1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include <linux/ceph/decode.h> 14 #include <linux/ceph/messenger.h> 15 16 /* 17 * Capability management 18 * 19 * The Ceph metadata servers control client access to inode metadata 20 * and file data by issuing capabilities, granting clients permission 21 * to read and/or write both inode field and file data to OSDs 22 * (storage nodes). Each capability consists of a set of bits 23 * indicating which operations are allowed. 24 * 25 * If the client holds a *_SHARED cap, the client has a coherent value 26 * that can be safely read from the cached inode. 27 * 28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 29 * client is allowed to change inode attributes (e.g., file size, 30 * mtime), note its dirty state in the ceph_cap, and asynchronously 31 * flush that metadata change to the MDS. 32 * 33 * In the event of a conflicting operation (perhaps by another 34 * client), the MDS will revoke the conflicting client capabilities. 35 * 36 * In order for a client to cache an inode, it must hold a capability 37 * with at least one MDS server. When inodes are released, release 38 * notifications are batched and periodically sent en masse to the MDS 39 * cluster to release server state. 40 */ 41 42 43 /* 44 * Generate readable cap strings for debugging output. 45 */ 46 #define MAX_CAP_STR 20 47 static char cap_str[MAX_CAP_STR][40]; 48 static DEFINE_SPINLOCK(cap_str_lock); 49 static int last_cap_str; 50 51 static char *gcap_string(char *s, int c) 52 { 53 if (c & CEPH_CAP_GSHARED) 54 *s++ = 's'; 55 if (c & CEPH_CAP_GEXCL) 56 *s++ = 'x'; 57 if (c & CEPH_CAP_GCACHE) 58 *s++ = 'c'; 59 if (c & CEPH_CAP_GRD) 60 *s++ = 'r'; 61 if (c & CEPH_CAP_GWR) 62 *s++ = 'w'; 63 if (c & CEPH_CAP_GBUFFER) 64 *s++ = 'b'; 65 if (c & CEPH_CAP_GLAZYIO) 66 *s++ = 'l'; 67 return s; 68 } 69 70 const char *ceph_cap_string(int caps) 71 { 72 int i; 73 char *s; 74 int c; 75 76 spin_lock(&cap_str_lock); 77 i = last_cap_str++; 78 if (last_cap_str == MAX_CAP_STR) 79 last_cap_str = 0; 80 spin_unlock(&cap_str_lock); 81 82 s = cap_str[i]; 83 84 if (caps & CEPH_CAP_PIN) 85 *s++ = 'p'; 86 87 c = (caps >> CEPH_CAP_SAUTH) & 3; 88 if (c) { 89 *s++ = 'A'; 90 s = gcap_string(s, c); 91 } 92 93 c = (caps >> CEPH_CAP_SLINK) & 3; 94 if (c) { 95 *s++ = 'L'; 96 s = gcap_string(s, c); 97 } 98 99 c = (caps >> CEPH_CAP_SXATTR) & 3; 100 if (c) { 101 *s++ = 'X'; 102 s = gcap_string(s, c); 103 } 104 105 c = caps >> CEPH_CAP_SFILE; 106 if (c) { 107 *s++ = 'F'; 108 s = gcap_string(s, c); 109 } 110 111 if (s == cap_str[i]) 112 *s++ = '-'; 113 *s = 0; 114 return cap_str[i]; 115 } 116 117 void ceph_caps_init(struct ceph_mds_client *mdsc) 118 { 119 INIT_LIST_HEAD(&mdsc->caps_list); 120 spin_lock_init(&mdsc->caps_list_lock); 121 } 122 123 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 124 { 125 struct ceph_cap *cap; 126 127 spin_lock(&mdsc->caps_list_lock); 128 while (!list_empty(&mdsc->caps_list)) { 129 cap = list_first_entry(&mdsc->caps_list, 130 struct ceph_cap, caps_item); 131 list_del(&cap->caps_item); 132 kmem_cache_free(ceph_cap_cachep, cap); 133 } 134 mdsc->caps_total_count = 0; 135 mdsc->caps_avail_count = 0; 136 mdsc->caps_use_count = 0; 137 mdsc->caps_reserve_count = 0; 138 mdsc->caps_min_count = 0; 139 spin_unlock(&mdsc->caps_list_lock); 140 } 141 142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 143 { 144 spin_lock(&mdsc->caps_list_lock); 145 mdsc->caps_min_count += delta; 146 BUG_ON(mdsc->caps_min_count < 0); 147 spin_unlock(&mdsc->caps_list_lock); 148 } 149 150 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 151 struct ceph_cap_reservation *ctx, int need) 152 { 153 int i; 154 struct ceph_cap *cap; 155 int have; 156 int alloc = 0; 157 LIST_HEAD(newcaps); 158 int ret = 0; 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) { 178 ret = -ENOMEM; 179 goto out_alloc_count; 180 } 181 list_add(&cap->caps_item, &newcaps); 182 alloc++; 183 } 184 BUG_ON(have + alloc != need); 185 186 spin_lock(&mdsc->caps_list_lock); 187 mdsc->caps_total_count += alloc; 188 mdsc->caps_reserve_count += alloc; 189 list_splice(&newcaps, &mdsc->caps_list); 190 191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 192 mdsc->caps_reserve_count + 193 mdsc->caps_avail_count); 194 spin_unlock(&mdsc->caps_list_lock); 195 196 ctx->count = need; 197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 198 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 199 mdsc->caps_reserve_count, mdsc->caps_avail_count); 200 return 0; 201 202 out_alloc_count: 203 /* we didn't manage to reserve as much as we needed */ 204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 205 ctx, need, have); 206 return ret; 207 } 208 209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 210 struct ceph_cap_reservation *ctx) 211 { 212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 213 if (ctx->count) { 214 spin_lock(&mdsc->caps_list_lock); 215 BUG_ON(mdsc->caps_reserve_count < ctx->count); 216 mdsc->caps_reserve_count -= ctx->count; 217 mdsc->caps_avail_count += ctx->count; 218 ctx->count = 0; 219 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 220 mdsc->caps_total_count, mdsc->caps_use_count, 221 mdsc->caps_reserve_count, mdsc->caps_avail_count); 222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 223 mdsc->caps_reserve_count + 224 mdsc->caps_avail_count); 225 spin_unlock(&mdsc->caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 231 struct ceph_cap_reservation *ctx) 232 { 233 struct ceph_cap *cap = NULL; 234 235 /* temporary, until we do something about cap import/export */ 236 if (!ctx) { 237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 238 if (cap) { 239 spin_lock(&mdsc->caps_list_lock); 240 mdsc->caps_use_count++; 241 mdsc->caps_total_count++; 242 spin_unlock(&mdsc->caps_list_lock); 243 } 244 return cap; 245 } 246 247 spin_lock(&mdsc->caps_list_lock); 248 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 249 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 250 mdsc->caps_reserve_count, mdsc->caps_avail_count); 251 BUG_ON(!ctx->count); 252 BUG_ON(ctx->count > mdsc->caps_reserve_count); 253 BUG_ON(list_empty(&mdsc->caps_list)); 254 255 ctx->count--; 256 mdsc->caps_reserve_count--; 257 mdsc->caps_use_count++; 258 259 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 260 list_del(&cap->caps_item); 261 262 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 263 mdsc->caps_reserve_count + mdsc->caps_avail_count); 264 spin_unlock(&mdsc->caps_list_lock); 265 return cap; 266 } 267 268 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 269 { 270 spin_lock(&mdsc->caps_list_lock); 271 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 272 cap, mdsc->caps_total_count, mdsc->caps_use_count, 273 mdsc->caps_reserve_count, mdsc->caps_avail_count); 274 mdsc->caps_use_count--; 275 /* 276 * Keep some preallocated caps around (ceph_min_count), to 277 * avoid lots of free/alloc churn. 278 */ 279 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 280 mdsc->caps_min_count) { 281 mdsc->caps_total_count--; 282 kmem_cache_free(ceph_cap_cachep, cap); 283 } else { 284 mdsc->caps_avail_count++; 285 list_add(&cap->caps_item, &mdsc->caps_list); 286 } 287 288 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 289 mdsc->caps_reserve_count + mdsc->caps_avail_count); 290 spin_unlock(&mdsc->caps_list_lock); 291 } 292 293 void ceph_reservation_status(struct ceph_fs_client *fsc, 294 int *total, int *avail, int *used, int *reserved, 295 int *min) 296 { 297 struct ceph_mds_client *mdsc = fsc->mdsc; 298 299 if (total) 300 *total = mdsc->caps_total_count; 301 if (avail) 302 *avail = mdsc->caps_avail_count; 303 if (used) 304 *used = mdsc->caps_use_count; 305 if (reserved) 306 *reserved = mdsc->caps_reserve_count; 307 if (min) 308 *min = mdsc->caps_min_count; 309 } 310 311 /* 312 * Find ceph_cap for given mds, if any. 313 * 314 * Called with i_ceph_lock held. 315 */ 316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 317 { 318 struct ceph_cap *cap; 319 struct rb_node *n = ci->i_caps.rb_node; 320 321 while (n) { 322 cap = rb_entry(n, struct ceph_cap, ci_node); 323 if (mds < cap->mds) 324 n = n->rb_left; 325 else if (mds > cap->mds) 326 n = n->rb_right; 327 else 328 return cap; 329 } 330 return NULL; 331 } 332 333 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 334 { 335 struct ceph_cap *cap; 336 337 spin_lock(&ci->i_ceph_lock); 338 cap = __get_cap_for_mds(ci, mds); 339 spin_unlock(&ci->i_ceph_lock); 340 return cap; 341 } 342 343 /* 344 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 345 */ 346 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 347 { 348 struct ceph_cap *cap; 349 int mds = -1; 350 struct rb_node *p; 351 352 /* prefer mds with WR|BUFFER|EXCL caps */ 353 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 354 cap = rb_entry(p, struct ceph_cap, ci_node); 355 mds = cap->mds; 356 if (cap->issued & (CEPH_CAP_FILE_WR | 357 CEPH_CAP_FILE_BUFFER | 358 CEPH_CAP_FILE_EXCL)) 359 break; 360 } 361 return mds; 362 } 363 364 int ceph_get_cap_mds(struct inode *inode) 365 { 366 struct ceph_inode_info *ci = ceph_inode(inode); 367 int mds; 368 spin_lock(&ci->i_ceph_lock); 369 mds = __ceph_get_cap_mds(ceph_inode(inode)); 370 spin_unlock(&ci->i_ceph_lock); 371 return mds; 372 } 373 374 /* 375 * Called under i_ceph_lock. 376 */ 377 static void __insert_cap_node(struct ceph_inode_info *ci, 378 struct ceph_cap *new) 379 { 380 struct rb_node **p = &ci->i_caps.rb_node; 381 struct rb_node *parent = NULL; 382 struct ceph_cap *cap = NULL; 383 384 while (*p) { 385 parent = *p; 386 cap = rb_entry(parent, struct ceph_cap, ci_node); 387 if (new->mds < cap->mds) 388 p = &(*p)->rb_left; 389 else if (new->mds > cap->mds) 390 p = &(*p)->rb_right; 391 else 392 BUG(); 393 } 394 395 rb_link_node(&new->ci_node, parent, p); 396 rb_insert_color(&new->ci_node, &ci->i_caps); 397 } 398 399 /* 400 * (re)set cap hold timeouts, which control the delayed release 401 * of unused caps back to the MDS. Should be called on cap use. 402 */ 403 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 404 struct ceph_inode_info *ci) 405 { 406 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 407 408 ci->i_hold_caps_min = round_jiffies(jiffies + 409 ma->caps_wanted_delay_min * HZ); 410 ci->i_hold_caps_max = round_jiffies(jiffies + 411 ma->caps_wanted_delay_max * HZ); 412 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 413 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 414 } 415 416 /* 417 * (Re)queue cap at the end of the delayed cap release list. 418 * 419 * If I_FLUSH is set, leave the inode at the front of the list. 420 * 421 * Caller holds i_ceph_lock 422 * -> we take mdsc->cap_delay_lock 423 */ 424 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 425 struct ceph_inode_info *ci) 426 { 427 __cap_set_timeouts(mdsc, ci); 428 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 429 ci->i_ceph_flags, ci->i_hold_caps_max); 430 if (!mdsc->stopping) { 431 spin_lock(&mdsc->cap_delay_lock); 432 if (!list_empty(&ci->i_cap_delay_list)) { 433 if (ci->i_ceph_flags & CEPH_I_FLUSH) 434 goto no_change; 435 list_del_init(&ci->i_cap_delay_list); 436 } 437 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 438 no_change: 439 spin_unlock(&mdsc->cap_delay_lock); 440 } 441 } 442 443 /* 444 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 445 * indicating we should send a cap message to flush dirty metadata 446 * asap, and move to the front of the delayed cap list. 447 */ 448 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 449 struct ceph_inode_info *ci) 450 { 451 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 452 spin_lock(&mdsc->cap_delay_lock); 453 ci->i_ceph_flags |= CEPH_I_FLUSH; 454 if (!list_empty(&ci->i_cap_delay_list)) 455 list_del_init(&ci->i_cap_delay_list); 456 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 457 spin_unlock(&mdsc->cap_delay_lock); 458 } 459 460 /* 461 * Cancel delayed work on cap. 462 * 463 * Caller must hold i_ceph_lock. 464 */ 465 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 466 struct ceph_inode_info *ci) 467 { 468 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 469 if (list_empty(&ci->i_cap_delay_list)) 470 return; 471 spin_lock(&mdsc->cap_delay_lock); 472 list_del_init(&ci->i_cap_delay_list); 473 spin_unlock(&mdsc->cap_delay_lock); 474 } 475 476 /* 477 * Common issue checks for add_cap, handle_cap_grant. 478 */ 479 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 480 unsigned issued) 481 { 482 unsigned had = __ceph_caps_issued(ci, NULL); 483 484 /* 485 * Each time we receive FILE_CACHE anew, we increment 486 * i_rdcache_gen. 487 */ 488 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 489 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 490 ci->i_rdcache_gen++; 491 492 /* 493 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we 494 * don't know what happened to this directory while we didn't 495 * have the cap. 496 */ 497 if ((issued & CEPH_CAP_FILE_SHARED) && 498 (had & CEPH_CAP_FILE_SHARED) == 0) { 499 ci->i_shared_gen++; 500 if (S_ISDIR(ci->vfs_inode.i_mode)) 501 ceph_dir_clear_complete(&ci->vfs_inode); 502 } 503 } 504 505 /* 506 * Add a capability under the given MDS session. 507 * 508 * Caller should hold session snap_rwsem (read) and s_mutex. 509 * 510 * @fmode is the open file mode, if we are opening a file, otherwise 511 * it is < 0. (This is so we can atomically add the cap and add an 512 * open file reference to it.) 513 */ 514 int ceph_add_cap(struct inode *inode, 515 struct ceph_mds_session *session, u64 cap_id, 516 int fmode, unsigned issued, unsigned wanted, 517 unsigned seq, unsigned mseq, u64 realmino, int flags, 518 struct ceph_cap_reservation *caps_reservation) 519 { 520 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 521 struct ceph_inode_info *ci = ceph_inode(inode); 522 struct ceph_cap *new_cap = NULL; 523 struct ceph_cap *cap; 524 int mds = session->s_mds; 525 int actual_wanted; 526 527 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 528 session->s_mds, cap_id, ceph_cap_string(issued), seq); 529 530 /* 531 * If we are opening the file, include file mode wanted bits 532 * in wanted. 533 */ 534 if (fmode >= 0) 535 wanted |= ceph_caps_for_mode(fmode); 536 537 retry: 538 spin_lock(&ci->i_ceph_lock); 539 cap = __get_cap_for_mds(ci, mds); 540 if (!cap) { 541 if (new_cap) { 542 cap = new_cap; 543 new_cap = NULL; 544 } else { 545 spin_unlock(&ci->i_ceph_lock); 546 new_cap = get_cap(mdsc, caps_reservation); 547 if (new_cap == NULL) 548 return -ENOMEM; 549 goto retry; 550 } 551 552 cap->issued = 0; 553 cap->implemented = 0; 554 cap->mds = mds; 555 cap->mds_wanted = 0; 556 557 cap->ci = ci; 558 __insert_cap_node(ci, cap); 559 560 /* clear out old exporting info? (i.e. on cap import) */ 561 if (ci->i_cap_exporting_mds == mds) { 562 ci->i_cap_exporting_issued = 0; 563 ci->i_cap_exporting_mseq = 0; 564 ci->i_cap_exporting_mds = -1; 565 } 566 567 /* add to session cap list */ 568 cap->session = session; 569 spin_lock(&session->s_cap_lock); 570 list_add_tail(&cap->session_caps, &session->s_caps); 571 session->s_nr_caps++; 572 spin_unlock(&session->s_cap_lock); 573 } else if (new_cap) 574 ceph_put_cap(mdsc, new_cap); 575 576 if (!ci->i_snap_realm) { 577 /* 578 * add this inode to the appropriate snap realm 579 */ 580 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 581 realmino); 582 if (realm) { 583 ceph_get_snap_realm(mdsc, realm); 584 spin_lock(&realm->inodes_with_caps_lock); 585 ci->i_snap_realm = realm; 586 list_add(&ci->i_snap_realm_item, 587 &realm->inodes_with_caps); 588 spin_unlock(&realm->inodes_with_caps_lock); 589 } else { 590 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 591 realmino); 592 WARN_ON(!realm); 593 } 594 } 595 596 __check_cap_issue(ci, cap, issued); 597 598 /* 599 * If we are issued caps we don't want, or the mds' wanted 600 * value appears to be off, queue a check so we'll release 601 * later and/or update the mds wanted value. 602 */ 603 actual_wanted = __ceph_caps_wanted(ci); 604 if ((wanted & ~actual_wanted) || 605 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 606 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 607 ceph_cap_string(issued), ceph_cap_string(wanted), 608 ceph_cap_string(actual_wanted)); 609 __cap_delay_requeue(mdsc, ci); 610 } 611 612 if (flags & CEPH_CAP_FLAG_AUTH) 613 ci->i_auth_cap = cap; 614 else if (ci->i_auth_cap == cap) { 615 ci->i_auth_cap = NULL; 616 spin_lock(&mdsc->cap_dirty_lock); 617 if (!list_empty(&ci->i_dirty_item)) { 618 dout(" moving %p to cap_dirty_migrating\n", inode); 619 list_move(&ci->i_dirty_item, 620 &mdsc->cap_dirty_migrating); 621 } 622 spin_unlock(&mdsc->cap_dirty_lock); 623 } 624 625 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 626 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 627 ceph_cap_string(issued|cap->issued), seq, mds); 628 cap->cap_id = cap_id; 629 cap->issued = issued; 630 cap->implemented |= issued; 631 cap->mds_wanted |= wanted; 632 cap->seq = seq; 633 cap->issue_seq = seq; 634 cap->mseq = mseq; 635 cap->cap_gen = session->s_cap_gen; 636 637 if (fmode >= 0) 638 __ceph_get_fmode(ci, fmode); 639 spin_unlock(&ci->i_ceph_lock); 640 wake_up_all(&ci->i_cap_wq); 641 return 0; 642 } 643 644 /* 645 * Return true if cap has not timed out and belongs to the current 646 * generation of the MDS session (i.e. has not gone 'stale' due to 647 * us losing touch with the mds). 648 */ 649 static int __cap_is_valid(struct ceph_cap *cap) 650 { 651 unsigned long ttl; 652 u32 gen; 653 654 spin_lock(&cap->session->s_gen_ttl_lock); 655 gen = cap->session->s_cap_gen; 656 ttl = cap->session->s_cap_ttl; 657 spin_unlock(&cap->session->s_gen_ttl_lock); 658 659 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 660 dout("__cap_is_valid %p cap %p issued %s " 661 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 662 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 663 return 0; 664 } 665 666 return 1; 667 } 668 669 /* 670 * Return set of valid cap bits issued to us. Note that caps time 671 * out, and may be invalidated in bulk if the client session times out 672 * and session->s_cap_gen is bumped. 673 */ 674 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 675 { 676 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 677 struct ceph_cap *cap; 678 struct rb_node *p; 679 680 if (implemented) 681 *implemented = 0; 682 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 683 cap = rb_entry(p, struct ceph_cap, ci_node); 684 if (!__cap_is_valid(cap)) 685 continue; 686 dout("__ceph_caps_issued %p cap %p issued %s\n", 687 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 688 have |= cap->issued; 689 if (implemented) 690 *implemented |= cap->implemented; 691 } 692 return have; 693 } 694 695 /* 696 * Get cap bits issued by caps other than @ocap 697 */ 698 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 699 { 700 int have = ci->i_snap_caps; 701 struct ceph_cap *cap; 702 struct rb_node *p; 703 704 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 705 cap = rb_entry(p, struct ceph_cap, ci_node); 706 if (cap == ocap) 707 continue; 708 if (!__cap_is_valid(cap)) 709 continue; 710 have |= cap->issued; 711 } 712 return have; 713 } 714 715 /* 716 * Move a cap to the end of the LRU (oldest caps at list head, newest 717 * at list tail). 718 */ 719 static void __touch_cap(struct ceph_cap *cap) 720 { 721 struct ceph_mds_session *s = cap->session; 722 723 spin_lock(&s->s_cap_lock); 724 if (s->s_cap_iterator == NULL) { 725 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 726 s->s_mds); 727 list_move_tail(&cap->session_caps, &s->s_caps); 728 } else { 729 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 730 &cap->ci->vfs_inode, cap, s->s_mds); 731 } 732 spin_unlock(&s->s_cap_lock); 733 } 734 735 /* 736 * Check if we hold the given mask. If so, move the cap(s) to the 737 * front of their respective LRUs. (This is the preferred way for 738 * callers to check for caps they want.) 739 */ 740 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 741 { 742 struct ceph_cap *cap; 743 struct rb_node *p; 744 int have = ci->i_snap_caps; 745 746 if ((have & mask) == mask) { 747 dout("__ceph_caps_issued_mask %p snap issued %s" 748 " (mask %s)\n", &ci->vfs_inode, 749 ceph_cap_string(have), 750 ceph_cap_string(mask)); 751 return 1; 752 } 753 754 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 755 cap = rb_entry(p, struct ceph_cap, ci_node); 756 if (!__cap_is_valid(cap)) 757 continue; 758 if ((cap->issued & mask) == mask) { 759 dout("__ceph_caps_issued_mask %p cap %p issued %s" 760 " (mask %s)\n", &ci->vfs_inode, cap, 761 ceph_cap_string(cap->issued), 762 ceph_cap_string(mask)); 763 if (touch) 764 __touch_cap(cap); 765 return 1; 766 } 767 768 /* does a combination of caps satisfy mask? */ 769 have |= cap->issued; 770 if ((have & mask) == mask) { 771 dout("__ceph_caps_issued_mask %p combo issued %s" 772 " (mask %s)\n", &ci->vfs_inode, 773 ceph_cap_string(cap->issued), 774 ceph_cap_string(mask)); 775 if (touch) { 776 struct rb_node *q; 777 778 /* touch this + preceding caps */ 779 __touch_cap(cap); 780 for (q = rb_first(&ci->i_caps); q != p; 781 q = rb_next(q)) { 782 cap = rb_entry(q, struct ceph_cap, 783 ci_node); 784 if (!__cap_is_valid(cap)) 785 continue; 786 __touch_cap(cap); 787 } 788 } 789 return 1; 790 } 791 } 792 793 return 0; 794 } 795 796 /* 797 * Return true if mask caps are currently being revoked by an MDS. 798 */ 799 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 800 { 801 struct inode *inode = &ci->vfs_inode; 802 struct ceph_cap *cap; 803 struct rb_node *p; 804 int ret = 0; 805 806 spin_lock(&ci->i_ceph_lock); 807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 808 cap = rb_entry(p, struct ceph_cap, ci_node); 809 if (__cap_is_valid(cap) && 810 (cap->implemented & ~cap->issued & mask)) { 811 ret = 1; 812 break; 813 } 814 } 815 spin_unlock(&ci->i_ceph_lock); 816 dout("ceph_caps_revoking %p %s = %d\n", inode, 817 ceph_cap_string(mask), ret); 818 return ret; 819 } 820 821 int __ceph_caps_used(struct ceph_inode_info *ci) 822 { 823 int used = 0; 824 if (ci->i_pin_ref) 825 used |= CEPH_CAP_PIN; 826 if (ci->i_rd_ref) 827 used |= CEPH_CAP_FILE_RD; 828 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 829 used |= CEPH_CAP_FILE_CACHE; 830 if (ci->i_wr_ref) 831 used |= CEPH_CAP_FILE_WR; 832 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 833 used |= CEPH_CAP_FILE_BUFFER; 834 return used; 835 } 836 837 /* 838 * wanted, by virtue of open file modes 839 */ 840 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 841 { 842 int want = 0; 843 int mode; 844 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 845 if (ci->i_nr_by_mode[mode]) 846 want |= ceph_caps_for_mode(mode); 847 return want; 848 } 849 850 /* 851 * Return caps we have registered with the MDS(s) as 'wanted'. 852 */ 853 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 854 { 855 struct ceph_cap *cap; 856 struct rb_node *p; 857 int mds_wanted = 0; 858 859 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 860 cap = rb_entry(p, struct ceph_cap, ci_node); 861 if (!__cap_is_valid(cap)) 862 continue; 863 mds_wanted |= cap->mds_wanted; 864 } 865 return mds_wanted; 866 } 867 868 /* 869 * called under i_ceph_lock 870 */ 871 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 872 { 873 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 874 } 875 876 /* 877 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 878 * 879 * caller should hold i_ceph_lock. 880 * caller will not hold session s_mutex if called from destroy_inode. 881 */ 882 void __ceph_remove_cap(struct ceph_cap *cap) 883 { 884 struct ceph_mds_session *session = cap->session; 885 struct ceph_inode_info *ci = cap->ci; 886 struct ceph_mds_client *mdsc = 887 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 888 int removed = 0; 889 890 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 891 892 /* remove from session list */ 893 spin_lock(&session->s_cap_lock); 894 if (session->s_cap_iterator == cap) { 895 /* not yet, we are iterating over this very cap */ 896 dout("__ceph_remove_cap delaying %p removal from session %p\n", 897 cap, cap->session); 898 } else { 899 list_del_init(&cap->session_caps); 900 session->s_nr_caps--; 901 cap->session = NULL; 902 removed = 1; 903 } 904 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 905 cap->ci = NULL; 906 spin_unlock(&session->s_cap_lock); 907 908 /* remove from inode list */ 909 rb_erase(&cap->ci_node, &ci->i_caps); 910 if (ci->i_auth_cap == cap) 911 ci->i_auth_cap = NULL; 912 913 if (removed) 914 ceph_put_cap(mdsc, cap); 915 916 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 917 struct ceph_snap_realm *realm = ci->i_snap_realm; 918 spin_lock(&realm->inodes_with_caps_lock); 919 list_del_init(&ci->i_snap_realm_item); 920 ci->i_snap_realm_counter++; 921 ci->i_snap_realm = NULL; 922 spin_unlock(&realm->inodes_with_caps_lock); 923 ceph_put_snap_realm(mdsc, realm); 924 } 925 if (!__ceph_is_any_real_caps(ci)) 926 __cap_delay_cancel(mdsc, ci); 927 } 928 929 /* 930 * Build and send a cap message to the given MDS. 931 * 932 * Caller should be holding s_mutex. 933 */ 934 static int send_cap_msg(struct ceph_mds_session *session, 935 u64 ino, u64 cid, int op, 936 int caps, int wanted, int dirty, 937 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 938 u64 size, u64 max_size, 939 struct timespec *mtime, struct timespec *atime, 940 u64 time_warp_seq, 941 kuid_t uid, kgid_t gid, umode_t mode, 942 u64 xattr_version, 943 struct ceph_buffer *xattrs_buf, 944 u64 follows) 945 { 946 struct ceph_mds_caps *fc; 947 struct ceph_msg *msg; 948 949 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 950 " seq %u/%u mseq %u follows %lld size %llu/%llu" 951 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 952 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 953 ceph_cap_string(dirty), 954 seq, issue_seq, mseq, follows, size, max_size, 955 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 956 957 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 958 if (!msg) 959 return -ENOMEM; 960 961 msg->hdr.tid = cpu_to_le64(flush_tid); 962 963 fc = msg->front.iov_base; 964 memset(fc, 0, sizeof(*fc)); 965 966 fc->cap_id = cpu_to_le64(cid); 967 fc->op = cpu_to_le32(op); 968 fc->seq = cpu_to_le32(seq); 969 fc->issue_seq = cpu_to_le32(issue_seq); 970 fc->migrate_seq = cpu_to_le32(mseq); 971 fc->caps = cpu_to_le32(caps); 972 fc->wanted = cpu_to_le32(wanted); 973 fc->dirty = cpu_to_le32(dirty); 974 fc->ino = cpu_to_le64(ino); 975 fc->snap_follows = cpu_to_le64(follows); 976 977 fc->size = cpu_to_le64(size); 978 fc->max_size = cpu_to_le64(max_size); 979 if (mtime) 980 ceph_encode_timespec(&fc->mtime, mtime); 981 if (atime) 982 ceph_encode_timespec(&fc->atime, atime); 983 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 984 985 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 986 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 987 fc->mode = cpu_to_le32(mode); 988 989 fc->xattr_version = cpu_to_le64(xattr_version); 990 if (xattrs_buf) { 991 msg->middle = ceph_buffer_get(xattrs_buf); 992 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 993 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 994 } 995 996 ceph_con_send(&session->s_con, msg); 997 return 0; 998 } 999 1000 static void __queue_cap_release(struct ceph_mds_session *session, 1001 u64 ino, u64 cap_id, u32 migrate_seq, 1002 u32 issue_seq) 1003 { 1004 struct ceph_msg *msg; 1005 struct ceph_mds_cap_release *head; 1006 struct ceph_mds_cap_item *item; 1007 1008 spin_lock(&session->s_cap_lock); 1009 BUG_ON(!session->s_num_cap_releases); 1010 msg = list_first_entry(&session->s_cap_releases, 1011 struct ceph_msg, list_head); 1012 1013 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1014 ino, session->s_mds, msg, session->s_num_cap_releases); 1015 1016 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1017 head = msg->front.iov_base; 1018 le32_add_cpu(&head->num, 1); 1019 item = msg->front.iov_base + msg->front.iov_len; 1020 item->ino = cpu_to_le64(ino); 1021 item->cap_id = cpu_to_le64(cap_id); 1022 item->migrate_seq = cpu_to_le32(migrate_seq); 1023 item->seq = cpu_to_le32(issue_seq); 1024 1025 session->s_num_cap_releases--; 1026 1027 msg->front.iov_len += sizeof(*item); 1028 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1029 dout(" release msg %p full\n", msg); 1030 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1031 } else { 1032 dout(" release msg %p at %d/%d (%d)\n", msg, 1033 (int)le32_to_cpu(head->num), 1034 (int)CEPH_CAPS_PER_RELEASE, 1035 (int)msg->front.iov_len); 1036 } 1037 spin_unlock(&session->s_cap_lock); 1038 } 1039 1040 /* 1041 * Queue cap releases when an inode is dropped from our cache. Since 1042 * inode is about to be destroyed, there is no need for i_ceph_lock. 1043 */ 1044 void ceph_queue_caps_release(struct inode *inode) 1045 { 1046 struct ceph_inode_info *ci = ceph_inode(inode); 1047 struct rb_node *p; 1048 1049 p = rb_first(&ci->i_caps); 1050 while (p) { 1051 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1052 struct ceph_mds_session *session = cap->session; 1053 1054 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1055 cap->mseq, cap->issue_seq); 1056 p = rb_next(p); 1057 __ceph_remove_cap(cap); 1058 } 1059 } 1060 1061 /* 1062 * Send a cap msg on the given inode. Update our caps state, then 1063 * drop i_ceph_lock and send the message. 1064 * 1065 * Make note of max_size reported/requested from mds, revoked caps 1066 * that have now been implemented. 1067 * 1068 * Make half-hearted attempt ot to invalidate page cache if we are 1069 * dropping RDCACHE. Note that this will leave behind locked pages 1070 * that we'll then need to deal with elsewhere. 1071 * 1072 * Return non-zero if delayed release, or we experienced an error 1073 * such that the caller should requeue + retry later. 1074 * 1075 * called with i_ceph_lock, then drops it. 1076 * caller should hold snap_rwsem (read), s_mutex. 1077 */ 1078 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1079 int op, int used, int want, int retain, int flushing, 1080 unsigned *pflush_tid) 1081 __releases(cap->ci->i_ceph_lock) 1082 { 1083 struct ceph_inode_info *ci = cap->ci; 1084 struct inode *inode = &ci->vfs_inode; 1085 u64 cap_id = cap->cap_id; 1086 int held, revoking, dropping, keep; 1087 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1088 u64 size, max_size; 1089 struct timespec mtime, atime; 1090 int wake = 0; 1091 umode_t mode; 1092 kuid_t uid; 1093 kgid_t gid; 1094 struct ceph_mds_session *session; 1095 u64 xattr_version = 0; 1096 struct ceph_buffer *xattr_blob = NULL; 1097 int delayed = 0; 1098 u64 flush_tid = 0; 1099 int i; 1100 int ret; 1101 1102 held = cap->issued | cap->implemented; 1103 revoking = cap->implemented & ~cap->issued; 1104 retain &= ~revoking; 1105 dropping = cap->issued & ~retain; 1106 1107 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1108 inode, cap, cap->session, 1109 ceph_cap_string(held), ceph_cap_string(held & retain), 1110 ceph_cap_string(revoking)); 1111 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1112 1113 session = cap->session; 1114 1115 /* don't release wanted unless we've waited a bit. */ 1116 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1117 time_before(jiffies, ci->i_hold_caps_min)) { 1118 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1119 ceph_cap_string(cap->issued), 1120 ceph_cap_string(cap->issued & retain), 1121 ceph_cap_string(cap->mds_wanted), 1122 ceph_cap_string(want)); 1123 want |= cap->mds_wanted; 1124 retain |= cap->issued; 1125 delayed = 1; 1126 } 1127 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1128 1129 cap->issued &= retain; /* drop bits we don't want */ 1130 if (cap->implemented & ~cap->issued) { 1131 /* 1132 * Wake up any waiters on wanted -> needed transition. 1133 * This is due to the weird transition from buffered 1134 * to sync IO... we need to flush dirty pages _before_ 1135 * allowing sync writes to avoid reordering. 1136 */ 1137 wake = 1; 1138 } 1139 cap->implemented &= cap->issued | used; 1140 cap->mds_wanted = want; 1141 1142 if (flushing) { 1143 /* 1144 * assign a tid for flush operations so we can avoid 1145 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1146 * clean type races. track latest tid for every bit 1147 * so we can handle flush AxFw, flush Fw, and have the 1148 * first ack clean Ax. 1149 */ 1150 flush_tid = ++ci->i_cap_flush_last_tid; 1151 if (pflush_tid) 1152 *pflush_tid = flush_tid; 1153 dout(" cap_flush_tid %d\n", (int)flush_tid); 1154 for (i = 0; i < CEPH_CAP_BITS; i++) 1155 if (flushing & (1 << i)) 1156 ci->i_cap_flush_tid[i] = flush_tid; 1157 1158 follows = ci->i_head_snapc->seq; 1159 } else { 1160 follows = 0; 1161 } 1162 1163 keep = cap->implemented; 1164 seq = cap->seq; 1165 issue_seq = cap->issue_seq; 1166 mseq = cap->mseq; 1167 size = inode->i_size; 1168 ci->i_reported_size = size; 1169 max_size = ci->i_wanted_max_size; 1170 ci->i_requested_max_size = max_size; 1171 mtime = inode->i_mtime; 1172 atime = inode->i_atime; 1173 time_warp_seq = ci->i_time_warp_seq; 1174 uid = inode->i_uid; 1175 gid = inode->i_gid; 1176 mode = inode->i_mode; 1177 1178 if (flushing & CEPH_CAP_XATTR_EXCL) { 1179 __ceph_build_xattrs_blob(ci); 1180 xattr_blob = ci->i_xattrs.blob; 1181 xattr_version = ci->i_xattrs.version; 1182 } 1183 1184 spin_unlock(&ci->i_ceph_lock); 1185 1186 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1187 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1188 size, max_size, &mtime, &atime, time_warp_seq, 1189 uid, gid, mode, xattr_version, xattr_blob, 1190 follows); 1191 if (ret < 0) { 1192 dout("error sending cap msg, must requeue %p\n", inode); 1193 delayed = 1; 1194 } 1195 1196 if (wake) 1197 wake_up_all(&ci->i_cap_wq); 1198 1199 return delayed; 1200 } 1201 1202 /* 1203 * When a snapshot is taken, clients accumulate dirty metadata on 1204 * inodes with capabilities in ceph_cap_snaps to describe the file 1205 * state at the time the snapshot was taken. This must be flushed 1206 * asynchronously back to the MDS once sync writes complete and dirty 1207 * data is written out. 1208 * 1209 * Unless @again is true, skip cap_snaps that were already sent to 1210 * the MDS (i.e., during this session). 1211 * 1212 * Called under i_ceph_lock. Takes s_mutex as needed. 1213 */ 1214 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1215 struct ceph_mds_session **psession, 1216 int again) 1217 __releases(ci->i_ceph_lock) 1218 __acquires(ci->i_ceph_lock) 1219 { 1220 struct inode *inode = &ci->vfs_inode; 1221 int mds; 1222 struct ceph_cap_snap *capsnap; 1223 u32 mseq; 1224 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1225 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1226 session->s_mutex */ 1227 u64 next_follows = 0; /* keep track of how far we've gotten through the 1228 i_cap_snaps list, and skip these entries next time 1229 around to avoid an infinite loop */ 1230 1231 if (psession) 1232 session = *psession; 1233 1234 dout("__flush_snaps %p\n", inode); 1235 retry: 1236 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1237 /* avoid an infiniute loop after retry */ 1238 if (capsnap->follows < next_follows) 1239 continue; 1240 /* 1241 * we need to wait for sync writes to complete and for dirty 1242 * pages to be written out. 1243 */ 1244 if (capsnap->dirty_pages || capsnap->writing) 1245 break; 1246 1247 /* 1248 * if cap writeback already occurred, we should have dropped 1249 * the capsnap in ceph_put_wrbuffer_cap_refs. 1250 */ 1251 BUG_ON(capsnap->dirty == 0); 1252 1253 /* pick mds, take s_mutex */ 1254 if (ci->i_auth_cap == NULL) { 1255 dout("no auth cap (migrating?), doing nothing\n"); 1256 goto out; 1257 } 1258 1259 /* only flush each capsnap once */ 1260 if (!again && !list_empty(&capsnap->flushing_item)) { 1261 dout("already flushed %p, skipping\n", capsnap); 1262 continue; 1263 } 1264 1265 mds = ci->i_auth_cap->session->s_mds; 1266 mseq = ci->i_auth_cap->mseq; 1267 1268 if (session && session->s_mds != mds) { 1269 dout("oops, wrong session %p mutex\n", session); 1270 mutex_unlock(&session->s_mutex); 1271 ceph_put_mds_session(session); 1272 session = NULL; 1273 } 1274 if (!session) { 1275 spin_unlock(&ci->i_ceph_lock); 1276 mutex_lock(&mdsc->mutex); 1277 session = __ceph_lookup_mds_session(mdsc, mds); 1278 mutex_unlock(&mdsc->mutex); 1279 if (session) { 1280 dout("inverting session/ino locks on %p\n", 1281 session); 1282 mutex_lock(&session->s_mutex); 1283 } 1284 /* 1285 * if session == NULL, we raced against a cap 1286 * deletion or migration. retry, and we'll 1287 * get a better @mds value next time. 1288 */ 1289 spin_lock(&ci->i_ceph_lock); 1290 goto retry; 1291 } 1292 1293 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1294 atomic_inc(&capsnap->nref); 1295 if (!list_empty(&capsnap->flushing_item)) 1296 list_del_init(&capsnap->flushing_item); 1297 list_add_tail(&capsnap->flushing_item, 1298 &session->s_cap_snaps_flushing); 1299 spin_unlock(&ci->i_ceph_lock); 1300 1301 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1302 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1303 send_cap_msg(session, ceph_vino(inode).ino, 0, 1304 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1305 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1306 capsnap->size, 0, 1307 &capsnap->mtime, &capsnap->atime, 1308 capsnap->time_warp_seq, 1309 capsnap->uid, capsnap->gid, capsnap->mode, 1310 capsnap->xattr_version, capsnap->xattr_blob, 1311 capsnap->follows); 1312 1313 next_follows = capsnap->follows + 1; 1314 ceph_put_cap_snap(capsnap); 1315 1316 spin_lock(&ci->i_ceph_lock); 1317 goto retry; 1318 } 1319 1320 /* we flushed them all; remove this inode from the queue */ 1321 spin_lock(&mdsc->snap_flush_lock); 1322 list_del_init(&ci->i_snap_flush_item); 1323 spin_unlock(&mdsc->snap_flush_lock); 1324 1325 out: 1326 if (psession) 1327 *psession = session; 1328 else if (session) { 1329 mutex_unlock(&session->s_mutex); 1330 ceph_put_mds_session(session); 1331 } 1332 } 1333 1334 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1335 { 1336 spin_lock(&ci->i_ceph_lock); 1337 __ceph_flush_snaps(ci, NULL, 0); 1338 spin_unlock(&ci->i_ceph_lock); 1339 } 1340 1341 /* 1342 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1343 * Caller is then responsible for calling __mark_inode_dirty with the 1344 * returned flags value. 1345 */ 1346 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1347 { 1348 struct ceph_mds_client *mdsc = 1349 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1350 struct inode *inode = &ci->vfs_inode; 1351 int was = ci->i_dirty_caps; 1352 int dirty = 0; 1353 1354 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1355 ceph_cap_string(mask), ceph_cap_string(was), 1356 ceph_cap_string(was | mask)); 1357 ci->i_dirty_caps |= mask; 1358 if (was == 0) { 1359 if (!ci->i_head_snapc) 1360 ci->i_head_snapc = ceph_get_snap_context( 1361 ci->i_snap_realm->cached_context); 1362 dout(" inode %p now dirty snapc %p auth cap %p\n", 1363 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1364 BUG_ON(!list_empty(&ci->i_dirty_item)); 1365 spin_lock(&mdsc->cap_dirty_lock); 1366 if (ci->i_auth_cap) 1367 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1368 else 1369 list_add(&ci->i_dirty_item, 1370 &mdsc->cap_dirty_migrating); 1371 spin_unlock(&mdsc->cap_dirty_lock); 1372 if (ci->i_flushing_caps == 0) { 1373 ihold(inode); 1374 dirty |= I_DIRTY_SYNC; 1375 } 1376 } 1377 BUG_ON(list_empty(&ci->i_dirty_item)); 1378 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1379 (mask & CEPH_CAP_FILE_BUFFER)) 1380 dirty |= I_DIRTY_DATASYNC; 1381 __cap_delay_requeue(mdsc, ci); 1382 return dirty; 1383 } 1384 1385 /* 1386 * Add dirty inode to the flushing list. Assigned a seq number so we 1387 * can wait for caps to flush without starving. 1388 * 1389 * Called under i_ceph_lock. 1390 */ 1391 static int __mark_caps_flushing(struct inode *inode, 1392 struct ceph_mds_session *session) 1393 { 1394 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1395 struct ceph_inode_info *ci = ceph_inode(inode); 1396 int flushing; 1397 1398 BUG_ON(ci->i_dirty_caps == 0); 1399 BUG_ON(list_empty(&ci->i_dirty_item)); 1400 1401 flushing = ci->i_dirty_caps; 1402 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1403 ceph_cap_string(flushing), 1404 ceph_cap_string(ci->i_flushing_caps), 1405 ceph_cap_string(ci->i_flushing_caps | flushing)); 1406 ci->i_flushing_caps |= flushing; 1407 ci->i_dirty_caps = 0; 1408 dout(" inode %p now !dirty\n", inode); 1409 1410 spin_lock(&mdsc->cap_dirty_lock); 1411 list_del_init(&ci->i_dirty_item); 1412 1413 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1414 if (list_empty(&ci->i_flushing_item)) { 1415 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1416 mdsc->num_cap_flushing++; 1417 dout(" inode %p now flushing seq %lld\n", inode, 1418 ci->i_cap_flush_seq); 1419 } else { 1420 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1421 dout(" inode %p now flushing (more) seq %lld\n", inode, 1422 ci->i_cap_flush_seq); 1423 } 1424 spin_unlock(&mdsc->cap_dirty_lock); 1425 1426 return flushing; 1427 } 1428 1429 /* 1430 * try to invalidate mapping pages without blocking. 1431 */ 1432 static int try_nonblocking_invalidate(struct inode *inode) 1433 { 1434 struct ceph_inode_info *ci = ceph_inode(inode); 1435 u32 invalidating_gen = ci->i_rdcache_gen; 1436 1437 spin_unlock(&ci->i_ceph_lock); 1438 invalidate_mapping_pages(&inode->i_data, 0, -1); 1439 spin_lock(&ci->i_ceph_lock); 1440 1441 if (inode->i_data.nrpages == 0 && 1442 invalidating_gen == ci->i_rdcache_gen) { 1443 /* success. */ 1444 dout("try_nonblocking_invalidate %p success\n", inode); 1445 /* save any racing async invalidate some trouble */ 1446 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1447 return 0; 1448 } 1449 dout("try_nonblocking_invalidate %p failed\n", inode); 1450 return -1; 1451 } 1452 1453 /* 1454 * Swiss army knife function to examine currently used and wanted 1455 * versus held caps. Release, flush, ack revoked caps to mds as 1456 * appropriate. 1457 * 1458 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1459 * cap release further. 1460 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1461 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1462 * further delay. 1463 */ 1464 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1465 struct ceph_mds_session *session) 1466 { 1467 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1468 struct ceph_mds_client *mdsc = fsc->mdsc; 1469 struct inode *inode = &ci->vfs_inode; 1470 struct ceph_cap *cap; 1471 int file_wanted, used, cap_used; 1472 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1473 int issued, implemented, want, retain, revoking, flushing = 0; 1474 int mds = -1; /* keep track of how far we've gone through i_caps list 1475 to avoid an infinite loop on retry */ 1476 struct rb_node *p; 1477 int tried_invalidate = 0; 1478 int delayed = 0, sent = 0, force_requeue = 0, num; 1479 int queue_invalidate = 0; 1480 int is_delayed = flags & CHECK_CAPS_NODELAY; 1481 1482 /* if we are unmounting, flush any unused caps immediately. */ 1483 if (mdsc->stopping) 1484 is_delayed = 1; 1485 1486 spin_lock(&ci->i_ceph_lock); 1487 1488 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1489 flags |= CHECK_CAPS_FLUSH; 1490 1491 /* flush snaps first time around only */ 1492 if (!list_empty(&ci->i_cap_snaps)) 1493 __ceph_flush_snaps(ci, &session, 0); 1494 goto retry_locked; 1495 retry: 1496 spin_lock(&ci->i_ceph_lock); 1497 retry_locked: 1498 file_wanted = __ceph_caps_file_wanted(ci); 1499 used = __ceph_caps_used(ci); 1500 want = file_wanted | used; 1501 issued = __ceph_caps_issued(ci, &implemented); 1502 revoking = implemented & ~issued; 1503 1504 retain = want | CEPH_CAP_PIN; 1505 if (!mdsc->stopping && inode->i_nlink > 0) { 1506 if (want) { 1507 retain |= CEPH_CAP_ANY; /* be greedy */ 1508 } else { 1509 retain |= CEPH_CAP_ANY_SHARED; 1510 /* 1511 * keep RD only if we didn't have the file open RW, 1512 * because then the mds would revoke it anyway to 1513 * journal max_size=0. 1514 */ 1515 if (ci->i_max_size == 0) 1516 retain |= CEPH_CAP_ANY_RD; 1517 } 1518 } 1519 1520 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1521 " issued %s revoking %s retain %s %s%s%s\n", inode, 1522 ceph_cap_string(file_wanted), 1523 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1524 ceph_cap_string(ci->i_flushing_caps), 1525 ceph_cap_string(issued), ceph_cap_string(revoking), 1526 ceph_cap_string(retain), 1527 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1528 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1529 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1530 1531 /* 1532 * If we no longer need to hold onto old our caps, and we may 1533 * have cached pages, but don't want them, then try to invalidate. 1534 * If we fail, it's because pages are locked.... try again later. 1535 */ 1536 if ((!is_delayed || mdsc->stopping) && 1537 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1538 inode->i_data.nrpages && /* have cached pages */ 1539 (file_wanted == 0 || /* no open files */ 1540 (revoking & (CEPH_CAP_FILE_CACHE| 1541 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1542 !tried_invalidate) { 1543 dout("check_caps trying to invalidate on %p\n", inode); 1544 if (try_nonblocking_invalidate(inode) < 0) { 1545 if (revoking & (CEPH_CAP_FILE_CACHE| 1546 CEPH_CAP_FILE_LAZYIO)) { 1547 dout("check_caps queuing invalidate\n"); 1548 queue_invalidate = 1; 1549 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1550 } else { 1551 dout("check_caps failed to invalidate pages\n"); 1552 /* we failed to invalidate pages. check these 1553 caps again later. */ 1554 force_requeue = 1; 1555 __cap_set_timeouts(mdsc, ci); 1556 } 1557 } 1558 tried_invalidate = 1; 1559 goto retry_locked; 1560 } 1561 1562 num = 0; 1563 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1564 cap = rb_entry(p, struct ceph_cap, ci_node); 1565 num++; 1566 1567 /* avoid looping forever */ 1568 if (mds >= cap->mds || 1569 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1570 continue; 1571 1572 /* NOTE: no side-effects allowed, until we take s_mutex */ 1573 1574 cap_used = used; 1575 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1576 cap_used &= ~ci->i_auth_cap->issued; 1577 1578 revoking = cap->implemented & ~cap->issued; 1579 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1580 cap->mds, cap, ceph_cap_string(cap->issued), 1581 ceph_cap_string(cap_used), 1582 ceph_cap_string(cap->implemented), 1583 ceph_cap_string(revoking)); 1584 1585 if (cap == ci->i_auth_cap && 1586 (cap->issued & CEPH_CAP_FILE_WR)) { 1587 /* request larger max_size from MDS? */ 1588 if (ci->i_wanted_max_size > ci->i_max_size && 1589 ci->i_wanted_max_size > ci->i_requested_max_size) { 1590 dout("requesting new max_size\n"); 1591 goto ack; 1592 } 1593 1594 /* approaching file_max? */ 1595 if ((inode->i_size << 1) >= ci->i_max_size && 1596 (ci->i_reported_size << 1) < ci->i_max_size) { 1597 dout("i_size approaching max_size\n"); 1598 goto ack; 1599 } 1600 } 1601 /* flush anything dirty? */ 1602 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1603 ci->i_dirty_caps) { 1604 dout("flushing dirty caps\n"); 1605 goto ack; 1606 } 1607 1608 /* completed revocation? going down and there are no caps? */ 1609 if (revoking && (revoking & cap_used) == 0) { 1610 dout("completed revocation of %s\n", 1611 ceph_cap_string(cap->implemented & ~cap->issued)); 1612 goto ack; 1613 } 1614 1615 /* want more caps from mds? */ 1616 if (want & ~(cap->mds_wanted | cap->issued)) 1617 goto ack; 1618 1619 /* things we might delay */ 1620 if ((cap->issued & ~retain) == 0 && 1621 cap->mds_wanted == want) 1622 continue; /* nope, all good */ 1623 1624 if (is_delayed) 1625 goto ack; 1626 1627 /* delay? */ 1628 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1629 time_before(jiffies, ci->i_hold_caps_max)) { 1630 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1631 ceph_cap_string(cap->issued), 1632 ceph_cap_string(cap->issued & retain), 1633 ceph_cap_string(cap->mds_wanted), 1634 ceph_cap_string(want)); 1635 delayed++; 1636 continue; 1637 } 1638 1639 ack: 1640 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1641 dout(" skipping %p I_NOFLUSH set\n", inode); 1642 continue; 1643 } 1644 1645 if (session && session != cap->session) { 1646 dout("oops, wrong session %p mutex\n", session); 1647 mutex_unlock(&session->s_mutex); 1648 session = NULL; 1649 } 1650 if (!session) { 1651 session = cap->session; 1652 if (mutex_trylock(&session->s_mutex) == 0) { 1653 dout("inverting session/ino locks on %p\n", 1654 session); 1655 spin_unlock(&ci->i_ceph_lock); 1656 if (took_snap_rwsem) { 1657 up_read(&mdsc->snap_rwsem); 1658 took_snap_rwsem = 0; 1659 } 1660 mutex_lock(&session->s_mutex); 1661 goto retry; 1662 } 1663 } 1664 /* take snap_rwsem after session mutex */ 1665 if (!took_snap_rwsem) { 1666 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1667 dout("inverting snap/in locks on %p\n", 1668 inode); 1669 spin_unlock(&ci->i_ceph_lock); 1670 down_read(&mdsc->snap_rwsem); 1671 took_snap_rwsem = 1; 1672 goto retry; 1673 } 1674 took_snap_rwsem = 1; 1675 } 1676 1677 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1678 flushing = __mark_caps_flushing(inode, session); 1679 else 1680 flushing = 0; 1681 1682 mds = cap->mds; /* remember mds, so we don't repeat */ 1683 sent++; 1684 1685 /* __send_cap drops i_ceph_lock */ 1686 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1687 want, retain, flushing, NULL); 1688 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1689 } 1690 1691 /* 1692 * Reschedule delayed caps release if we delayed anything, 1693 * otherwise cancel. 1694 */ 1695 if (delayed && is_delayed) 1696 force_requeue = 1; /* __send_cap delayed release; requeue */ 1697 if (!delayed && !is_delayed) 1698 __cap_delay_cancel(mdsc, ci); 1699 else if (!is_delayed || force_requeue) 1700 __cap_delay_requeue(mdsc, ci); 1701 1702 spin_unlock(&ci->i_ceph_lock); 1703 1704 if (queue_invalidate) 1705 ceph_queue_invalidate(inode); 1706 1707 if (session) 1708 mutex_unlock(&session->s_mutex); 1709 if (took_snap_rwsem) 1710 up_read(&mdsc->snap_rwsem); 1711 } 1712 1713 /* 1714 * Try to flush dirty caps back to the auth mds. 1715 */ 1716 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1717 unsigned *flush_tid) 1718 { 1719 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1720 struct ceph_inode_info *ci = ceph_inode(inode); 1721 int unlock_session = session ? 0 : 1; 1722 int flushing = 0; 1723 1724 retry: 1725 spin_lock(&ci->i_ceph_lock); 1726 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1727 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1728 goto out; 1729 } 1730 if (ci->i_dirty_caps && ci->i_auth_cap) { 1731 struct ceph_cap *cap = ci->i_auth_cap; 1732 int used = __ceph_caps_used(ci); 1733 int want = __ceph_caps_wanted(ci); 1734 int delayed; 1735 1736 if (!session) { 1737 spin_unlock(&ci->i_ceph_lock); 1738 session = cap->session; 1739 mutex_lock(&session->s_mutex); 1740 goto retry; 1741 } 1742 BUG_ON(session != cap->session); 1743 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1744 goto out; 1745 1746 flushing = __mark_caps_flushing(inode, session); 1747 1748 /* __send_cap drops i_ceph_lock */ 1749 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1750 cap->issued | cap->implemented, flushing, 1751 flush_tid); 1752 if (!delayed) 1753 goto out_unlocked; 1754 1755 spin_lock(&ci->i_ceph_lock); 1756 __cap_delay_requeue(mdsc, ci); 1757 } 1758 out: 1759 spin_unlock(&ci->i_ceph_lock); 1760 out_unlocked: 1761 if (session && unlock_session) 1762 mutex_unlock(&session->s_mutex); 1763 return flushing; 1764 } 1765 1766 /* 1767 * Return true if we've flushed caps through the given flush_tid. 1768 */ 1769 static int caps_are_flushed(struct inode *inode, unsigned tid) 1770 { 1771 struct ceph_inode_info *ci = ceph_inode(inode); 1772 int i, ret = 1; 1773 1774 spin_lock(&ci->i_ceph_lock); 1775 for (i = 0; i < CEPH_CAP_BITS; i++) 1776 if ((ci->i_flushing_caps & (1 << i)) && 1777 ci->i_cap_flush_tid[i] <= tid) { 1778 /* still flushing this bit */ 1779 ret = 0; 1780 break; 1781 } 1782 spin_unlock(&ci->i_ceph_lock); 1783 return ret; 1784 } 1785 1786 /* 1787 * Wait on any unsafe replies for the given inode. First wait on the 1788 * newest request, and make that the upper bound. Then, if there are 1789 * more requests, keep waiting on the oldest as long as it is still older 1790 * than the original request. 1791 */ 1792 static void sync_write_wait(struct inode *inode) 1793 { 1794 struct ceph_inode_info *ci = ceph_inode(inode); 1795 struct list_head *head = &ci->i_unsafe_writes; 1796 struct ceph_osd_request *req; 1797 u64 last_tid; 1798 1799 spin_lock(&ci->i_unsafe_lock); 1800 if (list_empty(head)) 1801 goto out; 1802 1803 /* set upper bound as _last_ entry in chain */ 1804 req = list_entry(head->prev, struct ceph_osd_request, 1805 r_unsafe_item); 1806 last_tid = req->r_tid; 1807 1808 do { 1809 ceph_osdc_get_request(req); 1810 spin_unlock(&ci->i_unsafe_lock); 1811 dout("sync_write_wait on tid %llu (until %llu)\n", 1812 req->r_tid, last_tid); 1813 wait_for_completion(&req->r_safe_completion); 1814 spin_lock(&ci->i_unsafe_lock); 1815 ceph_osdc_put_request(req); 1816 1817 /* 1818 * from here on look at first entry in chain, since we 1819 * only want to wait for anything older than last_tid 1820 */ 1821 if (list_empty(head)) 1822 break; 1823 req = list_entry(head->next, struct ceph_osd_request, 1824 r_unsafe_item); 1825 } while (req->r_tid < last_tid); 1826 out: 1827 spin_unlock(&ci->i_unsafe_lock); 1828 } 1829 1830 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1831 { 1832 struct inode *inode = file->f_mapping->host; 1833 struct ceph_inode_info *ci = ceph_inode(inode); 1834 unsigned flush_tid; 1835 int ret; 1836 int dirty; 1837 1838 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1839 sync_write_wait(inode); 1840 1841 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1842 if (ret < 0) 1843 return ret; 1844 mutex_lock(&inode->i_mutex); 1845 1846 dirty = try_flush_caps(inode, NULL, &flush_tid); 1847 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1848 1849 /* 1850 * only wait on non-file metadata writeback (the mds 1851 * can recover size and mtime, so we don't need to 1852 * wait for that) 1853 */ 1854 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1855 dout("fsync waiting for flush_tid %u\n", flush_tid); 1856 ret = wait_event_interruptible(ci->i_cap_wq, 1857 caps_are_flushed(inode, flush_tid)); 1858 } 1859 1860 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1861 mutex_unlock(&inode->i_mutex); 1862 return ret; 1863 } 1864 1865 /* 1866 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1867 * queue inode for flush but don't do so immediately, because we can 1868 * get by with fewer MDS messages if we wait for data writeback to 1869 * complete first. 1870 */ 1871 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1872 { 1873 struct ceph_inode_info *ci = ceph_inode(inode); 1874 unsigned flush_tid; 1875 int err = 0; 1876 int dirty; 1877 int wait = wbc->sync_mode == WB_SYNC_ALL; 1878 1879 dout("write_inode %p wait=%d\n", inode, wait); 1880 if (wait) { 1881 dirty = try_flush_caps(inode, NULL, &flush_tid); 1882 if (dirty) 1883 err = wait_event_interruptible(ci->i_cap_wq, 1884 caps_are_flushed(inode, flush_tid)); 1885 } else { 1886 struct ceph_mds_client *mdsc = 1887 ceph_sb_to_client(inode->i_sb)->mdsc; 1888 1889 spin_lock(&ci->i_ceph_lock); 1890 if (__ceph_caps_dirty(ci)) 1891 __cap_delay_requeue_front(mdsc, ci); 1892 spin_unlock(&ci->i_ceph_lock); 1893 } 1894 return err; 1895 } 1896 1897 /* 1898 * After a recovering MDS goes active, we need to resend any caps 1899 * we were flushing. 1900 * 1901 * Caller holds session->s_mutex. 1902 */ 1903 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1904 struct ceph_mds_session *session) 1905 { 1906 struct ceph_cap_snap *capsnap; 1907 1908 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1909 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1910 flushing_item) { 1911 struct ceph_inode_info *ci = capsnap->ci; 1912 struct inode *inode = &ci->vfs_inode; 1913 struct ceph_cap *cap; 1914 1915 spin_lock(&ci->i_ceph_lock); 1916 cap = ci->i_auth_cap; 1917 if (cap && cap->session == session) { 1918 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1919 cap, capsnap); 1920 __ceph_flush_snaps(ci, &session, 1); 1921 } else { 1922 pr_err("%p auth cap %p not mds%d ???\n", inode, 1923 cap, session->s_mds); 1924 } 1925 spin_unlock(&ci->i_ceph_lock); 1926 } 1927 } 1928 1929 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1930 struct ceph_mds_session *session) 1931 { 1932 struct ceph_inode_info *ci; 1933 1934 kick_flushing_capsnaps(mdsc, session); 1935 1936 dout("kick_flushing_caps mds%d\n", session->s_mds); 1937 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1938 struct inode *inode = &ci->vfs_inode; 1939 struct ceph_cap *cap; 1940 int delayed = 0; 1941 1942 spin_lock(&ci->i_ceph_lock); 1943 cap = ci->i_auth_cap; 1944 if (cap && cap->session == session) { 1945 dout("kick_flushing_caps %p cap %p %s\n", inode, 1946 cap, ceph_cap_string(ci->i_flushing_caps)); 1947 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1948 __ceph_caps_used(ci), 1949 __ceph_caps_wanted(ci), 1950 cap->issued | cap->implemented, 1951 ci->i_flushing_caps, NULL); 1952 if (delayed) { 1953 spin_lock(&ci->i_ceph_lock); 1954 __cap_delay_requeue(mdsc, ci); 1955 spin_unlock(&ci->i_ceph_lock); 1956 } 1957 } else { 1958 pr_err("%p auth cap %p not mds%d ???\n", inode, 1959 cap, session->s_mds); 1960 spin_unlock(&ci->i_ceph_lock); 1961 } 1962 } 1963 } 1964 1965 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1966 struct ceph_mds_session *session, 1967 struct inode *inode) 1968 { 1969 struct ceph_inode_info *ci = ceph_inode(inode); 1970 struct ceph_cap *cap; 1971 int delayed = 0; 1972 1973 spin_lock(&ci->i_ceph_lock); 1974 cap = ci->i_auth_cap; 1975 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1976 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1977 __ceph_flush_snaps(ci, &session, 1); 1978 if (ci->i_flushing_caps) { 1979 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1980 __ceph_caps_used(ci), 1981 __ceph_caps_wanted(ci), 1982 cap->issued | cap->implemented, 1983 ci->i_flushing_caps, NULL); 1984 if (delayed) { 1985 spin_lock(&ci->i_ceph_lock); 1986 __cap_delay_requeue(mdsc, ci); 1987 spin_unlock(&ci->i_ceph_lock); 1988 } 1989 } else { 1990 spin_unlock(&ci->i_ceph_lock); 1991 } 1992 } 1993 1994 1995 /* 1996 * Take references to capabilities we hold, so that we don't release 1997 * them to the MDS prematurely. 1998 * 1999 * Protected by i_ceph_lock. 2000 */ 2001 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2002 { 2003 if (got & CEPH_CAP_PIN) 2004 ci->i_pin_ref++; 2005 if (got & CEPH_CAP_FILE_RD) 2006 ci->i_rd_ref++; 2007 if (got & CEPH_CAP_FILE_CACHE) 2008 ci->i_rdcache_ref++; 2009 if (got & CEPH_CAP_FILE_WR) 2010 ci->i_wr_ref++; 2011 if (got & CEPH_CAP_FILE_BUFFER) { 2012 if (ci->i_wb_ref == 0) 2013 ihold(&ci->vfs_inode); 2014 ci->i_wb_ref++; 2015 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2016 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2017 } 2018 } 2019 2020 /* 2021 * Try to grab cap references. Specify those refs we @want, and the 2022 * minimal set we @need. Also include the larger offset we are writing 2023 * to (when applicable), and check against max_size here as well. 2024 * Note that caller is responsible for ensuring max_size increases are 2025 * requested from the MDS. 2026 */ 2027 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2028 int *got, loff_t endoff, int *check_max, int *err) 2029 { 2030 struct inode *inode = &ci->vfs_inode; 2031 int ret = 0; 2032 int have, implemented; 2033 int file_wanted; 2034 2035 dout("get_cap_refs %p need %s want %s\n", inode, 2036 ceph_cap_string(need), ceph_cap_string(want)); 2037 spin_lock(&ci->i_ceph_lock); 2038 2039 /* make sure file is actually open */ 2040 file_wanted = __ceph_caps_file_wanted(ci); 2041 if ((file_wanted & need) == 0) { 2042 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2043 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2044 *err = -EBADF; 2045 ret = 1; 2046 goto out; 2047 } 2048 2049 if (need & CEPH_CAP_FILE_WR) { 2050 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2051 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2052 inode, endoff, ci->i_max_size); 2053 if (endoff > ci->i_wanted_max_size) { 2054 *check_max = 1; 2055 ret = 1; 2056 } 2057 goto out; 2058 } 2059 /* 2060 * If a sync write is in progress, we must wait, so that we 2061 * can get a final snapshot value for size+mtime. 2062 */ 2063 if (__ceph_have_pending_cap_snap(ci)) { 2064 dout("get_cap_refs %p cap_snap_pending\n", inode); 2065 goto out; 2066 } 2067 } 2068 have = __ceph_caps_issued(ci, &implemented); 2069 2070 /* 2071 * disallow writes while a truncate is pending 2072 */ 2073 if (ci->i_truncate_pending) 2074 have &= ~CEPH_CAP_FILE_WR; 2075 2076 if ((have & need) == need) { 2077 /* 2078 * Look at (implemented & ~have & not) so that we keep waiting 2079 * on transition from wanted -> needed caps. This is needed 2080 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2081 * going before a prior buffered writeback happens. 2082 */ 2083 int not = want & ~(have & need); 2084 int revoking = implemented & ~have; 2085 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2086 inode, ceph_cap_string(have), ceph_cap_string(not), 2087 ceph_cap_string(revoking)); 2088 if ((revoking & not) == 0) { 2089 *got = need | (have & want); 2090 __take_cap_refs(ci, *got); 2091 ret = 1; 2092 } 2093 } else { 2094 dout("get_cap_refs %p have %s needed %s\n", inode, 2095 ceph_cap_string(have), ceph_cap_string(need)); 2096 } 2097 out: 2098 spin_unlock(&ci->i_ceph_lock); 2099 dout("get_cap_refs %p ret %d got %s\n", inode, 2100 ret, ceph_cap_string(*got)); 2101 return ret; 2102 } 2103 2104 /* 2105 * Check the offset we are writing up to against our current 2106 * max_size. If necessary, tell the MDS we want to write to 2107 * a larger offset. 2108 */ 2109 static void check_max_size(struct inode *inode, loff_t endoff) 2110 { 2111 struct ceph_inode_info *ci = ceph_inode(inode); 2112 int check = 0; 2113 2114 /* do we need to explicitly request a larger max_size? */ 2115 spin_lock(&ci->i_ceph_lock); 2116 if ((endoff >= ci->i_max_size || 2117 endoff > (inode->i_size << 1)) && 2118 endoff > ci->i_wanted_max_size) { 2119 dout("write %p at large endoff %llu, req max_size\n", 2120 inode, endoff); 2121 ci->i_wanted_max_size = endoff; 2122 check = 1; 2123 } 2124 spin_unlock(&ci->i_ceph_lock); 2125 if (check) 2126 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2127 } 2128 2129 /* 2130 * Wait for caps, and take cap references. If we can't get a WR cap 2131 * due to a small max_size, make sure we check_max_size (and possibly 2132 * ask the mds) so we don't get hung up indefinitely. 2133 */ 2134 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2135 loff_t endoff) 2136 { 2137 int check_max, ret, err; 2138 2139 retry: 2140 if (endoff > 0) 2141 check_max_size(&ci->vfs_inode, endoff); 2142 check_max = 0; 2143 err = 0; 2144 ret = wait_event_interruptible(ci->i_cap_wq, 2145 try_get_cap_refs(ci, need, want, 2146 got, endoff, 2147 &check_max, &err)); 2148 if (err) 2149 ret = err; 2150 if (check_max) 2151 goto retry; 2152 return ret; 2153 } 2154 2155 /* 2156 * Take cap refs. Caller must already know we hold at least one ref 2157 * on the caps in question or we don't know this is safe. 2158 */ 2159 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2160 { 2161 spin_lock(&ci->i_ceph_lock); 2162 __take_cap_refs(ci, caps); 2163 spin_unlock(&ci->i_ceph_lock); 2164 } 2165 2166 /* 2167 * Release cap refs. 2168 * 2169 * If we released the last ref on any given cap, call ceph_check_caps 2170 * to release (or schedule a release). 2171 * 2172 * If we are releasing a WR cap (from a sync write), finalize any affected 2173 * cap_snap, and wake up any waiters. 2174 */ 2175 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2176 { 2177 struct inode *inode = &ci->vfs_inode; 2178 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2179 struct ceph_cap_snap *capsnap; 2180 2181 spin_lock(&ci->i_ceph_lock); 2182 if (had & CEPH_CAP_PIN) 2183 --ci->i_pin_ref; 2184 if (had & CEPH_CAP_FILE_RD) 2185 if (--ci->i_rd_ref == 0) 2186 last++; 2187 if (had & CEPH_CAP_FILE_CACHE) 2188 if (--ci->i_rdcache_ref == 0) 2189 last++; 2190 if (had & CEPH_CAP_FILE_BUFFER) { 2191 if (--ci->i_wb_ref == 0) { 2192 last++; 2193 put++; 2194 } 2195 dout("put_cap_refs %p wb %d -> %d (?)\n", 2196 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2197 } 2198 if (had & CEPH_CAP_FILE_WR) 2199 if (--ci->i_wr_ref == 0) { 2200 last++; 2201 if (!list_empty(&ci->i_cap_snaps)) { 2202 capsnap = list_first_entry(&ci->i_cap_snaps, 2203 struct ceph_cap_snap, 2204 ci_item); 2205 if (capsnap->writing) { 2206 capsnap->writing = 0; 2207 flushsnaps = 2208 __ceph_finish_cap_snap(ci, 2209 capsnap); 2210 wake = 1; 2211 } 2212 } 2213 } 2214 spin_unlock(&ci->i_ceph_lock); 2215 2216 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2217 last ? " last" : "", put ? " put" : ""); 2218 2219 if (last && !flushsnaps) 2220 ceph_check_caps(ci, 0, NULL); 2221 else if (flushsnaps) 2222 ceph_flush_snaps(ci); 2223 if (wake) 2224 wake_up_all(&ci->i_cap_wq); 2225 if (put) 2226 iput(inode); 2227 } 2228 2229 /* 2230 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2231 * context. Adjust per-snap dirty page accounting as appropriate. 2232 * Once all dirty data for a cap_snap is flushed, flush snapped file 2233 * metadata back to the MDS. If we dropped the last ref, call 2234 * ceph_check_caps. 2235 */ 2236 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2237 struct ceph_snap_context *snapc) 2238 { 2239 struct inode *inode = &ci->vfs_inode; 2240 int last = 0; 2241 int complete_capsnap = 0; 2242 int drop_capsnap = 0; 2243 int found = 0; 2244 struct ceph_cap_snap *capsnap = NULL; 2245 2246 spin_lock(&ci->i_ceph_lock); 2247 ci->i_wrbuffer_ref -= nr; 2248 last = !ci->i_wrbuffer_ref; 2249 2250 if (ci->i_head_snapc == snapc) { 2251 ci->i_wrbuffer_ref_head -= nr; 2252 if (ci->i_wrbuffer_ref_head == 0 && 2253 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2254 BUG_ON(!ci->i_head_snapc); 2255 ceph_put_snap_context(ci->i_head_snapc); 2256 ci->i_head_snapc = NULL; 2257 } 2258 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2259 inode, 2260 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2261 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2262 last ? " LAST" : ""); 2263 } else { 2264 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2265 if (capsnap->context == snapc) { 2266 found = 1; 2267 break; 2268 } 2269 } 2270 BUG_ON(!found); 2271 capsnap->dirty_pages -= nr; 2272 if (capsnap->dirty_pages == 0) { 2273 complete_capsnap = 1; 2274 if (capsnap->dirty == 0) 2275 /* cap writeback completed before we created 2276 * the cap_snap; no FLUSHSNAP is needed */ 2277 drop_capsnap = 1; 2278 } 2279 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2280 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2281 inode, capsnap, capsnap->context->seq, 2282 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2283 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2284 last ? " (wrbuffer last)" : "", 2285 complete_capsnap ? " (complete capsnap)" : "", 2286 drop_capsnap ? " (drop capsnap)" : ""); 2287 if (drop_capsnap) { 2288 ceph_put_snap_context(capsnap->context); 2289 list_del(&capsnap->ci_item); 2290 list_del(&capsnap->flushing_item); 2291 ceph_put_cap_snap(capsnap); 2292 } 2293 } 2294 2295 spin_unlock(&ci->i_ceph_lock); 2296 2297 if (last) { 2298 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2299 iput(inode); 2300 } else if (complete_capsnap) { 2301 ceph_flush_snaps(ci); 2302 wake_up_all(&ci->i_cap_wq); 2303 } 2304 if (drop_capsnap) 2305 iput(inode); 2306 } 2307 2308 /* 2309 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2310 * actually be a revocation if it specifies a smaller cap set.) 2311 * 2312 * caller holds s_mutex and i_ceph_lock, we drop both. 2313 * 2314 * return value: 2315 * 0 - ok 2316 * 1 - check_caps on auth cap only (writeback) 2317 * 2 - check_caps (ack revoke) 2318 */ 2319 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2320 struct ceph_mds_session *session, 2321 struct ceph_cap *cap, 2322 struct ceph_buffer *xattr_buf) 2323 __releases(ci->i_ceph_lock) 2324 { 2325 struct ceph_inode_info *ci = ceph_inode(inode); 2326 int mds = session->s_mds; 2327 int seq = le32_to_cpu(grant->seq); 2328 int newcaps = le32_to_cpu(grant->caps); 2329 int issued, implemented, used, wanted, dirty; 2330 u64 size = le64_to_cpu(grant->size); 2331 u64 max_size = le64_to_cpu(grant->max_size); 2332 struct timespec mtime, atime, ctime; 2333 int check_caps = 0; 2334 int wake = 0; 2335 int writeback = 0; 2336 int revoked_rdcache = 0; 2337 int queue_invalidate = 0; 2338 2339 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2340 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2341 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2342 inode->i_size); 2343 2344 /* 2345 * If CACHE is being revoked, and we have no dirty buffers, 2346 * try to invalidate (once). (If there are dirty buffers, we 2347 * will invalidate _after_ writeback.) 2348 */ 2349 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2350 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2351 !ci->i_wrbuffer_ref) { 2352 if (try_nonblocking_invalidate(inode) == 0) { 2353 revoked_rdcache = 1; 2354 } else { 2355 /* there were locked pages.. invalidate later 2356 in a separate thread. */ 2357 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2358 queue_invalidate = 1; 2359 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2360 } 2361 } 2362 } 2363 2364 /* side effects now are allowed */ 2365 2366 issued = __ceph_caps_issued(ci, &implemented); 2367 issued |= implemented | __ceph_caps_dirty(ci); 2368 2369 cap->cap_gen = session->s_cap_gen; 2370 2371 __check_cap_issue(ci, cap, newcaps); 2372 2373 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2374 inode->i_mode = le32_to_cpu(grant->mode); 2375 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2376 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2377 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2378 from_kuid(&init_user_ns, inode->i_uid), 2379 from_kgid(&init_user_ns, inode->i_gid)); 2380 } 2381 2382 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2383 set_nlink(inode, le32_to_cpu(grant->nlink)); 2384 2385 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2386 int len = le32_to_cpu(grant->xattr_len); 2387 u64 version = le64_to_cpu(grant->xattr_version); 2388 2389 if (version > ci->i_xattrs.version) { 2390 dout(" got new xattrs v%llu on %p len %d\n", 2391 version, inode, len); 2392 if (ci->i_xattrs.blob) 2393 ceph_buffer_put(ci->i_xattrs.blob); 2394 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2395 ci->i_xattrs.version = version; 2396 } 2397 } 2398 2399 /* size/ctime/mtime/atime? */ 2400 ceph_fill_file_size(inode, issued, 2401 le32_to_cpu(grant->truncate_seq), 2402 le64_to_cpu(grant->truncate_size), size); 2403 ceph_decode_timespec(&mtime, &grant->mtime); 2404 ceph_decode_timespec(&atime, &grant->atime); 2405 ceph_decode_timespec(&ctime, &grant->ctime); 2406 ceph_fill_file_time(inode, issued, 2407 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2408 &atime); 2409 2410 /* max size increase? */ 2411 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2412 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2413 ci->i_max_size = max_size; 2414 if (max_size >= ci->i_wanted_max_size) { 2415 ci->i_wanted_max_size = 0; /* reset */ 2416 ci->i_requested_max_size = 0; 2417 } 2418 wake = 1; 2419 } 2420 2421 /* check cap bits */ 2422 wanted = __ceph_caps_wanted(ci); 2423 used = __ceph_caps_used(ci); 2424 dirty = __ceph_caps_dirty(ci); 2425 dout(" my wanted = %s, used = %s, dirty %s\n", 2426 ceph_cap_string(wanted), 2427 ceph_cap_string(used), 2428 ceph_cap_string(dirty)); 2429 if (wanted != le32_to_cpu(grant->wanted)) { 2430 dout("mds wanted %s -> %s\n", 2431 ceph_cap_string(le32_to_cpu(grant->wanted)), 2432 ceph_cap_string(wanted)); 2433 /* imported cap may not have correct mds_wanted */ 2434 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2435 check_caps = 1; 2436 } 2437 2438 cap->seq = seq; 2439 2440 /* file layout may have changed */ 2441 ci->i_layout = grant->layout; 2442 2443 /* revocation, grant, or no-op? */ 2444 if (cap->issued & ~newcaps) { 2445 int revoking = cap->issued & ~newcaps; 2446 2447 dout("revocation: %s -> %s (revoking %s)\n", 2448 ceph_cap_string(cap->issued), 2449 ceph_cap_string(newcaps), 2450 ceph_cap_string(revoking)); 2451 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2452 writeback = 1; /* initiate writeback; will delay ack */ 2453 else if (revoking == CEPH_CAP_FILE_CACHE && 2454 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2455 queue_invalidate) 2456 ; /* do nothing yet, invalidation will be queued */ 2457 else if (cap == ci->i_auth_cap) 2458 check_caps = 1; /* check auth cap only */ 2459 else 2460 check_caps = 2; /* check all caps */ 2461 cap->issued = newcaps; 2462 cap->implemented |= newcaps; 2463 } else if (cap->issued == newcaps) { 2464 dout("caps unchanged: %s -> %s\n", 2465 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2466 } else { 2467 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2468 ceph_cap_string(newcaps)); 2469 cap->issued = newcaps; 2470 cap->implemented |= newcaps; /* add bits only, to 2471 * avoid stepping on a 2472 * pending revocation */ 2473 wake = 1; 2474 } 2475 BUG_ON(cap->issued & ~cap->implemented); 2476 2477 spin_unlock(&ci->i_ceph_lock); 2478 if (writeback) 2479 /* 2480 * queue inode for writeback: we can't actually call 2481 * filemap_write_and_wait, etc. from message handler 2482 * context. 2483 */ 2484 ceph_queue_writeback(inode); 2485 if (queue_invalidate) 2486 ceph_queue_invalidate(inode); 2487 if (wake) 2488 wake_up_all(&ci->i_cap_wq); 2489 2490 if (check_caps == 1) 2491 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2492 session); 2493 else if (check_caps == 2) 2494 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2495 else 2496 mutex_unlock(&session->s_mutex); 2497 } 2498 2499 /* 2500 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2501 * MDS has been safely committed. 2502 */ 2503 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2504 struct ceph_mds_caps *m, 2505 struct ceph_mds_session *session, 2506 struct ceph_cap *cap) 2507 __releases(ci->i_ceph_lock) 2508 { 2509 struct ceph_inode_info *ci = ceph_inode(inode); 2510 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2511 unsigned seq = le32_to_cpu(m->seq); 2512 int dirty = le32_to_cpu(m->dirty); 2513 int cleaned = 0; 2514 int drop = 0; 2515 int i; 2516 2517 for (i = 0; i < CEPH_CAP_BITS; i++) 2518 if ((dirty & (1 << i)) && 2519 flush_tid == ci->i_cap_flush_tid[i]) 2520 cleaned |= 1 << i; 2521 2522 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2523 " flushing %s -> %s\n", 2524 inode, session->s_mds, seq, ceph_cap_string(dirty), 2525 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2526 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2527 2528 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2529 goto out; 2530 2531 ci->i_flushing_caps &= ~cleaned; 2532 2533 spin_lock(&mdsc->cap_dirty_lock); 2534 if (ci->i_flushing_caps == 0) { 2535 list_del_init(&ci->i_flushing_item); 2536 if (!list_empty(&session->s_cap_flushing)) 2537 dout(" mds%d still flushing cap on %p\n", 2538 session->s_mds, 2539 &list_entry(session->s_cap_flushing.next, 2540 struct ceph_inode_info, 2541 i_flushing_item)->vfs_inode); 2542 mdsc->num_cap_flushing--; 2543 wake_up_all(&mdsc->cap_flushing_wq); 2544 dout(" inode %p now !flushing\n", inode); 2545 2546 if (ci->i_dirty_caps == 0) { 2547 dout(" inode %p now clean\n", inode); 2548 BUG_ON(!list_empty(&ci->i_dirty_item)); 2549 drop = 1; 2550 if (ci->i_wrbuffer_ref_head == 0) { 2551 BUG_ON(!ci->i_head_snapc); 2552 ceph_put_snap_context(ci->i_head_snapc); 2553 ci->i_head_snapc = NULL; 2554 } 2555 } else { 2556 BUG_ON(list_empty(&ci->i_dirty_item)); 2557 } 2558 } 2559 spin_unlock(&mdsc->cap_dirty_lock); 2560 wake_up_all(&ci->i_cap_wq); 2561 2562 out: 2563 spin_unlock(&ci->i_ceph_lock); 2564 if (drop) 2565 iput(inode); 2566 } 2567 2568 /* 2569 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2570 * throw away our cap_snap. 2571 * 2572 * Caller hold s_mutex. 2573 */ 2574 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2575 struct ceph_mds_caps *m, 2576 struct ceph_mds_session *session) 2577 { 2578 struct ceph_inode_info *ci = ceph_inode(inode); 2579 u64 follows = le64_to_cpu(m->snap_follows); 2580 struct ceph_cap_snap *capsnap; 2581 int drop = 0; 2582 2583 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2584 inode, ci, session->s_mds, follows); 2585 2586 spin_lock(&ci->i_ceph_lock); 2587 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2588 if (capsnap->follows == follows) { 2589 if (capsnap->flush_tid != flush_tid) { 2590 dout(" cap_snap %p follows %lld tid %lld !=" 2591 " %lld\n", capsnap, follows, 2592 flush_tid, capsnap->flush_tid); 2593 break; 2594 } 2595 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2596 dout(" removing %p cap_snap %p follows %lld\n", 2597 inode, capsnap, follows); 2598 ceph_put_snap_context(capsnap->context); 2599 list_del(&capsnap->ci_item); 2600 list_del(&capsnap->flushing_item); 2601 ceph_put_cap_snap(capsnap); 2602 drop = 1; 2603 break; 2604 } else { 2605 dout(" skipping cap_snap %p follows %lld\n", 2606 capsnap, capsnap->follows); 2607 } 2608 } 2609 spin_unlock(&ci->i_ceph_lock); 2610 if (drop) 2611 iput(inode); 2612 } 2613 2614 /* 2615 * Handle TRUNC from MDS, indicating file truncation. 2616 * 2617 * caller hold s_mutex. 2618 */ 2619 static void handle_cap_trunc(struct inode *inode, 2620 struct ceph_mds_caps *trunc, 2621 struct ceph_mds_session *session) 2622 __releases(ci->i_ceph_lock) 2623 { 2624 struct ceph_inode_info *ci = ceph_inode(inode); 2625 int mds = session->s_mds; 2626 int seq = le32_to_cpu(trunc->seq); 2627 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2628 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2629 u64 size = le64_to_cpu(trunc->size); 2630 int implemented = 0; 2631 int dirty = __ceph_caps_dirty(ci); 2632 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2633 int queue_trunc = 0; 2634 2635 issued |= implemented | dirty; 2636 2637 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2638 inode, mds, seq, truncate_size, truncate_seq); 2639 queue_trunc = ceph_fill_file_size(inode, issued, 2640 truncate_seq, truncate_size, size); 2641 spin_unlock(&ci->i_ceph_lock); 2642 2643 if (queue_trunc) 2644 ceph_queue_vmtruncate(inode); 2645 } 2646 2647 /* 2648 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2649 * different one. If we are the most recent migration we've seen (as 2650 * indicated by mseq), make note of the migrating cap bits for the 2651 * duration (until we see the corresponding IMPORT). 2652 * 2653 * caller holds s_mutex 2654 */ 2655 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2656 struct ceph_mds_session *session, 2657 int *open_target_sessions) 2658 { 2659 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2660 struct ceph_inode_info *ci = ceph_inode(inode); 2661 int mds = session->s_mds; 2662 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2663 struct ceph_cap *cap = NULL, *t; 2664 struct rb_node *p; 2665 int remember = 1; 2666 2667 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2668 inode, ci, mds, mseq); 2669 2670 spin_lock(&ci->i_ceph_lock); 2671 2672 /* make sure we haven't seen a higher mseq */ 2673 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2674 t = rb_entry(p, struct ceph_cap, ci_node); 2675 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2676 dout(" higher mseq on cap from mds%d\n", 2677 t->session->s_mds); 2678 remember = 0; 2679 } 2680 if (t->session->s_mds == mds) 2681 cap = t; 2682 } 2683 2684 if (cap) { 2685 if (remember) { 2686 /* make note */ 2687 ci->i_cap_exporting_mds = mds; 2688 ci->i_cap_exporting_mseq = mseq; 2689 ci->i_cap_exporting_issued = cap->issued; 2690 2691 /* 2692 * make sure we have open sessions with all possible 2693 * export targets, so that we get the matching IMPORT 2694 */ 2695 *open_target_sessions = 1; 2696 2697 /* 2698 * we can't flush dirty caps that we've seen the 2699 * EXPORT but no IMPORT for 2700 */ 2701 spin_lock(&mdsc->cap_dirty_lock); 2702 if (!list_empty(&ci->i_dirty_item)) { 2703 dout(" moving %p to cap_dirty_migrating\n", 2704 inode); 2705 list_move(&ci->i_dirty_item, 2706 &mdsc->cap_dirty_migrating); 2707 } 2708 spin_unlock(&mdsc->cap_dirty_lock); 2709 } 2710 __ceph_remove_cap(cap); 2711 } 2712 /* else, we already released it */ 2713 2714 spin_unlock(&ci->i_ceph_lock); 2715 } 2716 2717 /* 2718 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2719 * clean them up. 2720 * 2721 * caller holds s_mutex. 2722 */ 2723 static void handle_cap_import(struct ceph_mds_client *mdsc, 2724 struct inode *inode, struct ceph_mds_caps *im, 2725 struct ceph_mds_session *session, 2726 void *snaptrace, int snaptrace_len) 2727 { 2728 struct ceph_inode_info *ci = ceph_inode(inode); 2729 int mds = session->s_mds; 2730 unsigned issued = le32_to_cpu(im->caps); 2731 unsigned wanted = le32_to_cpu(im->wanted); 2732 unsigned seq = le32_to_cpu(im->seq); 2733 unsigned mseq = le32_to_cpu(im->migrate_seq); 2734 u64 realmino = le64_to_cpu(im->realm); 2735 u64 cap_id = le64_to_cpu(im->cap_id); 2736 2737 if (ci->i_cap_exporting_mds >= 0 && 2738 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2739 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2740 " - cleared exporting from mds%d\n", 2741 inode, ci, mds, mseq, 2742 ci->i_cap_exporting_mds); 2743 ci->i_cap_exporting_issued = 0; 2744 ci->i_cap_exporting_mseq = 0; 2745 ci->i_cap_exporting_mds = -1; 2746 2747 spin_lock(&mdsc->cap_dirty_lock); 2748 if (!list_empty(&ci->i_dirty_item)) { 2749 dout(" moving %p back to cap_dirty\n", inode); 2750 list_move(&ci->i_dirty_item, &mdsc->cap_dirty); 2751 } 2752 spin_unlock(&mdsc->cap_dirty_lock); 2753 } else { 2754 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2755 inode, ci, mds, mseq); 2756 } 2757 2758 down_write(&mdsc->snap_rwsem); 2759 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2760 false); 2761 downgrade_write(&mdsc->snap_rwsem); 2762 ceph_add_cap(inode, session, cap_id, -1, 2763 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2764 NULL /* no caps context */); 2765 kick_flushing_inode_caps(mdsc, session, inode); 2766 up_read(&mdsc->snap_rwsem); 2767 2768 /* make sure we re-request max_size, if necessary */ 2769 spin_lock(&ci->i_ceph_lock); 2770 ci->i_wanted_max_size = 0; /* reset */ 2771 ci->i_requested_max_size = 0; 2772 spin_unlock(&ci->i_ceph_lock); 2773 } 2774 2775 /* 2776 * Handle a caps message from the MDS. 2777 * 2778 * Identify the appropriate session, inode, and call the right handler 2779 * based on the cap op. 2780 */ 2781 void ceph_handle_caps(struct ceph_mds_session *session, 2782 struct ceph_msg *msg) 2783 { 2784 struct ceph_mds_client *mdsc = session->s_mdsc; 2785 struct super_block *sb = mdsc->fsc->sb; 2786 struct inode *inode; 2787 struct ceph_inode_info *ci; 2788 struct ceph_cap *cap; 2789 struct ceph_mds_caps *h; 2790 int mds = session->s_mds; 2791 int op; 2792 u32 seq, mseq; 2793 struct ceph_vino vino; 2794 u64 cap_id; 2795 u64 size, max_size; 2796 u64 tid; 2797 void *snaptrace; 2798 size_t snaptrace_len; 2799 void *flock; 2800 u32 flock_len; 2801 int open_target_sessions = 0; 2802 2803 dout("handle_caps from mds%d\n", mds); 2804 2805 /* decode */ 2806 tid = le64_to_cpu(msg->hdr.tid); 2807 if (msg->front.iov_len < sizeof(*h)) 2808 goto bad; 2809 h = msg->front.iov_base; 2810 op = le32_to_cpu(h->op); 2811 vino.ino = le64_to_cpu(h->ino); 2812 vino.snap = CEPH_NOSNAP; 2813 cap_id = le64_to_cpu(h->cap_id); 2814 seq = le32_to_cpu(h->seq); 2815 mseq = le32_to_cpu(h->migrate_seq); 2816 size = le64_to_cpu(h->size); 2817 max_size = le64_to_cpu(h->max_size); 2818 2819 snaptrace = h + 1; 2820 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2821 2822 if (le16_to_cpu(msg->hdr.version) >= 2) { 2823 void *p, *end; 2824 2825 p = snaptrace + snaptrace_len; 2826 end = msg->front.iov_base + msg->front.iov_len; 2827 ceph_decode_32_safe(&p, end, flock_len, bad); 2828 flock = p; 2829 } else { 2830 flock = NULL; 2831 flock_len = 0; 2832 } 2833 2834 mutex_lock(&session->s_mutex); 2835 session->s_seq++; 2836 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2837 (unsigned)seq); 2838 2839 if (op == CEPH_CAP_OP_IMPORT) 2840 ceph_add_cap_releases(mdsc, session); 2841 2842 /* lookup ino */ 2843 inode = ceph_find_inode(sb, vino); 2844 ci = ceph_inode(inode); 2845 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2846 vino.snap, inode); 2847 if (!inode) { 2848 dout(" i don't have ino %llx\n", vino.ino); 2849 2850 if (op == CEPH_CAP_OP_IMPORT) 2851 __queue_cap_release(session, vino.ino, cap_id, 2852 mseq, seq); 2853 goto flush_cap_releases; 2854 } 2855 2856 /* these will work even if we don't have a cap yet */ 2857 switch (op) { 2858 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2859 handle_cap_flushsnap_ack(inode, tid, h, session); 2860 goto done; 2861 2862 case CEPH_CAP_OP_EXPORT: 2863 handle_cap_export(inode, h, session, &open_target_sessions); 2864 goto done; 2865 2866 case CEPH_CAP_OP_IMPORT: 2867 handle_cap_import(mdsc, inode, h, session, 2868 snaptrace, snaptrace_len); 2869 } 2870 2871 /* the rest require a cap */ 2872 spin_lock(&ci->i_ceph_lock); 2873 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2874 if (!cap) { 2875 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2876 inode, ceph_ino(inode), ceph_snap(inode), mds); 2877 spin_unlock(&ci->i_ceph_lock); 2878 goto flush_cap_releases; 2879 } 2880 2881 /* note that each of these drops i_ceph_lock for us */ 2882 switch (op) { 2883 case CEPH_CAP_OP_REVOKE: 2884 case CEPH_CAP_OP_GRANT: 2885 case CEPH_CAP_OP_IMPORT: 2886 handle_cap_grant(inode, h, session, cap, msg->middle); 2887 goto done_unlocked; 2888 2889 case CEPH_CAP_OP_FLUSH_ACK: 2890 handle_cap_flush_ack(inode, tid, h, session, cap); 2891 break; 2892 2893 case CEPH_CAP_OP_TRUNC: 2894 handle_cap_trunc(inode, h, session); 2895 break; 2896 2897 default: 2898 spin_unlock(&ci->i_ceph_lock); 2899 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2900 ceph_cap_op_name(op)); 2901 } 2902 2903 goto done; 2904 2905 flush_cap_releases: 2906 /* 2907 * send any full release message to try to move things 2908 * along for the mds (who clearly thinks we still have this 2909 * cap). 2910 */ 2911 ceph_add_cap_releases(mdsc, session); 2912 ceph_send_cap_releases(mdsc, session); 2913 2914 done: 2915 mutex_unlock(&session->s_mutex); 2916 done_unlocked: 2917 if (inode) 2918 iput(inode); 2919 if (open_target_sessions) 2920 ceph_mdsc_open_export_target_sessions(mdsc, session); 2921 return; 2922 2923 bad: 2924 pr_err("ceph_handle_caps: corrupt message\n"); 2925 ceph_msg_dump(msg); 2926 return; 2927 } 2928 2929 /* 2930 * Delayed work handler to process end of delayed cap release LRU list. 2931 */ 2932 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2933 { 2934 struct ceph_inode_info *ci; 2935 int flags = CHECK_CAPS_NODELAY; 2936 2937 dout("check_delayed_caps\n"); 2938 while (1) { 2939 spin_lock(&mdsc->cap_delay_lock); 2940 if (list_empty(&mdsc->cap_delay_list)) 2941 break; 2942 ci = list_first_entry(&mdsc->cap_delay_list, 2943 struct ceph_inode_info, 2944 i_cap_delay_list); 2945 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2946 time_before(jiffies, ci->i_hold_caps_max)) 2947 break; 2948 list_del_init(&ci->i_cap_delay_list); 2949 spin_unlock(&mdsc->cap_delay_lock); 2950 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2951 ceph_check_caps(ci, flags, NULL); 2952 } 2953 spin_unlock(&mdsc->cap_delay_lock); 2954 } 2955 2956 /* 2957 * Flush all dirty caps to the mds 2958 */ 2959 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2960 { 2961 struct ceph_inode_info *ci; 2962 struct inode *inode; 2963 2964 dout("flush_dirty_caps\n"); 2965 spin_lock(&mdsc->cap_dirty_lock); 2966 while (!list_empty(&mdsc->cap_dirty)) { 2967 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 2968 i_dirty_item); 2969 inode = &ci->vfs_inode; 2970 ihold(inode); 2971 dout("flush_dirty_caps %p\n", inode); 2972 spin_unlock(&mdsc->cap_dirty_lock); 2973 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 2974 iput(inode); 2975 spin_lock(&mdsc->cap_dirty_lock); 2976 } 2977 spin_unlock(&mdsc->cap_dirty_lock); 2978 dout("flush_dirty_caps done\n"); 2979 } 2980 2981 /* 2982 * Drop open file reference. If we were the last open file, 2983 * we may need to release capabilities to the MDS (or schedule 2984 * their delayed release). 2985 */ 2986 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2987 { 2988 struct inode *inode = &ci->vfs_inode; 2989 int last = 0; 2990 2991 spin_lock(&ci->i_ceph_lock); 2992 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2993 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2994 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2995 if (--ci->i_nr_by_mode[fmode] == 0) 2996 last++; 2997 spin_unlock(&ci->i_ceph_lock); 2998 2999 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3000 ceph_check_caps(ci, 0, NULL); 3001 } 3002 3003 /* 3004 * Helpers for embedding cap and dentry lease releases into mds 3005 * requests. 3006 * 3007 * @force is used by dentry_release (below) to force inclusion of a 3008 * record for the directory inode, even when there aren't any caps to 3009 * drop. 3010 */ 3011 int ceph_encode_inode_release(void **p, struct inode *inode, 3012 int mds, int drop, int unless, int force) 3013 { 3014 struct ceph_inode_info *ci = ceph_inode(inode); 3015 struct ceph_cap *cap; 3016 struct ceph_mds_request_release *rel = *p; 3017 int used, dirty; 3018 int ret = 0; 3019 3020 spin_lock(&ci->i_ceph_lock); 3021 used = __ceph_caps_used(ci); 3022 dirty = __ceph_caps_dirty(ci); 3023 3024 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3025 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3026 ceph_cap_string(unless)); 3027 3028 /* only drop unused, clean caps */ 3029 drop &= ~(used | dirty); 3030 3031 cap = __get_cap_for_mds(ci, mds); 3032 if (cap && __cap_is_valid(cap)) { 3033 if (force || 3034 ((cap->issued & drop) && 3035 (cap->issued & unless) == 0)) { 3036 if ((cap->issued & drop) && 3037 (cap->issued & unless) == 0) { 3038 dout("encode_inode_release %p cap %p %s -> " 3039 "%s\n", inode, cap, 3040 ceph_cap_string(cap->issued), 3041 ceph_cap_string(cap->issued & ~drop)); 3042 cap->issued &= ~drop; 3043 cap->implemented &= ~drop; 3044 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 3045 int wanted = __ceph_caps_wanted(ci); 3046 dout(" wanted %s -> %s (act %s)\n", 3047 ceph_cap_string(cap->mds_wanted), 3048 ceph_cap_string(cap->mds_wanted & 3049 ~wanted), 3050 ceph_cap_string(wanted)); 3051 cap->mds_wanted &= wanted; 3052 } 3053 } else { 3054 dout("encode_inode_release %p cap %p %s" 3055 " (force)\n", inode, cap, 3056 ceph_cap_string(cap->issued)); 3057 } 3058 3059 rel->ino = cpu_to_le64(ceph_ino(inode)); 3060 rel->cap_id = cpu_to_le64(cap->cap_id); 3061 rel->seq = cpu_to_le32(cap->seq); 3062 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3063 rel->mseq = cpu_to_le32(cap->mseq); 3064 rel->caps = cpu_to_le32(cap->issued); 3065 rel->wanted = cpu_to_le32(cap->mds_wanted); 3066 rel->dname_len = 0; 3067 rel->dname_seq = 0; 3068 *p += sizeof(*rel); 3069 ret = 1; 3070 } else { 3071 dout("encode_inode_release %p cap %p %s\n", 3072 inode, cap, ceph_cap_string(cap->issued)); 3073 } 3074 } 3075 spin_unlock(&ci->i_ceph_lock); 3076 return ret; 3077 } 3078 3079 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3080 int mds, int drop, int unless) 3081 { 3082 struct inode *dir = dentry->d_parent->d_inode; 3083 struct ceph_mds_request_release *rel = *p; 3084 struct ceph_dentry_info *di = ceph_dentry(dentry); 3085 int force = 0; 3086 int ret; 3087 3088 /* 3089 * force an record for the directory caps if we have a dentry lease. 3090 * this is racy (can't take i_ceph_lock and d_lock together), but it 3091 * doesn't have to be perfect; the mds will revoke anything we don't 3092 * release. 3093 */ 3094 spin_lock(&dentry->d_lock); 3095 if (di->lease_session && di->lease_session->s_mds == mds) 3096 force = 1; 3097 spin_unlock(&dentry->d_lock); 3098 3099 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3100 3101 spin_lock(&dentry->d_lock); 3102 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3103 dout("encode_dentry_release %p mds%d seq %d\n", 3104 dentry, mds, (int)di->lease_seq); 3105 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3106 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3107 *p += dentry->d_name.len; 3108 rel->dname_seq = cpu_to_le32(di->lease_seq); 3109 __ceph_mdsc_drop_dentry_lease(dentry); 3110 } 3111 spin_unlock(&dentry->d_lock); 3112 return ret; 3113 } 3114