xref: /openbmc/linux/fs/ceph/caps.c (revision bcd2cbd1)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8 
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12 
13 /*
14  * Capability management
15  *
16  * The Ceph metadata servers control client access to inode metadata
17  * and file data by issuing capabilities, granting clients permission
18  * to read and/or write both inode field and file data to OSDs
19  * (storage nodes).  Each capability consists of a set of bits
20  * indicating which operations are allowed.
21  *
22  * If the client holds a *_SHARED cap, the client has a coherent value
23  * that can be safely read from the cached inode.
24  *
25  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26  * client is allowed to change inode attributes (e.g., file size,
27  * mtime), note its dirty state in the ceph_cap, and asynchronously
28  * flush that metadata change to the MDS.
29  *
30  * In the event of a conflicting operation (perhaps by another
31  * client), the MDS will revoke the conflicting client capabilities.
32  *
33  * In order for a client to cache an inode, it must hold a capability
34  * with at least one MDS server.  When inodes are released, release
35  * notifications are batched and periodically sent en masse to the MDS
36  * cluster to release server state.
37  */
38 
39 
40 /*
41  * Generate readable cap strings for debugging output.
42  */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47 
48 static char *gcap_string(char *s, int c)
49 {
50 	if (c & CEPH_CAP_GSHARED)
51 		*s++ = 's';
52 	if (c & CEPH_CAP_GEXCL)
53 		*s++ = 'x';
54 	if (c & CEPH_CAP_GCACHE)
55 		*s++ = 'c';
56 	if (c & CEPH_CAP_GRD)
57 		*s++ = 'r';
58 	if (c & CEPH_CAP_GWR)
59 		*s++ = 'w';
60 	if (c & CEPH_CAP_GBUFFER)
61 		*s++ = 'b';
62 	if (c & CEPH_CAP_GLAZYIO)
63 		*s++ = 'l';
64 	return s;
65 }
66 
67 const char *ceph_cap_string(int caps)
68 {
69 	int i;
70 	char *s;
71 	int c;
72 
73 	spin_lock(&cap_str_lock);
74 	i = last_cap_str++;
75 	if (last_cap_str == MAX_CAP_STR)
76 		last_cap_str = 0;
77 	spin_unlock(&cap_str_lock);
78 
79 	s = cap_str[i];
80 
81 	if (caps & CEPH_CAP_PIN)
82 		*s++ = 'p';
83 
84 	c = (caps >> CEPH_CAP_SAUTH) & 3;
85 	if (c) {
86 		*s++ = 'A';
87 		s = gcap_string(s, c);
88 	}
89 
90 	c = (caps >> CEPH_CAP_SLINK) & 3;
91 	if (c) {
92 		*s++ = 'L';
93 		s = gcap_string(s, c);
94 	}
95 
96 	c = (caps >> CEPH_CAP_SXATTR) & 3;
97 	if (c) {
98 		*s++ = 'X';
99 		s = gcap_string(s, c);
100 	}
101 
102 	c = caps >> CEPH_CAP_SFILE;
103 	if (c) {
104 		*s++ = 'F';
105 		s = gcap_string(s, c);
106 	}
107 
108 	if (s == cap_str[i])
109 		*s++ = '-';
110 	*s = 0;
111 	return cap_str[i];
112 }
113 
114 /*
115  * Cap reservations
116  *
117  * Maintain a global pool of preallocated struct ceph_caps, referenced
118  * by struct ceph_caps_reservations.  This ensures that we preallocate
119  * memory needed to successfully process an MDS response.  (If an MDS
120  * sends us cap information and we fail to process it, we will have
121  * problems due to the client and MDS being out of sync.)
122  *
123  * Reservations are 'owned' by a ceph_cap_reservation context.
124  */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list;  /* unused (reserved or unreserved) */
127 static int caps_total_count;        /* total caps allocated */
128 static int caps_use_count;          /* in use */
129 static int caps_reserve_count;      /* unused, reserved */
130 static int caps_avail_count;        /* unused, unreserved */
131 static int caps_min_count;          /* keep at least this many (unreserved) */
132 
133 void __init ceph_caps_init(void)
134 {
135 	INIT_LIST_HEAD(&caps_list);
136 	spin_lock_init(&caps_list_lock);
137 }
138 
139 void ceph_caps_finalize(void)
140 {
141 	struct ceph_cap *cap;
142 
143 	spin_lock(&caps_list_lock);
144 	while (!list_empty(&caps_list)) {
145 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
146 		list_del(&cap->caps_item);
147 		kmem_cache_free(ceph_cap_cachep, cap);
148 	}
149 	caps_total_count = 0;
150 	caps_avail_count = 0;
151 	caps_use_count = 0;
152 	caps_reserve_count = 0;
153 	caps_min_count = 0;
154 	spin_unlock(&caps_list_lock);
155 }
156 
157 void ceph_adjust_min_caps(int delta)
158 {
159 	spin_lock(&caps_list_lock);
160 	caps_min_count += delta;
161 	BUG_ON(caps_min_count < 0);
162 	spin_unlock(&caps_list_lock);
163 }
164 
165 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
166 {
167 	int i;
168 	struct ceph_cap *cap;
169 	int have;
170 	int alloc = 0;
171 	LIST_HEAD(newcaps);
172 	int ret = 0;
173 
174 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
175 
176 	/* first reserve any caps that are already allocated */
177 	spin_lock(&caps_list_lock);
178 	if (caps_avail_count >= need)
179 		have = need;
180 	else
181 		have = caps_avail_count;
182 	caps_avail_count -= have;
183 	caps_reserve_count += have;
184 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
185 	       caps_avail_count);
186 	spin_unlock(&caps_list_lock);
187 
188 	for (i = have; i < need; i++) {
189 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
190 		if (!cap) {
191 			ret = -ENOMEM;
192 			goto out_alloc_count;
193 		}
194 		list_add(&cap->caps_item, &newcaps);
195 		alloc++;
196 	}
197 	BUG_ON(have + alloc != need);
198 
199 	spin_lock(&caps_list_lock);
200 	caps_total_count += alloc;
201 	caps_reserve_count += alloc;
202 	list_splice(&newcaps, &caps_list);
203 
204 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
205 	       caps_avail_count);
206 	spin_unlock(&caps_list_lock);
207 
208 	ctx->count = need;
209 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
210 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
211 	     caps_avail_count);
212 	return 0;
213 
214 out_alloc_count:
215 	/* we didn't manage to reserve as much as we needed */
216 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
217 		   ctx, need, have);
218 	return ret;
219 }
220 
221 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
222 {
223 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
224 	if (ctx->count) {
225 		spin_lock(&caps_list_lock);
226 		BUG_ON(caps_reserve_count < ctx->count);
227 		caps_reserve_count -= ctx->count;
228 		caps_avail_count += ctx->count;
229 		ctx->count = 0;
230 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
231 		     caps_total_count, caps_use_count, caps_reserve_count,
232 		     caps_avail_count);
233 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
234 		       caps_avail_count);
235 		spin_unlock(&caps_list_lock);
236 	}
237 	return 0;
238 }
239 
240 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
241 {
242 	struct ceph_cap *cap = NULL;
243 
244 	/* temporary, until we do something about cap import/export */
245 	if (!ctx)
246 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
247 
248 	spin_lock(&caps_list_lock);
249 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
250 	     ctx, ctx->count, caps_total_count, caps_use_count,
251 	     caps_reserve_count, caps_avail_count);
252 	BUG_ON(!ctx->count);
253 	BUG_ON(ctx->count > caps_reserve_count);
254 	BUG_ON(list_empty(&caps_list));
255 
256 	ctx->count--;
257 	caps_reserve_count--;
258 	caps_use_count++;
259 
260 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
261 	list_del(&cap->caps_item);
262 
263 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
264 	       caps_avail_count);
265 	spin_unlock(&caps_list_lock);
266 	return cap;
267 }
268 
269 void ceph_put_cap(struct ceph_cap *cap)
270 {
271 	spin_lock(&caps_list_lock);
272 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
273 	     cap, caps_total_count, caps_use_count,
274 	     caps_reserve_count, caps_avail_count);
275 	caps_use_count--;
276 	/*
277 	 * Keep some preallocated caps around (ceph_min_count), to
278 	 * avoid lots of free/alloc churn.
279 	 */
280 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
281 		caps_total_count--;
282 		kmem_cache_free(ceph_cap_cachep, cap);
283 	} else {
284 		caps_avail_count++;
285 		list_add(&cap->caps_item, &caps_list);
286 	}
287 
288 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
289 	       caps_avail_count);
290 	spin_unlock(&caps_list_lock);
291 }
292 
293 void ceph_reservation_status(struct ceph_client *client,
294 			     int *total, int *avail, int *used, int *reserved,
295 			     int *min)
296 {
297 	if (total)
298 		*total = caps_total_count;
299 	if (avail)
300 		*avail = caps_avail_count;
301 	if (used)
302 		*used = caps_use_count;
303 	if (reserved)
304 		*reserved = caps_reserve_count;
305 	if (min)
306 		*min = caps_min_count;
307 }
308 
309 /*
310  * Find ceph_cap for given mds, if any.
311  *
312  * Called with i_lock held.
313  */
314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316 	struct ceph_cap *cap;
317 	struct rb_node *n = ci->i_caps.rb_node;
318 
319 	while (n) {
320 		cap = rb_entry(n, struct ceph_cap, ci_node);
321 		if (mds < cap->mds)
322 			n = n->rb_left;
323 		else if (mds > cap->mds)
324 			n = n->rb_right;
325 		else
326 			return cap;
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
333  * -1.
334  */
335 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
336 {
337 	struct ceph_cap *cap;
338 	int mds = -1;
339 	struct rb_node *p;
340 
341 	/* prefer mds with WR|WRBUFFER|EXCL caps */
342 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
343 		cap = rb_entry(p, struct ceph_cap, ci_node);
344 		mds = cap->mds;
345 		if (mseq)
346 			*mseq = cap->mseq;
347 		if (cap->issued & (CEPH_CAP_FILE_WR |
348 				   CEPH_CAP_FILE_BUFFER |
349 				   CEPH_CAP_FILE_EXCL))
350 			break;
351 	}
352 	return mds;
353 }
354 
355 int ceph_get_cap_mds(struct inode *inode)
356 {
357 	int mds;
358 	spin_lock(&inode->i_lock);
359 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
360 	spin_unlock(&inode->i_lock);
361 	return mds;
362 }
363 
364 /*
365  * Called under i_lock.
366  */
367 static void __insert_cap_node(struct ceph_inode_info *ci,
368 			      struct ceph_cap *new)
369 {
370 	struct rb_node **p = &ci->i_caps.rb_node;
371 	struct rb_node *parent = NULL;
372 	struct ceph_cap *cap = NULL;
373 
374 	while (*p) {
375 		parent = *p;
376 		cap = rb_entry(parent, struct ceph_cap, ci_node);
377 		if (new->mds < cap->mds)
378 			p = &(*p)->rb_left;
379 		else if (new->mds > cap->mds)
380 			p = &(*p)->rb_right;
381 		else
382 			BUG();
383 	}
384 
385 	rb_link_node(&new->ci_node, parent, p);
386 	rb_insert_color(&new->ci_node, &ci->i_caps);
387 }
388 
389 /*
390  * (re)set cap hold timeouts, which control the delayed release
391  * of unused caps back to the MDS.  Should be called on cap use.
392  */
393 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
394 			       struct ceph_inode_info *ci)
395 {
396 	struct ceph_mount_args *ma = mdsc->client->mount_args;
397 
398 	ci->i_hold_caps_min = round_jiffies(jiffies +
399 					    ma->caps_wanted_delay_min * HZ);
400 	ci->i_hold_caps_max = round_jiffies(jiffies +
401 					    ma->caps_wanted_delay_max * HZ);
402 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
403 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
404 }
405 
406 /*
407  * (Re)queue cap at the end of the delayed cap release list.
408  *
409  * If I_FLUSH is set, leave the inode at the front of the list.
410  *
411  * Caller holds i_lock
412  *    -> we take mdsc->cap_delay_lock
413  */
414 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
415 				struct ceph_inode_info *ci)
416 {
417 	__cap_set_timeouts(mdsc, ci);
418 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
419 	     ci->i_ceph_flags, ci->i_hold_caps_max);
420 	if (!mdsc->stopping) {
421 		spin_lock(&mdsc->cap_delay_lock);
422 		if (!list_empty(&ci->i_cap_delay_list)) {
423 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
424 				goto no_change;
425 			list_del_init(&ci->i_cap_delay_list);
426 		}
427 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
428 no_change:
429 		spin_unlock(&mdsc->cap_delay_lock);
430 	}
431 }
432 
433 /*
434  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
435  * indicating we should send a cap message to flush dirty metadata
436  * asap, and move to the front of the delayed cap list.
437  */
438 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
439 				      struct ceph_inode_info *ci)
440 {
441 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
442 	spin_lock(&mdsc->cap_delay_lock);
443 	ci->i_ceph_flags |= CEPH_I_FLUSH;
444 	if (!list_empty(&ci->i_cap_delay_list))
445 		list_del_init(&ci->i_cap_delay_list);
446 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
447 	spin_unlock(&mdsc->cap_delay_lock);
448 }
449 
450 /*
451  * Cancel delayed work on cap.
452  *
453  * Caller must hold i_lock.
454  */
455 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
456 			       struct ceph_inode_info *ci)
457 {
458 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
459 	if (list_empty(&ci->i_cap_delay_list))
460 		return;
461 	spin_lock(&mdsc->cap_delay_lock);
462 	list_del_init(&ci->i_cap_delay_list);
463 	spin_unlock(&mdsc->cap_delay_lock);
464 }
465 
466 /*
467  * Common issue checks for add_cap, handle_cap_grant.
468  */
469 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
470 			      unsigned issued)
471 {
472 	unsigned had = __ceph_caps_issued(ci, NULL);
473 
474 	/*
475 	 * Each time we receive FILE_CACHE anew, we increment
476 	 * i_rdcache_gen.
477 	 */
478 	if ((issued & CEPH_CAP_FILE_CACHE) &&
479 	    (had & CEPH_CAP_FILE_CACHE) == 0)
480 		ci->i_rdcache_gen++;
481 
482 	/*
483 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
484 	 * don't know what happened to this directory while we didn't
485 	 * have the cap.
486 	 */
487 	if ((issued & CEPH_CAP_FILE_SHARED) &&
488 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
489 		ci->i_shared_gen++;
490 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
491 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
492 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
493 		}
494 	}
495 }
496 
497 /*
498  * Add a capability under the given MDS session.
499  *
500  * Caller should hold session snap_rwsem (read) and s_mutex.
501  *
502  * @fmode is the open file mode, if we are opening a file, otherwise
503  * it is < 0.  (This is so we can atomically add the cap and add an
504  * open file reference to it.)
505  */
506 int ceph_add_cap(struct inode *inode,
507 		 struct ceph_mds_session *session, u64 cap_id,
508 		 int fmode, unsigned issued, unsigned wanted,
509 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
510 		 struct ceph_cap_reservation *caps_reservation)
511 {
512 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
513 	struct ceph_inode_info *ci = ceph_inode(inode);
514 	struct ceph_cap *new_cap = NULL;
515 	struct ceph_cap *cap;
516 	int mds = session->s_mds;
517 	int actual_wanted;
518 
519 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
520 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
521 
522 	/*
523 	 * If we are opening the file, include file mode wanted bits
524 	 * in wanted.
525 	 */
526 	if (fmode >= 0)
527 		wanted |= ceph_caps_for_mode(fmode);
528 
529 retry:
530 	spin_lock(&inode->i_lock);
531 	cap = __get_cap_for_mds(ci, mds);
532 	if (!cap) {
533 		if (new_cap) {
534 			cap = new_cap;
535 			new_cap = NULL;
536 		} else {
537 			spin_unlock(&inode->i_lock);
538 			new_cap = get_cap(caps_reservation);
539 			if (new_cap == NULL)
540 				return -ENOMEM;
541 			goto retry;
542 		}
543 
544 		cap->issued = 0;
545 		cap->implemented = 0;
546 		cap->mds = mds;
547 		cap->mds_wanted = 0;
548 
549 		cap->ci = ci;
550 		__insert_cap_node(ci, cap);
551 
552 		/* clear out old exporting info?  (i.e. on cap import) */
553 		if (ci->i_cap_exporting_mds == mds) {
554 			ci->i_cap_exporting_issued = 0;
555 			ci->i_cap_exporting_mseq = 0;
556 			ci->i_cap_exporting_mds = -1;
557 		}
558 
559 		/* add to session cap list */
560 		cap->session = session;
561 		spin_lock(&session->s_cap_lock);
562 		list_add_tail(&cap->session_caps, &session->s_caps);
563 		session->s_nr_caps++;
564 		spin_unlock(&session->s_cap_lock);
565 	}
566 
567 	if (!ci->i_snap_realm) {
568 		/*
569 		 * add this inode to the appropriate snap realm
570 		 */
571 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
572 							       realmino);
573 		if (realm) {
574 			ceph_get_snap_realm(mdsc, realm);
575 			spin_lock(&realm->inodes_with_caps_lock);
576 			ci->i_snap_realm = realm;
577 			list_add(&ci->i_snap_realm_item,
578 				 &realm->inodes_with_caps);
579 			spin_unlock(&realm->inodes_with_caps_lock);
580 		} else {
581 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
582 			       realmino);
583 		}
584 	}
585 
586 	__check_cap_issue(ci, cap, issued);
587 
588 	/*
589 	 * If we are issued caps we don't want, or the mds' wanted
590 	 * value appears to be off, queue a check so we'll release
591 	 * later and/or update the mds wanted value.
592 	 */
593 	actual_wanted = __ceph_caps_wanted(ci);
594 	if ((wanted & ~actual_wanted) ||
595 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
596 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
597 		     ceph_cap_string(issued), ceph_cap_string(wanted),
598 		     ceph_cap_string(actual_wanted));
599 		__cap_delay_requeue(mdsc, ci);
600 	}
601 
602 	if (flags & CEPH_CAP_FLAG_AUTH)
603 		ci->i_auth_cap = cap;
604 	else if (ci->i_auth_cap == cap)
605 		ci->i_auth_cap = NULL;
606 
607 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
608 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
609 	     ceph_cap_string(issued|cap->issued), seq, mds);
610 	cap->cap_id = cap_id;
611 	cap->issued = issued;
612 	cap->implemented |= issued;
613 	cap->mds_wanted |= wanted;
614 	cap->seq = seq;
615 	cap->issue_seq = seq;
616 	cap->mseq = mseq;
617 	cap->cap_gen = session->s_cap_gen;
618 
619 	if (fmode >= 0)
620 		__ceph_get_fmode(ci, fmode);
621 	spin_unlock(&inode->i_lock);
622 	wake_up(&ci->i_cap_wq);
623 	return 0;
624 }
625 
626 /*
627  * Return true if cap has not timed out and belongs to the current
628  * generation of the MDS session (i.e. has not gone 'stale' due to
629  * us losing touch with the mds).
630  */
631 static int __cap_is_valid(struct ceph_cap *cap)
632 {
633 	unsigned long ttl;
634 	u32 gen;
635 
636 	spin_lock(&cap->session->s_cap_lock);
637 	gen = cap->session->s_cap_gen;
638 	ttl = cap->session->s_cap_ttl;
639 	spin_unlock(&cap->session->s_cap_lock);
640 
641 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
642 		dout("__cap_is_valid %p cap %p issued %s "
643 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
644 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
645 		return 0;
646 	}
647 
648 	return 1;
649 }
650 
651 /*
652  * Return set of valid cap bits issued to us.  Note that caps time
653  * out, and may be invalidated in bulk if the client session times out
654  * and session->s_cap_gen is bumped.
655  */
656 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
657 {
658 	int have = ci->i_snap_caps;
659 	struct ceph_cap *cap;
660 	struct rb_node *p;
661 
662 	if (implemented)
663 		*implemented = 0;
664 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
665 		cap = rb_entry(p, struct ceph_cap, ci_node);
666 		if (!__cap_is_valid(cap))
667 			continue;
668 		dout("__ceph_caps_issued %p cap %p issued %s\n",
669 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
670 		have |= cap->issued;
671 		if (implemented)
672 			*implemented |= cap->implemented;
673 	}
674 	return have;
675 }
676 
677 /*
678  * Get cap bits issued by caps other than @ocap
679  */
680 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
681 {
682 	int have = ci->i_snap_caps;
683 	struct ceph_cap *cap;
684 	struct rb_node *p;
685 
686 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
687 		cap = rb_entry(p, struct ceph_cap, ci_node);
688 		if (cap == ocap)
689 			continue;
690 		if (!__cap_is_valid(cap))
691 			continue;
692 		have |= cap->issued;
693 	}
694 	return have;
695 }
696 
697 /*
698  * Move a cap to the end of the LRU (oldest caps at list head, newest
699  * at list tail).
700  */
701 static void __touch_cap(struct ceph_cap *cap)
702 {
703 	struct ceph_mds_session *s = cap->session;
704 
705 	spin_lock(&s->s_cap_lock);
706 	if (s->s_cap_iterator == NULL) {
707 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
708 		     s->s_mds);
709 		list_move_tail(&cap->session_caps, &s->s_caps);
710 	} else {
711 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
712 		     &cap->ci->vfs_inode, cap, s->s_mds);
713 	}
714 	spin_unlock(&s->s_cap_lock);
715 }
716 
717 /*
718  * Check if we hold the given mask.  If so, move the cap(s) to the
719  * front of their respective LRUs.  (This is the preferred way for
720  * callers to check for caps they want.)
721  */
722 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
723 {
724 	struct ceph_cap *cap;
725 	struct rb_node *p;
726 	int have = ci->i_snap_caps;
727 
728 	if ((have & mask) == mask) {
729 		dout("__ceph_caps_issued_mask %p snap issued %s"
730 		     " (mask %s)\n", &ci->vfs_inode,
731 		     ceph_cap_string(have),
732 		     ceph_cap_string(mask));
733 		return 1;
734 	}
735 
736 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
737 		cap = rb_entry(p, struct ceph_cap, ci_node);
738 		if (!__cap_is_valid(cap))
739 			continue;
740 		if ((cap->issued & mask) == mask) {
741 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
742 			     " (mask %s)\n", &ci->vfs_inode, cap,
743 			     ceph_cap_string(cap->issued),
744 			     ceph_cap_string(mask));
745 			if (touch)
746 				__touch_cap(cap);
747 			return 1;
748 		}
749 
750 		/* does a combination of caps satisfy mask? */
751 		have |= cap->issued;
752 		if ((have & mask) == mask) {
753 			dout("__ceph_caps_issued_mask %p combo issued %s"
754 			     " (mask %s)\n", &ci->vfs_inode,
755 			     ceph_cap_string(cap->issued),
756 			     ceph_cap_string(mask));
757 			if (touch) {
758 				struct rb_node *q;
759 
760 				/* touch this + preceeding caps */
761 				__touch_cap(cap);
762 				for (q = rb_first(&ci->i_caps); q != p;
763 				     q = rb_next(q)) {
764 					cap = rb_entry(q, struct ceph_cap,
765 						       ci_node);
766 					if (!__cap_is_valid(cap))
767 						continue;
768 					__touch_cap(cap);
769 				}
770 			}
771 			return 1;
772 		}
773 	}
774 
775 	return 0;
776 }
777 
778 /*
779  * Return true if mask caps are currently being revoked by an MDS.
780  */
781 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
782 {
783 	struct inode *inode = &ci->vfs_inode;
784 	struct ceph_cap *cap;
785 	struct rb_node *p;
786 	int ret = 0;
787 
788 	spin_lock(&inode->i_lock);
789 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
790 		cap = rb_entry(p, struct ceph_cap, ci_node);
791 		if (__cap_is_valid(cap) &&
792 		    (cap->implemented & ~cap->issued & mask)) {
793 			ret = 1;
794 			break;
795 		}
796 	}
797 	spin_unlock(&inode->i_lock);
798 	dout("ceph_caps_revoking %p %s = %d\n", inode,
799 	     ceph_cap_string(mask), ret);
800 	return ret;
801 }
802 
803 int __ceph_caps_used(struct ceph_inode_info *ci)
804 {
805 	int used = 0;
806 	if (ci->i_pin_ref)
807 		used |= CEPH_CAP_PIN;
808 	if (ci->i_rd_ref)
809 		used |= CEPH_CAP_FILE_RD;
810 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
811 		used |= CEPH_CAP_FILE_CACHE;
812 	if (ci->i_wr_ref)
813 		used |= CEPH_CAP_FILE_WR;
814 	if (ci->i_wrbuffer_ref)
815 		used |= CEPH_CAP_FILE_BUFFER;
816 	return used;
817 }
818 
819 /*
820  * wanted, by virtue of open file modes
821  */
822 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
823 {
824 	int want = 0;
825 	int mode;
826 	for (mode = 0; mode < 4; mode++)
827 		if (ci->i_nr_by_mode[mode])
828 			want |= ceph_caps_for_mode(mode);
829 	return want;
830 }
831 
832 /*
833  * Return caps we have registered with the MDS(s) as 'wanted'.
834  */
835 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
836 {
837 	struct ceph_cap *cap;
838 	struct rb_node *p;
839 	int mds_wanted = 0;
840 
841 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
842 		cap = rb_entry(p, struct ceph_cap, ci_node);
843 		if (!__cap_is_valid(cap))
844 			continue;
845 		mds_wanted |= cap->mds_wanted;
846 	}
847 	return mds_wanted;
848 }
849 
850 /*
851  * called under i_lock
852  */
853 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
854 {
855 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
856 }
857 
858 /*
859  * caller should hold i_lock, and session s_mutex.
860  * returns true if this is the last cap.  if so, caller should iput.
861  */
862 void __ceph_remove_cap(struct ceph_cap *cap)
863 {
864 	struct ceph_mds_session *session = cap->session;
865 	struct ceph_inode_info *ci = cap->ci;
866 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
867 
868 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
869 
870 	/* remove from inode list */
871 	rb_erase(&cap->ci_node, &ci->i_caps);
872 	cap->ci = NULL;
873 	if (ci->i_auth_cap == cap)
874 		ci->i_auth_cap = NULL;
875 
876 	/* remove from session list */
877 	spin_lock(&session->s_cap_lock);
878 	if (session->s_cap_iterator == cap) {
879 		/* not yet, we are iterating over this very cap */
880 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
881 		     cap, cap->session);
882 	} else {
883 		list_del_init(&cap->session_caps);
884 		session->s_nr_caps--;
885 		cap->session = NULL;
886 	}
887 	spin_unlock(&session->s_cap_lock);
888 
889 	if (cap->session == NULL)
890 		ceph_put_cap(cap);
891 
892 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
893 		struct ceph_snap_realm *realm = ci->i_snap_realm;
894 		spin_lock(&realm->inodes_with_caps_lock);
895 		list_del_init(&ci->i_snap_realm_item);
896 		ci->i_snap_realm_counter++;
897 		ci->i_snap_realm = NULL;
898 		spin_unlock(&realm->inodes_with_caps_lock);
899 		ceph_put_snap_realm(mdsc, realm);
900 	}
901 	if (!__ceph_is_any_real_caps(ci))
902 		__cap_delay_cancel(mdsc, ci);
903 }
904 
905 /*
906  * Build and send a cap message to the given MDS.
907  *
908  * Caller should be holding s_mutex.
909  */
910 static int send_cap_msg(struct ceph_mds_session *session,
911 			u64 ino, u64 cid, int op,
912 			int caps, int wanted, int dirty,
913 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
914 			u64 size, u64 max_size,
915 			struct timespec *mtime, struct timespec *atime,
916 			u64 time_warp_seq,
917 			uid_t uid, gid_t gid, mode_t mode,
918 			u64 xattr_version,
919 			struct ceph_buffer *xattrs_buf,
920 			u64 follows)
921 {
922 	struct ceph_mds_caps *fc;
923 	struct ceph_msg *msg;
924 
925 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
926 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
927 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
928 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
929 	     ceph_cap_string(dirty),
930 	     seq, issue_seq, mseq, follows, size, max_size,
931 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
932 
933 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
934 	if (IS_ERR(msg))
935 		return PTR_ERR(msg);
936 
937 	msg->hdr.tid = cpu_to_le64(flush_tid);
938 
939 	fc = msg->front.iov_base;
940 	memset(fc, 0, sizeof(*fc));
941 
942 	fc->cap_id = cpu_to_le64(cid);
943 	fc->op = cpu_to_le32(op);
944 	fc->seq = cpu_to_le32(seq);
945 	fc->issue_seq = cpu_to_le32(issue_seq);
946 	fc->migrate_seq = cpu_to_le32(mseq);
947 	fc->caps = cpu_to_le32(caps);
948 	fc->wanted = cpu_to_le32(wanted);
949 	fc->dirty = cpu_to_le32(dirty);
950 	fc->ino = cpu_to_le64(ino);
951 	fc->snap_follows = cpu_to_le64(follows);
952 
953 	fc->size = cpu_to_le64(size);
954 	fc->max_size = cpu_to_le64(max_size);
955 	if (mtime)
956 		ceph_encode_timespec(&fc->mtime, mtime);
957 	if (atime)
958 		ceph_encode_timespec(&fc->atime, atime);
959 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
960 
961 	fc->uid = cpu_to_le32(uid);
962 	fc->gid = cpu_to_le32(gid);
963 	fc->mode = cpu_to_le32(mode);
964 
965 	fc->xattr_version = cpu_to_le64(xattr_version);
966 	if (xattrs_buf) {
967 		msg->middle = ceph_buffer_get(xattrs_buf);
968 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
969 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
970 	}
971 
972 	ceph_con_send(&session->s_con, msg);
973 	return 0;
974 }
975 
976 /*
977  * Queue cap releases when an inode is dropped from our
978  * cache.
979  */
980 void ceph_queue_caps_release(struct inode *inode)
981 {
982 	struct ceph_inode_info *ci = ceph_inode(inode);
983 	struct rb_node *p;
984 
985 	spin_lock(&inode->i_lock);
986 	p = rb_first(&ci->i_caps);
987 	while (p) {
988 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
989 		struct ceph_mds_session *session = cap->session;
990 		struct ceph_msg *msg;
991 		struct ceph_mds_cap_release *head;
992 		struct ceph_mds_cap_item *item;
993 
994 		spin_lock(&session->s_cap_lock);
995 		BUG_ON(!session->s_num_cap_releases);
996 		msg = list_first_entry(&session->s_cap_releases,
997 				       struct ceph_msg, list_head);
998 
999 		dout(" adding %p release to mds%d msg %p (%d left)\n",
1000 		     inode, session->s_mds, msg, session->s_num_cap_releases);
1001 
1002 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1003 		head = msg->front.iov_base;
1004 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1005 		item = msg->front.iov_base + msg->front.iov_len;
1006 		item->ino = cpu_to_le64(ceph_ino(inode));
1007 		item->cap_id = cpu_to_le64(cap->cap_id);
1008 		item->migrate_seq = cpu_to_le32(cap->mseq);
1009 		item->seq = cpu_to_le32(cap->issue_seq);
1010 
1011 		session->s_num_cap_releases--;
1012 
1013 		msg->front.iov_len += sizeof(*item);
1014 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1015 			dout(" release msg %p full\n", msg);
1016 			list_move_tail(&msg->list_head,
1017 				       &session->s_cap_releases_done);
1018 		} else {
1019 			dout(" release msg %p at %d/%d (%d)\n", msg,
1020 			     (int)le32_to_cpu(head->num),
1021 			     (int)CEPH_CAPS_PER_RELEASE,
1022 			     (int)msg->front.iov_len);
1023 		}
1024 		spin_unlock(&session->s_cap_lock);
1025 		p = rb_next(p);
1026 		__ceph_remove_cap(cap);
1027 
1028 	}
1029 	spin_unlock(&inode->i_lock);
1030 }
1031 
1032 /*
1033  * Send a cap msg on the given inode.  Update our caps state, then
1034  * drop i_lock and send the message.
1035  *
1036  * Make note of max_size reported/requested from mds, revoked caps
1037  * that have now been implemented.
1038  *
1039  * Make half-hearted attempt ot to invalidate page cache if we are
1040  * dropping RDCACHE.  Note that this will leave behind locked pages
1041  * that we'll then need to deal with elsewhere.
1042  *
1043  * Return non-zero if delayed release, or we experienced an error
1044  * such that the caller should requeue + retry later.
1045  *
1046  * called with i_lock, then drops it.
1047  * caller should hold snap_rwsem (read), s_mutex.
1048  */
1049 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1050 		      int op, int used, int want, int retain, int flushing,
1051 		      unsigned *pflush_tid)
1052 	__releases(cap->ci->vfs_inode->i_lock)
1053 {
1054 	struct ceph_inode_info *ci = cap->ci;
1055 	struct inode *inode = &ci->vfs_inode;
1056 	u64 cap_id = cap->cap_id;
1057 	int held, revoking, dropping, keep;
1058 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1059 	u64 size, max_size;
1060 	struct timespec mtime, atime;
1061 	int wake = 0;
1062 	mode_t mode;
1063 	uid_t uid;
1064 	gid_t gid;
1065 	struct ceph_mds_session *session;
1066 	u64 xattr_version = 0;
1067 	int delayed = 0;
1068 	u64 flush_tid = 0;
1069 	int i;
1070 	int ret;
1071 
1072 	held = cap->issued | cap->implemented;
1073 	revoking = cap->implemented & ~cap->issued;
1074 	retain &= ~revoking;
1075 	dropping = cap->issued & ~retain;
1076 
1077 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1078 	     inode, cap, cap->session,
1079 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1080 	     ceph_cap_string(revoking));
1081 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1082 
1083 	session = cap->session;
1084 
1085 	/* don't release wanted unless we've waited a bit. */
1086 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1087 	    time_before(jiffies, ci->i_hold_caps_min)) {
1088 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1089 		     ceph_cap_string(cap->issued),
1090 		     ceph_cap_string(cap->issued & retain),
1091 		     ceph_cap_string(cap->mds_wanted),
1092 		     ceph_cap_string(want));
1093 		want |= cap->mds_wanted;
1094 		retain |= cap->issued;
1095 		delayed = 1;
1096 	}
1097 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1098 
1099 	cap->issued &= retain;  /* drop bits we don't want */
1100 	if (cap->implemented & ~cap->issued) {
1101 		/*
1102 		 * Wake up any waiters on wanted -> needed transition.
1103 		 * This is due to the weird transition from buffered
1104 		 * to sync IO... we need to flush dirty pages _before_
1105 		 * allowing sync writes to avoid reordering.
1106 		 */
1107 		wake = 1;
1108 	}
1109 	cap->implemented &= cap->issued | used;
1110 	cap->mds_wanted = want;
1111 
1112 	if (flushing) {
1113 		/*
1114 		 * assign a tid for flush operations so we can avoid
1115 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1116 		 * clean type races.  track latest tid for every bit
1117 		 * so we can handle flush AxFw, flush Fw, and have the
1118 		 * first ack clean Ax.
1119 		 */
1120 		flush_tid = ++ci->i_cap_flush_last_tid;
1121 		if (pflush_tid)
1122 			*pflush_tid = flush_tid;
1123 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1124 		for (i = 0; i < CEPH_CAP_BITS; i++)
1125 			if (flushing & (1 << i))
1126 				ci->i_cap_flush_tid[i] = flush_tid;
1127 	}
1128 
1129 	keep = cap->implemented;
1130 	seq = cap->seq;
1131 	issue_seq = cap->issue_seq;
1132 	mseq = cap->mseq;
1133 	size = inode->i_size;
1134 	ci->i_reported_size = size;
1135 	max_size = ci->i_wanted_max_size;
1136 	ci->i_requested_max_size = max_size;
1137 	mtime = inode->i_mtime;
1138 	atime = inode->i_atime;
1139 	time_warp_seq = ci->i_time_warp_seq;
1140 	follows = ci->i_snap_realm->cached_context->seq;
1141 	uid = inode->i_uid;
1142 	gid = inode->i_gid;
1143 	mode = inode->i_mode;
1144 
1145 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1146 		__ceph_build_xattrs_blob(ci);
1147 		xattr_version = ci->i_xattrs.version + 1;
1148 	}
1149 
1150 	spin_unlock(&inode->i_lock);
1151 
1152 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1153 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1154 		size, max_size, &mtime, &atime, time_warp_seq,
1155 		uid, gid, mode,
1156 		xattr_version,
1157 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1158 		follows);
1159 	if (ret < 0) {
1160 		dout("error sending cap msg, must requeue %p\n", inode);
1161 		delayed = 1;
1162 	}
1163 
1164 	if (wake)
1165 		wake_up(&ci->i_cap_wq);
1166 
1167 	return delayed;
1168 }
1169 
1170 /*
1171  * When a snapshot is taken, clients accumulate dirty metadata on
1172  * inodes with capabilities in ceph_cap_snaps to describe the file
1173  * state at the time the snapshot was taken.  This must be flushed
1174  * asynchronously back to the MDS once sync writes complete and dirty
1175  * data is written out.
1176  *
1177  * Called under i_lock.  Takes s_mutex as needed.
1178  */
1179 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1180 			struct ceph_mds_session **psession)
1181 {
1182 	struct inode *inode = &ci->vfs_inode;
1183 	int mds;
1184 	struct ceph_cap_snap *capsnap;
1185 	u32 mseq;
1186 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1187 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1188 						    session->s_mutex */
1189 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1190 			     i_cap_snaps list, and skip these entries next time
1191 			     around to avoid an infinite loop */
1192 
1193 	if (psession)
1194 		session = *psession;
1195 
1196 	dout("__flush_snaps %p\n", inode);
1197 retry:
1198 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1199 		/* avoid an infiniute loop after retry */
1200 		if (capsnap->follows < next_follows)
1201 			continue;
1202 		/*
1203 		 * we need to wait for sync writes to complete and for dirty
1204 		 * pages to be written out.
1205 		 */
1206 		if (capsnap->dirty_pages || capsnap->writing)
1207 			continue;
1208 
1209 		/* pick mds, take s_mutex */
1210 		mds = __ceph_get_cap_mds(ci, &mseq);
1211 		if (session && session->s_mds != mds) {
1212 			dout("oops, wrong session %p mutex\n", session);
1213 			mutex_unlock(&session->s_mutex);
1214 			ceph_put_mds_session(session);
1215 			session = NULL;
1216 		}
1217 		if (!session) {
1218 			spin_unlock(&inode->i_lock);
1219 			mutex_lock(&mdsc->mutex);
1220 			session = __ceph_lookup_mds_session(mdsc, mds);
1221 			mutex_unlock(&mdsc->mutex);
1222 			if (session) {
1223 				dout("inverting session/ino locks on %p\n",
1224 				     session);
1225 				mutex_lock(&session->s_mutex);
1226 			}
1227 			/*
1228 			 * if session == NULL, we raced against a cap
1229 			 * deletion.  retry, and we'll get a better
1230 			 * @mds value next time.
1231 			 */
1232 			spin_lock(&inode->i_lock);
1233 			goto retry;
1234 		}
1235 
1236 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1237 		atomic_inc(&capsnap->nref);
1238 		if (!list_empty(&capsnap->flushing_item))
1239 			list_del_init(&capsnap->flushing_item);
1240 		list_add_tail(&capsnap->flushing_item,
1241 			      &session->s_cap_snaps_flushing);
1242 		spin_unlock(&inode->i_lock);
1243 
1244 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1245 		     inode, capsnap, next_follows, capsnap->size);
1246 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1247 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1248 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1249 			     capsnap->size, 0,
1250 			     &capsnap->mtime, &capsnap->atime,
1251 			     capsnap->time_warp_seq,
1252 			     capsnap->uid, capsnap->gid, capsnap->mode,
1253 			     0, NULL,
1254 			     capsnap->follows);
1255 
1256 		next_follows = capsnap->follows + 1;
1257 		ceph_put_cap_snap(capsnap);
1258 
1259 		spin_lock(&inode->i_lock);
1260 		goto retry;
1261 	}
1262 
1263 	/* we flushed them all; remove this inode from the queue */
1264 	spin_lock(&mdsc->snap_flush_lock);
1265 	list_del_init(&ci->i_snap_flush_item);
1266 	spin_unlock(&mdsc->snap_flush_lock);
1267 
1268 	if (psession)
1269 		*psession = session;
1270 	else if (session) {
1271 		mutex_unlock(&session->s_mutex);
1272 		ceph_put_mds_session(session);
1273 	}
1274 }
1275 
1276 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1277 {
1278 	struct inode *inode = &ci->vfs_inode;
1279 
1280 	spin_lock(&inode->i_lock);
1281 	__ceph_flush_snaps(ci, NULL);
1282 	spin_unlock(&inode->i_lock);
1283 }
1284 
1285 /*
1286  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1287  * list.
1288  */
1289 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1290 {
1291 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1292 	struct inode *inode = &ci->vfs_inode;
1293 	int was = ci->i_dirty_caps;
1294 	int dirty = 0;
1295 
1296 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1297 	     ceph_cap_string(mask), ceph_cap_string(was),
1298 	     ceph_cap_string(was | mask));
1299 	ci->i_dirty_caps |= mask;
1300 	if (was == 0) {
1301 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1302 		BUG_ON(!list_empty(&ci->i_dirty_item));
1303 		spin_lock(&mdsc->cap_dirty_lock);
1304 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1305 		spin_unlock(&mdsc->cap_dirty_lock);
1306 		if (ci->i_flushing_caps == 0) {
1307 			igrab(inode);
1308 			dirty |= I_DIRTY_SYNC;
1309 		}
1310 	}
1311 	BUG_ON(list_empty(&ci->i_dirty_item));
1312 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1313 	    (mask & CEPH_CAP_FILE_BUFFER))
1314 		dirty |= I_DIRTY_DATASYNC;
1315 	if (dirty)
1316 		__mark_inode_dirty(inode, dirty);
1317 	__cap_delay_requeue(mdsc, ci);
1318 }
1319 
1320 /*
1321  * Add dirty inode to the flushing list.  Assigned a seq number so we
1322  * can wait for caps to flush without starving.
1323  *
1324  * Called under i_lock.
1325  */
1326 static int __mark_caps_flushing(struct inode *inode,
1327 				 struct ceph_mds_session *session)
1328 {
1329 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1330 	struct ceph_inode_info *ci = ceph_inode(inode);
1331 	int flushing;
1332 
1333 	BUG_ON(ci->i_dirty_caps == 0);
1334 	BUG_ON(list_empty(&ci->i_dirty_item));
1335 
1336 	flushing = ci->i_dirty_caps;
1337 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1338 	     ceph_cap_string(flushing),
1339 	     ceph_cap_string(ci->i_flushing_caps),
1340 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1341 	ci->i_flushing_caps |= flushing;
1342 	ci->i_dirty_caps = 0;
1343 	dout(" inode %p now !dirty\n", inode);
1344 
1345 	spin_lock(&mdsc->cap_dirty_lock);
1346 	list_del_init(&ci->i_dirty_item);
1347 
1348 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1349 	if (list_empty(&ci->i_flushing_item)) {
1350 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1351 		mdsc->num_cap_flushing++;
1352 		dout(" inode %p now flushing seq %lld\n", inode,
1353 		     ci->i_cap_flush_seq);
1354 	} else {
1355 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1356 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1357 		     ci->i_cap_flush_seq);
1358 	}
1359 	spin_unlock(&mdsc->cap_dirty_lock);
1360 
1361 	return flushing;
1362 }
1363 
1364 /*
1365  * try to invalidate mapping pages without blocking.
1366  */
1367 static int mapping_is_empty(struct address_space *mapping)
1368 {
1369 	struct page *page = find_get_page(mapping, 0);
1370 
1371 	if (!page)
1372 		return 1;
1373 
1374 	put_page(page);
1375 	return 0;
1376 }
1377 
1378 static int try_nonblocking_invalidate(struct inode *inode)
1379 {
1380 	struct ceph_inode_info *ci = ceph_inode(inode);
1381 	u32 invalidating_gen = ci->i_rdcache_gen;
1382 
1383 	spin_unlock(&inode->i_lock);
1384 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1385 	spin_lock(&inode->i_lock);
1386 
1387 	if (mapping_is_empty(&inode->i_data) &&
1388 	    invalidating_gen == ci->i_rdcache_gen) {
1389 		/* success. */
1390 		dout("try_nonblocking_invalidate %p success\n", inode);
1391 		ci->i_rdcache_gen = 0;
1392 		ci->i_rdcache_revoking = 0;
1393 		return 0;
1394 	}
1395 	dout("try_nonblocking_invalidate %p failed\n", inode);
1396 	return -1;
1397 }
1398 
1399 /*
1400  * Swiss army knife function to examine currently used and wanted
1401  * versus held caps.  Release, flush, ack revoked caps to mds as
1402  * appropriate.
1403  *
1404  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1405  *    cap release further.
1406  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1407  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1408  *    further delay.
1409  */
1410 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1411 		     struct ceph_mds_session *session)
1412 {
1413 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1414 	struct ceph_mds_client *mdsc = &client->mdsc;
1415 	struct inode *inode = &ci->vfs_inode;
1416 	struct ceph_cap *cap;
1417 	int file_wanted, used;
1418 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1419 	int drop_session_lock = session ? 0 : 1;
1420 	int issued, implemented, want, retain, revoking, flushing = 0;
1421 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1422 			   to avoid an infinite loop on retry */
1423 	struct rb_node *p;
1424 	int tried_invalidate = 0;
1425 	int delayed = 0, sent = 0, force_requeue = 0, num;
1426 	int queue_invalidate = 0;
1427 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1428 
1429 	/* if we are unmounting, flush any unused caps immediately. */
1430 	if (mdsc->stopping)
1431 		is_delayed = 1;
1432 
1433 	spin_lock(&inode->i_lock);
1434 
1435 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1436 		flags |= CHECK_CAPS_FLUSH;
1437 
1438 	/* flush snaps first time around only */
1439 	if (!list_empty(&ci->i_cap_snaps))
1440 		__ceph_flush_snaps(ci, &session);
1441 	goto retry_locked;
1442 retry:
1443 	spin_lock(&inode->i_lock);
1444 retry_locked:
1445 	file_wanted = __ceph_caps_file_wanted(ci);
1446 	used = __ceph_caps_used(ci);
1447 	want = file_wanted | used;
1448 	issued = __ceph_caps_issued(ci, &implemented);
1449 	revoking = implemented & ~issued;
1450 
1451 	retain = want | CEPH_CAP_PIN;
1452 	if (!mdsc->stopping && inode->i_nlink > 0) {
1453 		if (want) {
1454 			retain |= CEPH_CAP_ANY;       /* be greedy */
1455 		} else {
1456 			retain |= CEPH_CAP_ANY_SHARED;
1457 			/*
1458 			 * keep RD only if we didn't have the file open RW,
1459 			 * because then the mds would revoke it anyway to
1460 			 * journal max_size=0.
1461 			 */
1462 			if (ci->i_max_size == 0)
1463 				retain |= CEPH_CAP_ANY_RD;
1464 		}
1465 	}
1466 
1467 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1468 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1469 	     ceph_cap_string(file_wanted),
1470 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1471 	     ceph_cap_string(ci->i_flushing_caps),
1472 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1473 	     ceph_cap_string(retain),
1474 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1475 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1476 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1477 
1478 	/*
1479 	 * If we no longer need to hold onto old our caps, and we may
1480 	 * have cached pages, but don't want them, then try to invalidate.
1481 	 * If we fail, it's because pages are locked.... try again later.
1482 	 */
1483 	if ((!is_delayed || mdsc->stopping) &&
1484 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1485 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1486 	    (file_wanted == 0 ||                     /* no open files */
1487 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1488 	    !tried_invalidate) {
1489 		dout("check_caps trying to invalidate on %p\n", inode);
1490 		if (try_nonblocking_invalidate(inode) < 0) {
1491 			if (revoking & CEPH_CAP_FILE_CACHE) {
1492 				dout("check_caps queuing invalidate\n");
1493 				queue_invalidate = 1;
1494 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1495 			} else {
1496 				dout("check_caps failed to invalidate pages\n");
1497 				/* we failed to invalidate pages.  check these
1498 				   caps again later. */
1499 				force_requeue = 1;
1500 				__cap_set_timeouts(mdsc, ci);
1501 			}
1502 		}
1503 		tried_invalidate = 1;
1504 		goto retry_locked;
1505 	}
1506 
1507 	num = 0;
1508 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1509 		cap = rb_entry(p, struct ceph_cap, ci_node);
1510 		num++;
1511 
1512 		/* avoid looping forever */
1513 		if (mds >= cap->mds ||
1514 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1515 			continue;
1516 
1517 		/* NOTE: no side-effects allowed, until we take s_mutex */
1518 
1519 		revoking = cap->implemented & ~cap->issued;
1520 		if (revoking)
1521 			dout(" mds%d revoking %s\n", cap->mds,
1522 			     ceph_cap_string(revoking));
1523 
1524 		if (cap == ci->i_auth_cap &&
1525 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1526 			/* request larger max_size from MDS? */
1527 			if (ci->i_wanted_max_size > ci->i_max_size &&
1528 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1529 				dout("requesting new max_size\n");
1530 				goto ack;
1531 			}
1532 
1533 			/* approaching file_max? */
1534 			if ((inode->i_size << 1) >= ci->i_max_size &&
1535 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1536 				dout("i_size approaching max_size\n");
1537 				goto ack;
1538 			}
1539 		}
1540 		/* flush anything dirty? */
1541 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1542 		    ci->i_dirty_caps) {
1543 			dout("flushing dirty caps\n");
1544 			goto ack;
1545 		}
1546 
1547 		/* completed revocation? going down and there are no caps? */
1548 		if (revoking && (revoking & used) == 0) {
1549 			dout("completed revocation of %s\n",
1550 			     ceph_cap_string(cap->implemented & ~cap->issued));
1551 			goto ack;
1552 		}
1553 
1554 		/* want more caps from mds? */
1555 		if (want & ~(cap->mds_wanted | cap->issued))
1556 			goto ack;
1557 
1558 		/* things we might delay */
1559 		if ((cap->issued & ~retain) == 0 &&
1560 		    cap->mds_wanted == want)
1561 			continue;     /* nope, all good */
1562 
1563 		if (is_delayed)
1564 			goto ack;
1565 
1566 		/* delay? */
1567 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1568 		    time_before(jiffies, ci->i_hold_caps_max)) {
1569 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1570 			     ceph_cap_string(cap->issued),
1571 			     ceph_cap_string(cap->issued & retain),
1572 			     ceph_cap_string(cap->mds_wanted),
1573 			     ceph_cap_string(want));
1574 			delayed++;
1575 			continue;
1576 		}
1577 
1578 ack:
1579 		if (session && session != cap->session) {
1580 			dout("oops, wrong session %p mutex\n", session);
1581 			mutex_unlock(&session->s_mutex);
1582 			session = NULL;
1583 		}
1584 		if (!session) {
1585 			session = cap->session;
1586 			if (mutex_trylock(&session->s_mutex) == 0) {
1587 				dout("inverting session/ino locks on %p\n",
1588 				     session);
1589 				spin_unlock(&inode->i_lock);
1590 				if (took_snap_rwsem) {
1591 					up_read(&mdsc->snap_rwsem);
1592 					took_snap_rwsem = 0;
1593 				}
1594 				mutex_lock(&session->s_mutex);
1595 				goto retry;
1596 			}
1597 		}
1598 		/* take snap_rwsem after session mutex */
1599 		if (!took_snap_rwsem) {
1600 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1601 				dout("inverting snap/in locks on %p\n",
1602 				     inode);
1603 				spin_unlock(&inode->i_lock);
1604 				down_read(&mdsc->snap_rwsem);
1605 				took_snap_rwsem = 1;
1606 				goto retry;
1607 			}
1608 			took_snap_rwsem = 1;
1609 		}
1610 
1611 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1612 			flushing = __mark_caps_flushing(inode, session);
1613 
1614 		mds = cap->mds;  /* remember mds, so we don't repeat */
1615 		sent++;
1616 
1617 		/* __send_cap drops i_lock */
1618 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1619 				      retain, flushing, NULL);
1620 		goto retry; /* retake i_lock and restart our cap scan. */
1621 	}
1622 
1623 	/*
1624 	 * Reschedule delayed caps release if we delayed anything,
1625 	 * otherwise cancel.
1626 	 */
1627 	if (delayed && is_delayed)
1628 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1629 	if (!delayed && !is_delayed)
1630 		__cap_delay_cancel(mdsc, ci);
1631 	else if (!is_delayed || force_requeue)
1632 		__cap_delay_requeue(mdsc, ci);
1633 
1634 	spin_unlock(&inode->i_lock);
1635 
1636 	if (queue_invalidate)
1637 		ceph_queue_invalidate(inode);
1638 
1639 	if (session && drop_session_lock)
1640 		mutex_unlock(&session->s_mutex);
1641 	if (took_snap_rwsem)
1642 		up_read(&mdsc->snap_rwsem);
1643 }
1644 
1645 /*
1646  * Try to flush dirty caps back to the auth mds.
1647  */
1648 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1649 			  unsigned *flush_tid)
1650 {
1651 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1652 	struct ceph_inode_info *ci = ceph_inode(inode);
1653 	int unlock_session = session ? 0 : 1;
1654 	int flushing = 0;
1655 
1656 retry:
1657 	spin_lock(&inode->i_lock);
1658 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1659 		struct ceph_cap *cap = ci->i_auth_cap;
1660 		int used = __ceph_caps_used(ci);
1661 		int want = __ceph_caps_wanted(ci);
1662 		int delayed;
1663 
1664 		if (!session) {
1665 			spin_unlock(&inode->i_lock);
1666 			session = cap->session;
1667 			mutex_lock(&session->s_mutex);
1668 			goto retry;
1669 		}
1670 		BUG_ON(session != cap->session);
1671 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1672 			goto out;
1673 
1674 		flushing = __mark_caps_flushing(inode, session);
1675 
1676 		/* __send_cap drops i_lock */
1677 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1678 				     cap->issued | cap->implemented, flushing,
1679 				     flush_tid);
1680 		if (!delayed)
1681 			goto out_unlocked;
1682 
1683 		spin_lock(&inode->i_lock);
1684 		__cap_delay_requeue(mdsc, ci);
1685 	}
1686 out:
1687 	spin_unlock(&inode->i_lock);
1688 out_unlocked:
1689 	if (session && unlock_session)
1690 		mutex_unlock(&session->s_mutex);
1691 	return flushing;
1692 }
1693 
1694 /*
1695  * Return true if we've flushed caps through the given flush_tid.
1696  */
1697 static int caps_are_flushed(struct inode *inode, unsigned tid)
1698 {
1699 	struct ceph_inode_info *ci = ceph_inode(inode);
1700 	int dirty, i, ret = 1;
1701 
1702 	spin_lock(&inode->i_lock);
1703 	dirty = __ceph_caps_dirty(ci);
1704 	for (i = 0; i < CEPH_CAP_BITS; i++)
1705 		if ((ci->i_flushing_caps & (1 << i)) &&
1706 		    ci->i_cap_flush_tid[i] <= tid) {
1707 			/* still flushing this bit */
1708 			ret = 0;
1709 			break;
1710 		}
1711 	spin_unlock(&inode->i_lock);
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Wait on any unsafe replies for the given inode.  First wait on the
1717  * newest request, and make that the upper bound.  Then, if there are
1718  * more requests, keep waiting on the oldest as long as it is still older
1719  * than the original request.
1720  */
1721 static void sync_write_wait(struct inode *inode)
1722 {
1723 	struct ceph_inode_info *ci = ceph_inode(inode);
1724 	struct list_head *head = &ci->i_unsafe_writes;
1725 	struct ceph_osd_request *req;
1726 	u64 last_tid;
1727 
1728 	spin_lock(&ci->i_unsafe_lock);
1729 	if (list_empty(head))
1730 		goto out;
1731 
1732 	/* set upper bound as _last_ entry in chain */
1733 	req = list_entry(head->prev, struct ceph_osd_request,
1734 			 r_unsafe_item);
1735 	last_tid = req->r_tid;
1736 
1737 	do {
1738 		ceph_osdc_get_request(req);
1739 		spin_unlock(&ci->i_unsafe_lock);
1740 		dout("sync_write_wait on tid %llu (until %llu)\n",
1741 		     req->r_tid, last_tid);
1742 		wait_for_completion(&req->r_safe_completion);
1743 		spin_lock(&ci->i_unsafe_lock);
1744 		ceph_osdc_put_request(req);
1745 
1746 		/*
1747 		 * from here on look at first entry in chain, since we
1748 		 * only want to wait for anything older than last_tid
1749 		 */
1750 		if (list_empty(head))
1751 			break;
1752 		req = list_entry(head->next, struct ceph_osd_request,
1753 				 r_unsafe_item);
1754 	} while (req->r_tid < last_tid);
1755 out:
1756 	spin_unlock(&ci->i_unsafe_lock);
1757 }
1758 
1759 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1760 {
1761 	struct inode *inode = dentry->d_inode;
1762 	struct ceph_inode_info *ci = ceph_inode(inode);
1763 	unsigned flush_tid;
1764 	int ret;
1765 	int dirty;
1766 
1767 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1768 	sync_write_wait(inode);
1769 
1770 	ret = filemap_write_and_wait(inode->i_mapping);
1771 	if (ret < 0)
1772 		return ret;
1773 
1774 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1775 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1776 
1777 	/*
1778 	 * only wait on non-file metadata writeback (the mds
1779 	 * can recover size and mtime, so we don't need to
1780 	 * wait for that)
1781 	 */
1782 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1783 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1784 		ret = wait_event_interruptible(ci->i_cap_wq,
1785 				       caps_are_flushed(inode, flush_tid));
1786 	}
1787 
1788 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1794  * queue inode for flush but don't do so immediately, because we can
1795  * get by with fewer MDS messages if we wait for data writeback to
1796  * complete first.
1797  */
1798 int ceph_write_inode(struct inode *inode, int wait)
1799 {
1800 	struct ceph_inode_info *ci = ceph_inode(inode);
1801 	unsigned flush_tid;
1802 	int err = 0;
1803 	int dirty;
1804 
1805 	dout("write_inode %p wait=%d\n", inode, wait);
1806 	if (wait) {
1807 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1808 		if (dirty)
1809 			err = wait_event_interruptible(ci->i_cap_wq,
1810 				       caps_are_flushed(inode, flush_tid));
1811 	} else {
1812 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1813 
1814 		spin_lock(&inode->i_lock);
1815 		if (__ceph_caps_dirty(ci))
1816 			__cap_delay_requeue_front(mdsc, ci);
1817 		spin_unlock(&inode->i_lock);
1818 	}
1819 	return err;
1820 }
1821 
1822 /*
1823  * After a recovering MDS goes active, we need to resend any caps
1824  * we were flushing.
1825  *
1826  * Caller holds session->s_mutex.
1827  */
1828 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1829 				   struct ceph_mds_session *session)
1830 {
1831 	struct ceph_cap_snap *capsnap;
1832 
1833 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1834 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1835 			    flushing_item) {
1836 		struct ceph_inode_info *ci = capsnap->ci;
1837 		struct inode *inode = &ci->vfs_inode;
1838 		struct ceph_cap *cap;
1839 
1840 		spin_lock(&inode->i_lock);
1841 		cap = ci->i_auth_cap;
1842 		if (cap && cap->session == session) {
1843 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1844 			     cap, capsnap);
1845 			__ceph_flush_snaps(ci, &session);
1846 		} else {
1847 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1848 			       cap, session->s_mds);
1849 			spin_unlock(&inode->i_lock);
1850 		}
1851 	}
1852 }
1853 
1854 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1855 			     struct ceph_mds_session *session)
1856 {
1857 	struct ceph_inode_info *ci;
1858 
1859 	kick_flushing_capsnaps(mdsc, session);
1860 
1861 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1862 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1863 		struct inode *inode = &ci->vfs_inode;
1864 		struct ceph_cap *cap;
1865 		int delayed = 0;
1866 
1867 		spin_lock(&inode->i_lock);
1868 		cap = ci->i_auth_cap;
1869 		if (cap && cap->session == session) {
1870 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1871 			     cap, ceph_cap_string(ci->i_flushing_caps));
1872 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1873 					     __ceph_caps_used(ci),
1874 					     __ceph_caps_wanted(ci),
1875 					     cap->issued | cap->implemented,
1876 					     ci->i_flushing_caps, NULL);
1877 			if (delayed) {
1878 				spin_lock(&inode->i_lock);
1879 				__cap_delay_requeue(mdsc, ci);
1880 				spin_unlock(&inode->i_lock);
1881 			}
1882 		} else {
1883 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1884 			       cap, session->s_mds);
1885 			spin_unlock(&inode->i_lock);
1886 		}
1887 	}
1888 }
1889 
1890 
1891 /*
1892  * Take references to capabilities we hold, so that we don't release
1893  * them to the MDS prematurely.
1894  *
1895  * Protected by i_lock.
1896  */
1897 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1898 {
1899 	if (got & CEPH_CAP_PIN)
1900 		ci->i_pin_ref++;
1901 	if (got & CEPH_CAP_FILE_RD)
1902 		ci->i_rd_ref++;
1903 	if (got & CEPH_CAP_FILE_CACHE)
1904 		ci->i_rdcache_ref++;
1905 	if (got & CEPH_CAP_FILE_WR)
1906 		ci->i_wr_ref++;
1907 	if (got & CEPH_CAP_FILE_BUFFER) {
1908 		if (ci->i_wrbuffer_ref == 0)
1909 			igrab(&ci->vfs_inode);
1910 		ci->i_wrbuffer_ref++;
1911 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1912 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1913 	}
1914 }
1915 
1916 /*
1917  * Try to grab cap references.  Specify those refs we @want, and the
1918  * minimal set we @need.  Also include the larger offset we are writing
1919  * to (when applicable), and check against max_size here as well.
1920  * Note that caller is responsible for ensuring max_size increases are
1921  * requested from the MDS.
1922  */
1923 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1924 			    int *got, loff_t endoff, int *check_max, int *err)
1925 {
1926 	struct inode *inode = &ci->vfs_inode;
1927 	int ret = 0;
1928 	int have, implemented;
1929 
1930 	dout("get_cap_refs %p need %s want %s\n", inode,
1931 	     ceph_cap_string(need), ceph_cap_string(want));
1932 	spin_lock(&inode->i_lock);
1933 
1934 	/* make sure we _have_ some caps! */
1935 	if (!__ceph_is_any_caps(ci)) {
1936 		dout("get_cap_refs %p no real caps\n", inode);
1937 		*err = -EBADF;
1938 		ret = 1;
1939 		goto out;
1940 	}
1941 
1942 	if (need & CEPH_CAP_FILE_WR) {
1943 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1944 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1945 			     inode, endoff, ci->i_max_size);
1946 			if (endoff > ci->i_wanted_max_size) {
1947 				*check_max = 1;
1948 				ret = 1;
1949 			}
1950 			goto out;
1951 		}
1952 		/*
1953 		 * If a sync write is in progress, we must wait, so that we
1954 		 * can get a final snapshot value for size+mtime.
1955 		 */
1956 		if (__ceph_have_pending_cap_snap(ci)) {
1957 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1958 			goto out;
1959 		}
1960 	}
1961 	have = __ceph_caps_issued(ci, &implemented);
1962 
1963 	/*
1964 	 * disallow writes while a truncate is pending
1965 	 */
1966 	if (ci->i_truncate_pending)
1967 		have &= ~CEPH_CAP_FILE_WR;
1968 
1969 	if ((have & need) == need) {
1970 		/*
1971 		 * Look at (implemented & ~have & not) so that we keep waiting
1972 		 * on transition from wanted -> needed caps.  This is needed
1973 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1974 		 * going before a prior buffered writeback happens.
1975 		 */
1976 		int not = want & ~(have & need);
1977 		int revoking = implemented & ~have;
1978 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1979 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1980 		     ceph_cap_string(revoking));
1981 		if ((revoking & not) == 0) {
1982 			*got = need | (have & want);
1983 			__take_cap_refs(ci, *got);
1984 			ret = 1;
1985 		}
1986 	} else {
1987 		dout("get_cap_refs %p have %s needed %s\n", inode,
1988 		     ceph_cap_string(have), ceph_cap_string(need));
1989 	}
1990 out:
1991 	spin_unlock(&inode->i_lock);
1992 	dout("get_cap_refs %p ret %d got %s\n", inode,
1993 	     ret, ceph_cap_string(*got));
1994 	return ret;
1995 }
1996 
1997 /*
1998  * Check the offset we are writing up to against our current
1999  * max_size.  If necessary, tell the MDS we want to write to
2000  * a larger offset.
2001  */
2002 static void check_max_size(struct inode *inode, loff_t endoff)
2003 {
2004 	struct ceph_inode_info *ci = ceph_inode(inode);
2005 	int check = 0;
2006 
2007 	/* do we need to explicitly request a larger max_size? */
2008 	spin_lock(&inode->i_lock);
2009 	if ((endoff >= ci->i_max_size ||
2010 	     endoff > (inode->i_size << 1)) &&
2011 	    endoff > ci->i_wanted_max_size) {
2012 		dout("write %p at large endoff %llu, req max_size\n",
2013 		     inode, endoff);
2014 		ci->i_wanted_max_size = endoff;
2015 		check = 1;
2016 	}
2017 	spin_unlock(&inode->i_lock);
2018 	if (check)
2019 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2020 }
2021 
2022 /*
2023  * Wait for caps, and take cap references.  If we can't get a WR cap
2024  * due to a small max_size, make sure we check_max_size (and possibly
2025  * ask the mds) so we don't get hung up indefinitely.
2026  */
2027 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2028 		  loff_t endoff)
2029 {
2030 	int check_max, ret, err;
2031 
2032 retry:
2033 	if (endoff > 0)
2034 		check_max_size(&ci->vfs_inode, endoff);
2035 	check_max = 0;
2036 	err = 0;
2037 	ret = wait_event_interruptible(ci->i_cap_wq,
2038 				       try_get_cap_refs(ci, need, want,
2039 							got, endoff,
2040 							&check_max, &err));
2041 	if (err)
2042 		ret = err;
2043 	if (check_max)
2044 		goto retry;
2045 	return ret;
2046 }
2047 
2048 /*
2049  * Take cap refs.  Caller must already know we hold at least one ref
2050  * on the caps in question or we don't know this is safe.
2051  */
2052 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2053 {
2054 	spin_lock(&ci->vfs_inode.i_lock);
2055 	__take_cap_refs(ci, caps);
2056 	spin_unlock(&ci->vfs_inode.i_lock);
2057 }
2058 
2059 /*
2060  * Release cap refs.
2061  *
2062  * If we released the last ref on any given cap, call ceph_check_caps
2063  * to release (or schedule a release).
2064  *
2065  * If we are releasing a WR cap (from a sync write), finalize any affected
2066  * cap_snap, and wake up any waiters.
2067  */
2068 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2069 {
2070 	struct inode *inode = &ci->vfs_inode;
2071 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2072 	struct ceph_cap_snap *capsnap;
2073 
2074 	spin_lock(&inode->i_lock);
2075 	if (had & CEPH_CAP_PIN)
2076 		--ci->i_pin_ref;
2077 	if (had & CEPH_CAP_FILE_RD)
2078 		if (--ci->i_rd_ref == 0)
2079 			last++;
2080 	if (had & CEPH_CAP_FILE_CACHE)
2081 		if (--ci->i_rdcache_ref == 0)
2082 			last++;
2083 	if (had & CEPH_CAP_FILE_BUFFER) {
2084 		if (--ci->i_wrbuffer_ref == 0) {
2085 			last++;
2086 			put++;
2087 		}
2088 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2089 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2090 	}
2091 	if (had & CEPH_CAP_FILE_WR)
2092 		if (--ci->i_wr_ref == 0) {
2093 			last++;
2094 			if (!list_empty(&ci->i_cap_snaps)) {
2095 				capsnap = list_first_entry(&ci->i_cap_snaps,
2096 						     struct ceph_cap_snap,
2097 						     ci_item);
2098 				if (capsnap->writing) {
2099 					capsnap->writing = 0;
2100 					flushsnaps =
2101 						__ceph_finish_cap_snap(ci,
2102 								       capsnap);
2103 					wake = 1;
2104 				}
2105 			}
2106 		}
2107 	spin_unlock(&inode->i_lock);
2108 
2109 	dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2110 	     last ? "last" : "");
2111 
2112 	if (last && !flushsnaps)
2113 		ceph_check_caps(ci, 0, NULL);
2114 	else if (flushsnaps)
2115 		ceph_flush_snaps(ci);
2116 	if (wake)
2117 		wake_up(&ci->i_cap_wq);
2118 	if (put)
2119 		iput(inode);
2120 }
2121 
2122 /*
2123  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2124  * context.  Adjust per-snap dirty page accounting as appropriate.
2125  * Once all dirty data for a cap_snap is flushed, flush snapped file
2126  * metadata back to the MDS.  If we dropped the last ref, call
2127  * ceph_check_caps.
2128  */
2129 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2130 				struct ceph_snap_context *snapc)
2131 {
2132 	struct inode *inode = &ci->vfs_inode;
2133 	int last = 0;
2134 	int last_snap = 0;
2135 	int found = 0;
2136 	struct ceph_cap_snap *capsnap = NULL;
2137 
2138 	spin_lock(&inode->i_lock);
2139 	ci->i_wrbuffer_ref -= nr;
2140 	last = !ci->i_wrbuffer_ref;
2141 
2142 	if (ci->i_head_snapc == snapc) {
2143 		ci->i_wrbuffer_ref_head -= nr;
2144 		if (!ci->i_wrbuffer_ref_head) {
2145 			ceph_put_snap_context(ci->i_head_snapc);
2146 			ci->i_head_snapc = NULL;
2147 		}
2148 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2149 		     inode,
2150 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2151 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2152 		     last ? " LAST" : "");
2153 	} else {
2154 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2155 			if (capsnap->context == snapc) {
2156 				found = 1;
2157 				capsnap->dirty_pages -= nr;
2158 				last_snap = !capsnap->dirty_pages;
2159 				break;
2160 			}
2161 		}
2162 		BUG_ON(!found);
2163 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2164 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2165 		     inode, capsnap, capsnap->context->seq,
2166 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2167 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2168 		     last ? " (wrbuffer last)" : "",
2169 		     last_snap ? " (capsnap last)" : "");
2170 	}
2171 
2172 	spin_unlock(&inode->i_lock);
2173 
2174 	if (last) {
2175 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2176 		iput(inode);
2177 	} else if (last_snap) {
2178 		ceph_flush_snaps(ci);
2179 		wake_up(&ci->i_cap_wq);
2180 	}
2181 }
2182 
2183 /*
2184  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2185  * actually be a revocation if it specifies a smaller cap set.)
2186  *
2187  * caller holds s_mutex.
2188  * return value:
2189  *  0 - ok
2190  *  1 - check_caps on auth cap only (writeback)
2191  *  2 - check_caps (ack revoke)
2192  */
2193 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2194 			    struct ceph_mds_session *session,
2195 			    struct ceph_cap *cap,
2196 			    struct ceph_buffer *xattr_buf)
2197 	__releases(inode->i_lock)
2198 
2199 {
2200 	struct ceph_inode_info *ci = ceph_inode(inode);
2201 	int mds = session->s_mds;
2202 	int seq = le32_to_cpu(grant->seq);
2203 	int newcaps = le32_to_cpu(grant->caps);
2204 	int issued, implemented, used, wanted, dirty;
2205 	u64 size = le64_to_cpu(grant->size);
2206 	u64 max_size = le64_to_cpu(grant->max_size);
2207 	struct timespec mtime, atime, ctime;
2208 	int reply = 0;
2209 	int wake = 0;
2210 	int writeback = 0;
2211 	int revoked_rdcache = 0;
2212 	int queue_invalidate = 0;
2213 
2214 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2215 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2216 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2217 		inode->i_size);
2218 
2219 	/*
2220 	 * If CACHE is being revoked, and we have no dirty buffers,
2221 	 * try to invalidate (once).  (If there are dirty buffers, we
2222 	 * will invalidate _after_ writeback.)
2223 	 */
2224 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2225 	    !ci->i_wrbuffer_ref) {
2226 		if (try_nonblocking_invalidate(inode) == 0) {
2227 			revoked_rdcache = 1;
2228 		} else {
2229 			/* there were locked pages.. invalidate later
2230 			   in a separate thread. */
2231 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2232 				queue_invalidate = 1;
2233 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2234 			}
2235 		}
2236 	}
2237 
2238 	/* side effects now are allowed */
2239 
2240 	issued = __ceph_caps_issued(ci, &implemented);
2241 	issued |= implemented | __ceph_caps_dirty(ci);
2242 
2243 	cap->cap_gen = session->s_cap_gen;
2244 
2245 	__check_cap_issue(ci, cap, newcaps);
2246 
2247 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2248 		inode->i_mode = le32_to_cpu(grant->mode);
2249 		inode->i_uid = le32_to_cpu(grant->uid);
2250 		inode->i_gid = le32_to_cpu(grant->gid);
2251 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2252 		     inode->i_uid, inode->i_gid);
2253 	}
2254 
2255 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2256 		inode->i_nlink = le32_to_cpu(grant->nlink);
2257 
2258 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2259 		int len = le32_to_cpu(grant->xattr_len);
2260 		u64 version = le64_to_cpu(grant->xattr_version);
2261 
2262 		if (version > ci->i_xattrs.version) {
2263 			dout(" got new xattrs v%llu on %p len %d\n",
2264 			     version, inode, len);
2265 			if (ci->i_xattrs.blob)
2266 				ceph_buffer_put(ci->i_xattrs.blob);
2267 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2268 			ci->i_xattrs.version = version;
2269 		}
2270 	}
2271 
2272 	/* size/ctime/mtime/atime? */
2273 	ceph_fill_file_size(inode, issued,
2274 			    le32_to_cpu(grant->truncate_seq),
2275 			    le64_to_cpu(grant->truncate_size), size);
2276 	ceph_decode_timespec(&mtime, &grant->mtime);
2277 	ceph_decode_timespec(&atime, &grant->atime);
2278 	ceph_decode_timespec(&ctime, &grant->ctime);
2279 	ceph_fill_file_time(inode, issued,
2280 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2281 			    &atime);
2282 
2283 	/* max size increase? */
2284 	if (max_size != ci->i_max_size) {
2285 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2286 		ci->i_max_size = max_size;
2287 		if (max_size >= ci->i_wanted_max_size) {
2288 			ci->i_wanted_max_size = 0;  /* reset */
2289 			ci->i_requested_max_size = 0;
2290 		}
2291 		wake = 1;
2292 	}
2293 
2294 	/* check cap bits */
2295 	wanted = __ceph_caps_wanted(ci);
2296 	used = __ceph_caps_used(ci);
2297 	dirty = __ceph_caps_dirty(ci);
2298 	dout(" my wanted = %s, used = %s, dirty %s\n",
2299 	     ceph_cap_string(wanted),
2300 	     ceph_cap_string(used),
2301 	     ceph_cap_string(dirty));
2302 	if (wanted != le32_to_cpu(grant->wanted)) {
2303 		dout("mds wanted %s -> %s\n",
2304 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2305 		     ceph_cap_string(wanted));
2306 		grant->wanted = cpu_to_le32(wanted);
2307 	}
2308 
2309 	cap->seq = seq;
2310 
2311 	/* file layout may have changed */
2312 	ci->i_layout = grant->layout;
2313 
2314 	/* revocation, grant, or no-op? */
2315 	if (cap->issued & ~newcaps) {
2316 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2317 		     ceph_cap_string(newcaps));
2318 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2319 			writeback = 1; /* will delay ack */
2320 		else if (dirty & ~newcaps)
2321 			reply = 1;     /* initiate writeback in check_caps */
2322 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2323 			   revoked_rdcache)
2324 			reply = 2;     /* send revoke ack in check_caps */
2325 		cap->issued = newcaps;
2326 	} else if (cap->issued == newcaps) {
2327 		dout("caps unchanged: %s -> %s\n",
2328 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2329 	} else {
2330 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2331 		     ceph_cap_string(newcaps));
2332 		cap->issued = newcaps;
2333 		cap->implemented |= newcaps; /* add bits only, to
2334 					      * avoid stepping on a
2335 					      * pending revocation */
2336 		wake = 1;
2337 	}
2338 
2339 	spin_unlock(&inode->i_lock);
2340 	if (writeback)
2341 		/*
2342 		 * queue inode for writeback: we can't actually call
2343 		 * filemap_write_and_wait, etc. from message handler
2344 		 * context.
2345 		 */
2346 		ceph_queue_writeback(inode);
2347 	if (queue_invalidate)
2348 		ceph_queue_invalidate(inode);
2349 	if (wake)
2350 		wake_up(&ci->i_cap_wq);
2351 	return reply;
2352 }
2353 
2354 /*
2355  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2356  * MDS has been safely committed.
2357  */
2358 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2359 				 struct ceph_mds_caps *m,
2360 				 struct ceph_mds_session *session,
2361 				 struct ceph_cap *cap)
2362 	__releases(inode->i_lock)
2363 {
2364 	struct ceph_inode_info *ci = ceph_inode(inode);
2365 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2366 	unsigned seq = le32_to_cpu(m->seq);
2367 	int dirty = le32_to_cpu(m->dirty);
2368 	int cleaned = 0;
2369 	int drop = 0;
2370 	int i;
2371 
2372 	for (i = 0; i < CEPH_CAP_BITS; i++)
2373 		if ((dirty & (1 << i)) &&
2374 		    flush_tid == ci->i_cap_flush_tid[i])
2375 			cleaned |= 1 << i;
2376 
2377 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2378 	     " flushing %s -> %s\n",
2379 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2380 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2381 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2382 
2383 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2384 		goto out;
2385 
2386 	ci->i_flushing_caps &= ~cleaned;
2387 
2388 	spin_lock(&mdsc->cap_dirty_lock);
2389 	if (ci->i_flushing_caps == 0) {
2390 		list_del_init(&ci->i_flushing_item);
2391 		if (!list_empty(&session->s_cap_flushing))
2392 			dout(" mds%d still flushing cap on %p\n",
2393 			     session->s_mds,
2394 			     &list_entry(session->s_cap_flushing.next,
2395 					 struct ceph_inode_info,
2396 					 i_flushing_item)->vfs_inode);
2397 		mdsc->num_cap_flushing--;
2398 		wake_up(&mdsc->cap_flushing_wq);
2399 		dout(" inode %p now !flushing\n", inode);
2400 
2401 		if (ci->i_dirty_caps == 0) {
2402 			dout(" inode %p now clean\n", inode);
2403 			BUG_ON(!list_empty(&ci->i_dirty_item));
2404 			drop = 1;
2405 		} else {
2406 			BUG_ON(list_empty(&ci->i_dirty_item));
2407 		}
2408 	}
2409 	spin_unlock(&mdsc->cap_dirty_lock);
2410 	wake_up(&ci->i_cap_wq);
2411 
2412 out:
2413 	spin_unlock(&inode->i_lock);
2414 	if (drop)
2415 		iput(inode);
2416 }
2417 
2418 /*
2419  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2420  * throw away our cap_snap.
2421  *
2422  * Caller hold s_mutex.
2423  */
2424 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2425 				     struct ceph_mds_caps *m,
2426 				     struct ceph_mds_session *session)
2427 {
2428 	struct ceph_inode_info *ci = ceph_inode(inode);
2429 	u64 follows = le64_to_cpu(m->snap_follows);
2430 	struct ceph_cap_snap *capsnap;
2431 	int drop = 0;
2432 
2433 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2434 	     inode, ci, session->s_mds, follows);
2435 
2436 	spin_lock(&inode->i_lock);
2437 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2438 		if (capsnap->follows == follows) {
2439 			if (capsnap->flush_tid != flush_tid) {
2440 				dout(" cap_snap %p follows %lld tid %lld !="
2441 				     " %lld\n", capsnap, follows,
2442 				     flush_tid, capsnap->flush_tid);
2443 				break;
2444 			}
2445 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2446 			dout(" removing cap_snap %p follows %lld\n",
2447 			     capsnap, follows);
2448 			ceph_put_snap_context(capsnap->context);
2449 			list_del(&capsnap->ci_item);
2450 			list_del(&capsnap->flushing_item);
2451 			ceph_put_cap_snap(capsnap);
2452 			drop = 1;
2453 			break;
2454 		} else {
2455 			dout(" skipping cap_snap %p follows %lld\n",
2456 			     capsnap, capsnap->follows);
2457 		}
2458 	}
2459 	spin_unlock(&inode->i_lock);
2460 	if (drop)
2461 		iput(inode);
2462 }
2463 
2464 /*
2465  * Handle TRUNC from MDS, indicating file truncation.
2466  *
2467  * caller hold s_mutex.
2468  */
2469 static void handle_cap_trunc(struct inode *inode,
2470 			     struct ceph_mds_caps *trunc,
2471 			     struct ceph_mds_session *session)
2472 	__releases(inode->i_lock)
2473 {
2474 	struct ceph_inode_info *ci = ceph_inode(inode);
2475 	int mds = session->s_mds;
2476 	int seq = le32_to_cpu(trunc->seq);
2477 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2478 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2479 	u64 size = le64_to_cpu(trunc->size);
2480 	int implemented = 0;
2481 	int dirty = __ceph_caps_dirty(ci);
2482 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2483 	int queue_trunc = 0;
2484 
2485 	issued |= implemented | dirty;
2486 
2487 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2488 	     inode, mds, seq, truncate_size, truncate_seq);
2489 	queue_trunc = ceph_fill_file_size(inode, issued,
2490 					  truncate_seq, truncate_size, size);
2491 	spin_unlock(&inode->i_lock);
2492 
2493 	if (queue_trunc)
2494 		ceph_queue_vmtruncate(inode);
2495 }
2496 
2497 /*
2498  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2499  * different one.  If we are the most recent migration we've seen (as
2500  * indicated by mseq), make note of the migrating cap bits for the
2501  * duration (until we see the corresponding IMPORT).
2502  *
2503  * caller holds s_mutex
2504  */
2505 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2506 			      struct ceph_mds_session *session)
2507 {
2508 	struct ceph_inode_info *ci = ceph_inode(inode);
2509 	int mds = session->s_mds;
2510 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2511 	struct ceph_cap *cap = NULL, *t;
2512 	struct rb_node *p;
2513 	int remember = 1;
2514 
2515 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2516 	     inode, ci, mds, mseq);
2517 
2518 	spin_lock(&inode->i_lock);
2519 
2520 	/* make sure we haven't seen a higher mseq */
2521 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2522 		t = rb_entry(p, struct ceph_cap, ci_node);
2523 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2524 			dout(" higher mseq on cap from mds%d\n",
2525 			     t->session->s_mds);
2526 			remember = 0;
2527 		}
2528 		if (t->session->s_mds == mds)
2529 			cap = t;
2530 	}
2531 
2532 	if (cap) {
2533 		if (remember) {
2534 			/* make note */
2535 			ci->i_cap_exporting_mds = mds;
2536 			ci->i_cap_exporting_mseq = mseq;
2537 			ci->i_cap_exporting_issued = cap->issued;
2538 		}
2539 		__ceph_remove_cap(cap);
2540 	} else {
2541 		WARN_ON(!cap);
2542 	}
2543 
2544 	spin_unlock(&inode->i_lock);
2545 }
2546 
2547 /*
2548  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2549  * clean them up.
2550  *
2551  * caller holds s_mutex.
2552  */
2553 static void handle_cap_import(struct ceph_mds_client *mdsc,
2554 			      struct inode *inode, struct ceph_mds_caps *im,
2555 			      struct ceph_mds_session *session,
2556 			      void *snaptrace, int snaptrace_len)
2557 {
2558 	struct ceph_inode_info *ci = ceph_inode(inode);
2559 	int mds = session->s_mds;
2560 	unsigned issued = le32_to_cpu(im->caps);
2561 	unsigned wanted = le32_to_cpu(im->wanted);
2562 	unsigned seq = le32_to_cpu(im->seq);
2563 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2564 	u64 realmino = le64_to_cpu(im->realm);
2565 	u64 cap_id = le64_to_cpu(im->cap_id);
2566 
2567 	if (ci->i_cap_exporting_mds >= 0 &&
2568 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2569 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2570 		     " - cleared exporting from mds%d\n",
2571 		     inode, ci, mds, mseq,
2572 		     ci->i_cap_exporting_mds);
2573 		ci->i_cap_exporting_issued = 0;
2574 		ci->i_cap_exporting_mseq = 0;
2575 		ci->i_cap_exporting_mds = -1;
2576 	} else {
2577 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2578 		     inode, ci, mds, mseq);
2579 	}
2580 
2581 	down_write(&mdsc->snap_rwsem);
2582 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2583 			       false);
2584 	downgrade_write(&mdsc->snap_rwsem);
2585 	ceph_add_cap(inode, session, cap_id, -1,
2586 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2587 		     NULL /* no caps context */);
2588 	try_flush_caps(inode, session, NULL);
2589 	up_read(&mdsc->snap_rwsem);
2590 }
2591 
2592 /*
2593  * Handle a caps message from the MDS.
2594  *
2595  * Identify the appropriate session, inode, and call the right handler
2596  * based on the cap op.
2597  */
2598 void ceph_handle_caps(struct ceph_mds_session *session,
2599 		      struct ceph_msg *msg)
2600 {
2601 	struct ceph_mds_client *mdsc = session->s_mdsc;
2602 	struct super_block *sb = mdsc->client->sb;
2603 	struct inode *inode;
2604 	struct ceph_cap *cap;
2605 	struct ceph_mds_caps *h;
2606 	int mds = le64_to_cpu(msg->hdr.src.name.num);
2607 	int op;
2608 	u32 seq;
2609 	struct ceph_vino vino;
2610 	u64 cap_id;
2611 	u64 size, max_size;
2612 	u64 tid;
2613 	int check_caps = 0;
2614 	int r;
2615 
2616 	dout("handle_caps from mds%d\n", mds);
2617 
2618 	/* decode */
2619 	tid = le64_to_cpu(msg->hdr.tid);
2620 	if (msg->front.iov_len < sizeof(*h))
2621 		goto bad;
2622 	h = msg->front.iov_base;
2623 	op = le32_to_cpu(h->op);
2624 	vino.ino = le64_to_cpu(h->ino);
2625 	vino.snap = CEPH_NOSNAP;
2626 	cap_id = le64_to_cpu(h->cap_id);
2627 	seq = le32_to_cpu(h->seq);
2628 	size = le64_to_cpu(h->size);
2629 	max_size = le64_to_cpu(h->max_size);
2630 
2631 	mutex_lock(&session->s_mutex);
2632 	session->s_seq++;
2633 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2634 	     (unsigned)seq);
2635 
2636 	/* lookup ino */
2637 	inode = ceph_find_inode(sb, vino);
2638 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2639 	     vino.snap, inode);
2640 	if (!inode) {
2641 		dout(" i don't have ino %llx\n", vino.ino);
2642 		goto done;
2643 	}
2644 
2645 	/* these will work even if we don't have a cap yet */
2646 	switch (op) {
2647 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2648 		handle_cap_flushsnap_ack(inode, tid, h, session);
2649 		goto done;
2650 
2651 	case CEPH_CAP_OP_EXPORT:
2652 		handle_cap_export(inode, h, session);
2653 		goto done;
2654 
2655 	case CEPH_CAP_OP_IMPORT:
2656 		handle_cap_import(mdsc, inode, h, session,
2657 				  msg->middle,
2658 				  le32_to_cpu(h->snap_trace_len));
2659 		check_caps = 1; /* we may have sent a RELEASE to the old auth */
2660 		goto done;
2661 	}
2662 
2663 	/* the rest require a cap */
2664 	spin_lock(&inode->i_lock);
2665 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2666 	if (!cap) {
2667 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2668 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2669 		spin_unlock(&inode->i_lock);
2670 		goto done;
2671 	}
2672 
2673 	/* note that each of these drops i_lock for us */
2674 	switch (op) {
2675 	case CEPH_CAP_OP_REVOKE:
2676 	case CEPH_CAP_OP_GRANT:
2677 		r = handle_cap_grant(inode, h, session, cap, msg->middle);
2678 		if (r == 1)
2679 			ceph_check_caps(ceph_inode(inode),
2680 					CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2681 					session);
2682 		else if (r == 2)
2683 			ceph_check_caps(ceph_inode(inode),
2684 					CHECK_CAPS_NODELAY,
2685 					session);
2686 		break;
2687 
2688 	case CEPH_CAP_OP_FLUSH_ACK:
2689 		handle_cap_flush_ack(inode, tid, h, session, cap);
2690 		break;
2691 
2692 	case CEPH_CAP_OP_TRUNC:
2693 		handle_cap_trunc(inode, h, session);
2694 		break;
2695 
2696 	default:
2697 		spin_unlock(&inode->i_lock);
2698 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2699 		       ceph_cap_op_name(op));
2700 	}
2701 
2702 done:
2703 	mutex_unlock(&session->s_mutex);
2704 
2705 	if (check_caps)
2706 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2707 	if (inode)
2708 		iput(inode);
2709 	return;
2710 
2711 bad:
2712 	pr_err("ceph_handle_caps: corrupt message\n");
2713 	ceph_msg_dump(msg);
2714 	return;
2715 }
2716 
2717 /*
2718  * Delayed work handler to process end of delayed cap release LRU list.
2719  */
2720 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2721 {
2722 	struct ceph_inode_info *ci;
2723 	int flags = CHECK_CAPS_NODELAY;
2724 
2725 	dout("check_delayed_caps\n");
2726 	while (1) {
2727 		spin_lock(&mdsc->cap_delay_lock);
2728 		if (list_empty(&mdsc->cap_delay_list))
2729 			break;
2730 		ci = list_first_entry(&mdsc->cap_delay_list,
2731 				      struct ceph_inode_info,
2732 				      i_cap_delay_list);
2733 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2734 		    time_before(jiffies, ci->i_hold_caps_max))
2735 			break;
2736 		list_del_init(&ci->i_cap_delay_list);
2737 		spin_unlock(&mdsc->cap_delay_lock);
2738 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2739 		ceph_check_caps(ci, flags, NULL);
2740 	}
2741 	spin_unlock(&mdsc->cap_delay_lock);
2742 }
2743 
2744 /*
2745  * Flush all dirty caps to the mds
2746  */
2747 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2748 {
2749 	struct ceph_inode_info *ci;
2750 	struct inode *inode;
2751 
2752 	dout("flush_dirty_caps\n");
2753 	spin_lock(&mdsc->cap_dirty_lock);
2754 	while (!list_empty(&mdsc->cap_dirty)) {
2755 		ci = list_first_entry(&mdsc->cap_dirty,
2756 				      struct ceph_inode_info,
2757 				      i_dirty_item);
2758 		inode = igrab(&ci->vfs_inode);
2759 		spin_unlock(&mdsc->cap_dirty_lock);
2760 		if (inode) {
2761 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2762 					NULL);
2763 			iput(inode);
2764 		}
2765 		spin_lock(&mdsc->cap_dirty_lock);
2766 	}
2767 	spin_unlock(&mdsc->cap_dirty_lock);
2768 }
2769 
2770 /*
2771  * Drop open file reference.  If we were the last open file,
2772  * we may need to release capabilities to the MDS (or schedule
2773  * their delayed release).
2774  */
2775 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2776 {
2777 	struct inode *inode = &ci->vfs_inode;
2778 	int last = 0;
2779 
2780 	spin_lock(&inode->i_lock);
2781 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2782 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2783 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2784 	if (--ci->i_nr_by_mode[fmode] == 0)
2785 		last++;
2786 	spin_unlock(&inode->i_lock);
2787 
2788 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2789 		ceph_check_caps(ci, 0, NULL);
2790 }
2791 
2792 /*
2793  * Helpers for embedding cap and dentry lease releases into mds
2794  * requests.
2795  *
2796  * @force is used by dentry_release (below) to force inclusion of a
2797  * record for the directory inode, even when there aren't any caps to
2798  * drop.
2799  */
2800 int ceph_encode_inode_release(void **p, struct inode *inode,
2801 			      int mds, int drop, int unless, int force)
2802 {
2803 	struct ceph_inode_info *ci = ceph_inode(inode);
2804 	struct ceph_cap *cap;
2805 	struct ceph_mds_request_release *rel = *p;
2806 	int ret = 0;
2807 
2808 	dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2809 	     mds, ceph_cap_string(drop), ceph_cap_string(unless));
2810 
2811 	spin_lock(&inode->i_lock);
2812 	cap = __get_cap_for_mds(ci, mds);
2813 	if (cap && __cap_is_valid(cap)) {
2814 		if (force ||
2815 		    ((cap->issued & drop) &&
2816 		     (cap->issued & unless) == 0)) {
2817 			if ((cap->issued & drop) &&
2818 			    (cap->issued & unless) == 0) {
2819 				dout("encode_inode_release %p cap %p %s -> "
2820 				     "%s\n", inode, cap,
2821 				     ceph_cap_string(cap->issued),
2822 				     ceph_cap_string(cap->issued & ~drop));
2823 				cap->issued &= ~drop;
2824 				cap->implemented &= ~drop;
2825 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2826 					int wanted = __ceph_caps_wanted(ci);
2827 					dout("  wanted %s -> %s (act %s)\n",
2828 					     ceph_cap_string(cap->mds_wanted),
2829 					     ceph_cap_string(cap->mds_wanted &
2830 							     ~wanted),
2831 					     ceph_cap_string(wanted));
2832 					cap->mds_wanted &= wanted;
2833 				}
2834 			} else {
2835 				dout("encode_inode_release %p cap %p %s"
2836 				     " (force)\n", inode, cap,
2837 				     ceph_cap_string(cap->issued));
2838 			}
2839 
2840 			rel->ino = cpu_to_le64(ceph_ino(inode));
2841 			rel->cap_id = cpu_to_le64(cap->cap_id);
2842 			rel->seq = cpu_to_le32(cap->seq);
2843 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2844 			rel->mseq = cpu_to_le32(cap->mseq);
2845 			rel->caps = cpu_to_le32(cap->issued);
2846 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2847 			rel->dname_len = 0;
2848 			rel->dname_seq = 0;
2849 			*p += sizeof(*rel);
2850 			ret = 1;
2851 		} else {
2852 			dout("encode_inode_release %p cap %p %s\n",
2853 			     inode, cap, ceph_cap_string(cap->issued));
2854 		}
2855 	}
2856 	spin_unlock(&inode->i_lock);
2857 	return ret;
2858 }
2859 
2860 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2861 			       int mds, int drop, int unless)
2862 {
2863 	struct inode *dir = dentry->d_parent->d_inode;
2864 	struct ceph_mds_request_release *rel = *p;
2865 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2866 	int force = 0;
2867 	int ret;
2868 
2869 	/*
2870 	 * force an record for the directory caps if we have a dentry lease.
2871 	 * this is racy (can't take i_lock and d_lock together), but it
2872 	 * doesn't have to be perfect; the mds will revoke anything we don't
2873 	 * release.
2874 	 */
2875 	spin_lock(&dentry->d_lock);
2876 	if (di->lease_session && di->lease_session->s_mds == mds)
2877 		force = 1;
2878 	spin_unlock(&dentry->d_lock);
2879 
2880 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2881 
2882 	spin_lock(&dentry->d_lock);
2883 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2884 		dout("encode_dentry_release %p mds%d seq %d\n",
2885 		     dentry, mds, (int)di->lease_seq);
2886 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2887 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2888 		*p += dentry->d_name.len;
2889 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2890 	}
2891 	spin_unlock(&dentry->d_lock);
2892 	return ret;
2893 }
2894