1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 int ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap_reservation *caps_reservation) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *new_cap = NULL; 520 struct ceph_cap *cap; 521 int mds = session->s_mds; 522 int actual_wanted; 523 524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 525 session->s_mds, cap_id, ceph_cap_string(issued), seq); 526 527 /* 528 * If we are opening the file, include file mode wanted bits 529 * in wanted. 530 */ 531 if (fmode >= 0) 532 wanted |= ceph_caps_for_mode(fmode); 533 534 retry: 535 spin_lock(&ci->i_ceph_lock); 536 cap = __get_cap_for_mds(ci, mds); 537 if (!cap) { 538 if (new_cap) { 539 cap = new_cap; 540 new_cap = NULL; 541 } else { 542 spin_unlock(&ci->i_ceph_lock); 543 new_cap = get_cap(mdsc, caps_reservation); 544 if (new_cap == NULL) 545 return -ENOMEM; 546 goto retry; 547 } 548 549 cap->issued = 0; 550 cap->implemented = 0; 551 cap->mds = mds; 552 cap->mds_wanted = 0; 553 cap->mseq = 0; 554 555 cap->ci = ci; 556 __insert_cap_node(ci, cap); 557 558 /* clear out old exporting info? (i.e. on cap import) */ 559 if (ci->i_cap_exporting_mds == mds) { 560 ci->i_cap_exporting_issued = 0; 561 ci->i_cap_exporting_mseq = 0; 562 ci->i_cap_exporting_mds = -1; 563 } 564 565 /* add to session cap list */ 566 cap->session = session; 567 spin_lock(&session->s_cap_lock); 568 list_add_tail(&cap->session_caps, &session->s_caps); 569 session->s_nr_caps++; 570 spin_unlock(&session->s_cap_lock); 571 } else if (new_cap) 572 ceph_put_cap(mdsc, new_cap); 573 574 if (!ci->i_snap_realm) { 575 /* 576 * add this inode to the appropriate snap realm 577 */ 578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 579 realmino); 580 if (realm) { 581 ceph_get_snap_realm(mdsc, realm); 582 spin_lock(&realm->inodes_with_caps_lock); 583 ci->i_snap_realm = realm; 584 list_add(&ci->i_snap_realm_item, 585 &realm->inodes_with_caps); 586 spin_unlock(&realm->inodes_with_caps_lock); 587 } else { 588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 589 realmino); 590 WARN_ON(!realm); 591 } 592 } 593 594 __check_cap_issue(ci, cap, issued); 595 596 /* 597 * If we are issued caps we don't want, or the mds' wanted 598 * value appears to be off, queue a check so we'll release 599 * later and/or update the mds wanted value. 600 */ 601 actual_wanted = __ceph_caps_wanted(ci); 602 if ((wanted & ~actual_wanted) || 603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 604 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 605 ceph_cap_string(issued), ceph_cap_string(wanted), 606 ceph_cap_string(actual_wanted)); 607 __cap_delay_requeue(mdsc, ci); 608 } 609 610 if (flags & CEPH_CAP_FLAG_AUTH) { 611 if (ci->i_auth_cap == NULL || 612 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) 613 ci->i_auth_cap = cap; 614 } else if (ci->i_auth_cap == cap) { 615 ci->i_auth_cap = NULL; 616 spin_lock(&mdsc->cap_dirty_lock); 617 if (!list_empty(&ci->i_dirty_item)) { 618 dout(" moving %p to cap_dirty_migrating\n", inode); 619 list_move(&ci->i_dirty_item, 620 &mdsc->cap_dirty_migrating); 621 } 622 spin_unlock(&mdsc->cap_dirty_lock); 623 } 624 625 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 626 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 627 ceph_cap_string(issued|cap->issued), seq, mds); 628 cap->cap_id = cap_id; 629 cap->issued = issued; 630 cap->implemented |= issued; 631 if (mseq > cap->mseq) 632 cap->mds_wanted = wanted; 633 else 634 cap->mds_wanted |= wanted; 635 cap->seq = seq; 636 cap->issue_seq = seq; 637 cap->mseq = mseq; 638 cap->cap_gen = session->s_cap_gen; 639 640 if (fmode >= 0) 641 __ceph_get_fmode(ci, fmode); 642 spin_unlock(&ci->i_ceph_lock); 643 wake_up_all(&ci->i_cap_wq); 644 return 0; 645 } 646 647 /* 648 * Return true if cap has not timed out and belongs to the current 649 * generation of the MDS session (i.e. has not gone 'stale' due to 650 * us losing touch with the mds). 651 */ 652 static int __cap_is_valid(struct ceph_cap *cap) 653 { 654 unsigned long ttl; 655 u32 gen; 656 657 spin_lock(&cap->session->s_gen_ttl_lock); 658 gen = cap->session->s_cap_gen; 659 ttl = cap->session->s_cap_ttl; 660 spin_unlock(&cap->session->s_gen_ttl_lock); 661 662 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 663 dout("__cap_is_valid %p cap %p issued %s " 664 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 665 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 666 return 0; 667 } 668 669 return 1; 670 } 671 672 /* 673 * Return set of valid cap bits issued to us. Note that caps time 674 * out, and may be invalidated in bulk if the client session times out 675 * and session->s_cap_gen is bumped. 676 */ 677 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 678 { 679 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 680 struct ceph_cap *cap; 681 struct rb_node *p; 682 683 if (implemented) 684 *implemented = 0; 685 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 686 cap = rb_entry(p, struct ceph_cap, ci_node); 687 if (!__cap_is_valid(cap)) 688 continue; 689 dout("__ceph_caps_issued %p cap %p issued %s\n", 690 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 691 have |= cap->issued; 692 if (implemented) 693 *implemented |= cap->implemented; 694 } 695 /* 696 * exclude caps issued by non-auth MDS, but are been revoking 697 * by the auth MDS. The non-auth MDS should be revoking/exporting 698 * these caps, but the message is delayed. 699 */ 700 if (ci->i_auth_cap) { 701 cap = ci->i_auth_cap; 702 have &= ~cap->implemented | cap->issued; 703 } 704 return have; 705 } 706 707 /* 708 * Get cap bits issued by caps other than @ocap 709 */ 710 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 711 { 712 int have = ci->i_snap_caps; 713 struct ceph_cap *cap; 714 struct rb_node *p; 715 716 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 717 cap = rb_entry(p, struct ceph_cap, ci_node); 718 if (cap == ocap) 719 continue; 720 if (!__cap_is_valid(cap)) 721 continue; 722 have |= cap->issued; 723 } 724 return have; 725 } 726 727 /* 728 * Move a cap to the end of the LRU (oldest caps at list head, newest 729 * at list tail). 730 */ 731 static void __touch_cap(struct ceph_cap *cap) 732 { 733 struct ceph_mds_session *s = cap->session; 734 735 spin_lock(&s->s_cap_lock); 736 if (s->s_cap_iterator == NULL) { 737 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 738 s->s_mds); 739 list_move_tail(&cap->session_caps, &s->s_caps); 740 } else { 741 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 742 &cap->ci->vfs_inode, cap, s->s_mds); 743 } 744 spin_unlock(&s->s_cap_lock); 745 } 746 747 /* 748 * Check if we hold the given mask. If so, move the cap(s) to the 749 * front of their respective LRUs. (This is the preferred way for 750 * callers to check for caps they want.) 751 */ 752 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 753 { 754 struct ceph_cap *cap; 755 struct rb_node *p; 756 int have = ci->i_snap_caps; 757 758 if ((have & mask) == mask) { 759 dout("__ceph_caps_issued_mask %p snap issued %s" 760 " (mask %s)\n", &ci->vfs_inode, 761 ceph_cap_string(have), 762 ceph_cap_string(mask)); 763 return 1; 764 } 765 766 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 767 cap = rb_entry(p, struct ceph_cap, ci_node); 768 if (!__cap_is_valid(cap)) 769 continue; 770 if ((cap->issued & mask) == mask) { 771 dout("__ceph_caps_issued_mask %p cap %p issued %s" 772 " (mask %s)\n", &ci->vfs_inode, cap, 773 ceph_cap_string(cap->issued), 774 ceph_cap_string(mask)); 775 if (touch) 776 __touch_cap(cap); 777 return 1; 778 } 779 780 /* does a combination of caps satisfy mask? */ 781 have |= cap->issued; 782 if ((have & mask) == mask) { 783 dout("__ceph_caps_issued_mask %p combo issued %s" 784 " (mask %s)\n", &ci->vfs_inode, 785 ceph_cap_string(cap->issued), 786 ceph_cap_string(mask)); 787 if (touch) { 788 struct rb_node *q; 789 790 /* touch this + preceding caps */ 791 __touch_cap(cap); 792 for (q = rb_first(&ci->i_caps); q != p; 793 q = rb_next(q)) { 794 cap = rb_entry(q, struct ceph_cap, 795 ci_node); 796 if (!__cap_is_valid(cap)) 797 continue; 798 __touch_cap(cap); 799 } 800 } 801 return 1; 802 } 803 } 804 805 return 0; 806 } 807 808 /* 809 * Return true if mask caps are currently being revoked by an MDS. 810 */ 811 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 812 struct ceph_cap *ocap, int mask) 813 { 814 struct ceph_cap *cap; 815 struct rb_node *p; 816 817 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 818 cap = rb_entry(p, struct ceph_cap, ci_node); 819 if (cap != ocap && __cap_is_valid(cap) && 820 (cap->implemented & ~cap->issued & mask)) 821 return 1; 822 } 823 return 0; 824 } 825 826 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 827 { 828 struct inode *inode = &ci->vfs_inode; 829 int ret; 830 831 spin_lock(&ci->i_ceph_lock); 832 ret = __ceph_caps_revoking_other(ci, NULL, mask); 833 spin_unlock(&ci->i_ceph_lock); 834 dout("ceph_caps_revoking %p %s = %d\n", inode, 835 ceph_cap_string(mask), ret); 836 return ret; 837 } 838 839 int __ceph_caps_used(struct ceph_inode_info *ci) 840 { 841 int used = 0; 842 if (ci->i_pin_ref) 843 used |= CEPH_CAP_PIN; 844 if (ci->i_rd_ref) 845 used |= CEPH_CAP_FILE_RD; 846 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 847 used |= CEPH_CAP_FILE_CACHE; 848 if (ci->i_wr_ref) 849 used |= CEPH_CAP_FILE_WR; 850 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 851 used |= CEPH_CAP_FILE_BUFFER; 852 return used; 853 } 854 855 /* 856 * wanted, by virtue of open file modes 857 */ 858 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 859 { 860 int want = 0; 861 int mode; 862 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 863 if (ci->i_nr_by_mode[mode]) 864 want |= ceph_caps_for_mode(mode); 865 return want; 866 } 867 868 /* 869 * Return caps we have registered with the MDS(s) as 'wanted'. 870 */ 871 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 872 { 873 struct ceph_cap *cap; 874 struct rb_node *p; 875 int mds_wanted = 0; 876 877 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 878 cap = rb_entry(p, struct ceph_cap, ci_node); 879 if (!__cap_is_valid(cap)) 880 continue; 881 mds_wanted |= cap->mds_wanted; 882 } 883 return mds_wanted; 884 } 885 886 /* 887 * called under i_ceph_lock 888 */ 889 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 890 { 891 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 892 } 893 894 /* 895 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 896 * 897 * caller should hold i_ceph_lock. 898 * caller will not hold session s_mutex if called from destroy_inode. 899 */ 900 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 901 { 902 struct ceph_mds_session *session = cap->session; 903 struct ceph_inode_info *ci = cap->ci; 904 struct ceph_mds_client *mdsc = 905 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 906 int removed = 0; 907 908 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 909 910 /* remove from session list */ 911 spin_lock(&session->s_cap_lock); 912 /* 913 * s_cap_reconnect is protected by s_cap_lock. no one changes 914 * s_cap_gen while session is in the reconnect state. 915 */ 916 if (queue_release && 917 (!session->s_cap_reconnect || 918 cap->cap_gen == session->s_cap_gen)) 919 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id, 920 cap->mseq, cap->issue_seq); 921 922 if (session->s_cap_iterator == cap) { 923 /* not yet, we are iterating over this very cap */ 924 dout("__ceph_remove_cap delaying %p removal from session %p\n", 925 cap, cap->session); 926 } else { 927 list_del_init(&cap->session_caps); 928 session->s_nr_caps--; 929 cap->session = NULL; 930 removed = 1; 931 } 932 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 933 cap->ci = NULL; 934 spin_unlock(&session->s_cap_lock); 935 936 /* remove from inode list */ 937 rb_erase(&cap->ci_node, &ci->i_caps); 938 if (ci->i_auth_cap == cap) 939 ci->i_auth_cap = NULL; 940 941 if (removed) 942 ceph_put_cap(mdsc, cap); 943 944 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 945 struct ceph_snap_realm *realm = ci->i_snap_realm; 946 spin_lock(&realm->inodes_with_caps_lock); 947 list_del_init(&ci->i_snap_realm_item); 948 ci->i_snap_realm_counter++; 949 ci->i_snap_realm = NULL; 950 spin_unlock(&realm->inodes_with_caps_lock); 951 ceph_put_snap_realm(mdsc, realm); 952 } 953 if (!__ceph_is_any_real_caps(ci)) 954 __cap_delay_cancel(mdsc, ci); 955 } 956 957 /* 958 * Build and send a cap message to the given MDS. 959 * 960 * Caller should be holding s_mutex. 961 */ 962 static int send_cap_msg(struct ceph_mds_session *session, 963 u64 ino, u64 cid, int op, 964 int caps, int wanted, int dirty, 965 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 966 u64 size, u64 max_size, 967 struct timespec *mtime, struct timespec *atime, 968 u64 time_warp_seq, 969 kuid_t uid, kgid_t gid, umode_t mode, 970 u64 xattr_version, 971 struct ceph_buffer *xattrs_buf, 972 u64 follows) 973 { 974 struct ceph_mds_caps *fc; 975 struct ceph_msg *msg; 976 977 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 978 " seq %u/%u mseq %u follows %lld size %llu/%llu" 979 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 980 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 981 ceph_cap_string(dirty), 982 seq, issue_seq, mseq, follows, size, max_size, 983 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 984 985 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 986 if (!msg) 987 return -ENOMEM; 988 989 msg->hdr.tid = cpu_to_le64(flush_tid); 990 991 fc = msg->front.iov_base; 992 memset(fc, 0, sizeof(*fc)); 993 994 fc->cap_id = cpu_to_le64(cid); 995 fc->op = cpu_to_le32(op); 996 fc->seq = cpu_to_le32(seq); 997 fc->issue_seq = cpu_to_le32(issue_seq); 998 fc->migrate_seq = cpu_to_le32(mseq); 999 fc->caps = cpu_to_le32(caps); 1000 fc->wanted = cpu_to_le32(wanted); 1001 fc->dirty = cpu_to_le32(dirty); 1002 fc->ino = cpu_to_le64(ino); 1003 fc->snap_follows = cpu_to_le64(follows); 1004 1005 fc->size = cpu_to_le64(size); 1006 fc->max_size = cpu_to_le64(max_size); 1007 if (mtime) 1008 ceph_encode_timespec(&fc->mtime, mtime); 1009 if (atime) 1010 ceph_encode_timespec(&fc->atime, atime); 1011 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1012 1013 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1014 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1015 fc->mode = cpu_to_le32(mode); 1016 1017 fc->xattr_version = cpu_to_le64(xattr_version); 1018 if (xattrs_buf) { 1019 msg->middle = ceph_buffer_get(xattrs_buf); 1020 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1021 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1022 } 1023 1024 ceph_con_send(&session->s_con, msg); 1025 return 0; 1026 } 1027 1028 void __queue_cap_release(struct ceph_mds_session *session, 1029 u64 ino, u64 cap_id, u32 migrate_seq, 1030 u32 issue_seq) 1031 { 1032 struct ceph_msg *msg; 1033 struct ceph_mds_cap_release *head; 1034 struct ceph_mds_cap_item *item; 1035 1036 BUG_ON(!session->s_num_cap_releases); 1037 msg = list_first_entry(&session->s_cap_releases, 1038 struct ceph_msg, list_head); 1039 1040 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1041 ino, session->s_mds, msg, session->s_num_cap_releases); 1042 1043 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1044 head = msg->front.iov_base; 1045 le32_add_cpu(&head->num, 1); 1046 item = msg->front.iov_base + msg->front.iov_len; 1047 item->ino = cpu_to_le64(ino); 1048 item->cap_id = cpu_to_le64(cap_id); 1049 item->migrate_seq = cpu_to_le32(migrate_seq); 1050 item->seq = cpu_to_le32(issue_seq); 1051 1052 session->s_num_cap_releases--; 1053 1054 msg->front.iov_len += sizeof(*item); 1055 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1056 dout(" release msg %p full\n", msg); 1057 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1058 } else { 1059 dout(" release msg %p at %d/%d (%d)\n", msg, 1060 (int)le32_to_cpu(head->num), 1061 (int)CEPH_CAPS_PER_RELEASE, 1062 (int)msg->front.iov_len); 1063 } 1064 } 1065 1066 /* 1067 * Queue cap releases when an inode is dropped from our cache. Since 1068 * inode is about to be destroyed, there is no need for i_ceph_lock. 1069 */ 1070 void ceph_queue_caps_release(struct inode *inode) 1071 { 1072 struct ceph_inode_info *ci = ceph_inode(inode); 1073 struct rb_node *p; 1074 1075 p = rb_first(&ci->i_caps); 1076 while (p) { 1077 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1078 p = rb_next(p); 1079 __ceph_remove_cap(cap, true); 1080 } 1081 } 1082 1083 /* 1084 * Send a cap msg on the given inode. Update our caps state, then 1085 * drop i_ceph_lock and send the message. 1086 * 1087 * Make note of max_size reported/requested from mds, revoked caps 1088 * that have now been implemented. 1089 * 1090 * Make half-hearted attempt ot to invalidate page cache if we are 1091 * dropping RDCACHE. Note that this will leave behind locked pages 1092 * that we'll then need to deal with elsewhere. 1093 * 1094 * Return non-zero if delayed release, or we experienced an error 1095 * such that the caller should requeue + retry later. 1096 * 1097 * called with i_ceph_lock, then drops it. 1098 * caller should hold snap_rwsem (read), s_mutex. 1099 */ 1100 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1101 int op, int used, int want, int retain, int flushing, 1102 unsigned *pflush_tid) 1103 __releases(cap->ci->i_ceph_lock) 1104 { 1105 struct ceph_inode_info *ci = cap->ci; 1106 struct inode *inode = &ci->vfs_inode; 1107 u64 cap_id = cap->cap_id; 1108 int held, revoking, dropping, keep; 1109 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1110 u64 size, max_size; 1111 struct timespec mtime, atime; 1112 int wake = 0; 1113 umode_t mode; 1114 kuid_t uid; 1115 kgid_t gid; 1116 struct ceph_mds_session *session; 1117 u64 xattr_version = 0; 1118 struct ceph_buffer *xattr_blob = NULL; 1119 int delayed = 0; 1120 u64 flush_tid = 0; 1121 int i; 1122 int ret; 1123 1124 held = cap->issued | cap->implemented; 1125 revoking = cap->implemented & ~cap->issued; 1126 retain &= ~revoking; 1127 dropping = cap->issued & ~retain; 1128 1129 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1130 inode, cap, cap->session, 1131 ceph_cap_string(held), ceph_cap_string(held & retain), 1132 ceph_cap_string(revoking)); 1133 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1134 1135 session = cap->session; 1136 1137 /* don't release wanted unless we've waited a bit. */ 1138 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1139 time_before(jiffies, ci->i_hold_caps_min)) { 1140 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1141 ceph_cap_string(cap->issued), 1142 ceph_cap_string(cap->issued & retain), 1143 ceph_cap_string(cap->mds_wanted), 1144 ceph_cap_string(want)); 1145 want |= cap->mds_wanted; 1146 retain |= cap->issued; 1147 delayed = 1; 1148 } 1149 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1150 1151 cap->issued &= retain; /* drop bits we don't want */ 1152 if (cap->implemented & ~cap->issued) { 1153 /* 1154 * Wake up any waiters on wanted -> needed transition. 1155 * This is due to the weird transition from buffered 1156 * to sync IO... we need to flush dirty pages _before_ 1157 * allowing sync writes to avoid reordering. 1158 */ 1159 wake = 1; 1160 } 1161 cap->implemented &= cap->issued | used; 1162 cap->mds_wanted = want; 1163 1164 if (flushing) { 1165 /* 1166 * assign a tid for flush operations so we can avoid 1167 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1168 * clean type races. track latest tid for every bit 1169 * so we can handle flush AxFw, flush Fw, and have the 1170 * first ack clean Ax. 1171 */ 1172 flush_tid = ++ci->i_cap_flush_last_tid; 1173 if (pflush_tid) 1174 *pflush_tid = flush_tid; 1175 dout(" cap_flush_tid %d\n", (int)flush_tid); 1176 for (i = 0; i < CEPH_CAP_BITS; i++) 1177 if (flushing & (1 << i)) 1178 ci->i_cap_flush_tid[i] = flush_tid; 1179 1180 follows = ci->i_head_snapc->seq; 1181 } else { 1182 follows = 0; 1183 } 1184 1185 keep = cap->implemented; 1186 seq = cap->seq; 1187 issue_seq = cap->issue_seq; 1188 mseq = cap->mseq; 1189 size = inode->i_size; 1190 ci->i_reported_size = size; 1191 max_size = ci->i_wanted_max_size; 1192 ci->i_requested_max_size = max_size; 1193 mtime = inode->i_mtime; 1194 atime = inode->i_atime; 1195 time_warp_seq = ci->i_time_warp_seq; 1196 uid = inode->i_uid; 1197 gid = inode->i_gid; 1198 mode = inode->i_mode; 1199 1200 if (flushing & CEPH_CAP_XATTR_EXCL) { 1201 __ceph_build_xattrs_blob(ci); 1202 xattr_blob = ci->i_xattrs.blob; 1203 xattr_version = ci->i_xattrs.version; 1204 } 1205 1206 spin_unlock(&ci->i_ceph_lock); 1207 1208 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1209 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1210 size, max_size, &mtime, &atime, time_warp_seq, 1211 uid, gid, mode, xattr_version, xattr_blob, 1212 follows); 1213 if (ret < 0) { 1214 dout("error sending cap msg, must requeue %p\n", inode); 1215 delayed = 1; 1216 } 1217 1218 if (wake) 1219 wake_up_all(&ci->i_cap_wq); 1220 1221 return delayed; 1222 } 1223 1224 /* 1225 * When a snapshot is taken, clients accumulate dirty metadata on 1226 * inodes with capabilities in ceph_cap_snaps to describe the file 1227 * state at the time the snapshot was taken. This must be flushed 1228 * asynchronously back to the MDS once sync writes complete and dirty 1229 * data is written out. 1230 * 1231 * Unless @again is true, skip cap_snaps that were already sent to 1232 * the MDS (i.e., during this session). 1233 * 1234 * Called under i_ceph_lock. Takes s_mutex as needed. 1235 */ 1236 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1237 struct ceph_mds_session **psession, 1238 int again) 1239 __releases(ci->i_ceph_lock) 1240 __acquires(ci->i_ceph_lock) 1241 { 1242 struct inode *inode = &ci->vfs_inode; 1243 int mds; 1244 struct ceph_cap_snap *capsnap; 1245 u32 mseq; 1246 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1247 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1248 session->s_mutex */ 1249 u64 next_follows = 0; /* keep track of how far we've gotten through the 1250 i_cap_snaps list, and skip these entries next time 1251 around to avoid an infinite loop */ 1252 1253 if (psession) 1254 session = *psession; 1255 1256 dout("__flush_snaps %p\n", inode); 1257 retry: 1258 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1259 /* avoid an infiniute loop after retry */ 1260 if (capsnap->follows < next_follows) 1261 continue; 1262 /* 1263 * we need to wait for sync writes to complete and for dirty 1264 * pages to be written out. 1265 */ 1266 if (capsnap->dirty_pages || capsnap->writing) 1267 break; 1268 1269 /* 1270 * if cap writeback already occurred, we should have dropped 1271 * the capsnap in ceph_put_wrbuffer_cap_refs. 1272 */ 1273 BUG_ON(capsnap->dirty == 0); 1274 1275 /* pick mds, take s_mutex */ 1276 if (ci->i_auth_cap == NULL) { 1277 dout("no auth cap (migrating?), doing nothing\n"); 1278 goto out; 1279 } 1280 1281 /* only flush each capsnap once */ 1282 if (!again && !list_empty(&capsnap->flushing_item)) { 1283 dout("already flushed %p, skipping\n", capsnap); 1284 continue; 1285 } 1286 1287 mds = ci->i_auth_cap->session->s_mds; 1288 mseq = ci->i_auth_cap->mseq; 1289 1290 if (session && session->s_mds != mds) { 1291 dout("oops, wrong session %p mutex\n", session); 1292 mutex_unlock(&session->s_mutex); 1293 ceph_put_mds_session(session); 1294 session = NULL; 1295 } 1296 if (!session) { 1297 spin_unlock(&ci->i_ceph_lock); 1298 mutex_lock(&mdsc->mutex); 1299 session = __ceph_lookup_mds_session(mdsc, mds); 1300 mutex_unlock(&mdsc->mutex); 1301 if (session) { 1302 dout("inverting session/ino locks on %p\n", 1303 session); 1304 mutex_lock(&session->s_mutex); 1305 } 1306 /* 1307 * if session == NULL, we raced against a cap 1308 * deletion or migration. retry, and we'll 1309 * get a better @mds value next time. 1310 */ 1311 spin_lock(&ci->i_ceph_lock); 1312 goto retry; 1313 } 1314 1315 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1316 atomic_inc(&capsnap->nref); 1317 if (!list_empty(&capsnap->flushing_item)) 1318 list_del_init(&capsnap->flushing_item); 1319 list_add_tail(&capsnap->flushing_item, 1320 &session->s_cap_snaps_flushing); 1321 spin_unlock(&ci->i_ceph_lock); 1322 1323 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1324 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1325 send_cap_msg(session, ceph_vino(inode).ino, 0, 1326 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1327 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1328 capsnap->size, 0, 1329 &capsnap->mtime, &capsnap->atime, 1330 capsnap->time_warp_seq, 1331 capsnap->uid, capsnap->gid, capsnap->mode, 1332 capsnap->xattr_version, capsnap->xattr_blob, 1333 capsnap->follows); 1334 1335 next_follows = capsnap->follows + 1; 1336 ceph_put_cap_snap(capsnap); 1337 1338 spin_lock(&ci->i_ceph_lock); 1339 goto retry; 1340 } 1341 1342 /* we flushed them all; remove this inode from the queue */ 1343 spin_lock(&mdsc->snap_flush_lock); 1344 list_del_init(&ci->i_snap_flush_item); 1345 spin_unlock(&mdsc->snap_flush_lock); 1346 1347 out: 1348 if (psession) 1349 *psession = session; 1350 else if (session) { 1351 mutex_unlock(&session->s_mutex); 1352 ceph_put_mds_session(session); 1353 } 1354 } 1355 1356 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1357 { 1358 spin_lock(&ci->i_ceph_lock); 1359 __ceph_flush_snaps(ci, NULL, 0); 1360 spin_unlock(&ci->i_ceph_lock); 1361 } 1362 1363 /* 1364 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1365 * Caller is then responsible for calling __mark_inode_dirty with the 1366 * returned flags value. 1367 */ 1368 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1369 { 1370 struct ceph_mds_client *mdsc = 1371 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1372 struct inode *inode = &ci->vfs_inode; 1373 int was = ci->i_dirty_caps; 1374 int dirty = 0; 1375 1376 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1377 ceph_cap_string(mask), ceph_cap_string(was), 1378 ceph_cap_string(was | mask)); 1379 ci->i_dirty_caps |= mask; 1380 if (was == 0) { 1381 if (!ci->i_head_snapc) 1382 ci->i_head_snapc = ceph_get_snap_context( 1383 ci->i_snap_realm->cached_context); 1384 dout(" inode %p now dirty snapc %p auth cap %p\n", 1385 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1386 BUG_ON(!list_empty(&ci->i_dirty_item)); 1387 spin_lock(&mdsc->cap_dirty_lock); 1388 if (ci->i_auth_cap) 1389 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1390 else 1391 list_add(&ci->i_dirty_item, 1392 &mdsc->cap_dirty_migrating); 1393 spin_unlock(&mdsc->cap_dirty_lock); 1394 if (ci->i_flushing_caps == 0) { 1395 ihold(inode); 1396 dirty |= I_DIRTY_SYNC; 1397 } 1398 } 1399 BUG_ON(list_empty(&ci->i_dirty_item)); 1400 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1401 (mask & CEPH_CAP_FILE_BUFFER)) 1402 dirty |= I_DIRTY_DATASYNC; 1403 __cap_delay_requeue(mdsc, ci); 1404 return dirty; 1405 } 1406 1407 /* 1408 * Add dirty inode to the flushing list. Assigned a seq number so we 1409 * can wait for caps to flush without starving. 1410 * 1411 * Called under i_ceph_lock. 1412 */ 1413 static int __mark_caps_flushing(struct inode *inode, 1414 struct ceph_mds_session *session) 1415 { 1416 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1417 struct ceph_inode_info *ci = ceph_inode(inode); 1418 int flushing; 1419 1420 BUG_ON(ci->i_dirty_caps == 0); 1421 BUG_ON(list_empty(&ci->i_dirty_item)); 1422 1423 flushing = ci->i_dirty_caps; 1424 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1425 ceph_cap_string(flushing), 1426 ceph_cap_string(ci->i_flushing_caps), 1427 ceph_cap_string(ci->i_flushing_caps | flushing)); 1428 ci->i_flushing_caps |= flushing; 1429 ci->i_dirty_caps = 0; 1430 dout(" inode %p now !dirty\n", inode); 1431 1432 spin_lock(&mdsc->cap_dirty_lock); 1433 list_del_init(&ci->i_dirty_item); 1434 1435 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1436 if (list_empty(&ci->i_flushing_item)) { 1437 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1438 mdsc->num_cap_flushing++; 1439 dout(" inode %p now flushing seq %lld\n", inode, 1440 ci->i_cap_flush_seq); 1441 } else { 1442 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1443 dout(" inode %p now flushing (more) seq %lld\n", inode, 1444 ci->i_cap_flush_seq); 1445 } 1446 spin_unlock(&mdsc->cap_dirty_lock); 1447 1448 return flushing; 1449 } 1450 1451 /* 1452 * try to invalidate mapping pages without blocking. 1453 */ 1454 static int try_nonblocking_invalidate(struct inode *inode) 1455 { 1456 struct ceph_inode_info *ci = ceph_inode(inode); 1457 u32 invalidating_gen = ci->i_rdcache_gen; 1458 1459 spin_unlock(&ci->i_ceph_lock); 1460 invalidate_mapping_pages(&inode->i_data, 0, -1); 1461 spin_lock(&ci->i_ceph_lock); 1462 1463 if (inode->i_data.nrpages == 0 && 1464 invalidating_gen == ci->i_rdcache_gen) { 1465 /* success. */ 1466 dout("try_nonblocking_invalidate %p success\n", inode); 1467 /* save any racing async invalidate some trouble */ 1468 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1469 return 0; 1470 } 1471 dout("try_nonblocking_invalidate %p failed\n", inode); 1472 return -1; 1473 } 1474 1475 /* 1476 * Swiss army knife function to examine currently used and wanted 1477 * versus held caps. Release, flush, ack revoked caps to mds as 1478 * appropriate. 1479 * 1480 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1481 * cap release further. 1482 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1483 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1484 * further delay. 1485 */ 1486 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1487 struct ceph_mds_session *session) 1488 { 1489 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1490 struct ceph_mds_client *mdsc = fsc->mdsc; 1491 struct inode *inode = &ci->vfs_inode; 1492 struct ceph_cap *cap; 1493 int file_wanted, used, cap_used; 1494 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1495 int issued, implemented, want, retain, revoking, flushing = 0; 1496 int mds = -1; /* keep track of how far we've gone through i_caps list 1497 to avoid an infinite loop on retry */ 1498 struct rb_node *p; 1499 int tried_invalidate = 0; 1500 int delayed = 0, sent = 0, force_requeue = 0, num; 1501 int queue_invalidate = 0; 1502 int is_delayed = flags & CHECK_CAPS_NODELAY; 1503 1504 /* if we are unmounting, flush any unused caps immediately. */ 1505 if (mdsc->stopping) 1506 is_delayed = 1; 1507 1508 spin_lock(&ci->i_ceph_lock); 1509 1510 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1511 flags |= CHECK_CAPS_FLUSH; 1512 1513 /* flush snaps first time around only */ 1514 if (!list_empty(&ci->i_cap_snaps)) 1515 __ceph_flush_snaps(ci, &session, 0); 1516 goto retry_locked; 1517 retry: 1518 spin_lock(&ci->i_ceph_lock); 1519 retry_locked: 1520 file_wanted = __ceph_caps_file_wanted(ci); 1521 used = __ceph_caps_used(ci); 1522 want = file_wanted | used; 1523 issued = __ceph_caps_issued(ci, &implemented); 1524 revoking = implemented & ~issued; 1525 1526 retain = want | CEPH_CAP_PIN; 1527 if (!mdsc->stopping && inode->i_nlink > 0) { 1528 if (want) { 1529 retain |= CEPH_CAP_ANY; /* be greedy */ 1530 } else { 1531 retain |= CEPH_CAP_ANY_SHARED; 1532 /* 1533 * keep RD only if we didn't have the file open RW, 1534 * because then the mds would revoke it anyway to 1535 * journal max_size=0. 1536 */ 1537 if (ci->i_max_size == 0) 1538 retain |= CEPH_CAP_ANY_RD; 1539 } 1540 } 1541 1542 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1543 " issued %s revoking %s retain %s %s%s%s\n", inode, 1544 ceph_cap_string(file_wanted), 1545 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1546 ceph_cap_string(ci->i_flushing_caps), 1547 ceph_cap_string(issued), ceph_cap_string(revoking), 1548 ceph_cap_string(retain), 1549 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1550 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1551 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1552 1553 /* 1554 * If we no longer need to hold onto old our caps, and we may 1555 * have cached pages, but don't want them, then try to invalidate. 1556 * If we fail, it's because pages are locked.... try again later. 1557 */ 1558 if ((!is_delayed || mdsc->stopping) && 1559 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1560 inode->i_data.nrpages && /* have cached pages */ 1561 (file_wanted == 0 || /* no open files */ 1562 (revoking & (CEPH_CAP_FILE_CACHE| 1563 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1564 !tried_invalidate) { 1565 dout("check_caps trying to invalidate on %p\n", inode); 1566 if (try_nonblocking_invalidate(inode) < 0) { 1567 if (revoking & (CEPH_CAP_FILE_CACHE| 1568 CEPH_CAP_FILE_LAZYIO)) { 1569 dout("check_caps queuing invalidate\n"); 1570 queue_invalidate = 1; 1571 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1572 } else { 1573 dout("check_caps failed to invalidate pages\n"); 1574 /* we failed to invalidate pages. check these 1575 caps again later. */ 1576 force_requeue = 1; 1577 __cap_set_timeouts(mdsc, ci); 1578 } 1579 } 1580 tried_invalidate = 1; 1581 goto retry_locked; 1582 } 1583 1584 num = 0; 1585 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1586 cap = rb_entry(p, struct ceph_cap, ci_node); 1587 num++; 1588 1589 /* avoid looping forever */ 1590 if (mds >= cap->mds || 1591 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1592 continue; 1593 1594 /* NOTE: no side-effects allowed, until we take s_mutex */ 1595 1596 cap_used = used; 1597 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1598 cap_used &= ~ci->i_auth_cap->issued; 1599 1600 revoking = cap->implemented & ~cap->issued; 1601 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1602 cap->mds, cap, ceph_cap_string(cap->issued), 1603 ceph_cap_string(cap_used), 1604 ceph_cap_string(cap->implemented), 1605 ceph_cap_string(revoking)); 1606 1607 if (cap == ci->i_auth_cap && 1608 (cap->issued & CEPH_CAP_FILE_WR)) { 1609 /* request larger max_size from MDS? */ 1610 if (ci->i_wanted_max_size > ci->i_max_size && 1611 ci->i_wanted_max_size > ci->i_requested_max_size) { 1612 dout("requesting new max_size\n"); 1613 goto ack; 1614 } 1615 1616 /* approaching file_max? */ 1617 if ((inode->i_size << 1) >= ci->i_max_size && 1618 (ci->i_reported_size << 1) < ci->i_max_size) { 1619 dout("i_size approaching max_size\n"); 1620 goto ack; 1621 } 1622 } 1623 /* flush anything dirty? */ 1624 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1625 ci->i_dirty_caps) { 1626 dout("flushing dirty caps\n"); 1627 goto ack; 1628 } 1629 1630 /* completed revocation? going down and there are no caps? */ 1631 if (revoking && (revoking & cap_used) == 0) { 1632 dout("completed revocation of %s\n", 1633 ceph_cap_string(cap->implemented & ~cap->issued)); 1634 goto ack; 1635 } 1636 1637 /* want more caps from mds? */ 1638 if (want & ~(cap->mds_wanted | cap->issued)) 1639 goto ack; 1640 1641 /* things we might delay */ 1642 if ((cap->issued & ~retain) == 0 && 1643 cap->mds_wanted == want) 1644 continue; /* nope, all good */ 1645 1646 if (is_delayed) 1647 goto ack; 1648 1649 /* delay? */ 1650 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1651 time_before(jiffies, ci->i_hold_caps_max)) { 1652 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1653 ceph_cap_string(cap->issued), 1654 ceph_cap_string(cap->issued & retain), 1655 ceph_cap_string(cap->mds_wanted), 1656 ceph_cap_string(want)); 1657 delayed++; 1658 continue; 1659 } 1660 1661 ack: 1662 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1663 dout(" skipping %p I_NOFLUSH set\n", inode); 1664 continue; 1665 } 1666 1667 if (session && session != cap->session) { 1668 dout("oops, wrong session %p mutex\n", session); 1669 mutex_unlock(&session->s_mutex); 1670 session = NULL; 1671 } 1672 if (!session) { 1673 session = cap->session; 1674 if (mutex_trylock(&session->s_mutex) == 0) { 1675 dout("inverting session/ino locks on %p\n", 1676 session); 1677 spin_unlock(&ci->i_ceph_lock); 1678 if (took_snap_rwsem) { 1679 up_read(&mdsc->snap_rwsem); 1680 took_snap_rwsem = 0; 1681 } 1682 mutex_lock(&session->s_mutex); 1683 goto retry; 1684 } 1685 } 1686 /* take snap_rwsem after session mutex */ 1687 if (!took_snap_rwsem) { 1688 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1689 dout("inverting snap/in locks on %p\n", 1690 inode); 1691 spin_unlock(&ci->i_ceph_lock); 1692 down_read(&mdsc->snap_rwsem); 1693 took_snap_rwsem = 1; 1694 goto retry; 1695 } 1696 took_snap_rwsem = 1; 1697 } 1698 1699 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1700 flushing = __mark_caps_flushing(inode, session); 1701 else 1702 flushing = 0; 1703 1704 mds = cap->mds; /* remember mds, so we don't repeat */ 1705 sent++; 1706 1707 /* __send_cap drops i_ceph_lock */ 1708 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1709 want, retain, flushing, NULL); 1710 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1711 } 1712 1713 /* 1714 * Reschedule delayed caps release if we delayed anything, 1715 * otherwise cancel. 1716 */ 1717 if (delayed && is_delayed) 1718 force_requeue = 1; /* __send_cap delayed release; requeue */ 1719 if (!delayed && !is_delayed) 1720 __cap_delay_cancel(mdsc, ci); 1721 else if (!is_delayed || force_requeue) 1722 __cap_delay_requeue(mdsc, ci); 1723 1724 spin_unlock(&ci->i_ceph_lock); 1725 1726 if (queue_invalidate) 1727 ceph_queue_invalidate(inode); 1728 1729 if (session) 1730 mutex_unlock(&session->s_mutex); 1731 if (took_snap_rwsem) 1732 up_read(&mdsc->snap_rwsem); 1733 } 1734 1735 /* 1736 * Try to flush dirty caps back to the auth mds. 1737 */ 1738 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1739 unsigned *flush_tid) 1740 { 1741 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1742 struct ceph_inode_info *ci = ceph_inode(inode); 1743 int unlock_session = session ? 0 : 1; 1744 int flushing = 0; 1745 1746 retry: 1747 spin_lock(&ci->i_ceph_lock); 1748 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1749 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1750 goto out; 1751 } 1752 if (ci->i_dirty_caps && ci->i_auth_cap) { 1753 struct ceph_cap *cap = ci->i_auth_cap; 1754 int used = __ceph_caps_used(ci); 1755 int want = __ceph_caps_wanted(ci); 1756 int delayed; 1757 1758 if (!session) { 1759 spin_unlock(&ci->i_ceph_lock); 1760 session = cap->session; 1761 mutex_lock(&session->s_mutex); 1762 goto retry; 1763 } 1764 BUG_ON(session != cap->session); 1765 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1766 goto out; 1767 1768 flushing = __mark_caps_flushing(inode, session); 1769 1770 /* __send_cap drops i_ceph_lock */ 1771 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1772 cap->issued | cap->implemented, flushing, 1773 flush_tid); 1774 if (!delayed) 1775 goto out_unlocked; 1776 1777 spin_lock(&ci->i_ceph_lock); 1778 __cap_delay_requeue(mdsc, ci); 1779 } 1780 out: 1781 spin_unlock(&ci->i_ceph_lock); 1782 out_unlocked: 1783 if (session && unlock_session) 1784 mutex_unlock(&session->s_mutex); 1785 return flushing; 1786 } 1787 1788 /* 1789 * Return true if we've flushed caps through the given flush_tid. 1790 */ 1791 static int caps_are_flushed(struct inode *inode, unsigned tid) 1792 { 1793 struct ceph_inode_info *ci = ceph_inode(inode); 1794 int i, ret = 1; 1795 1796 spin_lock(&ci->i_ceph_lock); 1797 for (i = 0; i < CEPH_CAP_BITS; i++) 1798 if ((ci->i_flushing_caps & (1 << i)) && 1799 ci->i_cap_flush_tid[i] <= tid) { 1800 /* still flushing this bit */ 1801 ret = 0; 1802 break; 1803 } 1804 spin_unlock(&ci->i_ceph_lock); 1805 return ret; 1806 } 1807 1808 /* 1809 * Wait on any unsafe replies for the given inode. First wait on the 1810 * newest request, and make that the upper bound. Then, if there are 1811 * more requests, keep waiting on the oldest as long as it is still older 1812 * than the original request. 1813 */ 1814 static void sync_write_wait(struct inode *inode) 1815 { 1816 struct ceph_inode_info *ci = ceph_inode(inode); 1817 struct list_head *head = &ci->i_unsafe_writes; 1818 struct ceph_osd_request *req; 1819 u64 last_tid; 1820 1821 spin_lock(&ci->i_unsafe_lock); 1822 if (list_empty(head)) 1823 goto out; 1824 1825 /* set upper bound as _last_ entry in chain */ 1826 req = list_entry(head->prev, struct ceph_osd_request, 1827 r_unsafe_item); 1828 last_tid = req->r_tid; 1829 1830 do { 1831 ceph_osdc_get_request(req); 1832 spin_unlock(&ci->i_unsafe_lock); 1833 dout("sync_write_wait on tid %llu (until %llu)\n", 1834 req->r_tid, last_tid); 1835 wait_for_completion(&req->r_safe_completion); 1836 spin_lock(&ci->i_unsafe_lock); 1837 ceph_osdc_put_request(req); 1838 1839 /* 1840 * from here on look at first entry in chain, since we 1841 * only want to wait for anything older than last_tid 1842 */ 1843 if (list_empty(head)) 1844 break; 1845 req = list_entry(head->next, struct ceph_osd_request, 1846 r_unsafe_item); 1847 } while (req->r_tid < last_tid); 1848 out: 1849 spin_unlock(&ci->i_unsafe_lock); 1850 } 1851 1852 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1853 { 1854 struct inode *inode = file->f_mapping->host; 1855 struct ceph_inode_info *ci = ceph_inode(inode); 1856 unsigned flush_tid; 1857 int ret; 1858 int dirty; 1859 1860 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1861 sync_write_wait(inode); 1862 1863 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1864 if (ret < 0) 1865 return ret; 1866 mutex_lock(&inode->i_mutex); 1867 1868 dirty = try_flush_caps(inode, NULL, &flush_tid); 1869 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1870 1871 /* 1872 * only wait on non-file metadata writeback (the mds 1873 * can recover size and mtime, so we don't need to 1874 * wait for that) 1875 */ 1876 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1877 dout("fsync waiting for flush_tid %u\n", flush_tid); 1878 ret = wait_event_interruptible(ci->i_cap_wq, 1879 caps_are_flushed(inode, flush_tid)); 1880 } 1881 1882 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1883 mutex_unlock(&inode->i_mutex); 1884 return ret; 1885 } 1886 1887 /* 1888 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1889 * queue inode for flush but don't do so immediately, because we can 1890 * get by with fewer MDS messages if we wait for data writeback to 1891 * complete first. 1892 */ 1893 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1894 { 1895 struct ceph_inode_info *ci = ceph_inode(inode); 1896 unsigned flush_tid; 1897 int err = 0; 1898 int dirty; 1899 int wait = wbc->sync_mode == WB_SYNC_ALL; 1900 1901 dout("write_inode %p wait=%d\n", inode, wait); 1902 if (wait) { 1903 dirty = try_flush_caps(inode, NULL, &flush_tid); 1904 if (dirty) 1905 err = wait_event_interruptible(ci->i_cap_wq, 1906 caps_are_flushed(inode, flush_tid)); 1907 } else { 1908 struct ceph_mds_client *mdsc = 1909 ceph_sb_to_client(inode->i_sb)->mdsc; 1910 1911 spin_lock(&ci->i_ceph_lock); 1912 if (__ceph_caps_dirty(ci)) 1913 __cap_delay_requeue_front(mdsc, ci); 1914 spin_unlock(&ci->i_ceph_lock); 1915 } 1916 return err; 1917 } 1918 1919 /* 1920 * After a recovering MDS goes active, we need to resend any caps 1921 * we were flushing. 1922 * 1923 * Caller holds session->s_mutex. 1924 */ 1925 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1926 struct ceph_mds_session *session) 1927 { 1928 struct ceph_cap_snap *capsnap; 1929 1930 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1931 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1932 flushing_item) { 1933 struct ceph_inode_info *ci = capsnap->ci; 1934 struct inode *inode = &ci->vfs_inode; 1935 struct ceph_cap *cap; 1936 1937 spin_lock(&ci->i_ceph_lock); 1938 cap = ci->i_auth_cap; 1939 if (cap && cap->session == session) { 1940 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1941 cap, capsnap); 1942 __ceph_flush_snaps(ci, &session, 1); 1943 } else { 1944 pr_err("%p auth cap %p not mds%d ???\n", inode, 1945 cap, session->s_mds); 1946 } 1947 spin_unlock(&ci->i_ceph_lock); 1948 } 1949 } 1950 1951 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1952 struct ceph_mds_session *session) 1953 { 1954 struct ceph_inode_info *ci; 1955 1956 kick_flushing_capsnaps(mdsc, session); 1957 1958 dout("kick_flushing_caps mds%d\n", session->s_mds); 1959 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1960 struct inode *inode = &ci->vfs_inode; 1961 struct ceph_cap *cap; 1962 int delayed = 0; 1963 1964 spin_lock(&ci->i_ceph_lock); 1965 cap = ci->i_auth_cap; 1966 if (cap && cap->session == session) { 1967 dout("kick_flushing_caps %p cap %p %s\n", inode, 1968 cap, ceph_cap_string(ci->i_flushing_caps)); 1969 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1970 __ceph_caps_used(ci), 1971 __ceph_caps_wanted(ci), 1972 cap->issued | cap->implemented, 1973 ci->i_flushing_caps, NULL); 1974 if (delayed) { 1975 spin_lock(&ci->i_ceph_lock); 1976 __cap_delay_requeue(mdsc, ci); 1977 spin_unlock(&ci->i_ceph_lock); 1978 } 1979 } else { 1980 pr_err("%p auth cap %p not mds%d ???\n", inode, 1981 cap, session->s_mds); 1982 spin_unlock(&ci->i_ceph_lock); 1983 } 1984 } 1985 } 1986 1987 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1988 struct ceph_mds_session *session, 1989 struct inode *inode) 1990 { 1991 struct ceph_inode_info *ci = ceph_inode(inode); 1992 struct ceph_cap *cap; 1993 int delayed = 0; 1994 1995 spin_lock(&ci->i_ceph_lock); 1996 cap = ci->i_auth_cap; 1997 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1998 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1999 2000 __ceph_flush_snaps(ci, &session, 1); 2001 2002 if (ci->i_flushing_caps) { 2003 spin_lock(&mdsc->cap_dirty_lock); 2004 list_move_tail(&ci->i_flushing_item, 2005 &cap->session->s_cap_flushing); 2006 spin_unlock(&mdsc->cap_dirty_lock); 2007 2008 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2009 __ceph_caps_used(ci), 2010 __ceph_caps_wanted(ci), 2011 cap->issued | cap->implemented, 2012 ci->i_flushing_caps, NULL); 2013 if (delayed) { 2014 spin_lock(&ci->i_ceph_lock); 2015 __cap_delay_requeue(mdsc, ci); 2016 spin_unlock(&ci->i_ceph_lock); 2017 } 2018 } else { 2019 spin_unlock(&ci->i_ceph_lock); 2020 } 2021 } 2022 2023 2024 /* 2025 * Take references to capabilities we hold, so that we don't release 2026 * them to the MDS prematurely. 2027 * 2028 * Protected by i_ceph_lock. 2029 */ 2030 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2031 { 2032 if (got & CEPH_CAP_PIN) 2033 ci->i_pin_ref++; 2034 if (got & CEPH_CAP_FILE_RD) 2035 ci->i_rd_ref++; 2036 if (got & CEPH_CAP_FILE_CACHE) 2037 ci->i_rdcache_ref++; 2038 if (got & CEPH_CAP_FILE_WR) 2039 ci->i_wr_ref++; 2040 if (got & CEPH_CAP_FILE_BUFFER) { 2041 if (ci->i_wb_ref == 0) 2042 ihold(&ci->vfs_inode); 2043 ci->i_wb_ref++; 2044 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2045 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2046 } 2047 } 2048 2049 /* 2050 * Try to grab cap references. Specify those refs we @want, and the 2051 * minimal set we @need. Also include the larger offset we are writing 2052 * to (when applicable), and check against max_size here as well. 2053 * Note that caller is responsible for ensuring max_size increases are 2054 * requested from the MDS. 2055 */ 2056 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2057 int *got, loff_t endoff, int *check_max, int *err) 2058 { 2059 struct inode *inode = &ci->vfs_inode; 2060 int ret = 0; 2061 int have, implemented; 2062 int file_wanted; 2063 2064 dout("get_cap_refs %p need %s want %s\n", inode, 2065 ceph_cap_string(need), ceph_cap_string(want)); 2066 spin_lock(&ci->i_ceph_lock); 2067 2068 /* make sure file is actually open */ 2069 file_wanted = __ceph_caps_file_wanted(ci); 2070 if ((file_wanted & need) == 0) { 2071 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2072 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2073 *err = -EBADF; 2074 ret = 1; 2075 goto out; 2076 } 2077 2078 /* finish pending truncate */ 2079 while (ci->i_truncate_pending) { 2080 spin_unlock(&ci->i_ceph_lock); 2081 __ceph_do_pending_vmtruncate(inode); 2082 spin_lock(&ci->i_ceph_lock); 2083 } 2084 2085 have = __ceph_caps_issued(ci, &implemented); 2086 2087 if (have & need & CEPH_CAP_FILE_WR) { 2088 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2089 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2090 inode, endoff, ci->i_max_size); 2091 if (endoff > ci->i_requested_max_size) { 2092 *check_max = 1; 2093 ret = 1; 2094 } 2095 goto out; 2096 } 2097 /* 2098 * If a sync write is in progress, we must wait, so that we 2099 * can get a final snapshot value for size+mtime. 2100 */ 2101 if (__ceph_have_pending_cap_snap(ci)) { 2102 dout("get_cap_refs %p cap_snap_pending\n", inode); 2103 goto out; 2104 } 2105 } 2106 2107 if ((have & need) == need) { 2108 /* 2109 * Look at (implemented & ~have & not) so that we keep waiting 2110 * on transition from wanted -> needed caps. This is needed 2111 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2112 * going before a prior buffered writeback happens. 2113 */ 2114 int not = want & ~(have & need); 2115 int revoking = implemented & ~have; 2116 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2117 inode, ceph_cap_string(have), ceph_cap_string(not), 2118 ceph_cap_string(revoking)); 2119 if ((revoking & not) == 0) { 2120 *got = need | (have & want); 2121 __take_cap_refs(ci, *got); 2122 ret = 1; 2123 } 2124 } else { 2125 dout("get_cap_refs %p have %s needed %s\n", inode, 2126 ceph_cap_string(have), ceph_cap_string(need)); 2127 } 2128 out: 2129 spin_unlock(&ci->i_ceph_lock); 2130 dout("get_cap_refs %p ret %d got %s\n", inode, 2131 ret, ceph_cap_string(*got)); 2132 return ret; 2133 } 2134 2135 /* 2136 * Check the offset we are writing up to against our current 2137 * max_size. If necessary, tell the MDS we want to write to 2138 * a larger offset. 2139 */ 2140 static void check_max_size(struct inode *inode, loff_t endoff) 2141 { 2142 struct ceph_inode_info *ci = ceph_inode(inode); 2143 int check = 0; 2144 2145 /* do we need to explicitly request a larger max_size? */ 2146 spin_lock(&ci->i_ceph_lock); 2147 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2148 dout("write %p at large endoff %llu, req max_size\n", 2149 inode, endoff); 2150 ci->i_wanted_max_size = endoff; 2151 } 2152 /* duplicate ceph_check_caps()'s logic */ 2153 if (ci->i_auth_cap && 2154 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2155 ci->i_wanted_max_size > ci->i_max_size && 2156 ci->i_wanted_max_size > ci->i_requested_max_size) 2157 check = 1; 2158 spin_unlock(&ci->i_ceph_lock); 2159 if (check) 2160 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2161 } 2162 2163 /* 2164 * Wait for caps, and take cap references. If we can't get a WR cap 2165 * due to a small max_size, make sure we check_max_size (and possibly 2166 * ask the mds) so we don't get hung up indefinitely. 2167 */ 2168 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2169 loff_t endoff) 2170 { 2171 int check_max, ret, err; 2172 2173 retry: 2174 if (endoff > 0) 2175 check_max_size(&ci->vfs_inode, endoff); 2176 check_max = 0; 2177 err = 0; 2178 ret = wait_event_interruptible(ci->i_cap_wq, 2179 try_get_cap_refs(ci, need, want, 2180 got, endoff, 2181 &check_max, &err)); 2182 if (err) 2183 ret = err; 2184 if (check_max) 2185 goto retry; 2186 return ret; 2187 } 2188 2189 /* 2190 * Take cap refs. Caller must already know we hold at least one ref 2191 * on the caps in question or we don't know this is safe. 2192 */ 2193 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2194 { 2195 spin_lock(&ci->i_ceph_lock); 2196 __take_cap_refs(ci, caps); 2197 spin_unlock(&ci->i_ceph_lock); 2198 } 2199 2200 /* 2201 * Release cap refs. 2202 * 2203 * If we released the last ref on any given cap, call ceph_check_caps 2204 * to release (or schedule a release). 2205 * 2206 * If we are releasing a WR cap (from a sync write), finalize any affected 2207 * cap_snap, and wake up any waiters. 2208 */ 2209 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2210 { 2211 struct inode *inode = &ci->vfs_inode; 2212 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2213 struct ceph_cap_snap *capsnap; 2214 2215 spin_lock(&ci->i_ceph_lock); 2216 if (had & CEPH_CAP_PIN) 2217 --ci->i_pin_ref; 2218 if (had & CEPH_CAP_FILE_RD) 2219 if (--ci->i_rd_ref == 0) 2220 last++; 2221 if (had & CEPH_CAP_FILE_CACHE) 2222 if (--ci->i_rdcache_ref == 0) 2223 last++; 2224 if (had & CEPH_CAP_FILE_BUFFER) { 2225 if (--ci->i_wb_ref == 0) { 2226 last++; 2227 put++; 2228 } 2229 dout("put_cap_refs %p wb %d -> %d (?)\n", 2230 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2231 } 2232 if (had & CEPH_CAP_FILE_WR) 2233 if (--ci->i_wr_ref == 0) { 2234 last++; 2235 if (!list_empty(&ci->i_cap_snaps)) { 2236 capsnap = list_first_entry(&ci->i_cap_snaps, 2237 struct ceph_cap_snap, 2238 ci_item); 2239 if (capsnap->writing) { 2240 capsnap->writing = 0; 2241 flushsnaps = 2242 __ceph_finish_cap_snap(ci, 2243 capsnap); 2244 wake = 1; 2245 } 2246 } 2247 } 2248 spin_unlock(&ci->i_ceph_lock); 2249 2250 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2251 last ? " last" : "", put ? " put" : ""); 2252 2253 if (last && !flushsnaps) 2254 ceph_check_caps(ci, 0, NULL); 2255 else if (flushsnaps) 2256 ceph_flush_snaps(ci); 2257 if (wake) 2258 wake_up_all(&ci->i_cap_wq); 2259 if (put) 2260 iput(inode); 2261 } 2262 2263 /* 2264 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2265 * context. Adjust per-snap dirty page accounting as appropriate. 2266 * Once all dirty data for a cap_snap is flushed, flush snapped file 2267 * metadata back to the MDS. If we dropped the last ref, call 2268 * ceph_check_caps. 2269 */ 2270 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2271 struct ceph_snap_context *snapc) 2272 { 2273 struct inode *inode = &ci->vfs_inode; 2274 int last = 0; 2275 int complete_capsnap = 0; 2276 int drop_capsnap = 0; 2277 int found = 0; 2278 struct ceph_cap_snap *capsnap = NULL; 2279 2280 spin_lock(&ci->i_ceph_lock); 2281 ci->i_wrbuffer_ref -= nr; 2282 last = !ci->i_wrbuffer_ref; 2283 2284 if (ci->i_head_snapc == snapc) { 2285 ci->i_wrbuffer_ref_head -= nr; 2286 if (ci->i_wrbuffer_ref_head == 0 && 2287 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2288 BUG_ON(!ci->i_head_snapc); 2289 ceph_put_snap_context(ci->i_head_snapc); 2290 ci->i_head_snapc = NULL; 2291 } 2292 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2293 inode, 2294 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2295 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2296 last ? " LAST" : ""); 2297 } else { 2298 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2299 if (capsnap->context == snapc) { 2300 found = 1; 2301 break; 2302 } 2303 } 2304 BUG_ON(!found); 2305 capsnap->dirty_pages -= nr; 2306 if (capsnap->dirty_pages == 0) { 2307 complete_capsnap = 1; 2308 if (capsnap->dirty == 0) 2309 /* cap writeback completed before we created 2310 * the cap_snap; no FLUSHSNAP is needed */ 2311 drop_capsnap = 1; 2312 } 2313 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2314 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2315 inode, capsnap, capsnap->context->seq, 2316 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2317 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2318 last ? " (wrbuffer last)" : "", 2319 complete_capsnap ? " (complete capsnap)" : "", 2320 drop_capsnap ? " (drop capsnap)" : ""); 2321 if (drop_capsnap) { 2322 ceph_put_snap_context(capsnap->context); 2323 list_del(&capsnap->ci_item); 2324 list_del(&capsnap->flushing_item); 2325 ceph_put_cap_snap(capsnap); 2326 } 2327 } 2328 2329 spin_unlock(&ci->i_ceph_lock); 2330 2331 if (last) { 2332 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2333 iput(inode); 2334 } else if (complete_capsnap) { 2335 ceph_flush_snaps(ci); 2336 wake_up_all(&ci->i_cap_wq); 2337 } 2338 if (drop_capsnap) 2339 iput(inode); 2340 } 2341 2342 /* 2343 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2344 */ 2345 static void invalidate_aliases(struct inode *inode) 2346 { 2347 struct dentry *dn, *prev = NULL; 2348 2349 dout("invalidate_aliases inode %p\n", inode); 2350 d_prune_aliases(inode); 2351 /* 2352 * For non-directory inode, d_find_alias() only returns 2353 * connected dentry. After calling d_invalidate(), the 2354 * dentry become disconnected. 2355 * 2356 * For directory inode, d_find_alias() can return 2357 * disconnected dentry. But directory inode should have 2358 * one alias at most. 2359 */ 2360 while ((dn = d_find_alias(inode))) { 2361 if (dn == prev) { 2362 dput(dn); 2363 break; 2364 } 2365 d_invalidate(dn); 2366 if (prev) 2367 dput(prev); 2368 prev = dn; 2369 } 2370 if (prev) 2371 dput(prev); 2372 } 2373 2374 /* 2375 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2376 * actually be a revocation if it specifies a smaller cap set.) 2377 * 2378 * caller holds s_mutex and i_ceph_lock, we drop both. 2379 * 2380 * return value: 2381 * 0 - ok 2382 * 1 - check_caps on auth cap only (writeback) 2383 * 2 - check_caps (ack revoke) 2384 */ 2385 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2386 struct ceph_mds_session *session, 2387 struct ceph_cap *cap, 2388 struct ceph_buffer *xattr_buf) 2389 __releases(ci->i_ceph_lock) 2390 { 2391 struct ceph_inode_info *ci = ceph_inode(inode); 2392 int mds = session->s_mds; 2393 int seq = le32_to_cpu(grant->seq); 2394 int newcaps = le32_to_cpu(grant->caps); 2395 int issued, implemented, used, wanted, dirty; 2396 u64 size = le64_to_cpu(grant->size); 2397 u64 max_size = le64_to_cpu(grant->max_size); 2398 struct timespec mtime, atime, ctime; 2399 int check_caps = 0; 2400 int wake = 0; 2401 int writeback = 0; 2402 int queue_invalidate = 0; 2403 int deleted_inode = 0; 2404 int queue_revalidate = 0; 2405 2406 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2407 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2408 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2409 inode->i_size); 2410 2411 /* 2412 * If CACHE is being revoked, and we have no dirty buffers, 2413 * try to invalidate (once). (If there are dirty buffers, we 2414 * will invalidate _after_ writeback.) 2415 */ 2416 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2417 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2418 !ci->i_wrbuffer_ref) { 2419 if (try_nonblocking_invalidate(inode)) { 2420 /* there were locked pages.. invalidate later 2421 in a separate thread. */ 2422 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2423 queue_invalidate = 1; 2424 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2425 } 2426 } 2427 2428 ceph_fscache_invalidate(inode); 2429 } 2430 2431 /* side effects now are allowed */ 2432 2433 issued = __ceph_caps_issued(ci, &implemented); 2434 issued |= implemented | __ceph_caps_dirty(ci); 2435 2436 cap->cap_gen = session->s_cap_gen; 2437 2438 __check_cap_issue(ci, cap, newcaps); 2439 2440 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2441 inode->i_mode = le32_to_cpu(grant->mode); 2442 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2443 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2444 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2445 from_kuid(&init_user_ns, inode->i_uid), 2446 from_kgid(&init_user_ns, inode->i_gid)); 2447 } 2448 2449 if ((issued & CEPH_CAP_LINK_EXCL) == 0) { 2450 set_nlink(inode, le32_to_cpu(grant->nlink)); 2451 if (inode->i_nlink == 0 && 2452 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2453 deleted_inode = 1; 2454 } 2455 2456 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2457 int len = le32_to_cpu(grant->xattr_len); 2458 u64 version = le64_to_cpu(grant->xattr_version); 2459 2460 if (version > ci->i_xattrs.version) { 2461 dout(" got new xattrs v%llu on %p len %d\n", 2462 version, inode, len); 2463 if (ci->i_xattrs.blob) 2464 ceph_buffer_put(ci->i_xattrs.blob); 2465 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2466 ci->i_xattrs.version = version; 2467 } 2468 } 2469 2470 /* Do we need to revalidate our fscache cookie. Don't bother on the 2471 * first cache cap as we already validate at cookie creation time. */ 2472 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2473 queue_revalidate = 1; 2474 2475 /* size/ctime/mtime/atime? */ 2476 ceph_fill_file_size(inode, issued, 2477 le32_to_cpu(grant->truncate_seq), 2478 le64_to_cpu(grant->truncate_size), size); 2479 ceph_decode_timespec(&mtime, &grant->mtime); 2480 ceph_decode_timespec(&atime, &grant->atime); 2481 ceph_decode_timespec(&ctime, &grant->ctime); 2482 ceph_fill_file_time(inode, issued, 2483 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2484 &atime); 2485 2486 /* max size increase? */ 2487 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2488 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2489 ci->i_max_size = max_size; 2490 if (max_size >= ci->i_wanted_max_size) { 2491 ci->i_wanted_max_size = 0; /* reset */ 2492 ci->i_requested_max_size = 0; 2493 } 2494 wake = 1; 2495 } 2496 2497 /* check cap bits */ 2498 wanted = __ceph_caps_wanted(ci); 2499 used = __ceph_caps_used(ci); 2500 dirty = __ceph_caps_dirty(ci); 2501 dout(" my wanted = %s, used = %s, dirty %s\n", 2502 ceph_cap_string(wanted), 2503 ceph_cap_string(used), 2504 ceph_cap_string(dirty)); 2505 if (wanted != le32_to_cpu(grant->wanted)) { 2506 dout("mds wanted %s -> %s\n", 2507 ceph_cap_string(le32_to_cpu(grant->wanted)), 2508 ceph_cap_string(wanted)); 2509 /* imported cap may not have correct mds_wanted */ 2510 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2511 check_caps = 1; 2512 } 2513 2514 cap->seq = seq; 2515 2516 /* file layout may have changed */ 2517 ci->i_layout = grant->layout; 2518 2519 /* revocation, grant, or no-op? */ 2520 if (cap->issued & ~newcaps) { 2521 int revoking = cap->issued & ~newcaps; 2522 2523 dout("revocation: %s -> %s (revoking %s)\n", 2524 ceph_cap_string(cap->issued), 2525 ceph_cap_string(newcaps), 2526 ceph_cap_string(revoking)); 2527 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2528 writeback = 1; /* initiate writeback; will delay ack */ 2529 else if (revoking == CEPH_CAP_FILE_CACHE && 2530 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2531 queue_invalidate) 2532 ; /* do nothing yet, invalidation will be queued */ 2533 else if (cap == ci->i_auth_cap) 2534 check_caps = 1; /* check auth cap only */ 2535 else 2536 check_caps = 2; /* check all caps */ 2537 cap->issued = newcaps; 2538 cap->implemented |= newcaps; 2539 } else if (cap->issued == newcaps) { 2540 dout("caps unchanged: %s -> %s\n", 2541 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2542 } else { 2543 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2544 ceph_cap_string(newcaps)); 2545 /* non-auth MDS is revoking the newly grant caps ? */ 2546 if (cap == ci->i_auth_cap && 2547 __ceph_caps_revoking_other(ci, cap, newcaps)) 2548 check_caps = 2; 2549 2550 cap->issued = newcaps; 2551 cap->implemented |= newcaps; /* add bits only, to 2552 * avoid stepping on a 2553 * pending revocation */ 2554 wake = 1; 2555 } 2556 BUG_ON(cap->issued & ~cap->implemented); 2557 2558 spin_unlock(&ci->i_ceph_lock); 2559 2560 if (writeback) 2561 /* 2562 * queue inode for writeback: we can't actually call 2563 * filemap_write_and_wait, etc. from message handler 2564 * context. 2565 */ 2566 ceph_queue_writeback(inode); 2567 if (queue_invalidate) 2568 ceph_queue_invalidate(inode); 2569 if (deleted_inode) 2570 invalidate_aliases(inode); 2571 if (queue_revalidate) 2572 ceph_queue_revalidate(inode); 2573 if (wake) 2574 wake_up_all(&ci->i_cap_wq); 2575 2576 if (check_caps == 1) 2577 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2578 session); 2579 else if (check_caps == 2) 2580 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2581 else 2582 mutex_unlock(&session->s_mutex); 2583 } 2584 2585 /* 2586 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2587 * MDS has been safely committed. 2588 */ 2589 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2590 struct ceph_mds_caps *m, 2591 struct ceph_mds_session *session, 2592 struct ceph_cap *cap) 2593 __releases(ci->i_ceph_lock) 2594 { 2595 struct ceph_inode_info *ci = ceph_inode(inode); 2596 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2597 unsigned seq = le32_to_cpu(m->seq); 2598 int dirty = le32_to_cpu(m->dirty); 2599 int cleaned = 0; 2600 int drop = 0; 2601 int i; 2602 2603 for (i = 0; i < CEPH_CAP_BITS; i++) 2604 if ((dirty & (1 << i)) && 2605 flush_tid == ci->i_cap_flush_tid[i]) 2606 cleaned |= 1 << i; 2607 2608 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2609 " flushing %s -> %s\n", 2610 inode, session->s_mds, seq, ceph_cap_string(dirty), 2611 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2612 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2613 2614 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2615 goto out; 2616 2617 ci->i_flushing_caps &= ~cleaned; 2618 2619 spin_lock(&mdsc->cap_dirty_lock); 2620 if (ci->i_flushing_caps == 0) { 2621 list_del_init(&ci->i_flushing_item); 2622 if (!list_empty(&session->s_cap_flushing)) 2623 dout(" mds%d still flushing cap on %p\n", 2624 session->s_mds, 2625 &list_entry(session->s_cap_flushing.next, 2626 struct ceph_inode_info, 2627 i_flushing_item)->vfs_inode); 2628 mdsc->num_cap_flushing--; 2629 wake_up_all(&mdsc->cap_flushing_wq); 2630 dout(" inode %p now !flushing\n", inode); 2631 2632 if (ci->i_dirty_caps == 0) { 2633 dout(" inode %p now clean\n", inode); 2634 BUG_ON(!list_empty(&ci->i_dirty_item)); 2635 drop = 1; 2636 if (ci->i_wrbuffer_ref_head == 0) { 2637 BUG_ON(!ci->i_head_snapc); 2638 ceph_put_snap_context(ci->i_head_snapc); 2639 ci->i_head_snapc = NULL; 2640 } 2641 } else { 2642 BUG_ON(list_empty(&ci->i_dirty_item)); 2643 } 2644 } 2645 spin_unlock(&mdsc->cap_dirty_lock); 2646 wake_up_all(&ci->i_cap_wq); 2647 2648 out: 2649 spin_unlock(&ci->i_ceph_lock); 2650 if (drop) 2651 iput(inode); 2652 } 2653 2654 /* 2655 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2656 * throw away our cap_snap. 2657 * 2658 * Caller hold s_mutex. 2659 */ 2660 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2661 struct ceph_mds_caps *m, 2662 struct ceph_mds_session *session) 2663 { 2664 struct ceph_inode_info *ci = ceph_inode(inode); 2665 u64 follows = le64_to_cpu(m->snap_follows); 2666 struct ceph_cap_snap *capsnap; 2667 int drop = 0; 2668 2669 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2670 inode, ci, session->s_mds, follows); 2671 2672 spin_lock(&ci->i_ceph_lock); 2673 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2674 if (capsnap->follows == follows) { 2675 if (capsnap->flush_tid != flush_tid) { 2676 dout(" cap_snap %p follows %lld tid %lld !=" 2677 " %lld\n", capsnap, follows, 2678 flush_tid, capsnap->flush_tid); 2679 break; 2680 } 2681 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2682 dout(" removing %p cap_snap %p follows %lld\n", 2683 inode, capsnap, follows); 2684 ceph_put_snap_context(capsnap->context); 2685 list_del(&capsnap->ci_item); 2686 list_del(&capsnap->flushing_item); 2687 ceph_put_cap_snap(capsnap); 2688 drop = 1; 2689 break; 2690 } else { 2691 dout(" skipping cap_snap %p follows %lld\n", 2692 capsnap, capsnap->follows); 2693 } 2694 } 2695 spin_unlock(&ci->i_ceph_lock); 2696 if (drop) 2697 iput(inode); 2698 } 2699 2700 /* 2701 * Handle TRUNC from MDS, indicating file truncation. 2702 * 2703 * caller hold s_mutex. 2704 */ 2705 static void handle_cap_trunc(struct inode *inode, 2706 struct ceph_mds_caps *trunc, 2707 struct ceph_mds_session *session) 2708 __releases(ci->i_ceph_lock) 2709 { 2710 struct ceph_inode_info *ci = ceph_inode(inode); 2711 int mds = session->s_mds; 2712 int seq = le32_to_cpu(trunc->seq); 2713 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2714 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2715 u64 size = le64_to_cpu(trunc->size); 2716 int implemented = 0; 2717 int dirty = __ceph_caps_dirty(ci); 2718 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2719 int queue_trunc = 0; 2720 2721 issued |= implemented | dirty; 2722 2723 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2724 inode, mds, seq, truncate_size, truncate_seq); 2725 queue_trunc = ceph_fill_file_size(inode, issued, 2726 truncate_seq, truncate_size, size); 2727 spin_unlock(&ci->i_ceph_lock); 2728 2729 if (queue_trunc) { 2730 ceph_queue_vmtruncate(inode); 2731 ceph_fscache_invalidate(inode); 2732 } 2733 } 2734 2735 /* 2736 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2737 * different one. If we are the most recent migration we've seen (as 2738 * indicated by mseq), make note of the migrating cap bits for the 2739 * duration (until we see the corresponding IMPORT). 2740 * 2741 * caller holds s_mutex 2742 */ 2743 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2744 struct ceph_mds_session *session, 2745 int *open_target_sessions) 2746 { 2747 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2748 struct ceph_inode_info *ci = ceph_inode(inode); 2749 int mds = session->s_mds; 2750 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2751 struct ceph_cap *cap = NULL, *t; 2752 struct rb_node *p; 2753 int remember = 1; 2754 2755 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2756 inode, ci, mds, mseq); 2757 2758 spin_lock(&ci->i_ceph_lock); 2759 2760 /* make sure we haven't seen a higher mseq */ 2761 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2762 t = rb_entry(p, struct ceph_cap, ci_node); 2763 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2764 dout(" higher mseq on cap from mds%d\n", 2765 t->session->s_mds); 2766 remember = 0; 2767 } 2768 if (t->session->s_mds == mds) 2769 cap = t; 2770 } 2771 2772 if (cap) { 2773 if (remember) { 2774 /* make note */ 2775 ci->i_cap_exporting_mds = mds; 2776 ci->i_cap_exporting_mseq = mseq; 2777 ci->i_cap_exporting_issued = cap->issued; 2778 2779 /* 2780 * make sure we have open sessions with all possible 2781 * export targets, so that we get the matching IMPORT 2782 */ 2783 *open_target_sessions = 1; 2784 2785 /* 2786 * we can't flush dirty caps that we've seen the 2787 * EXPORT but no IMPORT for 2788 */ 2789 spin_lock(&mdsc->cap_dirty_lock); 2790 if (!list_empty(&ci->i_dirty_item)) { 2791 dout(" moving %p to cap_dirty_migrating\n", 2792 inode); 2793 list_move(&ci->i_dirty_item, 2794 &mdsc->cap_dirty_migrating); 2795 } 2796 spin_unlock(&mdsc->cap_dirty_lock); 2797 } 2798 __ceph_remove_cap(cap, false); 2799 } 2800 /* else, we already released it */ 2801 2802 spin_unlock(&ci->i_ceph_lock); 2803 } 2804 2805 /* 2806 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2807 * clean them up. 2808 * 2809 * caller holds s_mutex. 2810 */ 2811 static void handle_cap_import(struct ceph_mds_client *mdsc, 2812 struct inode *inode, struct ceph_mds_caps *im, 2813 struct ceph_mds_session *session, 2814 void *snaptrace, int snaptrace_len) 2815 { 2816 struct ceph_inode_info *ci = ceph_inode(inode); 2817 int mds = session->s_mds; 2818 unsigned issued = le32_to_cpu(im->caps); 2819 unsigned wanted = le32_to_cpu(im->wanted); 2820 unsigned seq = le32_to_cpu(im->seq); 2821 unsigned mseq = le32_to_cpu(im->migrate_seq); 2822 u64 realmino = le64_to_cpu(im->realm); 2823 u64 cap_id = le64_to_cpu(im->cap_id); 2824 2825 if (ci->i_cap_exporting_mds >= 0 && 2826 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2827 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2828 " - cleared exporting from mds%d\n", 2829 inode, ci, mds, mseq, 2830 ci->i_cap_exporting_mds); 2831 ci->i_cap_exporting_issued = 0; 2832 ci->i_cap_exporting_mseq = 0; 2833 ci->i_cap_exporting_mds = -1; 2834 2835 spin_lock(&mdsc->cap_dirty_lock); 2836 if (!list_empty(&ci->i_dirty_item)) { 2837 dout(" moving %p back to cap_dirty\n", inode); 2838 list_move(&ci->i_dirty_item, &mdsc->cap_dirty); 2839 } 2840 spin_unlock(&mdsc->cap_dirty_lock); 2841 } else { 2842 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2843 inode, ci, mds, mseq); 2844 } 2845 2846 down_write(&mdsc->snap_rwsem); 2847 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2848 false); 2849 downgrade_write(&mdsc->snap_rwsem); 2850 ceph_add_cap(inode, session, cap_id, -1, 2851 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2852 NULL /* no caps context */); 2853 kick_flushing_inode_caps(mdsc, session, inode); 2854 up_read(&mdsc->snap_rwsem); 2855 2856 /* make sure we re-request max_size, if necessary */ 2857 spin_lock(&ci->i_ceph_lock); 2858 ci->i_wanted_max_size = 0; /* reset */ 2859 ci->i_requested_max_size = 0; 2860 spin_unlock(&ci->i_ceph_lock); 2861 } 2862 2863 /* 2864 * Handle a caps message from the MDS. 2865 * 2866 * Identify the appropriate session, inode, and call the right handler 2867 * based on the cap op. 2868 */ 2869 void ceph_handle_caps(struct ceph_mds_session *session, 2870 struct ceph_msg *msg) 2871 { 2872 struct ceph_mds_client *mdsc = session->s_mdsc; 2873 struct super_block *sb = mdsc->fsc->sb; 2874 struct inode *inode; 2875 struct ceph_inode_info *ci; 2876 struct ceph_cap *cap; 2877 struct ceph_mds_caps *h; 2878 int mds = session->s_mds; 2879 int op; 2880 u32 seq, mseq; 2881 struct ceph_vino vino; 2882 u64 cap_id; 2883 u64 size, max_size; 2884 u64 tid; 2885 void *snaptrace; 2886 size_t snaptrace_len; 2887 void *flock; 2888 u32 flock_len; 2889 int open_target_sessions = 0; 2890 2891 dout("handle_caps from mds%d\n", mds); 2892 2893 /* decode */ 2894 tid = le64_to_cpu(msg->hdr.tid); 2895 if (msg->front.iov_len < sizeof(*h)) 2896 goto bad; 2897 h = msg->front.iov_base; 2898 op = le32_to_cpu(h->op); 2899 vino.ino = le64_to_cpu(h->ino); 2900 vino.snap = CEPH_NOSNAP; 2901 cap_id = le64_to_cpu(h->cap_id); 2902 seq = le32_to_cpu(h->seq); 2903 mseq = le32_to_cpu(h->migrate_seq); 2904 size = le64_to_cpu(h->size); 2905 max_size = le64_to_cpu(h->max_size); 2906 2907 snaptrace = h + 1; 2908 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2909 2910 if (le16_to_cpu(msg->hdr.version) >= 2) { 2911 void *p, *end; 2912 2913 p = snaptrace + snaptrace_len; 2914 end = msg->front.iov_base + msg->front.iov_len; 2915 ceph_decode_32_safe(&p, end, flock_len, bad); 2916 flock = p; 2917 } else { 2918 flock = NULL; 2919 flock_len = 0; 2920 } 2921 2922 mutex_lock(&session->s_mutex); 2923 session->s_seq++; 2924 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2925 (unsigned)seq); 2926 2927 if (op == CEPH_CAP_OP_IMPORT) 2928 ceph_add_cap_releases(mdsc, session); 2929 2930 /* lookup ino */ 2931 inode = ceph_find_inode(sb, vino); 2932 ci = ceph_inode(inode); 2933 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2934 vino.snap, inode); 2935 if (!inode) { 2936 dout(" i don't have ino %llx\n", vino.ino); 2937 2938 if (op == CEPH_CAP_OP_IMPORT) { 2939 spin_lock(&session->s_cap_lock); 2940 __queue_cap_release(session, vino.ino, cap_id, 2941 mseq, seq); 2942 spin_unlock(&session->s_cap_lock); 2943 } 2944 goto flush_cap_releases; 2945 } 2946 2947 /* these will work even if we don't have a cap yet */ 2948 switch (op) { 2949 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2950 handle_cap_flushsnap_ack(inode, tid, h, session); 2951 goto done; 2952 2953 case CEPH_CAP_OP_EXPORT: 2954 handle_cap_export(inode, h, session, &open_target_sessions); 2955 goto done; 2956 2957 case CEPH_CAP_OP_IMPORT: 2958 handle_cap_import(mdsc, inode, h, session, 2959 snaptrace, snaptrace_len); 2960 } 2961 2962 /* the rest require a cap */ 2963 spin_lock(&ci->i_ceph_lock); 2964 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2965 if (!cap) { 2966 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2967 inode, ceph_ino(inode), ceph_snap(inode), mds); 2968 spin_unlock(&ci->i_ceph_lock); 2969 goto flush_cap_releases; 2970 } 2971 2972 /* note that each of these drops i_ceph_lock for us */ 2973 switch (op) { 2974 case CEPH_CAP_OP_REVOKE: 2975 case CEPH_CAP_OP_GRANT: 2976 case CEPH_CAP_OP_IMPORT: 2977 handle_cap_grant(inode, h, session, cap, msg->middle); 2978 goto done_unlocked; 2979 2980 case CEPH_CAP_OP_FLUSH_ACK: 2981 handle_cap_flush_ack(inode, tid, h, session, cap); 2982 break; 2983 2984 case CEPH_CAP_OP_TRUNC: 2985 handle_cap_trunc(inode, h, session); 2986 break; 2987 2988 default: 2989 spin_unlock(&ci->i_ceph_lock); 2990 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2991 ceph_cap_op_name(op)); 2992 } 2993 2994 goto done; 2995 2996 flush_cap_releases: 2997 /* 2998 * send any full release message to try to move things 2999 * along for the mds (who clearly thinks we still have this 3000 * cap). 3001 */ 3002 ceph_add_cap_releases(mdsc, session); 3003 ceph_send_cap_releases(mdsc, session); 3004 3005 done: 3006 mutex_unlock(&session->s_mutex); 3007 done_unlocked: 3008 if (inode) 3009 iput(inode); 3010 if (open_target_sessions) 3011 ceph_mdsc_open_export_target_sessions(mdsc, session); 3012 return; 3013 3014 bad: 3015 pr_err("ceph_handle_caps: corrupt message\n"); 3016 ceph_msg_dump(msg); 3017 return; 3018 } 3019 3020 /* 3021 * Delayed work handler to process end of delayed cap release LRU list. 3022 */ 3023 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3024 { 3025 struct ceph_inode_info *ci; 3026 int flags = CHECK_CAPS_NODELAY; 3027 3028 dout("check_delayed_caps\n"); 3029 while (1) { 3030 spin_lock(&mdsc->cap_delay_lock); 3031 if (list_empty(&mdsc->cap_delay_list)) 3032 break; 3033 ci = list_first_entry(&mdsc->cap_delay_list, 3034 struct ceph_inode_info, 3035 i_cap_delay_list); 3036 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3037 time_before(jiffies, ci->i_hold_caps_max)) 3038 break; 3039 list_del_init(&ci->i_cap_delay_list); 3040 spin_unlock(&mdsc->cap_delay_lock); 3041 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3042 ceph_check_caps(ci, flags, NULL); 3043 } 3044 spin_unlock(&mdsc->cap_delay_lock); 3045 } 3046 3047 /* 3048 * Flush all dirty caps to the mds 3049 */ 3050 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3051 { 3052 struct ceph_inode_info *ci; 3053 struct inode *inode; 3054 3055 dout("flush_dirty_caps\n"); 3056 spin_lock(&mdsc->cap_dirty_lock); 3057 while (!list_empty(&mdsc->cap_dirty)) { 3058 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3059 i_dirty_item); 3060 inode = &ci->vfs_inode; 3061 ihold(inode); 3062 dout("flush_dirty_caps %p\n", inode); 3063 spin_unlock(&mdsc->cap_dirty_lock); 3064 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3065 iput(inode); 3066 spin_lock(&mdsc->cap_dirty_lock); 3067 } 3068 spin_unlock(&mdsc->cap_dirty_lock); 3069 dout("flush_dirty_caps done\n"); 3070 } 3071 3072 /* 3073 * Drop open file reference. If we were the last open file, 3074 * we may need to release capabilities to the MDS (or schedule 3075 * their delayed release). 3076 */ 3077 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3078 { 3079 struct inode *inode = &ci->vfs_inode; 3080 int last = 0; 3081 3082 spin_lock(&ci->i_ceph_lock); 3083 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3084 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3085 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3086 if (--ci->i_nr_by_mode[fmode] == 0) 3087 last++; 3088 spin_unlock(&ci->i_ceph_lock); 3089 3090 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3091 ceph_check_caps(ci, 0, NULL); 3092 } 3093 3094 /* 3095 * Helpers for embedding cap and dentry lease releases into mds 3096 * requests. 3097 * 3098 * @force is used by dentry_release (below) to force inclusion of a 3099 * record for the directory inode, even when there aren't any caps to 3100 * drop. 3101 */ 3102 int ceph_encode_inode_release(void **p, struct inode *inode, 3103 int mds, int drop, int unless, int force) 3104 { 3105 struct ceph_inode_info *ci = ceph_inode(inode); 3106 struct ceph_cap *cap; 3107 struct ceph_mds_request_release *rel = *p; 3108 int used, dirty; 3109 int ret = 0; 3110 3111 spin_lock(&ci->i_ceph_lock); 3112 used = __ceph_caps_used(ci); 3113 dirty = __ceph_caps_dirty(ci); 3114 3115 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3116 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3117 ceph_cap_string(unless)); 3118 3119 /* only drop unused, clean caps */ 3120 drop &= ~(used | dirty); 3121 3122 cap = __get_cap_for_mds(ci, mds); 3123 if (cap && __cap_is_valid(cap)) { 3124 if (force || 3125 ((cap->issued & drop) && 3126 (cap->issued & unless) == 0)) { 3127 if ((cap->issued & drop) && 3128 (cap->issued & unless) == 0) { 3129 int wanted = __ceph_caps_wanted(ci); 3130 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3131 wanted |= cap->mds_wanted; 3132 dout("encode_inode_release %p cap %p " 3133 "%s -> %s, wanted %s -> %s\n", inode, cap, 3134 ceph_cap_string(cap->issued), 3135 ceph_cap_string(cap->issued & ~drop), 3136 ceph_cap_string(cap->mds_wanted), 3137 ceph_cap_string(wanted)); 3138 3139 cap->issued &= ~drop; 3140 cap->implemented &= ~drop; 3141 cap->mds_wanted = wanted; 3142 } else { 3143 dout("encode_inode_release %p cap %p %s" 3144 " (force)\n", inode, cap, 3145 ceph_cap_string(cap->issued)); 3146 } 3147 3148 rel->ino = cpu_to_le64(ceph_ino(inode)); 3149 rel->cap_id = cpu_to_le64(cap->cap_id); 3150 rel->seq = cpu_to_le32(cap->seq); 3151 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3152 rel->mseq = cpu_to_le32(cap->mseq); 3153 rel->caps = cpu_to_le32(cap->issued); 3154 rel->wanted = cpu_to_le32(cap->mds_wanted); 3155 rel->dname_len = 0; 3156 rel->dname_seq = 0; 3157 *p += sizeof(*rel); 3158 ret = 1; 3159 } else { 3160 dout("encode_inode_release %p cap %p %s\n", 3161 inode, cap, ceph_cap_string(cap->issued)); 3162 } 3163 } 3164 spin_unlock(&ci->i_ceph_lock); 3165 return ret; 3166 } 3167 3168 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3169 int mds, int drop, int unless) 3170 { 3171 struct inode *dir = dentry->d_parent->d_inode; 3172 struct ceph_mds_request_release *rel = *p; 3173 struct ceph_dentry_info *di = ceph_dentry(dentry); 3174 int force = 0; 3175 int ret; 3176 3177 /* 3178 * force an record for the directory caps if we have a dentry lease. 3179 * this is racy (can't take i_ceph_lock and d_lock together), but it 3180 * doesn't have to be perfect; the mds will revoke anything we don't 3181 * release. 3182 */ 3183 spin_lock(&dentry->d_lock); 3184 if (di->lease_session && di->lease_session->s_mds == mds) 3185 force = 1; 3186 spin_unlock(&dentry->d_lock); 3187 3188 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3189 3190 spin_lock(&dentry->d_lock); 3191 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3192 dout("encode_dentry_release %p mds%d seq %d\n", 3193 dentry, mds, (int)di->lease_seq); 3194 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3195 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3196 *p += dentry->d_name.len; 3197 rel->dname_seq = cpu_to_le32(di->lease_seq); 3198 __ceph_mdsc_drop_dentry_lease(dentry); 3199 } 3200 spin_unlock(&dentry->d_lock); 3201 return ret; 3202 } 3203