1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 int ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap_reservation *caps_reservation) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *new_cap = NULL; 520 struct ceph_cap *cap; 521 int mds = session->s_mds; 522 int actual_wanted; 523 524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 525 session->s_mds, cap_id, ceph_cap_string(issued), seq); 526 527 /* 528 * If we are opening the file, include file mode wanted bits 529 * in wanted. 530 */ 531 if (fmode >= 0) 532 wanted |= ceph_caps_for_mode(fmode); 533 534 retry: 535 spin_lock(&ci->i_ceph_lock); 536 cap = __get_cap_for_mds(ci, mds); 537 if (!cap) { 538 if (new_cap) { 539 cap = new_cap; 540 new_cap = NULL; 541 } else { 542 spin_unlock(&ci->i_ceph_lock); 543 new_cap = get_cap(mdsc, caps_reservation); 544 if (new_cap == NULL) 545 return -ENOMEM; 546 goto retry; 547 } 548 549 cap->issued = 0; 550 cap->implemented = 0; 551 cap->mds = mds; 552 cap->mds_wanted = 0; 553 cap->mseq = 0; 554 555 cap->ci = ci; 556 __insert_cap_node(ci, cap); 557 558 /* add to session cap list */ 559 cap->session = session; 560 spin_lock(&session->s_cap_lock); 561 list_add_tail(&cap->session_caps, &session->s_caps); 562 session->s_nr_caps++; 563 spin_unlock(&session->s_cap_lock); 564 } else { 565 if (new_cap) 566 ceph_put_cap(mdsc, new_cap); 567 568 /* 569 * auth mds of the inode changed. we received the cap export 570 * message, but still haven't received the cap import message. 571 * handle_cap_export() updated the new auth MDS' cap. 572 * 573 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 574 * a message that was send before the cap import message. So 575 * don't remove caps. 576 */ 577 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 578 WARN_ON(cap != ci->i_auth_cap); 579 WARN_ON(cap->cap_id != cap_id); 580 seq = cap->seq; 581 mseq = cap->mseq; 582 issued |= cap->issued; 583 flags |= CEPH_CAP_FLAG_AUTH; 584 } 585 } 586 587 if (!ci->i_snap_realm) { 588 /* 589 * add this inode to the appropriate snap realm 590 */ 591 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 592 realmino); 593 if (realm) { 594 ceph_get_snap_realm(mdsc, realm); 595 spin_lock(&realm->inodes_with_caps_lock); 596 ci->i_snap_realm = realm; 597 list_add(&ci->i_snap_realm_item, 598 &realm->inodes_with_caps); 599 spin_unlock(&realm->inodes_with_caps_lock); 600 } else { 601 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 602 realmino); 603 WARN_ON(!realm); 604 } 605 } 606 607 __check_cap_issue(ci, cap, issued); 608 609 /* 610 * If we are issued caps we don't want, or the mds' wanted 611 * value appears to be off, queue a check so we'll release 612 * later and/or update the mds wanted value. 613 */ 614 actual_wanted = __ceph_caps_wanted(ci); 615 if ((wanted & ~actual_wanted) || 616 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 617 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 618 ceph_cap_string(issued), ceph_cap_string(wanted), 619 ceph_cap_string(actual_wanted)); 620 __cap_delay_requeue(mdsc, ci); 621 } 622 623 if (flags & CEPH_CAP_FLAG_AUTH) { 624 if (ci->i_auth_cap == NULL || 625 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 626 ci->i_auth_cap = cap; 627 cap->mds_wanted = wanted; 628 } 629 ci->i_cap_exporting_issued = 0; 630 } else { 631 WARN_ON(ci->i_auth_cap == cap); 632 } 633 634 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 635 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 636 ceph_cap_string(issued|cap->issued), seq, mds); 637 cap->cap_id = cap_id; 638 cap->issued = issued; 639 cap->implemented |= issued; 640 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 641 cap->mds_wanted = wanted; 642 else 643 cap->mds_wanted |= wanted; 644 cap->seq = seq; 645 cap->issue_seq = seq; 646 cap->mseq = mseq; 647 cap->cap_gen = session->s_cap_gen; 648 649 if (fmode >= 0) 650 __ceph_get_fmode(ci, fmode); 651 spin_unlock(&ci->i_ceph_lock); 652 wake_up_all(&ci->i_cap_wq); 653 return 0; 654 } 655 656 /* 657 * Return true if cap has not timed out and belongs to the current 658 * generation of the MDS session (i.e. has not gone 'stale' due to 659 * us losing touch with the mds). 660 */ 661 static int __cap_is_valid(struct ceph_cap *cap) 662 { 663 unsigned long ttl; 664 u32 gen; 665 666 spin_lock(&cap->session->s_gen_ttl_lock); 667 gen = cap->session->s_cap_gen; 668 ttl = cap->session->s_cap_ttl; 669 spin_unlock(&cap->session->s_gen_ttl_lock); 670 671 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 672 dout("__cap_is_valid %p cap %p issued %s " 673 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 674 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 675 return 0; 676 } 677 678 return 1; 679 } 680 681 /* 682 * Return set of valid cap bits issued to us. Note that caps time 683 * out, and may be invalidated in bulk if the client session times out 684 * and session->s_cap_gen is bumped. 685 */ 686 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 687 { 688 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 689 struct ceph_cap *cap; 690 struct rb_node *p; 691 692 if (implemented) 693 *implemented = 0; 694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 695 cap = rb_entry(p, struct ceph_cap, ci_node); 696 if (!__cap_is_valid(cap)) 697 continue; 698 dout("__ceph_caps_issued %p cap %p issued %s\n", 699 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 700 have |= cap->issued; 701 if (implemented) 702 *implemented |= cap->implemented; 703 } 704 /* 705 * exclude caps issued by non-auth MDS, but are been revoking 706 * by the auth MDS. The non-auth MDS should be revoking/exporting 707 * these caps, but the message is delayed. 708 */ 709 if (ci->i_auth_cap) { 710 cap = ci->i_auth_cap; 711 have &= ~cap->implemented | cap->issued; 712 } 713 return have; 714 } 715 716 /* 717 * Get cap bits issued by caps other than @ocap 718 */ 719 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 720 { 721 int have = ci->i_snap_caps; 722 struct ceph_cap *cap; 723 struct rb_node *p; 724 725 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 726 cap = rb_entry(p, struct ceph_cap, ci_node); 727 if (cap == ocap) 728 continue; 729 if (!__cap_is_valid(cap)) 730 continue; 731 have |= cap->issued; 732 } 733 return have; 734 } 735 736 /* 737 * Move a cap to the end of the LRU (oldest caps at list head, newest 738 * at list tail). 739 */ 740 static void __touch_cap(struct ceph_cap *cap) 741 { 742 struct ceph_mds_session *s = cap->session; 743 744 spin_lock(&s->s_cap_lock); 745 if (s->s_cap_iterator == NULL) { 746 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 747 s->s_mds); 748 list_move_tail(&cap->session_caps, &s->s_caps); 749 } else { 750 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 751 &cap->ci->vfs_inode, cap, s->s_mds); 752 } 753 spin_unlock(&s->s_cap_lock); 754 } 755 756 /* 757 * Check if we hold the given mask. If so, move the cap(s) to the 758 * front of their respective LRUs. (This is the preferred way for 759 * callers to check for caps they want.) 760 */ 761 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 762 { 763 struct ceph_cap *cap; 764 struct rb_node *p; 765 int have = ci->i_snap_caps; 766 767 if ((have & mask) == mask) { 768 dout("__ceph_caps_issued_mask %p snap issued %s" 769 " (mask %s)\n", &ci->vfs_inode, 770 ceph_cap_string(have), 771 ceph_cap_string(mask)); 772 return 1; 773 } 774 775 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 776 cap = rb_entry(p, struct ceph_cap, ci_node); 777 if (!__cap_is_valid(cap)) 778 continue; 779 if ((cap->issued & mask) == mask) { 780 dout("__ceph_caps_issued_mask %p cap %p issued %s" 781 " (mask %s)\n", &ci->vfs_inode, cap, 782 ceph_cap_string(cap->issued), 783 ceph_cap_string(mask)); 784 if (touch) 785 __touch_cap(cap); 786 return 1; 787 } 788 789 /* does a combination of caps satisfy mask? */ 790 have |= cap->issued; 791 if ((have & mask) == mask) { 792 dout("__ceph_caps_issued_mask %p combo issued %s" 793 " (mask %s)\n", &ci->vfs_inode, 794 ceph_cap_string(cap->issued), 795 ceph_cap_string(mask)); 796 if (touch) { 797 struct rb_node *q; 798 799 /* touch this + preceding caps */ 800 __touch_cap(cap); 801 for (q = rb_first(&ci->i_caps); q != p; 802 q = rb_next(q)) { 803 cap = rb_entry(q, struct ceph_cap, 804 ci_node); 805 if (!__cap_is_valid(cap)) 806 continue; 807 __touch_cap(cap); 808 } 809 } 810 return 1; 811 } 812 } 813 814 return 0; 815 } 816 817 /* 818 * Return true if mask caps are currently being revoked by an MDS. 819 */ 820 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 821 struct ceph_cap *ocap, int mask) 822 { 823 struct ceph_cap *cap; 824 struct rb_node *p; 825 826 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 827 cap = rb_entry(p, struct ceph_cap, ci_node); 828 if (cap != ocap && 829 (cap->implemented & ~cap->issued & mask)) 830 return 1; 831 } 832 return 0; 833 } 834 835 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 836 { 837 struct inode *inode = &ci->vfs_inode; 838 int ret; 839 840 spin_lock(&ci->i_ceph_lock); 841 ret = __ceph_caps_revoking_other(ci, NULL, mask); 842 spin_unlock(&ci->i_ceph_lock); 843 dout("ceph_caps_revoking %p %s = %d\n", inode, 844 ceph_cap_string(mask), ret); 845 return ret; 846 } 847 848 int __ceph_caps_used(struct ceph_inode_info *ci) 849 { 850 int used = 0; 851 if (ci->i_pin_ref) 852 used |= CEPH_CAP_PIN; 853 if (ci->i_rd_ref) 854 used |= CEPH_CAP_FILE_RD; 855 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 856 used |= CEPH_CAP_FILE_CACHE; 857 if (ci->i_wr_ref) 858 used |= CEPH_CAP_FILE_WR; 859 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 860 used |= CEPH_CAP_FILE_BUFFER; 861 return used; 862 } 863 864 /* 865 * wanted, by virtue of open file modes 866 */ 867 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 868 { 869 int want = 0; 870 int mode; 871 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 872 if (ci->i_nr_by_mode[mode]) 873 want |= ceph_caps_for_mode(mode); 874 return want; 875 } 876 877 /* 878 * Return caps we have registered with the MDS(s) as 'wanted'. 879 */ 880 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 881 { 882 struct ceph_cap *cap; 883 struct rb_node *p; 884 int mds_wanted = 0; 885 886 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 887 cap = rb_entry(p, struct ceph_cap, ci_node); 888 if (!__cap_is_valid(cap)) 889 continue; 890 if (cap == ci->i_auth_cap) 891 mds_wanted |= cap->mds_wanted; 892 else 893 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 894 } 895 return mds_wanted; 896 } 897 898 /* 899 * called under i_ceph_lock 900 */ 901 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 902 { 903 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_issued; 904 } 905 906 int ceph_is_any_caps(struct inode *inode) 907 { 908 struct ceph_inode_info *ci = ceph_inode(inode); 909 int ret; 910 911 spin_lock(&ci->i_ceph_lock); 912 ret = __ceph_is_any_caps(ci); 913 spin_unlock(&ci->i_ceph_lock); 914 915 return ret; 916 } 917 918 /* 919 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 920 * 921 * caller should hold i_ceph_lock. 922 * caller will not hold session s_mutex if called from destroy_inode. 923 */ 924 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 925 { 926 struct ceph_mds_session *session = cap->session; 927 struct ceph_inode_info *ci = cap->ci; 928 struct ceph_mds_client *mdsc = 929 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 930 int removed = 0; 931 932 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 933 934 /* remove from session list */ 935 spin_lock(&session->s_cap_lock); 936 /* 937 * s_cap_reconnect is protected by s_cap_lock. no one changes 938 * s_cap_gen while session is in the reconnect state. 939 */ 940 if (queue_release && 941 (!session->s_cap_reconnect || 942 cap->cap_gen == session->s_cap_gen)) 943 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id, 944 cap->mseq, cap->issue_seq); 945 946 if (session->s_cap_iterator == cap) { 947 /* not yet, we are iterating over this very cap */ 948 dout("__ceph_remove_cap delaying %p removal from session %p\n", 949 cap, cap->session); 950 } else { 951 list_del_init(&cap->session_caps); 952 session->s_nr_caps--; 953 cap->session = NULL; 954 removed = 1; 955 } 956 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 957 cap->ci = NULL; 958 spin_unlock(&session->s_cap_lock); 959 960 /* remove from inode list */ 961 rb_erase(&cap->ci_node, &ci->i_caps); 962 if (ci->i_auth_cap == cap) 963 ci->i_auth_cap = NULL; 964 965 if (removed) 966 ceph_put_cap(mdsc, cap); 967 968 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 969 struct ceph_snap_realm *realm = ci->i_snap_realm; 970 spin_lock(&realm->inodes_with_caps_lock); 971 list_del_init(&ci->i_snap_realm_item); 972 ci->i_snap_realm_counter++; 973 ci->i_snap_realm = NULL; 974 spin_unlock(&realm->inodes_with_caps_lock); 975 ceph_put_snap_realm(mdsc, realm); 976 } 977 if (!__ceph_is_any_real_caps(ci)) 978 __cap_delay_cancel(mdsc, ci); 979 } 980 981 /* 982 * Build and send a cap message to the given MDS. 983 * 984 * Caller should be holding s_mutex. 985 */ 986 static int send_cap_msg(struct ceph_mds_session *session, 987 u64 ino, u64 cid, int op, 988 int caps, int wanted, int dirty, 989 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 990 u64 size, u64 max_size, 991 struct timespec *mtime, struct timespec *atime, 992 u64 time_warp_seq, 993 kuid_t uid, kgid_t gid, umode_t mode, 994 u64 xattr_version, 995 struct ceph_buffer *xattrs_buf, 996 u64 follows) 997 { 998 struct ceph_mds_caps *fc; 999 struct ceph_msg *msg; 1000 1001 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 1002 " seq %u/%u mseq %u follows %lld size %llu/%llu" 1003 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 1004 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 1005 ceph_cap_string(dirty), 1006 seq, issue_seq, mseq, follows, size, max_size, 1007 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 1008 1009 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 1010 if (!msg) 1011 return -ENOMEM; 1012 1013 msg->hdr.tid = cpu_to_le64(flush_tid); 1014 1015 fc = msg->front.iov_base; 1016 memset(fc, 0, sizeof(*fc)); 1017 1018 fc->cap_id = cpu_to_le64(cid); 1019 fc->op = cpu_to_le32(op); 1020 fc->seq = cpu_to_le32(seq); 1021 fc->issue_seq = cpu_to_le32(issue_seq); 1022 fc->migrate_seq = cpu_to_le32(mseq); 1023 fc->caps = cpu_to_le32(caps); 1024 fc->wanted = cpu_to_le32(wanted); 1025 fc->dirty = cpu_to_le32(dirty); 1026 fc->ino = cpu_to_le64(ino); 1027 fc->snap_follows = cpu_to_le64(follows); 1028 1029 fc->size = cpu_to_le64(size); 1030 fc->max_size = cpu_to_le64(max_size); 1031 if (mtime) 1032 ceph_encode_timespec(&fc->mtime, mtime); 1033 if (atime) 1034 ceph_encode_timespec(&fc->atime, atime); 1035 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1036 1037 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1038 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1039 fc->mode = cpu_to_le32(mode); 1040 1041 fc->xattr_version = cpu_to_le64(xattr_version); 1042 if (xattrs_buf) { 1043 msg->middle = ceph_buffer_get(xattrs_buf); 1044 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1045 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1046 } 1047 1048 ceph_con_send(&session->s_con, msg); 1049 return 0; 1050 } 1051 1052 void __queue_cap_release(struct ceph_mds_session *session, 1053 u64 ino, u64 cap_id, u32 migrate_seq, 1054 u32 issue_seq) 1055 { 1056 struct ceph_msg *msg; 1057 struct ceph_mds_cap_release *head; 1058 struct ceph_mds_cap_item *item; 1059 1060 BUG_ON(!session->s_num_cap_releases); 1061 msg = list_first_entry(&session->s_cap_releases, 1062 struct ceph_msg, list_head); 1063 1064 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1065 ino, session->s_mds, msg, session->s_num_cap_releases); 1066 1067 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1068 head = msg->front.iov_base; 1069 le32_add_cpu(&head->num, 1); 1070 item = msg->front.iov_base + msg->front.iov_len; 1071 item->ino = cpu_to_le64(ino); 1072 item->cap_id = cpu_to_le64(cap_id); 1073 item->migrate_seq = cpu_to_le32(migrate_seq); 1074 item->seq = cpu_to_le32(issue_seq); 1075 1076 session->s_num_cap_releases--; 1077 1078 msg->front.iov_len += sizeof(*item); 1079 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1080 dout(" release msg %p full\n", msg); 1081 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1082 } else { 1083 dout(" release msg %p at %d/%d (%d)\n", msg, 1084 (int)le32_to_cpu(head->num), 1085 (int)CEPH_CAPS_PER_RELEASE, 1086 (int)msg->front.iov_len); 1087 } 1088 } 1089 1090 /* 1091 * Queue cap releases when an inode is dropped from our cache. Since 1092 * inode is about to be destroyed, there is no need for i_ceph_lock. 1093 */ 1094 void ceph_queue_caps_release(struct inode *inode) 1095 { 1096 struct ceph_inode_info *ci = ceph_inode(inode); 1097 struct rb_node *p; 1098 1099 p = rb_first(&ci->i_caps); 1100 while (p) { 1101 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1102 p = rb_next(p); 1103 __ceph_remove_cap(cap, true); 1104 } 1105 } 1106 1107 /* 1108 * Send a cap msg on the given inode. Update our caps state, then 1109 * drop i_ceph_lock and send the message. 1110 * 1111 * Make note of max_size reported/requested from mds, revoked caps 1112 * that have now been implemented. 1113 * 1114 * Make half-hearted attempt ot to invalidate page cache if we are 1115 * dropping RDCACHE. Note that this will leave behind locked pages 1116 * that we'll then need to deal with elsewhere. 1117 * 1118 * Return non-zero if delayed release, or we experienced an error 1119 * such that the caller should requeue + retry later. 1120 * 1121 * called with i_ceph_lock, then drops it. 1122 * caller should hold snap_rwsem (read), s_mutex. 1123 */ 1124 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1125 int op, int used, int want, int retain, int flushing, 1126 unsigned *pflush_tid) 1127 __releases(cap->ci->i_ceph_lock) 1128 { 1129 struct ceph_inode_info *ci = cap->ci; 1130 struct inode *inode = &ci->vfs_inode; 1131 u64 cap_id = cap->cap_id; 1132 int held, revoking, dropping, keep; 1133 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1134 u64 size, max_size; 1135 struct timespec mtime, atime; 1136 int wake = 0; 1137 umode_t mode; 1138 kuid_t uid; 1139 kgid_t gid; 1140 struct ceph_mds_session *session; 1141 u64 xattr_version = 0; 1142 struct ceph_buffer *xattr_blob = NULL; 1143 int delayed = 0; 1144 u64 flush_tid = 0; 1145 int i; 1146 int ret; 1147 1148 held = cap->issued | cap->implemented; 1149 revoking = cap->implemented & ~cap->issued; 1150 retain &= ~revoking; 1151 dropping = cap->issued & ~retain; 1152 1153 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1154 inode, cap, cap->session, 1155 ceph_cap_string(held), ceph_cap_string(held & retain), 1156 ceph_cap_string(revoking)); 1157 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1158 1159 session = cap->session; 1160 1161 /* don't release wanted unless we've waited a bit. */ 1162 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1163 time_before(jiffies, ci->i_hold_caps_min)) { 1164 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1165 ceph_cap_string(cap->issued), 1166 ceph_cap_string(cap->issued & retain), 1167 ceph_cap_string(cap->mds_wanted), 1168 ceph_cap_string(want)); 1169 want |= cap->mds_wanted; 1170 retain |= cap->issued; 1171 delayed = 1; 1172 } 1173 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1174 1175 cap->issued &= retain; /* drop bits we don't want */ 1176 if (cap->implemented & ~cap->issued) { 1177 /* 1178 * Wake up any waiters on wanted -> needed transition. 1179 * This is due to the weird transition from buffered 1180 * to sync IO... we need to flush dirty pages _before_ 1181 * allowing sync writes to avoid reordering. 1182 */ 1183 wake = 1; 1184 } 1185 cap->implemented &= cap->issued | used; 1186 cap->mds_wanted = want; 1187 1188 if (flushing) { 1189 /* 1190 * assign a tid for flush operations so we can avoid 1191 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1192 * clean type races. track latest tid for every bit 1193 * so we can handle flush AxFw, flush Fw, and have the 1194 * first ack clean Ax. 1195 */ 1196 flush_tid = ++ci->i_cap_flush_last_tid; 1197 if (pflush_tid) 1198 *pflush_tid = flush_tid; 1199 dout(" cap_flush_tid %d\n", (int)flush_tid); 1200 for (i = 0; i < CEPH_CAP_BITS; i++) 1201 if (flushing & (1 << i)) 1202 ci->i_cap_flush_tid[i] = flush_tid; 1203 1204 follows = ci->i_head_snapc->seq; 1205 } else { 1206 follows = 0; 1207 } 1208 1209 keep = cap->implemented; 1210 seq = cap->seq; 1211 issue_seq = cap->issue_seq; 1212 mseq = cap->mseq; 1213 size = inode->i_size; 1214 ci->i_reported_size = size; 1215 max_size = ci->i_wanted_max_size; 1216 ci->i_requested_max_size = max_size; 1217 mtime = inode->i_mtime; 1218 atime = inode->i_atime; 1219 time_warp_seq = ci->i_time_warp_seq; 1220 uid = inode->i_uid; 1221 gid = inode->i_gid; 1222 mode = inode->i_mode; 1223 1224 if (flushing & CEPH_CAP_XATTR_EXCL) { 1225 __ceph_build_xattrs_blob(ci); 1226 xattr_blob = ci->i_xattrs.blob; 1227 xattr_version = ci->i_xattrs.version; 1228 } 1229 1230 spin_unlock(&ci->i_ceph_lock); 1231 1232 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1233 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1234 size, max_size, &mtime, &atime, time_warp_seq, 1235 uid, gid, mode, xattr_version, xattr_blob, 1236 follows); 1237 if (ret < 0) { 1238 dout("error sending cap msg, must requeue %p\n", inode); 1239 delayed = 1; 1240 } 1241 1242 if (wake) 1243 wake_up_all(&ci->i_cap_wq); 1244 1245 return delayed; 1246 } 1247 1248 /* 1249 * When a snapshot is taken, clients accumulate dirty metadata on 1250 * inodes with capabilities in ceph_cap_snaps to describe the file 1251 * state at the time the snapshot was taken. This must be flushed 1252 * asynchronously back to the MDS once sync writes complete and dirty 1253 * data is written out. 1254 * 1255 * Unless @again is true, skip cap_snaps that were already sent to 1256 * the MDS (i.e., during this session). 1257 * 1258 * Called under i_ceph_lock. Takes s_mutex as needed. 1259 */ 1260 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1261 struct ceph_mds_session **psession, 1262 int again) 1263 __releases(ci->i_ceph_lock) 1264 __acquires(ci->i_ceph_lock) 1265 { 1266 struct inode *inode = &ci->vfs_inode; 1267 int mds; 1268 struct ceph_cap_snap *capsnap; 1269 u32 mseq; 1270 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1271 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1272 session->s_mutex */ 1273 u64 next_follows = 0; /* keep track of how far we've gotten through the 1274 i_cap_snaps list, and skip these entries next time 1275 around to avoid an infinite loop */ 1276 1277 if (psession) 1278 session = *psession; 1279 1280 dout("__flush_snaps %p\n", inode); 1281 retry: 1282 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1283 /* avoid an infiniute loop after retry */ 1284 if (capsnap->follows < next_follows) 1285 continue; 1286 /* 1287 * we need to wait for sync writes to complete and for dirty 1288 * pages to be written out. 1289 */ 1290 if (capsnap->dirty_pages || capsnap->writing) 1291 break; 1292 1293 /* 1294 * if cap writeback already occurred, we should have dropped 1295 * the capsnap in ceph_put_wrbuffer_cap_refs. 1296 */ 1297 BUG_ON(capsnap->dirty == 0); 1298 1299 /* pick mds, take s_mutex */ 1300 if (ci->i_auth_cap == NULL) { 1301 dout("no auth cap (migrating?), doing nothing\n"); 1302 goto out; 1303 } 1304 1305 /* only flush each capsnap once */ 1306 if (!again && !list_empty(&capsnap->flushing_item)) { 1307 dout("already flushed %p, skipping\n", capsnap); 1308 continue; 1309 } 1310 1311 mds = ci->i_auth_cap->session->s_mds; 1312 mseq = ci->i_auth_cap->mseq; 1313 1314 if (session && session->s_mds != mds) { 1315 dout("oops, wrong session %p mutex\n", session); 1316 mutex_unlock(&session->s_mutex); 1317 ceph_put_mds_session(session); 1318 session = NULL; 1319 } 1320 if (!session) { 1321 spin_unlock(&ci->i_ceph_lock); 1322 mutex_lock(&mdsc->mutex); 1323 session = __ceph_lookup_mds_session(mdsc, mds); 1324 mutex_unlock(&mdsc->mutex); 1325 if (session) { 1326 dout("inverting session/ino locks on %p\n", 1327 session); 1328 mutex_lock(&session->s_mutex); 1329 } 1330 /* 1331 * if session == NULL, we raced against a cap 1332 * deletion or migration. retry, and we'll 1333 * get a better @mds value next time. 1334 */ 1335 spin_lock(&ci->i_ceph_lock); 1336 goto retry; 1337 } 1338 1339 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1340 atomic_inc(&capsnap->nref); 1341 if (!list_empty(&capsnap->flushing_item)) 1342 list_del_init(&capsnap->flushing_item); 1343 list_add_tail(&capsnap->flushing_item, 1344 &session->s_cap_snaps_flushing); 1345 spin_unlock(&ci->i_ceph_lock); 1346 1347 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1348 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1349 send_cap_msg(session, ceph_vino(inode).ino, 0, 1350 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1351 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1352 capsnap->size, 0, 1353 &capsnap->mtime, &capsnap->atime, 1354 capsnap->time_warp_seq, 1355 capsnap->uid, capsnap->gid, capsnap->mode, 1356 capsnap->xattr_version, capsnap->xattr_blob, 1357 capsnap->follows); 1358 1359 next_follows = capsnap->follows + 1; 1360 ceph_put_cap_snap(capsnap); 1361 1362 spin_lock(&ci->i_ceph_lock); 1363 goto retry; 1364 } 1365 1366 /* we flushed them all; remove this inode from the queue */ 1367 spin_lock(&mdsc->snap_flush_lock); 1368 list_del_init(&ci->i_snap_flush_item); 1369 spin_unlock(&mdsc->snap_flush_lock); 1370 1371 out: 1372 if (psession) 1373 *psession = session; 1374 else if (session) { 1375 mutex_unlock(&session->s_mutex); 1376 ceph_put_mds_session(session); 1377 } 1378 } 1379 1380 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1381 { 1382 spin_lock(&ci->i_ceph_lock); 1383 __ceph_flush_snaps(ci, NULL, 0); 1384 spin_unlock(&ci->i_ceph_lock); 1385 } 1386 1387 /* 1388 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1389 * Caller is then responsible for calling __mark_inode_dirty with the 1390 * returned flags value. 1391 */ 1392 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1393 { 1394 struct ceph_mds_client *mdsc = 1395 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1396 struct inode *inode = &ci->vfs_inode; 1397 int was = ci->i_dirty_caps; 1398 int dirty = 0; 1399 1400 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1401 ceph_cap_string(mask), ceph_cap_string(was), 1402 ceph_cap_string(was | mask)); 1403 ci->i_dirty_caps |= mask; 1404 if (was == 0) { 1405 if (!ci->i_head_snapc) 1406 ci->i_head_snapc = ceph_get_snap_context( 1407 ci->i_snap_realm->cached_context); 1408 dout(" inode %p now dirty snapc %p auth cap %p\n", 1409 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1410 WARN_ON(!ci->i_auth_cap); 1411 BUG_ON(!list_empty(&ci->i_dirty_item)); 1412 spin_lock(&mdsc->cap_dirty_lock); 1413 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1414 spin_unlock(&mdsc->cap_dirty_lock); 1415 if (ci->i_flushing_caps == 0) { 1416 ihold(inode); 1417 dirty |= I_DIRTY_SYNC; 1418 } 1419 } 1420 BUG_ON(list_empty(&ci->i_dirty_item)); 1421 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1422 (mask & CEPH_CAP_FILE_BUFFER)) 1423 dirty |= I_DIRTY_DATASYNC; 1424 __cap_delay_requeue(mdsc, ci); 1425 return dirty; 1426 } 1427 1428 /* 1429 * Add dirty inode to the flushing list. Assigned a seq number so we 1430 * can wait for caps to flush without starving. 1431 * 1432 * Called under i_ceph_lock. 1433 */ 1434 static int __mark_caps_flushing(struct inode *inode, 1435 struct ceph_mds_session *session) 1436 { 1437 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1438 struct ceph_inode_info *ci = ceph_inode(inode); 1439 int flushing; 1440 1441 BUG_ON(ci->i_dirty_caps == 0); 1442 BUG_ON(list_empty(&ci->i_dirty_item)); 1443 1444 flushing = ci->i_dirty_caps; 1445 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1446 ceph_cap_string(flushing), 1447 ceph_cap_string(ci->i_flushing_caps), 1448 ceph_cap_string(ci->i_flushing_caps | flushing)); 1449 ci->i_flushing_caps |= flushing; 1450 ci->i_dirty_caps = 0; 1451 dout(" inode %p now !dirty\n", inode); 1452 1453 spin_lock(&mdsc->cap_dirty_lock); 1454 list_del_init(&ci->i_dirty_item); 1455 1456 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1457 if (list_empty(&ci->i_flushing_item)) { 1458 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1459 mdsc->num_cap_flushing++; 1460 dout(" inode %p now flushing seq %lld\n", inode, 1461 ci->i_cap_flush_seq); 1462 } else { 1463 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1464 dout(" inode %p now flushing (more) seq %lld\n", inode, 1465 ci->i_cap_flush_seq); 1466 } 1467 spin_unlock(&mdsc->cap_dirty_lock); 1468 1469 return flushing; 1470 } 1471 1472 /* 1473 * try to invalidate mapping pages without blocking. 1474 */ 1475 static int try_nonblocking_invalidate(struct inode *inode) 1476 { 1477 struct ceph_inode_info *ci = ceph_inode(inode); 1478 u32 invalidating_gen = ci->i_rdcache_gen; 1479 1480 spin_unlock(&ci->i_ceph_lock); 1481 invalidate_mapping_pages(&inode->i_data, 0, -1); 1482 spin_lock(&ci->i_ceph_lock); 1483 1484 if (inode->i_data.nrpages == 0 && 1485 invalidating_gen == ci->i_rdcache_gen) { 1486 /* success. */ 1487 dout("try_nonblocking_invalidate %p success\n", inode); 1488 /* save any racing async invalidate some trouble */ 1489 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1490 return 0; 1491 } 1492 dout("try_nonblocking_invalidate %p failed\n", inode); 1493 return -1; 1494 } 1495 1496 /* 1497 * Swiss army knife function to examine currently used and wanted 1498 * versus held caps. Release, flush, ack revoked caps to mds as 1499 * appropriate. 1500 * 1501 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1502 * cap release further. 1503 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1504 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1505 * further delay. 1506 */ 1507 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1508 struct ceph_mds_session *session) 1509 { 1510 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1511 struct ceph_mds_client *mdsc = fsc->mdsc; 1512 struct inode *inode = &ci->vfs_inode; 1513 struct ceph_cap *cap; 1514 int file_wanted, used, cap_used; 1515 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1516 int issued, implemented, want, retain, revoking, flushing = 0; 1517 int mds = -1; /* keep track of how far we've gone through i_caps list 1518 to avoid an infinite loop on retry */ 1519 struct rb_node *p; 1520 int tried_invalidate = 0; 1521 int delayed = 0, sent = 0, force_requeue = 0, num; 1522 int queue_invalidate = 0; 1523 int is_delayed = flags & CHECK_CAPS_NODELAY; 1524 1525 /* if we are unmounting, flush any unused caps immediately. */ 1526 if (mdsc->stopping) 1527 is_delayed = 1; 1528 1529 spin_lock(&ci->i_ceph_lock); 1530 1531 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1532 flags |= CHECK_CAPS_FLUSH; 1533 1534 /* flush snaps first time around only */ 1535 if (!list_empty(&ci->i_cap_snaps)) 1536 __ceph_flush_snaps(ci, &session, 0); 1537 goto retry_locked; 1538 retry: 1539 spin_lock(&ci->i_ceph_lock); 1540 retry_locked: 1541 file_wanted = __ceph_caps_file_wanted(ci); 1542 used = __ceph_caps_used(ci); 1543 want = file_wanted | used; 1544 issued = __ceph_caps_issued(ci, &implemented); 1545 revoking = implemented & ~issued; 1546 1547 retain = want | CEPH_CAP_PIN; 1548 if (!mdsc->stopping && inode->i_nlink > 0) { 1549 if (want) { 1550 retain |= CEPH_CAP_ANY; /* be greedy */ 1551 } else { 1552 retain |= CEPH_CAP_ANY_SHARED; 1553 /* 1554 * keep RD only if we didn't have the file open RW, 1555 * because then the mds would revoke it anyway to 1556 * journal max_size=0. 1557 */ 1558 if (ci->i_max_size == 0) 1559 retain |= CEPH_CAP_ANY_RD; 1560 } 1561 } 1562 1563 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1564 " issued %s revoking %s retain %s %s%s%s\n", inode, 1565 ceph_cap_string(file_wanted), 1566 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1567 ceph_cap_string(ci->i_flushing_caps), 1568 ceph_cap_string(issued), ceph_cap_string(revoking), 1569 ceph_cap_string(retain), 1570 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1571 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1572 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1573 1574 /* 1575 * If we no longer need to hold onto old our caps, and we may 1576 * have cached pages, but don't want them, then try to invalidate. 1577 * If we fail, it's because pages are locked.... try again later. 1578 */ 1579 if ((!is_delayed || mdsc->stopping) && 1580 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1581 inode->i_data.nrpages && /* have cached pages */ 1582 (file_wanted == 0 || /* no open files */ 1583 (revoking & (CEPH_CAP_FILE_CACHE| 1584 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1585 !tried_invalidate) { 1586 dout("check_caps trying to invalidate on %p\n", inode); 1587 if (try_nonblocking_invalidate(inode) < 0) { 1588 if (revoking & (CEPH_CAP_FILE_CACHE| 1589 CEPH_CAP_FILE_LAZYIO)) { 1590 dout("check_caps queuing invalidate\n"); 1591 queue_invalidate = 1; 1592 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1593 } else { 1594 dout("check_caps failed to invalidate pages\n"); 1595 /* we failed to invalidate pages. check these 1596 caps again later. */ 1597 force_requeue = 1; 1598 __cap_set_timeouts(mdsc, ci); 1599 } 1600 } 1601 tried_invalidate = 1; 1602 goto retry_locked; 1603 } 1604 1605 num = 0; 1606 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1607 cap = rb_entry(p, struct ceph_cap, ci_node); 1608 num++; 1609 1610 /* avoid looping forever */ 1611 if (mds >= cap->mds || 1612 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1613 continue; 1614 1615 /* NOTE: no side-effects allowed, until we take s_mutex */ 1616 1617 cap_used = used; 1618 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1619 cap_used &= ~ci->i_auth_cap->issued; 1620 1621 revoking = cap->implemented & ~cap->issued; 1622 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1623 cap->mds, cap, ceph_cap_string(cap->issued), 1624 ceph_cap_string(cap_used), 1625 ceph_cap_string(cap->implemented), 1626 ceph_cap_string(revoking)); 1627 1628 if (cap == ci->i_auth_cap && 1629 (cap->issued & CEPH_CAP_FILE_WR)) { 1630 /* request larger max_size from MDS? */ 1631 if (ci->i_wanted_max_size > ci->i_max_size && 1632 ci->i_wanted_max_size > ci->i_requested_max_size) { 1633 dout("requesting new max_size\n"); 1634 goto ack; 1635 } 1636 1637 /* approaching file_max? */ 1638 if ((inode->i_size << 1) >= ci->i_max_size && 1639 (ci->i_reported_size << 1) < ci->i_max_size) { 1640 dout("i_size approaching max_size\n"); 1641 goto ack; 1642 } 1643 } 1644 /* flush anything dirty? */ 1645 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1646 ci->i_dirty_caps) { 1647 dout("flushing dirty caps\n"); 1648 goto ack; 1649 } 1650 1651 /* completed revocation? going down and there are no caps? */ 1652 if (revoking && (revoking & cap_used) == 0) { 1653 dout("completed revocation of %s\n", 1654 ceph_cap_string(cap->implemented & ~cap->issued)); 1655 goto ack; 1656 } 1657 1658 /* want more caps from mds? */ 1659 if (want & ~(cap->mds_wanted | cap->issued)) 1660 goto ack; 1661 1662 /* things we might delay */ 1663 if ((cap->issued & ~retain) == 0 && 1664 cap->mds_wanted == want) 1665 continue; /* nope, all good */ 1666 1667 if (is_delayed) 1668 goto ack; 1669 1670 /* delay? */ 1671 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1672 time_before(jiffies, ci->i_hold_caps_max)) { 1673 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1674 ceph_cap_string(cap->issued), 1675 ceph_cap_string(cap->issued & retain), 1676 ceph_cap_string(cap->mds_wanted), 1677 ceph_cap_string(want)); 1678 delayed++; 1679 continue; 1680 } 1681 1682 ack: 1683 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1684 dout(" skipping %p I_NOFLUSH set\n", inode); 1685 continue; 1686 } 1687 1688 if (session && session != cap->session) { 1689 dout("oops, wrong session %p mutex\n", session); 1690 mutex_unlock(&session->s_mutex); 1691 session = NULL; 1692 } 1693 if (!session) { 1694 session = cap->session; 1695 if (mutex_trylock(&session->s_mutex) == 0) { 1696 dout("inverting session/ino locks on %p\n", 1697 session); 1698 spin_unlock(&ci->i_ceph_lock); 1699 if (took_snap_rwsem) { 1700 up_read(&mdsc->snap_rwsem); 1701 took_snap_rwsem = 0; 1702 } 1703 mutex_lock(&session->s_mutex); 1704 goto retry; 1705 } 1706 } 1707 /* take snap_rwsem after session mutex */ 1708 if (!took_snap_rwsem) { 1709 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1710 dout("inverting snap/in locks on %p\n", 1711 inode); 1712 spin_unlock(&ci->i_ceph_lock); 1713 down_read(&mdsc->snap_rwsem); 1714 took_snap_rwsem = 1; 1715 goto retry; 1716 } 1717 took_snap_rwsem = 1; 1718 } 1719 1720 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1721 flushing = __mark_caps_flushing(inode, session); 1722 else 1723 flushing = 0; 1724 1725 mds = cap->mds; /* remember mds, so we don't repeat */ 1726 sent++; 1727 1728 /* __send_cap drops i_ceph_lock */ 1729 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1730 want, retain, flushing, NULL); 1731 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1732 } 1733 1734 /* 1735 * Reschedule delayed caps release if we delayed anything, 1736 * otherwise cancel. 1737 */ 1738 if (delayed && is_delayed) 1739 force_requeue = 1; /* __send_cap delayed release; requeue */ 1740 if (!delayed && !is_delayed) 1741 __cap_delay_cancel(mdsc, ci); 1742 else if (!is_delayed || force_requeue) 1743 __cap_delay_requeue(mdsc, ci); 1744 1745 spin_unlock(&ci->i_ceph_lock); 1746 1747 if (queue_invalidate) 1748 ceph_queue_invalidate(inode); 1749 1750 if (session) 1751 mutex_unlock(&session->s_mutex); 1752 if (took_snap_rwsem) 1753 up_read(&mdsc->snap_rwsem); 1754 } 1755 1756 /* 1757 * Try to flush dirty caps back to the auth mds. 1758 */ 1759 static int try_flush_caps(struct inode *inode, unsigned *flush_tid) 1760 { 1761 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1762 struct ceph_inode_info *ci = ceph_inode(inode); 1763 int flushing = 0; 1764 struct ceph_mds_session *session = NULL; 1765 1766 retry: 1767 spin_lock(&ci->i_ceph_lock); 1768 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1769 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1770 goto out; 1771 } 1772 if (ci->i_dirty_caps && ci->i_auth_cap) { 1773 struct ceph_cap *cap = ci->i_auth_cap; 1774 int used = __ceph_caps_used(ci); 1775 int want = __ceph_caps_wanted(ci); 1776 int delayed; 1777 1778 if (!session || session != cap->session) { 1779 spin_unlock(&ci->i_ceph_lock); 1780 if (session) 1781 mutex_unlock(&session->s_mutex); 1782 session = cap->session; 1783 mutex_lock(&session->s_mutex); 1784 goto retry; 1785 } 1786 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1787 goto out; 1788 1789 flushing = __mark_caps_flushing(inode, session); 1790 1791 /* __send_cap drops i_ceph_lock */ 1792 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1793 cap->issued | cap->implemented, flushing, 1794 flush_tid); 1795 if (!delayed) 1796 goto out_unlocked; 1797 1798 spin_lock(&ci->i_ceph_lock); 1799 __cap_delay_requeue(mdsc, ci); 1800 } 1801 out: 1802 spin_unlock(&ci->i_ceph_lock); 1803 out_unlocked: 1804 if (session) 1805 mutex_unlock(&session->s_mutex); 1806 return flushing; 1807 } 1808 1809 /* 1810 * Return true if we've flushed caps through the given flush_tid. 1811 */ 1812 static int caps_are_flushed(struct inode *inode, unsigned tid) 1813 { 1814 struct ceph_inode_info *ci = ceph_inode(inode); 1815 int i, ret = 1; 1816 1817 spin_lock(&ci->i_ceph_lock); 1818 for (i = 0; i < CEPH_CAP_BITS; i++) 1819 if ((ci->i_flushing_caps & (1 << i)) && 1820 ci->i_cap_flush_tid[i] <= tid) { 1821 /* still flushing this bit */ 1822 ret = 0; 1823 break; 1824 } 1825 spin_unlock(&ci->i_ceph_lock); 1826 return ret; 1827 } 1828 1829 /* 1830 * Wait on any unsafe replies for the given inode. First wait on the 1831 * newest request, and make that the upper bound. Then, if there are 1832 * more requests, keep waiting on the oldest as long as it is still older 1833 * than the original request. 1834 */ 1835 static void sync_write_wait(struct inode *inode) 1836 { 1837 struct ceph_inode_info *ci = ceph_inode(inode); 1838 struct list_head *head = &ci->i_unsafe_writes; 1839 struct ceph_osd_request *req; 1840 u64 last_tid; 1841 1842 spin_lock(&ci->i_unsafe_lock); 1843 if (list_empty(head)) 1844 goto out; 1845 1846 /* set upper bound as _last_ entry in chain */ 1847 req = list_entry(head->prev, struct ceph_osd_request, 1848 r_unsafe_item); 1849 last_tid = req->r_tid; 1850 1851 do { 1852 ceph_osdc_get_request(req); 1853 spin_unlock(&ci->i_unsafe_lock); 1854 dout("sync_write_wait on tid %llu (until %llu)\n", 1855 req->r_tid, last_tid); 1856 wait_for_completion(&req->r_safe_completion); 1857 spin_lock(&ci->i_unsafe_lock); 1858 ceph_osdc_put_request(req); 1859 1860 /* 1861 * from here on look at first entry in chain, since we 1862 * only want to wait for anything older than last_tid 1863 */ 1864 if (list_empty(head)) 1865 break; 1866 req = list_entry(head->next, struct ceph_osd_request, 1867 r_unsafe_item); 1868 } while (req->r_tid < last_tid); 1869 out: 1870 spin_unlock(&ci->i_unsafe_lock); 1871 } 1872 1873 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1874 { 1875 struct inode *inode = file->f_mapping->host; 1876 struct ceph_inode_info *ci = ceph_inode(inode); 1877 unsigned flush_tid; 1878 int ret; 1879 int dirty; 1880 1881 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1882 sync_write_wait(inode); 1883 1884 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1885 if (ret < 0) 1886 return ret; 1887 mutex_lock(&inode->i_mutex); 1888 1889 dirty = try_flush_caps(inode, &flush_tid); 1890 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1891 1892 /* 1893 * only wait on non-file metadata writeback (the mds 1894 * can recover size and mtime, so we don't need to 1895 * wait for that) 1896 */ 1897 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1898 dout("fsync waiting for flush_tid %u\n", flush_tid); 1899 ret = wait_event_interruptible(ci->i_cap_wq, 1900 caps_are_flushed(inode, flush_tid)); 1901 } 1902 1903 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1904 mutex_unlock(&inode->i_mutex); 1905 return ret; 1906 } 1907 1908 /* 1909 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1910 * queue inode for flush but don't do so immediately, because we can 1911 * get by with fewer MDS messages if we wait for data writeback to 1912 * complete first. 1913 */ 1914 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1915 { 1916 struct ceph_inode_info *ci = ceph_inode(inode); 1917 unsigned flush_tid; 1918 int err = 0; 1919 int dirty; 1920 int wait = wbc->sync_mode == WB_SYNC_ALL; 1921 1922 dout("write_inode %p wait=%d\n", inode, wait); 1923 if (wait) { 1924 dirty = try_flush_caps(inode, &flush_tid); 1925 if (dirty) 1926 err = wait_event_interruptible(ci->i_cap_wq, 1927 caps_are_flushed(inode, flush_tid)); 1928 } else { 1929 struct ceph_mds_client *mdsc = 1930 ceph_sb_to_client(inode->i_sb)->mdsc; 1931 1932 spin_lock(&ci->i_ceph_lock); 1933 if (__ceph_caps_dirty(ci)) 1934 __cap_delay_requeue_front(mdsc, ci); 1935 spin_unlock(&ci->i_ceph_lock); 1936 } 1937 return err; 1938 } 1939 1940 /* 1941 * After a recovering MDS goes active, we need to resend any caps 1942 * we were flushing. 1943 * 1944 * Caller holds session->s_mutex. 1945 */ 1946 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1947 struct ceph_mds_session *session) 1948 { 1949 struct ceph_cap_snap *capsnap; 1950 1951 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1952 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1953 flushing_item) { 1954 struct ceph_inode_info *ci = capsnap->ci; 1955 struct inode *inode = &ci->vfs_inode; 1956 struct ceph_cap *cap; 1957 1958 spin_lock(&ci->i_ceph_lock); 1959 cap = ci->i_auth_cap; 1960 if (cap && cap->session == session) { 1961 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1962 cap, capsnap); 1963 __ceph_flush_snaps(ci, &session, 1); 1964 } else { 1965 pr_err("%p auth cap %p not mds%d ???\n", inode, 1966 cap, session->s_mds); 1967 } 1968 spin_unlock(&ci->i_ceph_lock); 1969 } 1970 } 1971 1972 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1973 struct ceph_mds_session *session) 1974 { 1975 struct ceph_inode_info *ci; 1976 1977 kick_flushing_capsnaps(mdsc, session); 1978 1979 dout("kick_flushing_caps mds%d\n", session->s_mds); 1980 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1981 struct inode *inode = &ci->vfs_inode; 1982 struct ceph_cap *cap; 1983 int delayed = 0; 1984 1985 spin_lock(&ci->i_ceph_lock); 1986 cap = ci->i_auth_cap; 1987 if (cap && cap->session == session) { 1988 dout("kick_flushing_caps %p cap %p %s\n", inode, 1989 cap, ceph_cap_string(ci->i_flushing_caps)); 1990 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1991 __ceph_caps_used(ci), 1992 __ceph_caps_wanted(ci), 1993 cap->issued | cap->implemented, 1994 ci->i_flushing_caps, NULL); 1995 if (delayed) { 1996 spin_lock(&ci->i_ceph_lock); 1997 __cap_delay_requeue(mdsc, ci); 1998 spin_unlock(&ci->i_ceph_lock); 1999 } 2000 } else { 2001 pr_err("%p auth cap %p not mds%d ???\n", inode, 2002 cap, session->s_mds); 2003 spin_unlock(&ci->i_ceph_lock); 2004 } 2005 } 2006 } 2007 2008 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2009 struct ceph_mds_session *session, 2010 struct inode *inode) 2011 { 2012 struct ceph_inode_info *ci = ceph_inode(inode); 2013 struct ceph_cap *cap; 2014 int delayed = 0; 2015 2016 spin_lock(&ci->i_ceph_lock); 2017 cap = ci->i_auth_cap; 2018 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 2019 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 2020 2021 __ceph_flush_snaps(ci, &session, 1); 2022 2023 if (ci->i_flushing_caps) { 2024 spin_lock(&mdsc->cap_dirty_lock); 2025 list_move_tail(&ci->i_flushing_item, 2026 &cap->session->s_cap_flushing); 2027 spin_unlock(&mdsc->cap_dirty_lock); 2028 2029 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2030 __ceph_caps_used(ci), 2031 __ceph_caps_wanted(ci), 2032 cap->issued | cap->implemented, 2033 ci->i_flushing_caps, NULL); 2034 if (delayed) { 2035 spin_lock(&ci->i_ceph_lock); 2036 __cap_delay_requeue(mdsc, ci); 2037 spin_unlock(&ci->i_ceph_lock); 2038 } 2039 } else { 2040 spin_unlock(&ci->i_ceph_lock); 2041 } 2042 } 2043 2044 2045 /* 2046 * Take references to capabilities we hold, so that we don't release 2047 * them to the MDS prematurely. 2048 * 2049 * Protected by i_ceph_lock. 2050 */ 2051 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2052 { 2053 if (got & CEPH_CAP_PIN) 2054 ci->i_pin_ref++; 2055 if (got & CEPH_CAP_FILE_RD) 2056 ci->i_rd_ref++; 2057 if (got & CEPH_CAP_FILE_CACHE) 2058 ci->i_rdcache_ref++; 2059 if (got & CEPH_CAP_FILE_WR) 2060 ci->i_wr_ref++; 2061 if (got & CEPH_CAP_FILE_BUFFER) { 2062 if (ci->i_wb_ref == 0) 2063 ihold(&ci->vfs_inode); 2064 ci->i_wb_ref++; 2065 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2066 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2067 } 2068 } 2069 2070 /* 2071 * Try to grab cap references. Specify those refs we @want, and the 2072 * minimal set we @need. Also include the larger offset we are writing 2073 * to (when applicable), and check against max_size here as well. 2074 * Note that caller is responsible for ensuring max_size increases are 2075 * requested from the MDS. 2076 */ 2077 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2078 int *got, loff_t endoff, int *check_max, int *err) 2079 { 2080 struct inode *inode = &ci->vfs_inode; 2081 int ret = 0; 2082 int have, implemented; 2083 int file_wanted; 2084 2085 dout("get_cap_refs %p need %s want %s\n", inode, 2086 ceph_cap_string(need), ceph_cap_string(want)); 2087 spin_lock(&ci->i_ceph_lock); 2088 2089 /* make sure file is actually open */ 2090 file_wanted = __ceph_caps_file_wanted(ci); 2091 if ((file_wanted & need) == 0) { 2092 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2093 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2094 *err = -EBADF; 2095 ret = 1; 2096 goto out; 2097 } 2098 2099 /* finish pending truncate */ 2100 while (ci->i_truncate_pending) { 2101 spin_unlock(&ci->i_ceph_lock); 2102 __ceph_do_pending_vmtruncate(inode); 2103 spin_lock(&ci->i_ceph_lock); 2104 } 2105 2106 have = __ceph_caps_issued(ci, &implemented); 2107 2108 if (have & need & CEPH_CAP_FILE_WR) { 2109 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2110 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2111 inode, endoff, ci->i_max_size); 2112 if (endoff > ci->i_requested_max_size) { 2113 *check_max = 1; 2114 ret = 1; 2115 } 2116 goto out; 2117 } 2118 /* 2119 * If a sync write is in progress, we must wait, so that we 2120 * can get a final snapshot value for size+mtime. 2121 */ 2122 if (__ceph_have_pending_cap_snap(ci)) { 2123 dout("get_cap_refs %p cap_snap_pending\n", inode); 2124 goto out; 2125 } 2126 } 2127 2128 if ((have & need) == need) { 2129 /* 2130 * Look at (implemented & ~have & not) so that we keep waiting 2131 * on transition from wanted -> needed caps. This is needed 2132 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2133 * going before a prior buffered writeback happens. 2134 */ 2135 int not = want & ~(have & need); 2136 int revoking = implemented & ~have; 2137 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2138 inode, ceph_cap_string(have), ceph_cap_string(not), 2139 ceph_cap_string(revoking)); 2140 if ((revoking & not) == 0) { 2141 *got = need | (have & want); 2142 __take_cap_refs(ci, *got); 2143 ret = 1; 2144 } 2145 } else { 2146 dout("get_cap_refs %p have %s needed %s\n", inode, 2147 ceph_cap_string(have), ceph_cap_string(need)); 2148 } 2149 out: 2150 spin_unlock(&ci->i_ceph_lock); 2151 dout("get_cap_refs %p ret %d got %s\n", inode, 2152 ret, ceph_cap_string(*got)); 2153 return ret; 2154 } 2155 2156 /* 2157 * Check the offset we are writing up to against our current 2158 * max_size. If necessary, tell the MDS we want to write to 2159 * a larger offset. 2160 */ 2161 static void check_max_size(struct inode *inode, loff_t endoff) 2162 { 2163 struct ceph_inode_info *ci = ceph_inode(inode); 2164 int check = 0; 2165 2166 /* do we need to explicitly request a larger max_size? */ 2167 spin_lock(&ci->i_ceph_lock); 2168 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2169 dout("write %p at large endoff %llu, req max_size\n", 2170 inode, endoff); 2171 ci->i_wanted_max_size = endoff; 2172 } 2173 /* duplicate ceph_check_caps()'s logic */ 2174 if (ci->i_auth_cap && 2175 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2176 ci->i_wanted_max_size > ci->i_max_size && 2177 ci->i_wanted_max_size > ci->i_requested_max_size) 2178 check = 1; 2179 spin_unlock(&ci->i_ceph_lock); 2180 if (check) 2181 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2182 } 2183 2184 /* 2185 * Wait for caps, and take cap references. If we can't get a WR cap 2186 * due to a small max_size, make sure we check_max_size (and possibly 2187 * ask the mds) so we don't get hung up indefinitely. 2188 */ 2189 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2190 loff_t endoff) 2191 { 2192 int check_max, ret, err; 2193 2194 retry: 2195 if (endoff > 0) 2196 check_max_size(&ci->vfs_inode, endoff); 2197 check_max = 0; 2198 err = 0; 2199 ret = wait_event_interruptible(ci->i_cap_wq, 2200 try_get_cap_refs(ci, need, want, 2201 got, endoff, 2202 &check_max, &err)); 2203 if (err) 2204 ret = err; 2205 if (check_max) 2206 goto retry; 2207 return ret; 2208 } 2209 2210 /* 2211 * Take cap refs. Caller must already know we hold at least one ref 2212 * on the caps in question or we don't know this is safe. 2213 */ 2214 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2215 { 2216 spin_lock(&ci->i_ceph_lock); 2217 __take_cap_refs(ci, caps); 2218 spin_unlock(&ci->i_ceph_lock); 2219 } 2220 2221 /* 2222 * Release cap refs. 2223 * 2224 * If we released the last ref on any given cap, call ceph_check_caps 2225 * to release (or schedule a release). 2226 * 2227 * If we are releasing a WR cap (from a sync write), finalize any affected 2228 * cap_snap, and wake up any waiters. 2229 */ 2230 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2231 { 2232 struct inode *inode = &ci->vfs_inode; 2233 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2234 struct ceph_cap_snap *capsnap; 2235 2236 spin_lock(&ci->i_ceph_lock); 2237 if (had & CEPH_CAP_PIN) 2238 --ci->i_pin_ref; 2239 if (had & CEPH_CAP_FILE_RD) 2240 if (--ci->i_rd_ref == 0) 2241 last++; 2242 if (had & CEPH_CAP_FILE_CACHE) 2243 if (--ci->i_rdcache_ref == 0) 2244 last++; 2245 if (had & CEPH_CAP_FILE_BUFFER) { 2246 if (--ci->i_wb_ref == 0) { 2247 last++; 2248 put++; 2249 } 2250 dout("put_cap_refs %p wb %d -> %d (?)\n", 2251 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2252 } 2253 if (had & CEPH_CAP_FILE_WR) 2254 if (--ci->i_wr_ref == 0) { 2255 last++; 2256 if (!list_empty(&ci->i_cap_snaps)) { 2257 capsnap = list_first_entry(&ci->i_cap_snaps, 2258 struct ceph_cap_snap, 2259 ci_item); 2260 if (capsnap->writing) { 2261 capsnap->writing = 0; 2262 flushsnaps = 2263 __ceph_finish_cap_snap(ci, 2264 capsnap); 2265 wake = 1; 2266 } 2267 } 2268 } 2269 spin_unlock(&ci->i_ceph_lock); 2270 2271 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2272 last ? " last" : "", put ? " put" : ""); 2273 2274 if (last && !flushsnaps) 2275 ceph_check_caps(ci, 0, NULL); 2276 else if (flushsnaps) 2277 ceph_flush_snaps(ci); 2278 if (wake) 2279 wake_up_all(&ci->i_cap_wq); 2280 if (put) 2281 iput(inode); 2282 } 2283 2284 /* 2285 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2286 * context. Adjust per-snap dirty page accounting as appropriate. 2287 * Once all dirty data for a cap_snap is flushed, flush snapped file 2288 * metadata back to the MDS. If we dropped the last ref, call 2289 * ceph_check_caps. 2290 */ 2291 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2292 struct ceph_snap_context *snapc) 2293 { 2294 struct inode *inode = &ci->vfs_inode; 2295 int last = 0; 2296 int complete_capsnap = 0; 2297 int drop_capsnap = 0; 2298 int found = 0; 2299 struct ceph_cap_snap *capsnap = NULL; 2300 2301 spin_lock(&ci->i_ceph_lock); 2302 ci->i_wrbuffer_ref -= nr; 2303 last = !ci->i_wrbuffer_ref; 2304 2305 if (ci->i_head_snapc == snapc) { 2306 ci->i_wrbuffer_ref_head -= nr; 2307 if (ci->i_wrbuffer_ref_head == 0 && 2308 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2309 BUG_ON(!ci->i_head_snapc); 2310 ceph_put_snap_context(ci->i_head_snapc); 2311 ci->i_head_snapc = NULL; 2312 } 2313 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2314 inode, 2315 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2316 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2317 last ? " LAST" : ""); 2318 } else { 2319 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2320 if (capsnap->context == snapc) { 2321 found = 1; 2322 break; 2323 } 2324 } 2325 BUG_ON(!found); 2326 capsnap->dirty_pages -= nr; 2327 if (capsnap->dirty_pages == 0) { 2328 complete_capsnap = 1; 2329 if (capsnap->dirty == 0) 2330 /* cap writeback completed before we created 2331 * the cap_snap; no FLUSHSNAP is needed */ 2332 drop_capsnap = 1; 2333 } 2334 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2335 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2336 inode, capsnap, capsnap->context->seq, 2337 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2338 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2339 last ? " (wrbuffer last)" : "", 2340 complete_capsnap ? " (complete capsnap)" : "", 2341 drop_capsnap ? " (drop capsnap)" : ""); 2342 if (drop_capsnap) { 2343 ceph_put_snap_context(capsnap->context); 2344 list_del(&capsnap->ci_item); 2345 list_del(&capsnap->flushing_item); 2346 ceph_put_cap_snap(capsnap); 2347 } 2348 } 2349 2350 spin_unlock(&ci->i_ceph_lock); 2351 2352 if (last) { 2353 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2354 iput(inode); 2355 } else if (complete_capsnap) { 2356 ceph_flush_snaps(ci); 2357 wake_up_all(&ci->i_cap_wq); 2358 } 2359 if (drop_capsnap) 2360 iput(inode); 2361 } 2362 2363 /* 2364 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2365 */ 2366 static void invalidate_aliases(struct inode *inode) 2367 { 2368 struct dentry *dn, *prev = NULL; 2369 2370 dout("invalidate_aliases inode %p\n", inode); 2371 d_prune_aliases(inode); 2372 /* 2373 * For non-directory inode, d_find_alias() only returns 2374 * hashed dentry. After calling d_invalidate(), the 2375 * dentry becomes unhashed. 2376 * 2377 * For directory inode, d_find_alias() can return 2378 * unhashed dentry. But directory inode should have 2379 * one alias at most. 2380 */ 2381 while ((dn = d_find_alias(inode))) { 2382 if (dn == prev) { 2383 dput(dn); 2384 break; 2385 } 2386 d_invalidate(dn); 2387 if (prev) 2388 dput(prev); 2389 prev = dn; 2390 } 2391 if (prev) 2392 dput(prev); 2393 } 2394 2395 /* 2396 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2397 * actually be a revocation if it specifies a smaller cap set.) 2398 * 2399 * caller holds s_mutex and i_ceph_lock, we drop both. 2400 * 2401 * return value: 2402 * 0 - ok 2403 * 1 - check_caps on auth cap only (writeback) 2404 * 2 - check_caps (ack revoke) 2405 */ 2406 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2407 struct ceph_mds_session *session, 2408 struct ceph_cap *cap, 2409 struct ceph_buffer *xattr_buf) 2410 __releases(ci->i_ceph_lock) 2411 { 2412 struct ceph_inode_info *ci = ceph_inode(inode); 2413 int mds = session->s_mds; 2414 int seq = le32_to_cpu(grant->seq); 2415 int newcaps = le32_to_cpu(grant->caps); 2416 int issued, implemented, used, wanted, dirty; 2417 u64 size = le64_to_cpu(grant->size); 2418 u64 max_size = le64_to_cpu(grant->max_size); 2419 struct timespec mtime, atime, ctime; 2420 int check_caps = 0; 2421 int wake = 0; 2422 int writeback = 0; 2423 int queue_invalidate = 0; 2424 int deleted_inode = 0; 2425 int queue_revalidate = 0; 2426 2427 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2428 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2429 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2430 inode->i_size); 2431 2432 2433 /* 2434 * auth mds of the inode changed. we received the cap export message, 2435 * but still haven't received the cap import message. handle_cap_export 2436 * updated the new auth MDS' cap. 2437 * 2438 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2439 * that was sent before the cap import message. So don't remove caps. 2440 */ 2441 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2442 WARN_ON(cap != ci->i_auth_cap); 2443 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2444 seq = cap->seq; 2445 newcaps |= cap->issued; 2446 } 2447 2448 /* 2449 * If CACHE is being revoked, and we have no dirty buffers, 2450 * try to invalidate (once). (If there are dirty buffers, we 2451 * will invalidate _after_ writeback.) 2452 */ 2453 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2454 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2455 !ci->i_wrbuffer_ref) { 2456 if (try_nonblocking_invalidate(inode)) { 2457 /* there were locked pages.. invalidate later 2458 in a separate thread. */ 2459 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2460 queue_invalidate = 1; 2461 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2462 } 2463 } 2464 2465 ceph_fscache_invalidate(inode); 2466 } 2467 2468 /* side effects now are allowed */ 2469 2470 issued = __ceph_caps_issued(ci, &implemented); 2471 issued |= implemented | __ceph_caps_dirty(ci); 2472 2473 cap->cap_gen = session->s_cap_gen; 2474 cap->seq = seq; 2475 2476 __check_cap_issue(ci, cap, newcaps); 2477 2478 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2479 inode->i_mode = le32_to_cpu(grant->mode); 2480 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2481 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2482 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2483 from_kuid(&init_user_ns, inode->i_uid), 2484 from_kgid(&init_user_ns, inode->i_gid)); 2485 } 2486 2487 if ((issued & CEPH_CAP_LINK_EXCL) == 0) { 2488 set_nlink(inode, le32_to_cpu(grant->nlink)); 2489 if (inode->i_nlink == 0 && 2490 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2491 deleted_inode = 1; 2492 } 2493 2494 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2495 int len = le32_to_cpu(grant->xattr_len); 2496 u64 version = le64_to_cpu(grant->xattr_version); 2497 2498 if (version > ci->i_xattrs.version) { 2499 dout(" got new xattrs v%llu on %p len %d\n", 2500 version, inode, len); 2501 if (ci->i_xattrs.blob) 2502 ceph_buffer_put(ci->i_xattrs.blob); 2503 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2504 ci->i_xattrs.version = version; 2505 ceph_forget_all_cached_acls(inode); 2506 } 2507 } 2508 2509 /* Do we need to revalidate our fscache cookie. Don't bother on the 2510 * first cache cap as we already validate at cookie creation time. */ 2511 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2512 queue_revalidate = 1; 2513 2514 /* size/ctime/mtime/atime? */ 2515 ceph_fill_file_size(inode, issued, 2516 le32_to_cpu(grant->truncate_seq), 2517 le64_to_cpu(grant->truncate_size), size); 2518 ceph_decode_timespec(&mtime, &grant->mtime); 2519 ceph_decode_timespec(&atime, &grant->atime); 2520 ceph_decode_timespec(&ctime, &grant->ctime); 2521 ceph_fill_file_time(inode, issued, 2522 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2523 &atime); 2524 2525 2526 /* file layout may have changed */ 2527 ci->i_layout = grant->layout; 2528 2529 /* max size increase? */ 2530 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2531 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2532 ci->i_max_size = max_size; 2533 if (max_size >= ci->i_wanted_max_size) { 2534 ci->i_wanted_max_size = 0; /* reset */ 2535 ci->i_requested_max_size = 0; 2536 } 2537 wake = 1; 2538 } 2539 2540 /* check cap bits */ 2541 wanted = __ceph_caps_wanted(ci); 2542 used = __ceph_caps_used(ci); 2543 dirty = __ceph_caps_dirty(ci); 2544 dout(" my wanted = %s, used = %s, dirty %s\n", 2545 ceph_cap_string(wanted), 2546 ceph_cap_string(used), 2547 ceph_cap_string(dirty)); 2548 if (wanted != le32_to_cpu(grant->wanted)) { 2549 dout("mds wanted %s -> %s\n", 2550 ceph_cap_string(le32_to_cpu(grant->wanted)), 2551 ceph_cap_string(wanted)); 2552 /* imported cap may not have correct mds_wanted */ 2553 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2554 check_caps = 1; 2555 } 2556 2557 /* revocation, grant, or no-op? */ 2558 if (cap->issued & ~newcaps) { 2559 int revoking = cap->issued & ~newcaps; 2560 2561 dout("revocation: %s -> %s (revoking %s)\n", 2562 ceph_cap_string(cap->issued), 2563 ceph_cap_string(newcaps), 2564 ceph_cap_string(revoking)); 2565 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2566 writeback = 1; /* initiate writeback; will delay ack */ 2567 else if (revoking == CEPH_CAP_FILE_CACHE && 2568 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2569 queue_invalidate) 2570 ; /* do nothing yet, invalidation will be queued */ 2571 else if (cap == ci->i_auth_cap) 2572 check_caps = 1; /* check auth cap only */ 2573 else 2574 check_caps = 2; /* check all caps */ 2575 cap->issued = newcaps; 2576 cap->implemented |= newcaps; 2577 } else if (cap->issued == newcaps) { 2578 dout("caps unchanged: %s -> %s\n", 2579 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2580 } else { 2581 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2582 ceph_cap_string(newcaps)); 2583 /* non-auth MDS is revoking the newly grant caps ? */ 2584 if (cap == ci->i_auth_cap && 2585 __ceph_caps_revoking_other(ci, cap, newcaps)) 2586 check_caps = 2; 2587 2588 cap->issued = newcaps; 2589 cap->implemented |= newcaps; /* add bits only, to 2590 * avoid stepping on a 2591 * pending revocation */ 2592 wake = 1; 2593 } 2594 BUG_ON(cap->issued & ~cap->implemented); 2595 2596 spin_unlock(&ci->i_ceph_lock); 2597 2598 if (writeback) 2599 /* 2600 * queue inode for writeback: we can't actually call 2601 * filemap_write_and_wait, etc. from message handler 2602 * context. 2603 */ 2604 ceph_queue_writeback(inode); 2605 if (queue_invalidate) 2606 ceph_queue_invalidate(inode); 2607 if (deleted_inode) 2608 invalidate_aliases(inode); 2609 if (queue_revalidate) 2610 ceph_queue_revalidate(inode); 2611 if (wake) 2612 wake_up_all(&ci->i_cap_wq); 2613 2614 if (check_caps == 1) 2615 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2616 session); 2617 else if (check_caps == 2) 2618 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2619 else 2620 mutex_unlock(&session->s_mutex); 2621 } 2622 2623 /* 2624 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2625 * MDS has been safely committed. 2626 */ 2627 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2628 struct ceph_mds_caps *m, 2629 struct ceph_mds_session *session, 2630 struct ceph_cap *cap) 2631 __releases(ci->i_ceph_lock) 2632 { 2633 struct ceph_inode_info *ci = ceph_inode(inode); 2634 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2635 unsigned seq = le32_to_cpu(m->seq); 2636 int dirty = le32_to_cpu(m->dirty); 2637 int cleaned = 0; 2638 int drop = 0; 2639 int i; 2640 2641 for (i = 0; i < CEPH_CAP_BITS; i++) 2642 if ((dirty & (1 << i)) && 2643 flush_tid == ci->i_cap_flush_tid[i]) 2644 cleaned |= 1 << i; 2645 2646 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2647 " flushing %s -> %s\n", 2648 inode, session->s_mds, seq, ceph_cap_string(dirty), 2649 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2650 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2651 2652 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2653 goto out; 2654 2655 ci->i_flushing_caps &= ~cleaned; 2656 2657 spin_lock(&mdsc->cap_dirty_lock); 2658 if (ci->i_flushing_caps == 0) { 2659 list_del_init(&ci->i_flushing_item); 2660 if (!list_empty(&session->s_cap_flushing)) 2661 dout(" mds%d still flushing cap on %p\n", 2662 session->s_mds, 2663 &list_entry(session->s_cap_flushing.next, 2664 struct ceph_inode_info, 2665 i_flushing_item)->vfs_inode); 2666 mdsc->num_cap_flushing--; 2667 wake_up_all(&mdsc->cap_flushing_wq); 2668 dout(" inode %p now !flushing\n", inode); 2669 2670 if (ci->i_dirty_caps == 0) { 2671 dout(" inode %p now clean\n", inode); 2672 BUG_ON(!list_empty(&ci->i_dirty_item)); 2673 drop = 1; 2674 if (ci->i_wrbuffer_ref_head == 0) { 2675 BUG_ON(!ci->i_head_snapc); 2676 ceph_put_snap_context(ci->i_head_snapc); 2677 ci->i_head_snapc = NULL; 2678 } 2679 } else { 2680 BUG_ON(list_empty(&ci->i_dirty_item)); 2681 } 2682 } 2683 spin_unlock(&mdsc->cap_dirty_lock); 2684 wake_up_all(&ci->i_cap_wq); 2685 2686 out: 2687 spin_unlock(&ci->i_ceph_lock); 2688 if (drop) 2689 iput(inode); 2690 } 2691 2692 /* 2693 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2694 * throw away our cap_snap. 2695 * 2696 * Caller hold s_mutex. 2697 */ 2698 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2699 struct ceph_mds_caps *m, 2700 struct ceph_mds_session *session) 2701 { 2702 struct ceph_inode_info *ci = ceph_inode(inode); 2703 u64 follows = le64_to_cpu(m->snap_follows); 2704 struct ceph_cap_snap *capsnap; 2705 int drop = 0; 2706 2707 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2708 inode, ci, session->s_mds, follows); 2709 2710 spin_lock(&ci->i_ceph_lock); 2711 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2712 if (capsnap->follows == follows) { 2713 if (capsnap->flush_tid != flush_tid) { 2714 dout(" cap_snap %p follows %lld tid %lld !=" 2715 " %lld\n", capsnap, follows, 2716 flush_tid, capsnap->flush_tid); 2717 break; 2718 } 2719 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2720 dout(" removing %p cap_snap %p follows %lld\n", 2721 inode, capsnap, follows); 2722 ceph_put_snap_context(capsnap->context); 2723 list_del(&capsnap->ci_item); 2724 list_del(&capsnap->flushing_item); 2725 ceph_put_cap_snap(capsnap); 2726 drop = 1; 2727 break; 2728 } else { 2729 dout(" skipping cap_snap %p follows %lld\n", 2730 capsnap, capsnap->follows); 2731 } 2732 } 2733 spin_unlock(&ci->i_ceph_lock); 2734 if (drop) 2735 iput(inode); 2736 } 2737 2738 /* 2739 * Handle TRUNC from MDS, indicating file truncation. 2740 * 2741 * caller hold s_mutex. 2742 */ 2743 static void handle_cap_trunc(struct inode *inode, 2744 struct ceph_mds_caps *trunc, 2745 struct ceph_mds_session *session) 2746 __releases(ci->i_ceph_lock) 2747 { 2748 struct ceph_inode_info *ci = ceph_inode(inode); 2749 int mds = session->s_mds; 2750 int seq = le32_to_cpu(trunc->seq); 2751 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2752 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2753 u64 size = le64_to_cpu(trunc->size); 2754 int implemented = 0; 2755 int dirty = __ceph_caps_dirty(ci); 2756 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2757 int queue_trunc = 0; 2758 2759 issued |= implemented | dirty; 2760 2761 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2762 inode, mds, seq, truncate_size, truncate_seq); 2763 queue_trunc = ceph_fill_file_size(inode, issued, 2764 truncate_seq, truncate_size, size); 2765 spin_unlock(&ci->i_ceph_lock); 2766 2767 if (queue_trunc) { 2768 ceph_queue_vmtruncate(inode); 2769 ceph_fscache_invalidate(inode); 2770 } 2771 } 2772 2773 /* 2774 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2775 * different one. If we are the most recent migration we've seen (as 2776 * indicated by mseq), make note of the migrating cap bits for the 2777 * duration (until we see the corresponding IMPORT). 2778 * 2779 * caller holds s_mutex 2780 */ 2781 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2782 struct ceph_mds_cap_peer *ph, 2783 struct ceph_mds_session *session) 2784 { 2785 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2786 struct ceph_mds_session *tsession = NULL; 2787 struct ceph_cap *cap, *tcap; 2788 struct ceph_inode_info *ci = ceph_inode(inode); 2789 u64 t_cap_id; 2790 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2791 unsigned t_seq, t_mseq; 2792 int target, issued; 2793 int mds = session->s_mds; 2794 2795 if (ph) { 2796 t_cap_id = le64_to_cpu(ph->cap_id); 2797 t_seq = le32_to_cpu(ph->seq); 2798 t_mseq = le32_to_cpu(ph->mseq); 2799 target = le32_to_cpu(ph->mds); 2800 } else { 2801 t_cap_id = t_seq = t_mseq = 0; 2802 target = -1; 2803 } 2804 2805 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 2806 inode, ci, mds, mseq, target); 2807 retry: 2808 spin_lock(&ci->i_ceph_lock); 2809 cap = __get_cap_for_mds(ci, mds); 2810 if (!cap) 2811 goto out_unlock; 2812 2813 if (target < 0) { 2814 __ceph_remove_cap(cap, false); 2815 goto out_unlock; 2816 } 2817 2818 /* 2819 * now we know we haven't received the cap import message yet 2820 * because the exported cap still exist. 2821 */ 2822 2823 issued = cap->issued; 2824 WARN_ON(issued != cap->implemented); 2825 2826 tcap = __get_cap_for_mds(ci, target); 2827 if (tcap) { 2828 /* already have caps from the target */ 2829 if (tcap->cap_id != t_cap_id || 2830 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 2831 dout(" updating import cap %p mds%d\n", tcap, target); 2832 tcap->cap_id = t_cap_id; 2833 tcap->seq = t_seq - 1; 2834 tcap->issue_seq = t_seq - 1; 2835 tcap->mseq = t_mseq; 2836 tcap->issued |= issued; 2837 tcap->implemented |= issued; 2838 if (cap == ci->i_auth_cap) 2839 ci->i_auth_cap = tcap; 2840 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 2841 spin_lock(&mdsc->cap_dirty_lock); 2842 list_move_tail(&ci->i_flushing_item, 2843 &tcap->session->s_cap_flushing); 2844 spin_unlock(&mdsc->cap_dirty_lock); 2845 } 2846 } 2847 __ceph_remove_cap(cap, false); 2848 goto out_unlock; 2849 } 2850 2851 if (tsession) { 2852 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 2853 spin_unlock(&ci->i_ceph_lock); 2854 /* add placeholder for the export tagert */ 2855 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 2856 t_seq - 1, t_mseq, (u64)-1, flag, NULL); 2857 goto retry; 2858 } 2859 2860 spin_unlock(&ci->i_ceph_lock); 2861 mutex_unlock(&session->s_mutex); 2862 2863 /* open target session */ 2864 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 2865 if (!IS_ERR(tsession)) { 2866 if (mds > target) { 2867 mutex_lock(&session->s_mutex); 2868 mutex_lock_nested(&tsession->s_mutex, 2869 SINGLE_DEPTH_NESTING); 2870 } else { 2871 mutex_lock(&tsession->s_mutex); 2872 mutex_lock_nested(&session->s_mutex, 2873 SINGLE_DEPTH_NESTING); 2874 } 2875 ceph_add_cap_releases(mdsc, tsession); 2876 } else { 2877 WARN_ON(1); 2878 tsession = NULL; 2879 target = -1; 2880 } 2881 goto retry; 2882 2883 out_unlock: 2884 spin_unlock(&ci->i_ceph_lock); 2885 mutex_unlock(&session->s_mutex); 2886 if (tsession) { 2887 mutex_unlock(&tsession->s_mutex); 2888 ceph_put_mds_session(tsession); 2889 } 2890 } 2891 2892 /* 2893 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2894 * clean them up. 2895 * 2896 * caller holds s_mutex. 2897 */ 2898 static void handle_cap_import(struct ceph_mds_client *mdsc, 2899 struct inode *inode, struct ceph_mds_caps *im, 2900 struct ceph_mds_cap_peer *ph, 2901 struct ceph_mds_session *session, 2902 void *snaptrace, int snaptrace_len) 2903 { 2904 struct ceph_inode_info *ci = ceph_inode(inode); 2905 struct ceph_cap *cap; 2906 int mds = session->s_mds; 2907 unsigned issued = le32_to_cpu(im->caps); 2908 unsigned wanted = le32_to_cpu(im->wanted); 2909 unsigned seq = le32_to_cpu(im->seq); 2910 unsigned mseq = le32_to_cpu(im->migrate_seq); 2911 u64 realmino = le64_to_cpu(im->realm); 2912 u64 cap_id = le64_to_cpu(im->cap_id); 2913 u64 p_cap_id; 2914 int peer; 2915 2916 if (ph) { 2917 p_cap_id = le64_to_cpu(ph->cap_id); 2918 peer = le32_to_cpu(ph->mds); 2919 } else { 2920 p_cap_id = 0; 2921 peer = -1; 2922 } 2923 2924 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 2925 inode, ci, mds, mseq, peer); 2926 2927 spin_lock(&ci->i_ceph_lock); 2928 cap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 2929 if (cap && cap->cap_id == p_cap_id) { 2930 dout(" remove export cap %p mds%d flags %d\n", 2931 cap, peer, ph->flags); 2932 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 2933 (cap->seq != le32_to_cpu(ph->seq) || 2934 cap->mseq != le32_to_cpu(ph->mseq))) { 2935 pr_err("handle_cap_import: mismatched seq/mseq: " 2936 "ino (%llx.%llx) mds%d seq %d mseq %d " 2937 "importer mds%d has peer seq %d mseq %d\n", 2938 ceph_vinop(inode), peer, cap->seq, 2939 cap->mseq, mds, le32_to_cpu(ph->seq), 2940 le32_to_cpu(ph->mseq)); 2941 } 2942 ci->i_cap_exporting_issued = cap->issued; 2943 __ceph_remove_cap(cap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 2944 } 2945 2946 /* make sure we re-request max_size, if necessary */ 2947 ci->i_wanted_max_size = 0; 2948 ci->i_requested_max_size = 0; 2949 spin_unlock(&ci->i_ceph_lock); 2950 2951 down_write(&mdsc->snap_rwsem); 2952 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2953 false); 2954 downgrade_write(&mdsc->snap_rwsem); 2955 ceph_add_cap(inode, session, cap_id, -1, 2956 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2957 NULL /* no caps context */); 2958 kick_flushing_inode_caps(mdsc, session, inode); 2959 up_read(&mdsc->snap_rwsem); 2960 2961 } 2962 2963 /* 2964 * Handle a caps message from the MDS. 2965 * 2966 * Identify the appropriate session, inode, and call the right handler 2967 * based on the cap op. 2968 */ 2969 void ceph_handle_caps(struct ceph_mds_session *session, 2970 struct ceph_msg *msg) 2971 { 2972 struct ceph_mds_client *mdsc = session->s_mdsc; 2973 struct super_block *sb = mdsc->fsc->sb; 2974 struct inode *inode; 2975 struct ceph_inode_info *ci; 2976 struct ceph_cap *cap; 2977 struct ceph_mds_caps *h; 2978 struct ceph_mds_cap_peer *peer = NULL; 2979 int mds = session->s_mds; 2980 int op; 2981 u32 seq, mseq; 2982 struct ceph_vino vino; 2983 u64 cap_id; 2984 u64 size, max_size; 2985 u64 tid; 2986 void *snaptrace; 2987 size_t snaptrace_len; 2988 void *flock; 2989 void *end; 2990 u32 flock_len; 2991 2992 dout("handle_caps from mds%d\n", mds); 2993 2994 /* decode */ 2995 end = msg->front.iov_base + msg->front.iov_len; 2996 tid = le64_to_cpu(msg->hdr.tid); 2997 if (msg->front.iov_len < sizeof(*h)) 2998 goto bad; 2999 h = msg->front.iov_base; 3000 op = le32_to_cpu(h->op); 3001 vino.ino = le64_to_cpu(h->ino); 3002 vino.snap = CEPH_NOSNAP; 3003 cap_id = le64_to_cpu(h->cap_id); 3004 seq = le32_to_cpu(h->seq); 3005 mseq = le32_to_cpu(h->migrate_seq); 3006 size = le64_to_cpu(h->size); 3007 max_size = le64_to_cpu(h->max_size); 3008 3009 snaptrace = h + 1; 3010 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3011 3012 if (le16_to_cpu(msg->hdr.version) >= 2) { 3013 void *p = snaptrace + snaptrace_len; 3014 ceph_decode_32_safe(&p, end, flock_len, bad); 3015 if (p + flock_len > end) 3016 goto bad; 3017 flock = p; 3018 } else { 3019 flock = NULL; 3020 flock_len = 0; 3021 } 3022 3023 if (le16_to_cpu(msg->hdr.version) >= 3) { 3024 if (op == CEPH_CAP_OP_IMPORT) { 3025 void *p = flock + flock_len; 3026 if (p + sizeof(*peer) > end) 3027 goto bad; 3028 peer = p; 3029 } else if (op == CEPH_CAP_OP_EXPORT) { 3030 /* recorded in unused fields */ 3031 peer = (void *)&h->size; 3032 } 3033 } 3034 3035 mutex_lock(&session->s_mutex); 3036 session->s_seq++; 3037 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3038 (unsigned)seq); 3039 3040 if (op == CEPH_CAP_OP_IMPORT) 3041 ceph_add_cap_releases(mdsc, session); 3042 3043 /* lookup ino */ 3044 inode = ceph_find_inode(sb, vino); 3045 ci = ceph_inode(inode); 3046 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3047 vino.snap, inode); 3048 if (!inode) { 3049 dout(" i don't have ino %llx\n", vino.ino); 3050 3051 if (op == CEPH_CAP_OP_IMPORT) { 3052 spin_lock(&session->s_cap_lock); 3053 __queue_cap_release(session, vino.ino, cap_id, 3054 mseq, seq); 3055 spin_unlock(&session->s_cap_lock); 3056 } 3057 goto flush_cap_releases; 3058 } 3059 3060 /* these will work even if we don't have a cap yet */ 3061 switch (op) { 3062 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3063 handle_cap_flushsnap_ack(inode, tid, h, session); 3064 goto done; 3065 3066 case CEPH_CAP_OP_EXPORT: 3067 handle_cap_export(inode, h, peer, session); 3068 goto done_unlocked; 3069 3070 case CEPH_CAP_OP_IMPORT: 3071 handle_cap_import(mdsc, inode, h, peer, session, 3072 snaptrace, snaptrace_len); 3073 } 3074 3075 /* the rest require a cap */ 3076 spin_lock(&ci->i_ceph_lock); 3077 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3078 if (!cap) { 3079 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3080 inode, ceph_ino(inode), ceph_snap(inode), mds); 3081 spin_unlock(&ci->i_ceph_lock); 3082 goto flush_cap_releases; 3083 } 3084 3085 /* note that each of these drops i_ceph_lock for us */ 3086 switch (op) { 3087 case CEPH_CAP_OP_REVOKE: 3088 case CEPH_CAP_OP_GRANT: 3089 case CEPH_CAP_OP_IMPORT: 3090 handle_cap_grant(inode, h, session, cap, msg->middle); 3091 goto done_unlocked; 3092 3093 case CEPH_CAP_OP_FLUSH_ACK: 3094 handle_cap_flush_ack(inode, tid, h, session, cap); 3095 break; 3096 3097 case CEPH_CAP_OP_TRUNC: 3098 handle_cap_trunc(inode, h, session); 3099 break; 3100 3101 default: 3102 spin_unlock(&ci->i_ceph_lock); 3103 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3104 ceph_cap_op_name(op)); 3105 } 3106 3107 goto done; 3108 3109 flush_cap_releases: 3110 /* 3111 * send any full release message to try to move things 3112 * along for the mds (who clearly thinks we still have this 3113 * cap). 3114 */ 3115 ceph_add_cap_releases(mdsc, session); 3116 ceph_send_cap_releases(mdsc, session); 3117 3118 done: 3119 mutex_unlock(&session->s_mutex); 3120 done_unlocked: 3121 if (inode) 3122 iput(inode); 3123 return; 3124 3125 bad: 3126 pr_err("ceph_handle_caps: corrupt message\n"); 3127 ceph_msg_dump(msg); 3128 return; 3129 } 3130 3131 /* 3132 * Delayed work handler to process end of delayed cap release LRU list. 3133 */ 3134 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3135 { 3136 struct ceph_inode_info *ci; 3137 int flags = CHECK_CAPS_NODELAY; 3138 3139 dout("check_delayed_caps\n"); 3140 while (1) { 3141 spin_lock(&mdsc->cap_delay_lock); 3142 if (list_empty(&mdsc->cap_delay_list)) 3143 break; 3144 ci = list_first_entry(&mdsc->cap_delay_list, 3145 struct ceph_inode_info, 3146 i_cap_delay_list); 3147 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3148 time_before(jiffies, ci->i_hold_caps_max)) 3149 break; 3150 list_del_init(&ci->i_cap_delay_list); 3151 spin_unlock(&mdsc->cap_delay_lock); 3152 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3153 ceph_check_caps(ci, flags, NULL); 3154 } 3155 spin_unlock(&mdsc->cap_delay_lock); 3156 } 3157 3158 /* 3159 * Flush all dirty caps to the mds 3160 */ 3161 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3162 { 3163 struct ceph_inode_info *ci; 3164 struct inode *inode; 3165 3166 dout("flush_dirty_caps\n"); 3167 spin_lock(&mdsc->cap_dirty_lock); 3168 while (!list_empty(&mdsc->cap_dirty)) { 3169 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3170 i_dirty_item); 3171 inode = &ci->vfs_inode; 3172 ihold(inode); 3173 dout("flush_dirty_caps %p\n", inode); 3174 spin_unlock(&mdsc->cap_dirty_lock); 3175 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3176 iput(inode); 3177 spin_lock(&mdsc->cap_dirty_lock); 3178 } 3179 spin_unlock(&mdsc->cap_dirty_lock); 3180 dout("flush_dirty_caps done\n"); 3181 } 3182 3183 /* 3184 * Drop open file reference. If we were the last open file, 3185 * we may need to release capabilities to the MDS (or schedule 3186 * their delayed release). 3187 */ 3188 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3189 { 3190 struct inode *inode = &ci->vfs_inode; 3191 int last = 0; 3192 3193 spin_lock(&ci->i_ceph_lock); 3194 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3195 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3196 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3197 if (--ci->i_nr_by_mode[fmode] == 0) 3198 last++; 3199 spin_unlock(&ci->i_ceph_lock); 3200 3201 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3202 ceph_check_caps(ci, 0, NULL); 3203 } 3204 3205 /* 3206 * Helpers for embedding cap and dentry lease releases into mds 3207 * requests. 3208 * 3209 * @force is used by dentry_release (below) to force inclusion of a 3210 * record for the directory inode, even when there aren't any caps to 3211 * drop. 3212 */ 3213 int ceph_encode_inode_release(void **p, struct inode *inode, 3214 int mds, int drop, int unless, int force) 3215 { 3216 struct ceph_inode_info *ci = ceph_inode(inode); 3217 struct ceph_cap *cap; 3218 struct ceph_mds_request_release *rel = *p; 3219 int used, dirty; 3220 int ret = 0; 3221 3222 spin_lock(&ci->i_ceph_lock); 3223 used = __ceph_caps_used(ci); 3224 dirty = __ceph_caps_dirty(ci); 3225 3226 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3227 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3228 ceph_cap_string(unless)); 3229 3230 /* only drop unused, clean caps */ 3231 drop &= ~(used | dirty); 3232 3233 cap = __get_cap_for_mds(ci, mds); 3234 if (cap && __cap_is_valid(cap)) { 3235 if (force || 3236 ((cap->issued & drop) && 3237 (cap->issued & unless) == 0)) { 3238 if ((cap->issued & drop) && 3239 (cap->issued & unless) == 0) { 3240 int wanted = __ceph_caps_wanted(ci); 3241 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3242 wanted |= cap->mds_wanted; 3243 dout("encode_inode_release %p cap %p " 3244 "%s -> %s, wanted %s -> %s\n", inode, cap, 3245 ceph_cap_string(cap->issued), 3246 ceph_cap_string(cap->issued & ~drop), 3247 ceph_cap_string(cap->mds_wanted), 3248 ceph_cap_string(wanted)); 3249 3250 cap->issued &= ~drop; 3251 cap->implemented &= ~drop; 3252 cap->mds_wanted = wanted; 3253 } else { 3254 dout("encode_inode_release %p cap %p %s" 3255 " (force)\n", inode, cap, 3256 ceph_cap_string(cap->issued)); 3257 } 3258 3259 rel->ino = cpu_to_le64(ceph_ino(inode)); 3260 rel->cap_id = cpu_to_le64(cap->cap_id); 3261 rel->seq = cpu_to_le32(cap->seq); 3262 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3263 rel->mseq = cpu_to_le32(cap->mseq); 3264 rel->caps = cpu_to_le32(cap->issued); 3265 rel->wanted = cpu_to_le32(cap->mds_wanted); 3266 rel->dname_len = 0; 3267 rel->dname_seq = 0; 3268 *p += sizeof(*rel); 3269 ret = 1; 3270 } else { 3271 dout("encode_inode_release %p cap %p %s\n", 3272 inode, cap, ceph_cap_string(cap->issued)); 3273 } 3274 } 3275 spin_unlock(&ci->i_ceph_lock); 3276 return ret; 3277 } 3278 3279 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3280 int mds, int drop, int unless) 3281 { 3282 struct inode *dir = dentry->d_parent->d_inode; 3283 struct ceph_mds_request_release *rel = *p; 3284 struct ceph_dentry_info *di = ceph_dentry(dentry); 3285 int force = 0; 3286 int ret; 3287 3288 /* 3289 * force an record for the directory caps if we have a dentry lease. 3290 * this is racy (can't take i_ceph_lock and d_lock together), but it 3291 * doesn't have to be perfect; the mds will revoke anything we don't 3292 * release. 3293 */ 3294 spin_lock(&dentry->d_lock); 3295 if (di->lease_session && di->lease_session->s_mds == mds) 3296 force = 1; 3297 spin_unlock(&dentry->d_lock); 3298 3299 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3300 3301 spin_lock(&dentry->d_lock); 3302 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3303 dout("encode_dentry_release %p mds%d seq %d\n", 3304 dentry, mds, (int)di->lease_seq); 3305 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3306 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3307 *p += dentry->d_name.len; 3308 rel->dname_seq = cpu_to_le32(di->lease_seq); 3309 __ceph_mdsc_drop_dentry_lease(dentry); 3310 } 3311 spin_unlock(&dentry->d_lock); 3312 return ret; 3313 } 3314