xref: /openbmc/linux/fs/ceph/caps.c (revision a6369741)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8 
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12 
13 /*
14  * Capability management
15  *
16  * The Ceph metadata servers control client access to inode metadata
17  * and file data by issuing capabilities, granting clients permission
18  * to read and/or write both inode field and file data to OSDs
19  * (storage nodes).  Each capability consists of a set of bits
20  * indicating which operations are allowed.
21  *
22  * If the client holds a *_SHARED cap, the client has a coherent value
23  * that can be safely read from the cached inode.
24  *
25  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26  * client is allowed to change inode attributes (e.g., file size,
27  * mtime), note its dirty state in the ceph_cap, and asynchronously
28  * flush that metadata change to the MDS.
29  *
30  * In the event of a conflicting operation (perhaps by another
31  * client), the MDS will revoke the conflicting client capabilities.
32  *
33  * In order for a client to cache an inode, it must hold a capability
34  * with at least one MDS server.  When inodes are released, release
35  * notifications are batched and periodically sent en masse to the MDS
36  * cluster to release server state.
37  */
38 
39 
40 /*
41  * Generate readable cap strings for debugging output.
42  */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47 
48 static char *gcap_string(char *s, int c)
49 {
50 	if (c & CEPH_CAP_GSHARED)
51 		*s++ = 's';
52 	if (c & CEPH_CAP_GEXCL)
53 		*s++ = 'x';
54 	if (c & CEPH_CAP_GCACHE)
55 		*s++ = 'c';
56 	if (c & CEPH_CAP_GRD)
57 		*s++ = 'r';
58 	if (c & CEPH_CAP_GWR)
59 		*s++ = 'w';
60 	if (c & CEPH_CAP_GBUFFER)
61 		*s++ = 'b';
62 	if (c & CEPH_CAP_GLAZYIO)
63 		*s++ = 'l';
64 	return s;
65 }
66 
67 const char *ceph_cap_string(int caps)
68 {
69 	int i;
70 	char *s;
71 	int c;
72 
73 	spin_lock(&cap_str_lock);
74 	i = last_cap_str++;
75 	if (last_cap_str == MAX_CAP_STR)
76 		last_cap_str = 0;
77 	spin_unlock(&cap_str_lock);
78 
79 	s = cap_str[i];
80 
81 	if (caps & CEPH_CAP_PIN)
82 		*s++ = 'p';
83 
84 	c = (caps >> CEPH_CAP_SAUTH) & 3;
85 	if (c) {
86 		*s++ = 'A';
87 		s = gcap_string(s, c);
88 	}
89 
90 	c = (caps >> CEPH_CAP_SLINK) & 3;
91 	if (c) {
92 		*s++ = 'L';
93 		s = gcap_string(s, c);
94 	}
95 
96 	c = (caps >> CEPH_CAP_SXATTR) & 3;
97 	if (c) {
98 		*s++ = 'X';
99 		s = gcap_string(s, c);
100 	}
101 
102 	c = caps >> CEPH_CAP_SFILE;
103 	if (c) {
104 		*s++ = 'F';
105 		s = gcap_string(s, c);
106 	}
107 
108 	if (s == cap_str[i])
109 		*s++ = '-';
110 	*s = 0;
111 	return cap_str[i];
112 }
113 
114 /*
115  * Cap reservations
116  *
117  * Maintain a global pool of preallocated struct ceph_caps, referenced
118  * by struct ceph_caps_reservations.  This ensures that we preallocate
119  * memory needed to successfully process an MDS response.  (If an MDS
120  * sends us cap information and we fail to process it, we will have
121  * problems due to the client and MDS being out of sync.)
122  *
123  * Reservations are 'owned' by a ceph_cap_reservation context.
124  */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list;  /* unused (reserved or unreserved) */
127 static int caps_total_count;        /* total caps allocated */
128 static int caps_use_count;          /* in use */
129 static int caps_reserve_count;      /* unused, reserved */
130 static int caps_avail_count;        /* unused, unreserved */
131 static int caps_min_count;          /* keep at least this many (unreserved) */
132 
133 void __init ceph_caps_init(void)
134 {
135 	INIT_LIST_HEAD(&caps_list);
136 	spin_lock_init(&caps_list_lock);
137 }
138 
139 void ceph_caps_finalize(void)
140 {
141 	struct ceph_cap *cap;
142 
143 	spin_lock(&caps_list_lock);
144 	while (!list_empty(&caps_list)) {
145 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
146 		list_del(&cap->caps_item);
147 		kmem_cache_free(ceph_cap_cachep, cap);
148 	}
149 	caps_total_count = 0;
150 	caps_avail_count = 0;
151 	caps_use_count = 0;
152 	caps_reserve_count = 0;
153 	caps_min_count = 0;
154 	spin_unlock(&caps_list_lock);
155 }
156 
157 void ceph_adjust_min_caps(int delta)
158 {
159 	spin_lock(&caps_list_lock);
160 	caps_min_count += delta;
161 	BUG_ON(caps_min_count < 0);
162 	spin_unlock(&caps_list_lock);
163 }
164 
165 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
166 {
167 	int i;
168 	struct ceph_cap *cap;
169 	int have;
170 	int alloc = 0;
171 	LIST_HEAD(newcaps);
172 	int ret = 0;
173 
174 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
175 
176 	/* first reserve any caps that are already allocated */
177 	spin_lock(&caps_list_lock);
178 	if (caps_avail_count >= need)
179 		have = need;
180 	else
181 		have = caps_avail_count;
182 	caps_avail_count -= have;
183 	caps_reserve_count += have;
184 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
185 	       caps_avail_count);
186 	spin_unlock(&caps_list_lock);
187 
188 	for (i = have; i < need; i++) {
189 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
190 		if (!cap) {
191 			ret = -ENOMEM;
192 			goto out_alloc_count;
193 		}
194 		list_add(&cap->caps_item, &newcaps);
195 		alloc++;
196 	}
197 	BUG_ON(have + alloc != need);
198 
199 	spin_lock(&caps_list_lock);
200 	caps_total_count += alloc;
201 	caps_reserve_count += alloc;
202 	list_splice(&newcaps, &caps_list);
203 
204 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
205 	       caps_avail_count);
206 	spin_unlock(&caps_list_lock);
207 
208 	ctx->count = need;
209 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
210 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
211 	     caps_avail_count);
212 	return 0;
213 
214 out_alloc_count:
215 	/* we didn't manage to reserve as much as we needed */
216 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
217 		   ctx, need, have);
218 	return ret;
219 }
220 
221 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
222 {
223 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
224 	if (ctx->count) {
225 		spin_lock(&caps_list_lock);
226 		BUG_ON(caps_reserve_count < ctx->count);
227 		caps_reserve_count -= ctx->count;
228 		caps_avail_count += ctx->count;
229 		ctx->count = 0;
230 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
231 		     caps_total_count, caps_use_count, caps_reserve_count,
232 		     caps_avail_count);
233 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
234 		       caps_avail_count);
235 		spin_unlock(&caps_list_lock);
236 	}
237 	return 0;
238 }
239 
240 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
241 {
242 	struct ceph_cap *cap = NULL;
243 
244 	/* temporary, until we do something about cap import/export */
245 	if (!ctx)
246 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
247 
248 	spin_lock(&caps_list_lock);
249 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
250 	     ctx, ctx->count, caps_total_count, caps_use_count,
251 	     caps_reserve_count, caps_avail_count);
252 	BUG_ON(!ctx->count);
253 	BUG_ON(ctx->count > caps_reserve_count);
254 	BUG_ON(list_empty(&caps_list));
255 
256 	ctx->count--;
257 	caps_reserve_count--;
258 	caps_use_count++;
259 
260 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
261 	list_del(&cap->caps_item);
262 
263 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
264 	       caps_avail_count);
265 	spin_unlock(&caps_list_lock);
266 	return cap;
267 }
268 
269 void ceph_put_cap(struct ceph_cap *cap)
270 {
271 	spin_lock(&caps_list_lock);
272 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
273 	     cap, caps_total_count, caps_use_count,
274 	     caps_reserve_count, caps_avail_count);
275 	caps_use_count--;
276 	/*
277 	 * Keep some preallocated caps around (ceph_min_count), to
278 	 * avoid lots of free/alloc churn.
279 	 */
280 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
281 		caps_total_count--;
282 		kmem_cache_free(ceph_cap_cachep, cap);
283 	} else {
284 		caps_avail_count++;
285 		list_add(&cap->caps_item, &caps_list);
286 	}
287 
288 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
289 	       caps_avail_count);
290 	spin_unlock(&caps_list_lock);
291 }
292 
293 void ceph_reservation_status(struct ceph_client *client,
294 			     int *total, int *avail, int *used, int *reserved,
295 			     int *min)
296 {
297 	if (total)
298 		*total = caps_total_count;
299 	if (avail)
300 		*avail = caps_avail_count;
301 	if (used)
302 		*used = caps_use_count;
303 	if (reserved)
304 		*reserved = caps_reserve_count;
305 	if (min)
306 		*min = caps_min_count;
307 }
308 
309 /*
310  * Find ceph_cap for given mds, if any.
311  *
312  * Called with i_lock held.
313  */
314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316 	struct ceph_cap *cap;
317 	struct rb_node *n = ci->i_caps.rb_node;
318 
319 	while (n) {
320 		cap = rb_entry(n, struct ceph_cap, ci_node);
321 		if (mds < cap->mds)
322 			n = n->rb_left;
323 		else if (mds > cap->mds)
324 			n = n->rb_right;
325 		else
326 			return cap;
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
333  * -1.
334  */
335 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
336 {
337 	struct ceph_cap *cap;
338 	int mds = -1;
339 	struct rb_node *p;
340 
341 	/* prefer mds with WR|WRBUFFER|EXCL caps */
342 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
343 		cap = rb_entry(p, struct ceph_cap, ci_node);
344 		mds = cap->mds;
345 		if (mseq)
346 			*mseq = cap->mseq;
347 		if (cap->issued & (CEPH_CAP_FILE_WR |
348 				   CEPH_CAP_FILE_BUFFER |
349 				   CEPH_CAP_FILE_EXCL))
350 			break;
351 	}
352 	return mds;
353 }
354 
355 int ceph_get_cap_mds(struct inode *inode)
356 {
357 	int mds;
358 	spin_lock(&inode->i_lock);
359 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
360 	spin_unlock(&inode->i_lock);
361 	return mds;
362 }
363 
364 /*
365  * Called under i_lock.
366  */
367 static void __insert_cap_node(struct ceph_inode_info *ci,
368 			      struct ceph_cap *new)
369 {
370 	struct rb_node **p = &ci->i_caps.rb_node;
371 	struct rb_node *parent = NULL;
372 	struct ceph_cap *cap = NULL;
373 
374 	while (*p) {
375 		parent = *p;
376 		cap = rb_entry(parent, struct ceph_cap, ci_node);
377 		if (new->mds < cap->mds)
378 			p = &(*p)->rb_left;
379 		else if (new->mds > cap->mds)
380 			p = &(*p)->rb_right;
381 		else
382 			BUG();
383 	}
384 
385 	rb_link_node(&new->ci_node, parent, p);
386 	rb_insert_color(&new->ci_node, &ci->i_caps);
387 }
388 
389 /*
390  * (re)set cap hold timeouts, which control the delayed release
391  * of unused caps back to the MDS.  Should be called on cap use.
392  */
393 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
394 			       struct ceph_inode_info *ci)
395 {
396 	struct ceph_mount_args *ma = mdsc->client->mount_args;
397 
398 	ci->i_hold_caps_min = round_jiffies(jiffies +
399 					    ma->caps_wanted_delay_min * HZ);
400 	ci->i_hold_caps_max = round_jiffies(jiffies +
401 					    ma->caps_wanted_delay_max * HZ);
402 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
403 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
404 }
405 
406 /*
407  * (Re)queue cap at the end of the delayed cap release list.
408  *
409  * If I_FLUSH is set, leave the inode at the front of the list.
410  *
411  * Caller holds i_lock
412  *    -> we take mdsc->cap_delay_lock
413  */
414 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
415 				struct ceph_inode_info *ci)
416 {
417 	__cap_set_timeouts(mdsc, ci);
418 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
419 	     ci->i_ceph_flags, ci->i_hold_caps_max);
420 	if (!mdsc->stopping) {
421 		spin_lock(&mdsc->cap_delay_lock);
422 		if (!list_empty(&ci->i_cap_delay_list)) {
423 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
424 				goto no_change;
425 			list_del_init(&ci->i_cap_delay_list);
426 		}
427 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
428 no_change:
429 		spin_unlock(&mdsc->cap_delay_lock);
430 	}
431 }
432 
433 /*
434  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
435  * indicating we should send a cap message to flush dirty metadata
436  * asap, and move to the front of the delayed cap list.
437  */
438 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
439 				      struct ceph_inode_info *ci)
440 {
441 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
442 	spin_lock(&mdsc->cap_delay_lock);
443 	ci->i_ceph_flags |= CEPH_I_FLUSH;
444 	if (!list_empty(&ci->i_cap_delay_list))
445 		list_del_init(&ci->i_cap_delay_list);
446 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
447 	spin_unlock(&mdsc->cap_delay_lock);
448 }
449 
450 /*
451  * Cancel delayed work on cap.
452  *
453  * Caller must hold i_lock.
454  */
455 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
456 			       struct ceph_inode_info *ci)
457 {
458 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
459 	if (list_empty(&ci->i_cap_delay_list))
460 		return;
461 	spin_lock(&mdsc->cap_delay_lock);
462 	list_del_init(&ci->i_cap_delay_list);
463 	spin_unlock(&mdsc->cap_delay_lock);
464 }
465 
466 /*
467  * Common issue checks for add_cap, handle_cap_grant.
468  */
469 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
470 			      unsigned issued)
471 {
472 	unsigned had = __ceph_caps_issued(ci, NULL);
473 
474 	/*
475 	 * Each time we receive FILE_CACHE anew, we increment
476 	 * i_rdcache_gen.
477 	 */
478 	if ((issued & CEPH_CAP_FILE_CACHE) &&
479 	    (had & CEPH_CAP_FILE_CACHE) == 0)
480 		ci->i_rdcache_gen++;
481 
482 	/*
483 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
484 	 * don't know what happened to this directory while we didn't
485 	 * have the cap.
486 	 */
487 	if ((issued & CEPH_CAP_FILE_SHARED) &&
488 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
489 		ci->i_shared_gen++;
490 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
491 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
492 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
493 		}
494 	}
495 }
496 
497 /*
498  * Add a capability under the given MDS session.
499  *
500  * Caller should hold session snap_rwsem (read) and s_mutex.
501  *
502  * @fmode is the open file mode, if we are opening a file, otherwise
503  * it is < 0.  (This is so we can atomically add the cap and add an
504  * open file reference to it.)
505  */
506 int ceph_add_cap(struct inode *inode,
507 		 struct ceph_mds_session *session, u64 cap_id,
508 		 int fmode, unsigned issued, unsigned wanted,
509 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
510 		 struct ceph_cap_reservation *caps_reservation)
511 {
512 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
513 	struct ceph_inode_info *ci = ceph_inode(inode);
514 	struct ceph_cap *new_cap = NULL;
515 	struct ceph_cap *cap;
516 	int mds = session->s_mds;
517 	int actual_wanted;
518 
519 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
520 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
521 
522 	/*
523 	 * If we are opening the file, include file mode wanted bits
524 	 * in wanted.
525 	 */
526 	if (fmode >= 0)
527 		wanted |= ceph_caps_for_mode(fmode);
528 
529 retry:
530 	spin_lock(&inode->i_lock);
531 	cap = __get_cap_for_mds(ci, mds);
532 	if (!cap) {
533 		if (new_cap) {
534 			cap = new_cap;
535 			new_cap = NULL;
536 		} else {
537 			spin_unlock(&inode->i_lock);
538 			new_cap = get_cap(caps_reservation);
539 			if (new_cap == NULL)
540 				return -ENOMEM;
541 			goto retry;
542 		}
543 
544 		cap->issued = 0;
545 		cap->implemented = 0;
546 		cap->mds = mds;
547 		cap->mds_wanted = 0;
548 
549 		cap->ci = ci;
550 		__insert_cap_node(ci, cap);
551 
552 		/* clear out old exporting info?  (i.e. on cap import) */
553 		if (ci->i_cap_exporting_mds == mds) {
554 			ci->i_cap_exporting_issued = 0;
555 			ci->i_cap_exporting_mseq = 0;
556 			ci->i_cap_exporting_mds = -1;
557 		}
558 
559 		/* add to session cap list */
560 		cap->session = session;
561 		spin_lock(&session->s_cap_lock);
562 		list_add_tail(&cap->session_caps, &session->s_caps);
563 		session->s_nr_caps++;
564 		spin_unlock(&session->s_cap_lock);
565 	}
566 
567 	if (!ci->i_snap_realm) {
568 		/*
569 		 * add this inode to the appropriate snap realm
570 		 */
571 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
572 							       realmino);
573 		if (realm) {
574 			ceph_get_snap_realm(mdsc, realm);
575 			spin_lock(&realm->inodes_with_caps_lock);
576 			ci->i_snap_realm = realm;
577 			list_add(&ci->i_snap_realm_item,
578 				 &realm->inodes_with_caps);
579 			spin_unlock(&realm->inodes_with_caps_lock);
580 		} else {
581 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
582 			       realmino);
583 		}
584 	}
585 
586 	__check_cap_issue(ci, cap, issued);
587 
588 	/*
589 	 * If we are issued caps we don't want, or the mds' wanted
590 	 * value appears to be off, queue a check so we'll release
591 	 * later and/or update the mds wanted value.
592 	 */
593 	actual_wanted = __ceph_caps_wanted(ci);
594 	if ((wanted & ~actual_wanted) ||
595 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
596 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
597 		     ceph_cap_string(issued), ceph_cap_string(wanted),
598 		     ceph_cap_string(actual_wanted));
599 		__cap_delay_requeue(mdsc, ci);
600 	}
601 
602 	if (flags & CEPH_CAP_FLAG_AUTH)
603 		ci->i_auth_cap = cap;
604 	else if (ci->i_auth_cap == cap)
605 		ci->i_auth_cap = NULL;
606 
607 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
608 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
609 	     ceph_cap_string(issued|cap->issued), seq, mds);
610 	cap->cap_id = cap_id;
611 	cap->issued = issued;
612 	cap->implemented |= issued;
613 	cap->mds_wanted |= wanted;
614 	cap->seq = seq;
615 	cap->issue_seq = seq;
616 	cap->mseq = mseq;
617 	cap->cap_gen = session->s_cap_gen;
618 
619 	if (fmode >= 0)
620 		__ceph_get_fmode(ci, fmode);
621 	spin_unlock(&inode->i_lock);
622 	wake_up(&ci->i_cap_wq);
623 	return 0;
624 }
625 
626 /*
627  * Return true if cap has not timed out and belongs to the current
628  * generation of the MDS session (i.e. has not gone 'stale' due to
629  * us losing touch with the mds).
630  */
631 static int __cap_is_valid(struct ceph_cap *cap)
632 {
633 	unsigned long ttl;
634 	u32 gen;
635 
636 	spin_lock(&cap->session->s_cap_lock);
637 	gen = cap->session->s_cap_gen;
638 	ttl = cap->session->s_cap_ttl;
639 	spin_unlock(&cap->session->s_cap_lock);
640 
641 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
642 		dout("__cap_is_valid %p cap %p issued %s "
643 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
644 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
645 		return 0;
646 	}
647 
648 	return 1;
649 }
650 
651 /*
652  * Return set of valid cap bits issued to us.  Note that caps time
653  * out, and may be invalidated in bulk if the client session times out
654  * and session->s_cap_gen is bumped.
655  */
656 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
657 {
658 	int have = ci->i_snap_caps;
659 	struct ceph_cap *cap;
660 	struct rb_node *p;
661 
662 	if (implemented)
663 		*implemented = 0;
664 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
665 		cap = rb_entry(p, struct ceph_cap, ci_node);
666 		if (!__cap_is_valid(cap))
667 			continue;
668 		dout("__ceph_caps_issued %p cap %p issued %s\n",
669 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
670 		have |= cap->issued;
671 		if (implemented)
672 			*implemented |= cap->implemented;
673 	}
674 	return have;
675 }
676 
677 /*
678  * Get cap bits issued by caps other than @ocap
679  */
680 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
681 {
682 	int have = ci->i_snap_caps;
683 	struct ceph_cap *cap;
684 	struct rb_node *p;
685 
686 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
687 		cap = rb_entry(p, struct ceph_cap, ci_node);
688 		if (cap == ocap)
689 			continue;
690 		if (!__cap_is_valid(cap))
691 			continue;
692 		have |= cap->issued;
693 	}
694 	return have;
695 }
696 
697 /*
698  * Move a cap to the end of the LRU (oldest caps at list head, newest
699  * at list tail).
700  */
701 static void __touch_cap(struct ceph_cap *cap)
702 {
703 	struct ceph_mds_session *s = cap->session;
704 
705 	spin_lock(&s->s_cap_lock);
706 	if (s->s_cap_iterator == NULL) {
707 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
708 		     s->s_mds);
709 		list_move_tail(&cap->session_caps, &s->s_caps);
710 	} else {
711 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
712 		     &cap->ci->vfs_inode, cap, s->s_mds);
713 	}
714 	spin_unlock(&s->s_cap_lock);
715 }
716 
717 /*
718  * Check if we hold the given mask.  If so, move the cap(s) to the
719  * front of their respective LRUs.  (This is the preferred way for
720  * callers to check for caps they want.)
721  */
722 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
723 {
724 	struct ceph_cap *cap;
725 	struct rb_node *p;
726 	int have = ci->i_snap_caps;
727 
728 	if ((have & mask) == mask) {
729 		dout("__ceph_caps_issued_mask %p snap issued %s"
730 		     " (mask %s)\n", &ci->vfs_inode,
731 		     ceph_cap_string(have),
732 		     ceph_cap_string(mask));
733 		return 1;
734 	}
735 
736 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
737 		cap = rb_entry(p, struct ceph_cap, ci_node);
738 		if (!__cap_is_valid(cap))
739 			continue;
740 		if ((cap->issued & mask) == mask) {
741 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
742 			     " (mask %s)\n", &ci->vfs_inode, cap,
743 			     ceph_cap_string(cap->issued),
744 			     ceph_cap_string(mask));
745 			if (touch)
746 				__touch_cap(cap);
747 			return 1;
748 		}
749 
750 		/* does a combination of caps satisfy mask? */
751 		have |= cap->issued;
752 		if ((have & mask) == mask) {
753 			dout("__ceph_caps_issued_mask %p combo issued %s"
754 			     " (mask %s)\n", &ci->vfs_inode,
755 			     ceph_cap_string(cap->issued),
756 			     ceph_cap_string(mask));
757 			if (touch) {
758 				struct rb_node *q;
759 
760 				/* touch this + preceeding caps */
761 				__touch_cap(cap);
762 				for (q = rb_first(&ci->i_caps); q != p;
763 				     q = rb_next(q)) {
764 					cap = rb_entry(q, struct ceph_cap,
765 						       ci_node);
766 					if (!__cap_is_valid(cap))
767 						continue;
768 					__touch_cap(cap);
769 				}
770 			}
771 			return 1;
772 		}
773 	}
774 
775 	return 0;
776 }
777 
778 /*
779  * Return true if mask caps are currently being revoked by an MDS.
780  */
781 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
782 {
783 	struct inode *inode = &ci->vfs_inode;
784 	struct ceph_cap *cap;
785 	struct rb_node *p;
786 	int ret = 0;
787 
788 	spin_lock(&inode->i_lock);
789 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
790 		cap = rb_entry(p, struct ceph_cap, ci_node);
791 		if (__cap_is_valid(cap) &&
792 		    (cap->implemented & ~cap->issued & mask)) {
793 			ret = 1;
794 			break;
795 		}
796 	}
797 	spin_unlock(&inode->i_lock);
798 	dout("ceph_caps_revoking %p %s = %d\n", inode,
799 	     ceph_cap_string(mask), ret);
800 	return ret;
801 }
802 
803 int __ceph_caps_used(struct ceph_inode_info *ci)
804 {
805 	int used = 0;
806 	if (ci->i_pin_ref)
807 		used |= CEPH_CAP_PIN;
808 	if (ci->i_rd_ref)
809 		used |= CEPH_CAP_FILE_RD;
810 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
811 		used |= CEPH_CAP_FILE_CACHE;
812 	if (ci->i_wr_ref)
813 		used |= CEPH_CAP_FILE_WR;
814 	if (ci->i_wrbuffer_ref)
815 		used |= CEPH_CAP_FILE_BUFFER;
816 	return used;
817 }
818 
819 /*
820  * wanted, by virtue of open file modes
821  */
822 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
823 {
824 	int want = 0;
825 	int mode;
826 	for (mode = 0; mode < 4; mode++)
827 		if (ci->i_nr_by_mode[mode])
828 			want |= ceph_caps_for_mode(mode);
829 	return want;
830 }
831 
832 /*
833  * Return caps we have registered with the MDS(s) as 'wanted'.
834  */
835 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
836 {
837 	struct ceph_cap *cap;
838 	struct rb_node *p;
839 	int mds_wanted = 0;
840 
841 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
842 		cap = rb_entry(p, struct ceph_cap, ci_node);
843 		if (!__cap_is_valid(cap))
844 			continue;
845 		mds_wanted |= cap->mds_wanted;
846 	}
847 	return mds_wanted;
848 }
849 
850 /*
851  * called under i_lock
852  */
853 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
854 {
855 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
856 }
857 
858 /*
859  * caller should hold i_lock.
860  * caller will not hold session s_mutex if called from destroy_inode.
861  */
862 void __ceph_remove_cap(struct ceph_cap *cap)
863 {
864 	struct ceph_mds_session *session = cap->session;
865 	struct ceph_inode_info *ci = cap->ci;
866 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
867 
868 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
869 
870 	/* remove from inode list */
871 	rb_erase(&cap->ci_node, &ci->i_caps);
872 	cap->ci = NULL;
873 	if (ci->i_auth_cap == cap)
874 		ci->i_auth_cap = NULL;
875 
876 	/* remove from session list */
877 	spin_lock(&session->s_cap_lock);
878 	if (session->s_cap_iterator == cap) {
879 		/* not yet, we are iterating over this very cap */
880 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
881 		     cap, cap->session);
882 	} else {
883 		list_del_init(&cap->session_caps);
884 		session->s_nr_caps--;
885 		cap->session = NULL;
886 	}
887 	spin_unlock(&session->s_cap_lock);
888 
889 	if (cap->session == NULL)
890 		ceph_put_cap(cap);
891 
892 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
893 		struct ceph_snap_realm *realm = ci->i_snap_realm;
894 		spin_lock(&realm->inodes_with_caps_lock);
895 		list_del_init(&ci->i_snap_realm_item);
896 		ci->i_snap_realm_counter++;
897 		ci->i_snap_realm = NULL;
898 		spin_unlock(&realm->inodes_with_caps_lock);
899 		ceph_put_snap_realm(mdsc, realm);
900 	}
901 	if (!__ceph_is_any_real_caps(ci))
902 		__cap_delay_cancel(mdsc, ci);
903 }
904 
905 /*
906  * Build and send a cap message to the given MDS.
907  *
908  * Caller should be holding s_mutex.
909  */
910 static int send_cap_msg(struct ceph_mds_session *session,
911 			u64 ino, u64 cid, int op,
912 			int caps, int wanted, int dirty,
913 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
914 			u64 size, u64 max_size,
915 			struct timespec *mtime, struct timespec *atime,
916 			u64 time_warp_seq,
917 			uid_t uid, gid_t gid, mode_t mode,
918 			u64 xattr_version,
919 			struct ceph_buffer *xattrs_buf,
920 			u64 follows)
921 {
922 	struct ceph_mds_caps *fc;
923 	struct ceph_msg *msg;
924 
925 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
926 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
927 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
928 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
929 	     ceph_cap_string(dirty),
930 	     seq, issue_seq, mseq, follows, size, max_size,
931 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
932 
933 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
934 	if (IS_ERR(msg))
935 		return PTR_ERR(msg);
936 
937 	msg->hdr.tid = cpu_to_le64(flush_tid);
938 
939 	fc = msg->front.iov_base;
940 	memset(fc, 0, sizeof(*fc));
941 
942 	fc->cap_id = cpu_to_le64(cid);
943 	fc->op = cpu_to_le32(op);
944 	fc->seq = cpu_to_le32(seq);
945 	fc->issue_seq = cpu_to_le32(issue_seq);
946 	fc->migrate_seq = cpu_to_le32(mseq);
947 	fc->caps = cpu_to_le32(caps);
948 	fc->wanted = cpu_to_le32(wanted);
949 	fc->dirty = cpu_to_le32(dirty);
950 	fc->ino = cpu_to_le64(ino);
951 	fc->snap_follows = cpu_to_le64(follows);
952 
953 	fc->size = cpu_to_le64(size);
954 	fc->max_size = cpu_to_le64(max_size);
955 	if (mtime)
956 		ceph_encode_timespec(&fc->mtime, mtime);
957 	if (atime)
958 		ceph_encode_timespec(&fc->atime, atime);
959 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
960 
961 	fc->uid = cpu_to_le32(uid);
962 	fc->gid = cpu_to_le32(gid);
963 	fc->mode = cpu_to_le32(mode);
964 
965 	fc->xattr_version = cpu_to_le64(xattr_version);
966 	if (xattrs_buf) {
967 		msg->middle = ceph_buffer_get(xattrs_buf);
968 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
969 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
970 	}
971 
972 	ceph_con_send(&session->s_con, msg);
973 	return 0;
974 }
975 
976 /*
977  * Queue cap releases when an inode is dropped from our cache.  Since
978  * inode is about to be destroyed, there is no need for i_lock.
979  */
980 void ceph_queue_caps_release(struct inode *inode)
981 {
982 	struct ceph_inode_info *ci = ceph_inode(inode);
983 	struct rb_node *p;
984 
985 	p = rb_first(&ci->i_caps);
986 	while (p) {
987 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
988 		struct ceph_mds_session *session = cap->session;
989 		struct ceph_msg *msg;
990 		struct ceph_mds_cap_release *head;
991 		struct ceph_mds_cap_item *item;
992 
993 		spin_lock(&session->s_cap_lock);
994 		BUG_ON(!session->s_num_cap_releases);
995 		msg = list_first_entry(&session->s_cap_releases,
996 				       struct ceph_msg, list_head);
997 
998 		dout(" adding %p release to mds%d msg %p (%d left)\n",
999 		     inode, session->s_mds, msg, session->s_num_cap_releases);
1000 
1001 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1002 		head = msg->front.iov_base;
1003 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1004 		item = msg->front.iov_base + msg->front.iov_len;
1005 		item->ino = cpu_to_le64(ceph_ino(inode));
1006 		item->cap_id = cpu_to_le64(cap->cap_id);
1007 		item->migrate_seq = cpu_to_le32(cap->mseq);
1008 		item->seq = cpu_to_le32(cap->issue_seq);
1009 
1010 		session->s_num_cap_releases--;
1011 
1012 		msg->front.iov_len += sizeof(*item);
1013 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1014 			dout(" release msg %p full\n", msg);
1015 			list_move_tail(&msg->list_head,
1016 				       &session->s_cap_releases_done);
1017 		} else {
1018 			dout(" release msg %p at %d/%d (%d)\n", msg,
1019 			     (int)le32_to_cpu(head->num),
1020 			     (int)CEPH_CAPS_PER_RELEASE,
1021 			     (int)msg->front.iov_len);
1022 		}
1023 		spin_unlock(&session->s_cap_lock);
1024 		p = rb_next(p);
1025 		__ceph_remove_cap(cap);
1026 	}
1027 }
1028 
1029 /*
1030  * Send a cap msg on the given inode.  Update our caps state, then
1031  * drop i_lock and send the message.
1032  *
1033  * Make note of max_size reported/requested from mds, revoked caps
1034  * that have now been implemented.
1035  *
1036  * Make half-hearted attempt ot to invalidate page cache if we are
1037  * dropping RDCACHE.  Note that this will leave behind locked pages
1038  * that we'll then need to deal with elsewhere.
1039  *
1040  * Return non-zero if delayed release, or we experienced an error
1041  * such that the caller should requeue + retry later.
1042  *
1043  * called with i_lock, then drops it.
1044  * caller should hold snap_rwsem (read), s_mutex.
1045  */
1046 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1047 		      int op, int used, int want, int retain, int flushing,
1048 		      unsigned *pflush_tid)
1049 	__releases(cap->ci->vfs_inode->i_lock)
1050 {
1051 	struct ceph_inode_info *ci = cap->ci;
1052 	struct inode *inode = &ci->vfs_inode;
1053 	u64 cap_id = cap->cap_id;
1054 	int held, revoking, dropping, keep;
1055 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1056 	u64 size, max_size;
1057 	struct timespec mtime, atime;
1058 	int wake = 0;
1059 	mode_t mode;
1060 	uid_t uid;
1061 	gid_t gid;
1062 	struct ceph_mds_session *session;
1063 	u64 xattr_version = 0;
1064 	int delayed = 0;
1065 	u64 flush_tid = 0;
1066 	int i;
1067 	int ret;
1068 
1069 	held = cap->issued | cap->implemented;
1070 	revoking = cap->implemented & ~cap->issued;
1071 	retain &= ~revoking;
1072 	dropping = cap->issued & ~retain;
1073 
1074 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1075 	     inode, cap, cap->session,
1076 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1077 	     ceph_cap_string(revoking));
1078 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1079 
1080 	session = cap->session;
1081 
1082 	/* don't release wanted unless we've waited a bit. */
1083 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1084 	    time_before(jiffies, ci->i_hold_caps_min)) {
1085 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1086 		     ceph_cap_string(cap->issued),
1087 		     ceph_cap_string(cap->issued & retain),
1088 		     ceph_cap_string(cap->mds_wanted),
1089 		     ceph_cap_string(want));
1090 		want |= cap->mds_wanted;
1091 		retain |= cap->issued;
1092 		delayed = 1;
1093 	}
1094 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1095 
1096 	cap->issued &= retain;  /* drop bits we don't want */
1097 	if (cap->implemented & ~cap->issued) {
1098 		/*
1099 		 * Wake up any waiters on wanted -> needed transition.
1100 		 * This is due to the weird transition from buffered
1101 		 * to sync IO... we need to flush dirty pages _before_
1102 		 * allowing sync writes to avoid reordering.
1103 		 */
1104 		wake = 1;
1105 	}
1106 	cap->implemented &= cap->issued | used;
1107 	cap->mds_wanted = want;
1108 
1109 	if (flushing) {
1110 		/*
1111 		 * assign a tid for flush operations so we can avoid
1112 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1113 		 * clean type races.  track latest tid for every bit
1114 		 * so we can handle flush AxFw, flush Fw, and have the
1115 		 * first ack clean Ax.
1116 		 */
1117 		flush_tid = ++ci->i_cap_flush_last_tid;
1118 		if (pflush_tid)
1119 			*pflush_tid = flush_tid;
1120 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1121 		for (i = 0; i < CEPH_CAP_BITS; i++)
1122 			if (flushing & (1 << i))
1123 				ci->i_cap_flush_tid[i] = flush_tid;
1124 	}
1125 
1126 	keep = cap->implemented;
1127 	seq = cap->seq;
1128 	issue_seq = cap->issue_seq;
1129 	mseq = cap->mseq;
1130 	size = inode->i_size;
1131 	ci->i_reported_size = size;
1132 	max_size = ci->i_wanted_max_size;
1133 	ci->i_requested_max_size = max_size;
1134 	mtime = inode->i_mtime;
1135 	atime = inode->i_atime;
1136 	time_warp_seq = ci->i_time_warp_seq;
1137 	follows = ci->i_snap_realm->cached_context->seq;
1138 	uid = inode->i_uid;
1139 	gid = inode->i_gid;
1140 	mode = inode->i_mode;
1141 
1142 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1143 		__ceph_build_xattrs_blob(ci);
1144 		xattr_version = ci->i_xattrs.version + 1;
1145 	}
1146 
1147 	spin_unlock(&inode->i_lock);
1148 
1149 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1150 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1151 		size, max_size, &mtime, &atime, time_warp_seq,
1152 		uid, gid, mode,
1153 		xattr_version,
1154 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1155 		follows);
1156 	if (ret < 0) {
1157 		dout("error sending cap msg, must requeue %p\n", inode);
1158 		delayed = 1;
1159 	}
1160 
1161 	if (wake)
1162 		wake_up(&ci->i_cap_wq);
1163 
1164 	return delayed;
1165 }
1166 
1167 /*
1168  * When a snapshot is taken, clients accumulate dirty metadata on
1169  * inodes with capabilities in ceph_cap_snaps to describe the file
1170  * state at the time the snapshot was taken.  This must be flushed
1171  * asynchronously back to the MDS once sync writes complete and dirty
1172  * data is written out.
1173  *
1174  * Called under i_lock.  Takes s_mutex as needed.
1175  */
1176 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1177 			struct ceph_mds_session **psession)
1178 {
1179 	struct inode *inode = &ci->vfs_inode;
1180 	int mds;
1181 	struct ceph_cap_snap *capsnap;
1182 	u32 mseq;
1183 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1184 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1185 						    session->s_mutex */
1186 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1187 			     i_cap_snaps list, and skip these entries next time
1188 			     around to avoid an infinite loop */
1189 
1190 	if (psession)
1191 		session = *psession;
1192 
1193 	dout("__flush_snaps %p\n", inode);
1194 retry:
1195 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1196 		/* avoid an infiniute loop after retry */
1197 		if (capsnap->follows < next_follows)
1198 			continue;
1199 		/*
1200 		 * we need to wait for sync writes to complete and for dirty
1201 		 * pages to be written out.
1202 		 */
1203 		if (capsnap->dirty_pages || capsnap->writing)
1204 			continue;
1205 
1206 		/* pick mds, take s_mutex */
1207 		mds = __ceph_get_cap_mds(ci, &mseq);
1208 		if (session && session->s_mds != mds) {
1209 			dout("oops, wrong session %p mutex\n", session);
1210 			mutex_unlock(&session->s_mutex);
1211 			ceph_put_mds_session(session);
1212 			session = NULL;
1213 		}
1214 		if (!session) {
1215 			spin_unlock(&inode->i_lock);
1216 			mutex_lock(&mdsc->mutex);
1217 			session = __ceph_lookup_mds_session(mdsc, mds);
1218 			mutex_unlock(&mdsc->mutex);
1219 			if (session) {
1220 				dout("inverting session/ino locks on %p\n",
1221 				     session);
1222 				mutex_lock(&session->s_mutex);
1223 			}
1224 			/*
1225 			 * if session == NULL, we raced against a cap
1226 			 * deletion.  retry, and we'll get a better
1227 			 * @mds value next time.
1228 			 */
1229 			spin_lock(&inode->i_lock);
1230 			goto retry;
1231 		}
1232 
1233 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1234 		atomic_inc(&capsnap->nref);
1235 		if (!list_empty(&capsnap->flushing_item))
1236 			list_del_init(&capsnap->flushing_item);
1237 		list_add_tail(&capsnap->flushing_item,
1238 			      &session->s_cap_snaps_flushing);
1239 		spin_unlock(&inode->i_lock);
1240 
1241 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1242 		     inode, capsnap, next_follows, capsnap->size);
1243 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1244 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1245 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1246 			     capsnap->size, 0,
1247 			     &capsnap->mtime, &capsnap->atime,
1248 			     capsnap->time_warp_seq,
1249 			     capsnap->uid, capsnap->gid, capsnap->mode,
1250 			     0, NULL,
1251 			     capsnap->follows);
1252 
1253 		next_follows = capsnap->follows + 1;
1254 		ceph_put_cap_snap(capsnap);
1255 
1256 		spin_lock(&inode->i_lock);
1257 		goto retry;
1258 	}
1259 
1260 	/* we flushed them all; remove this inode from the queue */
1261 	spin_lock(&mdsc->snap_flush_lock);
1262 	list_del_init(&ci->i_snap_flush_item);
1263 	spin_unlock(&mdsc->snap_flush_lock);
1264 
1265 	if (psession)
1266 		*psession = session;
1267 	else if (session) {
1268 		mutex_unlock(&session->s_mutex);
1269 		ceph_put_mds_session(session);
1270 	}
1271 }
1272 
1273 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1274 {
1275 	struct inode *inode = &ci->vfs_inode;
1276 
1277 	spin_lock(&inode->i_lock);
1278 	__ceph_flush_snaps(ci, NULL);
1279 	spin_unlock(&inode->i_lock);
1280 }
1281 
1282 /*
1283  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1284  * list.
1285  */
1286 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1287 {
1288 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1289 	struct inode *inode = &ci->vfs_inode;
1290 	int was = ci->i_dirty_caps;
1291 	int dirty = 0;
1292 
1293 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1294 	     ceph_cap_string(mask), ceph_cap_string(was),
1295 	     ceph_cap_string(was | mask));
1296 	ci->i_dirty_caps |= mask;
1297 	if (was == 0) {
1298 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1299 		BUG_ON(!list_empty(&ci->i_dirty_item));
1300 		spin_lock(&mdsc->cap_dirty_lock);
1301 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1302 		spin_unlock(&mdsc->cap_dirty_lock);
1303 		if (ci->i_flushing_caps == 0) {
1304 			igrab(inode);
1305 			dirty |= I_DIRTY_SYNC;
1306 		}
1307 	}
1308 	BUG_ON(list_empty(&ci->i_dirty_item));
1309 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1310 	    (mask & CEPH_CAP_FILE_BUFFER))
1311 		dirty |= I_DIRTY_DATASYNC;
1312 	if (dirty)
1313 		__mark_inode_dirty(inode, dirty);
1314 	__cap_delay_requeue(mdsc, ci);
1315 }
1316 
1317 /*
1318  * Add dirty inode to the flushing list.  Assigned a seq number so we
1319  * can wait for caps to flush without starving.
1320  *
1321  * Called under i_lock.
1322  */
1323 static int __mark_caps_flushing(struct inode *inode,
1324 				 struct ceph_mds_session *session)
1325 {
1326 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1327 	struct ceph_inode_info *ci = ceph_inode(inode);
1328 	int flushing;
1329 
1330 	BUG_ON(ci->i_dirty_caps == 0);
1331 	BUG_ON(list_empty(&ci->i_dirty_item));
1332 
1333 	flushing = ci->i_dirty_caps;
1334 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1335 	     ceph_cap_string(flushing),
1336 	     ceph_cap_string(ci->i_flushing_caps),
1337 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1338 	ci->i_flushing_caps |= flushing;
1339 	ci->i_dirty_caps = 0;
1340 	dout(" inode %p now !dirty\n", inode);
1341 
1342 	spin_lock(&mdsc->cap_dirty_lock);
1343 	list_del_init(&ci->i_dirty_item);
1344 
1345 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1346 	if (list_empty(&ci->i_flushing_item)) {
1347 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1348 		mdsc->num_cap_flushing++;
1349 		dout(" inode %p now flushing seq %lld\n", inode,
1350 		     ci->i_cap_flush_seq);
1351 	} else {
1352 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1353 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1354 		     ci->i_cap_flush_seq);
1355 	}
1356 	spin_unlock(&mdsc->cap_dirty_lock);
1357 
1358 	return flushing;
1359 }
1360 
1361 /*
1362  * try to invalidate mapping pages without blocking.
1363  */
1364 static int mapping_is_empty(struct address_space *mapping)
1365 {
1366 	struct page *page = find_get_page(mapping, 0);
1367 
1368 	if (!page)
1369 		return 1;
1370 
1371 	put_page(page);
1372 	return 0;
1373 }
1374 
1375 static int try_nonblocking_invalidate(struct inode *inode)
1376 {
1377 	struct ceph_inode_info *ci = ceph_inode(inode);
1378 	u32 invalidating_gen = ci->i_rdcache_gen;
1379 
1380 	spin_unlock(&inode->i_lock);
1381 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1382 	spin_lock(&inode->i_lock);
1383 
1384 	if (mapping_is_empty(&inode->i_data) &&
1385 	    invalidating_gen == ci->i_rdcache_gen) {
1386 		/* success. */
1387 		dout("try_nonblocking_invalidate %p success\n", inode);
1388 		ci->i_rdcache_gen = 0;
1389 		ci->i_rdcache_revoking = 0;
1390 		return 0;
1391 	}
1392 	dout("try_nonblocking_invalidate %p failed\n", inode);
1393 	return -1;
1394 }
1395 
1396 /*
1397  * Swiss army knife function to examine currently used and wanted
1398  * versus held caps.  Release, flush, ack revoked caps to mds as
1399  * appropriate.
1400  *
1401  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1402  *    cap release further.
1403  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1404  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1405  *    further delay.
1406  */
1407 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1408 		     struct ceph_mds_session *session)
1409 {
1410 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1411 	struct ceph_mds_client *mdsc = &client->mdsc;
1412 	struct inode *inode = &ci->vfs_inode;
1413 	struct ceph_cap *cap;
1414 	int file_wanted, used;
1415 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1416 	int drop_session_lock = session ? 0 : 1;
1417 	int issued, implemented, want, retain, revoking, flushing = 0;
1418 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1419 			   to avoid an infinite loop on retry */
1420 	struct rb_node *p;
1421 	int tried_invalidate = 0;
1422 	int delayed = 0, sent = 0, force_requeue = 0, num;
1423 	int queue_invalidate = 0;
1424 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1425 
1426 	/* if we are unmounting, flush any unused caps immediately. */
1427 	if (mdsc->stopping)
1428 		is_delayed = 1;
1429 
1430 	spin_lock(&inode->i_lock);
1431 
1432 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1433 		flags |= CHECK_CAPS_FLUSH;
1434 
1435 	/* flush snaps first time around only */
1436 	if (!list_empty(&ci->i_cap_snaps))
1437 		__ceph_flush_snaps(ci, &session);
1438 	goto retry_locked;
1439 retry:
1440 	spin_lock(&inode->i_lock);
1441 retry_locked:
1442 	file_wanted = __ceph_caps_file_wanted(ci);
1443 	used = __ceph_caps_used(ci);
1444 	want = file_wanted | used;
1445 	issued = __ceph_caps_issued(ci, &implemented);
1446 	revoking = implemented & ~issued;
1447 
1448 	retain = want | CEPH_CAP_PIN;
1449 	if (!mdsc->stopping && inode->i_nlink > 0) {
1450 		if (want) {
1451 			retain |= CEPH_CAP_ANY;       /* be greedy */
1452 		} else {
1453 			retain |= CEPH_CAP_ANY_SHARED;
1454 			/*
1455 			 * keep RD only if we didn't have the file open RW,
1456 			 * because then the mds would revoke it anyway to
1457 			 * journal max_size=0.
1458 			 */
1459 			if (ci->i_max_size == 0)
1460 				retain |= CEPH_CAP_ANY_RD;
1461 		}
1462 	}
1463 
1464 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1465 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1466 	     ceph_cap_string(file_wanted),
1467 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1468 	     ceph_cap_string(ci->i_flushing_caps),
1469 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1470 	     ceph_cap_string(retain),
1471 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1472 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1473 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1474 
1475 	/*
1476 	 * If we no longer need to hold onto old our caps, and we may
1477 	 * have cached pages, but don't want them, then try to invalidate.
1478 	 * If we fail, it's because pages are locked.... try again later.
1479 	 */
1480 	if ((!is_delayed || mdsc->stopping) &&
1481 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1482 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1483 	    (file_wanted == 0 ||                     /* no open files */
1484 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1485 	    !tried_invalidate) {
1486 		dout("check_caps trying to invalidate on %p\n", inode);
1487 		if (try_nonblocking_invalidate(inode) < 0) {
1488 			if (revoking & CEPH_CAP_FILE_CACHE) {
1489 				dout("check_caps queuing invalidate\n");
1490 				queue_invalidate = 1;
1491 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1492 			} else {
1493 				dout("check_caps failed to invalidate pages\n");
1494 				/* we failed to invalidate pages.  check these
1495 				   caps again later. */
1496 				force_requeue = 1;
1497 				__cap_set_timeouts(mdsc, ci);
1498 			}
1499 		}
1500 		tried_invalidate = 1;
1501 		goto retry_locked;
1502 	}
1503 
1504 	num = 0;
1505 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1506 		cap = rb_entry(p, struct ceph_cap, ci_node);
1507 		num++;
1508 
1509 		/* avoid looping forever */
1510 		if (mds >= cap->mds ||
1511 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1512 			continue;
1513 
1514 		/* NOTE: no side-effects allowed, until we take s_mutex */
1515 
1516 		revoking = cap->implemented & ~cap->issued;
1517 		if (revoking)
1518 			dout(" mds%d revoking %s\n", cap->mds,
1519 			     ceph_cap_string(revoking));
1520 
1521 		if (cap == ci->i_auth_cap &&
1522 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1523 			/* request larger max_size from MDS? */
1524 			if (ci->i_wanted_max_size > ci->i_max_size &&
1525 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1526 				dout("requesting new max_size\n");
1527 				goto ack;
1528 			}
1529 
1530 			/* approaching file_max? */
1531 			if ((inode->i_size << 1) >= ci->i_max_size &&
1532 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1533 				dout("i_size approaching max_size\n");
1534 				goto ack;
1535 			}
1536 		}
1537 		/* flush anything dirty? */
1538 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1539 		    ci->i_dirty_caps) {
1540 			dout("flushing dirty caps\n");
1541 			goto ack;
1542 		}
1543 
1544 		/* completed revocation? going down and there are no caps? */
1545 		if (revoking && (revoking & used) == 0) {
1546 			dout("completed revocation of %s\n",
1547 			     ceph_cap_string(cap->implemented & ~cap->issued));
1548 			goto ack;
1549 		}
1550 
1551 		/* want more caps from mds? */
1552 		if (want & ~(cap->mds_wanted | cap->issued))
1553 			goto ack;
1554 
1555 		/* things we might delay */
1556 		if ((cap->issued & ~retain) == 0 &&
1557 		    cap->mds_wanted == want)
1558 			continue;     /* nope, all good */
1559 
1560 		if (is_delayed)
1561 			goto ack;
1562 
1563 		/* delay? */
1564 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1565 		    time_before(jiffies, ci->i_hold_caps_max)) {
1566 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1567 			     ceph_cap_string(cap->issued),
1568 			     ceph_cap_string(cap->issued & retain),
1569 			     ceph_cap_string(cap->mds_wanted),
1570 			     ceph_cap_string(want));
1571 			delayed++;
1572 			continue;
1573 		}
1574 
1575 ack:
1576 		if (session && session != cap->session) {
1577 			dout("oops, wrong session %p mutex\n", session);
1578 			mutex_unlock(&session->s_mutex);
1579 			session = NULL;
1580 		}
1581 		if (!session) {
1582 			session = cap->session;
1583 			if (mutex_trylock(&session->s_mutex) == 0) {
1584 				dout("inverting session/ino locks on %p\n",
1585 				     session);
1586 				spin_unlock(&inode->i_lock);
1587 				if (took_snap_rwsem) {
1588 					up_read(&mdsc->snap_rwsem);
1589 					took_snap_rwsem = 0;
1590 				}
1591 				mutex_lock(&session->s_mutex);
1592 				goto retry;
1593 			}
1594 		}
1595 		/* take snap_rwsem after session mutex */
1596 		if (!took_snap_rwsem) {
1597 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1598 				dout("inverting snap/in locks on %p\n",
1599 				     inode);
1600 				spin_unlock(&inode->i_lock);
1601 				down_read(&mdsc->snap_rwsem);
1602 				took_snap_rwsem = 1;
1603 				goto retry;
1604 			}
1605 			took_snap_rwsem = 1;
1606 		}
1607 
1608 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1609 			flushing = __mark_caps_flushing(inode, session);
1610 
1611 		mds = cap->mds;  /* remember mds, so we don't repeat */
1612 		sent++;
1613 
1614 		/* __send_cap drops i_lock */
1615 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1616 				      retain, flushing, NULL);
1617 		goto retry; /* retake i_lock and restart our cap scan. */
1618 	}
1619 
1620 	/*
1621 	 * Reschedule delayed caps release if we delayed anything,
1622 	 * otherwise cancel.
1623 	 */
1624 	if (delayed && is_delayed)
1625 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1626 	if (!delayed && !is_delayed)
1627 		__cap_delay_cancel(mdsc, ci);
1628 	else if (!is_delayed || force_requeue)
1629 		__cap_delay_requeue(mdsc, ci);
1630 
1631 	spin_unlock(&inode->i_lock);
1632 
1633 	if (queue_invalidate)
1634 		ceph_queue_invalidate(inode);
1635 
1636 	if (session && drop_session_lock)
1637 		mutex_unlock(&session->s_mutex);
1638 	if (took_snap_rwsem)
1639 		up_read(&mdsc->snap_rwsem);
1640 }
1641 
1642 /*
1643  * Try to flush dirty caps back to the auth mds.
1644  */
1645 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1646 			  unsigned *flush_tid)
1647 {
1648 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1649 	struct ceph_inode_info *ci = ceph_inode(inode);
1650 	int unlock_session = session ? 0 : 1;
1651 	int flushing = 0;
1652 
1653 retry:
1654 	spin_lock(&inode->i_lock);
1655 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1656 		struct ceph_cap *cap = ci->i_auth_cap;
1657 		int used = __ceph_caps_used(ci);
1658 		int want = __ceph_caps_wanted(ci);
1659 		int delayed;
1660 
1661 		if (!session) {
1662 			spin_unlock(&inode->i_lock);
1663 			session = cap->session;
1664 			mutex_lock(&session->s_mutex);
1665 			goto retry;
1666 		}
1667 		BUG_ON(session != cap->session);
1668 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1669 			goto out;
1670 
1671 		flushing = __mark_caps_flushing(inode, session);
1672 
1673 		/* __send_cap drops i_lock */
1674 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1675 				     cap->issued | cap->implemented, flushing,
1676 				     flush_tid);
1677 		if (!delayed)
1678 			goto out_unlocked;
1679 
1680 		spin_lock(&inode->i_lock);
1681 		__cap_delay_requeue(mdsc, ci);
1682 	}
1683 out:
1684 	spin_unlock(&inode->i_lock);
1685 out_unlocked:
1686 	if (session && unlock_session)
1687 		mutex_unlock(&session->s_mutex);
1688 	return flushing;
1689 }
1690 
1691 /*
1692  * Return true if we've flushed caps through the given flush_tid.
1693  */
1694 static int caps_are_flushed(struct inode *inode, unsigned tid)
1695 {
1696 	struct ceph_inode_info *ci = ceph_inode(inode);
1697 	int dirty, i, ret = 1;
1698 
1699 	spin_lock(&inode->i_lock);
1700 	dirty = __ceph_caps_dirty(ci);
1701 	for (i = 0; i < CEPH_CAP_BITS; i++)
1702 		if ((ci->i_flushing_caps & (1 << i)) &&
1703 		    ci->i_cap_flush_tid[i] <= tid) {
1704 			/* still flushing this bit */
1705 			ret = 0;
1706 			break;
1707 		}
1708 	spin_unlock(&inode->i_lock);
1709 	return ret;
1710 }
1711 
1712 /*
1713  * Wait on any unsafe replies for the given inode.  First wait on the
1714  * newest request, and make that the upper bound.  Then, if there are
1715  * more requests, keep waiting on the oldest as long as it is still older
1716  * than the original request.
1717  */
1718 static void sync_write_wait(struct inode *inode)
1719 {
1720 	struct ceph_inode_info *ci = ceph_inode(inode);
1721 	struct list_head *head = &ci->i_unsafe_writes;
1722 	struct ceph_osd_request *req;
1723 	u64 last_tid;
1724 
1725 	spin_lock(&ci->i_unsafe_lock);
1726 	if (list_empty(head))
1727 		goto out;
1728 
1729 	/* set upper bound as _last_ entry in chain */
1730 	req = list_entry(head->prev, struct ceph_osd_request,
1731 			 r_unsafe_item);
1732 	last_tid = req->r_tid;
1733 
1734 	do {
1735 		ceph_osdc_get_request(req);
1736 		spin_unlock(&ci->i_unsafe_lock);
1737 		dout("sync_write_wait on tid %llu (until %llu)\n",
1738 		     req->r_tid, last_tid);
1739 		wait_for_completion(&req->r_safe_completion);
1740 		spin_lock(&ci->i_unsafe_lock);
1741 		ceph_osdc_put_request(req);
1742 
1743 		/*
1744 		 * from here on look at first entry in chain, since we
1745 		 * only want to wait for anything older than last_tid
1746 		 */
1747 		if (list_empty(head))
1748 			break;
1749 		req = list_entry(head->next, struct ceph_osd_request,
1750 				 r_unsafe_item);
1751 	} while (req->r_tid < last_tid);
1752 out:
1753 	spin_unlock(&ci->i_unsafe_lock);
1754 }
1755 
1756 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1757 {
1758 	struct inode *inode = dentry->d_inode;
1759 	struct ceph_inode_info *ci = ceph_inode(inode);
1760 	unsigned flush_tid;
1761 	int ret;
1762 	int dirty;
1763 
1764 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1765 	sync_write_wait(inode);
1766 
1767 	ret = filemap_write_and_wait(inode->i_mapping);
1768 	if (ret < 0)
1769 		return ret;
1770 
1771 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1772 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1773 
1774 	/*
1775 	 * only wait on non-file metadata writeback (the mds
1776 	 * can recover size and mtime, so we don't need to
1777 	 * wait for that)
1778 	 */
1779 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1780 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1781 		ret = wait_event_interruptible(ci->i_cap_wq,
1782 				       caps_are_flushed(inode, flush_tid));
1783 	}
1784 
1785 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1791  * queue inode for flush but don't do so immediately, because we can
1792  * get by with fewer MDS messages if we wait for data writeback to
1793  * complete first.
1794  */
1795 int ceph_write_inode(struct inode *inode, int wait)
1796 {
1797 	struct ceph_inode_info *ci = ceph_inode(inode);
1798 	unsigned flush_tid;
1799 	int err = 0;
1800 	int dirty;
1801 
1802 	dout("write_inode %p wait=%d\n", inode, wait);
1803 	if (wait) {
1804 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1805 		if (dirty)
1806 			err = wait_event_interruptible(ci->i_cap_wq,
1807 				       caps_are_flushed(inode, flush_tid));
1808 	} else {
1809 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1810 
1811 		spin_lock(&inode->i_lock);
1812 		if (__ceph_caps_dirty(ci))
1813 			__cap_delay_requeue_front(mdsc, ci);
1814 		spin_unlock(&inode->i_lock);
1815 	}
1816 	return err;
1817 }
1818 
1819 /*
1820  * After a recovering MDS goes active, we need to resend any caps
1821  * we were flushing.
1822  *
1823  * Caller holds session->s_mutex.
1824  */
1825 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1826 				   struct ceph_mds_session *session)
1827 {
1828 	struct ceph_cap_snap *capsnap;
1829 
1830 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1831 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1832 			    flushing_item) {
1833 		struct ceph_inode_info *ci = capsnap->ci;
1834 		struct inode *inode = &ci->vfs_inode;
1835 		struct ceph_cap *cap;
1836 
1837 		spin_lock(&inode->i_lock);
1838 		cap = ci->i_auth_cap;
1839 		if (cap && cap->session == session) {
1840 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1841 			     cap, capsnap);
1842 			__ceph_flush_snaps(ci, &session);
1843 		} else {
1844 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1845 			       cap, session->s_mds);
1846 			spin_unlock(&inode->i_lock);
1847 		}
1848 	}
1849 }
1850 
1851 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1852 			     struct ceph_mds_session *session)
1853 {
1854 	struct ceph_inode_info *ci;
1855 
1856 	kick_flushing_capsnaps(mdsc, session);
1857 
1858 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1859 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1860 		struct inode *inode = &ci->vfs_inode;
1861 		struct ceph_cap *cap;
1862 		int delayed = 0;
1863 
1864 		spin_lock(&inode->i_lock);
1865 		cap = ci->i_auth_cap;
1866 		if (cap && cap->session == session) {
1867 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1868 			     cap, ceph_cap_string(ci->i_flushing_caps));
1869 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1870 					     __ceph_caps_used(ci),
1871 					     __ceph_caps_wanted(ci),
1872 					     cap->issued | cap->implemented,
1873 					     ci->i_flushing_caps, NULL);
1874 			if (delayed) {
1875 				spin_lock(&inode->i_lock);
1876 				__cap_delay_requeue(mdsc, ci);
1877 				spin_unlock(&inode->i_lock);
1878 			}
1879 		} else {
1880 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1881 			       cap, session->s_mds);
1882 			spin_unlock(&inode->i_lock);
1883 		}
1884 	}
1885 }
1886 
1887 
1888 /*
1889  * Take references to capabilities we hold, so that we don't release
1890  * them to the MDS prematurely.
1891  *
1892  * Protected by i_lock.
1893  */
1894 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1895 {
1896 	if (got & CEPH_CAP_PIN)
1897 		ci->i_pin_ref++;
1898 	if (got & CEPH_CAP_FILE_RD)
1899 		ci->i_rd_ref++;
1900 	if (got & CEPH_CAP_FILE_CACHE)
1901 		ci->i_rdcache_ref++;
1902 	if (got & CEPH_CAP_FILE_WR)
1903 		ci->i_wr_ref++;
1904 	if (got & CEPH_CAP_FILE_BUFFER) {
1905 		if (ci->i_wrbuffer_ref == 0)
1906 			igrab(&ci->vfs_inode);
1907 		ci->i_wrbuffer_ref++;
1908 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1909 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1910 	}
1911 }
1912 
1913 /*
1914  * Try to grab cap references.  Specify those refs we @want, and the
1915  * minimal set we @need.  Also include the larger offset we are writing
1916  * to (when applicable), and check against max_size here as well.
1917  * Note that caller is responsible for ensuring max_size increases are
1918  * requested from the MDS.
1919  */
1920 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1921 			    int *got, loff_t endoff, int *check_max, int *err)
1922 {
1923 	struct inode *inode = &ci->vfs_inode;
1924 	int ret = 0;
1925 	int have, implemented;
1926 
1927 	dout("get_cap_refs %p need %s want %s\n", inode,
1928 	     ceph_cap_string(need), ceph_cap_string(want));
1929 	spin_lock(&inode->i_lock);
1930 
1931 	/* make sure we _have_ some caps! */
1932 	if (!__ceph_is_any_caps(ci)) {
1933 		dout("get_cap_refs %p no real caps\n", inode);
1934 		*err = -EBADF;
1935 		ret = 1;
1936 		goto out;
1937 	}
1938 
1939 	if (need & CEPH_CAP_FILE_WR) {
1940 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1941 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1942 			     inode, endoff, ci->i_max_size);
1943 			if (endoff > ci->i_wanted_max_size) {
1944 				*check_max = 1;
1945 				ret = 1;
1946 			}
1947 			goto out;
1948 		}
1949 		/*
1950 		 * If a sync write is in progress, we must wait, so that we
1951 		 * can get a final snapshot value for size+mtime.
1952 		 */
1953 		if (__ceph_have_pending_cap_snap(ci)) {
1954 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1955 			goto out;
1956 		}
1957 	}
1958 	have = __ceph_caps_issued(ci, &implemented);
1959 
1960 	/*
1961 	 * disallow writes while a truncate is pending
1962 	 */
1963 	if (ci->i_truncate_pending)
1964 		have &= ~CEPH_CAP_FILE_WR;
1965 
1966 	if ((have & need) == need) {
1967 		/*
1968 		 * Look at (implemented & ~have & not) so that we keep waiting
1969 		 * on transition from wanted -> needed caps.  This is needed
1970 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1971 		 * going before a prior buffered writeback happens.
1972 		 */
1973 		int not = want & ~(have & need);
1974 		int revoking = implemented & ~have;
1975 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1976 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1977 		     ceph_cap_string(revoking));
1978 		if ((revoking & not) == 0) {
1979 			*got = need | (have & want);
1980 			__take_cap_refs(ci, *got);
1981 			ret = 1;
1982 		}
1983 	} else {
1984 		dout("get_cap_refs %p have %s needed %s\n", inode,
1985 		     ceph_cap_string(have), ceph_cap_string(need));
1986 	}
1987 out:
1988 	spin_unlock(&inode->i_lock);
1989 	dout("get_cap_refs %p ret %d got %s\n", inode,
1990 	     ret, ceph_cap_string(*got));
1991 	return ret;
1992 }
1993 
1994 /*
1995  * Check the offset we are writing up to against our current
1996  * max_size.  If necessary, tell the MDS we want to write to
1997  * a larger offset.
1998  */
1999 static void check_max_size(struct inode *inode, loff_t endoff)
2000 {
2001 	struct ceph_inode_info *ci = ceph_inode(inode);
2002 	int check = 0;
2003 
2004 	/* do we need to explicitly request a larger max_size? */
2005 	spin_lock(&inode->i_lock);
2006 	if ((endoff >= ci->i_max_size ||
2007 	     endoff > (inode->i_size << 1)) &&
2008 	    endoff > ci->i_wanted_max_size) {
2009 		dout("write %p at large endoff %llu, req max_size\n",
2010 		     inode, endoff);
2011 		ci->i_wanted_max_size = endoff;
2012 		check = 1;
2013 	}
2014 	spin_unlock(&inode->i_lock);
2015 	if (check)
2016 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2017 }
2018 
2019 /*
2020  * Wait for caps, and take cap references.  If we can't get a WR cap
2021  * due to a small max_size, make sure we check_max_size (and possibly
2022  * ask the mds) so we don't get hung up indefinitely.
2023  */
2024 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2025 		  loff_t endoff)
2026 {
2027 	int check_max, ret, err;
2028 
2029 retry:
2030 	if (endoff > 0)
2031 		check_max_size(&ci->vfs_inode, endoff);
2032 	check_max = 0;
2033 	err = 0;
2034 	ret = wait_event_interruptible(ci->i_cap_wq,
2035 				       try_get_cap_refs(ci, need, want,
2036 							got, endoff,
2037 							&check_max, &err));
2038 	if (err)
2039 		ret = err;
2040 	if (check_max)
2041 		goto retry;
2042 	return ret;
2043 }
2044 
2045 /*
2046  * Take cap refs.  Caller must already know we hold at least one ref
2047  * on the caps in question or we don't know this is safe.
2048  */
2049 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2050 {
2051 	spin_lock(&ci->vfs_inode.i_lock);
2052 	__take_cap_refs(ci, caps);
2053 	spin_unlock(&ci->vfs_inode.i_lock);
2054 }
2055 
2056 /*
2057  * Release cap refs.
2058  *
2059  * If we released the last ref on any given cap, call ceph_check_caps
2060  * to release (or schedule a release).
2061  *
2062  * If we are releasing a WR cap (from a sync write), finalize any affected
2063  * cap_snap, and wake up any waiters.
2064  */
2065 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2066 {
2067 	struct inode *inode = &ci->vfs_inode;
2068 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2069 	struct ceph_cap_snap *capsnap;
2070 
2071 	spin_lock(&inode->i_lock);
2072 	if (had & CEPH_CAP_PIN)
2073 		--ci->i_pin_ref;
2074 	if (had & CEPH_CAP_FILE_RD)
2075 		if (--ci->i_rd_ref == 0)
2076 			last++;
2077 	if (had & CEPH_CAP_FILE_CACHE)
2078 		if (--ci->i_rdcache_ref == 0)
2079 			last++;
2080 	if (had & CEPH_CAP_FILE_BUFFER) {
2081 		if (--ci->i_wrbuffer_ref == 0) {
2082 			last++;
2083 			put++;
2084 		}
2085 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2086 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2087 	}
2088 	if (had & CEPH_CAP_FILE_WR)
2089 		if (--ci->i_wr_ref == 0) {
2090 			last++;
2091 			if (!list_empty(&ci->i_cap_snaps)) {
2092 				capsnap = list_first_entry(&ci->i_cap_snaps,
2093 						     struct ceph_cap_snap,
2094 						     ci_item);
2095 				if (capsnap->writing) {
2096 					capsnap->writing = 0;
2097 					flushsnaps =
2098 						__ceph_finish_cap_snap(ci,
2099 								       capsnap);
2100 					wake = 1;
2101 				}
2102 			}
2103 		}
2104 	spin_unlock(&inode->i_lock);
2105 
2106 	dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2107 	     last ? "last" : "");
2108 
2109 	if (last && !flushsnaps)
2110 		ceph_check_caps(ci, 0, NULL);
2111 	else if (flushsnaps)
2112 		ceph_flush_snaps(ci);
2113 	if (wake)
2114 		wake_up(&ci->i_cap_wq);
2115 	if (put)
2116 		iput(inode);
2117 }
2118 
2119 /*
2120  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2121  * context.  Adjust per-snap dirty page accounting as appropriate.
2122  * Once all dirty data for a cap_snap is flushed, flush snapped file
2123  * metadata back to the MDS.  If we dropped the last ref, call
2124  * ceph_check_caps.
2125  */
2126 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2127 				struct ceph_snap_context *snapc)
2128 {
2129 	struct inode *inode = &ci->vfs_inode;
2130 	int last = 0;
2131 	int last_snap = 0;
2132 	int found = 0;
2133 	struct ceph_cap_snap *capsnap = NULL;
2134 
2135 	spin_lock(&inode->i_lock);
2136 	ci->i_wrbuffer_ref -= nr;
2137 	last = !ci->i_wrbuffer_ref;
2138 
2139 	if (ci->i_head_snapc == snapc) {
2140 		ci->i_wrbuffer_ref_head -= nr;
2141 		if (!ci->i_wrbuffer_ref_head) {
2142 			ceph_put_snap_context(ci->i_head_snapc);
2143 			ci->i_head_snapc = NULL;
2144 		}
2145 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2146 		     inode,
2147 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2148 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2149 		     last ? " LAST" : "");
2150 	} else {
2151 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2152 			if (capsnap->context == snapc) {
2153 				found = 1;
2154 				capsnap->dirty_pages -= nr;
2155 				last_snap = !capsnap->dirty_pages;
2156 				break;
2157 			}
2158 		}
2159 		BUG_ON(!found);
2160 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2161 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2162 		     inode, capsnap, capsnap->context->seq,
2163 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2164 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2165 		     last ? " (wrbuffer last)" : "",
2166 		     last_snap ? " (capsnap last)" : "");
2167 	}
2168 
2169 	spin_unlock(&inode->i_lock);
2170 
2171 	if (last) {
2172 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2173 		iput(inode);
2174 	} else if (last_snap) {
2175 		ceph_flush_snaps(ci);
2176 		wake_up(&ci->i_cap_wq);
2177 	}
2178 }
2179 
2180 /*
2181  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2182  * actually be a revocation if it specifies a smaller cap set.)
2183  *
2184  * caller holds s_mutex.
2185  * return value:
2186  *  0 - ok
2187  *  1 - check_caps on auth cap only (writeback)
2188  *  2 - check_caps (ack revoke)
2189  */
2190 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2191 			    struct ceph_mds_session *session,
2192 			    struct ceph_cap *cap,
2193 			    struct ceph_buffer *xattr_buf)
2194 	__releases(inode->i_lock)
2195 
2196 {
2197 	struct ceph_inode_info *ci = ceph_inode(inode);
2198 	int mds = session->s_mds;
2199 	int seq = le32_to_cpu(grant->seq);
2200 	int newcaps = le32_to_cpu(grant->caps);
2201 	int issued, implemented, used, wanted, dirty;
2202 	u64 size = le64_to_cpu(grant->size);
2203 	u64 max_size = le64_to_cpu(grant->max_size);
2204 	struct timespec mtime, atime, ctime;
2205 	int reply = 0;
2206 	int wake = 0;
2207 	int writeback = 0;
2208 	int revoked_rdcache = 0;
2209 	int queue_invalidate = 0;
2210 
2211 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2212 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2213 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2214 		inode->i_size);
2215 
2216 	/*
2217 	 * If CACHE is being revoked, and we have no dirty buffers,
2218 	 * try to invalidate (once).  (If there are dirty buffers, we
2219 	 * will invalidate _after_ writeback.)
2220 	 */
2221 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2222 	    !ci->i_wrbuffer_ref) {
2223 		if (try_nonblocking_invalidate(inode) == 0) {
2224 			revoked_rdcache = 1;
2225 		} else {
2226 			/* there were locked pages.. invalidate later
2227 			   in a separate thread. */
2228 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2229 				queue_invalidate = 1;
2230 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2231 			}
2232 		}
2233 	}
2234 
2235 	/* side effects now are allowed */
2236 
2237 	issued = __ceph_caps_issued(ci, &implemented);
2238 	issued |= implemented | __ceph_caps_dirty(ci);
2239 
2240 	cap->cap_gen = session->s_cap_gen;
2241 
2242 	__check_cap_issue(ci, cap, newcaps);
2243 
2244 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2245 		inode->i_mode = le32_to_cpu(grant->mode);
2246 		inode->i_uid = le32_to_cpu(grant->uid);
2247 		inode->i_gid = le32_to_cpu(grant->gid);
2248 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2249 		     inode->i_uid, inode->i_gid);
2250 	}
2251 
2252 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2253 		inode->i_nlink = le32_to_cpu(grant->nlink);
2254 
2255 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2256 		int len = le32_to_cpu(grant->xattr_len);
2257 		u64 version = le64_to_cpu(grant->xattr_version);
2258 
2259 		if (version > ci->i_xattrs.version) {
2260 			dout(" got new xattrs v%llu on %p len %d\n",
2261 			     version, inode, len);
2262 			if (ci->i_xattrs.blob)
2263 				ceph_buffer_put(ci->i_xattrs.blob);
2264 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2265 			ci->i_xattrs.version = version;
2266 		}
2267 	}
2268 
2269 	/* size/ctime/mtime/atime? */
2270 	ceph_fill_file_size(inode, issued,
2271 			    le32_to_cpu(grant->truncate_seq),
2272 			    le64_to_cpu(grant->truncate_size), size);
2273 	ceph_decode_timespec(&mtime, &grant->mtime);
2274 	ceph_decode_timespec(&atime, &grant->atime);
2275 	ceph_decode_timespec(&ctime, &grant->ctime);
2276 	ceph_fill_file_time(inode, issued,
2277 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2278 			    &atime);
2279 
2280 	/* max size increase? */
2281 	if (max_size != ci->i_max_size) {
2282 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2283 		ci->i_max_size = max_size;
2284 		if (max_size >= ci->i_wanted_max_size) {
2285 			ci->i_wanted_max_size = 0;  /* reset */
2286 			ci->i_requested_max_size = 0;
2287 		}
2288 		wake = 1;
2289 	}
2290 
2291 	/* check cap bits */
2292 	wanted = __ceph_caps_wanted(ci);
2293 	used = __ceph_caps_used(ci);
2294 	dirty = __ceph_caps_dirty(ci);
2295 	dout(" my wanted = %s, used = %s, dirty %s\n",
2296 	     ceph_cap_string(wanted),
2297 	     ceph_cap_string(used),
2298 	     ceph_cap_string(dirty));
2299 	if (wanted != le32_to_cpu(grant->wanted)) {
2300 		dout("mds wanted %s -> %s\n",
2301 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2302 		     ceph_cap_string(wanted));
2303 		grant->wanted = cpu_to_le32(wanted);
2304 	}
2305 
2306 	cap->seq = seq;
2307 
2308 	/* file layout may have changed */
2309 	ci->i_layout = grant->layout;
2310 
2311 	/* revocation, grant, or no-op? */
2312 	if (cap->issued & ~newcaps) {
2313 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2314 		     ceph_cap_string(newcaps));
2315 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2316 			writeback = 1; /* will delay ack */
2317 		else if (dirty & ~newcaps)
2318 			reply = 1;     /* initiate writeback in check_caps */
2319 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2320 			   revoked_rdcache)
2321 			reply = 2;     /* send revoke ack in check_caps */
2322 		cap->issued = newcaps;
2323 	} else if (cap->issued == newcaps) {
2324 		dout("caps unchanged: %s -> %s\n",
2325 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2326 	} else {
2327 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2328 		     ceph_cap_string(newcaps));
2329 		cap->issued = newcaps;
2330 		cap->implemented |= newcaps; /* add bits only, to
2331 					      * avoid stepping on a
2332 					      * pending revocation */
2333 		wake = 1;
2334 	}
2335 
2336 	spin_unlock(&inode->i_lock);
2337 	if (writeback)
2338 		/*
2339 		 * queue inode for writeback: we can't actually call
2340 		 * filemap_write_and_wait, etc. from message handler
2341 		 * context.
2342 		 */
2343 		ceph_queue_writeback(inode);
2344 	if (queue_invalidate)
2345 		ceph_queue_invalidate(inode);
2346 	if (wake)
2347 		wake_up(&ci->i_cap_wq);
2348 	return reply;
2349 }
2350 
2351 /*
2352  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2353  * MDS has been safely committed.
2354  */
2355 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2356 				 struct ceph_mds_caps *m,
2357 				 struct ceph_mds_session *session,
2358 				 struct ceph_cap *cap)
2359 	__releases(inode->i_lock)
2360 {
2361 	struct ceph_inode_info *ci = ceph_inode(inode);
2362 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2363 	unsigned seq = le32_to_cpu(m->seq);
2364 	int dirty = le32_to_cpu(m->dirty);
2365 	int cleaned = 0;
2366 	int drop = 0;
2367 	int i;
2368 
2369 	for (i = 0; i < CEPH_CAP_BITS; i++)
2370 		if ((dirty & (1 << i)) &&
2371 		    flush_tid == ci->i_cap_flush_tid[i])
2372 			cleaned |= 1 << i;
2373 
2374 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2375 	     " flushing %s -> %s\n",
2376 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2377 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2378 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2379 
2380 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2381 		goto out;
2382 
2383 	ci->i_flushing_caps &= ~cleaned;
2384 
2385 	spin_lock(&mdsc->cap_dirty_lock);
2386 	if (ci->i_flushing_caps == 0) {
2387 		list_del_init(&ci->i_flushing_item);
2388 		if (!list_empty(&session->s_cap_flushing))
2389 			dout(" mds%d still flushing cap on %p\n",
2390 			     session->s_mds,
2391 			     &list_entry(session->s_cap_flushing.next,
2392 					 struct ceph_inode_info,
2393 					 i_flushing_item)->vfs_inode);
2394 		mdsc->num_cap_flushing--;
2395 		wake_up(&mdsc->cap_flushing_wq);
2396 		dout(" inode %p now !flushing\n", inode);
2397 
2398 		if (ci->i_dirty_caps == 0) {
2399 			dout(" inode %p now clean\n", inode);
2400 			BUG_ON(!list_empty(&ci->i_dirty_item));
2401 			drop = 1;
2402 		} else {
2403 			BUG_ON(list_empty(&ci->i_dirty_item));
2404 		}
2405 	}
2406 	spin_unlock(&mdsc->cap_dirty_lock);
2407 	wake_up(&ci->i_cap_wq);
2408 
2409 out:
2410 	spin_unlock(&inode->i_lock);
2411 	if (drop)
2412 		iput(inode);
2413 }
2414 
2415 /*
2416  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2417  * throw away our cap_snap.
2418  *
2419  * Caller hold s_mutex.
2420  */
2421 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2422 				     struct ceph_mds_caps *m,
2423 				     struct ceph_mds_session *session)
2424 {
2425 	struct ceph_inode_info *ci = ceph_inode(inode);
2426 	u64 follows = le64_to_cpu(m->snap_follows);
2427 	struct ceph_cap_snap *capsnap;
2428 	int drop = 0;
2429 
2430 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2431 	     inode, ci, session->s_mds, follows);
2432 
2433 	spin_lock(&inode->i_lock);
2434 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2435 		if (capsnap->follows == follows) {
2436 			if (capsnap->flush_tid != flush_tid) {
2437 				dout(" cap_snap %p follows %lld tid %lld !="
2438 				     " %lld\n", capsnap, follows,
2439 				     flush_tid, capsnap->flush_tid);
2440 				break;
2441 			}
2442 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2443 			dout(" removing cap_snap %p follows %lld\n",
2444 			     capsnap, follows);
2445 			ceph_put_snap_context(capsnap->context);
2446 			list_del(&capsnap->ci_item);
2447 			list_del(&capsnap->flushing_item);
2448 			ceph_put_cap_snap(capsnap);
2449 			drop = 1;
2450 			break;
2451 		} else {
2452 			dout(" skipping cap_snap %p follows %lld\n",
2453 			     capsnap, capsnap->follows);
2454 		}
2455 	}
2456 	spin_unlock(&inode->i_lock);
2457 	if (drop)
2458 		iput(inode);
2459 }
2460 
2461 /*
2462  * Handle TRUNC from MDS, indicating file truncation.
2463  *
2464  * caller hold s_mutex.
2465  */
2466 static void handle_cap_trunc(struct inode *inode,
2467 			     struct ceph_mds_caps *trunc,
2468 			     struct ceph_mds_session *session)
2469 	__releases(inode->i_lock)
2470 {
2471 	struct ceph_inode_info *ci = ceph_inode(inode);
2472 	int mds = session->s_mds;
2473 	int seq = le32_to_cpu(trunc->seq);
2474 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2475 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2476 	u64 size = le64_to_cpu(trunc->size);
2477 	int implemented = 0;
2478 	int dirty = __ceph_caps_dirty(ci);
2479 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2480 	int queue_trunc = 0;
2481 
2482 	issued |= implemented | dirty;
2483 
2484 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2485 	     inode, mds, seq, truncate_size, truncate_seq);
2486 	queue_trunc = ceph_fill_file_size(inode, issued,
2487 					  truncate_seq, truncate_size, size);
2488 	spin_unlock(&inode->i_lock);
2489 
2490 	if (queue_trunc)
2491 		ceph_queue_vmtruncate(inode);
2492 }
2493 
2494 /*
2495  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2496  * different one.  If we are the most recent migration we've seen (as
2497  * indicated by mseq), make note of the migrating cap bits for the
2498  * duration (until we see the corresponding IMPORT).
2499  *
2500  * caller holds s_mutex
2501  */
2502 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2503 			      struct ceph_mds_session *session)
2504 {
2505 	struct ceph_inode_info *ci = ceph_inode(inode);
2506 	int mds = session->s_mds;
2507 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2508 	struct ceph_cap *cap = NULL, *t;
2509 	struct rb_node *p;
2510 	int remember = 1;
2511 
2512 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2513 	     inode, ci, mds, mseq);
2514 
2515 	spin_lock(&inode->i_lock);
2516 
2517 	/* make sure we haven't seen a higher mseq */
2518 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2519 		t = rb_entry(p, struct ceph_cap, ci_node);
2520 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2521 			dout(" higher mseq on cap from mds%d\n",
2522 			     t->session->s_mds);
2523 			remember = 0;
2524 		}
2525 		if (t->session->s_mds == mds)
2526 			cap = t;
2527 	}
2528 
2529 	if (cap) {
2530 		if (remember) {
2531 			/* make note */
2532 			ci->i_cap_exporting_mds = mds;
2533 			ci->i_cap_exporting_mseq = mseq;
2534 			ci->i_cap_exporting_issued = cap->issued;
2535 		}
2536 		__ceph_remove_cap(cap);
2537 	} else {
2538 		WARN_ON(!cap);
2539 	}
2540 
2541 	spin_unlock(&inode->i_lock);
2542 }
2543 
2544 /*
2545  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2546  * clean them up.
2547  *
2548  * caller holds s_mutex.
2549  */
2550 static void handle_cap_import(struct ceph_mds_client *mdsc,
2551 			      struct inode *inode, struct ceph_mds_caps *im,
2552 			      struct ceph_mds_session *session,
2553 			      void *snaptrace, int snaptrace_len)
2554 {
2555 	struct ceph_inode_info *ci = ceph_inode(inode);
2556 	int mds = session->s_mds;
2557 	unsigned issued = le32_to_cpu(im->caps);
2558 	unsigned wanted = le32_to_cpu(im->wanted);
2559 	unsigned seq = le32_to_cpu(im->seq);
2560 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2561 	u64 realmino = le64_to_cpu(im->realm);
2562 	u64 cap_id = le64_to_cpu(im->cap_id);
2563 
2564 	if (ci->i_cap_exporting_mds >= 0 &&
2565 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2566 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2567 		     " - cleared exporting from mds%d\n",
2568 		     inode, ci, mds, mseq,
2569 		     ci->i_cap_exporting_mds);
2570 		ci->i_cap_exporting_issued = 0;
2571 		ci->i_cap_exporting_mseq = 0;
2572 		ci->i_cap_exporting_mds = -1;
2573 	} else {
2574 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2575 		     inode, ci, mds, mseq);
2576 	}
2577 
2578 	down_write(&mdsc->snap_rwsem);
2579 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2580 			       false);
2581 	downgrade_write(&mdsc->snap_rwsem);
2582 	ceph_add_cap(inode, session, cap_id, -1,
2583 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2584 		     NULL /* no caps context */);
2585 	try_flush_caps(inode, session, NULL);
2586 	up_read(&mdsc->snap_rwsem);
2587 }
2588 
2589 /*
2590  * Handle a caps message from the MDS.
2591  *
2592  * Identify the appropriate session, inode, and call the right handler
2593  * based on the cap op.
2594  */
2595 void ceph_handle_caps(struct ceph_mds_session *session,
2596 		      struct ceph_msg *msg)
2597 {
2598 	struct ceph_mds_client *mdsc = session->s_mdsc;
2599 	struct super_block *sb = mdsc->client->sb;
2600 	struct inode *inode;
2601 	struct ceph_cap *cap;
2602 	struct ceph_mds_caps *h;
2603 	int mds = le64_to_cpu(msg->hdr.src.name.num);
2604 	int op;
2605 	u32 seq;
2606 	struct ceph_vino vino;
2607 	u64 cap_id;
2608 	u64 size, max_size;
2609 	u64 tid;
2610 	int check_caps = 0;
2611 	int r;
2612 
2613 	dout("handle_caps from mds%d\n", mds);
2614 
2615 	/* decode */
2616 	tid = le64_to_cpu(msg->hdr.tid);
2617 	if (msg->front.iov_len < sizeof(*h))
2618 		goto bad;
2619 	h = msg->front.iov_base;
2620 	op = le32_to_cpu(h->op);
2621 	vino.ino = le64_to_cpu(h->ino);
2622 	vino.snap = CEPH_NOSNAP;
2623 	cap_id = le64_to_cpu(h->cap_id);
2624 	seq = le32_to_cpu(h->seq);
2625 	size = le64_to_cpu(h->size);
2626 	max_size = le64_to_cpu(h->max_size);
2627 
2628 	mutex_lock(&session->s_mutex);
2629 	session->s_seq++;
2630 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2631 	     (unsigned)seq);
2632 
2633 	/* lookup ino */
2634 	inode = ceph_find_inode(sb, vino);
2635 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2636 	     vino.snap, inode);
2637 	if (!inode) {
2638 		dout(" i don't have ino %llx\n", vino.ino);
2639 		goto done;
2640 	}
2641 
2642 	/* these will work even if we don't have a cap yet */
2643 	switch (op) {
2644 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2645 		handle_cap_flushsnap_ack(inode, tid, h, session);
2646 		goto done;
2647 
2648 	case CEPH_CAP_OP_EXPORT:
2649 		handle_cap_export(inode, h, session);
2650 		goto done;
2651 
2652 	case CEPH_CAP_OP_IMPORT:
2653 		handle_cap_import(mdsc, inode, h, session,
2654 				  msg->middle,
2655 				  le32_to_cpu(h->snap_trace_len));
2656 		check_caps = 1; /* we may have sent a RELEASE to the old auth */
2657 		goto done;
2658 	}
2659 
2660 	/* the rest require a cap */
2661 	spin_lock(&inode->i_lock);
2662 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2663 	if (!cap) {
2664 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2665 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2666 		spin_unlock(&inode->i_lock);
2667 		goto done;
2668 	}
2669 
2670 	/* note that each of these drops i_lock for us */
2671 	switch (op) {
2672 	case CEPH_CAP_OP_REVOKE:
2673 	case CEPH_CAP_OP_GRANT:
2674 		r = handle_cap_grant(inode, h, session, cap, msg->middle);
2675 		if (r == 1)
2676 			ceph_check_caps(ceph_inode(inode),
2677 					CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2678 					session);
2679 		else if (r == 2)
2680 			ceph_check_caps(ceph_inode(inode),
2681 					CHECK_CAPS_NODELAY,
2682 					session);
2683 		break;
2684 
2685 	case CEPH_CAP_OP_FLUSH_ACK:
2686 		handle_cap_flush_ack(inode, tid, h, session, cap);
2687 		break;
2688 
2689 	case CEPH_CAP_OP_TRUNC:
2690 		handle_cap_trunc(inode, h, session);
2691 		break;
2692 
2693 	default:
2694 		spin_unlock(&inode->i_lock);
2695 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2696 		       ceph_cap_op_name(op));
2697 	}
2698 
2699 done:
2700 	mutex_unlock(&session->s_mutex);
2701 
2702 	if (check_caps)
2703 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2704 	if (inode)
2705 		iput(inode);
2706 	return;
2707 
2708 bad:
2709 	pr_err("ceph_handle_caps: corrupt message\n");
2710 	ceph_msg_dump(msg);
2711 	return;
2712 }
2713 
2714 /*
2715  * Delayed work handler to process end of delayed cap release LRU list.
2716  */
2717 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2718 {
2719 	struct ceph_inode_info *ci;
2720 	int flags = CHECK_CAPS_NODELAY;
2721 
2722 	dout("check_delayed_caps\n");
2723 	while (1) {
2724 		spin_lock(&mdsc->cap_delay_lock);
2725 		if (list_empty(&mdsc->cap_delay_list))
2726 			break;
2727 		ci = list_first_entry(&mdsc->cap_delay_list,
2728 				      struct ceph_inode_info,
2729 				      i_cap_delay_list);
2730 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2731 		    time_before(jiffies, ci->i_hold_caps_max))
2732 			break;
2733 		list_del_init(&ci->i_cap_delay_list);
2734 		spin_unlock(&mdsc->cap_delay_lock);
2735 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2736 		ceph_check_caps(ci, flags, NULL);
2737 	}
2738 	spin_unlock(&mdsc->cap_delay_lock);
2739 }
2740 
2741 /*
2742  * Flush all dirty caps to the mds
2743  */
2744 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2745 {
2746 	struct ceph_inode_info *ci;
2747 	struct inode *inode;
2748 
2749 	dout("flush_dirty_caps\n");
2750 	spin_lock(&mdsc->cap_dirty_lock);
2751 	while (!list_empty(&mdsc->cap_dirty)) {
2752 		ci = list_first_entry(&mdsc->cap_dirty,
2753 				      struct ceph_inode_info,
2754 				      i_dirty_item);
2755 		inode = igrab(&ci->vfs_inode);
2756 		spin_unlock(&mdsc->cap_dirty_lock);
2757 		if (inode) {
2758 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2759 					NULL);
2760 			iput(inode);
2761 		}
2762 		spin_lock(&mdsc->cap_dirty_lock);
2763 	}
2764 	spin_unlock(&mdsc->cap_dirty_lock);
2765 }
2766 
2767 /*
2768  * Drop open file reference.  If we were the last open file,
2769  * we may need to release capabilities to the MDS (or schedule
2770  * their delayed release).
2771  */
2772 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2773 {
2774 	struct inode *inode = &ci->vfs_inode;
2775 	int last = 0;
2776 
2777 	spin_lock(&inode->i_lock);
2778 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2779 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2780 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2781 	if (--ci->i_nr_by_mode[fmode] == 0)
2782 		last++;
2783 	spin_unlock(&inode->i_lock);
2784 
2785 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2786 		ceph_check_caps(ci, 0, NULL);
2787 }
2788 
2789 /*
2790  * Helpers for embedding cap and dentry lease releases into mds
2791  * requests.
2792  *
2793  * @force is used by dentry_release (below) to force inclusion of a
2794  * record for the directory inode, even when there aren't any caps to
2795  * drop.
2796  */
2797 int ceph_encode_inode_release(void **p, struct inode *inode,
2798 			      int mds, int drop, int unless, int force)
2799 {
2800 	struct ceph_inode_info *ci = ceph_inode(inode);
2801 	struct ceph_cap *cap;
2802 	struct ceph_mds_request_release *rel = *p;
2803 	int ret = 0;
2804 
2805 	dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2806 	     mds, ceph_cap_string(drop), ceph_cap_string(unless));
2807 
2808 	spin_lock(&inode->i_lock);
2809 	cap = __get_cap_for_mds(ci, mds);
2810 	if (cap && __cap_is_valid(cap)) {
2811 		if (force ||
2812 		    ((cap->issued & drop) &&
2813 		     (cap->issued & unless) == 0)) {
2814 			if ((cap->issued & drop) &&
2815 			    (cap->issued & unless) == 0) {
2816 				dout("encode_inode_release %p cap %p %s -> "
2817 				     "%s\n", inode, cap,
2818 				     ceph_cap_string(cap->issued),
2819 				     ceph_cap_string(cap->issued & ~drop));
2820 				cap->issued &= ~drop;
2821 				cap->implemented &= ~drop;
2822 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2823 					int wanted = __ceph_caps_wanted(ci);
2824 					dout("  wanted %s -> %s (act %s)\n",
2825 					     ceph_cap_string(cap->mds_wanted),
2826 					     ceph_cap_string(cap->mds_wanted &
2827 							     ~wanted),
2828 					     ceph_cap_string(wanted));
2829 					cap->mds_wanted &= wanted;
2830 				}
2831 			} else {
2832 				dout("encode_inode_release %p cap %p %s"
2833 				     " (force)\n", inode, cap,
2834 				     ceph_cap_string(cap->issued));
2835 			}
2836 
2837 			rel->ino = cpu_to_le64(ceph_ino(inode));
2838 			rel->cap_id = cpu_to_le64(cap->cap_id);
2839 			rel->seq = cpu_to_le32(cap->seq);
2840 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2841 			rel->mseq = cpu_to_le32(cap->mseq);
2842 			rel->caps = cpu_to_le32(cap->issued);
2843 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2844 			rel->dname_len = 0;
2845 			rel->dname_seq = 0;
2846 			*p += sizeof(*rel);
2847 			ret = 1;
2848 		} else {
2849 			dout("encode_inode_release %p cap %p %s\n",
2850 			     inode, cap, ceph_cap_string(cap->issued));
2851 		}
2852 	}
2853 	spin_unlock(&inode->i_lock);
2854 	return ret;
2855 }
2856 
2857 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2858 			       int mds, int drop, int unless)
2859 {
2860 	struct inode *dir = dentry->d_parent->d_inode;
2861 	struct ceph_mds_request_release *rel = *p;
2862 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2863 	int force = 0;
2864 	int ret;
2865 
2866 	/*
2867 	 * force an record for the directory caps if we have a dentry lease.
2868 	 * this is racy (can't take i_lock and d_lock together), but it
2869 	 * doesn't have to be perfect; the mds will revoke anything we don't
2870 	 * release.
2871 	 */
2872 	spin_lock(&dentry->d_lock);
2873 	if (di->lease_session && di->lease_session->s_mds == mds)
2874 		force = 1;
2875 	spin_unlock(&dentry->d_lock);
2876 
2877 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2878 
2879 	spin_lock(&dentry->d_lock);
2880 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2881 		dout("encode_dentry_release %p mds%d seq %d\n",
2882 		     dentry, mds, (int)di->lease_seq);
2883 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2884 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2885 		*p += dentry->d_name.len;
2886 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2887 	}
2888 	spin_unlock(&dentry->d_lock);
2889 	return ret;
2890 }
2891