xref: /openbmc/linux/fs/ceph/caps.c (revision 930beb5a)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16 
17 /*
18  * Capability management
19  *
20  * The Ceph metadata servers control client access to inode metadata
21  * and file data by issuing capabilities, granting clients permission
22  * to read and/or write both inode field and file data to OSDs
23  * (storage nodes).  Each capability consists of a set of bits
24  * indicating which operations are allowed.
25  *
26  * If the client holds a *_SHARED cap, the client has a coherent value
27  * that can be safely read from the cached inode.
28  *
29  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30  * client is allowed to change inode attributes (e.g., file size,
31  * mtime), note its dirty state in the ceph_cap, and asynchronously
32  * flush that metadata change to the MDS.
33  *
34  * In the event of a conflicting operation (perhaps by another
35  * client), the MDS will revoke the conflicting client capabilities.
36  *
37  * In order for a client to cache an inode, it must hold a capability
38  * with at least one MDS server.  When inodes are released, release
39  * notifications are batched and periodically sent en masse to the MDS
40  * cluster to release server state.
41  */
42 
43 
44 /*
45  * Generate readable cap strings for debugging output.
46  */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51 
52 static char *gcap_string(char *s, int c)
53 {
54 	if (c & CEPH_CAP_GSHARED)
55 		*s++ = 's';
56 	if (c & CEPH_CAP_GEXCL)
57 		*s++ = 'x';
58 	if (c & CEPH_CAP_GCACHE)
59 		*s++ = 'c';
60 	if (c & CEPH_CAP_GRD)
61 		*s++ = 'r';
62 	if (c & CEPH_CAP_GWR)
63 		*s++ = 'w';
64 	if (c & CEPH_CAP_GBUFFER)
65 		*s++ = 'b';
66 	if (c & CEPH_CAP_GLAZYIO)
67 		*s++ = 'l';
68 	return s;
69 }
70 
71 const char *ceph_cap_string(int caps)
72 {
73 	int i;
74 	char *s;
75 	int c;
76 
77 	spin_lock(&cap_str_lock);
78 	i = last_cap_str++;
79 	if (last_cap_str == MAX_CAP_STR)
80 		last_cap_str = 0;
81 	spin_unlock(&cap_str_lock);
82 
83 	s = cap_str[i];
84 
85 	if (caps & CEPH_CAP_PIN)
86 		*s++ = 'p';
87 
88 	c = (caps >> CEPH_CAP_SAUTH) & 3;
89 	if (c) {
90 		*s++ = 'A';
91 		s = gcap_string(s, c);
92 	}
93 
94 	c = (caps >> CEPH_CAP_SLINK) & 3;
95 	if (c) {
96 		*s++ = 'L';
97 		s = gcap_string(s, c);
98 	}
99 
100 	c = (caps >> CEPH_CAP_SXATTR) & 3;
101 	if (c) {
102 		*s++ = 'X';
103 		s = gcap_string(s, c);
104 	}
105 
106 	c = caps >> CEPH_CAP_SFILE;
107 	if (c) {
108 		*s++ = 'F';
109 		s = gcap_string(s, c);
110 	}
111 
112 	if (s == cap_str[i])
113 		*s++ = '-';
114 	*s = 0;
115 	return cap_str[i];
116 }
117 
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 	INIT_LIST_HEAD(&mdsc->caps_list);
121 	spin_lock_init(&mdsc->caps_list_lock);
122 }
123 
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 	struct ceph_cap *cap;
127 
128 	spin_lock(&mdsc->caps_list_lock);
129 	while (!list_empty(&mdsc->caps_list)) {
130 		cap = list_first_entry(&mdsc->caps_list,
131 				       struct ceph_cap, caps_item);
132 		list_del(&cap->caps_item);
133 		kmem_cache_free(ceph_cap_cachep, cap);
134 	}
135 	mdsc->caps_total_count = 0;
136 	mdsc->caps_avail_count = 0;
137 	mdsc->caps_use_count = 0;
138 	mdsc->caps_reserve_count = 0;
139 	mdsc->caps_min_count = 0;
140 	spin_unlock(&mdsc->caps_list_lock);
141 }
142 
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 	spin_lock(&mdsc->caps_list_lock);
146 	mdsc->caps_min_count += delta;
147 	BUG_ON(mdsc->caps_min_count < 0);
148 	spin_unlock(&mdsc->caps_list_lock);
149 }
150 
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 		      struct ceph_cap_reservation *ctx, int need)
153 {
154 	int i;
155 	struct ceph_cap *cap;
156 	int have;
157 	int alloc = 0;
158 	LIST_HEAD(newcaps);
159 
160 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
161 
162 	/* first reserve any caps that are already allocated */
163 	spin_lock(&mdsc->caps_list_lock);
164 	if (mdsc->caps_avail_count >= need)
165 		have = need;
166 	else
167 		have = mdsc->caps_avail_count;
168 	mdsc->caps_avail_count -= have;
169 	mdsc->caps_reserve_count += have;
170 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 					 mdsc->caps_reserve_count +
172 					 mdsc->caps_avail_count);
173 	spin_unlock(&mdsc->caps_list_lock);
174 
175 	for (i = have; i < need; i++) {
176 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 		if (!cap)
178 			break;
179 		list_add(&cap->caps_item, &newcaps);
180 		alloc++;
181 	}
182 	/* we didn't manage to reserve as much as we needed */
183 	if (have + alloc != need)
184 		pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 			ctx, need, have + alloc);
186 
187 	spin_lock(&mdsc->caps_list_lock);
188 	mdsc->caps_total_count += alloc;
189 	mdsc->caps_reserve_count += alloc;
190 	list_splice(&newcaps, &mdsc->caps_list);
191 
192 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 					 mdsc->caps_reserve_count +
194 					 mdsc->caps_avail_count);
195 	spin_unlock(&mdsc->caps_list_lock);
196 
197 	ctx->count = need;
198 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 	     ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202 
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 			struct ceph_cap_reservation *ctx)
205 {
206 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 	if (ctx->count) {
208 		spin_lock(&mdsc->caps_list_lock);
209 		BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 		mdsc->caps_reserve_count -= ctx->count;
211 		mdsc->caps_avail_count += ctx->count;
212 		ctx->count = 0;
213 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 		     mdsc->caps_total_count, mdsc->caps_use_count,
215 		     mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 		BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 						 mdsc->caps_reserve_count +
218 						 mdsc->caps_avail_count);
219 		spin_unlock(&mdsc->caps_list_lock);
220 	}
221 	return 0;
222 }
223 
224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
225 				struct ceph_cap_reservation *ctx)
226 {
227 	struct ceph_cap *cap = NULL;
228 
229 	/* temporary, until we do something about cap import/export */
230 	if (!ctx) {
231 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 		if (cap) {
233 			spin_lock(&mdsc->caps_list_lock);
234 			mdsc->caps_use_count++;
235 			mdsc->caps_total_count++;
236 			spin_unlock(&mdsc->caps_list_lock);
237 		}
238 		return cap;
239 	}
240 
241 	spin_lock(&mdsc->caps_list_lock);
242 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 	     ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 	BUG_ON(!ctx->count);
246 	BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 	BUG_ON(list_empty(&mdsc->caps_list));
248 
249 	ctx->count--;
250 	mdsc->caps_reserve_count--;
251 	mdsc->caps_use_count++;
252 
253 	cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 	list_del(&cap->caps_item);
255 
256 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 	spin_unlock(&mdsc->caps_list_lock);
259 	return cap;
260 }
261 
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 	spin_lock(&mdsc->caps_list_lock);
265 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 	     cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 	     mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 	mdsc->caps_use_count--;
269 	/*
270 	 * Keep some preallocated caps around (ceph_min_count), to
271 	 * avoid lots of free/alloc churn.
272 	 */
273 	if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 				      mdsc->caps_min_count) {
275 		mdsc->caps_total_count--;
276 		kmem_cache_free(ceph_cap_cachep, cap);
277 	} else {
278 		mdsc->caps_avail_count++;
279 		list_add(&cap->caps_item, &mdsc->caps_list);
280 	}
281 
282 	BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 	       mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 	spin_unlock(&mdsc->caps_list_lock);
285 }
286 
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 			     int *total, int *avail, int *used, int *reserved,
289 			     int *min)
290 {
291 	struct ceph_mds_client *mdsc = fsc->mdsc;
292 
293 	if (total)
294 		*total = mdsc->caps_total_count;
295 	if (avail)
296 		*avail = mdsc->caps_avail_count;
297 	if (used)
298 		*used = mdsc->caps_use_count;
299 	if (reserved)
300 		*reserved = mdsc->caps_reserve_count;
301 	if (min)
302 		*min = mdsc->caps_min_count;
303 }
304 
305 /*
306  * Find ceph_cap for given mds, if any.
307  *
308  * Called with i_ceph_lock held.
309  */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 	struct ceph_cap *cap;
313 	struct rb_node *n = ci->i_caps.rb_node;
314 
315 	while (n) {
316 		cap = rb_entry(n, struct ceph_cap, ci_node);
317 		if (mds < cap->mds)
318 			n = n->rb_left;
319 		else if (mds > cap->mds)
320 			n = n->rb_right;
321 		else
322 			return cap;
323 	}
324 	return NULL;
325 }
326 
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 	struct ceph_cap *cap;
330 
331 	spin_lock(&ci->i_ceph_lock);
332 	cap = __get_cap_for_mds(ci, mds);
333 	spin_unlock(&ci->i_ceph_lock);
334 	return cap;
335 }
336 
337 /*
338  * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339  */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 	struct ceph_cap *cap;
343 	int mds = -1;
344 	struct rb_node *p;
345 
346 	/* prefer mds with WR|BUFFER|EXCL caps */
347 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 		cap = rb_entry(p, struct ceph_cap, ci_node);
349 		mds = cap->mds;
350 		if (cap->issued & (CEPH_CAP_FILE_WR |
351 				   CEPH_CAP_FILE_BUFFER |
352 				   CEPH_CAP_FILE_EXCL))
353 			break;
354 	}
355 	return mds;
356 }
357 
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 	struct ceph_inode_info *ci = ceph_inode(inode);
361 	int mds;
362 	spin_lock(&ci->i_ceph_lock);
363 	mds = __ceph_get_cap_mds(ceph_inode(inode));
364 	spin_unlock(&ci->i_ceph_lock);
365 	return mds;
366 }
367 
368 /*
369  * Called under i_ceph_lock.
370  */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 			      struct ceph_cap *new)
373 {
374 	struct rb_node **p = &ci->i_caps.rb_node;
375 	struct rb_node *parent = NULL;
376 	struct ceph_cap *cap = NULL;
377 
378 	while (*p) {
379 		parent = *p;
380 		cap = rb_entry(parent, struct ceph_cap, ci_node);
381 		if (new->mds < cap->mds)
382 			p = &(*p)->rb_left;
383 		else if (new->mds > cap->mds)
384 			p = &(*p)->rb_right;
385 		else
386 			BUG();
387 	}
388 
389 	rb_link_node(&new->ci_node, parent, p);
390 	rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392 
393 /*
394  * (re)set cap hold timeouts, which control the delayed release
395  * of unused caps back to the MDS.  Should be called on cap use.
396  */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 			       struct ceph_inode_info *ci)
399 {
400 	struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401 
402 	ci->i_hold_caps_min = round_jiffies(jiffies +
403 					    ma->caps_wanted_delay_min * HZ);
404 	ci->i_hold_caps_max = round_jiffies(jiffies +
405 					    ma->caps_wanted_delay_max * HZ);
406 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409 
410 /*
411  * (Re)queue cap at the end of the delayed cap release list.
412  *
413  * If I_FLUSH is set, leave the inode at the front of the list.
414  *
415  * Caller holds i_ceph_lock
416  *    -> we take mdsc->cap_delay_lock
417  */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 				struct ceph_inode_info *ci)
420 {
421 	__cap_set_timeouts(mdsc, ci);
422 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 	     ci->i_ceph_flags, ci->i_hold_caps_max);
424 	if (!mdsc->stopping) {
425 		spin_lock(&mdsc->cap_delay_lock);
426 		if (!list_empty(&ci->i_cap_delay_list)) {
427 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 				goto no_change;
429 			list_del_init(&ci->i_cap_delay_list);
430 		}
431 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 		spin_unlock(&mdsc->cap_delay_lock);
434 	}
435 }
436 
437 /*
438  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
439  * indicating we should send a cap message to flush dirty metadata
440  * asap, and move to the front of the delayed cap list.
441  */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 				      struct ceph_inode_info *ci)
444 {
445 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 	spin_lock(&mdsc->cap_delay_lock);
447 	ci->i_ceph_flags |= CEPH_I_FLUSH;
448 	if (!list_empty(&ci->i_cap_delay_list))
449 		list_del_init(&ci->i_cap_delay_list);
450 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 	spin_unlock(&mdsc->cap_delay_lock);
452 }
453 
454 /*
455  * Cancel delayed work on cap.
456  *
457  * Caller must hold i_ceph_lock.
458  */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 			       struct ceph_inode_info *ci)
461 {
462 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 	if (list_empty(&ci->i_cap_delay_list))
464 		return;
465 	spin_lock(&mdsc->cap_delay_lock);
466 	list_del_init(&ci->i_cap_delay_list);
467 	spin_unlock(&mdsc->cap_delay_lock);
468 }
469 
470 /*
471  * Common issue checks for add_cap, handle_cap_grant.
472  */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 			      unsigned issued)
475 {
476 	unsigned had = __ceph_caps_issued(ci, NULL);
477 
478 	/*
479 	 * Each time we receive FILE_CACHE anew, we increment
480 	 * i_rdcache_gen.
481 	 */
482 	if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 	    (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 		ci->i_rdcache_gen++;
485 	}
486 
487 	/*
488 	 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 	 * don't know what happened to this directory while we didn't
490 	 * have the cap.
491 	 */
492 	if ((issued & CEPH_CAP_FILE_SHARED) &&
493 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
494 		ci->i_shared_gen++;
495 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 			__ceph_dir_clear_complete(ci);
498 		}
499 	}
500 }
501 
502 /*
503  * Add a capability under the given MDS session.
504  *
505  * Caller should hold session snap_rwsem (read) and s_mutex.
506  *
507  * @fmode is the open file mode, if we are opening a file, otherwise
508  * it is < 0.  (This is so we can atomically add the cap and add an
509  * open file reference to it.)
510  */
511 int ceph_add_cap(struct inode *inode,
512 		 struct ceph_mds_session *session, u64 cap_id,
513 		 int fmode, unsigned issued, unsigned wanted,
514 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 		 struct ceph_cap_reservation *caps_reservation)
516 {
517 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 	struct ceph_inode_info *ci = ceph_inode(inode);
519 	struct ceph_cap *new_cap = NULL;
520 	struct ceph_cap *cap;
521 	int mds = session->s_mds;
522 	int actual_wanted;
523 
524 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
525 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
526 
527 	/*
528 	 * If we are opening the file, include file mode wanted bits
529 	 * in wanted.
530 	 */
531 	if (fmode >= 0)
532 		wanted |= ceph_caps_for_mode(fmode);
533 
534 retry:
535 	spin_lock(&ci->i_ceph_lock);
536 	cap = __get_cap_for_mds(ci, mds);
537 	if (!cap) {
538 		if (new_cap) {
539 			cap = new_cap;
540 			new_cap = NULL;
541 		} else {
542 			spin_unlock(&ci->i_ceph_lock);
543 			new_cap = get_cap(mdsc, caps_reservation);
544 			if (new_cap == NULL)
545 				return -ENOMEM;
546 			goto retry;
547 		}
548 
549 		cap->issued = 0;
550 		cap->implemented = 0;
551 		cap->mds = mds;
552 		cap->mds_wanted = 0;
553 		cap->mseq = 0;
554 
555 		cap->ci = ci;
556 		__insert_cap_node(ci, cap);
557 
558 		/* clear out old exporting info?  (i.e. on cap import) */
559 		if (ci->i_cap_exporting_mds == mds) {
560 			ci->i_cap_exporting_issued = 0;
561 			ci->i_cap_exporting_mseq = 0;
562 			ci->i_cap_exporting_mds = -1;
563 		}
564 
565 		/* add to session cap list */
566 		cap->session = session;
567 		spin_lock(&session->s_cap_lock);
568 		list_add_tail(&cap->session_caps, &session->s_caps);
569 		session->s_nr_caps++;
570 		spin_unlock(&session->s_cap_lock);
571 	} else if (new_cap)
572 		ceph_put_cap(mdsc, new_cap);
573 
574 	if (!ci->i_snap_realm) {
575 		/*
576 		 * add this inode to the appropriate snap realm
577 		 */
578 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
579 							       realmino);
580 		if (realm) {
581 			ceph_get_snap_realm(mdsc, realm);
582 			spin_lock(&realm->inodes_with_caps_lock);
583 			ci->i_snap_realm = realm;
584 			list_add(&ci->i_snap_realm_item,
585 				 &realm->inodes_with_caps);
586 			spin_unlock(&realm->inodes_with_caps_lock);
587 		} else {
588 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589 			       realmino);
590 			WARN_ON(!realm);
591 		}
592 	}
593 
594 	__check_cap_issue(ci, cap, issued);
595 
596 	/*
597 	 * If we are issued caps we don't want, or the mds' wanted
598 	 * value appears to be off, queue a check so we'll release
599 	 * later and/or update the mds wanted value.
600 	 */
601 	actual_wanted = __ceph_caps_wanted(ci);
602 	if ((wanted & ~actual_wanted) ||
603 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 		     ceph_cap_string(issued), ceph_cap_string(wanted),
606 		     ceph_cap_string(actual_wanted));
607 		__cap_delay_requeue(mdsc, ci);
608 	}
609 
610 	if (flags & CEPH_CAP_FLAG_AUTH) {
611 		if (ci->i_auth_cap == NULL ||
612 		    ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
613 			ci->i_auth_cap = cap;
614 	} else if (ci->i_auth_cap == cap) {
615 		ci->i_auth_cap = NULL;
616 		spin_lock(&mdsc->cap_dirty_lock);
617 		if (!list_empty(&ci->i_dirty_item)) {
618 			dout(" moving %p to cap_dirty_migrating\n", inode);
619 			list_move(&ci->i_dirty_item,
620 				  &mdsc->cap_dirty_migrating);
621 		}
622 		spin_unlock(&mdsc->cap_dirty_lock);
623 	}
624 
625 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
626 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
627 	     ceph_cap_string(issued|cap->issued), seq, mds);
628 	cap->cap_id = cap_id;
629 	cap->issued = issued;
630 	cap->implemented |= issued;
631 	if (mseq > cap->mseq)
632 		cap->mds_wanted = wanted;
633 	else
634 		cap->mds_wanted |= wanted;
635 	cap->seq = seq;
636 	cap->issue_seq = seq;
637 	cap->mseq = mseq;
638 	cap->cap_gen = session->s_cap_gen;
639 
640 	if (fmode >= 0)
641 		__ceph_get_fmode(ci, fmode);
642 	spin_unlock(&ci->i_ceph_lock);
643 	wake_up_all(&ci->i_cap_wq);
644 	return 0;
645 }
646 
647 /*
648  * Return true if cap has not timed out and belongs to the current
649  * generation of the MDS session (i.e. has not gone 'stale' due to
650  * us losing touch with the mds).
651  */
652 static int __cap_is_valid(struct ceph_cap *cap)
653 {
654 	unsigned long ttl;
655 	u32 gen;
656 
657 	spin_lock(&cap->session->s_gen_ttl_lock);
658 	gen = cap->session->s_cap_gen;
659 	ttl = cap->session->s_cap_ttl;
660 	spin_unlock(&cap->session->s_gen_ttl_lock);
661 
662 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
663 		dout("__cap_is_valid %p cap %p issued %s "
664 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
665 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
666 		return 0;
667 	}
668 
669 	return 1;
670 }
671 
672 /*
673  * Return set of valid cap bits issued to us.  Note that caps time
674  * out, and may be invalidated in bulk if the client session times out
675  * and session->s_cap_gen is bumped.
676  */
677 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
678 {
679 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
680 	struct ceph_cap *cap;
681 	struct rb_node *p;
682 
683 	if (implemented)
684 		*implemented = 0;
685 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
686 		cap = rb_entry(p, struct ceph_cap, ci_node);
687 		if (!__cap_is_valid(cap))
688 			continue;
689 		dout("__ceph_caps_issued %p cap %p issued %s\n",
690 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
691 		have |= cap->issued;
692 		if (implemented)
693 			*implemented |= cap->implemented;
694 	}
695 	/*
696 	 * exclude caps issued by non-auth MDS, but are been revoking
697 	 * by the auth MDS. The non-auth MDS should be revoking/exporting
698 	 * these caps, but the message is delayed.
699 	 */
700 	if (ci->i_auth_cap) {
701 		cap = ci->i_auth_cap;
702 		have &= ~cap->implemented | cap->issued;
703 	}
704 	return have;
705 }
706 
707 /*
708  * Get cap bits issued by caps other than @ocap
709  */
710 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
711 {
712 	int have = ci->i_snap_caps;
713 	struct ceph_cap *cap;
714 	struct rb_node *p;
715 
716 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
717 		cap = rb_entry(p, struct ceph_cap, ci_node);
718 		if (cap == ocap)
719 			continue;
720 		if (!__cap_is_valid(cap))
721 			continue;
722 		have |= cap->issued;
723 	}
724 	return have;
725 }
726 
727 /*
728  * Move a cap to the end of the LRU (oldest caps at list head, newest
729  * at list tail).
730  */
731 static void __touch_cap(struct ceph_cap *cap)
732 {
733 	struct ceph_mds_session *s = cap->session;
734 
735 	spin_lock(&s->s_cap_lock);
736 	if (s->s_cap_iterator == NULL) {
737 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
738 		     s->s_mds);
739 		list_move_tail(&cap->session_caps, &s->s_caps);
740 	} else {
741 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
742 		     &cap->ci->vfs_inode, cap, s->s_mds);
743 	}
744 	spin_unlock(&s->s_cap_lock);
745 }
746 
747 /*
748  * Check if we hold the given mask.  If so, move the cap(s) to the
749  * front of their respective LRUs.  (This is the preferred way for
750  * callers to check for caps they want.)
751  */
752 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
753 {
754 	struct ceph_cap *cap;
755 	struct rb_node *p;
756 	int have = ci->i_snap_caps;
757 
758 	if ((have & mask) == mask) {
759 		dout("__ceph_caps_issued_mask %p snap issued %s"
760 		     " (mask %s)\n", &ci->vfs_inode,
761 		     ceph_cap_string(have),
762 		     ceph_cap_string(mask));
763 		return 1;
764 	}
765 
766 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
767 		cap = rb_entry(p, struct ceph_cap, ci_node);
768 		if (!__cap_is_valid(cap))
769 			continue;
770 		if ((cap->issued & mask) == mask) {
771 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
772 			     " (mask %s)\n", &ci->vfs_inode, cap,
773 			     ceph_cap_string(cap->issued),
774 			     ceph_cap_string(mask));
775 			if (touch)
776 				__touch_cap(cap);
777 			return 1;
778 		}
779 
780 		/* does a combination of caps satisfy mask? */
781 		have |= cap->issued;
782 		if ((have & mask) == mask) {
783 			dout("__ceph_caps_issued_mask %p combo issued %s"
784 			     " (mask %s)\n", &ci->vfs_inode,
785 			     ceph_cap_string(cap->issued),
786 			     ceph_cap_string(mask));
787 			if (touch) {
788 				struct rb_node *q;
789 
790 				/* touch this + preceding caps */
791 				__touch_cap(cap);
792 				for (q = rb_first(&ci->i_caps); q != p;
793 				     q = rb_next(q)) {
794 					cap = rb_entry(q, struct ceph_cap,
795 						       ci_node);
796 					if (!__cap_is_valid(cap))
797 						continue;
798 					__touch_cap(cap);
799 				}
800 			}
801 			return 1;
802 		}
803 	}
804 
805 	return 0;
806 }
807 
808 /*
809  * Return true if mask caps are currently being revoked by an MDS.
810  */
811 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
812 			       struct ceph_cap *ocap, int mask)
813 {
814 	struct ceph_cap *cap;
815 	struct rb_node *p;
816 
817 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
818 		cap = rb_entry(p, struct ceph_cap, ci_node);
819 		if (cap != ocap && __cap_is_valid(cap) &&
820 		    (cap->implemented & ~cap->issued & mask))
821 			return 1;
822 	}
823 	return 0;
824 }
825 
826 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
827 {
828 	struct inode *inode = &ci->vfs_inode;
829 	int ret;
830 
831 	spin_lock(&ci->i_ceph_lock);
832 	ret = __ceph_caps_revoking_other(ci, NULL, mask);
833 	spin_unlock(&ci->i_ceph_lock);
834 	dout("ceph_caps_revoking %p %s = %d\n", inode,
835 	     ceph_cap_string(mask), ret);
836 	return ret;
837 }
838 
839 int __ceph_caps_used(struct ceph_inode_info *ci)
840 {
841 	int used = 0;
842 	if (ci->i_pin_ref)
843 		used |= CEPH_CAP_PIN;
844 	if (ci->i_rd_ref)
845 		used |= CEPH_CAP_FILE_RD;
846 	if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
847 		used |= CEPH_CAP_FILE_CACHE;
848 	if (ci->i_wr_ref)
849 		used |= CEPH_CAP_FILE_WR;
850 	if (ci->i_wb_ref || ci->i_wrbuffer_ref)
851 		used |= CEPH_CAP_FILE_BUFFER;
852 	return used;
853 }
854 
855 /*
856  * wanted, by virtue of open file modes
857  */
858 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
859 {
860 	int want = 0;
861 	int mode;
862 	for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
863 		if (ci->i_nr_by_mode[mode])
864 			want |= ceph_caps_for_mode(mode);
865 	return want;
866 }
867 
868 /*
869  * Return caps we have registered with the MDS(s) as 'wanted'.
870  */
871 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
872 {
873 	struct ceph_cap *cap;
874 	struct rb_node *p;
875 	int mds_wanted = 0;
876 
877 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
878 		cap = rb_entry(p, struct ceph_cap, ci_node);
879 		if (!__cap_is_valid(cap))
880 			continue;
881 		mds_wanted |= cap->mds_wanted;
882 	}
883 	return mds_wanted;
884 }
885 
886 /*
887  * called under i_ceph_lock
888  */
889 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
890 {
891 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
892 }
893 
894 /*
895  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
896  *
897  * caller should hold i_ceph_lock.
898  * caller will not hold session s_mutex if called from destroy_inode.
899  */
900 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
901 {
902 	struct ceph_mds_session *session = cap->session;
903 	struct ceph_inode_info *ci = cap->ci;
904 	struct ceph_mds_client *mdsc =
905 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
906 	int removed = 0;
907 
908 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
909 
910 	/* remove from session list */
911 	spin_lock(&session->s_cap_lock);
912 	/*
913 	 * s_cap_reconnect is protected by s_cap_lock. no one changes
914 	 * s_cap_gen while session is in the reconnect state.
915 	 */
916 	if (queue_release &&
917 	    (!session->s_cap_reconnect ||
918 	     cap->cap_gen == session->s_cap_gen))
919 		__queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
920 				    cap->mseq, cap->issue_seq);
921 
922 	if (session->s_cap_iterator == cap) {
923 		/* not yet, we are iterating over this very cap */
924 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
925 		     cap, cap->session);
926 	} else {
927 		list_del_init(&cap->session_caps);
928 		session->s_nr_caps--;
929 		cap->session = NULL;
930 		removed = 1;
931 	}
932 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
933 	cap->ci = NULL;
934 	spin_unlock(&session->s_cap_lock);
935 
936 	/* remove from inode list */
937 	rb_erase(&cap->ci_node, &ci->i_caps);
938 	if (ci->i_auth_cap == cap)
939 		ci->i_auth_cap = NULL;
940 
941 	if (removed)
942 		ceph_put_cap(mdsc, cap);
943 
944 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
945 		struct ceph_snap_realm *realm = ci->i_snap_realm;
946 		spin_lock(&realm->inodes_with_caps_lock);
947 		list_del_init(&ci->i_snap_realm_item);
948 		ci->i_snap_realm_counter++;
949 		ci->i_snap_realm = NULL;
950 		spin_unlock(&realm->inodes_with_caps_lock);
951 		ceph_put_snap_realm(mdsc, realm);
952 	}
953 	if (!__ceph_is_any_real_caps(ci))
954 		__cap_delay_cancel(mdsc, ci);
955 }
956 
957 /*
958  * Build and send a cap message to the given MDS.
959  *
960  * Caller should be holding s_mutex.
961  */
962 static int send_cap_msg(struct ceph_mds_session *session,
963 			u64 ino, u64 cid, int op,
964 			int caps, int wanted, int dirty,
965 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
966 			u64 size, u64 max_size,
967 			struct timespec *mtime, struct timespec *atime,
968 			u64 time_warp_seq,
969 			kuid_t uid, kgid_t gid, umode_t mode,
970 			u64 xattr_version,
971 			struct ceph_buffer *xattrs_buf,
972 			u64 follows)
973 {
974 	struct ceph_mds_caps *fc;
975 	struct ceph_msg *msg;
976 
977 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
978 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
979 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
980 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
981 	     ceph_cap_string(dirty),
982 	     seq, issue_seq, mseq, follows, size, max_size,
983 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
984 
985 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
986 	if (!msg)
987 		return -ENOMEM;
988 
989 	msg->hdr.tid = cpu_to_le64(flush_tid);
990 
991 	fc = msg->front.iov_base;
992 	memset(fc, 0, sizeof(*fc));
993 
994 	fc->cap_id = cpu_to_le64(cid);
995 	fc->op = cpu_to_le32(op);
996 	fc->seq = cpu_to_le32(seq);
997 	fc->issue_seq = cpu_to_le32(issue_seq);
998 	fc->migrate_seq = cpu_to_le32(mseq);
999 	fc->caps = cpu_to_le32(caps);
1000 	fc->wanted = cpu_to_le32(wanted);
1001 	fc->dirty = cpu_to_le32(dirty);
1002 	fc->ino = cpu_to_le64(ino);
1003 	fc->snap_follows = cpu_to_le64(follows);
1004 
1005 	fc->size = cpu_to_le64(size);
1006 	fc->max_size = cpu_to_le64(max_size);
1007 	if (mtime)
1008 		ceph_encode_timespec(&fc->mtime, mtime);
1009 	if (atime)
1010 		ceph_encode_timespec(&fc->atime, atime);
1011 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1012 
1013 	fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1014 	fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1015 	fc->mode = cpu_to_le32(mode);
1016 
1017 	fc->xattr_version = cpu_to_le64(xattr_version);
1018 	if (xattrs_buf) {
1019 		msg->middle = ceph_buffer_get(xattrs_buf);
1020 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1021 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1022 	}
1023 
1024 	ceph_con_send(&session->s_con, msg);
1025 	return 0;
1026 }
1027 
1028 void __queue_cap_release(struct ceph_mds_session *session,
1029 			 u64 ino, u64 cap_id, u32 migrate_seq,
1030 			 u32 issue_seq)
1031 {
1032 	struct ceph_msg *msg;
1033 	struct ceph_mds_cap_release *head;
1034 	struct ceph_mds_cap_item *item;
1035 
1036 	BUG_ON(!session->s_num_cap_releases);
1037 	msg = list_first_entry(&session->s_cap_releases,
1038 			       struct ceph_msg, list_head);
1039 
1040 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
1041 	     ino, session->s_mds, msg, session->s_num_cap_releases);
1042 
1043 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1044 	head = msg->front.iov_base;
1045 	le32_add_cpu(&head->num, 1);
1046 	item = msg->front.iov_base + msg->front.iov_len;
1047 	item->ino = cpu_to_le64(ino);
1048 	item->cap_id = cpu_to_le64(cap_id);
1049 	item->migrate_seq = cpu_to_le32(migrate_seq);
1050 	item->seq = cpu_to_le32(issue_seq);
1051 
1052 	session->s_num_cap_releases--;
1053 
1054 	msg->front.iov_len += sizeof(*item);
1055 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1056 		dout(" release msg %p full\n", msg);
1057 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1058 	} else {
1059 		dout(" release msg %p at %d/%d (%d)\n", msg,
1060 		     (int)le32_to_cpu(head->num),
1061 		     (int)CEPH_CAPS_PER_RELEASE,
1062 		     (int)msg->front.iov_len);
1063 	}
1064 }
1065 
1066 /*
1067  * Queue cap releases when an inode is dropped from our cache.  Since
1068  * inode is about to be destroyed, there is no need for i_ceph_lock.
1069  */
1070 void ceph_queue_caps_release(struct inode *inode)
1071 {
1072 	struct ceph_inode_info *ci = ceph_inode(inode);
1073 	struct rb_node *p;
1074 
1075 	p = rb_first(&ci->i_caps);
1076 	while (p) {
1077 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1078 		p = rb_next(p);
1079 		__ceph_remove_cap(cap, true);
1080 	}
1081 }
1082 
1083 /*
1084  * Send a cap msg on the given inode.  Update our caps state, then
1085  * drop i_ceph_lock and send the message.
1086  *
1087  * Make note of max_size reported/requested from mds, revoked caps
1088  * that have now been implemented.
1089  *
1090  * Make half-hearted attempt ot to invalidate page cache if we are
1091  * dropping RDCACHE.  Note that this will leave behind locked pages
1092  * that we'll then need to deal with elsewhere.
1093  *
1094  * Return non-zero if delayed release, or we experienced an error
1095  * such that the caller should requeue + retry later.
1096  *
1097  * called with i_ceph_lock, then drops it.
1098  * caller should hold snap_rwsem (read), s_mutex.
1099  */
1100 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1101 		      int op, int used, int want, int retain, int flushing,
1102 		      unsigned *pflush_tid)
1103 	__releases(cap->ci->i_ceph_lock)
1104 {
1105 	struct ceph_inode_info *ci = cap->ci;
1106 	struct inode *inode = &ci->vfs_inode;
1107 	u64 cap_id = cap->cap_id;
1108 	int held, revoking, dropping, keep;
1109 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1110 	u64 size, max_size;
1111 	struct timespec mtime, atime;
1112 	int wake = 0;
1113 	umode_t mode;
1114 	kuid_t uid;
1115 	kgid_t gid;
1116 	struct ceph_mds_session *session;
1117 	u64 xattr_version = 0;
1118 	struct ceph_buffer *xattr_blob = NULL;
1119 	int delayed = 0;
1120 	u64 flush_tid = 0;
1121 	int i;
1122 	int ret;
1123 
1124 	held = cap->issued | cap->implemented;
1125 	revoking = cap->implemented & ~cap->issued;
1126 	retain &= ~revoking;
1127 	dropping = cap->issued & ~retain;
1128 
1129 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1130 	     inode, cap, cap->session,
1131 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1132 	     ceph_cap_string(revoking));
1133 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1134 
1135 	session = cap->session;
1136 
1137 	/* don't release wanted unless we've waited a bit. */
1138 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1139 	    time_before(jiffies, ci->i_hold_caps_min)) {
1140 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1141 		     ceph_cap_string(cap->issued),
1142 		     ceph_cap_string(cap->issued & retain),
1143 		     ceph_cap_string(cap->mds_wanted),
1144 		     ceph_cap_string(want));
1145 		want |= cap->mds_wanted;
1146 		retain |= cap->issued;
1147 		delayed = 1;
1148 	}
1149 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1150 
1151 	cap->issued &= retain;  /* drop bits we don't want */
1152 	if (cap->implemented & ~cap->issued) {
1153 		/*
1154 		 * Wake up any waiters on wanted -> needed transition.
1155 		 * This is due to the weird transition from buffered
1156 		 * to sync IO... we need to flush dirty pages _before_
1157 		 * allowing sync writes to avoid reordering.
1158 		 */
1159 		wake = 1;
1160 	}
1161 	cap->implemented &= cap->issued | used;
1162 	cap->mds_wanted = want;
1163 
1164 	if (flushing) {
1165 		/*
1166 		 * assign a tid for flush operations so we can avoid
1167 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1168 		 * clean type races.  track latest tid for every bit
1169 		 * so we can handle flush AxFw, flush Fw, and have the
1170 		 * first ack clean Ax.
1171 		 */
1172 		flush_tid = ++ci->i_cap_flush_last_tid;
1173 		if (pflush_tid)
1174 			*pflush_tid = flush_tid;
1175 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1176 		for (i = 0; i < CEPH_CAP_BITS; i++)
1177 			if (flushing & (1 << i))
1178 				ci->i_cap_flush_tid[i] = flush_tid;
1179 
1180 		follows = ci->i_head_snapc->seq;
1181 	} else {
1182 		follows = 0;
1183 	}
1184 
1185 	keep = cap->implemented;
1186 	seq = cap->seq;
1187 	issue_seq = cap->issue_seq;
1188 	mseq = cap->mseq;
1189 	size = inode->i_size;
1190 	ci->i_reported_size = size;
1191 	max_size = ci->i_wanted_max_size;
1192 	ci->i_requested_max_size = max_size;
1193 	mtime = inode->i_mtime;
1194 	atime = inode->i_atime;
1195 	time_warp_seq = ci->i_time_warp_seq;
1196 	uid = inode->i_uid;
1197 	gid = inode->i_gid;
1198 	mode = inode->i_mode;
1199 
1200 	if (flushing & CEPH_CAP_XATTR_EXCL) {
1201 		__ceph_build_xattrs_blob(ci);
1202 		xattr_blob = ci->i_xattrs.blob;
1203 		xattr_version = ci->i_xattrs.version;
1204 	}
1205 
1206 	spin_unlock(&ci->i_ceph_lock);
1207 
1208 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1209 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1210 		size, max_size, &mtime, &atime, time_warp_seq,
1211 		uid, gid, mode, xattr_version, xattr_blob,
1212 		follows);
1213 	if (ret < 0) {
1214 		dout("error sending cap msg, must requeue %p\n", inode);
1215 		delayed = 1;
1216 	}
1217 
1218 	if (wake)
1219 		wake_up_all(&ci->i_cap_wq);
1220 
1221 	return delayed;
1222 }
1223 
1224 /*
1225  * When a snapshot is taken, clients accumulate dirty metadata on
1226  * inodes with capabilities in ceph_cap_snaps to describe the file
1227  * state at the time the snapshot was taken.  This must be flushed
1228  * asynchronously back to the MDS once sync writes complete and dirty
1229  * data is written out.
1230  *
1231  * Unless @again is true, skip cap_snaps that were already sent to
1232  * the MDS (i.e., during this session).
1233  *
1234  * Called under i_ceph_lock.  Takes s_mutex as needed.
1235  */
1236 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1237 			struct ceph_mds_session **psession,
1238 			int again)
1239 		__releases(ci->i_ceph_lock)
1240 		__acquires(ci->i_ceph_lock)
1241 {
1242 	struct inode *inode = &ci->vfs_inode;
1243 	int mds;
1244 	struct ceph_cap_snap *capsnap;
1245 	u32 mseq;
1246 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1247 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1248 						    session->s_mutex */
1249 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1250 			     i_cap_snaps list, and skip these entries next time
1251 			     around to avoid an infinite loop */
1252 
1253 	if (psession)
1254 		session = *psession;
1255 
1256 	dout("__flush_snaps %p\n", inode);
1257 retry:
1258 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1259 		/* avoid an infiniute loop after retry */
1260 		if (capsnap->follows < next_follows)
1261 			continue;
1262 		/*
1263 		 * we need to wait for sync writes to complete and for dirty
1264 		 * pages to be written out.
1265 		 */
1266 		if (capsnap->dirty_pages || capsnap->writing)
1267 			break;
1268 
1269 		/*
1270 		 * if cap writeback already occurred, we should have dropped
1271 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1272 		 */
1273 		BUG_ON(capsnap->dirty == 0);
1274 
1275 		/* pick mds, take s_mutex */
1276 		if (ci->i_auth_cap == NULL) {
1277 			dout("no auth cap (migrating?), doing nothing\n");
1278 			goto out;
1279 		}
1280 
1281 		/* only flush each capsnap once */
1282 		if (!again && !list_empty(&capsnap->flushing_item)) {
1283 			dout("already flushed %p, skipping\n", capsnap);
1284 			continue;
1285 		}
1286 
1287 		mds = ci->i_auth_cap->session->s_mds;
1288 		mseq = ci->i_auth_cap->mseq;
1289 
1290 		if (session && session->s_mds != mds) {
1291 			dout("oops, wrong session %p mutex\n", session);
1292 			mutex_unlock(&session->s_mutex);
1293 			ceph_put_mds_session(session);
1294 			session = NULL;
1295 		}
1296 		if (!session) {
1297 			spin_unlock(&ci->i_ceph_lock);
1298 			mutex_lock(&mdsc->mutex);
1299 			session = __ceph_lookup_mds_session(mdsc, mds);
1300 			mutex_unlock(&mdsc->mutex);
1301 			if (session) {
1302 				dout("inverting session/ino locks on %p\n",
1303 				     session);
1304 				mutex_lock(&session->s_mutex);
1305 			}
1306 			/*
1307 			 * if session == NULL, we raced against a cap
1308 			 * deletion or migration.  retry, and we'll
1309 			 * get a better @mds value next time.
1310 			 */
1311 			spin_lock(&ci->i_ceph_lock);
1312 			goto retry;
1313 		}
1314 
1315 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1316 		atomic_inc(&capsnap->nref);
1317 		if (!list_empty(&capsnap->flushing_item))
1318 			list_del_init(&capsnap->flushing_item);
1319 		list_add_tail(&capsnap->flushing_item,
1320 			      &session->s_cap_snaps_flushing);
1321 		spin_unlock(&ci->i_ceph_lock);
1322 
1323 		dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1324 		     inode, capsnap, capsnap->follows, capsnap->flush_tid);
1325 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1326 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1327 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1328 			     capsnap->size, 0,
1329 			     &capsnap->mtime, &capsnap->atime,
1330 			     capsnap->time_warp_seq,
1331 			     capsnap->uid, capsnap->gid, capsnap->mode,
1332 			     capsnap->xattr_version, capsnap->xattr_blob,
1333 			     capsnap->follows);
1334 
1335 		next_follows = capsnap->follows + 1;
1336 		ceph_put_cap_snap(capsnap);
1337 
1338 		spin_lock(&ci->i_ceph_lock);
1339 		goto retry;
1340 	}
1341 
1342 	/* we flushed them all; remove this inode from the queue */
1343 	spin_lock(&mdsc->snap_flush_lock);
1344 	list_del_init(&ci->i_snap_flush_item);
1345 	spin_unlock(&mdsc->snap_flush_lock);
1346 
1347 out:
1348 	if (psession)
1349 		*psession = session;
1350 	else if (session) {
1351 		mutex_unlock(&session->s_mutex);
1352 		ceph_put_mds_session(session);
1353 	}
1354 }
1355 
1356 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1357 {
1358 	spin_lock(&ci->i_ceph_lock);
1359 	__ceph_flush_snaps(ci, NULL, 0);
1360 	spin_unlock(&ci->i_ceph_lock);
1361 }
1362 
1363 /*
1364  * Mark caps dirty.  If inode is newly dirty, return the dirty flags.
1365  * Caller is then responsible for calling __mark_inode_dirty with the
1366  * returned flags value.
1367  */
1368 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1369 {
1370 	struct ceph_mds_client *mdsc =
1371 		ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1372 	struct inode *inode = &ci->vfs_inode;
1373 	int was = ci->i_dirty_caps;
1374 	int dirty = 0;
1375 
1376 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1377 	     ceph_cap_string(mask), ceph_cap_string(was),
1378 	     ceph_cap_string(was | mask));
1379 	ci->i_dirty_caps |= mask;
1380 	if (was == 0) {
1381 		if (!ci->i_head_snapc)
1382 			ci->i_head_snapc = ceph_get_snap_context(
1383 				ci->i_snap_realm->cached_context);
1384 		dout(" inode %p now dirty snapc %p auth cap %p\n",
1385 		     &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1386 		BUG_ON(!list_empty(&ci->i_dirty_item));
1387 		spin_lock(&mdsc->cap_dirty_lock);
1388 		if (ci->i_auth_cap)
1389 			list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1390 		else
1391 			list_add(&ci->i_dirty_item,
1392 				 &mdsc->cap_dirty_migrating);
1393 		spin_unlock(&mdsc->cap_dirty_lock);
1394 		if (ci->i_flushing_caps == 0) {
1395 			ihold(inode);
1396 			dirty |= I_DIRTY_SYNC;
1397 		}
1398 	}
1399 	BUG_ON(list_empty(&ci->i_dirty_item));
1400 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1401 	    (mask & CEPH_CAP_FILE_BUFFER))
1402 		dirty |= I_DIRTY_DATASYNC;
1403 	__cap_delay_requeue(mdsc, ci);
1404 	return dirty;
1405 }
1406 
1407 /*
1408  * Add dirty inode to the flushing list.  Assigned a seq number so we
1409  * can wait for caps to flush without starving.
1410  *
1411  * Called under i_ceph_lock.
1412  */
1413 static int __mark_caps_flushing(struct inode *inode,
1414 				 struct ceph_mds_session *session)
1415 {
1416 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1417 	struct ceph_inode_info *ci = ceph_inode(inode);
1418 	int flushing;
1419 
1420 	BUG_ON(ci->i_dirty_caps == 0);
1421 	BUG_ON(list_empty(&ci->i_dirty_item));
1422 
1423 	flushing = ci->i_dirty_caps;
1424 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1425 	     ceph_cap_string(flushing),
1426 	     ceph_cap_string(ci->i_flushing_caps),
1427 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1428 	ci->i_flushing_caps |= flushing;
1429 	ci->i_dirty_caps = 0;
1430 	dout(" inode %p now !dirty\n", inode);
1431 
1432 	spin_lock(&mdsc->cap_dirty_lock);
1433 	list_del_init(&ci->i_dirty_item);
1434 
1435 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1436 	if (list_empty(&ci->i_flushing_item)) {
1437 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1438 		mdsc->num_cap_flushing++;
1439 		dout(" inode %p now flushing seq %lld\n", inode,
1440 		     ci->i_cap_flush_seq);
1441 	} else {
1442 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1443 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1444 		     ci->i_cap_flush_seq);
1445 	}
1446 	spin_unlock(&mdsc->cap_dirty_lock);
1447 
1448 	return flushing;
1449 }
1450 
1451 /*
1452  * try to invalidate mapping pages without blocking.
1453  */
1454 static int try_nonblocking_invalidate(struct inode *inode)
1455 {
1456 	struct ceph_inode_info *ci = ceph_inode(inode);
1457 	u32 invalidating_gen = ci->i_rdcache_gen;
1458 
1459 	spin_unlock(&ci->i_ceph_lock);
1460 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1461 	spin_lock(&ci->i_ceph_lock);
1462 
1463 	if (inode->i_data.nrpages == 0 &&
1464 	    invalidating_gen == ci->i_rdcache_gen) {
1465 		/* success. */
1466 		dout("try_nonblocking_invalidate %p success\n", inode);
1467 		/* save any racing async invalidate some trouble */
1468 		ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1469 		return 0;
1470 	}
1471 	dout("try_nonblocking_invalidate %p failed\n", inode);
1472 	return -1;
1473 }
1474 
1475 /*
1476  * Swiss army knife function to examine currently used and wanted
1477  * versus held caps.  Release, flush, ack revoked caps to mds as
1478  * appropriate.
1479  *
1480  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1481  *    cap release further.
1482  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1483  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1484  *    further delay.
1485  */
1486 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1487 		     struct ceph_mds_session *session)
1488 {
1489 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1490 	struct ceph_mds_client *mdsc = fsc->mdsc;
1491 	struct inode *inode = &ci->vfs_inode;
1492 	struct ceph_cap *cap;
1493 	int file_wanted, used, cap_used;
1494 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1495 	int issued, implemented, want, retain, revoking, flushing = 0;
1496 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1497 			   to avoid an infinite loop on retry */
1498 	struct rb_node *p;
1499 	int tried_invalidate = 0;
1500 	int delayed = 0, sent = 0, force_requeue = 0, num;
1501 	int queue_invalidate = 0;
1502 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1503 
1504 	/* if we are unmounting, flush any unused caps immediately. */
1505 	if (mdsc->stopping)
1506 		is_delayed = 1;
1507 
1508 	spin_lock(&ci->i_ceph_lock);
1509 
1510 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1511 		flags |= CHECK_CAPS_FLUSH;
1512 
1513 	/* flush snaps first time around only */
1514 	if (!list_empty(&ci->i_cap_snaps))
1515 		__ceph_flush_snaps(ci, &session, 0);
1516 	goto retry_locked;
1517 retry:
1518 	spin_lock(&ci->i_ceph_lock);
1519 retry_locked:
1520 	file_wanted = __ceph_caps_file_wanted(ci);
1521 	used = __ceph_caps_used(ci);
1522 	want = file_wanted | used;
1523 	issued = __ceph_caps_issued(ci, &implemented);
1524 	revoking = implemented & ~issued;
1525 
1526 	retain = want | CEPH_CAP_PIN;
1527 	if (!mdsc->stopping && inode->i_nlink > 0) {
1528 		if (want) {
1529 			retain |= CEPH_CAP_ANY;       /* be greedy */
1530 		} else {
1531 			retain |= CEPH_CAP_ANY_SHARED;
1532 			/*
1533 			 * keep RD only if we didn't have the file open RW,
1534 			 * because then the mds would revoke it anyway to
1535 			 * journal max_size=0.
1536 			 */
1537 			if (ci->i_max_size == 0)
1538 				retain |= CEPH_CAP_ANY_RD;
1539 		}
1540 	}
1541 
1542 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1543 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1544 	     ceph_cap_string(file_wanted),
1545 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1546 	     ceph_cap_string(ci->i_flushing_caps),
1547 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1548 	     ceph_cap_string(retain),
1549 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1550 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1551 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1552 
1553 	/*
1554 	 * If we no longer need to hold onto old our caps, and we may
1555 	 * have cached pages, but don't want them, then try to invalidate.
1556 	 * If we fail, it's because pages are locked.... try again later.
1557 	 */
1558 	if ((!is_delayed || mdsc->stopping) &&
1559 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1560 	    inode->i_data.nrpages &&                 /* have cached pages */
1561 	    (file_wanted == 0 ||                     /* no open files */
1562 	     (revoking & (CEPH_CAP_FILE_CACHE|
1563 			  CEPH_CAP_FILE_LAZYIO))) && /*  or revoking cache */
1564 	    !tried_invalidate) {
1565 		dout("check_caps trying to invalidate on %p\n", inode);
1566 		if (try_nonblocking_invalidate(inode) < 0) {
1567 			if (revoking & (CEPH_CAP_FILE_CACHE|
1568 					CEPH_CAP_FILE_LAZYIO)) {
1569 				dout("check_caps queuing invalidate\n");
1570 				queue_invalidate = 1;
1571 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1572 			} else {
1573 				dout("check_caps failed to invalidate pages\n");
1574 				/* we failed to invalidate pages.  check these
1575 				   caps again later. */
1576 				force_requeue = 1;
1577 				__cap_set_timeouts(mdsc, ci);
1578 			}
1579 		}
1580 		tried_invalidate = 1;
1581 		goto retry_locked;
1582 	}
1583 
1584 	num = 0;
1585 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1586 		cap = rb_entry(p, struct ceph_cap, ci_node);
1587 		num++;
1588 
1589 		/* avoid looping forever */
1590 		if (mds >= cap->mds ||
1591 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1592 			continue;
1593 
1594 		/* NOTE: no side-effects allowed, until we take s_mutex */
1595 
1596 		cap_used = used;
1597 		if (ci->i_auth_cap && cap != ci->i_auth_cap)
1598 			cap_used &= ~ci->i_auth_cap->issued;
1599 
1600 		revoking = cap->implemented & ~cap->issued;
1601 		dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1602 		     cap->mds, cap, ceph_cap_string(cap->issued),
1603 		     ceph_cap_string(cap_used),
1604 		     ceph_cap_string(cap->implemented),
1605 		     ceph_cap_string(revoking));
1606 
1607 		if (cap == ci->i_auth_cap &&
1608 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1609 			/* request larger max_size from MDS? */
1610 			if (ci->i_wanted_max_size > ci->i_max_size &&
1611 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1612 				dout("requesting new max_size\n");
1613 				goto ack;
1614 			}
1615 
1616 			/* approaching file_max? */
1617 			if ((inode->i_size << 1) >= ci->i_max_size &&
1618 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1619 				dout("i_size approaching max_size\n");
1620 				goto ack;
1621 			}
1622 		}
1623 		/* flush anything dirty? */
1624 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1625 		    ci->i_dirty_caps) {
1626 			dout("flushing dirty caps\n");
1627 			goto ack;
1628 		}
1629 
1630 		/* completed revocation? going down and there are no caps? */
1631 		if (revoking && (revoking & cap_used) == 0) {
1632 			dout("completed revocation of %s\n",
1633 			     ceph_cap_string(cap->implemented & ~cap->issued));
1634 			goto ack;
1635 		}
1636 
1637 		/* want more caps from mds? */
1638 		if (want & ~(cap->mds_wanted | cap->issued))
1639 			goto ack;
1640 
1641 		/* things we might delay */
1642 		if ((cap->issued & ~retain) == 0 &&
1643 		    cap->mds_wanted == want)
1644 			continue;     /* nope, all good */
1645 
1646 		if (is_delayed)
1647 			goto ack;
1648 
1649 		/* delay? */
1650 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1651 		    time_before(jiffies, ci->i_hold_caps_max)) {
1652 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1653 			     ceph_cap_string(cap->issued),
1654 			     ceph_cap_string(cap->issued & retain),
1655 			     ceph_cap_string(cap->mds_wanted),
1656 			     ceph_cap_string(want));
1657 			delayed++;
1658 			continue;
1659 		}
1660 
1661 ack:
1662 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1663 			dout(" skipping %p I_NOFLUSH set\n", inode);
1664 			continue;
1665 		}
1666 
1667 		if (session && session != cap->session) {
1668 			dout("oops, wrong session %p mutex\n", session);
1669 			mutex_unlock(&session->s_mutex);
1670 			session = NULL;
1671 		}
1672 		if (!session) {
1673 			session = cap->session;
1674 			if (mutex_trylock(&session->s_mutex) == 0) {
1675 				dout("inverting session/ino locks on %p\n",
1676 				     session);
1677 				spin_unlock(&ci->i_ceph_lock);
1678 				if (took_snap_rwsem) {
1679 					up_read(&mdsc->snap_rwsem);
1680 					took_snap_rwsem = 0;
1681 				}
1682 				mutex_lock(&session->s_mutex);
1683 				goto retry;
1684 			}
1685 		}
1686 		/* take snap_rwsem after session mutex */
1687 		if (!took_snap_rwsem) {
1688 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1689 				dout("inverting snap/in locks on %p\n",
1690 				     inode);
1691 				spin_unlock(&ci->i_ceph_lock);
1692 				down_read(&mdsc->snap_rwsem);
1693 				took_snap_rwsem = 1;
1694 				goto retry;
1695 			}
1696 			took_snap_rwsem = 1;
1697 		}
1698 
1699 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1700 			flushing = __mark_caps_flushing(inode, session);
1701 		else
1702 			flushing = 0;
1703 
1704 		mds = cap->mds;  /* remember mds, so we don't repeat */
1705 		sent++;
1706 
1707 		/* __send_cap drops i_ceph_lock */
1708 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1709 				      want, retain, flushing, NULL);
1710 		goto retry; /* retake i_ceph_lock and restart our cap scan. */
1711 	}
1712 
1713 	/*
1714 	 * Reschedule delayed caps release if we delayed anything,
1715 	 * otherwise cancel.
1716 	 */
1717 	if (delayed && is_delayed)
1718 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1719 	if (!delayed && !is_delayed)
1720 		__cap_delay_cancel(mdsc, ci);
1721 	else if (!is_delayed || force_requeue)
1722 		__cap_delay_requeue(mdsc, ci);
1723 
1724 	spin_unlock(&ci->i_ceph_lock);
1725 
1726 	if (queue_invalidate)
1727 		ceph_queue_invalidate(inode);
1728 
1729 	if (session)
1730 		mutex_unlock(&session->s_mutex);
1731 	if (took_snap_rwsem)
1732 		up_read(&mdsc->snap_rwsem);
1733 }
1734 
1735 /*
1736  * Try to flush dirty caps back to the auth mds.
1737  */
1738 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1739 			  unsigned *flush_tid)
1740 {
1741 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1742 	struct ceph_inode_info *ci = ceph_inode(inode);
1743 	int unlock_session = session ? 0 : 1;
1744 	int flushing = 0;
1745 
1746 retry:
1747 	spin_lock(&ci->i_ceph_lock);
1748 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1749 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1750 		goto out;
1751 	}
1752 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1753 		struct ceph_cap *cap = ci->i_auth_cap;
1754 		int used = __ceph_caps_used(ci);
1755 		int want = __ceph_caps_wanted(ci);
1756 		int delayed;
1757 
1758 		if (!session) {
1759 			spin_unlock(&ci->i_ceph_lock);
1760 			session = cap->session;
1761 			mutex_lock(&session->s_mutex);
1762 			goto retry;
1763 		}
1764 		BUG_ON(session != cap->session);
1765 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1766 			goto out;
1767 
1768 		flushing = __mark_caps_flushing(inode, session);
1769 
1770 		/* __send_cap drops i_ceph_lock */
1771 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1772 				     cap->issued | cap->implemented, flushing,
1773 				     flush_tid);
1774 		if (!delayed)
1775 			goto out_unlocked;
1776 
1777 		spin_lock(&ci->i_ceph_lock);
1778 		__cap_delay_requeue(mdsc, ci);
1779 	}
1780 out:
1781 	spin_unlock(&ci->i_ceph_lock);
1782 out_unlocked:
1783 	if (session && unlock_session)
1784 		mutex_unlock(&session->s_mutex);
1785 	return flushing;
1786 }
1787 
1788 /*
1789  * Return true if we've flushed caps through the given flush_tid.
1790  */
1791 static int caps_are_flushed(struct inode *inode, unsigned tid)
1792 {
1793 	struct ceph_inode_info *ci = ceph_inode(inode);
1794 	int i, ret = 1;
1795 
1796 	spin_lock(&ci->i_ceph_lock);
1797 	for (i = 0; i < CEPH_CAP_BITS; i++)
1798 		if ((ci->i_flushing_caps & (1 << i)) &&
1799 		    ci->i_cap_flush_tid[i] <= tid) {
1800 			/* still flushing this bit */
1801 			ret = 0;
1802 			break;
1803 		}
1804 	spin_unlock(&ci->i_ceph_lock);
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Wait on any unsafe replies for the given inode.  First wait on the
1810  * newest request, and make that the upper bound.  Then, if there are
1811  * more requests, keep waiting on the oldest as long as it is still older
1812  * than the original request.
1813  */
1814 static void sync_write_wait(struct inode *inode)
1815 {
1816 	struct ceph_inode_info *ci = ceph_inode(inode);
1817 	struct list_head *head = &ci->i_unsafe_writes;
1818 	struct ceph_osd_request *req;
1819 	u64 last_tid;
1820 
1821 	spin_lock(&ci->i_unsafe_lock);
1822 	if (list_empty(head))
1823 		goto out;
1824 
1825 	/* set upper bound as _last_ entry in chain */
1826 	req = list_entry(head->prev, struct ceph_osd_request,
1827 			 r_unsafe_item);
1828 	last_tid = req->r_tid;
1829 
1830 	do {
1831 		ceph_osdc_get_request(req);
1832 		spin_unlock(&ci->i_unsafe_lock);
1833 		dout("sync_write_wait on tid %llu (until %llu)\n",
1834 		     req->r_tid, last_tid);
1835 		wait_for_completion(&req->r_safe_completion);
1836 		spin_lock(&ci->i_unsafe_lock);
1837 		ceph_osdc_put_request(req);
1838 
1839 		/*
1840 		 * from here on look at first entry in chain, since we
1841 		 * only want to wait for anything older than last_tid
1842 		 */
1843 		if (list_empty(head))
1844 			break;
1845 		req = list_entry(head->next, struct ceph_osd_request,
1846 				 r_unsafe_item);
1847 	} while (req->r_tid < last_tid);
1848 out:
1849 	spin_unlock(&ci->i_unsafe_lock);
1850 }
1851 
1852 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1853 {
1854 	struct inode *inode = file->f_mapping->host;
1855 	struct ceph_inode_info *ci = ceph_inode(inode);
1856 	unsigned flush_tid;
1857 	int ret;
1858 	int dirty;
1859 
1860 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1861 	sync_write_wait(inode);
1862 
1863 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1864 	if (ret < 0)
1865 		return ret;
1866 	mutex_lock(&inode->i_mutex);
1867 
1868 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1869 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1870 
1871 	/*
1872 	 * only wait on non-file metadata writeback (the mds
1873 	 * can recover size and mtime, so we don't need to
1874 	 * wait for that)
1875 	 */
1876 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1877 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1878 		ret = wait_event_interruptible(ci->i_cap_wq,
1879 				       caps_are_flushed(inode, flush_tid));
1880 	}
1881 
1882 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1883 	mutex_unlock(&inode->i_mutex);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1889  * queue inode for flush but don't do so immediately, because we can
1890  * get by with fewer MDS messages if we wait for data writeback to
1891  * complete first.
1892  */
1893 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1894 {
1895 	struct ceph_inode_info *ci = ceph_inode(inode);
1896 	unsigned flush_tid;
1897 	int err = 0;
1898 	int dirty;
1899 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1900 
1901 	dout("write_inode %p wait=%d\n", inode, wait);
1902 	if (wait) {
1903 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1904 		if (dirty)
1905 			err = wait_event_interruptible(ci->i_cap_wq,
1906 				       caps_are_flushed(inode, flush_tid));
1907 	} else {
1908 		struct ceph_mds_client *mdsc =
1909 			ceph_sb_to_client(inode->i_sb)->mdsc;
1910 
1911 		spin_lock(&ci->i_ceph_lock);
1912 		if (__ceph_caps_dirty(ci))
1913 			__cap_delay_requeue_front(mdsc, ci);
1914 		spin_unlock(&ci->i_ceph_lock);
1915 	}
1916 	return err;
1917 }
1918 
1919 /*
1920  * After a recovering MDS goes active, we need to resend any caps
1921  * we were flushing.
1922  *
1923  * Caller holds session->s_mutex.
1924  */
1925 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1926 				   struct ceph_mds_session *session)
1927 {
1928 	struct ceph_cap_snap *capsnap;
1929 
1930 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1931 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1932 			    flushing_item) {
1933 		struct ceph_inode_info *ci = capsnap->ci;
1934 		struct inode *inode = &ci->vfs_inode;
1935 		struct ceph_cap *cap;
1936 
1937 		spin_lock(&ci->i_ceph_lock);
1938 		cap = ci->i_auth_cap;
1939 		if (cap && cap->session == session) {
1940 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1941 			     cap, capsnap);
1942 			__ceph_flush_snaps(ci, &session, 1);
1943 		} else {
1944 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1945 			       cap, session->s_mds);
1946 		}
1947 		spin_unlock(&ci->i_ceph_lock);
1948 	}
1949 }
1950 
1951 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1952 			     struct ceph_mds_session *session)
1953 {
1954 	struct ceph_inode_info *ci;
1955 
1956 	kick_flushing_capsnaps(mdsc, session);
1957 
1958 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1959 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1960 		struct inode *inode = &ci->vfs_inode;
1961 		struct ceph_cap *cap;
1962 		int delayed = 0;
1963 
1964 		spin_lock(&ci->i_ceph_lock);
1965 		cap = ci->i_auth_cap;
1966 		if (cap && cap->session == session) {
1967 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1968 			     cap, ceph_cap_string(ci->i_flushing_caps));
1969 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1970 					     __ceph_caps_used(ci),
1971 					     __ceph_caps_wanted(ci),
1972 					     cap->issued | cap->implemented,
1973 					     ci->i_flushing_caps, NULL);
1974 			if (delayed) {
1975 				spin_lock(&ci->i_ceph_lock);
1976 				__cap_delay_requeue(mdsc, ci);
1977 				spin_unlock(&ci->i_ceph_lock);
1978 			}
1979 		} else {
1980 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1981 			       cap, session->s_mds);
1982 			spin_unlock(&ci->i_ceph_lock);
1983 		}
1984 	}
1985 }
1986 
1987 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1988 				     struct ceph_mds_session *session,
1989 				     struct inode *inode)
1990 {
1991 	struct ceph_inode_info *ci = ceph_inode(inode);
1992 	struct ceph_cap *cap;
1993 	int delayed = 0;
1994 
1995 	spin_lock(&ci->i_ceph_lock);
1996 	cap = ci->i_auth_cap;
1997 	dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1998 	     ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1999 
2000 	__ceph_flush_snaps(ci, &session, 1);
2001 
2002 	if (ci->i_flushing_caps) {
2003 		spin_lock(&mdsc->cap_dirty_lock);
2004 		list_move_tail(&ci->i_flushing_item,
2005 			       &cap->session->s_cap_flushing);
2006 		spin_unlock(&mdsc->cap_dirty_lock);
2007 
2008 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2009 				     __ceph_caps_used(ci),
2010 				     __ceph_caps_wanted(ci),
2011 				     cap->issued | cap->implemented,
2012 				     ci->i_flushing_caps, NULL);
2013 		if (delayed) {
2014 			spin_lock(&ci->i_ceph_lock);
2015 			__cap_delay_requeue(mdsc, ci);
2016 			spin_unlock(&ci->i_ceph_lock);
2017 		}
2018 	} else {
2019 		spin_unlock(&ci->i_ceph_lock);
2020 	}
2021 }
2022 
2023 
2024 /*
2025  * Take references to capabilities we hold, so that we don't release
2026  * them to the MDS prematurely.
2027  *
2028  * Protected by i_ceph_lock.
2029  */
2030 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2031 {
2032 	if (got & CEPH_CAP_PIN)
2033 		ci->i_pin_ref++;
2034 	if (got & CEPH_CAP_FILE_RD)
2035 		ci->i_rd_ref++;
2036 	if (got & CEPH_CAP_FILE_CACHE)
2037 		ci->i_rdcache_ref++;
2038 	if (got & CEPH_CAP_FILE_WR)
2039 		ci->i_wr_ref++;
2040 	if (got & CEPH_CAP_FILE_BUFFER) {
2041 		if (ci->i_wb_ref == 0)
2042 			ihold(&ci->vfs_inode);
2043 		ci->i_wb_ref++;
2044 		dout("__take_cap_refs %p wb %d -> %d (?)\n",
2045 		     &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2046 	}
2047 }
2048 
2049 /*
2050  * Try to grab cap references.  Specify those refs we @want, and the
2051  * minimal set we @need.  Also include the larger offset we are writing
2052  * to (when applicable), and check against max_size here as well.
2053  * Note that caller is responsible for ensuring max_size increases are
2054  * requested from the MDS.
2055  */
2056 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2057 			    int *got, loff_t endoff, int *check_max, int *err)
2058 {
2059 	struct inode *inode = &ci->vfs_inode;
2060 	int ret = 0;
2061 	int have, implemented;
2062 	int file_wanted;
2063 
2064 	dout("get_cap_refs %p need %s want %s\n", inode,
2065 	     ceph_cap_string(need), ceph_cap_string(want));
2066 	spin_lock(&ci->i_ceph_lock);
2067 
2068 	/* make sure file is actually open */
2069 	file_wanted = __ceph_caps_file_wanted(ci);
2070 	if ((file_wanted & need) == 0) {
2071 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2072 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
2073 		*err = -EBADF;
2074 		ret = 1;
2075 		goto out;
2076 	}
2077 
2078 	/* finish pending truncate */
2079 	while (ci->i_truncate_pending) {
2080 		spin_unlock(&ci->i_ceph_lock);
2081 		__ceph_do_pending_vmtruncate(inode);
2082 		spin_lock(&ci->i_ceph_lock);
2083 	}
2084 
2085 	have = __ceph_caps_issued(ci, &implemented);
2086 
2087 	if (have & need & CEPH_CAP_FILE_WR) {
2088 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2089 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2090 			     inode, endoff, ci->i_max_size);
2091 			if (endoff > ci->i_requested_max_size) {
2092 				*check_max = 1;
2093 				ret = 1;
2094 			}
2095 			goto out;
2096 		}
2097 		/*
2098 		 * If a sync write is in progress, we must wait, so that we
2099 		 * can get a final snapshot value for size+mtime.
2100 		 */
2101 		if (__ceph_have_pending_cap_snap(ci)) {
2102 			dout("get_cap_refs %p cap_snap_pending\n", inode);
2103 			goto out;
2104 		}
2105 	}
2106 
2107 	if ((have & need) == need) {
2108 		/*
2109 		 * Look at (implemented & ~have & not) so that we keep waiting
2110 		 * on transition from wanted -> needed caps.  This is needed
2111 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2112 		 * going before a prior buffered writeback happens.
2113 		 */
2114 		int not = want & ~(have & need);
2115 		int revoking = implemented & ~have;
2116 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2117 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2118 		     ceph_cap_string(revoking));
2119 		if ((revoking & not) == 0) {
2120 			*got = need | (have & want);
2121 			__take_cap_refs(ci, *got);
2122 			ret = 1;
2123 		}
2124 	} else {
2125 		dout("get_cap_refs %p have %s needed %s\n", inode,
2126 		     ceph_cap_string(have), ceph_cap_string(need));
2127 	}
2128 out:
2129 	spin_unlock(&ci->i_ceph_lock);
2130 	dout("get_cap_refs %p ret %d got %s\n", inode,
2131 	     ret, ceph_cap_string(*got));
2132 	return ret;
2133 }
2134 
2135 /*
2136  * Check the offset we are writing up to against our current
2137  * max_size.  If necessary, tell the MDS we want to write to
2138  * a larger offset.
2139  */
2140 static void check_max_size(struct inode *inode, loff_t endoff)
2141 {
2142 	struct ceph_inode_info *ci = ceph_inode(inode);
2143 	int check = 0;
2144 
2145 	/* do we need to explicitly request a larger max_size? */
2146 	spin_lock(&ci->i_ceph_lock);
2147 	if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2148 		dout("write %p at large endoff %llu, req max_size\n",
2149 		     inode, endoff);
2150 		ci->i_wanted_max_size = endoff;
2151 	}
2152 	/* duplicate ceph_check_caps()'s logic */
2153 	if (ci->i_auth_cap &&
2154 	    (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2155 	    ci->i_wanted_max_size > ci->i_max_size &&
2156 	    ci->i_wanted_max_size > ci->i_requested_max_size)
2157 		check = 1;
2158 	spin_unlock(&ci->i_ceph_lock);
2159 	if (check)
2160 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2161 }
2162 
2163 /*
2164  * Wait for caps, and take cap references.  If we can't get a WR cap
2165  * due to a small max_size, make sure we check_max_size (and possibly
2166  * ask the mds) so we don't get hung up indefinitely.
2167  */
2168 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2169 		  loff_t endoff)
2170 {
2171 	int check_max, ret, err;
2172 
2173 retry:
2174 	if (endoff > 0)
2175 		check_max_size(&ci->vfs_inode, endoff);
2176 	check_max = 0;
2177 	err = 0;
2178 	ret = wait_event_interruptible(ci->i_cap_wq,
2179 				       try_get_cap_refs(ci, need, want,
2180 							got, endoff,
2181 							&check_max, &err));
2182 	if (err)
2183 		ret = err;
2184 	if (check_max)
2185 		goto retry;
2186 	return ret;
2187 }
2188 
2189 /*
2190  * Take cap refs.  Caller must already know we hold at least one ref
2191  * on the caps in question or we don't know this is safe.
2192  */
2193 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2194 {
2195 	spin_lock(&ci->i_ceph_lock);
2196 	__take_cap_refs(ci, caps);
2197 	spin_unlock(&ci->i_ceph_lock);
2198 }
2199 
2200 /*
2201  * Release cap refs.
2202  *
2203  * If we released the last ref on any given cap, call ceph_check_caps
2204  * to release (or schedule a release).
2205  *
2206  * If we are releasing a WR cap (from a sync write), finalize any affected
2207  * cap_snap, and wake up any waiters.
2208  */
2209 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2210 {
2211 	struct inode *inode = &ci->vfs_inode;
2212 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2213 	struct ceph_cap_snap *capsnap;
2214 
2215 	spin_lock(&ci->i_ceph_lock);
2216 	if (had & CEPH_CAP_PIN)
2217 		--ci->i_pin_ref;
2218 	if (had & CEPH_CAP_FILE_RD)
2219 		if (--ci->i_rd_ref == 0)
2220 			last++;
2221 	if (had & CEPH_CAP_FILE_CACHE)
2222 		if (--ci->i_rdcache_ref == 0)
2223 			last++;
2224 	if (had & CEPH_CAP_FILE_BUFFER) {
2225 		if (--ci->i_wb_ref == 0) {
2226 			last++;
2227 			put++;
2228 		}
2229 		dout("put_cap_refs %p wb %d -> %d (?)\n",
2230 		     inode, ci->i_wb_ref+1, ci->i_wb_ref);
2231 	}
2232 	if (had & CEPH_CAP_FILE_WR)
2233 		if (--ci->i_wr_ref == 0) {
2234 			last++;
2235 			if (!list_empty(&ci->i_cap_snaps)) {
2236 				capsnap = list_first_entry(&ci->i_cap_snaps,
2237 						     struct ceph_cap_snap,
2238 						     ci_item);
2239 				if (capsnap->writing) {
2240 					capsnap->writing = 0;
2241 					flushsnaps =
2242 						__ceph_finish_cap_snap(ci,
2243 								       capsnap);
2244 					wake = 1;
2245 				}
2246 			}
2247 		}
2248 	spin_unlock(&ci->i_ceph_lock);
2249 
2250 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2251 	     last ? " last" : "", put ? " put" : "");
2252 
2253 	if (last && !flushsnaps)
2254 		ceph_check_caps(ci, 0, NULL);
2255 	else if (flushsnaps)
2256 		ceph_flush_snaps(ci);
2257 	if (wake)
2258 		wake_up_all(&ci->i_cap_wq);
2259 	if (put)
2260 		iput(inode);
2261 }
2262 
2263 /*
2264  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2265  * context.  Adjust per-snap dirty page accounting as appropriate.
2266  * Once all dirty data for a cap_snap is flushed, flush snapped file
2267  * metadata back to the MDS.  If we dropped the last ref, call
2268  * ceph_check_caps.
2269  */
2270 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2271 				struct ceph_snap_context *snapc)
2272 {
2273 	struct inode *inode = &ci->vfs_inode;
2274 	int last = 0;
2275 	int complete_capsnap = 0;
2276 	int drop_capsnap = 0;
2277 	int found = 0;
2278 	struct ceph_cap_snap *capsnap = NULL;
2279 
2280 	spin_lock(&ci->i_ceph_lock);
2281 	ci->i_wrbuffer_ref -= nr;
2282 	last = !ci->i_wrbuffer_ref;
2283 
2284 	if (ci->i_head_snapc == snapc) {
2285 		ci->i_wrbuffer_ref_head -= nr;
2286 		if (ci->i_wrbuffer_ref_head == 0 &&
2287 		    ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2288 			BUG_ON(!ci->i_head_snapc);
2289 			ceph_put_snap_context(ci->i_head_snapc);
2290 			ci->i_head_snapc = NULL;
2291 		}
2292 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2293 		     inode,
2294 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2295 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2296 		     last ? " LAST" : "");
2297 	} else {
2298 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2299 			if (capsnap->context == snapc) {
2300 				found = 1;
2301 				break;
2302 			}
2303 		}
2304 		BUG_ON(!found);
2305 		capsnap->dirty_pages -= nr;
2306 		if (capsnap->dirty_pages == 0) {
2307 			complete_capsnap = 1;
2308 			if (capsnap->dirty == 0)
2309 				/* cap writeback completed before we created
2310 				 * the cap_snap; no FLUSHSNAP is needed */
2311 				drop_capsnap = 1;
2312 		}
2313 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2314 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2315 		     inode, capsnap, capsnap->context->seq,
2316 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2317 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2318 		     last ? " (wrbuffer last)" : "",
2319 		     complete_capsnap ? " (complete capsnap)" : "",
2320 		     drop_capsnap ? " (drop capsnap)" : "");
2321 		if (drop_capsnap) {
2322 			ceph_put_snap_context(capsnap->context);
2323 			list_del(&capsnap->ci_item);
2324 			list_del(&capsnap->flushing_item);
2325 			ceph_put_cap_snap(capsnap);
2326 		}
2327 	}
2328 
2329 	spin_unlock(&ci->i_ceph_lock);
2330 
2331 	if (last) {
2332 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2333 		iput(inode);
2334 	} else if (complete_capsnap) {
2335 		ceph_flush_snaps(ci);
2336 		wake_up_all(&ci->i_cap_wq);
2337 	}
2338 	if (drop_capsnap)
2339 		iput(inode);
2340 }
2341 
2342 /*
2343  * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2344  */
2345 static void invalidate_aliases(struct inode *inode)
2346 {
2347 	struct dentry *dn, *prev = NULL;
2348 
2349 	dout("invalidate_aliases inode %p\n", inode);
2350 	d_prune_aliases(inode);
2351 	/*
2352 	 * For non-directory inode, d_find_alias() only returns
2353 	 * connected dentry. After calling d_invalidate(), the
2354 	 * dentry become disconnected.
2355 	 *
2356 	 * For directory inode, d_find_alias() can return
2357 	 * disconnected dentry. But directory inode should have
2358 	 * one alias at most.
2359 	 */
2360 	while ((dn = d_find_alias(inode))) {
2361 		if (dn == prev) {
2362 			dput(dn);
2363 			break;
2364 		}
2365 		d_invalidate(dn);
2366 		if (prev)
2367 			dput(prev);
2368 		prev = dn;
2369 	}
2370 	if (prev)
2371 		dput(prev);
2372 }
2373 
2374 /*
2375  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2376  * actually be a revocation if it specifies a smaller cap set.)
2377  *
2378  * caller holds s_mutex and i_ceph_lock, we drop both.
2379  *
2380  * return value:
2381  *  0 - ok
2382  *  1 - check_caps on auth cap only (writeback)
2383  *  2 - check_caps (ack revoke)
2384  */
2385 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2386 			     struct ceph_mds_session *session,
2387 			     struct ceph_cap *cap,
2388 			     struct ceph_buffer *xattr_buf)
2389 		__releases(ci->i_ceph_lock)
2390 {
2391 	struct ceph_inode_info *ci = ceph_inode(inode);
2392 	int mds = session->s_mds;
2393 	int seq = le32_to_cpu(grant->seq);
2394 	int newcaps = le32_to_cpu(grant->caps);
2395 	int issued, implemented, used, wanted, dirty;
2396 	u64 size = le64_to_cpu(grant->size);
2397 	u64 max_size = le64_to_cpu(grant->max_size);
2398 	struct timespec mtime, atime, ctime;
2399 	int check_caps = 0;
2400 	int wake = 0;
2401 	int writeback = 0;
2402 	int queue_invalidate = 0;
2403 	int deleted_inode = 0;
2404 	int queue_revalidate = 0;
2405 
2406 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2407 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2408 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2409 		inode->i_size);
2410 
2411 	/*
2412 	 * If CACHE is being revoked, and we have no dirty buffers,
2413 	 * try to invalidate (once).  (If there are dirty buffers, we
2414 	 * will invalidate _after_ writeback.)
2415 	 */
2416 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2417 	    (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2418 	    !ci->i_wrbuffer_ref) {
2419 		if (try_nonblocking_invalidate(inode)) {
2420 			/* there were locked pages.. invalidate later
2421 			   in a separate thread. */
2422 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2423 				queue_invalidate = 1;
2424 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2425 			}
2426 		}
2427 
2428 		ceph_fscache_invalidate(inode);
2429 	}
2430 
2431 	/* side effects now are allowed */
2432 
2433 	issued = __ceph_caps_issued(ci, &implemented);
2434 	issued |= implemented | __ceph_caps_dirty(ci);
2435 
2436 	cap->cap_gen = session->s_cap_gen;
2437 
2438 	__check_cap_issue(ci, cap, newcaps);
2439 
2440 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2441 		inode->i_mode = le32_to_cpu(grant->mode);
2442 		inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2443 		inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2444 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2445 		     from_kuid(&init_user_ns, inode->i_uid),
2446 		     from_kgid(&init_user_ns, inode->i_gid));
2447 	}
2448 
2449 	if ((issued & CEPH_CAP_LINK_EXCL) == 0) {
2450 		set_nlink(inode, le32_to_cpu(grant->nlink));
2451 		if (inode->i_nlink == 0 &&
2452 		    (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2453 			deleted_inode = 1;
2454 	}
2455 
2456 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2457 		int len = le32_to_cpu(grant->xattr_len);
2458 		u64 version = le64_to_cpu(grant->xattr_version);
2459 
2460 		if (version > ci->i_xattrs.version) {
2461 			dout(" got new xattrs v%llu on %p len %d\n",
2462 			     version, inode, len);
2463 			if (ci->i_xattrs.blob)
2464 				ceph_buffer_put(ci->i_xattrs.blob);
2465 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2466 			ci->i_xattrs.version = version;
2467 		}
2468 	}
2469 
2470 	/* Do we need to revalidate our fscache cookie. Don't bother on the
2471 	 * first cache cap as we already validate at cookie creation time. */
2472 	if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2473 		queue_revalidate = 1;
2474 
2475 	/* size/ctime/mtime/atime? */
2476 	ceph_fill_file_size(inode, issued,
2477 			    le32_to_cpu(grant->truncate_seq),
2478 			    le64_to_cpu(grant->truncate_size), size);
2479 	ceph_decode_timespec(&mtime, &grant->mtime);
2480 	ceph_decode_timespec(&atime, &grant->atime);
2481 	ceph_decode_timespec(&ctime, &grant->ctime);
2482 	ceph_fill_file_time(inode, issued,
2483 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2484 			    &atime);
2485 
2486 	/* max size increase? */
2487 	if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2488 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2489 		ci->i_max_size = max_size;
2490 		if (max_size >= ci->i_wanted_max_size) {
2491 			ci->i_wanted_max_size = 0;  /* reset */
2492 			ci->i_requested_max_size = 0;
2493 		}
2494 		wake = 1;
2495 	}
2496 
2497 	/* check cap bits */
2498 	wanted = __ceph_caps_wanted(ci);
2499 	used = __ceph_caps_used(ci);
2500 	dirty = __ceph_caps_dirty(ci);
2501 	dout(" my wanted = %s, used = %s, dirty %s\n",
2502 	     ceph_cap_string(wanted),
2503 	     ceph_cap_string(used),
2504 	     ceph_cap_string(dirty));
2505 	if (wanted != le32_to_cpu(grant->wanted)) {
2506 		dout("mds wanted %s -> %s\n",
2507 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2508 		     ceph_cap_string(wanted));
2509 		/* imported cap may not have correct mds_wanted */
2510 		if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2511 			check_caps = 1;
2512 	}
2513 
2514 	cap->seq = seq;
2515 
2516 	/* file layout may have changed */
2517 	ci->i_layout = grant->layout;
2518 
2519 	/* revocation, grant, or no-op? */
2520 	if (cap->issued & ~newcaps) {
2521 		int revoking = cap->issued & ~newcaps;
2522 
2523 		dout("revocation: %s -> %s (revoking %s)\n",
2524 		     ceph_cap_string(cap->issued),
2525 		     ceph_cap_string(newcaps),
2526 		     ceph_cap_string(revoking));
2527 		if (revoking & used & CEPH_CAP_FILE_BUFFER)
2528 			writeback = 1;  /* initiate writeback; will delay ack */
2529 		else if (revoking == CEPH_CAP_FILE_CACHE &&
2530 			 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2531 			 queue_invalidate)
2532 			; /* do nothing yet, invalidation will be queued */
2533 		else if (cap == ci->i_auth_cap)
2534 			check_caps = 1; /* check auth cap only */
2535 		else
2536 			check_caps = 2; /* check all caps */
2537 		cap->issued = newcaps;
2538 		cap->implemented |= newcaps;
2539 	} else if (cap->issued == newcaps) {
2540 		dout("caps unchanged: %s -> %s\n",
2541 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2542 	} else {
2543 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2544 		     ceph_cap_string(newcaps));
2545 		/* non-auth MDS is revoking the newly grant caps ? */
2546 		if (cap == ci->i_auth_cap &&
2547 		    __ceph_caps_revoking_other(ci, cap, newcaps))
2548 		    check_caps = 2;
2549 
2550 		cap->issued = newcaps;
2551 		cap->implemented |= newcaps; /* add bits only, to
2552 					      * avoid stepping on a
2553 					      * pending revocation */
2554 		wake = 1;
2555 	}
2556 	BUG_ON(cap->issued & ~cap->implemented);
2557 
2558 	spin_unlock(&ci->i_ceph_lock);
2559 
2560 	if (writeback)
2561 		/*
2562 		 * queue inode for writeback: we can't actually call
2563 		 * filemap_write_and_wait, etc. from message handler
2564 		 * context.
2565 		 */
2566 		ceph_queue_writeback(inode);
2567 	if (queue_invalidate)
2568 		ceph_queue_invalidate(inode);
2569 	if (deleted_inode)
2570 		invalidate_aliases(inode);
2571 	if (queue_revalidate)
2572 		ceph_queue_revalidate(inode);
2573 	if (wake)
2574 		wake_up_all(&ci->i_cap_wq);
2575 
2576 	if (check_caps == 1)
2577 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2578 				session);
2579 	else if (check_caps == 2)
2580 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2581 	else
2582 		mutex_unlock(&session->s_mutex);
2583 }
2584 
2585 /*
2586  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2587  * MDS has been safely committed.
2588  */
2589 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2590 				 struct ceph_mds_caps *m,
2591 				 struct ceph_mds_session *session,
2592 				 struct ceph_cap *cap)
2593 	__releases(ci->i_ceph_lock)
2594 {
2595 	struct ceph_inode_info *ci = ceph_inode(inode);
2596 	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2597 	unsigned seq = le32_to_cpu(m->seq);
2598 	int dirty = le32_to_cpu(m->dirty);
2599 	int cleaned = 0;
2600 	int drop = 0;
2601 	int i;
2602 
2603 	for (i = 0; i < CEPH_CAP_BITS; i++)
2604 		if ((dirty & (1 << i)) &&
2605 		    flush_tid == ci->i_cap_flush_tid[i])
2606 			cleaned |= 1 << i;
2607 
2608 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2609 	     " flushing %s -> %s\n",
2610 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2611 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2612 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2613 
2614 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2615 		goto out;
2616 
2617 	ci->i_flushing_caps &= ~cleaned;
2618 
2619 	spin_lock(&mdsc->cap_dirty_lock);
2620 	if (ci->i_flushing_caps == 0) {
2621 		list_del_init(&ci->i_flushing_item);
2622 		if (!list_empty(&session->s_cap_flushing))
2623 			dout(" mds%d still flushing cap on %p\n",
2624 			     session->s_mds,
2625 			     &list_entry(session->s_cap_flushing.next,
2626 					 struct ceph_inode_info,
2627 					 i_flushing_item)->vfs_inode);
2628 		mdsc->num_cap_flushing--;
2629 		wake_up_all(&mdsc->cap_flushing_wq);
2630 		dout(" inode %p now !flushing\n", inode);
2631 
2632 		if (ci->i_dirty_caps == 0) {
2633 			dout(" inode %p now clean\n", inode);
2634 			BUG_ON(!list_empty(&ci->i_dirty_item));
2635 			drop = 1;
2636 			if (ci->i_wrbuffer_ref_head == 0) {
2637 				BUG_ON(!ci->i_head_snapc);
2638 				ceph_put_snap_context(ci->i_head_snapc);
2639 				ci->i_head_snapc = NULL;
2640 			}
2641 		} else {
2642 			BUG_ON(list_empty(&ci->i_dirty_item));
2643 		}
2644 	}
2645 	spin_unlock(&mdsc->cap_dirty_lock);
2646 	wake_up_all(&ci->i_cap_wq);
2647 
2648 out:
2649 	spin_unlock(&ci->i_ceph_lock);
2650 	if (drop)
2651 		iput(inode);
2652 }
2653 
2654 /*
2655  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2656  * throw away our cap_snap.
2657  *
2658  * Caller hold s_mutex.
2659  */
2660 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2661 				     struct ceph_mds_caps *m,
2662 				     struct ceph_mds_session *session)
2663 {
2664 	struct ceph_inode_info *ci = ceph_inode(inode);
2665 	u64 follows = le64_to_cpu(m->snap_follows);
2666 	struct ceph_cap_snap *capsnap;
2667 	int drop = 0;
2668 
2669 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2670 	     inode, ci, session->s_mds, follows);
2671 
2672 	spin_lock(&ci->i_ceph_lock);
2673 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2674 		if (capsnap->follows == follows) {
2675 			if (capsnap->flush_tid != flush_tid) {
2676 				dout(" cap_snap %p follows %lld tid %lld !="
2677 				     " %lld\n", capsnap, follows,
2678 				     flush_tid, capsnap->flush_tid);
2679 				break;
2680 			}
2681 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2682 			dout(" removing %p cap_snap %p follows %lld\n",
2683 			     inode, capsnap, follows);
2684 			ceph_put_snap_context(capsnap->context);
2685 			list_del(&capsnap->ci_item);
2686 			list_del(&capsnap->flushing_item);
2687 			ceph_put_cap_snap(capsnap);
2688 			drop = 1;
2689 			break;
2690 		} else {
2691 			dout(" skipping cap_snap %p follows %lld\n",
2692 			     capsnap, capsnap->follows);
2693 		}
2694 	}
2695 	spin_unlock(&ci->i_ceph_lock);
2696 	if (drop)
2697 		iput(inode);
2698 }
2699 
2700 /*
2701  * Handle TRUNC from MDS, indicating file truncation.
2702  *
2703  * caller hold s_mutex.
2704  */
2705 static void handle_cap_trunc(struct inode *inode,
2706 			     struct ceph_mds_caps *trunc,
2707 			     struct ceph_mds_session *session)
2708 	__releases(ci->i_ceph_lock)
2709 {
2710 	struct ceph_inode_info *ci = ceph_inode(inode);
2711 	int mds = session->s_mds;
2712 	int seq = le32_to_cpu(trunc->seq);
2713 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2714 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2715 	u64 size = le64_to_cpu(trunc->size);
2716 	int implemented = 0;
2717 	int dirty = __ceph_caps_dirty(ci);
2718 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2719 	int queue_trunc = 0;
2720 
2721 	issued |= implemented | dirty;
2722 
2723 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2724 	     inode, mds, seq, truncate_size, truncate_seq);
2725 	queue_trunc = ceph_fill_file_size(inode, issued,
2726 					  truncate_seq, truncate_size, size);
2727 	spin_unlock(&ci->i_ceph_lock);
2728 
2729 	if (queue_trunc) {
2730 		ceph_queue_vmtruncate(inode);
2731 		ceph_fscache_invalidate(inode);
2732 	}
2733 }
2734 
2735 /*
2736  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2737  * different one.  If we are the most recent migration we've seen (as
2738  * indicated by mseq), make note of the migrating cap bits for the
2739  * duration (until we see the corresponding IMPORT).
2740  *
2741  * caller holds s_mutex
2742  */
2743 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2744 			      struct ceph_mds_session *session,
2745 			      int *open_target_sessions)
2746 {
2747 	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2748 	struct ceph_inode_info *ci = ceph_inode(inode);
2749 	int mds = session->s_mds;
2750 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2751 	struct ceph_cap *cap = NULL, *t;
2752 	struct rb_node *p;
2753 	int remember = 1;
2754 
2755 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2756 	     inode, ci, mds, mseq);
2757 
2758 	spin_lock(&ci->i_ceph_lock);
2759 
2760 	/* make sure we haven't seen a higher mseq */
2761 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2762 		t = rb_entry(p, struct ceph_cap, ci_node);
2763 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2764 			dout(" higher mseq on cap from mds%d\n",
2765 			     t->session->s_mds);
2766 			remember = 0;
2767 		}
2768 		if (t->session->s_mds == mds)
2769 			cap = t;
2770 	}
2771 
2772 	if (cap) {
2773 		if (remember) {
2774 			/* make note */
2775 			ci->i_cap_exporting_mds = mds;
2776 			ci->i_cap_exporting_mseq = mseq;
2777 			ci->i_cap_exporting_issued = cap->issued;
2778 
2779 			/*
2780 			 * make sure we have open sessions with all possible
2781 			 * export targets, so that we get the matching IMPORT
2782 			 */
2783 			*open_target_sessions = 1;
2784 
2785 			/*
2786 			 * we can't flush dirty caps that we've seen the
2787 			 * EXPORT but no IMPORT for
2788 			 */
2789 			spin_lock(&mdsc->cap_dirty_lock);
2790 			if (!list_empty(&ci->i_dirty_item)) {
2791 				dout(" moving %p to cap_dirty_migrating\n",
2792 				     inode);
2793 				list_move(&ci->i_dirty_item,
2794 					  &mdsc->cap_dirty_migrating);
2795 			}
2796 			spin_unlock(&mdsc->cap_dirty_lock);
2797 		}
2798 		__ceph_remove_cap(cap, false);
2799 	}
2800 	/* else, we already released it */
2801 
2802 	spin_unlock(&ci->i_ceph_lock);
2803 }
2804 
2805 /*
2806  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2807  * clean them up.
2808  *
2809  * caller holds s_mutex.
2810  */
2811 static void handle_cap_import(struct ceph_mds_client *mdsc,
2812 			      struct inode *inode, struct ceph_mds_caps *im,
2813 			      struct ceph_mds_session *session,
2814 			      void *snaptrace, int snaptrace_len)
2815 {
2816 	struct ceph_inode_info *ci = ceph_inode(inode);
2817 	int mds = session->s_mds;
2818 	unsigned issued = le32_to_cpu(im->caps);
2819 	unsigned wanted = le32_to_cpu(im->wanted);
2820 	unsigned seq = le32_to_cpu(im->seq);
2821 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2822 	u64 realmino = le64_to_cpu(im->realm);
2823 	u64 cap_id = le64_to_cpu(im->cap_id);
2824 
2825 	if (ci->i_cap_exporting_mds >= 0 &&
2826 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2827 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2828 		     " - cleared exporting from mds%d\n",
2829 		     inode, ci, mds, mseq,
2830 		     ci->i_cap_exporting_mds);
2831 		ci->i_cap_exporting_issued = 0;
2832 		ci->i_cap_exporting_mseq = 0;
2833 		ci->i_cap_exporting_mds = -1;
2834 
2835 		spin_lock(&mdsc->cap_dirty_lock);
2836 		if (!list_empty(&ci->i_dirty_item)) {
2837 			dout(" moving %p back to cap_dirty\n", inode);
2838 			list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2839 		}
2840 		spin_unlock(&mdsc->cap_dirty_lock);
2841 	} else {
2842 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2843 		     inode, ci, mds, mseq);
2844 	}
2845 
2846 	down_write(&mdsc->snap_rwsem);
2847 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2848 			       false);
2849 	downgrade_write(&mdsc->snap_rwsem);
2850 	ceph_add_cap(inode, session, cap_id, -1,
2851 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2852 		     NULL /* no caps context */);
2853 	kick_flushing_inode_caps(mdsc, session, inode);
2854 	up_read(&mdsc->snap_rwsem);
2855 
2856 	/* make sure we re-request max_size, if necessary */
2857 	spin_lock(&ci->i_ceph_lock);
2858 	ci->i_wanted_max_size = 0;  /* reset */
2859 	ci->i_requested_max_size = 0;
2860 	spin_unlock(&ci->i_ceph_lock);
2861 }
2862 
2863 /*
2864  * Handle a caps message from the MDS.
2865  *
2866  * Identify the appropriate session, inode, and call the right handler
2867  * based on the cap op.
2868  */
2869 void ceph_handle_caps(struct ceph_mds_session *session,
2870 		      struct ceph_msg *msg)
2871 {
2872 	struct ceph_mds_client *mdsc = session->s_mdsc;
2873 	struct super_block *sb = mdsc->fsc->sb;
2874 	struct inode *inode;
2875 	struct ceph_inode_info *ci;
2876 	struct ceph_cap *cap;
2877 	struct ceph_mds_caps *h;
2878 	int mds = session->s_mds;
2879 	int op;
2880 	u32 seq, mseq;
2881 	struct ceph_vino vino;
2882 	u64 cap_id;
2883 	u64 size, max_size;
2884 	u64 tid;
2885 	void *snaptrace;
2886 	size_t snaptrace_len;
2887 	void *flock;
2888 	u32 flock_len;
2889 	int open_target_sessions = 0;
2890 
2891 	dout("handle_caps from mds%d\n", mds);
2892 
2893 	/* decode */
2894 	tid = le64_to_cpu(msg->hdr.tid);
2895 	if (msg->front.iov_len < sizeof(*h))
2896 		goto bad;
2897 	h = msg->front.iov_base;
2898 	op = le32_to_cpu(h->op);
2899 	vino.ino = le64_to_cpu(h->ino);
2900 	vino.snap = CEPH_NOSNAP;
2901 	cap_id = le64_to_cpu(h->cap_id);
2902 	seq = le32_to_cpu(h->seq);
2903 	mseq = le32_to_cpu(h->migrate_seq);
2904 	size = le64_to_cpu(h->size);
2905 	max_size = le64_to_cpu(h->max_size);
2906 
2907 	snaptrace = h + 1;
2908 	snaptrace_len = le32_to_cpu(h->snap_trace_len);
2909 
2910 	if (le16_to_cpu(msg->hdr.version) >= 2) {
2911 		void *p, *end;
2912 
2913 		p = snaptrace + snaptrace_len;
2914 		end = msg->front.iov_base + msg->front.iov_len;
2915 		ceph_decode_32_safe(&p, end, flock_len, bad);
2916 		flock = p;
2917 	} else {
2918 		flock = NULL;
2919 		flock_len = 0;
2920 	}
2921 
2922 	mutex_lock(&session->s_mutex);
2923 	session->s_seq++;
2924 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2925 	     (unsigned)seq);
2926 
2927 	if (op == CEPH_CAP_OP_IMPORT)
2928 		ceph_add_cap_releases(mdsc, session);
2929 
2930 	/* lookup ino */
2931 	inode = ceph_find_inode(sb, vino);
2932 	ci = ceph_inode(inode);
2933 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2934 	     vino.snap, inode);
2935 	if (!inode) {
2936 		dout(" i don't have ino %llx\n", vino.ino);
2937 
2938 		if (op == CEPH_CAP_OP_IMPORT) {
2939 			spin_lock(&session->s_cap_lock);
2940 			__queue_cap_release(session, vino.ino, cap_id,
2941 					    mseq, seq);
2942 			spin_unlock(&session->s_cap_lock);
2943 		}
2944 		goto flush_cap_releases;
2945 	}
2946 
2947 	/* these will work even if we don't have a cap yet */
2948 	switch (op) {
2949 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2950 		handle_cap_flushsnap_ack(inode, tid, h, session);
2951 		goto done;
2952 
2953 	case CEPH_CAP_OP_EXPORT:
2954 		handle_cap_export(inode, h, session, &open_target_sessions);
2955 		goto done;
2956 
2957 	case CEPH_CAP_OP_IMPORT:
2958 		handle_cap_import(mdsc, inode, h, session,
2959 				  snaptrace, snaptrace_len);
2960 	}
2961 
2962 	/* the rest require a cap */
2963 	spin_lock(&ci->i_ceph_lock);
2964 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2965 	if (!cap) {
2966 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2967 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2968 		spin_unlock(&ci->i_ceph_lock);
2969 		goto flush_cap_releases;
2970 	}
2971 
2972 	/* note that each of these drops i_ceph_lock for us */
2973 	switch (op) {
2974 	case CEPH_CAP_OP_REVOKE:
2975 	case CEPH_CAP_OP_GRANT:
2976 	case CEPH_CAP_OP_IMPORT:
2977 		handle_cap_grant(inode, h, session, cap, msg->middle);
2978 		goto done_unlocked;
2979 
2980 	case CEPH_CAP_OP_FLUSH_ACK:
2981 		handle_cap_flush_ack(inode, tid, h, session, cap);
2982 		break;
2983 
2984 	case CEPH_CAP_OP_TRUNC:
2985 		handle_cap_trunc(inode, h, session);
2986 		break;
2987 
2988 	default:
2989 		spin_unlock(&ci->i_ceph_lock);
2990 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2991 		       ceph_cap_op_name(op));
2992 	}
2993 
2994 	goto done;
2995 
2996 flush_cap_releases:
2997 	/*
2998 	 * send any full release message to try to move things
2999 	 * along for the mds (who clearly thinks we still have this
3000 	 * cap).
3001 	 */
3002 	ceph_add_cap_releases(mdsc, session);
3003 	ceph_send_cap_releases(mdsc, session);
3004 
3005 done:
3006 	mutex_unlock(&session->s_mutex);
3007 done_unlocked:
3008 	if (inode)
3009 		iput(inode);
3010 	if (open_target_sessions)
3011 		ceph_mdsc_open_export_target_sessions(mdsc, session);
3012 	return;
3013 
3014 bad:
3015 	pr_err("ceph_handle_caps: corrupt message\n");
3016 	ceph_msg_dump(msg);
3017 	return;
3018 }
3019 
3020 /*
3021  * Delayed work handler to process end of delayed cap release LRU list.
3022  */
3023 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3024 {
3025 	struct ceph_inode_info *ci;
3026 	int flags = CHECK_CAPS_NODELAY;
3027 
3028 	dout("check_delayed_caps\n");
3029 	while (1) {
3030 		spin_lock(&mdsc->cap_delay_lock);
3031 		if (list_empty(&mdsc->cap_delay_list))
3032 			break;
3033 		ci = list_first_entry(&mdsc->cap_delay_list,
3034 				      struct ceph_inode_info,
3035 				      i_cap_delay_list);
3036 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3037 		    time_before(jiffies, ci->i_hold_caps_max))
3038 			break;
3039 		list_del_init(&ci->i_cap_delay_list);
3040 		spin_unlock(&mdsc->cap_delay_lock);
3041 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3042 		ceph_check_caps(ci, flags, NULL);
3043 	}
3044 	spin_unlock(&mdsc->cap_delay_lock);
3045 }
3046 
3047 /*
3048  * Flush all dirty caps to the mds
3049  */
3050 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3051 {
3052 	struct ceph_inode_info *ci;
3053 	struct inode *inode;
3054 
3055 	dout("flush_dirty_caps\n");
3056 	spin_lock(&mdsc->cap_dirty_lock);
3057 	while (!list_empty(&mdsc->cap_dirty)) {
3058 		ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3059 				      i_dirty_item);
3060 		inode = &ci->vfs_inode;
3061 		ihold(inode);
3062 		dout("flush_dirty_caps %p\n", inode);
3063 		spin_unlock(&mdsc->cap_dirty_lock);
3064 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3065 		iput(inode);
3066 		spin_lock(&mdsc->cap_dirty_lock);
3067 	}
3068 	spin_unlock(&mdsc->cap_dirty_lock);
3069 	dout("flush_dirty_caps done\n");
3070 }
3071 
3072 /*
3073  * Drop open file reference.  If we were the last open file,
3074  * we may need to release capabilities to the MDS (or schedule
3075  * their delayed release).
3076  */
3077 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3078 {
3079 	struct inode *inode = &ci->vfs_inode;
3080 	int last = 0;
3081 
3082 	spin_lock(&ci->i_ceph_lock);
3083 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3084 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3085 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3086 	if (--ci->i_nr_by_mode[fmode] == 0)
3087 		last++;
3088 	spin_unlock(&ci->i_ceph_lock);
3089 
3090 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
3091 		ceph_check_caps(ci, 0, NULL);
3092 }
3093 
3094 /*
3095  * Helpers for embedding cap and dentry lease releases into mds
3096  * requests.
3097  *
3098  * @force is used by dentry_release (below) to force inclusion of a
3099  * record for the directory inode, even when there aren't any caps to
3100  * drop.
3101  */
3102 int ceph_encode_inode_release(void **p, struct inode *inode,
3103 			      int mds, int drop, int unless, int force)
3104 {
3105 	struct ceph_inode_info *ci = ceph_inode(inode);
3106 	struct ceph_cap *cap;
3107 	struct ceph_mds_request_release *rel = *p;
3108 	int used, dirty;
3109 	int ret = 0;
3110 
3111 	spin_lock(&ci->i_ceph_lock);
3112 	used = __ceph_caps_used(ci);
3113 	dirty = __ceph_caps_dirty(ci);
3114 
3115 	dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3116 	     inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3117 	     ceph_cap_string(unless));
3118 
3119 	/* only drop unused, clean caps */
3120 	drop &= ~(used | dirty);
3121 
3122 	cap = __get_cap_for_mds(ci, mds);
3123 	if (cap && __cap_is_valid(cap)) {
3124 		if (force ||
3125 		    ((cap->issued & drop) &&
3126 		     (cap->issued & unless) == 0)) {
3127 			if ((cap->issued & drop) &&
3128 			    (cap->issued & unless) == 0) {
3129 				int wanted = __ceph_caps_wanted(ci);
3130 				if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3131 					wanted |= cap->mds_wanted;
3132 				dout("encode_inode_release %p cap %p "
3133 				     "%s -> %s, wanted %s -> %s\n", inode, cap,
3134 				     ceph_cap_string(cap->issued),
3135 				     ceph_cap_string(cap->issued & ~drop),
3136 				     ceph_cap_string(cap->mds_wanted),
3137 				     ceph_cap_string(wanted));
3138 
3139 				cap->issued &= ~drop;
3140 				cap->implemented &= ~drop;
3141 				cap->mds_wanted = wanted;
3142 			} else {
3143 				dout("encode_inode_release %p cap %p %s"
3144 				     " (force)\n", inode, cap,
3145 				     ceph_cap_string(cap->issued));
3146 			}
3147 
3148 			rel->ino = cpu_to_le64(ceph_ino(inode));
3149 			rel->cap_id = cpu_to_le64(cap->cap_id);
3150 			rel->seq = cpu_to_le32(cap->seq);
3151 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
3152 			rel->mseq = cpu_to_le32(cap->mseq);
3153 			rel->caps = cpu_to_le32(cap->issued);
3154 			rel->wanted = cpu_to_le32(cap->mds_wanted);
3155 			rel->dname_len = 0;
3156 			rel->dname_seq = 0;
3157 			*p += sizeof(*rel);
3158 			ret = 1;
3159 		} else {
3160 			dout("encode_inode_release %p cap %p %s\n",
3161 			     inode, cap, ceph_cap_string(cap->issued));
3162 		}
3163 	}
3164 	spin_unlock(&ci->i_ceph_lock);
3165 	return ret;
3166 }
3167 
3168 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3169 			       int mds, int drop, int unless)
3170 {
3171 	struct inode *dir = dentry->d_parent->d_inode;
3172 	struct ceph_mds_request_release *rel = *p;
3173 	struct ceph_dentry_info *di = ceph_dentry(dentry);
3174 	int force = 0;
3175 	int ret;
3176 
3177 	/*
3178 	 * force an record for the directory caps if we have a dentry lease.
3179 	 * this is racy (can't take i_ceph_lock and d_lock together), but it
3180 	 * doesn't have to be perfect; the mds will revoke anything we don't
3181 	 * release.
3182 	 */
3183 	spin_lock(&dentry->d_lock);
3184 	if (di->lease_session && di->lease_session->s_mds == mds)
3185 		force = 1;
3186 	spin_unlock(&dentry->d_lock);
3187 
3188 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3189 
3190 	spin_lock(&dentry->d_lock);
3191 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3192 		dout("encode_dentry_release %p mds%d seq %d\n",
3193 		     dentry, mds, (int)di->lease_seq);
3194 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
3195 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3196 		*p += dentry->d_name.len;
3197 		rel->dname_seq = cpu_to_le32(di->lease_seq);
3198 		__ceph_mdsc_drop_dentry_lease(dentry);
3199 	}
3200 	spin_unlock(&dentry->d_lock);
3201 	return ret;
3202 }
3203