1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 void ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap **new_cap) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *cap; 520 int mds = session->s_mds; 521 int actual_wanted; 522 523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 524 session->s_mds, cap_id, ceph_cap_string(issued), seq); 525 526 /* 527 * If we are opening the file, include file mode wanted bits 528 * in wanted. 529 */ 530 if (fmode >= 0) 531 wanted |= ceph_caps_for_mode(fmode); 532 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 cap = *new_cap; 536 *new_cap = NULL; 537 538 cap->issued = 0; 539 cap->implemented = 0; 540 cap->mds = mds; 541 cap->mds_wanted = 0; 542 cap->mseq = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* add to session cap list */ 548 cap->session = session; 549 spin_lock(&session->s_cap_lock); 550 list_add_tail(&cap->session_caps, &session->s_caps); 551 session->s_nr_caps++; 552 spin_unlock(&session->s_cap_lock); 553 } else { 554 /* 555 * auth mds of the inode changed. we received the cap export 556 * message, but still haven't received the cap import message. 557 * handle_cap_export() updated the new auth MDS' cap. 558 * 559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 560 * a message that was send before the cap import message. So 561 * don't remove caps. 562 */ 563 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 564 WARN_ON(cap != ci->i_auth_cap); 565 WARN_ON(cap->cap_id != cap_id); 566 seq = cap->seq; 567 mseq = cap->mseq; 568 issued |= cap->issued; 569 flags |= CEPH_CAP_FLAG_AUTH; 570 } 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 spin_lock(&realm->inodes_with_caps_lock); 581 ci->i_snap_realm = realm; 582 list_add(&ci->i_snap_realm_item, 583 &realm->inodes_with_caps); 584 spin_unlock(&realm->inodes_with_caps_lock); 585 } else { 586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 587 realmino); 588 WARN_ON(!realm); 589 } 590 } 591 592 __check_cap_issue(ci, cap, issued); 593 594 /* 595 * If we are issued caps we don't want, or the mds' wanted 596 * value appears to be off, queue a check so we'll release 597 * later and/or update the mds wanted value. 598 */ 599 actual_wanted = __ceph_caps_wanted(ci); 600 if ((wanted & ~actual_wanted) || 601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 602 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 603 ceph_cap_string(issued), ceph_cap_string(wanted), 604 ceph_cap_string(actual_wanted)); 605 __cap_delay_requeue(mdsc, ci); 606 } 607 608 if (flags & CEPH_CAP_FLAG_AUTH) { 609 if (ci->i_auth_cap == NULL || 610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 611 ci->i_auth_cap = cap; 612 cap->mds_wanted = wanted; 613 } 614 } else { 615 WARN_ON(ci->i_auth_cap == cap); 616 } 617 618 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 619 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 620 ceph_cap_string(issued|cap->issued), seq, mds); 621 cap->cap_id = cap_id; 622 cap->issued = issued; 623 cap->implemented |= issued; 624 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 625 cap->mds_wanted = wanted; 626 else 627 cap->mds_wanted |= wanted; 628 cap->seq = seq; 629 cap->issue_seq = seq; 630 cap->mseq = mseq; 631 cap->cap_gen = session->s_cap_gen; 632 633 if (fmode >= 0) 634 __ceph_get_fmode(ci, fmode); 635 } 636 637 /* 638 * Return true if cap has not timed out and belongs to the current 639 * generation of the MDS session (i.e. has not gone 'stale' due to 640 * us losing touch with the mds). 641 */ 642 static int __cap_is_valid(struct ceph_cap *cap) 643 { 644 unsigned long ttl; 645 u32 gen; 646 647 spin_lock(&cap->session->s_gen_ttl_lock); 648 gen = cap->session->s_cap_gen; 649 ttl = cap->session->s_cap_ttl; 650 spin_unlock(&cap->session->s_gen_ttl_lock); 651 652 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 653 dout("__cap_is_valid %p cap %p issued %s " 654 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 655 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 656 return 0; 657 } 658 659 return 1; 660 } 661 662 /* 663 * Return set of valid cap bits issued to us. Note that caps time 664 * out, and may be invalidated in bulk if the client session times out 665 * and session->s_cap_gen is bumped. 666 */ 667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 668 { 669 int have = ci->i_snap_caps; 670 struct ceph_cap *cap; 671 struct rb_node *p; 672 673 if (implemented) 674 *implemented = 0; 675 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 676 cap = rb_entry(p, struct ceph_cap, ci_node); 677 if (!__cap_is_valid(cap)) 678 continue; 679 dout("__ceph_caps_issued %p cap %p issued %s\n", 680 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 681 have |= cap->issued; 682 if (implemented) 683 *implemented |= cap->implemented; 684 } 685 /* 686 * exclude caps issued by non-auth MDS, but are been revoking 687 * by the auth MDS. The non-auth MDS should be revoking/exporting 688 * these caps, but the message is delayed. 689 */ 690 if (ci->i_auth_cap) { 691 cap = ci->i_auth_cap; 692 have &= ~cap->implemented | cap->issued; 693 } 694 return have; 695 } 696 697 /* 698 * Get cap bits issued by caps other than @ocap 699 */ 700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 701 { 702 int have = ci->i_snap_caps; 703 struct ceph_cap *cap; 704 struct rb_node *p; 705 706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 707 cap = rb_entry(p, struct ceph_cap, ci_node); 708 if (cap == ocap) 709 continue; 710 if (!__cap_is_valid(cap)) 711 continue; 712 have |= cap->issued; 713 } 714 return have; 715 } 716 717 /* 718 * Move a cap to the end of the LRU (oldest caps at list head, newest 719 * at list tail). 720 */ 721 static void __touch_cap(struct ceph_cap *cap) 722 { 723 struct ceph_mds_session *s = cap->session; 724 725 spin_lock(&s->s_cap_lock); 726 if (s->s_cap_iterator == NULL) { 727 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 728 s->s_mds); 729 list_move_tail(&cap->session_caps, &s->s_caps); 730 } else { 731 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 732 &cap->ci->vfs_inode, cap, s->s_mds); 733 } 734 spin_unlock(&s->s_cap_lock); 735 } 736 737 /* 738 * Check if we hold the given mask. If so, move the cap(s) to the 739 * front of their respective LRUs. (This is the preferred way for 740 * callers to check for caps they want.) 741 */ 742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 743 { 744 struct ceph_cap *cap; 745 struct rb_node *p; 746 int have = ci->i_snap_caps; 747 748 if ((have & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p snap issued %s" 750 " (mask %s)\n", &ci->vfs_inode, 751 ceph_cap_string(have), 752 ceph_cap_string(mask)); 753 return 1; 754 } 755 756 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 757 cap = rb_entry(p, struct ceph_cap, ci_node); 758 if (!__cap_is_valid(cap)) 759 continue; 760 if ((cap->issued & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p cap %p issued %s" 762 " (mask %s)\n", &ci->vfs_inode, cap, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) 766 __touch_cap(cap); 767 return 1; 768 } 769 770 /* does a combination of caps satisfy mask? */ 771 have |= cap->issued; 772 if ((have & mask) == mask) { 773 dout("__ceph_caps_issued_mask %p combo issued %s" 774 " (mask %s)\n", &ci->vfs_inode, 775 ceph_cap_string(cap->issued), 776 ceph_cap_string(mask)); 777 if (touch) { 778 struct rb_node *q; 779 780 /* touch this + preceding caps */ 781 __touch_cap(cap); 782 for (q = rb_first(&ci->i_caps); q != p; 783 q = rb_next(q)) { 784 cap = rb_entry(q, struct ceph_cap, 785 ci_node); 786 if (!__cap_is_valid(cap)) 787 continue; 788 __touch_cap(cap); 789 } 790 } 791 return 1; 792 } 793 } 794 795 return 0; 796 } 797 798 /* 799 * Return true if mask caps are currently being revoked by an MDS. 800 */ 801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 802 struct ceph_cap *ocap, int mask) 803 { 804 struct ceph_cap *cap; 805 struct rb_node *p; 806 807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 808 cap = rb_entry(p, struct ceph_cap, ci_node); 809 if (cap != ocap && 810 (cap->implemented & ~cap->issued & mask)) 811 return 1; 812 } 813 return 0; 814 } 815 816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 817 { 818 struct inode *inode = &ci->vfs_inode; 819 int ret; 820 821 spin_lock(&ci->i_ceph_lock); 822 ret = __ceph_caps_revoking_other(ci, NULL, mask); 823 spin_unlock(&ci->i_ceph_lock); 824 dout("ceph_caps_revoking %p %s = %d\n", inode, 825 ceph_cap_string(mask), ret); 826 return ret; 827 } 828 829 int __ceph_caps_used(struct ceph_inode_info *ci) 830 { 831 int used = 0; 832 if (ci->i_pin_ref) 833 used |= CEPH_CAP_PIN; 834 if (ci->i_rd_ref) 835 used |= CEPH_CAP_FILE_RD; 836 if (ci->i_rdcache_ref || 837 (!S_ISDIR(ci->vfs_inode.i_mode) && /* ignore readdir cache */ 838 ci->vfs_inode.i_data.nrpages)) 839 used |= CEPH_CAP_FILE_CACHE; 840 if (ci->i_wr_ref) 841 used |= CEPH_CAP_FILE_WR; 842 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 843 used |= CEPH_CAP_FILE_BUFFER; 844 return used; 845 } 846 847 /* 848 * wanted, by virtue of open file modes 849 */ 850 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 851 { 852 int want = 0; 853 int mode; 854 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 855 if (ci->i_nr_by_mode[mode]) 856 want |= ceph_caps_for_mode(mode); 857 return want; 858 } 859 860 /* 861 * Return caps we have registered with the MDS(s) as 'wanted'. 862 */ 863 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 864 { 865 struct ceph_cap *cap; 866 struct rb_node *p; 867 int mds_wanted = 0; 868 869 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 870 cap = rb_entry(p, struct ceph_cap, ci_node); 871 if (!__cap_is_valid(cap)) 872 continue; 873 if (cap == ci->i_auth_cap) 874 mds_wanted |= cap->mds_wanted; 875 else 876 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 877 } 878 return mds_wanted; 879 } 880 881 /* 882 * called under i_ceph_lock 883 */ 884 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 885 { 886 return !RB_EMPTY_ROOT(&ci->i_caps); 887 } 888 889 int ceph_is_any_caps(struct inode *inode) 890 { 891 struct ceph_inode_info *ci = ceph_inode(inode); 892 int ret; 893 894 spin_lock(&ci->i_ceph_lock); 895 ret = __ceph_is_any_caps(ci); 896 spin_unlock(&ci->i_ceph_lock); 897 898 return ret; 899 } 900 901 static void drop_inode_snap_realm(struct ceph_inode_info *ci) 902 { 903 struct ceph_snap_realm *realm = ci->i_snap_realm; 904 spin_lock(&realm->inodes_with_caps_lock); 905 list_del_init(&ci->i_snap_realm_item); 906 ci->i_snap_realm_counter++; 907 ci->i_snap_realm = NULL; 908 spin_unlock(&realm->inodes_with_caps_lock); 909 ceph_put_snap_realm(ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc, 910 realm); 911 } 912 913 /* 914 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 915 * 916 * caller should hold i_ceph_lock. 917 * caller will not hold session s_mutex if called from destroy_inode. 918 */ 919 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 920 { 921 struct ceph_mds_session *session = cap->session; 922 struct ceph_inode_info *ci = cap->ci; 923 struct ceph_mds_client *mdsc = 924 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 925 int removed = 0; 926 927 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 928 929 /* remove from session list */ 930 spin_lock(&session->s_cap_lock); 931 if (session->s_cap_iterator == cap) { 932 /* not yet, we are iterating over this very cap */ 933 dout("__ceph_remove_cap delaying %p removal from session %p\n", 934 cap, cap->session); 935 } else { 936 list_del_init(&cap->session_caps); 937 session->s_nr_caps--; 938 cap->session = NULL; 939 removed = 1; 940 } 941 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 942 cap->ci = NULL; 943 944 /* 945 * s_cap_reconnect is protected by s_cap_lock. no one changes 946 * s_cap_gen while session is in the reconnect state. 947 */ 948 if (queue_release && 949 (!session->s_cap_reconnect || cap->cap_gen == session->s_cap_gen)) { 950 cap->queue_release = 1; 951 if (removed) { 952 list_add_tail(&cap->session_caps, 953 &session->s_cap_releases); 954 session->s_num_cap_releases++; 955 removed = 0; 956 } 957 } else { 958 cap->queue_release = 0; 959 } 960 cap->cap_ino = ci->i_vino.ino; 961 962 spin_unlock(&session->s_cap_lock); 963 964 /* remove from inode list */ 965 rb_erase(&cap->ci_node, &ci->i_caps); 966 if (ci->i_auth_cap == cap) 967 ci->i_auth_cap = NULL; 968 969 if (removed) 970 ceph_put_cap(mdsc, cap); 971 972 /* when reconnect denied, we remove session caps forcibly, 973 * i_wr_ref can be non-zero. If there are ongoing write, 974 * keep i_snap_realm. 975 */ 976 if (!__ceph_is_any_caps(ci) && ci->i_wr_ref == 0 && ci->i_snap_realm) 977 drop_inode_snap_realm(ci); 978 979 if (!__ceph_is_any_real_caps(ci)) 980 __cap_delay_cancel(mdsc, ci); 981 } 982 983 /* 984 * Build and send a cap message to the given MDS. 985 * 986 * Caller should be holding s_mutex. 987 */ 988 static int send_cap_msg(struct ceph_mds_session *session, 989 u64 ino, u64 cid, int op, 990 int caps, int wanted, int dirty, 991 u32 seq, u64 flush_tid, u64 oldest_flush_tid, 992 u32 issue_seq, u32 mseq, u64 size, u64 max_size, 993 struct timespec *mtime, struct timespec *atime, 994 u64 time_warp_seq, 995 kuid_t uid, kgid_t gid, umode_t mode, 996 u64 xattr_version, 997 struct ceph_buffer *xattrs_buf, 998 u64 follows, bool inline_data) 999 { 1000 struct ceph_mds_caps *fc; 1001 struct ceph_msg *msg; 1002 void *p; 1003 size_t extra_len; 1004 1005 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 1006 " seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu" 1007 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 1008 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 1009 ceph_cap_string(dirty), 1010 seq, issue_seq, flush_tid, oldest_flush_tid, 1011 mseq, follows, size, max_size, 1012 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 1013 1014 /* flock buffer size + inline version + inline data size + 1015 * osd_epoch_barrier + oldest_flush_tid */ 1016 extra_len = 4 + 8 + 4 + 4 + 8; 1017 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len, 1018 GFP_NOFS, false); 1019 if (!msg) 1020 return -ENOMEM; 1021 1022 msg->hdr.version = cpu_to_le16(6); 1023 msg->hdr.tid = cpu_to_le64(flush_tid); 1024 1025 fc = msg->front.iov_base; 1026 memset(fc, 0, sizeof(*fc)); 1027 1028 fc->cap_id = cpu_to_le64(cid); 1029 fc->op = cpu_to_le32(op); 1030 fc->seq = cpu_to_le32(seq); 1031 fc->issue_seq = cpu_to_le32(issue_seq); 1032 fc->migrate_seq = cpu_to_le32(mseq); 1033 fc->caps = cpu_to_le32(caps); 1034 fc->wanted = cpu_to_le32(wanted); 1035 fc->dirty = cpu_to_le32(dirty); 1036 fc->ino = cpu_to_le64(ino); 1037 fc->snap_follows = cpu_to_le64(follows); 1038 1039 fc->size = cpu_to_le64(size); 1040 fc->max_size = cpu_to_le64(max_size); 1041 if (mtime) 1042 ceph_encode_timespec(&fc->mtime, mtime); 1043 if (atime) 1044 ceph_encode_timespec(&fc->atime, atime); 1045 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1046 1047 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1048 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1049 fc->mode = cpu_to_le32(mode); 1050 1051 p = fc + 1; 1052 /* flock buffer size */ 1053 ceph_encode_32(&p, 0); 1054 /* inline version */ 1055 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE); 1056 /* inline data size */ 1057 ceph_encode_32(&p, 0); 1058 /* osd_epoch_barrier */ 1059 ceph_encode_32(&p, 0); 1060 /* oldest_flush_tid */ 1061 ceph_encode_64(&p, oldest_flush_tid); 1062 1063 fc->xattr_version = cpu_to_le64(xattr_version); 1064 if (xattrs_buf) { 1065 msg->middle = ceph_buffer_get(xattrs_buf); 1066 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1067 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1068 } 1069 1070 ceph_con_send(&session->s_con, msg); 1071 return 0; 1072 } 1073 1074 /* 1075 * Queue cap releases when an inode is dropped from our cache. Since 1076 * inode is about to be destroyed, there is no need for i_ceph_lock. 1077 */ 1078 void ceph_queue_caps_release(struct inode *inode) 1079 { 1080 struct ceph_inode_info *ci = ceph_inode(inode); 1081 struct rb_node *p; 1082 1083 p = rb_first(&ci->i_caps); 1084 while (p) { 1085 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1086 p = rb_next(p); 1087 __ceph_remove_cap(cap, true); 1088 } 1089 } 1090 1091 /* 1092 * Send a cap msg on the given inode. Update our caps state, then 1093 * drop i_ceph_lock and send the message. 1094 * 1095 * Make note of max_size reported/requested from mds, revoked caps 1096 * that have now been implemented. 1097 * 1098 * Make half-hearted attempt ot to invalidate page cache if we are 1099 * dropping RDCACHE. Note that this will leave behind locked pages 1100 * that we'll then need to deal with elsewhere. 1101 * 1102 * Return non-zero if delayed release, or we experienced an error 1103 * such that the caller should requeue + retry later. 1104 * 1105 * called with i_ceph_lock, then drops it. 1106 * caller should hold snap_rwsem (read), s_mutex. 1107 */ 1108 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1109 int op, int used, int want, int retain, int flushing, 1110 u64 flush_tid, u64 oldest_flush_tid) 1111 __releases(cap->ci->i_ceph_lock) 1112 { 1113 struct ceph_inode_info *ci = cap->ci; 1114 struct inode *inode = &ci->vfs_inode; 1115 u64 cap_id = cap->cap_id; 1116 int held, revoking, dropping, keep; 1117 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1118 u64 size, max_size; 1119 struct timespec mtime, atime; 1120 int wake = 0; 1121 umode_t mode; 1122 kuid_t uid; 1123 kgid_t gid; 1124 struct ceph_mds_session *session; 1125 u64 xattr_version = 0; 1126 struct ceph_buffer *xattr_blob = NULL; 1127 int delayed = 0; 1128 int ret; 1129 bool inline_data; 1130 1131 held = cap->issued | cap->implemented; 1132 revoking = cap->implemented & ~cap->issued; 1133 retain &= ~revoking; 1134 dropping = cap->issued & ~retain; 1135 1136 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1137 inode, cap, cap->session, 1138 ceph_cap_string(held), ceph_cap_string(held & retain), 1139 ceph_cap_string(revoking)); 1140 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1141 1142 session = cap->session; 1143 1144 /* don't release wanted unless we've waited a bit. */ 1145 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1146 time_before(jiffies, ci->i_hold_caps_min)) { 1147 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1148 ceph_cap_string(cap->issued), 1149 ceph_cap_string(cap->issued & retain), 1150 ceph_cap_string(cap->mds_wanted), 1151 ceph_cap_string(want)); 1152 want |= cap->mds_wanted; 1153 retain |= cap->issued; 1154 delayed = 1; 1155 } 1156 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1157 1158 cap->issued &= retain; /* drop bits we don't want */ 1159 if (cap->implemented & ~cap->issued) { 1160 /* 1161 * Wake up any waiters on wanted -> needed transition. 1162 * This is due to the weird transition from buffered 1163 * to sync IO... we need to flush dirty pages _before_ 1164 * allowing sync writes to avoid reordering. 1165 */ 1166 wake = 1; 1167 } 1168 cap->implemented &= cap->issued | used; 1169 cap->mds_wanted = want; 1170 1171 follows = flushing ? ci->i_head_snapc->seq : 0; 1172 1173 keep = cap->implemented; 1174 seq = cap->seq; 1175 issue_seq = cap->issue_seq; 1176 mseq = cap->mseq; 1177 size = inode->i_size; 1178 ci->i_reported_size = size; 1179 max_size = ci->i_wanted_max_size; 1180 ci->i_requested_max_size = max_size; 1181 mtime = inode->i_mtime; 1182 atime = inode->i_atime; 1183 time_warp_seq = ci->i_time_warp_seq; 1184 uid = inode->i_uid; 1185 gid = inode->i_gid; 1186 mode = inode->i_mode; 1187 1188 if (flushing & CEPH_CAP_XATTR_EXCL) { 1189 __ceph_build_xattrs_blob(ci); 1190 xattr_blob = ci->i_xattrs.blob; 1191 xattr_version = ci->i_xattrs.version; 1192 } 1193 1194 inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 1195 1196 spin_unlock(&ci->i_ceph_lock); 1197 1198 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1199 op, keep, want, flushing, seq, 1200 flush_tid, oldest_flush_tid, issue_seq, mseq, 1201 size, max_size, &mtime, &atime, time_warp_seq, 1202 uid, gid, mode, xattr_version, xattr_blob, 1203 follows, inline_data); 1204 if (ret < 0) { 1205 dout("error sending cap msg, must requeue %p\n", inode); 1206 delayed = 1; 1207 } 1208 1209 if (wake) 1210 wake_up_all(&ci->i_cap_wq); 1211 1212 return delayed; 1213 } 1214 1215 /* 1216 * When a snapshot is taken, clients accumulate dirty metadata on 1217 * inodes with capabilities in ceph_cap_snaps to describe the file 1218 * state at the time the snapshot was taken. This must be flushed 1219 * asynchronously back to the MDS once sync writes complete and dirty 1220 * data is written out. 1221 * 1222 * Unless @kick is true, skip cap_snaps that were already sent to 1223 * the MDS (i.e., during this session). 1224 * 1225 * Called under i_ceph_lock. Takes s_mutex as needed. 1226 */ 1227 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1228 struct ceph_mds_session **psession, 1229 int kick) 1230 __releases(ci->i_ceph_lock) 1231 __acquires(ci->i_ceph_lock) 1232 { 1233 struct inode *inode = &ci->vfs_inode; 1234 int mds; 1235 struct ceph_cap_snap *capsnap; 1236 u32 mseq; 1237 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1238 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1239 session->s_mutex */ 1240 u64 next_follows = 0; /* keep track of how far we've gotten through the 1241 i_cap_snaps list, and skip these entries next time 1242 around to avoid an infinite loop */ 1243 1244 if (psession) 1245 session = *psession; 1246 1247 dout("__flush_snaps %p\n", inode); 1248 retry: 1249 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1250 /* avoid an infiniute loop after retry */ 1251 if (capsnap->follows < next_follows) 1252 continue; 1253 /* 1254 * we need to wait for sync writes to complete and for dirty 1255 * pages to be written out. 1256 */ 1257 if (capsnap->dirty_pages || capsnap->writing) 1258 break; 1259 1260 /* should be removed by ceph_try_drop_cap_snap() */ 1261 BUG_ON(!capsnap->need_flush); 1262 1263 /* pick mds, take s_mutex */ 1264 if (ci->i_auth_cap == NULL) { 1265 dout("no auth cap (migrating?), doing nothing\n"); 1266 goto out; 1267 } 1268 1269 /* only flush each capsnap once */ 1270 if (!kick && !list_empty(&capsnap->flushing_item)) { 1271 dout("already flushed %p, skipping\n", capsnap); 1272 continue; 1273 } 1274 1275 mds = ci->i_auth_cap->session->s_mds; 1276 mseq = ci->i_auth_cap->mseq; 1277 1278 if (session && session->s_mds != mds) { 1279 dout("oops, wrong session %p mutex\n", session); 1280 if (kick) 1281 goto out; 1282 1283 mutex_unlock(&session->s_mutex); 1284 ceph_put_mds_session(session); 1285 session = NULL; 1286 } 1287 if (!session) { 1288 spin_unlock(&ci->i_ceph_lock); 1289 mutex_lock(&mdsc->mutex); 1290 session = __ceph_lookup_mds_session(mdsc, mds); 1291 mutex_unlock(&mdsc->mutex); 1292 if (session) { 1293 dout("inverting session/ino locks on %p\n", 1294 session); 1295 mutex_lock(&session->s_mutex); 1296 } 1297 /* 1298 * if session == NULL, we raced against a cap 1299 * deletion or migration. retry, and we'll 1300 * get a better @mds value next time. 1301 */ 1302 spin_lock(&ci->i_ceph_lock); 1303 goto retry; 1304 } 1305 1306 spin_lock(&mdsc->cap_dirty_lock); 1307 capsnap->flush_tid = ++mdsc->last_cap_flush_tid; 1308 spin_unlock(&mdsc->cap_dirty_lock); 1309 1310 atomic_inc(&capsnap->nref); 1311 if (list_empty(&capsnap->flushing_item)) 1312 list_add_tail(&capsnap->flushing_item, 1313 &session->s_cap_snaps_flushing); 1314 spin_unlock(&ci->i_ceph_lock); 1315 1316 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1317 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1318 send_cap_msg(session, ceph_vino(inode).ino, 0, 1319 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1320 capsnap->dirty, 0, capsnap->flush_tid, 0, 1321 0, mseq, capsnap->size, 0, 1322 &capsnap->mtime, &capsnap->atime, 1323 capsnap->time_warp_seq, 1324 capsnap->uid, capsnap->gid, capsnap->mode, 1325 capsnap->xattr_version, capsnap->xattr_blob, 1326 capsnap->follows, capsnap->inline_data); 1327 1328 next_follows = capsnap->follows + 1; 1329 ceph_put_cap_snap(capsnap); 1330 1331 spin_lock(&ci->i_ceph_lock); 1332 goto retry; 1333 } 1334 1335 /* we flushed them all; remove this inode from the queue */ 1336 spin_lock(&mdsc->snap_flush_lock); 1337 list_del_init(&ci->i_snap_flush_item); 1338 spin_unlock(&mdsc->snap_flush_lock); 1339 1340 out: 1341 if (psession) 1342 *psession = session; 1343 else if (session) { 1344 mutex_unlock(&session->s_mutex); 1345 ceph_put_mds_session(session); 1346 } 1347 } 1348 1349 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1350 { 1351 spin_lock(&ci->i_ceph_lock); 1352 __ceph_flush_snaps(ci, NULL, 0); 1353 spin_unlock(&ci->i_ceph_lock); 1354 } 1355 1356 /* 1357 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1358 * Caller is then responsible for calling __mark_inode_dirty with the 1359 * returned flags value. 1360 */ 1361 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, 1362 struct ceph_cap_flush **pcf) 1363 { 1364 struct ceph_mds_client *mdsc = 1365 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1366 struct inode *inode = &ci->vfs_inode; 1367 int was = ci->i_dirty_caps; 1368 int dirty = 0; 1369 1370 if (!ci->i_auth_cap) { 1371 pr_warn("__mark_dirty_caps %p %llx mask %s, " 1372 "but no auth cap (session was closed?)\n", 1373 inode, ceph_ino(inode), ceph_cap_string(mask)); 1374 return 0; 1375 } 1376 1377 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1378 ceph_cap_string(mask), ceph_cap_string(was), 1379 ceph_cap_string(was | mask)); 1380 ci->i_dirty_caps |= mask; 1381 if (was == 0) { 1382 WARN_ON_ONCE(ci->i_prealloc_cap_flush); 1383 swap(ci->i_prealloc_cap_flush, *pcf); 1384 1385 if (!ci->i_head_snapc) { 1386 WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem)); 1387 ci->i_head_snapc = ceph_get_snap_context( 1388 ci->i_snap_realm->cached_context); 1389 } 1390 dout(" inode %p now dirty snapc %p auth cap %p\n", 1391 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1392 BUG_ON(!list_empty(&ci->i_dirty_item)); 1393 spin_lock(&mdsc->cap_dirty_lock); 1394 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1395 spin_unlock(&mdsc->cap_dirty_lock); 1396 if (ci->i_flushing_caps == 0) { 1397 ihold(inode); 1398 dirty |= I_DIRTY_SYNC; 1399 } 1400 } else { 1401 WARN_ON_ONCE(!ci->i_prealloc_cap_flush); 1402 } 1403 BUG_ON(list_empty(&ci->i_dirty_item)); 1404 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1405 (mask & CEPH_CAP_FILE_BUFFER)) 1406 dirty |= I_DIRTY_DATASYNC; 1407 __cap_delay_requeue(mdsc, ci); 1408 return dirty; 1409 } 1410 1411 static void __add_cap_flushing_to_inode(struct ceph_inode_info *ci, 1412 struct ceph_cap_flush *cf) 1413 { 1414 struct rb_node **p = &ci->i_cap_flush_tree.rb_node; 1415 struct rb_node *parent = NULL; 1416 struct ceph_cap_flush *other = NULL; 1417 1418 while (*p) { 1419 parent = *p; 1420 other = rb_entry(parent, struct ceph_cap_flush, i_node); 1421 1422 if (cf->tid < other->tid) 1423 p = &(*p)->rb_left; 1424 else if (cf->tid > other->tid) 1425 p = &(*p)->rb_right; 1426 else 1427 BUG(); 1428 } 1429 1430 rb_link_node(&cf->i_node, parent, p); 1431 rb_insert_color(&cf->i_node, &ci->i_cap_flush_tree); 1432 } 1433 1434 static void __add_cap_flushing_to_mdsc(struct ceph_mds_client *mdsc, 1435 struct ceph_cap_flush *cf) 1436 { 1437 struct rb_node **p = &mdsc->cap_flush_tree.rb_node; 1438 struct rb_node *parent = NULL; 1439 struct ceph_cap_flush *other = NULL; 1440 1441 while (*p) { 1442 parent = *p; 1443 other = rb_entry(parent, struct ceph_cap_flush, g_node); 1444 1445 if (cf->tid < other->tid) 1446 p = &(*p)->rb_left; 1447 else if (cf->tid > other->tid) 1448 p = &(*p)->rb_right; 1449 else 1450 BUG(); 1451 } 1452 1453 rb_link_node(&cf->g_node, parent, p); 1454 rb_insert_color(&cf->g_node, &mdsc->cap_flush_tree); 1455 } 1456 1457 struct ceph_cap_flush *ceph_alloc_cap_flush(void) 1458 { 1459 return kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL); 1460 } 1461 1462 void ceph_free_cap_flush(struct ceph_cap_flush *cf) 1463 { 1464 if (cf) 1465 kmem_cache_free(ceph_cap_flush_cachep, cf); 1466 } 1467 1468 static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc) 1469 { 1470 struct rb_node *n = rb_first(&mdsc->cap_flush_tree); 1471 if (n) { 1472 struct ceph_cap_flush *cf = 1473 rb_entry(n, struct ceph_cap_flush, g_node); 1474 return cf->tid; 1475 } 1476 return 0; 1477 } 1478 1479 /* 1480 * Add dirty inode to the flushing list. Assigned a seq number so we 1481 * can wait for caps to flush without starving. 1482 * 1483 * Called under i_ceph_lock. 1484 */ 1485 static int __mark_caps_flushing(struct inode *inode, 1486 struct ceph_mds_session *session, 1487 u64 *flush_tid, u64 *oldest_flush_tid) 1488 { 1489 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1490 struct ceph_inode_info *ci = ceph_inode(inode); 1491 struct ceph_cap_flush *cf = NULL; 1492 int flushing; 1493 1494 BUG_ON(ci->i_dirty_caps == 0); 1495 BUG_ON(list_empty(&ci->i_dirty_item)); 1496 BUG_ON(!ci->i_prealloc_cap_flush); 1497 1498 flushing = ci->i_dirty_caps; 1499 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1500 ceph_cap_string(flushing), 1501 ceph_cap_string(ci->i_flushing_caps), 1502 ceph_cap_string(ci->i_flushing_caps | flushing)); 1503 ci->i_flushing_caps |= flushing; 1504 ci->i_dirty_caps = 0; 1505 dout(" inode %p now !dirty\n", inode); 1506 1507 swap(cf, ci->i_prealloc_cap_flush); 1508 cf->caps = flushing; 1509 1510 spin_lock(&mdsc->cap_dirty_lock); 1511 list_del_init(&ci->i_dirty_item); 1512 1513 cf->tid = ++mdsc->last_cap_flush_tid; 1514 __add_cap_flushing_to_mdsc(mdsc, cf); 1515 *oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1516 1517 if (list_empty(&ci->i_flushing_item)) { 1518 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1519 mdsc->num_cap_flushing++; 1520 dout(" inode %p now flushing tid %llu\n", inode, cf->tid); 1521 } else { 1522 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1523 dout(" inode %p now flushing (more) tid %llu\n", 1524 inode, cf->tid); 1525 } 1526 spin_unlock(&mdsc->cap_dirty_lock); 1527 1528 __add_cap_flushing_to_inode(ci, cf); 1529 1530 *flush_tid = cf->tid; 1531 return flushing; 1532 } 1533 1534 /* 1535 * try to invalidate mapping pages without blocking. 1536 */ 1537 static int try_nonblocking_invalidate(struct inode *inode) 1538 { 1539 struct ceph_inode_info *ci = ceph_inode(inode); 1540 u32 invalidating_gen = ci->i_rdcache_gen; 1541 1542 spin_unlock(&ci->i_ceph_lock); 1543 invalidate_mapping_pages(&inode->i_data, 0, -1); 1544 spin_lock(&ci->i_ceph_lock); 1545 1546 if (inode->i_data.nrpages == 0 && 1547 invalidating_gen == ci->i_rdcache_gen) { 1548 /* success. */ 1549 dout("try_nonblocking_invalidate %p success\n", inode); 1550 /* save any racing async invalidate some trouble */ 1551 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1552 return 0; 1553 } 1554 dout("try_nonblocking_invalidate %p failed\n", inode); 1555 return -1; 1556 } 1557 1558 /* 1559 * Swiss army knife function to examine currently used and wanted 1560 * versus held caps. Release, flush, ack revoked caps to mds as 1561 * appropriate. 1562 * 1563 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1564 * cap release further. 1565 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1566 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1567 * further delay. 1568 */ 1569 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1570 struct ceph_mds_session *session) 1571 { 1572 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1573 struct ceph_mds_client *mdsc = fsc->mdsc; 1574 struct inode *inode = &ci->vfs_inode; 1575 struct ceph_cap *cap; 1576 u64 flush_tid, oldest_flush_tid; 1577 int file_wanted, used, cap_used; 1578 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1579 int issued, implemented, want, retain, revoking, flushing = 0; 1580 int mds = -1; /* keep track of how far we've gone through i_caps list 1581 to avoid an infinite loop on retry */ 1582 struct rb_node *p; 1583 int tried_invalidate = 0; 1584 int delayed = 0, sent = 0, force_requeue = 0, num; 1585 int queue_invalidate = 0; 1586 int is_delayed = flags & CHECK_CAPS_NODELAY; 1587 1588 /* if we are unmounting, flush any unused caps immediately. */ 1589 if (mdsc->stopping) 1590 is_delayed = 1; 1591 1592 spin_lock(&ci->i_ceph_lock); 1593 1594 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1595 flags |= CHECK_CAPS_FLUSH; 1596 1597 /* flush snaps first time around only */ 1598 if (!list_empty(&ci->i_cap_snaps)) 1599 __ceph_flush_snaps(ci, &session, 0); 1600 goto retry_locked; 1601 retry: 1602 spin_lock(&ci->i_ceph_lock); 1603 retry_locked: 1604 file_wanted = __ceph_caps_file_wanted(ci); 1605 used = __ceph_caps_used(ci); 1606 issued = __ceph_caps_issued(ci, &implemented); 1607 revoking = implemented & ~issued; 1608 1609 want = file_wanted; 1610 retain = file_wanted | used | CEPH_CAP_PIN; 1611 if (!mdsc->stopping && inode->i_nlink > 0) { 1612 if (file_wanted) { 1613 retain |= CEPH_CAP_ANY; /* be greedy */ 1614 } else if (S_ISDIR(inode->i_mode) && 1615 (issued & CEPH_CAP_FILE_SHARED) && 1616 __ceph_dir_is_complete(ci)) { 1617 /* 1618 * If a directory is complete, we want to keep 1619 * the exclusive cap. So that MDS does not end up 1620 * revoking the shared cap on every create/unlink 1621 * operation. 1622 */ 1623 want = CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL; 1624 retain |= want; 1625 } else { 1626 1627 retain |= CEPH_CAP_ANY_SHARED; 1628 /* 1629 * keep RD only if we didn't have the file open RW, 1630 * because then the mds would revoke it anyway to 1631 * journal max_size=0. 1632 */ 1633 if (ci->i_max_size == 0) 1634 retain |= CEPH_CAP_ANY_RD; 1635 } 1636 } 1637 1638 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1639 " issued %s revoking %s retain %s %s%s%s\n", inode, 1640 ceph_cap_string(file_wanted), 1641 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1642 ceph_cap_string(ci->i_flushing_caps), 1643 ceph_cap_string(issued), ceph_cap_string(revoking), 1644 ceph_cap_string(retain), 1645 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1646 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1647 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1648 1649 /* 1650 * If we no longer need to hold onto old our caps, and we may 1651 * have cached pages, but don't want them, then try to invalidate. 1652 * If we fail, it's because pages are locked.... try again later. 1653 */ 1654 if ((!is_delayed || mdsc->stopping) && 1655 !S_ISDIR(inode->i_mode) && /* ignore readdir cache */ 1656 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1657 inode->i_data.nrpages && /* have cached pages */ 1658 (revoking & (CEPH_CAP_FILE_CACHE| 1659 CEPH_CAP_FILE_LAZYIO)) && /* or revoking cache */ 1660 !tried_invalidate) { 1661 dout("check_caps trying to invalidate on %p\n", inode); 1662 if (try_nonblocking_invalidate(inode) < 0) { 1663 if (revoking & (CEPH_CAP_FILE_CACHE| 1664 CEPH_CAP_FILE_LAZYIO)) { 1665 dout("check_caps queuing invalidate\n"); 1666 queue_invalidate = 1; 1667 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1668 } else { 1669 dout("check_caps failed to invalidate pages\n"); 1670 /* we failed to invalidate pages. check these 1671 caps again later. */ 1672 force_requeue = 1; 1673 __cap_set_timeouts(mdsc, ci); 1674 } 1675 } 1676 tried_invalidate = 1; 1677 goto retry_locked; 1678 } 1679 1680 num = 0; 1681 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1682 cap = rb_entry(p, struct ceph_cap, ci_node); 1683 num++; 1684 1685 /* avoid looping forever */ 1686 if (mds >= cap->mds || 1687 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1688 continue; 1689 1690 /* NOTE: no side-effects allowed, until we take s_mutex */ 1691 1692 cap_used = used; 1693 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1694 cap_used &= ~ci->i_auth_cap->issued; 1695 1696 revoking = cap->implemented & ~cap->issued; 1697 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1698 cap->mds, cap, ceph_cap_string(cap->issued), 1699 ceph_cap_string(cap_used), 1700 ceph_cap_string(cap->implemented), 1701 ceph_cap_string(revoking)); 1702 1703 if (cap == ci->i_auth_cap && 1704 (cap->issued & CEPH_CAP_FILE_WR)) { 1705 /* request larger max_size from MDS? */ 1706 if (ci->i_wanted_max_size > ci->i_max_size && 1707 ci->i_wanted_max_size > ci->i_requested_max_size) { 1708 dout("requesting new max_size\n"); 1709 goto ack; 1710 } 1711 1712 /* approaching file_max? */ 1713 if ((inode->i_size << 1) >= ci->i_max_size && 1714 (ci->i_reported_size << 1) < ci->i_max_size) { 1715 dout("i_size approaching max_size\n"); 1716 goto ack; 1717 } 1718 } 1719 /* flush anything dirty? */ 1720 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1721 ci->i_dirty_caps) { 1722 dout("flushing dirty caps\n"); 1723 goto ack; 1724 } 1725 1726 /* completed revocation? going down and there are no caps? */ 1727 if (revoking && (revoking & cap_used) == 0) { 1728 dout("completed revocation of %s\n", 1729 ceph_cap_string(cap->implemented & ~cap->issued)); 1730 goto ack; 1731 } 1732 1733 /* want more caps from mds? */ 1734 if (want & ~(cap->mds_wanted | cap->issued)) 1735 goto ack; 1736 1737 /* things we might delay */ 1738 if ((cap->issued & ~retain) == 0 && 1739 cap->mds_wanted == want) 1740 continue; /* nope, all good */ 1741 1742 if (is_delayed) 1743 goto ack; 1744 1745 /* delay? */ 1746 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1747 time_before(jiffies, ci->i_hold_caps_max)) { 1748 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1749 ceph_cap_string(cap->issued), 1750 ceph_cap_string(cap->issued & retain), 1751 ceph_cap_string(cap->mds_wanted), 1752 ceph_cap_string(want)); 1753 delayed++; 1754 continue; 1755 } 1756 1757 ack: 1758 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1759 dout(" skipping %p I_NOFLUSH set\n", inode); 1760 continue; 1761 } 1762 1763 if (session && session != cap->session) { 1764 dout("oops, wrong session %p mutex\n", session); 1765 mutex_unlock(&session->s_mutex); 1766 session = NULL; 1767 } 1768 if (!session) { 1769 session = cap->session; 1770 if (mutex_trylock(&session->s_mutex) == 0) { 1771 dout("inverting session/ino locks on %p\n", 1772 session); 1773 spin_unlock(&ci->i_ceph_lock); 1774 if (took_snap_rwsem) { 1775 up_read(&mdsc->snap_rwsem); 1776 took_snap_rwsem = 0; 1777 } 1778 mutex_lock(&session->s_mutex); 1779 goto retry; 1780 } 1781 } 1782 /* take snap_rwsem after session mutex */ 1783 if (!took_snap_rwsem) { 1784 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1785 dout("inverting snap/in locks on %p\n", 1786 inode); 1787 spin_unlock(&ci->i_ceph_lock); 1788 down_read(&mdsc->snap_rwsem); 1789 took_snap_rwsem = 1; 1790 goto retry; 1791 } 1792 took_snap_rwsem = 1; 1793 } 1794 1795 if (cap == ci->i_auth_cap && ci->i_dirty_caps) { 1796 flushing = __mark_caps_flushing(inode, session, 1797 &flush_tid, 1798 &oldest_flush_tid); 1799 } else { 1800 flushing = 0; 1801 flush_tid = 0; 1802 spin_lock(&mdsc->cap_dirty_lock); 1803 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1804 spin_unlock(&mdsc->cap_dirty_lock); 1805 } 1806 1807 mds = cap->mds; /* remember mds, so we don't repeat */ 1808 sent++; 1809 1810 /* __send_cap drops i_ceph_lock */ 1811 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1812 want, retain, flushing, 1813 flush_tid, oldest_flush_tid); 1814 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1815 } 1816 1817 /* 1818 * Reschedule delayed caps release if we delayed anything, 1819 * otherwise cancel. 1820 */ 1821 if (delayed && is_delayed) 1822 force_requeue = 1; /* __send_cap delayed release; requeue */ 1823 if (!delayed && !is_delayed) 1824 __cap_delay_cancel(mdsc, ci); 1825 else if (!is_delayed || force_requeue) 1826 __cap_delay_requeue(mdsc, ci); 1827 1828 spin_unlock(&ci->i_ceph_lock); 1829 1830 if (queue_invalidate) 1831 ceph_queue_invalidate(inode); 1832 1833 if (session) 1834 mutex_unlock(&session->s_mutex); 1835 if (took_snap_rwsem) 1836 up_read(&mdsc->snap_rwsem); 1837 } 1838 1839 /* 1840 * Try to flush dirty caps back to the auth mds. 1841 */ 1842 static int try_flush_caps(struct inode *inode, u64 *ptid) 1843 { 1844 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1845 struct ceph_inode_info *ci = ceph_inode(inode); 1846 struct ceph_mds_session *session = NULL; 1847 int flushing = 0; 1848 u64 flush_tid = 0, oldest_flush_tid = 0; 1849 1850 retry: 1851 spin_lock(&ci->i_ceph_lock); 1852 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1853 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1854 goto out; 1855 } 1856 if (ci->i_dirty_caps && ci->i_auth_cap) { 1857 struct ceph_cap *cap = ci->i_auth_cap; 1858 int used = __ceph_caps_used(ci); 1859 int want = __ceph_caps_wanted(ci); 1860 int delayed; 1861 1862 if (!session || session != cap->session) { 1863 spin_unlock(&ci->i_ceph_lock); 1864 if (session) 1865 mutex_unlock(&session->s_mutex); 1866 session = cap->session; 1867 mutex_lock(&session->s_mutex); 1868 goto retry; 1869 } 1870 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1871 goto out; 1872 1873 flushing = __mark_caps_flushing(inode, session, &flush_tid, 1874 &oldest_flush_tid); 1875 1876 /* __send_cap drops i_ceph_lock */ 1877 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1878 (cap->issued | cap->implemented), 1879 flushing, flush_tid, oldest_flush_tid); 1880 1881 if (delayed) { 1882 spin_lock(&ci->i_ceph_lock); 1883 __cap_delay_requeue(mdsc, ci); 1884 spin_unlock(&ci->i_ceph_lock); 1885 } 1886 } else { 1887 struct rb_node *n = rb_last(&ci->i_cap_flush_tree); 1888 if (n) { 1889 struct ceph_cap_flush *cf = 1890 rb_entry(n, struct ceph_cap_flush, i_node); 1891 flush_tid = cf->tid; 1892 } 1893 flushing = ci->i_flushing_caps; 1894 spin_unlock(&ci->i_ceph_lock); 1895 } 1896 out: 1897 if (session) 1898 mutex_unlock(&session->s_mutex); 1899 1900 *ptid = flush_tid; 1901 return flushing; 1902 } 1903 1904 /* 1905 * Return true if we've flushed caps through the given flush_tid. 1906 */ 1907 static int caps_are_flushed(struct inode *inode, u64 flush_tid) 1908 { 1909 struct ceph_inode_info *ci = ceph_inode(inode); 1910 struct ceph_cap_flush *cf; 1911 struct rb_node *n; 1912 int ret = 1; 1913 1914 spin_lock(&ci->i_ceph_lock); 1915 n = rb_first(&ci->i_cap_flush_tree); 1916 if (n) { 1917 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1918 if (cf->tid <= flush_tid) 1919 ret = 0; 1920 } 1921 spin_unlock(&ci->i_ceph_lock); 1922 return ret; 1923 } 1924 1925 /* 1926 * Wait on any unsafe replies for the given inode. First wait on the 1927 * newest request, and make that the upper bound. Then, if there are 1928 * more requests, keep waiting on the oldest as long as it is still older 1929 * than the original request. 1930 */ 1931 static void sync_write_wait(struct inode *inode) 1932 { 1933 struct ceph_inode_info *ci = ceph_inode(inode); 1934 struct list_head *head = &ci->i_unsafe_writes; 1935 struct ceph_osd_request *req; 1936 u64 last_tid; 1937 1938 if (!S_ISREG(inode->i_mode)) 1939 return; 1940 1941 spin_lock(&ci->i_unsafe_lock); 1942 if (list_empty(head)) 1943 goto out; 1944 1945 /* set upper bound as _last_ entry in chain */ 1946 req = list_last_entry(head, struct ceph_osd_request, 1947 r_unsafe_item); 1948 last_tid = req->r_tid; 1949 1950 do { 1951 ceph_osdc_get_request(req); 1952 spin_unlock(&ci->i_unsafe_lock); 1953 dout("sync_write_wait on tid %llu (until %llu)\n", 1954 req->r_tid, last_tid); 1955 wait_for_completion(&req->r_safe_completion); 1956 spin_lock(&ci->i_unsafe_lock); 1957 ceph_osdc_put_request(req); 1958 1959 /* 1960 * from here on look at first entry in chain, since we 1961 * only want to wait for anything older than last_tid 1962 */ 1963 if (list_empty(head)) 1964 break; 1965 req = list_first_entry(head, struct ceph_osd_request, 1966 r_unsafe_item); 1967 } while (req->r_tid < last_tid); 1968 out: 1969 spin_unlock(&ci->i_unsafe_lock); 1970 } 1971 1972 /* 1973 * wait for any unsafe requests to complete. 1974 */ 1975 static int unsafe_request_wait(struct inode *inode) 1976 { 1977 struct ceph_inode_info *ci = ceph_inode(inode); 1978 struct ceph_mds_request *req1 = NULL, *req2 = NULL; 1979 int ret, err = 0; 1980 1981 spin_lock(&ci->i_unsafe_lock); 1982 if (S_ISDIR(inode->i_mode) && !list_empty(&ci->i_unsafe_dirops)) { 1983 req1 = list_last_entry(&ci->i_unsafe_dirops, 1984 struct ceph_mds_request, 1985 r_unsafe_dir_item); 1986 ceph_mdsc_get_request(req1); 1987 } 1988 if (!list_empty(&ci->i_unsafe_iops)) { 1989 req2 = list_last_entry(&ci->i_unsafe_iops, 1990 struct ceph_mds_request, 1991 r_unsafe_target_item); 1992 ceph_mdsc_get_request(req2); 1993 } 1994 spin_unlock(&ci->i_unsafe_lock); 1995 1996 dout("unsafe_requeset_wait %p wait on tid %llu %llu\n", 1997 inode, req1 ? req1->r_tid : 0ULL, req2 ? req2->r_tid : 0ULL); 1998 if (req1) { 1999 ret = !wait_for_completion_timeout(&req1->r_safe_completion, 2000 ceph_timeout_jiffies(req1->r_timeout)); 2001 if (ret) 2002 err = -EIO; 2003 ceph_mdsc_put_request(req1); 2004 } 2005 if (req2) { 2006 ret = !wait_for_completion_timeout(&req2->r_safe_completion, 2007 ceph_timeout_jiffies(req2->r_timeout)); 2008 if (ret) 2009 err = -EIO; 2010 ceph_mdsc_put_request(req2); 2011 } 2012 return err; 2013 } 2014 2015 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 2016 { 2017 struct inode *inode = file->f_mapping->host; 2018 struct ceph_inode_info *ci = ceph_inode(inode); 2019 u64 flush_tid; 2020 int ret; 2021 int dirty; 2022 2023 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 2024 sync_write_wait(inode); 2025 2026 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 2027 if (ret < 0) 2028 goto out; 2029 2030 if (datasync) 2031 goto out; 2032 2033 mutex_lock(&inode->i_mutex); 2034 2035 dirty = try_flush_caps(inode, &flush_tid); 2036 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 2037 2038 ret = unsafe_request_wait(inode); 2039 2040 /* 2041 * only wait on non-file metadata writeback (the mds 2042 * can recover size and mtime, so we don't need to 2043 * wait for that) 2044 */ 2045 if (!ret && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 2046 ret = wait_event_interruptible(ci->i_cap_wq, 2047 caps_are_flushed(inode, flush_tid)); 2048 } 2049 mutex_unlock(&inode->i_mutex); 2050 out: 2051 dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret); 2052 return ret; 2053 } 2054 2055 /* 2056 * Flush any dirty caps back to the mds. If we aren't asked to wait, 2057 * queue inode for flush but don't do so immediately, because we can 2058 * get by with fewer MDS messages if we wait for data writeback to 2059 * complete first. 2060 */ 2061 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 2062 { 2063 struct ceph_inode_info *ci = ceph_inode(inode); 2064 u64 flush_tid; 2065 int err = 0; 2066 int dirty; 2067 int wait = wbc->sync_mode == WB_SYNC_ALL; 2068 2069 dout("write_inode %p wait=%d\n", inode, wait); 2070 if (wait) { 2071 dirty = try_flush_caps(inode, &flush_tid); 2072 if (dirty) 2073 err = wait_event_interruptible(ci->i_cap_wq, 2074 caps_are_flushed(inode, flush_tid)); 2075 } else { 2076 struct ceph_mds_client *mdsc = 2077 ceph_sb_to_client(inode->i_sb)->mdsc; 2078 2079 spin_lock(&ci->i_ceph_lock); 2080 if (__ceph_caps_dirty(ci)) 2081 __cap_delay_requeue_front(mdsc, ci); 2082 spin_unlock(&ci->i_ceph_lock); 2083 } 2084 return err; 2085 } 2086 2087 /* 2088 * After a recovering MDS goes active, we need to resend any caps 2089 * we were flushing. 2090 * 2091 * Caller holds session->s_mutex. 2092 */ 2093 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 2094 struct ceph_mds_session *session) 2095 { 2096 struct ceph_cap_snap *capsnap; 2097 2098 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 2099 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 2100 flushing_item) { 2101 struct ceph_inode_info *ci = capsnap->ci; 2102 struct inode *inode = &ci->vfs_inode; 2103 struct ceph_cap *cap; 2104 2105 spin_lock(&ci->i_ceph_lock); 2106 cap = ci->i_auth_cap; 2107 if (cap && cap->session == session) { 2108 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 2109 cap, capsnap); 2110 __ceph_flush_snaps(ci, &session, 1); 2111 } else { 2112 pr_err("%p auth cap %p not mds%d ???\n", inode, 2113 cap, session->s_mds); 2114 } 2115 spin_unlock(&ci->i_ceph_lock); 2116 } 2117 } 2118 2119 static int __kick_flushing_caps(struct ceph_mds_client *mdsc, 2120 struct ceph_mds_session *session, 2121 struct ceph_inode_info *ci) 2122 { 2123 struct inode *inode = &ci->vfs_inode; 2124 struct ceph_cap *cap; 2125 struct ceph_cap_flush *cf; 2126 struct rb_node *n; 2127 int delayed = 0; 2128 u64 first_tid = 0; 2129 u64 oldest_flush_tid; 2130 2131 spin_lock(&mdsc->cap_dirty_lock); 2132 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 2133 spin_unlock(&mdsc->cap_dirty_lock); 2134 2135 while (true) { 2136 spin_lock(&ci->i_ceph_lock); 2137 cap = ci->i_auth_cap; 2138 if (!(cap && cap->session == session)) { 2139 pr_err("%p auth cap %p not mds%d ???\n", inode, 2140 cap, session->s_mds); 2141 spin_unlock(&ci->i_ceph_lock); 2142 break; 2143 } 2144 2145 for (n = rb_first(&ci->i_cap_flush_tree); n; n = rb_next(n)) { 2146 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2147 if (cf->tid >= first_tid) 2148 break; 2149 } 2150 if (!n) { 2151 spin_unlock(&ci->i_ceph_lock); 2152 break; 2153 } 2154 2155 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2156 2157 first_tid = cf->tid + 1; 2158 2159 dout("kick_flushing_caps %p cap %p tid %llu %s\n", inode, 2160 cap, cf->tid, ceph_cap_string(cf->caps)); 2161 delayed |= __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2162 __ceph_caps_used(ci), 2163 __ceph_caps_wanted(ci), 2164 cap->issued | cap->implemented, 2165 cf->caps, cf->tid, oldest_flush_tid); 2166 } 2167 return delayed; 2168 } 2169 2170 void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, 2171 struct ceph_mds_session *session) 2172 { 2173 struct ceph_inode_info *ci; 2174 struct ceph_cap *cap; 2175 2176 dout("early_kick_flushing_caps mds%d\n", session->s_mds); 2177 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2178 spin_lock(&ci->i_ceph_lock); 2179 cap = ci->i_auth_cap; 2180 if (!(cap && cap->session == session)) { 2181 pr_err("%p auth cap %p not mds%d ???\n", 2182 &ci->vfs_inode, cap, session->s_mds); 2183 spin_unlock(&ci->i_ceph_lock); 2184 continue; 2185 } 2186 2187 2188 /* 2189 * if flushing caps were revoked, we re-send the cap flush 2190 * in client reconnect stage. This guarantees MDS * processes 2191 * the cap flush message before issuing the flushing caps to 2192 * other client. 2193 */ 2194 if ((cap->issued & ci->i_flushing_caps) != 2195 ci->i_flushing_caps) { 2196 spin_unlock(&ci->i_ceph_lock); 2197 if (!__kick_flushing_caps(mdsc, session, ci)) 2198 continue; 2199 spin_lock(&ci->i_ceph_lock); 2200 } 2201 2202 spin_unlock(&ci->i_ceph_lock); 2203 } 2204 } 2205 2206 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 2207 struct ceph_mds_session *session) 2208 { 2209 struct ceph_inode_info *ci; 2210 2211 kick_flushing_capsnaps(mdsc, session); 2212 2213 dout("kick_flushing_caps mds%d\n", session->s_mds); 2214 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2215 int delayed = __kick_flushing_caps(mdsc, session, ci); 2216 if (delayed) { 2217 spin_lock(&ci->i_ceph_lock); 2218 __cap_delay_requeue(mdsc, ci); 2219 spin_unlock(&ci->i_ceph_lock); 2220 } 2221 } 2222 } 2223 2224 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2225 struct ceph_mds_session *session, 2226 struct inode *inode) 2227 { 2228 struct ceph_inode_info *ci = ceph_inode(inode); 2229 struct ceph_cap *cap; 2230 2231 spin_lock(&ci->i_ceph_lock); 2232 cap = ci->i_auth_cap; 2233 dout("kick_flushing_inode_caps %p flushing %s\n", inode, 2234 ceph_cap_string(ci->i_flushing_caps)); 2235 2236 __ceph_flush_snaps(ci, &session, 1); 2237 2238 if (ci->i_flushing_caps) { 2239 int delayed; 2240 2241 spin_lock(&mdsc->cap_dirty_lock); 2242 list_move_tail(&ci->i_flushing_item, 2243 &cap->session->s_cap_flushing); 2244 spin_unlock(&mdsc->cap_dirty_lock); 2245 2246 spin_unlock(&ci->i_ceph_lock); 2247 2248 delayed = __kick_flushing_caps(mdsc, session, ci); 2249 if (delayed) { 2250 spin_lock(&ci->i_ceph_lock); 2251 __cap_delay_requeue(mdsc, ci); 2252 spin_unlock(&ci->i_ceph_lock); 2253 } 2254 } else { 2255 spin_unlock(&ci->i_ceph_lock); 2256 } 2257 } 2258 2259 2260 /* 2261 * Take references to capabilities we hold, so that we don't release 2262 * them to the MDS prematurely. 2263 * 2264 * Protected by i_ceph_lock. 2265 */ 2266 static void __take_cap_refs(struct ceph_inode_info *ci, int got, 2267 bool snap_rwsem_locked) 2268 { 2269 if (got & CEPH_CAP_PIN) 2270 ci->i_pin_ref++; 2271 if (got & CEPH_CAP_FILE_RD) 2272 ci->i_rd_ref++; 2273 if (got & CEPH_CAP_FILE_CACHE) 2274 ci->i_rdcache_ref++; 2275 if (got & CEPH_CAP_FILE_WR) { 2276 if (ci->i_wr_ref == 0 && !ci->i_head_snapc) { 2277 BUG_ON(!snap_rwsem_locked); 2278 ci->i_head_snapc = ceph_get_snap_context( 2279 ci->i_snap_realm->cached_context); 2280 } 2281 ci->i_wr_ref++; 2282 } 2283 if (got & CEPH_CAP_FILE_BUFFER) { 2284 if (ci->i_wb_ref == 0) 2285 ihold(&ci->vfs_inode); 2286 ci->i_wb_ref++; 2287 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2288 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2289 } 2290 } 2291 2292 /* 2293 * Try to grab cap references. Specify those refs we @want, and the 2294 * minimal set we @need. Also include the larger offset we are writing 2295 * to (when applicable), and check against max_size here as well. 2296 * Note that caller is responsible for ensuring max_size increases are 2297 * requested from the MDS. 2298 */ 2299 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2300 loff_t endoff, bool nonblock, int *got, int *err) 2301 { 2302 struct inode *inode = &ci->vfs_inode; 2303 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2304 int ret = 0; 2305 int have, implemented; 2306 int file_wanted; 2307 bool snap_rwsem_locked = false; 2308 2309 dout("get_cap_refs %p need %s want %s\n", inode, 2310 ceph_cap_string(need), ceph_cap_string(want)); 2311 2312 again: 2313 spin_lock(&ci->i_ceph_lock); 2314 2315 /* make sure file is actually open */ 2316 file_wanted = __ceph_caps_file_wanted(ci); 2317 if ((file_wanted & need) == 0) { 2318 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2319 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2320 *err = -EBADF; 2321 ret = 1; 2322 goto out_unlock; 2323 } 2324 2325 /* finish pending truncate */ 2326 while (ci->i_truncate_pending) { 2327 spin_unlock(&ci->i_ceph_lock); 2328 if (snap_rwsem_locked) { 2329 up_read(&mdsc->snap_rwsem); 2330 snap_rwsem_locked = false; 2331 } 2332 __ceph_do_pending_vmtruncate(inode); 2333 spin_lock(&ci->i_ceph_lock); 2334 } 2335 2336 have = __ceph_caps_issued(ci, &implemented); 2337 2338 if (have & need & CEPH_CAP_FILE_WR) { 2339 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2340 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2341 inode, endoff, ci->i_max_size); 2342 if (endoff > ci->i_requested_max_size) { 2343 *err = -EAGAIN; 2344 ret = 1; 2345 } 2346 goto out_unlock; 2347 } 2348 /* 2349 * If a sync write is in progress, we must wait, so that we 2350 * can get a final snapshot value for size+mtime. 2351 */ 2352 if (__ceph_have_pending_cap_snap(ci)) { 2353 dout("get_cap_refs %p cap_snap_pending\n", inode); 2354 goto out_unlock; 2355 } 2356 } 2357 2358 if ((have & need) == need) { 2359 /* 2360 * Look at (implemented & ~have & not) so that we keep waiting 2361 * on transition from wanted -> needed caps. This is needed 2362 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2363 * going before a prior buffered writeback happens. 2364 */ 2365 int not = want & ~(have & need); 2366 int revoking = implemented & ~have; 2367 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2368 inode, ceph_cap_string(have), ceph_cap_string(not), 2369 ceph_cap_string(revoking)); 2370 if ((revoking & not) == 0) { 2371 if (!snap_rwsem_locked && 2372 !ci->i_head_snapc && 2373 (need & CEPH_CAP_FILE_WR)) { 2374 if (!down_read_trylock(&mdsc->snap_rwsem)) { 2375 /* 2376 * we can not call down_read() when 2377 * task isn't in TASK_RUNNING state 2378 */ 2379 if (nonblock) { 2380 *err = -EAGAIN; 2381 ret = 1; 2382 goto out_unlock; 2383 } 2384 2385 spin_unlock(&ci->i_ceph_lock); 2386 down_read(&mdsc->snap_rwsem); 2387 snap_rwsem_locked = true; 2388 goto again; 2389 } 2390 snap_rwsem_locked = true; 2391 } 2392 *got = need | (have & want); 2393 __take_cap_refs(ci, *got, true); 2394 ret = 1; 2395 } 2396 } else { 2397 int session_readonly = false; 2398 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) { 2399 struct ceph_mds_session *s = ci->i_auth_cap->session; 2400 spin_lock(&s->s_cap_lock); 2401 session_readonly = s->s_readonly; 2402 spin_unlock(&s->s_cap_lock); 2403 } 2404 if (session_readonly) { 2405 dout("get_cap_refs %p needed %s but mds%d readonly\n", 2406 inode, ceph_cap_string(need), ci->i_auth_cap->mds); 2407 *err = -EROFS; 2408 ret = 1; 2409 goto out_unlock; 2410 } 2411 2412 if (!__ceph_is_any_caps(ci) && 2413 ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2414 dout("get_cap_refs %p forced umount\n", inode); 2415 *err = -EIO; 2416 ret = 1; 2417 goto out_unlock; 2418 } 2419 2420 dout("get_cap_refs %p have %s needed %s\n", inode, 2421 ceph_cap_string(have), ceph_cap_string(need)); 2422 } 2423 out_unlock: 2424 spin_unlock(&ci->i_ceph_lock); 2425 if (snap_rwsem_locked) 2426 up_read(&mdsc->snap_rwsem); 2427 2428 dout("get_cap_refs %p ret %d got %s\n", inode, 2429 ret, ceph_cap_string(*got)); 2430 return ret; 2431 } 2432 2433 /* 2434 * Check the offset we are writing up to against our current 2435 * max_size. If necessary, tell the MDS we want to write to 2436 * a larger offset. 2437 */ 2438 static void check_max_size(struct inode *inode, loff_t endoff) 2439 { 2440 struct ceph_inode_info *ci = ceph_inode(inode); 2441 int check = 0; 2442 2443 /* do we need to explicitly request a larger max_size? */ 2444 spin_lock(&ci->i_ceph_lock); 2445 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2446 dout("write %p at large endoff %llu, req max_size\n", 2447 inode, endoff); 2448 ci->i_wanted_max_size = endoff; 2449 } 2450 /* duplicate ceph_check_caps()'s logic */ 2451 if (ci->i_auth_cap && 2452 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2453 ci->i_wanted_max_size > ci->i_max_size && 2454 ci->i_wanted_max_size > ci->i_requested_max_size) 2455 check = 1; 2456 spin_unlock(&ci->i_ceph_lock); 2457 if (check) 2458 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2459 } 2460 2461 /* 2462 * Wait for caps, and take cap references. If we can't get a WR cap 2463 * due to a small max_size, make sure we check_max_size (and possibly 2464 * ask the mds) so we don't get hung up indefinitely. 2465 */ 2466 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 2467 loff_t endoff, int *got, struct page **pinned_page) 2468 { 2469 int _got, ret, err = 0; 2470 2471 ret = ceph_pool_perm_check(ci, need); 2472 if (ret < 0) 2473 return ret; 2474 2475 while (true) { 2476 if (endoff > 0) 2477 check_max_size(&ci->vfs_inode, endoff); 2478 2479 err = 0; 2480 _got = 0; 2481 ret = try_get_cap_refs(ci, need, want, endoff, 2482 false, &_got, &err); 2483 if (ret) { 2484 if (err == -EAGAIN) 2485 continue; 2486 if (err < 0) 2487 return err; 2488 } else { 2489 ret = wait_event_interruptible(ci->i_cap_wq, 2490 try_get_cap_refs(ci, need, want, endoff, 2491 true, &_got, &err)); 2492 if (err == -EAGAIN) 2493 continue; 2494 if (err < 0) 2495 ret = err; 2496 if (ret < 0) 2497 return ret; 2498 } 2499 2500 if (ci->i_inline_version != CEPH_INLINE_NONE && 2501 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 2502 i_size_read(&ci->vfs_inode) > 0) { 2503 struct page *page = 2504 find_get_page(ci->vfs_inode.i_mapping, 0); 2505 if (page) { 2506 if (PageUptodate(page)) { 2507 *pinned_page = page; 2508 break; 2509 } 2510 page_cache_release(page); 2511 } 2512 /* 2513 * drop cap refs first because getattr while 2514 * holding * caps refs can cause deadlock. 2515 */ 2516 ceph_put_cap_refs(ci, _got); 2517 _got = 0; 2518 2519 /* 2520 * getattr request will bring inline data into 2521 * page cache 2522 */ 2523 ret = __ceph_do_getattr(&ci->vfs_inode, NULL, 2524 CEPH_STAT_CAP_INLINE_DATA, 2525 true); 2526 if (ret < 0) 2527 return ret; 2528 continue; 2529 } 2530 break; 2531 } 2532 2533 *got = _got; 2534 return 0; 2535 } 2536 2537 /* 2538 * Take cap refs. Caller must already know we hold at least one ref 2539 * on the caps in question or we don't know this is safe. 2540 */ 2541 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2542 { 2543 spin_lock(&ci->i_ceph_lock); 2544 __take_cap_refs(ci, caps, false); 2545 spin_unlock(&ci->i_ceph_lock); 2546 } 2547 2548 2549 /* 2550 * drop cap_snap that is not associated with any snapshot. 2551 * we don't need to send FLUSHSNAP message for it. 2552 */ 2553 static int ceph_try_drop_cap_snap(struct ceph_cap_snap *capsnap) 2554 { 2555 if (!capsnap->need_flush && 2556 !capsnap->writing && !capsnap->dirty_pages) { 2557 2558 dout("dropping cap_snap %p follows %llu\n", 2559 capsnap, capsnap->follows); 2560 ceph_put_snap_context(capsnap->context); 2561 list_del(&capsnap->ci_item); 2562 list_del(&capsnap->flushing_item); 2563 ceph_put_cap_snap(capsnap); 2564 return 1; 2565 } 2566 return 0; 2567 } 2568 2569 /* 2570 * Release cap refs. 2571 * 2572 * If we released the last ref on any given cap, call ceph_check_caps 2573 * to release (or schedule a release). 2574 * 2575 * If we are releasing a WR cap (from a sync write), finalize any affected 2576 * cap_snap, and wake up any waiters. 2577 */ 2578 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2579 { 2580 struct inode *inode = &ci->vfs_inode; 2581 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2582 2583 spin_lock(&ci->i_ceph_lock); 2584 if (had & CEPH_CAP_PIN) 2585 --ci->i_pin_ref; 2586 if (had & CEPH_CAP_FILE_RD) 2587 if (--ci->i_rd_ref == 0) 2588 last++; 2589 if (had & CEPH_CAP_FILE_CACHE) 2590 if (--ci->i_rdcache_ref == 0) 2591 last++; 2592 if (had & CEPH_CAP_FILE_BUFFER) { 2593 if (--ci->i_wb_ref == 0) { 2594 last++; 2595 put++; 2596 } 2597 dout("put_cap_refs %p wb %d -> %d (?)\n", 2598 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2599 } 2600 if (had & CEPH_CAP_FILE_WR) 2601 if (--ci->i_wr_ref == 0) { 2602 last++; 2603 if (__ceph_have_pending_cap_snap(ci)) { 2604 struct ceph_cap_snap *capsnap = 2605 list_last_entry(&ci->i_cap_snaps, 2606 struct ceph_cap_snap, 2607 ci_item); 2608 capsnap->writing = 0; 2609 if (ceph_try_drop_cap_snap(capsnap)) 2610 put++; 2611 else if (__ceph_finish_cap_snap(ci, capsnap)) 2612 flushsnaps = 1; 2613 wake = 1; 2614 } 2615 if (ci->i_wrbuffer_ref_head == 0 && 2616 ci->i_dirty_caps == 0 && 2617 ci->i_flushing_caps == 0) { 2618 BUG_ON(!ci->i_head_snapc); 2619 ceph_put_snap_context(ci->i_head_snapc); 2620 ci->i_head_snapc = NULL; 2621 } 2622 /* see comment in __ceph_remove_cap() */ 2623 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) 2624 drop_inode_snap_realm(ci); 2625 } 2626 spin_unlock(&ci->i_ceph_lock); 2627 2628 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2629 last ? " last" : "", put ? " put" : ""); 2630 2631 if (last && !flushsnaps) 2632 ceph_check_caps(ci, 0, NULL); 2633 else if (flushsnaps) 2634 ceph_flush_snaps(ci); 2635 if (wake) 2636 wake_up_all(&ci->i_cap_wq); 2637 while (put-- > 0) 2638 iput(inode); 2639 } 2640 2641 /* 2642 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2643 * context. Adjust per-snap dirty page accounting as appropriate. 2644 * Once all dirty data for a cap_snap is flushed, flush snapped file 2645 * metadata back to the MDS. If we dropped the last ref, call 2646 * ceph_check_caps. 2647 */ 2648 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2649 struct ceph_snap_context *snapc) 2650 { 2651 struct inode *inode = &ci->vfs_inode; 2652 int last = 0; 2653 int complete_capsnap = 0; 2654 int drop_capsnap = 0; 2655 int found = 0; 2656 struct ceph_cap_snap *capsnap = NULL; 2657 2658 spin_lock(&ci->i_ceph_lock); 2659 ci->i_wrbuffer_ref -= nr; 2660 last = !ci->i_wrbuffer_ref; 2661 2662 if (ci->i_head_snapc == snapc) { 2663 ci->i_wrbuffer_ref_head -= nr; 2664 if (ci->i_wrbuffer_ref_head == 0 && 2665 ci->i_wr_ref == 0 && 2666 ci->i_dirty_caps == 0 && 2667 ci->i_flushing_caps == 0) { 2668 BUG_ON(!ci->i_head_snapc); 2669 ceph_put_snap_context(ci->i_head_snapc); 2670 ci->i_head_snapc = NULL; 2671 } 2672 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2673 inode, 2674 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2675 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2676 last ? " LAST" : ""); 2677 } else { 2678 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2679 if (capsnap->context == snapc) { 2680 found = 1; 2681 break; 2682 } 2683 } 2684 BUG_ON(!found); 2685 capsnap->dirty_pages -= nr; 2686 if (capsnap->dirty_pages == 0) { 2687 complete_capsnap = 1; 2688 drop_capsnap = ceph_try_drop_cap_snap(capsnap); 2689 } 2690 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2691 " snap %lld %d/%d -> %d/%d %s%s\n", 2692 inode, capsnap, capsnap->context->seq, 2693 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2694 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2695 last ? " (wrbuffer last)" : "", 2696 complete_capsnap ? " (complete capsnap)" : ""); 2697 } 2698 2699 spin_unlock(&ci->i_ceph_lock); 2700 2701 if (last) { 2702 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2703 iput(inode); 2704 } else if (complete_capsnap) { 2705 ceph_flush_snaps(ci); 2706 wake_up_all(&ci->i_cap_wq); 2707 } 2708 if (drop_capsnap) 2709 iput(inode); 2710 } 2711 2712 /* 2713 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2714 */ 2715 static void invalidate_aliases(struct inode *inode) 2716 { 2717 struct dentry *dn, *prev = NULL; 2718 2719 dout("invalidate_aliases inode %p\n", inode); 2720 d_prune_aliases(inode); 2721 /* 2722 * For non-directory inode, d_find_alias() only returns 2723 * hashed dentry. After calling d_invalidate(), the 2724 * dentry becomes unhashed. 2725 * 2726 * For directory inode, d_find_alias() can return 2727 * unhashed dentry. But directory inode should have 2728 * one alias at most. 2729 */ 2730 while ((dn = d_find_alias(inode))) { 2731 if (dn == prev) { 2732 dput(dn); 2733 break; 2734 } 2735 d_invalidate(dn); 2736 if (prev) 2737 dput(prev); 2738 prev = dn; 2739 } 2740 if (prev) 2741 dput(prev); 2742 } 2743 2744 /* 2745 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2746 * actually be a revocation if it specifies a smaller cap set.) 2747 * 2748 * caller holds s_mutex and i_ceph_lock, we drop both. 2749 */ 2750 static void handle_cap_grant(struct ceph_mds_client *mdsc, 2751 struct inode *inode, struct ceph_mds_caps *grant, 2752 u64 inline_version, 2753 void *inline_data, int inline_len, 2754 struct ceph_buffer *xattr_buf, 2755 struct ceph_mds_session *session, 2756 struct ceph_cap *cap, int issued) 2757 __releases(ci->i_ceph_lock) 2758 __releases(mdsc->snap_rwsem) 2759 { 2760 struct ceph_inode_info *ci = ceph_inode(inode); 2761 int mds = session->s_mds; 2762 int seq = le32_to_cpu(grant->seq); 2763 int newcaps = le32_to_cpu(grant->caps); 2764 int used, wanted, dirty; 2765 u64 size = le64_to_cpu(grant->size); 2766 u64 max_size = le64_to_cpu(grant->max_size); 2767 struct timespec mtime, atime, ctime; 2768 int check_caps = 0; 2769 bool wake = false; 2770 bool writeback = false; 2771 bool queue_trunc = false; 2772 bool queue_invalidate = false; 2773 bool queue_revalidate = false; 2774 bool deleted_inode = false; 2775 bool fill_inline = false; 2776 2777 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2778 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2779 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2780 inode->i_size); 2781 2782 2783 /* 2784 * auth mds of the inode changed. we received the cap export message, 2785 * but still haven't received the cap import message. handle_cap_export 2786 * updated the new auth MDS' cap. 2787 * 2788 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2789 * that was sent before the cap import message. So don't remove caps. 2790 */ 2791 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2792 WARN_ON(cap != ci->i_auth_cap); 2793 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2794 seq = cap->seq; 2795 newcaps |= cap->issued; 2796 } 2797 2798 /* 2799 * If CACHE is being revoked, and we have no dirty buffers, 2800 * try to invalidate (once). (If there are dirty buffers, we 2801 * will invalidate _after_ writeback.) 2802 */ 2803 if (!S_ISDIR(inode->i_mode) && /* don't invalidate readdir cache */ 2804 ((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2805 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2806 !ci->i_wrbuffer_ref) { 2807 if (try_nonblocking_invalidate(inode)) { 2808 /* there were locked pages.. invalidate later 2809 in a separate thread. */ 2810 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2811 queue_invalidate = true; 2812 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2813 } 2814 } 2815 2816 ceph_fscache_invalidate(inode); 2817 } 2818 2819 /* side effects now are allowed */ 2820 cap->cap_gen = session->s_cap_gen; 2821 cap->seq = seq; 2822 2823 __check_cap_issue(ci, cap, newcaps); 2824 2825 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2826 (issued & CEPH_CAP_AUTH_EXCL) == 0) { 2827 inode->i_mode = le32_to_cpu(grant->mode); 2828 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2829 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2830 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2831 from_kuid(&init_user_ns, inode->i_uid), 2832 from_kgid(&init_user_ns, inode->i_gid)); 2833 } 2834 2835 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2836 (issued & CEPH_CAP_LINK_EXCL) == 0) { 2837 set_nlink(inode, le32_to_cpu(grant->nlink)); 2838 if (inode->i_nlink == 0 && 2839 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2840 deleted_inode = true; 2841 } 2842 2843 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2844 int len = le32_to_cpu(grant->xattr_len); 2845 u64 version = le64_to_cpu(grant->xattr_version); 2846 2847 if (version > ci->i_xattrs.version) { 2848 dout(" got new xattrs v%llu on %p len %d\n", 2849 version, inode, len); 2850 if (ci->i_xattrs.blob) 2851 ceph_buffer_put(ci->i_xattrs.blob); 2852 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2853 ci->i_xattrs.version = version; 2854 ceph_forget_all_cached_acls(inode); 2855 } 2856 } 2857 2858 /* Do we need to revalidate our fscache cookie. Don't bother on the 2859 * first cache cap as we already validate at cookie creation time. */ 2860 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2861 queue_revalidate = true; 2862 2863 if (newcaps & CEPH_CAP_ANY_RD) { 2864 /* ctime/mtime/atime? */ 2865 ceph_decode_timespec(&mtime, &grant->mtime); 2866 ceph_decode_timespec(&atime, &grant->atime); 2867 ceph_decode_timespec(&ctime, &grant->ctime); 2868 ceph_fill_file_time(inode, issued, 2869 le32_to_cpu(grant->time_warp_seq), 2870 &ctime, &mtime, &atime); 2871 } 2872 2873 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { 2874 /* file layout may have changed */ 2875 ci->i_layout = grant->layout; 2876 /* size/truncate_seq? */ 2877 queue_trunc = ceph_fill_file_size(inode, issued, 2878 le32_to_cpu(grant->truncate_seq), 2879 le64_to_cpu(grant->truncate_size), 2880 size); 2881 /* max size increase? */ 2882 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2883 dout("max_size %lld -> %llu\n", 2884 ci->i_max_size, max_size); 2885 ci->i_max_size = max_size; 2886 if (max_size >= ci->i_wanted_max_size) { 2887 ci->i_wanted_max_size = 0; /* reset */ 2888 ci->i_requested_max_size = 0; 2889 } 2890 wake = true; 2891 } 2892 } 2893 2894 /* check cap bits */ 2895 wanted = __ceph_caps_wanted(ci); 2896 used = __ceph_caps_used(ci); 2897 dirty = __ceph_caps_dirty(ci); 2898 dout(" my wanted = %s, used = %s, dirty %s\n", 2899 ceph_cap_string(wanted), 2900 ceph_cap_string(used), 2901 ceph_cap_string(dirty)); 2902 if (wanted != le32_to_cpu(grant->wanted)) { 2903 dout("mds wanted %s -> %s\n", 2904 ceph_cap_string(le32_to_cpu(grant->wanted)), 2905 ceph_cap_string(wanted)); 2906 /* imported cap may not have correct mds_wanted */ 2907 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2908 check_caps = 1; 2909 } 2910 2911 /* revocation, grant, or no-op? */ 2912 if (cap->issued & ~newcaps) { 2913 int revoking = cap->issued & ~newcaps; 2914 2915 dout("revocation: %s -> %s (revoking %s)\n", 2916 ceph_cap_string(cap->issued), 2917 ceph_cap_string(newcaps), 2918 ceph_cap_string(revoking)); 2919 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2920 writeback = true; /* initiate writeback; will delay ack */ 2921 else if (revoking == CEPH_CAP_FILE_CACHE && 2922 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2923 queue_invalidate) 2924 ; /* do nothing yet, invalidation will be queued */ 2925 else if (cap == ci->i_auth_cap) 2926 check_caps = 1; /* check auth cap only */ 2927 else 2928 check_caps = 2; /* check all caps */ 2929 cap->issued = newcaps; 2930 cap->implemented |= newcaps; 2931 } else if (cap->issued == newcaps) { 2932 dout("caps unchanged: %s -> %s\n", 2933 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2934 } else { 2935 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2936 ceph_cap_string(newcaps)); 2937 /* non-auth MDS is revoking the newly grant caps ? */ 2938 if (cap == ci->i_auth_cap && 2939 __ceph_caps_revoking_other(ci, cap, newcaps)) 2940 check_caps = 2; 2941 2942 cap->issued = newcaps; 2943 cap->implemented |= newcaps; /* add bits only, to 2944 * avoid stepping on a 2945 * pending revocation */ 2946 wake = true; 2947 } 2948 BUG_ON(cap->issued & ~cap->implemented); 2949 2950 if (inline_version > 0 && inline_version >= ci->i_inline_version) { 2951 ci->i_inline_version = inline_version; 2952 if (ci->i_inline_version != CEPH_INLINE_NONE && 2953 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) 2954 fill_inline = true; 2955 } 2956 2957 spin_unlock(&ci->i_ceph_lock); 2958 2959 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { 2960 kick_flushing_inode_caps(mdsc, session, inode); 2961 up_read(&mdsc->snap_rwsem); 2962 if (newcaps & ~issued) 2963 wake = true; 2964 } 2965 2966 if (fill_inline) 2967 ceph_fill_inline_data(inode, NULL, inline_data, inline_len); 2968 2969 if (queue_trunc) { 2970 ceph_queue_vmtruncate(inode); 2971 ceph_queue_revalidate(inode); 2972 } else if (queue_revalidate) 2973 ceph_queue_revalidate(inode); 2974 2975 if (writeback) 2976 /* 2977 * queue inode for writeback: we can't actually call 2978 * filemap_write_and_wait, etc. from message handler 2979 * context. 2980 */ 2981 ceph_queue_writeback(inode); 2982 if (queue_invalidate) 2983 ceph_queue_invalidate(inode); 2984 if (deleted_inode) 2985 invalidate_aliases(inode); 2986 if (wake) 2987 wake_up_all(&ci->i_cap_wq); 2988 2989 if (check_caps == 1) 2990 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2991 session); 2992 else if (check_caps == 2) 2993 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2994 else 2995 mutex_unlock(&session->s_mutex); 2996 } 2997 2998 /* 2999 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 3000 * MDS has been safely committed. 3001 */ 3002 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 3003 struct ceph_mds_caps *m, 3004 struct ceph_mds_session *session, 3005 struct ceph_cap *cap) 3006 __releases(ci->i_ceph_lock) 3007 { 3008 struct ceph_inode_info *ci = ceph_inode(inode); 3009 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3010 struct ceph_cap_flush *cf; 3011 struct rb_node *n; 3012 LIST_HEAD(to_remove); 3013 unsigned seq = le32_to_cpu(m->seq); 3014 int dirty = le32_to_cpu(m->dirty); 3015 int cleaned = 0; 3016 int drop = 0; 3017 3018 n = rb_first(&ci->i_cap_flush_tree); 3019 while (n) { 3020 cf = rb_entry(n, struct ceph_cap_flush, i_node); 3021 n = rb_next(&cf->i_node); 3022 if (cf->tid == flush_tid) 3023 cleaned = cf->caps; 3024 if (cf->tid <= flush_tid) { 3025 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 3026 list_add_tail(&cf->list, &to_remove); 3027 } else { 3028 cleaned &= ~cf->caps; 3029 if (!cleaned) 3030 break; 3031 } 3032 } 3033 3034 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 3035 " flushing %s -> %s\n", 3036 inode, session->s_mds, seq, ceph_cap_string(dirty), 3037 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 3038 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 3039 3040 if (list_empty(&to_remove) && !cleaned) 3041 goto out; 3042 3043 ci->i_flushing_caps &= ~cleaned; 3044 3045 spin_lock(&mdsc->cap_dirty_lock); 3046 3047 if (!list_empty(&to_remove)) { 3048 list_for_each_entry(cf, &to_remove, list) 3049 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 3050 3051 n = rb_first(&mdsc->cap_flush_tree); 3052 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 3053 if (!cf || cf->tid > flush_tid) 3054 wake_up_all(&mdsc->cap_flushing_wq); 3055 } 3056 3057 if (ci->i_flushing_caps == 0) { 3058 list_del_init(&ci->i_flushing_item); 3059 if (!list_empty(&session->s_cap_flushing)) 3060 dout(" mds%d still flushing cap on %p\n", 3061 session->s_mds, 3062 &list_entry(session->s_cap_flushing.next, 3063 struct ceph_inode_info, 3064 i_flushing_item)->vfs_inode); 3065 mdsc->num_cap_flushing--; 3066 dout(" inode %p now !flushing\n", inode); 3067 3068 if (ci->i_dirty_caps == 0) { 3069 dout(" inode %p now clean\n", inode); 3070 BUG_ON(!list_empty(&ci->i_dirty_item)); 3071 drop = 1; 3072 if (ci->i_wr_ref == 0 && 3073 ci->i_wrbuffer_ref_head == 0) { 3074 BUG_ON(!ci->i_head_snapc); 3075 ceph_put_snap_context(ci->i_head_snapc); 3076 ci->i_head_snapc = NULL; 3077 } 3078 } else { 3079 BUG_ON(list_empty(&ci->i_dirty_item)); 3080 } 3081 } 3082 spin_unlock(&mdsc->cap_dirty_lock); 3083 wake_up_all(&ci->i_cap_wq); 3084 3085 out: 3086 spin_unlock(&ci->i_ceph_lock); 3087 3088 while (!list_empty(&to_remove)) { 3089 cf = list_first_entry(&to_remove, 3090 struct ceph_cap_flush, list); 3091 list_del(&cf->list); 3092 ceph_free_cap_flush(cf); 3093 } 3094 if (drop) 3095 iput(inode); 3096 } 3097 3098 /* 3099 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 3100 * throw away our cap_snap. 3101 * 3102 * Caller hold s_mutex. 3103 */ 3104 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 3105 struct ceph_mds_caps *m, 3106 struct ceph_mds_session *session) 3107 { 3108 struct ceph_inode_info *ci = ceph_inode(inode); 3109 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3110 u64 follows = le64_to_cpu(m->snap_follows); 3111 struct ceph_cap_snap *capsnap; 3112 int drop = 0; 3113 3114 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 3115 inode, ci, session->s_mds, follows); 3116 3117 spin_lock(&ci->i_ceph_lock); 3118 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 3119 if (capsnap->follows == follows) { 3120 if (capsnap->flush_tid != flush_tid) { 3121 dout(" cap_snap %p follows %lld tid %lld !=" 3122 " %lld\n", capsnap, follows, 3123 flush_tid, capsnap->flush_tid); 3124 break; 3125 } 3126 WARN_ON(capsnap->dirty_pages || capsnap->writing); 3127 dout(" removing %p cap_snap %p follows %lld\n", 3128 inode, capsnap, follows); 3129 ceph_put_snap_context(capsnap->context); 3130 list_del(&capsnap->ci_item); 3131 list_del(&capsnap->flushing_item); 3132 ceph_put_cap_snap(capsnap); 3133 wake_up_all(&mdsc->cap_flushing_wq); 3134 drop = 1; 3135 break; 3136 } else { 3137 dout(" skipping cap_snap %p follows %lld\n", 3138 capsnap, capsnap->follows); 3139 } 3140 } 3141 spin_unlock(&ci->i_ceph_lock); 3142 if (drop) 3143 iput(inode); 3144 } 3145 3146 /* 3147 * Handle TRUNC from MDS, indicating file truncation. 3148 * 3149 * caller hold s_mutex. 3150 */ 3151 static void handle_cap_trunc(struct inode *inode, 3152 struct ceph_mds_caps *trunc, 3153 struct ceph_mds_session *session) 3154 __releases(ci->i_ceph_lock) 3155 { 3156 struct ceph_inode_info *ci = ceph_inode(inode); 3157 int mds = session->s_mds; 3158 int seq = le32_to_cpu(trunc->seq); 3159 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 3160 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 3161 u64 size = le64_to_cpu(trunc->size); 3162 int implemented = 0; 3163 int dirty = __ceph_caps_dirty(ci); 3164 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 3165 int queue_trunc = 0; 3166 3167 issued |= implemented | dirty; 3168 3169 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 3170 inode, mds, seq, truncate_size, truncate_seq); 3171 queue_trunc = ceph_fill_file_size(inode, issued, 3172 truncate_seq, truncate_size, size); 3173 spin_unlock(&ci->i_ceph_lock); 3174 3175 if (queue_trunc) { 3176 ceph_queue_vmtruncate(inode); 3177 ceph_fscache_invalidate(inode); 3178 } 3179 } 3180 3181 /* 3182 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 3183 * different one. If we are the most recent migration we've seen (as 3184 * indicated by mseq), make note of the migrating cap bits for the 3185 * duration (until we see the corresponding IMPORT). 3186 * 3187 * caller holds s_mutex 3188 */ 3189 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 3190 struct ceph_mds_cap_peer *ph, 3191 struct ceph_mds_session *session) 3192 { 3193 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 3194 struct ceph_mds_session *tsession = NULL; 3195 struct ceph_cap *cap, *tcap, *new_cap = NULL; 3196 struct ceph_inode_info *ci = ceph_inode(inode); 3197 u64 t_cap_id; 3198 unsigned mseq = le32_to_cpu(ex->migrate_seq); 3199 unsigned t_seq, t_mseq; 3200 int target, issued; 3201 int mds = session->s_mds; 3202 3203 if (ph) { 3204 t_cap_id = le64_to_cpu(ph->cap_id); 3205 t_seq = le32_to_cpu(ph->seq); 3206 t_mseq = le32_to_cpu(ph->mseq); 3207 target = le32_to_cpu(ph->mds); 3208 } else { 3209 t_cap_id = t_seq = t_mseq = 0; 3210 target = -1; 3211 } 3212 3213 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 3214 inode, ci, mds, mseq, target); 3215 retry: 3216 spin_lock(&ci->i_ceph_lock); 3217 cap = __get_cap_for_mds(ci, mds); 3218 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) 3219 goto out_unlock; 3220 3221 if (target < 0) { 3222 __ceph_remove_cap(cap, false); 3223 goto out_unlock; 3224 } 3225 3226 /* 3227 * now we know we haven't received the cap import message yet 3228 * because the exported cap still exist. 3229 */ 3230 3231 issued = cap->issued; 3232 WARN_ON(issued != cap->implemented); 3233 3234 tcap = __get_cap_for_mds(ci, target); 3235 if (tcap) { 3236 /* already have caps from the target */ 3237 if (tcap->cap_id != t_cap_id || 3238 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 3239 dout(" updating import cap %p mds%d\n", tcap, target); 3240 tcap->cap_id = t_cap_id; 3241 tcap->seq = t_seq - 1; 3242 tcap->issue_seq = t_seq - 1; 3243 tcap->mseq = t_mseq; 3244 tcap->issued |= issued; 3245 tcap->implemented |= issued; 3246 if (cap == ci->i_auth_cap) 3247 ci->i_auth_cap = tcap; 3248 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 3249 spin_lock(&mdsc->cap_dirty_lock); 3250 list_move_tail(&ci->i_flushing_item, 3251 &tcap->session->s_cap_flushing); 3252 spin_unlock(&mdsc->cap_dirty_lock); 3253 } 3254 } 3255 __ceph_remove_cap(cap, false); 3256 goto out_unlock; 3257 } else if (tsession) { 3258 /* add placeholder for the export tagert */ 3259 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 3260 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 3261 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); 3262 3263 __ceph_remove_cap(cap, false); 3264 goto out_unlock; 3265 } 3266 3267 spin_unlock(&ci->i_ceph_lock); 3268 mutex_unlock(&session->s_mutex); 3269 3270 /* open target session */ 3271 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 3272 if (!IS_ERR(tsession)) { 3273 if (mds > target) { 3274 mutex_lock(&session->s_mutex); 3275 mutex_lock_nested(&tsession->s_mutex, 3276 SINGLE_DEPTH_NESTING); 3277 } else { 3278 mutex_lock(&tsession->s_mutex); 3279 mutex_lock_nested(&session->s_mutex, 3280 SINGLE_DEPTH_NESTING); 3281 } 3282 new_cap = ceph_get_cap(mdsc, NULL); 3283 } else { 3284 WARN_ON(1); 3285 tsession = NULL; 3286 target = -1; 3287 } 3288 goto retry; 3289 3290 out_unlock: 3291 spin_unlock(&ci->i_ceph_lock); 3292 mutex_unlock(&session->s_mutex); 3293 if (tsession) { 3294 mutex_unlock(&tsession->s_mutex); 3295 ceph_put_mds_session(tsession); 3296 } 3297 if (new_cap) 3298 ceph_put_cap(mdsc, new_cap); 3299 } 3300 3301 /* 3302 * Handle cap IMPORT. 3303 * 3304 * caller holds s_mutex. acquires i_ceph_lock 3305 */ 3306 static void handle_cap_import(struct ceph_mds_client *mdsc, 3307 struct inode *inode, struct ceph_mds_caps *im, 3308 struct ceph_mds_cap_peer *ph, 3309 struct ceph_mds_session *session, 3310 struct ceph_cap **target_cap, int *old_issued) 3311 __acquires(ci->i_ceph_lock) 3312 { 3313 struct ceph_inode_info *ci = ceph_inode(inode); 3314 struct ceph_cap *cap, *ocap, *new_cap = NULL; 3315 int mds = session->s_mds; 3316 int issued; 3317 unsigned caps = le32_to_cpu(im->caps); 3318 unsigned wanted = le32_to_cpu(im->wanted); 3319 unsigned seq = le32_to_cpu(im->seq); 3320 unsigned mseq = le32_to_cpu(im->migrate_seq); 3321 u64 realmino = le64_to_cpu(im->realm); 3322 u64 cap_id = le64_to_cpu(im->cap_id); 3323 u64 p_cap_id; 3324 int peer; 3325 3326 if (ph) { 3327 p_cap_id = le64_to_cpu(ph->cap_id); 3328 peer = le32_to_cpu(ph->mds); 3329 } else { 3330 p_cap_id = 0; 3331 peer = -1; 3332 } 3333 3334 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 3335 inode, ci, mds, mseq, peer); 3336 3337 retry: 3338 spin_lock(&ci->i_ceph_lock); 3339 cap = __get_cap_for_mds(ci, mds); 3340 if (!cap) { 3341 if (!new_cap) { 3342 spin_unlock(&ci->i_ceph_lock); 3343 new_cap = ceph_get_cap(mdsc, NULL); 3344 goto retry; 3345 } 3346 cap = new_cap; 3347 } else { 3348 if (new_cap) { 3349 ceph_put_cap(mdsc, new_cap); 3350 new_cap = NULL; 3351 } 3352 } 3353 3354 __ceph_caps_issued(ci, &issued); 3355 issued |= __ceph_caps_dirty(ci); 3356 3357 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq, 3358 realmino, CEPH_CAP_FLAG_AUTH, &new_cap); 3359 3360 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 3361 if (ocap && ocap->cap_id == p_cap_id) { 3362 dout(" remove export cap %p mds%d flags %d\n", 3363 ocap, peer, ph->flags); 3364 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 3365 (ocap->seq != le32_to_cpu(ph->seq) || 3366 ocap->mseq != le32_to_cpu(ph->mseq))) { 3367 pr_err("handle_cap_import: mismatched seq/mseq: " 3368 "ino (%llx.%llx) mds%d seq %d mseq %d " 3369 "importer mds%d has peer seq %d mseq %d\n", 3370 ceph_vinop(inode), peer, ocap->seq, 3371 ocap->mseq, mds, le32_to_cpu(ph->seq), 3372 le32_to_cpu(ph->mseq)); 3373 } 3374 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 3375 } 3376 3377 /* make sure we re-request max_size, if necessary */ 3378 ci->i_wanted_max_size = 0; 3379 ci->i_requested_max_size = 0; 3380 3381 *old_issued = issued; 3382 *target_cap = cap; 3383 } 3384 3385 /* 3386 * Handle a caps message from the MDS. 3387 * 3388 * Identify the appropriate session, inode, and call the right handler 3389 * based on the cap op. 3390 */ 3391 void ceph_handle_caps(struct ceph_mds_session *session, 3392 struct ceph_msg *msg) 3393 { 3394 struct ceph_mds_client *mdsc = session->s_mdsc; 3395 struct super_block *sb = mdsc->fsc->sb; 3396 struct inode *inode; 3397 struct ceph_inode_info *ci; 3398 struct ceph_cap *cap; 3399 struct ceph_mds_caps *h; 3400 struct ceph_mds_cap_peer *peer = NULL; 3401 struct ceph_snap_realm *realm; 3402 int mds = session->s_mds; 3403 int op, issued; 3404 u32 seq, mseq; 3405 struct ceph_vino vino; 3406 u64 cap_id; 3407 u64 size, max_size; 3408 u64 tid; 3409 u64 inline_version = 0; 3410 void *inline_data = NULL; 3411 u32 inline_len = 0; 3412 void *snaptrace; 3413 size_t snaptrace_len; 3414 void *p, *end; 3415 3416 dout("handle_caps from mds%d\n", mds); 3417 3418 /* decode */ 3419 end = msg->front.iov_base + msg->front.iov_len; 3420 tid = le64_to_cpu(msg->hdr.tid); 3421 if (msg->front.iov_len < sizeof(*h)) 3422 goto bad; 3423 h = msg->front.iov_base; 3424 op = le32_to_cpu(h->op); 3425 vino.ino = le64_to_cpu(h->ino); 3426 vino.snap = CEPH_NOSNAP; 3427 cap_id = le64_to_cpu(h->cap_id); 3428 seq = le32_to_cpu(h->seq); 3429 mseq = le32_to_cpu(h->migrate_seq); 3430 size = le64_to_cpu(h->size); 3431 max_size = le64_to_cpu(h->max_size); 3432 3433 snaptrace = h + 1; 3434 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3435 p = snaptrace + snaptrace_len; 3436 3437 if (le16_to_cpu(msg->hdr.version) >= 2) { 3438 u32 flock_len; 3439 ceph_decode_32_safe(&p, end, flock_len, bad); 3440 if (p + flock_len > end) 3441 goto bad; 3442 p += flock_len; 3443 } 3444 3445 if (le16_to_cpu(msg->hdr.version) >= 3) { 3446 if (op == CEPH_CAP_OP_IMPORT) { 3447 if (p + sizeof(*peer) > end) 3448 goto bad; 3449 peer = p; 3450 p += sizeof(*peer); 3451 } else if (op == CEPH_CAP_OP_EXPORT) { 3452 /* recorded in unused fields */ 3453 peer = (void *)&h->size; 3454 } 3455 } 3456 3457 if (le16_to_cpu(msg->hdr.version) >= 4) { 3458 ceph_decode_64_safe(&p, end, inline_version, bad); 3459 ceph_decode_32_safe(&p, end, inline_len, bad); 3460 if (p + inline_len > end) 3461 goto bad; 3462 inline_data = p; 3463 p += inline_len; 3464 } 3465 3466 /* lookup ino */ 3467 inode = ceph_find_inode(sb, vino); 3468 ci = ceph_inode(inode); 3469 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3470 vino.snap, inode); 3471 3472 mutex_lock(&session->s_mutex); 3473 session->s_seq++; 3474 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3475 (unsigned)seq); 3476 3477 if (!inode) { 3478 dout(" i don't have ino %llx\n", vino.ino); 3479 3480 if (op == CEPH_CAP_OP_IMPORT) { 3481 cap = ceph_get_cap(mdsc, NULL); 3482 cap->cap_ino = vino.ino; 3483 cap->queue_release = 1; 3484 cap->cap_id = cap_id; 3485 cap->mseq = mseq; 3486 cap->seq = seq; 3487 spin_lock(&session->s_cap_lock); 3488 list_add_tail(&cap->session_caps, 3489 &session->s_cap_releases); 3490 session->s_num_cap_releases++; 3491 spin_unlock(&session->s_cap_lock); 3492 } 3493 goto flush_cap_releases; 3494 } 3495 3496 /* these will work even if we don't have a cap yet */ 3497 switch (op) { 3498 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3499 handle_cap_flushsnap_ack(inode, tid, h, session); 3500 goto done; 3501 3502 case CEPH_CAP_OP_EXPORT: 3503 handle_cap_export(inode, h, peer, session); 3504 goto done_unlocked; 3505 3506 case CEPH_CAP_OP_IMPORT: 3507 realm = NULL; 3508 if (snaptrace_len) { 3509 down_write(&mdsc->snap_rwsem); 3510 ceph_update_snap_trace(mdsc, snaptrace, 3511 snaptrace + snaptrace_len, 3512 false, &realm); 3513 downgrade_write(&mdsc->snap_rwsem); 3514 } else { 3515 down_read(&mdsc->snap_rwsem); 3516 } 3517 handle_cap_import(mdsc, inode, h, peer, session, 3518 &cap, &issued); 3519 handle_cap_grant(mdsc, inode, h, 3520 inline_version, inline_data, inline_len, 3521 msg->middle, session, cap, issued); 3522 if (realm) 3523 ceph_put_snap_realm(mdsc, realm); 3524 goto done_unlocked; 3525 } 3526 3527 /* the rest require a cap */ 3528 spin_lock(&ci->i_ceph_lock); 3529 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3530 if (!cap) { 3531 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3532 inode, ceph_ino(inode), ceph_snap(inode), mds); 3533 spin_unlock(&ci->i_ceph_lock); 3534 goto flush_cap_releases; 3535 } 3536 3537 /* note that each of these drops i_ceph_lock for us */ 3538 switch (op) { 3539 case CEPH_CAP_OP_REVOKE: 3540 case CEPH_CAP_OP_GRANT: 3541 __ceph_caps_issued(ci, &issued); 3542 issued |= __ceph_caps_dirty(ci); 3543 handle_cap_grant(mdsc, inode, h, 3544 inline_version, inline_data, inline_len, 3545 msg->middle, session, cap, issued); 3546 goto done_unlocked; 3547 3548 case CEPH_CAP_OP_FLUSH_ACK: 3549 handle_cap_flush_ack(inode, tid, h, session, cap); 3550 break; 3551 3552 case CEPH_CAP_OP_TRUNC: 3553 handle_cap_trunc(inode, h, session); 3554 break; 3555 3556 default: 3557 spin_unlock(&ci->i_ceph_lock); 3558 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3559 ceph_cap_op_name(op)); 3560 } 3561 3562 goto done; 3563 3564 flush_cap_releases: 3565 /* 3566 * send any cap release message to try to move things 3567 * along for the mds (who clearly thinks we still have this 3568 * cap). 3569 */ 3570 ceph_send_cap_releases(mdsc, session); 3571 3572 done: 3573 mutex_unlock(&session->s_mutex); 3574 done_unlocked: 3575 iput(inode); 3576 return; 3577 3578 bad: 3579 pr_err("ceph_handle_caps: corrupt message\n"); 3580 ceph_msg_dump(msg); 3581 return; 3582 } 3583 3584 /* 3585 * Delayed work handler to process end of delayed cap release LRU list. 3586 */ 3587 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3588 { 3589 struct ceph_inode_info *ci; 3590 int flags = CHECK_CAPS_NODELAY; 3591 3592 dout("check_delayed_caps\n"); 3593 while (1) { 3594 spin_lock(&mdsc->cap_delay_lock); 3595 if (list_empty(&mdsc->cap_delay_list)) 3596 break; 3597 ci = list_first_entry(&mdsc->cap_delay_list, 3598 struct ceph_inode_info, 3599 i_cap_delay_list); 3600 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3601 time_before(jiffies, ci->i_hold_caps_max)) 3602 break; 3603 list_del_init(&ci->i_cap_delay_list); 3604 spin_unlock(&mdsc->cap_delay_lock); 3605 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3606 ceph_check_caps(ci, flags, NULL); 3607 } 3608 spin_unlock(&mdsc->cap_delay_lock); 3609 } 3610 3611 /* 3612 * Flush all dirty caps to the mds 3613 */ 3614 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3615 { 3616 struct ceph_inode_info *ci; 3617 struct inode *inode; 3618 3619 dout("flush_dirty_caps\n"); 3620 spin_lock(&mdsc->cap_dirty_lock); 3621 while (!list_empty(&mdsc->cap_dirty)) { 3622 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3623 i_dirty_item); 3624 inode = &ci->vfs_inode; 3625 ihold(inode); 3626 dout("flush_dirty_caps %p\n", inode); 3627 spin_unlock(&mdsc->cap_dirty_lock); 3628 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3629 iput(inode); 3630 spin_lock(&mdsc->cap_dirty_lock); 3631 } 3632 spin_unlock(&mdsc->cap_dirty_lock); 3633 dout("flush_dirty_caps done\n"); 3634 } 3635 3636 /* 3637 * Drop open file reference. If we were the last open file, 3638 * we may need to release capabilities to the MDS (or schedule 3639 * their delayed release). 3640 */ 3641 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3642 { 3643 struct inode *inode = &ci->vfs_inode; 3644 int last = 0; 3645 3646 spin_lock(&ci->i_ceph_lock); 3647 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3648 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3649 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3650 if (--ci->i_nr_by_mode[fmode] == 0) 3651 last++; 3652 spin_unlock(&ci->i_ceph_lock); 3653 3654 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3655 ceph_check_caps(ci, 0, NULL); 3656 } 3657 3658 /* 3659 * Helpers for embedding cap and dentry lease releases into mds 3660 * requests. 3661 * 3662 * @force is used by dentry_release (below) to force inclusion of a 3663 * record for the directory inode, even when there aren't any caps to 3664 * drop. 3665 */ 3666 int ceph_encode_inode_release(void **p, struct inode *inode, 3667 int mds, int drop, int unless, int force) 3668 { 3669 struct ceph_inode_info *ci = ceph_inode(inode); 3670 struct ceph_cap *cap; 3671 struct ceph_mds_request_release *rel = *p; 3672 int used, dirty; 3673 int ret = 0; 3674 3675 spin_lock(&ci->i_ceph_lock); 3676 used = __ceph_caps_used(ci); 3677 dirty = __ceph_caps_dirty(ci); 3678 3679 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3680 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3681 ceph_cap_string(unless)); 3682 3683 /* only drop unused, clean caps */ 3684 drop &= ~(used | dirty); 3685 3686 cap = __get_cap_for_mds(ci, mds); 3687 if (cap && __cap_is_valid(cap)) { 3688 if (force || 3689 ((cap->issued & drop) && 3690 (cap->issued & unless) == 0)) { 3691 if ((cap->issued & drop) && 3692 (cap->issued & unless) == 0) { 3693 int wanted = __ceph_caps_wanted(ci); 3694 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3695 wanted |= cap->mds_wanted; 3696 dout("encode_inode_release %p cap %p " 3697 "%s -> %s, wanted %s -> %s\n", inode, cap, 3698 ceph_cap_string(cap->issued), 3699 ceph_cap_string(cap->issued & ~drop), 3700 ceph_cap_string(cap->mds_wanted), 3701 ceph_cap_string(wanted)); 3702 3703 cap->issued &= ~drop; 3704 cap->implemented &= ~drop; 3705 cap->mds_wanted = wanted; 3706 } else { 3707 dout("encode_inode_release %p cap %p %s" 3708 " (force)\n", inode, cap, 3709 ceph_cap_string(cap->issued)); 3710 } 3711 3712 rel->ino = cpu_to_le64(ceph_ino(inode)); 3713 rel->cap_id = cpu_to_le64(cap->cap_id); 3714 rel->seq = cpu_to_le32(cap->seq); 3715 rel->issue_seq = cpu_to_le32(cap->issue_seq); 3716 rel->mseq = cpu_to_le32(cap->mseq); 3717 rel->caps = cpu_to_le32(cap->implemented); 3718 rel->wanted = cpu_to_le32(cap->mds_wanted); 3719 rel->dname_len = 0; 3720 rel->dname_seq = 0; 3721 *p += sizeof(*rel); 3722 ret = 1; 3723 } else { 3724 dout("encode_inode_release %p cap %p %s\n", 3725 inode, cap, ceph_cap_string(cap->issued)); 3726 } 3727 } 3728 spin_unlock(&ci->i_ceph_lock); 3729 return ret; 3730 } 3731 3732 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3733 int mds, int drop, int unless) 3734 { 3735 struct inode *dir = d_inode(dentry->d_parent); 3736 struct ceph_mds_request_release *rel = *p; 3737 struct ceph_dentry_info *di = ceph_dentry(dentry); 3738 int force = 0; 3739 int ret; 3740 3741 /* 3742 * force an record for the directory caps if we have a dentry lease. 3743 * this is racy (can't take i_ceph_lock and d_lock together), but it 3744 * doesn't have to be perfect; the mds will revoke anything we don't 3745 * release. 3746 */ 3747 spin_lock(&dentry->d_lock); 3748 if (di->lease_session && di->lease_session->s_mds == mds) 3749 force = 1; 3750 spin_unlock(&dentry->d_lock); 3751 3752 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3753 3754 spin_lock(&dentry->d_lock); 3755 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3756 dout("encode_dentry_release %p mds%d seq %d\n", 3757 dentry, mds, (int)di->lease_seq); 3758 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3759 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3760 *p += dentry->d_name.len; 3761 rel->dname_seq = cpu_to_le32(di->lease_seq); 3762 __ceph_mdsc_drop_dentry_lease(dentry); 3763 } 3764 spin_unlock(&dentry->d_lock); 3765 return ret; 3766 } 3767