 			ihold(&ci->vfs_inode);
2037 		ci->i_wb_ref++;
2038 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2039 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2040 	}
2041 }
2042 
2043 /*
2044  * Try to grab cap references.  Specify those refs we @want, and the
2045  * minimal set we @need.  Also include the larger offset we are writing
2046  * to (when applicable), and check against max_size here as well.
2047  * Note that caller is responsible for ensuring max_size increases are
2048  * requested from the MDS.
2049  */
2050 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2051 			    int *got, loff_t endoff, int *check_max, int *err)
2052 {
2053 	struct inode *inode = &ci->vfs_inode;
2054 	int ret = 0;
2055 	int have, implemented;
2056 	int file_wanted;
2057 
2058 	dout("get_cap_refs %p need %s want %s\n", inode,
2059 	     ceph_cap_string(need), ceph_cap_string(want));
2060 	spin_lock(&ci->i_ceph_lock);
2061 
2062 	/* make sure file is actually open */
2063 	file_wanted = __ceph_caps_file_wanted(ci);
2064 	if ((file_wanted & need) == 0) {
2065 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2066 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2067 		*err = -EBADF;
2068 		ret = 1;
2069 		goto out;
2070 	}
2071 
2072 	/* finish pending truncate */
2073 	while (ci->i_truncate_pending) {
2074 		spin_unlock(&ci->i_ceph_lock);
2075 		if (!(need & CEPH_CAP_FILE_WR))
2076 			mutex_lock(&inode->i_mutex);
2077 		__ceph_do_pending_vmtruncate(inode);
2078 		if (!(need & CEPH_CAP_FILE_WR))
2079 			mutex_unlock(&inode->i_mutex);
2080 		spin_lock(&ci->i_ceph_lock);
2081 	}
2082 
2083 	if (need & CEPH_CAP_FILE_WR) {
2084 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2085 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2086 			     inode, endoff, ci->i_max_size);
2087 			if (endoff > ci->i_wanted_max_size) {
2088 				*check_max = 1;
2089 				ret = 1;
2090 			}
2091 			goto out;
2092 		}
2093 		/*
2094 		 * If a sync write is in progress, we must wait, so that we
2095 		 * can get a final snapshot value for size+mtime.
2096 		 */
2097 		if (__ceph_have_pending_cap_snap(ci)) {
2098 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2099 			goto out;
2100 		}
2101 	}
2102 	have = __ceph_caps_issued(ci, &implemented);
2103 
2104 	if ((have & need) == need) {
2105 		/*
2106 		 * Look at (implemented & ~have & not) so that we keep waiting
2107 		 * on transition from wanted -> needed caps.  This is needed
2108 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2109 		 * going before a prior buffered writeback happens.
2110 		 */
2111 		int not = want & ~(have & need);
2112 		int revoking = implemented & ~have;
2113 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2114 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2115 		     ceph_cap_string(revoking));
2116 		if ((revoking & not) == 0) {
2117 			*got = need | (have & want);
2118 			__take_cap_refs(ci, *got);
2119 			ret = 1;
2120 		}
2121 	} else {
2122 		dout("get_cap_refs %p have %s needed %s\n", inode,
2123 		     ceph_cap_string(have), ceph_cap_string(need));
2124 	}
2125 out:
2126 	spin_unlock(&ci->i_ceph_lock);
2127 	dout("get_cap_refs %p ret %d got %s\n", inode,
2128 	     ret, ceph_cap_string(*got));
2129 	return ret;
2130 }
2131 
2132 /*
2133  * Check the offset we are writing up to against our current
2134  * max_size.  If necessary, tell the MDS we want to write to
2135  * a larger offset.
2136  */
2137 static void check_max_size(struct inode *inode, loff_t endoff)
2138 {
2139 	struct ceph_inode_info *ci = ceph_inode(inode);
2140 	int check = 0;
2141 
2142 	/* do we need to explicitly request a larger max_size? */
2143 	spin_lock(&ci->i_ceph_lock);
2144 	if ((endoff >= ci->i_max_size ||
2145 	     endoff > (inode->i_size << 1)) &&
2146 	    endoff > ci->i_wanted_max_size) {
2147 		dout("write %p at large endoff %llu, req max_size\n",
2148 		     inode, endoff);
2149 		ci->i_wanted_max_size = endoff;
2150 		check = 1;
2151 	}
2152 	spin_unlock(&ci->i_ceph_lock);
2153 	if (check)
2154 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2155 }
2156 
2157 /*
2158  * Wait for caps, and take cap references.  If we can't get a WR cap
2159  * due to a small max_size, make sure we check_max_size (and possibly
2160  * ask the mds) so we don't get hung up indefinitely.
2161  */
2162 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2163 		  loff_t endoff)
2164 {
2165 	int check_max, ret, err;
2166 
2167 retry:
2168 	if (endoff > 0)
2169 		check_max_size(&ci->vfs_inode, endoff);
2170 	check_max = 0;
2171 	err = 0;
2172 	ret = wait_event_interruptible(ci->i_cap_wq,
2173 				       try_get_cap_refs(ci, need, want,
2174 							got, endoff,
2175 							&check_max, &err));
2176 	if (err)
2177 		ret = err;
2178 	if (check_max)
2179 		goto retry;
2180 	return ret;
2181 }
2182 
2183 /*
2184  * Take cap refs.  Caller must already know we hold at least one ref
2185  * on the caps in question or we don't know this is safe.
2186  */
2187 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2188 {
2189 	spin_lock(&ci->i_ceph_lock);
2190 	__take_cap_refs(ci, caps);
2191 	spin_unlock(&ci->i_ceph_lock);
2192 }
2193 
2194 /*
2195  * Release cap refs.
2196  *
2197  * If we released the last ref on any given cap, call ceph_check_caps
2198  * to release (or schedule a release).
2199  *
2200  * If we are releasing a WR cap (from a sync write), finalize any affected
2201  * cap_snap, and wake up any waiters.
2202  */
2203 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2204 {
2205 	struct inode *inode = &ci->vfs_inode;
2206 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2207 	struct ceph_cap_snap *capsnap;
2208 
2209 	spin_lock(&ci->i_ceph_lock);
2210 	if (had & CEPH_CAP_PIN)
2211 		--ci->i_pin_ref;
2212 	if (had & CEPH_CAP_FILE_RD)
2213 		if (--ci->i_rd_ref == 0)
2214 			last++;
2215 	if (had & CEPH_CAP_FILE_CACHE)
2216 		if (--ci->i_rdcache_ref == 0)
2217 			last++;
2218 	if (had & CEPH_CAP_FILE_BUFFER) {
2219 		if (--ci->i_wb_ref == 0) {
2220 			last++;
2221 			put++;
2222 		}
2223 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2224 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2225 	}
2226 	if (had & CEPH_CAP_FILE_WR)
2227 		if (--ci->i_wr_ref == 0) {
2228 			last++;
2229 			if (!list_empty(&ci->i_cap_snaps)) {
2230 				capsnap = list_first_entry(&ci->i_cap_snaps,
2231 						     struct ceph_cap_snap,
2232 						     ci_item);
2233 				if (capsnap->writing) {
2234 					capsnap->writing = 0;
2235 					flushsnaps =
2236 						__ceph_finish_cap_snap(ci,
2237 								       capsnap);
2238 					wake = 1;
2239 				}
2240 			}
2241 		}
2242 	spin_unlock(&ci->i_ceph_lock);
2243 
2244 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2245 	     last ? " last" : "", put ? " put" : "");
2246 
2247 	if (last && !flushsnaps)
2248 		ceph_check_caps(ci, 0, NULL);
2249 	else if (flushsnaps)
2250 		ceph_flush_snaps(ci);
2251 	if (wake)
2252 		wake_up_all(&ci->i_cap_wq);
2253 	if (put)
2254 		iput(inode);
2255 }
2256 
2257 /*
2258  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2259  * context.  Adjust per-snap dirty page accounting as appropriate.
2260  * Once all dirty data for a cap_snap is flushed, flush snapped file
2261  * metadata back to the MDS.  If we dropped the last ref, call
2262  * ceph_check_caps.
2263  */
2264 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2265 				struct ceph_snap_context *snapc)
2266 {
2267 	struct inode *inode = &ci->vfs_inode;
2268 	int last = 0;
2269 	int complete_capsnap = 0;
2270 	int drop_capsnap = 0;
2271 	int found = 0;
2272 	struct ceph_cap_snap *capsnap = NULL;
2273 
2274 	spin_lock(&ci->i_ceph_lock);
2275 	ci->i_wrbuffer_ref -= nr;
2276 	last = !ci->i_wrbuffer_ref;
2277 
2278 	if (ci->i_head_snapc == snapc) {
2279 		ci->i_wrbuffer_ref_head -= nr;
2280 		if (ci->i_wrbuffer_ref_head == 0 &&
2281 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2282 			BUG_ON(!ci->i_head_snapc);
2283 			ceph_put_snap_context(ci->i_head_snapc);
2284 			ci->i_head_snapc = NULL;
2285 		}
2286 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2287 		     inode,
2288 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2289 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2290 		     last ? " LAST" : "");
2291 	} else {
2292 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2293 			if (capsnap->context == snapc) {
2294 				found = 1;
2295 				break;
2296 			}
2297 		}
2298 		BUG_ON(!found);
2299 		capsnap->dirty_pages -= nr;
2300 		if (capsnap->dirty_pages == 0) {
2301 			complete_capsnap = 1;
2302 			if (capsnap->dirty == 0)
2303 				/* cap writeback completed before we created
2304 				 * the cap_snap; no FLUSHSNAP is needed */
2305 				drop_capsnap = 1;
2306 		}
2307 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2308 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2309 		     inode, capsnap, capsnap->context->seq,
2310 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2311 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2312 		     last ? " (wrbuffer last)" : "",
2313 		     complete_capsnap ? " (complete capsnap)" : "",
2314 		     drop_capsnap ? " (drop capsnap)" : "");
2315 		if (drop_capsnap) {
2316 			ceph_put_snap_context(capsnap->context);
2317 			list_del(&capsnap->ci_item);
2318 			list_del(&capsnap->flushing_item);
2319 			ceph_put_cap_snap(capsnap);
2320 		}
2321 	}
2322 
2323 	spin_unlock(&ci->i_ceph_lock);
2324 
2325 	if (last) {
2326 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2327 		iput(inode);
2328 	} else if (complete_capsnap) {
2329 		ceph_flush_snaps(ci);
2330 		wake_up_all(&ci->i_cap_wq);
2331 	}
2332 	if (drop_capsnap)
2333 		iput(inode);
2334 }
2335 
2336 /*
2337  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2338  * actually be a revocation if it specifies a smaller cap set.)
2339  *
2340  * caller holds s_mutex and i_ceph_lock, we drop both.
2341  *
2342  * return value:
2343  *  0 - ok
2344  *  1 - check_caps on auth cap only (writeback)
2345  *  2 - check_caps (ack revoke)
2346  */
2347 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2348 			     struct ceph_mds_session *session,
2349 			     struct ceph_cap *cap,
2350 			     struct ceph_buffer *xattr_buf)
2351 		__releases(ci->i_ceph_lock)
2352 {
2353 	struct ceph_inode_info *ci = ceph_inode(inode);
2354 	int mds = session->s_mds;
2355 	int seq = le32_to_cpu(grant->seq);
2356 	int newcaps = le32_to_cpu(grant->caps);
2357 	int issued, implemented, used, wanted, dirty;
2358 	u64 size = le64_to_cpu(grant->size);
2359 	u64 max_size = le64_to_cpu(grant->max_size);
2360 	struct timespec mtime, atime, ctime;
2361 	int check_caps = 0;
2362 	int wake = 0;
2363 	int writeback = 0;
2364 	int revoked_rdcache = 0;
2365 	int queue_invalidate = 0;
2366 
2367 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2368 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2369 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2370 		inode->i_size);
2371 
2372 	/*
2373 	 * If CACHE is being revoked, and we have no dirty buffers,
2374 	 * try to invalidate (once).  (If there are dirty buffers, we
2375 	 * will invalidate _after_ writeback.)
2376 	 */
2377 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2378 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2379 	    !ci->i_wrbuffer_ref) {
2380 		if (try_nonblocking_invalidate(inode) == 0) {
2381 			revoked_rdcache = 1;
2382 		} else {
2383 			/* there were locked pages.. invalidate later
2384 			   in a separate thread. */
2385 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2386 				queue_invalidate = 1;
2387 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2388 			}
2389 		}
2390 	}
2391 
2392 	/* side effects now are allowed */
2393 
2394 	issued = __ceph_caps_issued(ci, &implemented);
2395 	issued |= implemented | __ceph_caps_dirty(ci);
2396 
2397 	cap->cap_gen = session->s_cap_gen;
2398 
2399 	__check_cap_issue(ci, cap, newcaps);
2400 
2401 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2402 		inode->i_mode = le32_to_cpu(grant->mode);
2403 		inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2404 		inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2405 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2406 		     from_kuid(&init_user_ns, inode->i_uid),
2407 		     from_kgid(&init_user_ns, inode->i_gid));
2408 	}
2409 
2410 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2411 		set_nlink(inode, le32_to_cpu(grant->nlink));
2412 
2413 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2414 		int len = le32_to_cpu(grant->xattr_len);
2415 		u64 version = le64_to_cpu(grant->xattr_version);
2416 
2417 		if (version > ci->i_xattrs.version) {
2418 			dout(" got new xattrs v%llu on %p len %d\n",
2419 			     version, inode, len);
2420 			if (ci->i_xattrs.blob)
2421 				ceph_buffer_put(ci->i_xattrs.blob);
2422 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2423 			ci->i_xattrs.version = version;
2424 		}
2425 	}
2426 
2427 	/* size/ctime/mtime/atime? */
2428 	ceph_fill_file_size(inode, issued,
2429 			    le32_to_cpu(grant->truncate_seq),
2430 			    le64_to_cpu(grant->truncate_size), size);
2431 	ceph_decode_timespec(&mtime, &grant->mtime);
2432 	ceph_decode_timespec(&atime, &grant->atime);
2433 	ceph_decode_timespec(&ctime, &grant->ctime);
2434 	ceph_fill_file_time(inode, issued,
2435 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2436 			    &atime);
2437 
2438 	/* max size increase? */
2439 	if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2440 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2441 		ci->i_max_size = max_size;
2442 		if (max_size >= ci->i_wanted_max_size) {
2443 			ci->i_wanted_max_size = 0;  /* reset */
2444 			ci->i_requested_max_size = 0;
2445 		}
2446 		wake = 1;
2447 	}
2448 
2449 	/* check cap bits */
2450 	wanted = __ceph_caps_wanted(ci);
2451 	used = __ceph_caps_used(ci);
2452 	dirty = __ceph_caps_dirty(ci);
2453 	dout(" my wanted = %s, used = %s, dirty %s\n",
2454 	     ceph_cap_string(wanted),
2455 	     ceph_cap_string(used),
2456 	     ceph_cap_string(dirty));
2457 	if (wanted != le32_to_cpu(grant->wanted)) {
2458 		dout("mds wanted %s -> %s\n",
2459 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2460 		     ceph_cap_string(wanted));
2461 		/* imported cap may not have correct mds_wanted */
2462 		if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2463 			check_caps = 1;
2464 	}
2465 
2466 	cap->seq = seq;
2467 
2468 	/* file layout may have changed */
2469 	ci->i_layout = grant->layout;
2470 
2471 	/* revocation, grant, or no-op? */
2472 	if (cap->issued & ~newcaps) {
2473 		int revoking = cap->issued & ~newcaps;
2474 
2475 		dout("revocation: %s -> %s (revoking %s)\n",
2476 		     ceph_cap_string(cap->issued),
2477 		     ceph_cap_string(newcaps),
2478 		     ceph_cap_string(revoking));
2479 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2480 			writeback = 1;  /* initiate writeback; will delay ack */
2481 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2482 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2483 			 queue_invalidate)
2484 			; /* do nothing yet, invalidation will be queued */
2485 		else if (cap == ci->i_auth_cap)
2486 			check_caps = 1; /* check auth cap only */
2487 		else
2488 			check_caps = 2; /* check all caps */
2489 		cap->issued = newcaps;
2490 		cap->implemented |= newcaps;
2491 	} else if (cap->issued == newcaps) {
2492 		dout("caps unchanged: %s -> %s\n",
2493 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2494 	} else {
2495 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2496 		     ceph_cap_string(newcaps));
2497 		/* non-auth MDS is revoking the newly grant caps ? */
2498 		if (cap == ci->i_auth_cap &&
2499 		    __ceph_caps_revoking_other(ci, cap, newcaps))
2500 		    check_caps = 2;
2501 
2502 		cap->issued = newcaps;
2503 		cap->implemented |= newcaps; /* add bits only, to
2504 					      * avoid stepping on a
2505 					      * pending revocation */
2506 		wake = 1;
2507 	}
2508 	BUG_ON(cap->issued & ~cap->implemented);
2509 
2510 	spin_unlock(&ci->i_ceph_lock);
2511 	if (writeback)
2512 		/*
2513 		 * queue inode for writeback: we can't actually call
2514 		 * filemap_write_and_wait, etc. from message handler
2515 		 * context.
2516 		 */
2517 		ceph_queue_writeback(inode);
2518 	if (queue_invalidate)
2519 		ceph_queue_invalidate(inode);
2520 	if (wake)
2521 		wake_up_all(&ci->i_cap_wq);
2522 
2523 	if (check_caps == 1)
2524 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2525 				session);
2526 	else if (check_caps == 2)
2527 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2528 	else
2529 		mutex_unlock(&session->s_mutex);
2530 }
2531 
2532 /*
2533  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2534  * MDS has been safely committed.
2535  */
2536 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2537 				 struct ceph_mds_caps *m,
2538 				 struct ceph_mds_session *session,
2539 				 struct ceph_cap *cap)
2540 	__releases(ci->i_ceph_lock)
2541 {
2542 	struct ceph_inode_info *ci = ceph_inode(inode);
2543 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2544 	unsigned seq = le32_to_cpu(m->seq);
2545 	int dirty = le32_to_cpu(m->dirty);
2546 	int cleaned = 0;
2547 	int drop = 0;
2548 	int i;
2549 
2550 	for (i = 0; i < CEPH_CAP_BITS; i++)
2551 		if ((dirty & (1 << i)) &&
2552 		    flush_tid == ci->i_cap_flush_tid[i])
2553 			cleaned |= 1 << i;
2554 
2555 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2556 	     " flushing %s -> %s\n",
2557 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2558 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2559 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2560 
2561 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2562 		goto out;
2563 
2564 	ci->i_flushing_caps &= ~cleaned;
2565 
2566 	spin_lock(&mdsc->cap_dirty_lock);
2567 	if (ci->i_flushing_caps == 0) {
2568 		list_del_init(&ci->i_flushing_item);
2569 		if (!list_empty(&session->s_cap_flushing))
2570 			dout(" mds%d still flushing cap on %p\n",
2571 			     session->s_mds,
2572 			     &list_entry(session->s_cap_flushing.next,
2573 					 struct ceph_inode_info,
2574 					 i_flushing_item)->vfs_inode);
2575 		mdsc->num_cap_flushing--;
2576 		wake_up_all(&mdsc->cap_flushing_wq);
2577 		dout(" inode %p now !flushing\n", inode);
2578 
2579 		if (ci->i_dirty_caps == 0) {
2580 			dout(" inode %p now clean\n", inode);
2581 			BUG_ON(!list_empty(&ci->i_dirty_item));
2582 			drop = 1;
2583 			if (ci->i_wrbuffer_ref_head == 0) {
2584 				BUG_ON(!ci->i_head_snapc);
2585 				ceph_put_snap_context(ci->i_head_snapc);
2586 				ci->i_head_snapc = NULL;
2587 			}
2588 		} else {
2589 			BUG_ON(list_empty(&ci->i_dirty_item));
2590 		}
2591 	}
2592 	spin_unlock(&mdsc->cap_dirty_lock);
2593 	wake_up_all(&ci->i_cap_wq);
2594 
2595 out:
2596 	spin_unlock(&ci->i_ceph_lock);
2597 	if (drop)
2598 		iput(inode);
2599 }
2600 
2601 /*
2602  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2603  * throw away our cap_snap.
2604  *
2605  * Caller hold s_mutex.
2606  */
2607 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2608 				     struct ceph_mds_caps *m,
2609 				     struct ceph_mds_session *session)
2610 {
2611 	struct ceph_inode_info *ci = ceph_inode(inode);
2612 	u64 follows = le64_to_cpu(m->snap_follows);
2613 	struct ceph_cap_snap *capsnap;
2614 	int drop = 0;
2615 
2616 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2617 	     inode, ci, session->s_mds, follows);
2618 
2619 	spin_lock(&ci->i_ceph_lock);
2620 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2621 		if (capsnap->follows == follows) {
2622 			if (capsnap->flush_tid != flush_tid) {
2623 				dout(" cap_snap %p follows %lld tid %lld !="
2624 				     " %lld\n", capsnap, follows,
2625 				     flush_tid, capsnap->flush_tid);
2626 				break;
2627 			}
2628 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2629 			dout(" removing %p cap_snap %p follows %lld\n",
2630 			     inode, capsnap, follows);
2631 			ceph_put_snap_context(capsnap->context);
2632 			list_del(&capsnap->ci_item);
2633 			list_del(&capsnap->flushing_item);
2634 			ceph_put_cap_snap(capsnap);
2635 			drop = 1;
2636 			break;
2637 		} else {
2638 			dout(" skipping cap_snap %p follows %lld\n",
2639 			     capsnap, capsnap->follows);
2640 		}
2641 	}
2642 	spin_unlock(&ci->i_ceph_lock);
2643 	if (drop)
2644 		iput(inode);
2645 }
2646 
2647 /*
2648  * Handle TRUNC from MDS, indicating file truncation.
2649  *
2650  * caller hold s_mutex.
2651  */
2652 static void handle_cap_trunc(struct inode *inode,
2653 			     struct ceph_mds_caps *trunc,
2654 			     struct ceph_mds_session *session)
2655 	__releases(ci->i_ceph_lock)
2656 {
2657 	struct ceph_inode_info *ci = ceph_inode(inode);
2658 	int mds = session->s_mds;
2659 	int seq = le32_to_cpu(trunc->seq);
2660 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2661 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2662 	u64 size = le64_to_cpu(trunc->size);
2663 	int implemented = 0;
2664 	int dirty = __ceph_caps_dirty(ci);
2665 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2666 	int queue_trunc = 0;
2667 
2668 	issued |= implemented | dirty;
2669 
2670 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2671 	     inode, mds, seq, truncate_size, truncate_seq);
2672 	queue_trunc = ceph_fill_file_size(inode, issued,
2673 					  truncate_seq, truncate_size, size);
2674 	spin_unlock(&ci->i_ceph_lock);
2675 
2676 	if (queue_trunc)
2677 		ceph_queue_vmtruncate(inode);
2678 }
2679 
2680 /*
2681  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2682  * different one.  If we are the most recent migration we've seen (as
2683  * indicated by mseq), make note of the migrating cap bits for the
2684  * duration (until we see the corresponding IMPORT).
2685  *
2686  * caller holds s_mutex
2687  */
2688 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2689 			      struct ceph_mds_session *session,
2690 			      int *open_target_sessions)
2691 {
2692 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2693 	struct ceph_inode_info *ci = ceph_inode(inode);
2694 	int mds = session->s_mds;
2695 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2696 	struct ceph_cap *cap = NULL, *t;
2697 	struct rb_node *p;
2698 	int remember = 1;
2699 
2700 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2701 	     inode, ci, mds, mseq);
2702 
2703 	spin_lock(&ci->i_ceph_lock);
2704 
2705 	/* make sure we haven't seen a higher mseq */
2706 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2707 		t = rb_entry(p, struct ceph_cap, ci_node);
2708 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2709 			dout(" higher mseq on cap from mds%d\n",
2710 			     t->session->s_mds);
2711 			remember = 0;
2712 		}
2713 		if (t->session->s_mds == mds)
2714 			cap = t;
2715 	}
2716 
2717 	if (cap) {
2718 		if (remember) {
2719 			/* make note */
2720 			ci->i_cap_exporting_mds = mds;
2721 			ci->i_cap_exporting_mseq = mseq;
2722 			ci->i_cap_exporting_issued = cap->issued;
2723 
2724 			/*
2725 			 * make sure we have open sessions with all possible
2726 			 * export targets, so that we get the matching IMPORT
2727 			 */
2728 			*open_target_sessions = 1;
2729 
2730 			/*
2731 			 * we can't flush dirty caps that we've seen the
2732 			 * EXPORT but no IMPORT for
2733 			 */
2734 			spin_lock(&mdsc->cap_dirty_lock);
2735 			if (!list_empty(&ci->i_dirty_item)) {
2736 				dout(" moving %p to cap_dirty_migrating\n",
2737 				     inode);
2738 				list_move(&ci->i_dirty_item,
2739 					  &mdsc->cap_dirty_migrating);
2740 			}
2741 			spin_unlock(&mdsc->cap_dirty_lock);
2742 		}
2743 		__ceph_remove_cap(cap);
2744 	}
2745 	/* else, we already released it */
2746 
2747 	spin_unlock(&ci->i_ceph_lock);
2748 }
2749 
2750 /*
2751  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2752  * clean them up.
2753  *
2754  * caller holds s_mutex.
2755  */
2756 static void handle_cap_import(struct ceph_mds_client *mdsc,
2757 			      struct inode *inode, struct ceph_mds_caps *im,
2758 			      struct ceph_mds_session *session,
2759 			      void *snaptrace, int snaptrace_len)
2760 {
2761 	struct ceph_inode_info *ci = ceph_inode(inode);
2762 	int mds = session->s_mds;
2763 	unsigned issued = le32_to_cpu(im->caps);
2764 	unsigned wanted = le32_to_cpu(im->wanted);
2765 	unsigned seq = le32_to_cpu(im->seq);
2766 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2767 	u64 realmino = le64_to_cpu(im->realm);
2768 	u64 cap_id = le64_to_cpu(im->cap_id);
2769 
2770 	if (ci->i_cap_exporting_mds >= 0 &&
2771 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2772 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2773 		     " - cleared exporting from mds%d\n",
2774 		     inode, ci, mds, mseq,
2775 		     ci->i_cap_exporting_mds);
2776 		ci->i_cap_exporting_issued = 0;
2777 		ci->i_cap_exporting_mseq = 0;
2778 		ci->i_cap_exporting_mds = -1;
2779 
2780 		spin_lock(&mdsc->cap_dirty_lock);
2781 		if (!list_empty(&ci->i_dirty_item)) {
2782 			dout(" moving %p back to cap_dirty\n", inode);
2783 			list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2784 		}
2785 		spin_unlock(&mdsc->cap_dirty_lock);
2786 	} else {
2787 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2788 		     inode, ci, mds, mseq);
2789 	}
2790 
2791 	down_write(&mdsc->snap_rwsem);
2792 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2793 			       false);
2794 	downgrade_write(&mdsc->snap_rwsem);
2795 	ceph_add_cap(inode, session, cap_id, -1,
2796 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2797 		     NULL /* no caps context */);
2798 	kick_flushing_inode_caps(mdsc, session, inode);
2799 	up_read(&mdsc->snap_rwsem);
2800 
2801 	/* make sure we re-request max_size, if necessary */
2802 	spin_lock(&ci->i_ceph_lock);
2803 	ci->i_wanted_max_size = 0;  /* reset */
2804 	ci->i_requested_max_size = 0;
2805 	spin_unlock(&ci->i_ceph_lock);
2806 }
2807 
2808 /*
2809  * Handle a caps message from the MDS.
2810  *
2811  * Identify the appropriate session, inode, and call the right handler
2812  * based on the cap op.
2813  */
2814 void ceph_handle_caps(struct ceph_mds_session *session,
2815 		      struct ceph_msg *msg)
2816 {
2817 	struct ceph_mds_client *mdsc = session->s_mdsc;
2818 	struct super_block *sb = mdsc->fsc->sb;
2819 	struct inode *inode;
2820 	struct ceph_inode_info *ci;
2821 	struct ceph_cap *cap;
2822 	struct ceph_mds_caps *h;
2823 	int mds = session->s_mds;
2824 	int op;
2825 	u32 seq, mseq;
2826 	struct ceph_vino vino;
2827 	u64 cap_id;
2828 	u64 size, max_size;
2829 	u64 tid;
2830 	void *snaptrace;
2831 	size_t snaptrace_len;
2832 	void *flock;
2833 	u32 flock_len;
2834 	int open_target_sessions = 0;
2835 
2836 	dout("handle_caps from mds%d\n", mds);
2837 
2838 	/* decode */
2839 	tid = le64_to_cpu(msg->hdr.tid);
2840 	if (msg->front.iov_len < sizeof(*h))
2841 		goto bad;
2842 	h = msg->front.iov_base;
2843 	op = le32_to_cpu(h->op);
2844 	vino.ino = le64_to_cpu(h->ino);
2845 	vino.snap = CEPH_NOSNAP;
2846 	cap_id = le64_to_cpu(h->cap_id);
2847 	seq = le32_to_cpu(h->seq);
2848 	mseq = le32_to_cpu(h->migrate_seq);
2849 	size = le64_to_cpu(h->size);
2850 	max_size = le64_to_cpu(h->max_size);
2851 
2852 	snaptrace = h + 1;
2853 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2854 
2855 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2856 		void *p, *end;
2857 
2858 		p = snaptrace + snaptrace_len;
2859 		end = msg->front.iov_base + msg->front.iov_len;
2860 		ceph_decode_32_safe(&p, end, flock_len, bad);
2861 		flock = p;
2862 	} else {
2863 		flock = NULL;
2864 		flock_len = 0;
2865 	}
2866 
2867 	mutex_lock(&session->s_mutex);
2868 	session->s_seq++;
2869 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2870 	     (unsigned)seq);
2871 
2872 	if (op == CEPH_CAP_OP_IMPORT)
2873 		ceph_add_cap_releases(mdsc, session);
2874 
2875 	/* lookup ino */
2876 	inode = ceph_find_inode(sb, vino);
2877 	ci = ceph_inode(inode);
2878 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2879 	     vino.snap, inode);
2880 	if (!inode) {
2881 		dout(" i don't have ino %llx\n", vino.ino);
2882 
2883 		if (op == CEPH_CAP_OP_IMPORT)
2884 			__queue_cap_release(session, vino.ino, cap_id,
2885 					    mseq, seq);
2886 		goto flush_cap_releases;
2887 	}
2888 
2889 	/* these will work even if we don't have a cap yet */
2890 	switch (op) {
2891 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2892 		handle_cap_flushsnap_ack(inode, tid, h, session);
2893 		goto done;
2894 
2895 	case CEPH_CAP_OP_EXPORT:
2896 		handle_cap_export(inode, h, session, &open_target_sessions);
2897 		goto done;
2898 
2899 	case CEPH_CAP_OP_IMPORT:
2900 		handle_cap_import(mdsc, inode, h, session,
2901 				  snaptrace, snaptrace_len);
2902 	}
2903 
2904 	/* the rest require a cap */
2905 	spin_lock(&ci->i_ceph_lock);
2906 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2907 	if (!cap) {
2908 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2909 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2910 		spin_unlock(&ci->i_ceph_lock);
2911 		goto flush_cap_releases;
2912 	}
2913 
2914 	/* note that each of these drops i_ceph_lock for us */
2915 	switch (op) {
2916 	case CEPH_CAP_OP_REVOKE:
2917 	case CEPH_CAP_OP_GRANT:
2918 	case CEPH_CAP_OP_IMPORT:
2919 		handle_cap_grant(inode, h, session, cap, msg->middle);
2920 		goto done_unlocked;
2921 
2922 	case CEPH_CAP_OP_FLUSH_ACK:
2923 		handle_cap_flush_ack(inode, tid, h, session, cap);
2924 		break;
2925 
2926 	case CEPH_CAP_OP_TRUNC:
2927 		handle_cap_trunc(inode, h, session);
2928 		break;
2929 
2930 	default:
2931 		spin_unlock(&ci->i_ceph_lock);
2932 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2933 		       ceph_cap_op_name(op));
2934 	}
2935 
2936 	goto done;
2937 
2938 flush_cap_releases:
2939 	/*
2940 	 * send any full release message to try to move things
2941 	 * along for the mds (who clearly thinks we still have this
2942 	 * cap).
2943 	 */
2944 	ceph_add_cap_releases(mdsc, session);
2945 	ceph_send_cap_releases(mdsc, session);
2946 
2947 done:
2948 	mutex_unlock(&session->s_mutex);
2949 done_unlocked:
2950 	if (inode)
2951 		iput(inode);
2952 	if (open_target_sessions)
2953 		ceph_mdsc_open_export_target_sessions(mdsc, session);
2954 	return;
2955 
2956 bad:
2957 	pr_err("ceph_handle_caps: corrupt message\n");
2958 	ceph_msg_dump(msg);
2959 	return;
2960 }
2961 
2962 /*
2963  * Delayed work handler to process end of delayed cap release LRU list.
2964  */
2965 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2966 {
2967 	struct ceph_inode_info *ci;
2968 	int flags = CHECK_CAPS_NODELAY;
2969 
2970 	dout("check_delayed_caps\n");
2971 	while (1) {
2972 		spin_lock(&mdsc->cap_delay_lock);
2973 		if (list_empty(&mdsc->cap_delay_list))
2974 			break;
2975 		ci = list_first_entry(&mdsc->cap_delay_list,
2976 				      struct ceph_inode_info,
2977 				      i_cap_delay_list);
2978 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2979 		    time_before(jiffies, ci->i_hold_caps_max))
2980 			break;
2981 		list_del_init(&ci->i_cap_delay_list);
2982 		spin_unlock(&mdsc->cap_delay_lock);
2983 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2984 		ceph_check_caps(ci, flags, NULL);
2985 	}
2986 	spin_unlock(&mdsc->cap_delay_lock);
2987 }
2988 
2989 /*
2990  * Flush all dirty caps to the mds
2991  */
2992 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2993 {
2994 	struct ceph_inode_info *ci;
2995 	struct inode *inode;
2996 
2997 	dout("flush_dirty_caps\n");
2998 	spin_lock(&mdsc->cap_dirty_lock);
2999 	while (!list_empty(&mdsc->cap_dirty)) {
3000 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3001 				      i_dirty_item);
3002 		inode = &ci->vfs_inode;
3003 		ihold(inode);
3004 		dout("flush_dirty_caps %p\n", inode);
3005 		spin_unlock(&mdsc->cap_dirty_lock);
3006 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3007 		iput(inode);
3008 		spin_lock(&mdsc->cap_dirty_lock);
3009 	}
3010 	spin_unlock(&mdsc->cap_dirty_lock);
3011 	dout("flush_dirty_caps done\n");
3012 }
3013 
3014 /*
3015  * Drop open file reference.  If we were the last open file,
3016  * we may need to release capabilities to the MDS (or schedule
3017  * their delayed release).
3018  */
3019 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3020 {
3021 	struct inode *inode = &ci->vfs_inode;
3022 	int last = 0;
3023 
3024 	spin_lock(&ci->i_ceph_lock);
3025 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3026 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3027 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3028 	if (--ci->i_nr_by_mode[fmode] == 0)
3029 		last++;
3030 	spin_unlock(&ci->i_ceph_lock);
3031 
3032 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
3033 		ceph_check_caps(ci, 0, NULL);
3034 }
3035 
3036 /*
3037  * Helpers for embedding cap and dentry lease releases into mds
3038  * requests.
3039  *
3040  * @force is used by dentry_release (below) to force inclusion of a
3041  * record for the directory inode, even when there aren't any caps to
3042  * drop.
3043  */
3044 int ceph_encode_inode_release(void **p, struct inode *inode,
3045 			      int mds, int drop, int unless, int force)
3046 {
3047 	struct ceph_inode_info *ci = ceph_inode(inode);
3048 	struct ceph_cap *cap;
3049 	struct ceph_mds_request_release *rel = *p;
3050 	int used, dirty;
3051 	int ret = 0;
3052 
3053 	spin_lock(&ci->i_ceph_lock);
3054 	used = __ceph_caps_used(ci);
3055 	dirty = __ceph_caps_dirty(ci);
3056 
3057 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3058 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3059 	     ceph_cap_string(unless));
3060 
3061 	/* only drop unused, clean caps */
3062 	drop &= ~(used | dirty);
3063 
3064 	cap = __get_cap_for_mds(ci, mds);
3065 	if (cap && __cap_is_valid(cap)) {
3066 		if (force ||
3067 		    ((cap->issued & drop) &&
3068 		     (cap->issued & unless) == 0)) {
3069 			if ((cap->issued & drop) &&
3070 			    (cap->issued & unless) == 0) {
3071 				int wanted = __ceph_caps_wanted(ci);
3072 				if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3073 					wanted |= cap->mds_wanted;
3074 				dout("encode_inode_release %p cap %p "
3075 				     "%s -> %s, wanted %s -> %s\n", inode, cap,
3076 				     ceph_cap_string(cap->issued),
3077 				     ceph_cap_string(cap->issued & ~drop),
3078 				     ceph_cap_string(cap->mds_wanted),
3079 				     ceph_cap_string(wanted));
3080 
3081 				cap->issued &= ~drop;
3082 				cap->implemented &= ~drop;
3083 				cap->mds_wanted = wanted;
3084 			} else {
3085 				dout("encode_inode_release %p cap %p %s"
3086 				     " (force)\n", inode, cap,
3087 				     ceph_cap_string(cap->issued));
3088 			}
3089 
3090 			rel->ino = cpu_to_le64(ceph_ino(inode));
3091 			rel->cap_id = cpu_to_le64(cap->cap_id);
3092 			rel->seq = cpu_to_le32(cap->seq);
3093 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3094 			rel->mseq = cpu_to_le32(cap->mseq);
3095 			rel->caps = cpu_to_le32(cap->issued);
3096 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3097 			rel->dname_len = 0;
3098 			rel->dname_seq = 0;
3099 			*p += sizeof(*rel);
3100 			ret = 1;
3101 		} else {
3102 			dout("encode_inode_release %p cap %p %s\n",
3103 			     inode, cap, ceph_cap_string(cap->issued));
3104 		}
3105 	}
3106 	spin_unlock(&ci->i_ceph_lock);
3107 	return ret;
3108 }
3109 
3110 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3111 			       int mds, int drop, int unless)
3112 {
3113 	struct inode *dir = dentry->d_parent->d_inode;
3114 	struct ceph_mds_request_release *rel = *p;
3115 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3116 	int force = 0;
3117 	int ret;
3118 
3119 	/*
3120 	 * force an record for the directory caps if we have a dentry lease.
3121 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3122 	 * doesn't have to be perfect; the mds will revoke anything we don't
3123 	 * release.
3124 	 */
3125 	spin_lock(&dentry->d_lock);
3126 	if (di->lease_session && di->lease_session->s_mds == mds)
3127 		force = 1;
3128 	spin_unlock(&dentry->d_lock);
3129 
3130 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3131 
3132 	spin_lock(&dentry->d_lock);
3133 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3134 		dout("encode_dentry_release %p mds%d seq %d\n",
3135 		     dentry, mds, (int)di->lease_seq);
3136 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3137 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3138 		*p += dentry->d_name.len;
3139 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3140 		__ceph_mdsc_drop_dentry_lease(dentry);
3141 	}
3142 	spin_unlock(&dentry->d_lock);
3143 	return ret;
3144 }
3145