1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/vmalloc.h> 7 #include <linux/wait.h> 8 #include <linux/writeback.h> 9 10 #include "super.h" 11 #include "decode.h" 12 #include "messenger.h" 13 14 /* 15 * Capability management 16 * 17 * The Ceph metadata servers control client access to inode metadata 18 * and file data by issuing capabilities, granting clients permission 19 * to read and/or write both inode field and file data to OSDs 20 * (storage nodes). Each capability consists of a set of bits 21 * indicating which operations are allowed. 22 * 23 * If the client holds a *_SHARED cap, the client has a coherent value 24 * that can be safely read from the cached inode. 25 * 26 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 27 * client is allowed to change inode attributes (e.g., file size, 28 * mtime), note its dirty state in the ceph_cap, and asynchronously 29 * flush that metadata change to the MDS. 30 * 31 * In the event of a conflicting operation (perhaps by another 32 * client), the MDS will revoke the conflicting client capabilities. 33 * 34 * In order for a client to cache an inode, it must hold a capability 35 * with at least one MDS server. When inodes are released, release 36 * notifications are batched and periodically sent en masse to the MDS 37 * cluster to release server state. 38 */ 39 40 41 /* 42 * Generate readable cap strings for debugging output. 43 */ 44 #define MAX_CAP_STR 20 45 static char cap_str[MAX_CAP_STR][40]; 46 static DEFINE_SPINLOCK(cap_str_lock); 47 static int last_cap_str; 48 49 static char *gcap_string(char *s, int c) 50 { 51 if (c & CEPH_CAP_GSHARED) 52 *s++ = 's'; 53 if (c & CEPH_CAP_GEXCL) 54 *s++ = 'x'; 55 if (c & CEPH_CAP_GCACHE) 56 *s++ = 'c'; 57 if (c & CEPH_CAP_GRD) 58 *s++ = 'r'; 59 if (c & CEPH_CAP_GWR) 60 *s++ = 'w'; 61 if (c & CEPH_CAP_GBUFFER) 62 *s++ = 'b'; 63 if (c & CEPH_CAP_GLAZYIO) 64 *s++ = 'l'; 65 return s; 66 } 67 68 const char *ceph_cap_string(int caps) 69 { 70 int i; 71 char *s; 72 int c; 73 74 spin_lock(&cap_str_lock); 75 i = last_cap_str++; 76 if (last_cap_str == MAX_CAP_STR) 77 last_cap_str = 0; 78 spin_unlock(&cap_str_lock); 79 80 s = cap_str[i]; 81 82 if (caps & CEPH_CAP_PIN) 83 *s++ = 'p'; 84 85 c = (caps >> CEPH_CAP_SAUTH) & 3; 86 if (c) { 87 *s++ = 'A'; 88 s = gcap_string(s, c); 89 } 90 91 c = (caps >> CEPH_CAP_SLINK) & 3; 92 if (c) { 93 *s++ = 'L'; 94 s = gcap_string(s, c); 95 } 96 97 c = (caps >> CEPH_CAP_SXATTR) & 3; 98 if (c) { 99 *s++ = 'X'; 100 s = gcap_string(s, c); 101 } 102 103 c = caps >> CEPH_CAP_SFILE; 104 if (c) { 105 *s++ = 'F'; 106 s = gcap_string(s, c); 107 } 108 109 if (s == cap_str[i]) 110 *s++ = '-'; 111 *s = 0; 112 return cap_str[i]; 113 } 114 115 /* 116 * Cap reservations 117 * 118 * Maintain a global pool of preallocated struct ceph_caps, referenced 119 * by struct ceph_caps_reservations. This ensures that we preallocate 120 * memory needed to successfully process an MDS response. (If an MDS 121 * sends us cap information and we fail to process it, we will have 122 * problems due to the client and MDS being out of sync.) 123 * 124 * Reservations are 'owned' by a ceph_cap_reservation context. 125 */ 126 static spinlock_t caps_list_lock; 127 static struct list_head caps_list; /* unused (reserved or unreserved) */ 128 static int caps_total_count; /* total caps allocated */ 129 static int caps_use_count; /* in use */ 130 static int caps_reserve_count; /* unused, reserved */ 131 static int caps_avail_count; /* unused, unreserved */ 132 static int caps_min_count; /* keep at least this many (unreserved) */ 133 134 void __init ceph_caps_init(void) 135 { 136 INIT_LIST_HEAD(&caps_list); 137 spin_lock_init(&caps_list_lock); 138 } 139 140 void ceph_caps_finalize(void) 141 { 142 struct ceph_cap *cap; 143 144 spin_lock(&caps_list_lock); 145 while (!list_empty(&caps_list)) { 146 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 147 list_del(&cap->caps_item); 148 kmem_cache_free(ceph_cap_cachep, cap); 149 } 150 caps_total_count = 0; 151 caps_avail_count = 0; 152 caps_use_count = 0; 153 caps_reserve_count = 0; 154 caps_min_count = 0; 155 spin_unlock(&caps_list_lock); 156 } 157 158 void ceph_adjust_min_caps(int delta) 159 { 160 spin_lock(&caps_list_lock); 161 caps_min_count += delta; 162 BUG_ON(caps_min_count < 0); 163 spin_unlock(&caps_list_lock); 164 } 165 166 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 167 { 168 int i; 169 struct ceph_cap *cap; 170 int have; 171 int alloc = 0; 172 LIST_HEAD(newcaps); 173 int ret = 0; 174 175 dout("reserve caps ctx=%p need=%d\n", ctx, need); 176 177 /* first reserve any caps that are already allocated */ 178 spin_lock(&caps_list_lock); 179 if (caps_avail_count >= need) 180 have = need; 181 else 182 have = caps_avail_count; 183 caps_avail_count -= have; 184 caps_reserve_count += have; 185 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 186 caps_avail_count); 187 spin_unlock(&caps_list_lock); 188 189 for (i = have; i < need; i++) { 190 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 191 if (!cap) { 192 ret = -ENOMEM; 193 goto out_alloc_count; 194 } 195 list_add(&cap->caps_item, &newcaps); 196 alloc++; 197 } 198 BUG_ON(have + alloc != need); 199 200 spin_lock(&caps_list_lock); 201 caps_total_count += alloc; 202 caps_reserve_count += alloc; 203 list_splice(&newcaps, &caps_list); 204 205 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 206 caps_avail_count); 207 spin_unlock(&caps_list_lock); 208 209 ctx->count = need; 210 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 211 ctx, caps_total_count, caps_use_count, caps_reserve_count, 212 caps_avail_count); 213 return 0; 214 215 out_alloc_count: 216 /* we didn't manage to reserve as much as we needed */ 217 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 218 ctx, need, have); 219 return ret; 220 } 221 222 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 223 { 224 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 225 if (ctx->count) { 226 spin_lock(&caps_list_lock); 227 BUG_ON(caps_reserve_count < ctx->count); 228 caps_reserve_count -= ctx->count; 229 caps_avail_count += ctx->count; 230 ctx->count = 0; 231 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 232 caps_total_count, caps_use_count, caps_reserve_count, 233 caps_avail_count); 234 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 235 caps_avail_count); 236 spin_unlock(&caps_list_lock); 237 } 238 return 0; 239 } 240 241 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 242 { 243 struct ceph_cap *cap = NULL; 244 245 /* temporary, until we do something about cap import/export */ 246 if (!ctx) 247 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 248 249 spin_lock(&caps_list_lock); 250 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 251 ctx, ctx->count, caps_total_count, caps_use_count, 252 caps_reserve_count, caps_avail_count); 253 BUG_ON(!ctx->count); 254 BUG_ON(ctx->count > caps_reserve_count); 255 BUG_ON(list_empty(&caps_list)); 256 257 ctx->count--; 258 caps_reserve_count--; 259 caps_use_count++; 260 261 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 262 list_del(&cap->caps_item); 263 264 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 265 caps_avail_count); 266 spin_unlock(&caps_list_lock); 267 return cap; 268 } 269 270 void ceph_put_cap(struct ceph_cap *cap) 271 { 272 spin_lock(&caps_list_lock); 273 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 274 cap, caps_total_count, caps_use_count, 275 caps_reserve_count, caps_avail_count); 276 caps_use_count--; 277 /* 278 * Keep some preallocated caps around (ceph_min_count), to 279 * avoid lots of free/alloc churn. 280 */ 281 if (caps_avail_count >= caps_reserve_count + caps_min_count) { 282 caps_total_count--; 283 kmem_cache_free(ceph_cap_cachep, cap); 284 } else { 285 caps_avail_count++; 286 list_add(&cap->caps_item, &caps_list); 287 } 288 289 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 290 caps_avail_count); 291 spin_unlock(&caps_list_lock); 292 } 293 294 void ceph_reservation_status(struct ceph_client *client, 295 int *total, int *avail, int *used, int *reserved, 296 int *min) 297 { 298 if (total) 299 *total = caps_total_count; 300 if (avail) 301 *avail = caps_avail_count; 302 if (used) 303 *used = caps_use_count; 304 if (reserved) 305 *reserved = caps_reserve_count; 306 if (min) 307 *min = caps_min_count; 308 } 309 310 /* 311 * Find ceph_cap for given mds, if any. 312 * 313 * Called with i_lock held. 314 */ 315 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 316 { 317 struct ceph_cap *cap; 318 struct rb_node *n = ci->i_caps.rb_node; 319 320 while (n) { 321 cap = rb_entry(n, struct ceph_cap, ci_node); 322 if (mds < cap->mds) 323 n = n->rb_left; 324 else if (mds > cap->mds) 325 n = n->rb_right; 326 else 327 return cap; 328 } 329 return NULL; 330 } 331 332 /* 333 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 334 * -1. 335 */ 336 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 337 { 338 struct ceph_cap *cap; 339 int mds = -1; 340 struct rb_node *p; 341 342 /* prefer mds with WR|WRBUFFER|EXCL caps */ 343 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 344 cap = rb_entry(p, struct ceph_cap, ci_node); 345 mds = cap->mds; 346 if (mseq) 347 *mseq = cap->mseq; 348 if (cap->issued & (CEPH_CAP_FILE_WR | 349 CEPH_CAP_FILE_BUFFER | 350 CEPH_CAP_FILE_EXCL)) 351 break; 352 } 353 return mds; 354 } 355 356 int ceph_get_cap_mds(struct inode *inode) 357 { 358 int mds; 359 spin_lock(&inode->i_lock); 360 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 361 spin_unlock(&inode->i_lock); 362 return mds; 363 } 364 365 /* 366 * Called under i_lock. 367 */ 368 static void __insert_cap_node(struct ceph_inode_info *ci, 369 struct ceph_cap *new) 370 { 371 struct rb_node **p = &ci->i_caps.rb_node; 372 struct rb_node *parent = NULL; 373 struct ceph_cap *cap = NULL; 374 375 while (*p) { 376 parent = *p; 377 cap = rb_entry(parent, struct ceph_cap, ci_node); 378 if (new->mds < cap->mds) 379 p = &(*p)->rb_left; 380 else if (new->mds > cap->mds) 381 p = &(*p)->rb_right; 382 else 383 BUG(); 384 } 385 386 rb_link_node(&new->ci_node, parent, p); 387 rb_insert_color(&new->ci_node, &ci->i_caps); 388 } 389 390 /* 391 * (re)set cap hold timeouts, which control the delayed release 392 * of unused caps back to the MDS. Should be called on cap use. 393 */ 394 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 395 struct ceph_inode_info *ci) 396 { 397 struct ceph_mount_args *ma = mdsc->client->mount_args; 398 399 ci->i_hold_caps_min = round_jiffies(jiffies + 400 ma->caps_wanted_delay_min * HZ); 401 ci->i_hold_caps_max = round_jiffies(jiffies + 402 ma->caps_wanted_delay_max * HZ); 403 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 404 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 405 } 406 407 /* 408 * (Re)queue cap at the end of the delayed cap release list. 409 * 410 * If I_FLUSH is set, leave the inode at the front of the list. 411 * 412 * Caller holds i_lock 413 * -> we take mdsc->cap_delay_lock 414 */ 415 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 416 struct ceph_inode_info *ci) 417 { 418 __cap_set_timeouts(mdsc, ci); 419 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 420 ci->i_ceph_flags, ci->i_hold_caps_max); 421 if (!mdsc->stopping) { 422 spin_lock(&mdsc->cap_delay_lock); 423 if (!list_empty(&ci->i_cap_delay_list)) { 424 if (ci->i_ceph_flags & CEPH_I_FLUSH) 425 goto no_change; 426 list_del_init(&ci->i_cap_delay_list); 427 } 428 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 429 no_change: 430 spin_unlock(&mdsc->cap_delay_lock); 431 } 432 } 433 434 /* 435 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 436 * indicating we should send a cap message to flush dirty metadata 437 * asap, and move to the front of the delayed cap list. 438 */ 439 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 440 struct ceph_inode_info *ci) 441 { 442 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 443 spin_lock(&mdsc->cap_delay_lock); 444 ci->i_ceph_flags |= CEPH_I_FLUSH; 445 if (!list_empty(&ci->i_cap_delay_list)) 446 list_del_init(&ci->i_cap_delay_list); 447 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 448 spin_unlock(&mdsc->cap_delay_lock); 449 } 450 451 /* 452 * Cancel delayed work on cap. 453 * 454 * Caller must hold i_lock. 455 */ 456 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 457 struct ceph_inode_info *ci) 458 { 459 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 460 if (list_empty(&ci->i_cap_delay_list)) 461 return; 462 spin_lock(&mdsc->cap_delay_lock); 463 list_del_init(&ci->i_cap_delay_list); 464 spin_unlock(&mdsc->cap_delay_lock); 465 } 466 467 /* 468 * Common issue checks for add_cap, handle_cap_grant. 469 */ 470 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 471 unsigned issued) 472 { 473 unsigned had = __ceph_caps_issued(ci, NULL); 474 475 /* 476 * Each time we receive FILE_CACHE anew, we increment 477 * i_rdcache_gen. 478 */ 479 if ((issued & CEPH_CAP_FILE_CACHE) && 480 (had & CEPH_CAP_FILE_CACHE) == 0) 481 ci->i_rdcache_gen++; 482 483 /* 484 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 485 * don't know what happened to this directory while we didn't 486 * have the cap. 487 */ 488 if ((issued & CEPH_CAP_FILE_SHARED) && 489 (had & CEPH_CAP_FILE_SHARED) == 0) { 490 ci->i_shared_gen++; 491 if (S_ISDIR(ci->vfs_inode.i_mode)) { 492 dout(" marking %p NOT complete\n", &ci->vfs_inode); 493 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 494 } 495 } 496 } 497 498 /* 499 * Add a capability under the given MDS session. 500 * 501 * Caller should hold session snap_rwsem (read) and s_mutex. 502 * 503 * @fmode is the open file mode, if we are opening a file, otherwise 504 * it is < 0. (This is so we can atomically add the cap and add an 505 * open file reference to it.) 506 */ 507 int ceph_add_cap(struct inode *inode, 508 struct ceph_mds_session *session, u64 cap_id, 509 int fmode, unsigned issued, unsigned wanted, 510 unsigned seq, unsigned mseq, u64 realmino, int flags, 511 struct ceph_cap_reservation *caps_reservation) 512 { 513 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 514 struct ceph_inode_info *ci = ceph_inode(inode); 515 struct ceph_cap *new_cap = NULL; 516 struct ceph_cap *cap; 517 int mds = session->s_mds; 518 int actual_wanted; 519 520 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 521 session->s_mds, cap_id, ceph_cap_string(issued), seq); 522 523 /* 524 * If we are opening the file, include file mode wanted bits 525 * in wanted. 526 */ 527 if (fmode >= 0) 528 wanted |= ceph_caps_for_mode(fmode); 529 530 retry: 531 spin_lock(&inode->i_lock); 532 cap = __get_cap_for_mds(ci, mds); 533 if (!cap) { 534 if (new_cap) { 535 cap = new_cap; 536 new_cap = NULL; 537 } else { 538 spin_unlock(&inode->i_lock); 539 new_cap = get_cap(caps_reservation); 540 if (new_cap == NULL) 541 return -ENOMEM; 542 goto retry; 543 } 544 545 cap->issued = 0; 546 cap->implemented = 0; 547 cap->mds = mds; 548 cap->mds_wanted = 0; 549 550 cap->ci = ci; 551 __insert_cap_node(ci, cap); 552 553 /* clear out old exporting info? (i.e. on cap import) */ 554 if (ci->i_cap_exporting_mds == mds) { 555 ci->i_cap_exporting_issued = 0; 556 ci->i_cap_exporting_mseq = 0; 557 ci->i_cap_exporting_mds = -1; 558 } 559 560 /* add to session cap list */ 561 cap->session = session; 562 spin_lock(&session->s_cap_lock); 563 list_add_tail(&cap->session_caps, &session->s_caps); 564 session->s_nr_caps++; 565 spin_unlock(&session->s_cap_lock); 566 } 567 568 if (!ci->i_snap_realm) { 569 /* 570 * add this inode to the appropriate snap realm 571 */ 572 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 573 realmino); 574 if (realm) { 575 ceph_get_snap_realm(mdsc, realm); 576 spin_lock(&realm->inodes_with_caps_lock); 577 ci->i_snap_realm = realm; 578 list_add(&ci->i_snap_realm_item, 579 &realm->inodes_with_caps); 580 spin_unlock(&realm->inodes_with_caps_lock); 581 } else { 582 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 583 realmino); 584 } 585 } 586 587 __check_cap_issue(ci, cap, issued); 588 589 /* 590 * If we are issued caps we don't want, or the mds' wanted 591 * value appears to be off, queue a check so we'll release 592 * later and/or update the mds wanted value. 593 */ 594 actual_wanted = __ceph_caps_wanted(ci); 595 if ((wanted & ~actual_wanted) || 596 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 597 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 598 ceph_cap_string(issued), ceph_cap_string(wanted), 599 ceph_cap_string(actual_wanted)); 600 __cap_delay_requeue(mdsc, ci); 601 } 602 603 if (flags & CEPH_CAP_FLAG_AUTH) 604 ci->i_auth_cap = cap; 605 else if (ci->i_auth_cap == cap) 606 ci->i_auth_cap = NULL; 607 608 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 609 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 610 ceph_cap_string(issued|cap->issued), seq, mds); 611 cap->cap_id = cap_id; 612 cap->issued = issued; 613 cap->implemented |= issued; 614 cap->mds_wanted |= wanted; 615 cap->seq = seq; 616 cap->issue_seq = seq; 617 cap->mseq = mseq; 618 cap->cap_gen = session->s_cap_gen; 619 620 if (fmode >= 0) 621 __ceph_get_fmode(ci, fmode); 622 spin_unlock(&inode->i_lock); 623 wake_up(&ci->i_cap_wq); 624 return 0; 625 } 626 627 /* 628 * Return true if cap has not timed out and belongs to the current 629 * generation of the MDS session (i.e. has not gone 'stale' due to 630 * us losing touch with the mds). 631 */ 632 static int __cap_is_valid(struct ceph_cap *cap) 633 { 634 unsigned long ttl; 635 u32 gen; 636 637 spin_lock(&cap->session->s_cap_lock); 638 gen = cap->session->s_cap_gen; 639 ttl = cap->session->s_cap_ttl; 640 spin_unlock(&cap->session->s_cap_lock); 641 642 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 643 dout("__cap_is_valid %p cap %p issued %s " 644 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 645 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 646 return 0; 647 } 648 649 return 1; 650 } 651 652 /* 653 * Return set of valid cap bits issued to us. Note that caps time 654 * out, and may be invalidated in bulk if the client session times out 655 * and session->s_cap_gen is bumped. 656 */ 657 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 658 { 659 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 660 struct ceph_cap *cap; 661 struct rb_node *p; 662 663 if (implemented) 664 *implemented = 0; 665 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 666 cap = rb_entry(p, struct ceph_cap, ci_node); 667 if (!__cap_is_valid(cap)) 668 continue; 669 dout("__ceph_caps_issued %p cap %p issued %s\n", 670 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 671 have |= cap->issued; 672 if (implemented) 673 *implemented |= cap->implemented; 674 } 675 return have; 676 } 677 678 /* 679 * Get cap bits issued by caps other than @ocap 680 */ 681 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 682 { 683 int have = ci->i_snap_caps; 684 struct ceph_cap *cap; 685 struct rb_node *p; 686 687 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 688 cap = rb_entry(p, struct ceph_cap, ci_node); 689 if (cap == ocap) 690 continue; 691 if (!__cap_is_valid(cap)) 692 continue; 693 have |= cap->issued; 694 } 695 return have; 696 } 697 698 /* 699 * Move a cap to the end of the LRU (oldest caps at list head, newest 700 * at list tail). 701 */ 702 static void __touch_cap(struct ceph_cap *cap) 703 { 704 struct ceph_mds_session *s = cap->session; 705 706 spin_lock(&s->s_cap_lock); 707 if (s->s_cap_iterator == NULL) { 708 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 709 s->s_mds); 710 list_move_tail(&cap->session_caps, &s->s_caps); 711 } else { 712 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 713 &cap->ci->vfs_inode, cap, s->s_mds); 714 } 715 spin_unlock(&s->s_cap_lock); 716 } 717 718 /* 719 * Check if we hold the given mask. If so, move the cap(s) to the 720 * front of their respective LRUs. (This is the preferred way for 721 * callers to check for caps they want.) 722 */ 723 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 724 { 725 struct ceph_cap *cap; 726 struct rb_node *p; 727 int have = ci->i_snap_caps; 728 729 if ((have & mask) == mask) { 730 dout("__ceph_caps_issued_mask %p snap issued %s" 731 " (mask %s)\n", &ci->vfs_inode, 732 ceph_cap_string(have), 733 ceph_cap_string(mask)); 734 return 1; 735 } 736 737 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 738 cap = rb_entry(p, struct ceph_cap, ci_node); 739 if (!__cap_is_valid(cap)) 740 continue; 741 if ((cap->issued & mask) == mask) { 742 dout("__ceph_caps_issued_mask %p cap %p issued %s" 743 " (mask %s)\n", &ci->vfs_inode, cap, 744 ceph_cap_string(cap->issued), 745 ceph_cap_string(mask)); 746 if (touch) 747 __touch_cap(cap); 748 return 1; 749 } 750 751 /* does a combination of caps satisfy mask? */ 752 have |= cap->issued; 753 if ((have & mask) == mask) { 754 dout("__ceph_caps_issued_mask %p combo issued %s" 755 " (mask %s)\n", &ci->vfs_inode, 756 ceph_cap_string(cap->issued), 757 ceph_cap_string(mask)); 758 if (touch) { 759 struct rb_node *q; 760 761 /* touch this + preceeding caps */ 762 __touch_cap(cap); 763 for (q = rb_first(&ci->i_caps); q != p; 764 q = rb_next(q)) { 765 cap = rb_entry(q, struct ceph_cap, 766 ci_node); 767 if (!__cap_is_valid(cap)) 768 continue; 769 __touch_cap(cap); 770 } 771 } 772 return 1; 773 } 774 } 775 776 return 0; 777 } 778 779 /* 780 * Return true if mask caps are currently being revoked by an MDS. 781 */ 782 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 783 { 784 struct inode *inode = &ci->vfs_inode; 785 struct ceph_cap *cap; 786 struct rb_node *p; 787 int ret = 0; 788 789 spin_lock(&inode->i_lock); 790 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 791 cap = rb_entry(p, struct ceph_cap, ci_node); 792 if (__cap_is_valid(cap) && 793 (cap->implemented & ~cap->issued & mask)) { 794 ret = 1; 795 break; 796 } 797 } 798 spin_unlock(&inode->i_lock); 799 dout("ceph_caps_revoking %p %s = %d\n", inode, 800 ceph_cap_string(mask), ret); 801 return ret; 802 } 803 804 int __ceph_caps_used(struct ceph_inode_info *ci) 805 { 806 int used = 0; 807 if (ci->i_pin_ref) 808 used |= CEPH_CAP_PIN; 809 if (ci->i_rd_ref) 810 used |= CEPH_CAP_FILE_RD; 811 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 812 used |= CEPH_CAP_FILE_CACHE; 813 if (ci->i_wr_ref) 814 used |= CEPH_CAP_FILE_WR; 815 if (ci->i_wrbuffer_ref) 816 used |= CEPH_CAP_FILE_BUFFER; 817 return used; 818 } 819 820 /* 821 * wanted, by virtue of open file modes 822 */ 823 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 824 { 825 int want = 0; 826 int mode; 827 for (mode = 0; mode < 4; mode++) 828 if (ci->i_nr_by_mode[mode]) 829 want |= ceph_caps_for_mode(mode); 830 return want; 831 } 832 833 /* 834 * Return caps we have registered with the MDS(s) as 'wanted'. 835 */ 836 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 837 { 838 struct ceph_cap *cap; 839 struct rb_node *p; 840 int mds_wanted = 0; 841 842 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 843 cap = rb_entry(p, struct ceph_cap, ci_node); 844 if (!__cap_is_valid(cap)) 845 continue; 846 mds_wanted |= cap->mds_wanted; 847 } 848 return mds_wanted; 849 } 850 851 /* 852 * called under i_lock 853 */ 854 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 855 { 856 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 857 } 858 859 /* 860 * caller should hold i_lock. 861 * caller will not hold session s_mutex if called from destroy_inode. 862 */ 863 void __ceph_remove_cap(struct ceph_cap *cap) 864 { 865 struct ceph_mds_session *session = cap->session; 866 struct ceph_inode_info *ci = cap->ci; 867 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 868 869 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 870 871 /* remove from inode list */ 872 rb_erase(&cap->ci_node, &ci->i_caps); 873 cap->ci = NULL; 874 if (ci->i_auth_cap == cap) 875 ci->i_auth_cap = NULL; 876 877 /* remove from session list */ 878 spin_lock(&session->s_cap_lock); 879 if (session->s_cap_iterator == cap) { 880 /* not yet, we are iterating over this very cap */ 881 dout("__ceph_remove_cap delaying %p removal from session %p\n", 882 cap, cap->session); 883 } else { 884 list_del_init(&cap->session_caps); 885 session->s_nr_caps--; 886 cap->session = NULL; 887 } 888 spin_unlock(&session->s_cap_lock); 889 890 if (cap->session == NULL) 891 ceph_put_cap(cap); 892 893 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 894 struct ceph_snap_realm *realm = ci->i_snap_realm; 895 spin_lock(&realm->inodes_with_caps_lock); 896 list_del_init(&ci->i_snap_realm_item); 897 ci->i_snap_realm_counter++; 898 ci->i_snap_realm = NULL; 899 spin_unlock(&realm->inodes_with_caps_lock); 900 ceph_put_snap_realm(mdsc, realm); 901 } 902 if (!__ceph_is_any_real_caps(ci)) 903 __cap_delay_cancel(mdsc, ci); 904 } 905 906 /* 907 * Build and send a cap message to the given MDS. 908 * 909 * Caller should be holding s_mutex. 910 */ 911 static int send_cap_msg(struct ceph_mds_session *session, 912 u64 ino, u64 cid, int op, 913 int caps, int wanted, int dirty, 914 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 915 u64 size, u64 max_size, 916 struct timespec *mtime, struct timespec *atime, 917 u64 time_warp_seq, 918 uid_t uid, gid_t gid, mode_t mode, 919 u64 xattr_version, 920 struct ceph_buffer *xattrs_buf, 921 u64 follows) 922 { 923 struct ceph_mds_caps *fc; 924 struct ceph_msg *msg; 925 926 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 927 " seq %u/%u mseq %u follows %lld size %llu/%llu" 928 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 929 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 930 ceph_cap_string(dirty), 931 seq, issue_seq, mseq, follows, size, max_size, 932 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 933 934 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL); 935 if (IS_ERR(msg)) 936 return PTR_ERR(msg); 937 938 msg->hdr.tid = cpu_to_le64(flush_tid); 939 940 fc = msg->front.iov_base; 941 memset(fc, 0, sizeof(*fc)); 942 943 fc->cap_id = cpu_to_le64(cid); 944 fc->op = cpu_to_le32(op); 945 fc->seq = cpu_to_le32(seq); 946 fc->issue_seq = cpu_to_le32(issue_seq); 947 fc->migrate_seq = cpu_to_le32(mseq); 948 fc->caps = cpu_to_le32(caps); 949 fc->wanted = cpu_to_le32(wanted); 950 fc->dirty = cpu_to_le32(dirty); 951 fc->ino = cpu_to_le64(ino); 952 fc->snap_follows = cpu_to_le64(follows); 953 954 fc->size = cpu_to_le64(size); 955 fc->max_size = cpu_to_le64(max_size); 956 if (mtime) 957 ceph_encode_timespec(&fc->mtime, mtime); 958 if (atime) 959 ceph_encode_timespec(&fc->atime, atime); 960 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 961 962 fc->uid = cpu_to_le32(uid); 963 fc->gid = cpu_to_le32(gid); 964 fc->mode = cpu_to_le32(mode); 965 966 fc->xattr_version = cpu_to_le64(xattr_version); 967 if (xattrs_buf) { 968 msg->middle = ceph_buffer_get(xattrs_buf); 969 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 970 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 971 } 972 973 ceph_con_send(&session->s_con, msg); 974 return 0; 975 } 976 977 /* 978 * Queue cap releases when an inode is dropped from our cache. Since 979 * inode is about to be destroyed, there is no need for i_lock. 980 */ 981 void ceph_queue_caps_release(struct inode *inode) 982 { 983 struct ceph_inode_info *ci = ceph_inode(inode); 984 struct rb_node *p; 985 986 p = rb_first(&ci->i_caps); 987 while (p) { 988 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 989 struct ceph_mds_session *session = cap->session; 990 struct ceph_msg *msg; 991 struct ceph_mds_cap_release *head; 992 struct ceph_mds_cap_item *item; 993 994 spin_lock(&session->s_cap_lock); 995 BUG_ON(!session->s_num_cap_releases); 996 msg = list_first_entry(&session->s_cap_releases, 997 struct ceph_msg, list_head); 998 999 dout(" adding %p release to mds%d msg %p (%d left)\n", 1000 inode, session->s_mds, msg, session->s_num_cap_releases); 1001 1002 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1003 head = msg->front.iov_base; 1004 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1005 item = msg->front.iov_base + msg->front.iov_len; 1006 item->ino = cpu_to_le64(ceph_ino(inode)); 1007 item->cap_id = cpu_to_le64(cap->cap_id); 1008 item->migrate_seq = cpu_to_le32(cap->mseq); 1009 item->seq = cpu_to_le32(cap->issue_seq); 1010 1011 session->s_num_cap_releases--; 1012 1013 msg->front.iov_len += sizeof(*item); 1014 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1015 dout(" release msg %p full\n", msg); 1016 list_move_tail(&msg->list_head, 1017 &session->s_cap_releases_done); 1018 } else { 1019 dout(" release msg %p at %d/%d (%d)\n", msg, 1020 (int)le32_to_cpu(head->num), 1021 (int)CEPH_CAPS_PER_RELEASE, 1022 (int)msg->front.iov_len); 1023 } 1024 spin_unlock(&session->s_cap_lock); 1025 p = rb_next(p); 1026 __ceph_remove_cap(cap); 1027 } 1028 } 1029 1030 /* 1031 * Send a cap msg on the given inode. Update our caps state, then 1032 * drop i_lock and send the message. 1033 * 1034 * Make note of max_size reported/requested from mds, revoked caps 1035 * that have now been implemented. 1036 * 1037 * Make half-hearted attempt ot to invalidate page cache if we are 1038 * dropping RDCACHE. Note that this will leave behind locked pages 1039 * that we'll then need to deal with elsewhere. 1040 * 1041 * Return non-zero if delayed release, or we experienced an error 1042 * such that the caller should requeue + retry later. 1043 * 1044 * called with i_lock, then drops it. 1045 * caller should hold snap_rwsem (read), s_mutex. 1046 */ 1047 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1048 int op, int used, int want, int retain, int flushing, 1049 unsigned *pflush_tid) 1050 __releases(cap->ci->vfs_inode->i_lock) 1051 { 1052 struct ceph_inode_info *ci = cap->ci; 1053 struct inode *inode = &ci->vfs_inode; 1054 u64 cap_id = cap->cap_id; 1055 int held, revoking, dropping, keep; 1056 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1057 u64 size, max_size; 1058 struct timespec mtime, atime; 1059 int wake = 0; 1060 mode_t mode; 1061 uid_t uid; 1062 gid_t gid; 1063 struct ceph_mds_session *session; 1064 u64 xattr_version = 0; 1065 int delayed = 0; 1066 u64 flush_tid = 0; 1067 int i; 1068 int ret; 1069 1070 held = cap->issued | cap->implemented; 1071 revoking = cap->implemented & ~cap->issued; 1072 retain &= ~revoking; 1073 dropping = cap->issued & ~retain; 1074 1075 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1076 inode, cap, cap->session, 1077 ceph_cap_string(held), ceph_cap_string(held & retain), 1078 ceph_cap_string(revoking)); 1079 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1080 1081 session = cap->session; 1082 1083 /* don't release wanted unless we've waited a bit. */ 1084 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1085 time_before(jiffies, ci->i_hold_caps_min)) { 1086 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1087 ceph_cap_string(cap->issued), 1088 ceph_cap_string(cap->issued & retain), 1089 ceph_cap_string(cap->mds_wanted), 1090 ceph_cap_string(want)); 1091 want |= cap->mds_wanted; 1092 retain |= cap->issued; 1093 delayed = 1; 1094 } 1095 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1096 1097 cap->issued &= retain; /* drop bits we don't want */ 1098 if (cap->implemented & ~cap->issued) { 1099 /* 1100 * Wake up any waiters on wanted -> needed transition. 1101 * This is due to the weird transition from buffered 1102 * to sync IO... we need to flush dirty pages _before_ 1103 * allowing sync writes to avoid reordering. 1104 */ 1105 wake = 1; 1106 } 1107 cap->implemented &= cap->issued | used; 1108 cap->mds_wanted = want; 1109 1110 if (flushing) { 1111 /* 1112 * assign a tid for flush operations so we can avoid 1113 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1114 * clean type races. track latest tid for every bit 1115 * so we can handle flush AxFw, flush Fw, and have the 1116 * first ack clean Ax. 1117 */ 1118 flush_tid = ++ci->i_cap_flush_last_tid; 1119 if (pflush_tid) 1120 *pflush_tid = flush_tid; 1121 dout(" cap_flush_tid %d\n", (int)flush_tid); 1122 for (i = 0; i < CEPH_CAP_BITS; i++) 1123 if (flushing & (1 << i)) 1124 ci->i_cap_flush_tid[i] = flush_tid; 1125 } 1126 1127 keep = cap->implemented; 1128 seq = cap->seq; 1129 issue_seq = cap->issue_seq; 1130 mseq = cap->mseq; 1131 size = inode->i_size; 1132 ci->i_reported_size = size; 1133 max_size = ci->i_wanted_max_size; 1134 ci->i_requested_max_size = max_size; 1135 mtime = inode->i_mtime; 1136 atime = inode->i_atime; 1137 time_warp_seq = ci->i_time_warp_seq; 1138 follows = ci->i_snap_realm->cached_context->seq; 1139 uid = inode->i_uid; 1140 gid = inode->i_gid; 1141 mode = inode->i_mode; 1142 1143 if (dropping & CEPH_CAP_XATTR_EXCL) { 1144 __ceph_build_xattrs_blob(ci); 1145 xattr_version = ci->i_xattrs.version + 1; 1146 } 1147 1148 spin_unlock(&inode->i_lock); 1149 1150 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1151 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1152 size, max_size, &mtime, &atime, time_warp_seq, 1153 uid, gid, mode, 1154 xattr_version, 1155 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1156 follows); 1157 if (ret < 0) { 1158 dout("error sending cap msg, must requeue %p\n", inode); 1159 delayed = 1; 1160 } 1161 1162 if (wake) 1163 wake_up(&ci->i_cap_wq); 1164 1165 return delayed; 1166 } 1167 1168 /* 1169 * When a snapshot is taken, clients accumulate dirty metadata on 1170 * inodes with capabilities in ceph_cap_snaps to describe the file 1171 * state at the time the snapshot was taken. This must be flushed 1172 * asynchronously back to the MDS once sync writes complete and dirty 1173 * data is written out. 1174 * 1175 * Called under i_lock. Takes s_mutex as needed. 1176 */ 1177 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1178 struct ceph_mds_session **psession) 1179 { 1180 struct inode *inode = &ci->vfs_inode; 1181 int mds; 1182 struct ceph_cap_snap *capsnap; 1183 u32 mseq; 1184 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1185 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1186 session->s_mutex */ 1187 u64 next_follows = 0; /* keep track of how far we've gotten through the 1188 i_cap_snaps list, and skip these entries next time 1189 around to avoid an infinite loop */ 1190 1191 if (psession) 1192 session = *psession; 1193 1194 dout("__flush_snaps %p\n", inode); 1195 retry: 1196 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1197 /* avoid an infiniute loop after retry */ 1198 if (capsnap->follows < next_follows) 1199 continue; 1200 /* 1201 * we need to wait for sync writes to complete and for dirty 1202 * pages to be written out. 1203 */ 1204 if (capsnap->dirty_pages || capsnap->writing) 1205 continue; 1206 1207 /* pick mds, take s_mutex */ 1208 mds = __ceph_get_cap_mds(ci, &mseq); 1209 if (session && session->s_mds != mds) { 1210 dout("oops, wrong session %p mutex\n", session); 1211 mutex_unlock(&session->s_mutex); 1212 ceph_put_mds_session(session); 1213 session = NULL; 1214 } 1215 if (!session) { 1216 spin_unlock(&inode->i_lock); 1217 mutex_lock(&mdsc->mutex); 1218 session = __ceph_lookup_mds_session(mdsc, mds); 1219 mutex_unlock(&mdsc->mutex); 1220 if (session) { 1221 dout("inverting session/ino locks on %p\n", 1222 session); 1223 mutex_lock(&session->s_mutex); 1224 } 1225 /* 1226 * if session == NULL, we raced against a cap 1227 * deletion. retry, and we'll get a better 1228 * @mds value next time. 1229 */ 1230 spin_lock(&inode->i_lock); 1231 goto retry; 1232 } 1233 1234 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1235 atomic_inc(&capsnap->nref); 1236 if (!list_empty(&capsnap->flushing_item)) 1237 list_del_init(&capsnap->flushing_item); 1238 list_add_tail(&capsnap->flushing_item, 1239 &session->s_cap_snaps_flushing); 1240 spin_unlock(&inode->i_lock); 1241 1242 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1243 inode, capsnap, next_follows, capsnap->size); 1244 send_cap_msg(session, ceph_vino(inode).ino, 0, 1245 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1246 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1247 capsnap->size, 0, 1248 &capsnap->mtime, &capsnap->atime, 1249 capsnap->time_warp_seq, 1250 capsnap->uid, capsnap->gid, capsnap->mode, 1251 0, NULL, 1252 capsnap->follows); 1253 1254 next_follows = capsnap->follows + 1; 1255 ceph_put_cap_snap(capsnap); 1256 1257 spin_lock(&inode->i_lock); 1258 goto retry; 1259 } 1260 1261 /* we flushed them all; remove this inode from the queue */ 1262 spin_lock(&mdsc->snap_flush_lock); 1263 list_del_init(&ci->i_snap_flush_item); 1264 spin_unlock(&mdsc->snap_flush_lock); 1265 1266 if (psession) 1267 *psession = session; 1268 else if (session) { 1269 mutex_unlock(&session->s_mutex); 1270 ceph_put_mds_session(session); 1271 } 1272 } 1273 1274 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1275 { 1276 struct inode *inode = &ci->vfs_inode; 1277 1278 spin_lock(&inode->i_lock); 1279 __ceph_flush_snaps(ci, NULL); 1280 spin_unlock(&inode->i_lock); 1281 } 1282 1283 /* 1284 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1285 * list. 1286 */ 1287 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1288 { 1289 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 1290 struct inode *inode = &ci->vfs_inode; 1291 int was = ci->i_dirty_caps; 1292 int dirty = 0; 1293 1294 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1295 ceph_cap_string(mask), ceph_cap_string(was), 1296 ceph_cap_string(was | mask)); 1297 ci->i_dirty_caps |= mask; 1298 if (was == 0) { 1299 dout(" inode %p now dirty\n", &ci->vfs_inode); 1300 BUG_ON(!list_empty(&ci->i_dirty_item)); 1301 spin_lock(&mdsc->cap_dirty_lock); 1302 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1303 spin_unlock(&mdsc->cap_dirty_lock); 1304 if (ci->i_flushing_caps == 0) { 1305 igrab(inode); 1306 dirty |= I_DIRTY_SYNC; 1307 } 1308 } 1309 BUG_ON(list_empty(&ci->i_dirty_item)); 1310 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1311 (mask & CEPH_CAP_FILE_BUFFER)) 1312 dirty |= I_DIRTY_DATASYNC; 1313 if (dirty) 1314 __mark_inode_dirty(inode, dirty); 1315 __cap_delay_requeue(mdsc, ci); 1316 } 1317 1318 /* 1319 * Add dirty inode to the flushing list. Assigned a seq number so we 1320 * can wait for caps to flush without starving. 1321 * 1322 * Called under i_lock. 1323 */ 1324 static int __mark_caps_flushing(struct inode *inode, 1325 struct ceph_mds_session *session) 1326 { 1327 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1328 struct ceph_inode_info *ci = ceph_inode(inode); 1329 int flushing; 1330 1331 BUG_ON(ci->i_dirty_caps == 0); 1332 BUG_ON(list_empty(&ci->i_dirty_item)); 1333 1334 flushing = ci->i_dirty_caps; 1335 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1336 ceph_cap_string(flushing), 1337 ceph_cap_string(ci->i_flushing_caps), 1338 ceph_cap_string(ci->i_flushing_caps | flushing)); 1339 ci->i_flushing_caps |= flushing; 1340 ci->i_dirty_caps = 0; 1341 dout(" inode %p now !dirty\n", inode); 1342 1343 spin_lock(&mdsc->cap_dirty_lock); 1344 list_del_init(&ci->i_dirty_item); 1345 1346 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1347 if (list_empty(&ci->i_flushing_item)) { 1348 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1349 mdsc->num_cap_flushing++; 1350 dout(" inode %p now flushing seq %lld\n", inode, 1351 ci->i_cap_flush_seq); 1352 } else { 1353 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1354 dout(" inode %p now flushing (more) seq %lld\n", inode, 1355 ci->i_cap_flush_seq); 1356 } 1357 spin_unlock(&mdsc->cap_dirty_lock); 1358 1359 return flushing; 1360 } 1361 1362 /* 1363 * try to invalidate mapping pages without blocking. 1364 */ 1365 static int mapping_is_empty(struct address_space *mapping) 1366 { 1367 struct page *page = find_get_page(mapping, 0); 1368 1369 if (!page) 1370 return 1; 1371 1372 put_page(page); 1373 return 0; 1374 } 1375 1376 static int try_nonblocking_invalidate(struct inode *inode) 1377 { 1378 struct ceph_inode_info *ci = ceph_inode(inode); 1379 u32 invalidating_gen = ci->i_rdcache_gen; 1380 1381 spin_unlock(&inode->i_lock); 1382 invalidate_mapping_pages(&inode->i_data, 0, -1); 1383 spin_lock(&inode->i_lock); 1384 1385 if (mapping_is_empty(&inode->i_data) && 1386 invalidating_gen == ci->i_rdcache_gen) { 1387 /* success. */ 1388 dout("try_nonblocking_invalidate %p success\n", inode); 1389 ci->i_rdcache_gen = 0; 1390 ci->i_rdcache_revoking = 0; 1391 return 0; 1392 } 1393 dout("try_nonblocking_invalidate %p failed\n", inode); 1394 return -1; 1395 } 1396 1397 /* 1398 * Swiss army knife function to examine currently used and wanted 1399 * versus held caps. Release, flush, ack revoked caps to mds as 1400 * appropriate. 1401 * 1402 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1403 * cap release further. 1404 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1405 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1406 * further delay. 1407 */ 1408 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1409 struct ceph_mds_session *session) 1410 __releases(session->s_mutex) 1411 { 1412 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1413 struct ceph_mds_client *mdsc = &client->mdsc; 1414 struct inode *inode = &ci->vfs_inode; 1415 struct ceph_cap *cap; 1416 int file_wanted, used; 1417 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1418 int issued, implemented, want, retain, revoking, flushing = 0; 1419 int mds = -1; /* keep track of how far we've gone through i_caps list 1420 to avoid an infinite loop on retry */ 1421 struct rb_node *p; 1422 int tried_invalidate = 0; 1423 int delayed = 0, sent = 0, force_requeue = 0, num; 1424 int queue_invalidate = 0; 1425 int is_delayed = flags & CHECK_CAPS_NODELAY; 1426 1427 /* if we are unmounting, flush any unused caps immediately. */ 1428 if (mdsc->stopping) 1429 is_delayed = 1; 1430 1431 spin_lock(&inode->i_lock); 1432 1433 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1434 flags |= CHECK_CAPS_FLUSH; 1435 1436 /* flush snaps first time around only */ 1437 if (!list_empty(&ci->i_cap_snaps)) 1438 __ceph_flush_snaps(ci, &session); 1439 goto retry_locked; 1440 retry: 1441 spin_lock(&inode->i_lock); 1442 retry_locked: 1443 file_wanted = __ceph_caps_file_wanted(ci); 1444 used = __ceph_caps_used(ci); 1445 want = file_wanted | used; 1446 issued = __ceph_caps_issued(ci, &implemented); 1447 revoking = implemented & ~issued; 1448 1449 retain = want | CEPH_CAP_PIN; 1450 if (!mdsc->stopping && inode->i_nlink > 0) { 1451 if (want) { 1452 retain |= CEPH_CAP_ANY; /* be greedy */ 1453 } else { 1454 retain |= CEPH_CAP_ANY_SHARED; 1455 /* 1456 * keep RD only if we didn't have the file open RW, 1457 * because then the mds would revoke it anyway to 1458 * journal max_size=0. 1459 */ 1460 if (ci->i_max_size == 0) 1461 retain |= CEPH_CAP_ANY_RD; 1462 } 1463 } 1464 1465 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1466 " issued %s revoking %s retain %s %s%s%s\n", inode, 1467 ceph_cap_string(file_wanted), 1468 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1469 ceph_cap_string(ci->i_flushing_caps), 1470 ceph_cap_string(issued), ceph_cap_string(revoking), 1471 ceph_cap_string(retain), 1472 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1473 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1474 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1475 1476 /* 1477 * If we no longer need to hold onto old our caps, and we may 1478 * have cached pages, but don't want them, then try to invalidate. 1479 * If we fail, it's because pages are locked.... try again later. 1480 */ 1481 if ((!is_delayed || mdsc->stopping) && 1482 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1483 ci->i_rdcache_gen && /* may have cached pages */ 1484 (file_wanted == 0 || /* no open files */ 1485 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ 1486 !tried_invalidate) { 1487 dout("check_caps trying to invalidate on %p\n", inode); 1488 if (try_nonblocking_invalidate(inode) < 0) { 1489 if (revoking & CEPH_CAP_FILE_CACHE) { 1490 dout("check_caps queuing invalidate\n"); 1491 queue_invalidate = 1; 1492 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1493 } else { 1494 dout("check_caps failed to invalidate pages\n"); 1495 /* we failed to invalidate pages. check these 1496 caps again later. */ 1497 force_requeue = 1; 1498 __cap_set_timeouts(mdsc, ci); 1499 } 1500 } 1501 tried_invalidate = 1; 1502 goto retry_locked; 1503 } 1504 1505 num = 0; 1506 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1507 cap = rb_entry(p, struct ceph_cap, ci_node); 1508 num++; 1509 1510 /* avoid looping forever */ 1511 if (mds >= cap->mds || 1512 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1513 continue; 1514 1515 /* NOTE: no side-effects allowed, until we take s_mutex */ 1516 1517 revoking = cap->implemented & ~cap->issued; 1518 if (revoking) 1519 dout(" mds%d revoking %s\n", cap->mds, 1520 ceph_cap_string(revoking)); 1521 1522 if (cap == ci->i_auth_cap && 1523 (cap->issued & CEPH_CAP_FILE_WR)) { 1524 /* request larger max_size from MDS? */ 1525 if (ci->i_wanted_max_size > ci->i_max_size && 1526 ci->i_wanted_max_size > ci->i_requested_max_size) { 1527 dout("requesting new max_size\n"); 1528 goto ack; 1529 } 1530 1531 /* approaching file_max? */ 1532 if ((inode->i_size << 1) >= ci->i_max_size && 1533 (ci->i_reported_size << 1) < ci->i_max_size) { 1534 dout("i_size approaching max_size\n"); 1535 goto ack; 1536 } 1537 } 1538 /* flush anything dirty? */ 1539 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1540 ci->i_dirty_caps) { 1541 dout("flushing dirty caps\n"); 1542 goto ack; 1543 } 1544 1545 /* completed revocation? going down and there are no caps? */ 1546 if (revoking && (revoking & used) == 0) { 1547 dout("completed revocation of %s\n", 1548 ceph_cap_string(cap->implemented & ~cap->issued)); 1549 goto ack; 1550 } 1551 1552 /* want more caps from mds? */ 1553 if (want & ~(cap->mds_wanted | cap->issued)) 1554 goto ack; 1555 1556 /* things we might delay */ 1557 if ((cap->issued & ~retain) == 0 && 1558 cap->mds_wanted == want) 1559 continue; /* nope, all good */ 1560 1561 if (is_delayed) 1562 goto ack; 1563 1564 /* delay? */ 1565 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1566 time_before(jiffies, ci->i_hold_caps_max)) { 1567 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1568 ceph_cap_string(cap->issued), 1569 ceph_cap_string(cap->issued & retain), 1570 ceph_cap_string(cap->mds_wanted), 1571 ceph_cap_string(want)); 1572 delayed++; 1573 continue; 1574 } 1575 1576 ack: 1577 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1578 dout(" skipping %p I_NOFLUSH set\n", inode); 1579 continue; 1580 } 1581 1582 if (session && session != cap->session) { 1583 dout("oops, wrong session %p mutex\n", session); 1584 mutex_unlock(&session->s_mutex); 1585 session = NULL; 1586 } 1587 if (!session) { 1588 session = cap->session; 1589 if (mutex_trylock(&session->s_mutex) == 0) { 1590 dout("inverting session/ino locks on %p\n", 1591 session); 1592 spin_unlock(&inode->i_lock); 1593 if (took_snap_rwsem) { 1594 up_read(&mdsc->snap_rwsem); 1595 took_snap_rwsem = 0; 1596 } 1597 mutex_lock(&session->s_mutex); 1598 goto retry; 1599 } 1600 } 1601 /* take snap_rwsem after session mutex */ 1602 if (!took_snap_rwsem) { 1603 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1604 dout("inverting snap/in locks on %p\n", 1605 inode); 1606 spin_unlock(&inode->i_lock); 1607 down_read(&mdsc->snap_rwsem); 1608 took_snap_rwsem = 1; 1609 goto retry; 1610 } 1611 took_snap_rwsem = 1; 1612 } 1613 1614 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1615 flushing = __mark_caps_flushing(inode, session); 1616 1617 mds = cap->mds; /* remember mds, so we don't repeat */ 1618 sent++; 1619 1620 /* __send_cap drops i_lock */ 1621 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1622 retain, flushing, NULL); 1623 goto retry; /* retake i_lock and restart our cap scan. */ 1624 } 1625 1626 /* 1627 * Reschedule delayed caps release if we delayed anything, 1628 * otherwise cancel. 1629 */ 1630 if (delayed && is_delayed) 1631 force_requeue = 1; /* __send_cap delayed release; requeue */ 1632 if (!delayed && !is_delayed) 1633 __cap_delay_cancel(mdsc, ci); 1634 else if (!is_delayed || force_requeue) 1635 __cap_delay_requeue(mdsc, ci); 1636 1637 spin_unlock(&inode->i_lock); 1638 1639 if (queue_invalidate) 1640 ceph_queue_invalidate(inode); 1641 1642 if (session) 1643 mutex_unlock(&session->s_mutex); 1644 if (took_snap_rwsem) 1645 up_read(&mdsc->snap_rwsem); 1646 } 1647 1648 /* 1649 * Try to flush dirty caps back to the auth mds. 1650 */ 1651 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1652 unsigned *flush_tid) 1653 { 1654 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1655 struct ceph_inode_info *ci = ceph_inode(inode); 1656 int unlock_session = session ? 0 : 1; 1657 int flushing = 0; 1658 1659 retry: 1660 spin_lock(&inode->i_lock); 1661 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1662 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1663 goto out; 1664 } 1665 if (ci->i_dirty_caps && ci->i_auth_cap) { 1666 struct ceph_cap *cap = ci->i_auth_cap; 1667 int used = __ceph_caps_used(ci); 1668 int want = __ceph_caps_wanted(ci); 1669 int delayed; 1670 1671 if (!session) { 1672 spin_unlock(&inode->i_lock); 1673 session = cap->session; 1674 mutex_lock(&session->s_mutex); 1675 goto retry; 1676 } 1677 BUG_ON(session != cap->session); 1678 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1679 goto out; 1680 1681 flushing = __mark_caps_flushing(inode, session); 1682 1683 /* __send_cap drops i_lock */ 1684 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1685 cap->issued | cap->implemented, flushing, 1686 flush_tid); 1687 if (!delayed) 1688 goto out_unlocked; 1689 1690 spin_lock(&inode->i_lock); 1691 __cap_delay_requeue(mdsc, ci); 1692 } 1693 out: 1694 spin_unlock(&inode->i_lock); 1695 out_unlocked: 1696 if (session && unlock_session) 1697 mutex_unlock(&session->s_mutex); 1698 return flushing; 1699 } 1700 1701 /* 1702 * Return true if we've flushed caps through the given flush_tid. 1703 */ 1704 static int caps_are_flushed(struct inode *inode, unsigned tid) 1705 { 1706 struct ceph_inode_info *ci = ceph_inode(inode); 1707 int dirty, i, ret = 1; 1708 1709 spin_lock(&inode->i_lock); 1710 dirty = __ceph_caps_dirty(ci); 1711 for (i = 0; i < CEPH_CAP_BITS; i++) 1712 if ((ci->i_flushing_caps & (1 << i)) && 1713 ci->i_cap_flush_tid[i] <= tid) { 1714 /* still flushing this bit */ 1715 ret = 0; 1716 break; 1717 } 1718 spin_unlock(&inode->i_lock); 1719 return ret; 1720 } 1721 1722 /* 1723 * Wait on any unsafe replies for the given inode. First wait on the 1724 * newest request, and make that the upper bound. Then, if there are 1725 * more requests, keep waiting on the oldest as long as it is still older 1726 * than the original request. 1727 */ 1728 static void sync_write_wait(struct inode *inode) 1729 { 1730 struct ceph_inode_info *ci = ceph_inode(inode); 1731 struct list_head *head = &ci->i_unsafe_writes; 1732 struct ceph_osd_request *req; 1733 u64 last_tid; 1734 1735 spin_lock(&ci->i_unsafe_lock); 1736 if (list_empty(head)) 1737 goto out; 1738 1739 /* set upper bound as _last_ entry in chain */ 1740 req = list_entry(head->prev, struct ceph_osd_request, 1741 r_unsafe_item); 1742 last_tid = req->r_tid; 1743 1744 do { 1745 ceph_osdc_get_request(req); 1746 spin_unlock(&ci->i_unsafe_lock); 1747 dout("sync_write_wait on tid %llu (until %llu)\n", 1748 req->r_tid, last_tid); 1749 wait_for_completion(&req->r_safe_completion); 1750 spin_lock(&ci->i_unsafe_lock); 1751 ceph_osdc_put_request(req); 1752 1753 /* 1754 * from here on look at first entry in chain, since we 1755 * only want to wait for anything older than last_tid 1756 */ 1757 if (list_empty(head)) 1758 break; 1759 req = list_entry(head->next, struct ceph_osd_request, 1760 r_unsafe_item); 1761 } while (req->r_tid < last_tid); 1762 out: 1763 spin_unlock(&ci->i_unsafe_lock); 1764 } 1765 1766 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) 1767 { 1768 struct inode *inode = dentry->d_inode; 1769 struct ceph_inode_info *ci = ceph_inode(inode); 1770 unsigned flush_tid; 1771 int ret; 1772 int dirty; 1773 1774 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1775 sync_write_wait(inode); 1776 1777 ret = filemap_write_and_wait(inode->i_mapping); 1778 if (ret < 0) 1779 return ret; 1780 1781 dirty = try_flush_caps(inode, NULL, &flush_tid); 1782 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1783 1784 /* 1785 * only wait on non-file metadata writeback (the mds 1786 * can recover size and mtime, so we don't need to 1787 * wait for that) 1788 */ 1789 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1790 dout("fsync waiting for flush_tid %u\n", flush_tid); 1791 ret = wait_event_interruptible(ci->i_cap_wq, 1792 caps_are_flushed(inode, flush_tid)); 1793 } 1794 1795 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1796 return ret; 1797 } 1798 1799 /* 1800 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1801 * queue inode for flush but don't do so immediately, because we can 1802 * get by with fewer MDS messages if we wait for data writeback to 1803 * complete first. 1804 */ 1805 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1806 { 1807 struct ceph_inode_info *ci = ceph_inode(inode); 1808 unsigned flush_tid; 1809 int err = 0; 1810 int dirty; 1811 int wait = wbc->sync_mode == WB_SYNC_ALL; 1812 1813 dout("write_inode %p wait=%d\n", inode, wait); 1814 if (wait) { 1815 dirty = try_flush_caps(inode, NULL, &flush_tid); 1816 if (dirty) 1817 err = wait_event_interruptible(ci->i_cap_wq, 1818 caps_are_flushed(inode, flush_tid)); 1819 } else { 1820 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1821 1822 spin_lock(&inode->i_lock); 1823 if (__ceph_caps_dirty(ci)) 1824 __cap_delay_requeue_front(mdsc, ci); 1825 spin_unlock(&inode->i_lock); 1826 } 1827 return err; 1828 } 1829 1830 /* 1831 * After a recovering MDS goes active, we need to resend any caps 1832 * we were flushing. 1833 * 1834 * Caller holds session->s_mutex. 1835 */ 1836 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1837 struct ceph_mds_session *session) 1838 { 1839 struct ceph_cap_snap *capsnap; 1840 1841 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1842 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1843 flushing_item) { 1844 struct ceph_inode_info *ci = capsnap->ci; 1845 struct inode *inode = &ci->vfs_inode; 1846 struct ceph_cap *cap; 1847 1848 spin_lock(&inode->i_lock); 1849 cap = ci->i_auth_cap; 1850 if (cap && cap->session == session) { 1851 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1852 cap, capsnap); 1853 __ceph_flush_snaps(ci, &session); 1854 } else { 1855 pr_err("%p auth cap %p not mds%d ???\n", inode, 1856 cap, session->s_mds); 1857 spin_unlock(&inode->i_lock); 1858 } 1859 } 1860 } 1861 1862 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1863 struct ceph_mds_session *session) 1864 { 1865 struct ceph_inode_info *ci; 1866 1867 kick_flushing_capsnaps(mdsc, session); 1868 1869 dout("kick_flushing_caps mds%d\n", session->s_mds); 1870 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1871 struct inode *inode = &ci->vfs_inode; 1872 struct ceph_cap *cap; 1873 int delayed = 0; 1874 1875 spin_lock(&inode->i_lock); 1876 cap = ci->i_auth_cap; 1877 if (cap && cap->session == session) { 1878 dout("kick_flushing_caps %p cap %p %s\n", inode, 1879 cap, ceph_cap_string(ci->i_flushing_caps)); 1880 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1881 __ceph_caps_used(ci), 1882 __ceph_caps_wanted(ci), 1883 cap->issued | cap->implemented, 1884 ci->i_flushing_caps, NULL); 1885 if (delayed) { 1886 spin_lock(&inode->i_lock); 1887 __cap_delay_requeue(mdsc, ci); 1888 spin_unlock(&inode->i_lock); 1889 } 1890 } else { 1891 pr_err("%p auth cap %p not mds%d ???\n", inode, 1892 cap, session->s_mds); 1893 spin_unlock(&inode->i_lock); 1894 } 1895 } 1896 } 1897 1898 1899 /* 1900 * Take references to capabilities we hold, so that we don't release 1901 * them to the MDS prematurely. 1902 * 1903 * Protected by i_lock. 1904 */ 1905 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1906 { 1907 if (got & CEPH_CAP_PIN) 1908 ci->i_pin_ref++; 1909 if (got & CEPH_CAP_FILE_RD) 1910 ci->i_rd_ref++; 1911 if (got & CEPH_CAP_FILE_CACHE) 1912 ci->i_rdcache_ref++; 1913 if (got & CEPH_CAP_FILE_WR) 1914 ci->i_wr_ref++; 1915 if (got & CEPH_CAP_FILE_BUFFER) { 1916 if (ci->i_wrbuffer_ref == 0) 1917 igrab(&ci->vfs_inode); 1918 ci->i_wrbuffer_ref++; 1919 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1920 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1921 } 1922 } 1923 1924 /* 1925 * Try to grab cap references. Specify those refs we @want, and the 1926 * minimal set we @need. Also include the larger offset we are writing 1927 * to (when applicable), and check against max_size here as well. 1928 * Note that caller is responsible for ensuring max_size increases are 1929 * requested from the MDS. 1930 */ 1931 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1932 int *got, loff_t endoff, int *check_max, int *err) 1933 { 1934 struct inode *inode = &ci->vfs_inode; 1935 int ret = 0; 1936 int have, implemented; 1937 int file_wanted; 1938 1939 dout("get_cap_refs %p need %s want %s\n", inode, 1940 ceph_cap_string(need), ceph_cap_string(want)); 1941 spin_lock(&inode->i_lock); 1942 1943 /* make sure file is actually open */ 1944 file_wanted = __ceph_caps_file_wanted(ci); 1945 if ((file_wanted & need) == 0) { 1946 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1947 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1948 *err = -EBADF; 1949 ret = 1; 1950 goto out; 1951 } 1952 1953 if (need & CEPH_CAP_FILE_WR) { 1954 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1955 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1956 inode, endoff, ci->i_max_size); 1957 if (endoff > ci->i_wanted_max_size) { 1958 *check_max = 1; 1959 ret = 1; 1960 } 1961 goto out; 1962 } 1963 /* 1964 * If a sync write is in progress, we must wait, so that we 1965 * can get a final snapshot value for size+mtime. 1966 */ 1967 if (__ceph_have_pending_cap_snap(ci)) { 1968 dout("get_cap_refs %p cap_snap_pending\n", inode); 1969 goto out; 1970 } 1971 } 1972 have = __ceph_caps_issued(ci, &implemented); 1973 1974 /* 1975 * disallow writes while a truncate is pending 1976 */ 1977 if (ci->i_truncate_pending) 1978 have &= ~CEPH_CAP_FILE_WR; 1979 1980 if ((have & need) == need) { 1981 /* 1982 * Look at (implemented & ~have & not) so that we keep waiting 1983 * on transition from wanted -> needed caps. This is needed 1984 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 1985 * going before a prior buffered writeback happens. 1986 */ 1987 int not = want & ~(have & need); 1988 int revoking = implemented & ~have; 1989 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 1990 inode, ceph_cap_string(have), ceph_cap_string(not), 1991 ceph_cap_string(revoking)); 1992 if ((revoking & not) == 0) { 1993 *got = need | (have & want); 1994 __take_cap_refs(ci, *got); 1995 ret = 1; 1996 } 1997 } else { 1998 dout("get_cap_refs %p have %s needed %s\n", inode, 1999 ceph_cap_string(have), ceph_cap_string(need)); 2000 } 2001 out: 2002 spin_unlock(&inode->i_lock); 2003 dout("get_cap_refs %p ret %d got %s\n", inode, 2004 ret, ceph_cap_string(*got)); 2005 return ret; 2006 } 2007 2008 /* 2009 * Check the offset we are writing up to against our current 2010 * max_size. If necessary, tell the MDS we want to write to 2011 * a larger offset. 2012 */ 2013 static void check_max_size(struct inode *inode, loff_t endoff) 2014 { 2015 struct ceph_inode_info *ci = ceph_inode(inode); 2016 int check = 0; 2017 2018 /* do we need to explicitly request a larger max_size? */ 2019 spin_lock(&inode->i_lock); 2020 if ((endoff >= ci->i_max_size || 2021 endoff > (inode->i_size << 1)) && 2022 endoff > ci->i_wanted_max_size) { 2023 dout("write %p at large endoff %llu, req max_size\n", 2024 inode, endoff); 2025 ci->i_wanted_max_size = endoff; 2026 check = 1; 2027 } 2028 spin_unlock(&inode->i_lock); 2029 if (check) 2030 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2031 } 2032 2033 /* 2034 * Wait for caps, and take cap references. If we can't get a WR cap 2035 * due to a small max_size, make sure we check_max_size (and possibly 2036 * ask the mds) so we don't get hung up indefinitely. 2037 */ 2038 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2039 loff_t endoff) 2040 { 2041 int check_max, ret, err; 2042 2043 retry: 2044 if (endoff > 0) 2045 check_max_size(&ci->vfs_inode, endoff); 2046 check_max = 0; 2047 err = 0; 2048 ret = wait_event_interruptible(ci->i_cap_wq, 2049 try_get_cap_refs(ci, need, want, 2050 got, endoff, 2051 &check_max, &err)); 2052 if (err) 2053 ret = err; 2054 if (check_max) 2055 goto retry; 2056 return ret; 2057 } 2058 2059 /* 2060 * Take cap refs. Caller must already know we hold at least one ref 2061 * on the caps in question or we don't know this is safe. 2062 */ 2063 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2064 { 2065 spin_lock(&ci->vfs_inode.i_lock); 2066 __take_cap_refs(ci, caps); 2067 spin_unlock(&ci->vfs_inode.i_lock); 2068 } 2069 2070 /* 2071 * Release cap refs. 2072 * 2073 * If we released the last ref on any given cap, call ceph_check_caps 2074 * to release (or schedule a release). 2075 * 2076 * If we are releasing a WR cap (from a sync write), finalize any affected 2077 * cap_snap, and wake up any waiters. 2078 */ 2079 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2080 { 2081 struct inode *inode = &ci->vfs_inode; 2082 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2083 struct ceph_cap_snap *capsnap; 2084 2085 spin_lock(&inode->i_lock); 2086 if (had & CEPH_CAP_PIN) 2087 --ci->i_pin_ref; 2088 if (had & CEPH_CAP_FILE_RD) 2089 if (--ci->i_rd_ref == 0) 2090 last++; 2091 if (had & CEPH_CAP_FILE_CACHE) 2092 if (--ci->i_rdcache_ref == 0) 2093 last++; 2094 if (had & CEPH_CAP_FILE_BUFFER) { 2095 if (--ci->i_wrbuffer_ref == 0) { 2096 last++; 2097 put++; 2098 } 2099 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2100 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2101 } 2102 if (had & CEPH_CAP_FILE_WR) 2103 if (--ci->i_wr_ref == 0) { 2104 last++; 2105 if (!list_empty(&ci->i_cap_snaps)) { 2106 capsnap = list_first_entry(&ci->i_cap_snaps, 2107 struct ceph_cap_snap, 2108 ci_item); 2109 if (capsnap->writing) { 2110 capsnap->writing = 0; 2111 flushsnaps = 2112 __ceph_finish_cap_snap(ci, 2113 capsnap); 2114 wake = 1; 2115 } 2116 } 2117 } 2118 spin_unlock(&inode->i_lock); 2119 2120 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had), 2121 last ? "last" : ""); 2122 2123 if (last && !flushsnaps) 2124 ceph_check_caps(ci, 0, NULL); 2125 else if (flushsnaps) 2126 ceph_flush_snaps(ci); 2127 if (wake) 2128 wake_up(&ci->i_cap_wq); 2129 if (put) 2130 iput(inode); 2131 } 2132 2133 /* 2134 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2135 * context. Adjust per-snap dirty page accounting as appropriate. 2136 * Once all dirty data for a cap_snap is flushed, flush snapped file 2137 * metadata back to the MDS. If we dropped the last ref, call 2138 * ceph_check_caps. 2139 */ 2140 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2141 struct ceph_snap_context *snapc) 2142 { 2143 struct inode *inode = &ci->vfs_inode; 2144 int last = 0; 2145 int last_snap = 0; 2146 int found = 0; 2147 struct ceph_cap_snap *capsnap = NULL; 2148 2149 spin_lock(&inode->i_lock); 2150 ci->i_wrbuffer_ref -= nr; 2151 last = !ci->i_wrbuffer_ref; 2152 2153 if (ci->i_head_snapc == snapc) { 2154 ci->i_wrbuffer_ref_head -= nr; 2155 if (!ci->i_wrbuffer_ref_head) { 2156 ceph_put_snap_context(ci->i_head_snapc); 2157 ci->i_head_snapc = NULL; 2158 } 2159 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2160 inode, 2161 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2162 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2163 last ? " LAST" : ""); 2164 } else { 2165 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2166 if (capsnap->context == snapc) { 2167 found = 1; 2168 capsnap->dirty_pages -= nr; 2169 last_snap = !capsnap->dirty_pages; 2170 break; 2171 } 2172 } 2173 BUG_ON(!found); 2174 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2175 " snap %lld %d/%d -> %d/%d %s%s\n", 2176 inode, capsnap, capsnap->context->seq, 2177 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2178 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2179 last ? " (wrbuffer last)" : "", 2180 last_snap ? " (capsnap last)" : ""); 2181 } 2182 2183 spin_unlock(&inode->i_lock); 2184 2185 if (last) { 2186 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2187 iput(inode); 2188 } else if (last_snap) { 2189 ceph_flush_snaps(ci); 2190 wake_up(&ci->i_cap_wq); 2191 } 2192 } 2193 2194 /* 2195 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2196 * actually be a revocation if it specifies a smaller cap set.) 2197 * 2198 * caller holds s_mutex and i_lock, we drop both. 2199 * 2200 * return value: 2201 * 0 - ok 2202 * 1 - check_caps on auth cap only (writeback) 2203 * 2 - check_caps (ack revoke) 2204 */ 2205 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2206 struct ceph_mds_session *session, 2207 struct ceph_cap *cap, 2208 struct ceph_buffer *xattr_buf) 2209 __releases(inode->i_lock) 2210 __releases(session->s_mutex) 2211 { 2212 struct ceph_inode_info *ci = ceph_inode(inode); 2213 int mds = session->s_mds; 2214 int seq = le32_to_cpu(grant->seq); 2215 int newcaps = le32_to_cpu(grant->caps); 2216 int issued, implemented, used, wanted, dirty; 2217 u64 size = le64_to_cpu(grant->size); 2218 u64 max_size = le64_to_cpu(grant->max_size); 2219 struct timespec mtime, atime, ctime; 2220 int check_caps = 0; 2221 int wake = 0; 2222 int writeback = 0; 2223 int revoked_rdcache = 0; 2224 int queue_invalidate = 0; 2225 2226 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2227 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2228 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2229 inode->i_size); 2230 2231 /* 2232 * If CACHE is being revoked, and we have no dirty buffers, 2233 * try to invalidate (once). (If there are dirty buffers, we 2234 * will invalidate _after_ writeback.) 2235 */ 2236 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2237 !ci->i_wrbuffer_ref) { 2238 if (try_nonblocking_invalidate(inode) == 0) { 2239 revoked_rdcache = 1; 2240 } else { 2241 /* there were locked pages.. invalidate later 2242 in a separate thread. */ 2243 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2244 queue_invalidate = 1; 2245 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2246 } 2247 } 2248 } 2249 2250 /* side effects now are allowed */ 2251 2252 issued = __ceph_caps_issued(ci, &implemented); 2253 issued |= implemented | __ceph_caps_dirty(ci); 2254 2255 cap->cap_gen = session->s_cap_gen; 2256 2257 __check_cap_issue(ci, cap, newcaps); 2258 2259 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2260 inode->i_mode = le32_to_cpu(grant->mode); 2261 inode->i_uid = le32_to_cpu(grant->uid); 2262 inode->i_gid = le32_to_cpu(grant->gid); 2263 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2264 inode->i_uid, inode->i_gid); 2265 } 2266 2267 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2268 inode->i_nlink = le32_to_cpu(grant->nlink); 2269 2270 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2271 int len = le32_to_cpu(grant->xattr_len); 2272 u64 version = le64_to_cpu(grant->xattr_version); 2273 2274 if (version > ci->i_xattrs.version) { 2275 dout(" got new xattrs v%llu on %p len %d\n", 2276 version, inode, len); 2277 if (ci->i_xattrs.blob) 2278 ceph_buffer_put(ci->i_xattrs.blob); 2279 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2280 ci->i_xattrs.version = version; 2281 } 2282 } 2283 2284 /* size/ctime/mtime/atime? */ 2285 ceph_fill_file_size(inode, issued, 2286 le32_to_cpu(grant->truncate_seq), 2287 le64_to_cpu(grant->truncate_size), size); 2288 ceph_decode_timespec(&mtime, &grant->mtime); 2289 ceph_decode_timespec(&atime, &grant->atime); 2290 ceph_decode_timespec(&ctime, &grant->ctime); 2291 ceph_fill_file_time(inode, issued, 2292 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2293 &atime); 2294 2295 /* max size increase? */ 2296 if (max_size != ci->i_max_size) { 2297 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2298 ci->i_max_size = max_size; 2299 if (max_size >= ci->i_wanted_max_size) { 2300 ci->i_wanted_max_size = 0; /* reset */ 2301 ci->i_requested_max_size = 0; 2302 } 2303 wake = 1; 2304 } 2305 2306 /* check cap bits */ 2307 wanted = __ceph_caps_wanted(ci); 2308 used = __ceph_caps_used(ci); 2309 dirty = __ceph_caps_dirty(ci); 2310 dout(" my wanted = %s, used = %s, dirty %s\n", 2311 ceph_cap_string(wanted), 2312 ceph_cap_string(used), 2313 ceph_cap_string(dirty)); 2314 if (wanted != le32_to_cpu(grant->wanted)) { 2315 dout("mds wanted %s -> %s\n", 2316 ceph_cap_string(le32_to_cpu(grant->wanted)), 2317 ceph_cap_string(wanted)); 2318 grant->wanted = cpu_to_le32(wanted); 2319 } 2320 2321 cap->seq = seq; 2322 2323 /* file layout may have changed */ 2324 ci->i_layout = grant->layout; 2325 2326 /* revocation, grant, or no-op? */ 2327 if (cap->issued & ~newcaps) { 2328 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2329 ceph_cap_string(newcaps)); 2330 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2331 writeback = 1; /* will delay ack */ 2332 else if (dirty & ~newcaps) 2333 check_caps = 1; /* initiate writeback in check_caps */ 2334 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2335 revoked_rdcache) 2336 check_caps = 2; /* send revoke ack in check_caps */ 2337 cap->issued = newcaps; 2338 cap->implemented |= newcaps; 2339 } else if (cap->issued == newcaps) { 2340 dout("caps unchanged: %s -> %s\n", 2341 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2342 } else { 2343 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2344 ceph_cap_string(newcaps)); 2345 cap->issued = newcaps; 2346 cap->implemented |= newcaps; /* add bits only, to 2347 * avoid stepping on a 2348 * pending revocation */ 2349 wake = 1; 2350 } 2351 BUG_ON(cap->issued & ~cap->implemented); 2352 2353 spin_unlock(&inode->i_lock); 2354 if (writeback) 2355 /* 2356 * queue inode for writeback: we can't actually call 2357 * filemap_write_and_wait, etc. from message handler 2358 * context. 2359 */ 2360 ceph_queue_writeback(inode); 2361 if (queue_invalidate) 2362 ceph_queue_invalidate(inode); 2363 if (wake) 2364 wake_up(&ci->i_cap_wq); 2365 2366 if (check_caps == 1) 2367 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2368 session); 2369 else if (check_caps == 2) 2370 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2371 else 2372 mutex_unlock(&session->s_mutex); 2373 } 2374 2375 /* 2376 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2377 * MDS has been safely committed. 2378 */ 2379 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2380 struct ceph_mds_caps *m, 2381 struct ceph_mds_session *session, 2382 struct ceph_cap *cap) 2383 __releases(inode->i_lock) 2384 { 2385 struct ceph_inode_info *ci = ceph_inode(inode); 2386 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 2387 unsigned seq = le32_to_cpu(m->seq); 2388 int dirty = le32_to_cpu(m->dirty); 2389 int cleaned = 0; 2390 int drop = 0; 2391 int i; 2392 2393 for (i = 0; i < CEPH_CAP_BITS; i++) 2394 if ((dirty & (1 << i)) && 2395 flush_tid == ci->i_cap_flush_tid[i]) 2396 cleaned |= 1 << i; 2397 2398 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2399 " flushing %s -> %s\n", 2400 inode, session->s_mds, seq, ceph_cap_string(dirty), 2401 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2402 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2403 2404 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2405 goto out; 2406 2407 ci->i_flushing_caps &= ~cleaned; 2408 2409 spin_lock(&mdsc->cap_dirty_lock); 2410 if (ci->i_flushing_caps == 0) { 2411 list_del_init(&ci->i_flushing_item); 2412 if (!list_empty(&session->s_cap_flushing)) 2413 dout(" mds%d still flushing cap on %p\n", 2414 session->s_mds, 2415 &list_entry(session->s_cap_flushing.next, 2416 struct ceph_inode_info, 2417 i_flushing_item)->vfs_inode); 2418 mdsc->num_cap_flushing--; 2419 wake_up(&mdsc->cap_flushing_wq); 2420 dout(" inode %p now !flushing\n", inode); 2421 2422 if (ci->i_dirty_caps == 0) { 2423 dout(" inode %p now clean\n", inode); 2424 BUG_ON(!list_empty(&ci->i_dirty_item)); 2425 drop = 1; 2426 } else { 2427 BUG_ON(list_empty(&ci->i_dirty_item)); 2428 } 2429 } 2430 spin_unlock(&mdsc->cap_dirty_lock); 2431 wake_up(&ci->i_cap_wq); 2432 2433 out: 2434 spin_unlock(&inode->i_lock); 2435 if (drop) 2436 iput(inode); 2437 } 2438 2439 /* 2440 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2441 * throw away our cap_snap. 2442 * 2443 * Caller hold s_mutex. 2444 */ 2445 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2446 struct ceph_mds_caps *m, 2447 struct ceph_mds_session *session) 2448 { 2449 struct ceph_inode_info *ci = ceph_inode(inode); 2450 u64 follows = le64_to_cpu(m->snap_follows); 2451 struct ceph_cap_snap *capsnap; 2452 int drop = 0; 2453 2454 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2455 inode, ci, session->s_mds, follows); 2456 2457 spin_lock(&inode->i_lock); 2458 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2459 if (capsnap->follows == follows) { 2460 if (capsnap->flush_tid != flush_tid) { 2461 dout(" cap_snap %p follows %lld tid %lld !=" 2462 " %lld\n", capsnap, follows, 2463 flush_tid, capsnap->flush_tid); 2464 break; 2465 } 2466 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2467 dout(" removing cap_snap %p follows %lld\n", 2468 capsnap, follows); 2469 ceph_put_snap_context(capsnap->context); 2470 list_del(&capsnap->ci_item); 2471 list_del(&capsnap->flushing_item); 2472 ceph_put_cap_snap(capsnap); 2473 drop = 1; 2474 break; 2475 } else { 2476 dout(" skipping cap_snap %p follows %lld\n", 2477 capsnap, capsnap->follows); 2478 } 2479 } 2480 spin_unlock(&inode->i_lock); 2481 if (drop) 2482 iput(inode); 2483 } 2484 2485 /* 2486 * Handle TRUNC from MDS, indicating file truncation. 2487 * 2488 * caller hold s_mutex. 2489 */ 2490 static void handle_cap_trunc(struct inode *inode, 2491 struct ceph_mds_caps *trunc, 2492 struct ceph_mds_session *session) 2493 __releases(inode->i_lock) 2494 { 2495 struct ceph_inode_info *ci = ceph_inode(inode); 2496 int mds = session->s_mds; 2497 int seq = le32_to_cpu(trunc->seq); 2498 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2499 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2500 u64 size = le64_to_cpu(trunc->size); 2501 int implemented = 0; 2502 int dirty = __ceph_caps_dirty(ci); 2503 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2504 int queue_trunc = 0; 2505 2506 issued |= implemented | dirty; 2507 2508 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2509 inode, mds, seq, truncate_size, truncate_seq); 2510 queue_trunc = ceph_fill_file_size(inode, issued, 2511 truncate_seq, truncate_size, size); 2512 spin_unlock(&inode->i_lock); 2513 2514 if (queue_trunc) 2515 ceph_queue_vmtruncate(inode); 2516 } 2517 2518 /* 2519 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2520 * different one. If we are the most recent migration we've seen (as 2521 * indicated by mseq), make note of the migrating cap bits for the 2522 * duration (until we see the corresponding IMPORT). 2523 * 2524 * caller holds s_mutex 2525 */ 2526 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2527 struct ceph_mds_session *session) 2528 { 2529 struct ceph_inode_info *ci = ceph_inode(inode); 2530 int mds = session->s_mds; 2531 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2532 struct ceph_cap *cap = NULL, *t; 2533 struct rb_node *p; 2534 int remember = 1; 2535 2536 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2537 inode, ci, mds, mseq); 2538 2539 spin_lock(&inode->i_lock); 2540 2541 /* make sure we haven't seen a higher mseq */ 2542 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2543 t = rb_entry(p, struct ceph_cap, ci_node); 2544 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2545 dout(" higher mseq on cap from mds%d\n", 2546 t->session->s_mds); 2547 remember = 0; 2548 } 2549 if (t->session->s_mds == mds) 2550 cap = t; 2551 } 2552 2553 if (cap) { 2554 if (remember) { 2555 /* make note */ 2556 ci->i_cap_exporting_mds = mds; 2557 ci->i_cap_exporting_mseq = mseq; 2558 ci->i_cap_exporting_issued = cap->issued; 2559 } 2560 __ceph_remove_cap(cap); 2561 } 2562 /* else, we already released it */ 2563 2564 spin_unlock(&inode->i_lock); 2565 } 2566 2567 /* 2568 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2569 * clean them up. 2570 * 2571 * caller holds s_mutex. 2572 */ 2573 static void handle_cap_import(struct ceph_mds_client *mdsc, 2574 struct inode *inode, struct ceph_mds_caps *im, 2575 struct ceph_mds_session *session, 2576 void *snaptrace, int snaptrace_len) 2577 { 2578 struct ceph_inode_info *ci = ceph_inode(inode); 2579 int mds = session->s_mds; 2580 unsigned issued = le32_to_cpu(im->caps); 2581 unsigned wanted = le32_to_cpu(im->wanted); 2582 unsigned seq = le32_to_cpu(im->seq); 2583 unsigned mseq = le32_to_cpu(im->migrate_seq); 2584 u64 realmino = le64_to_cpu(im->realm); 2585 u64 cap_id = le64_to_cpu(im->cap_id); 2586 2587 if (ci->i_cap_exporting_mds >= 0 && 2588 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2589 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2590 " - cleared exporting from mds%d\n", 2591 inode, ci, mds, mseq, 2592 ci->i_cap_exporting_mds); 2593 ci->i_cap_exporting_issued = 0; 2594 ci->i_cap_exporting_mseq = 0; 2595 ci->i_cap_exporting_mds = -1; 2596 } else { 2597 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2598 inode, ci, mds, mseq); 2599 } 2600 2601 down_write(&mdsc->snap_rwsem); 2602 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2603 false); 2604 downgrade_write(&mdsc->snap_rwsem); 2605 ceph_add_cap(inode, session, cap_id, -1, 2606 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2607 NULL /* no caps context */); 2608 try_flush_caps(inode, session, NULL); 2609 up_read(&mdsc->snap_rwsem); 2610 } 2611 2612 /* 2613 * Handle a caps message from the MDS. 2614 * 2615 * Identify the appropriate session, inode, and call the right handler 2616 * based on the cap op. 2617 */ 2618 void ceph_handle_caps(struct ceph_mds_session *session, 2619 struct ceph_msg *msg) 2620 { 2621 struct ceph_mds_client *mdsc = session->s_mdsc; 2622 struct super_block *sb = mdsc->client->sb; 2623 struct inode *inode; 2624 struct ceph_cap *cap; 2625 struct ceph_mds_caps *h; 2626 int mds = session->s_mds; 2627 int op; 2628 u32 seq; 2629 struct ceph_vino vino; 2630 u64 cap_id; 2631 u64 size, max_size; 2632 u64 tid; 2633 void *snaptrace; 2634 2635 dout("handle_caps from mds%d\n", mds); 2636 2637 /* decode */ 2638 tid = le64_to_cpu(msg->hdr.tid); 2639 if (msg->front.iov_len < sizeof(*h)) 2640 goto bad; 2641 h = msg->front.iov_base; 2642 snaptrace = h + 1; 2643 op = le32_to_cpu(h->op); 2644 vino.ino = le64_to_cpu(h->ino); 2645 vino.snap = CEPH_NOSNAP; 2646 cap_id = le64_to_cpu(h->cap_id); 2647 seq = le32_to_cpu(h->seq); 2648 size = le64_to_cpu(h->size); 2649 max_size = le64_to_cpu(h->max_size); 2650 2651 mutex_lock(&session->s_mutex); 2652 session->s_seq++; 2653 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2654 (unsigned)seq); 2655 2656 /* lookup ino */ 2657 inode = ceph_find_inode(sb, vino); 2658 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2659 vino.snap, inode); 2660 if (!inode) { 2661 dout(" i don't have ino %llx\n", vino.ino); 2662 goto done; 2663 } 2664 2665 /* these will work even if we don't have a cap yet */ 2666 switch (op) { 2667 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2668 handle_cap_flushsnap_ack(inode, tid, h, session); 2669 goto done; 2670 2671 case CEPH_CAP_OP_EXPORT: 2672 handle_cap_export(inode, h, session); 2673 goto done; 2674 2675 case CEPH_CAP_OP_IMPORT: 2676 handle_cap_import(mdsc, inode, h, session, 2677 snaptrace, le32_to_cpu(h->snap_trace_len)); 2678 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2679 session); 2680 goto done_unlocked; 2681 } 2682 2683 /* the rest require a cap */ 2684 spin_lock(&inode->i_lock); 2685 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2686 if (!cap) { 2687 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", 2688 inode, ceph_ino(inode), ceph_snap(inode), mds); 2689 spin_unlock(&inode->i_lock); 2690 goto done; 2691 } 2692 2693 /* note that each of these drops i_lock for us */ 2694 switch (op) { 2695 case CEPH_CAP_OP_REVOKE: 2696 case CEPH_CAP_OP_GRANT: 2697 handle_cap_grant(inode, h, session, cap, msg->middle); 2698 goto done_unlocked; 2699 2700 case CEPH_CAP_OP_FLUSH_ACK: 2701 handle_cap_flush_ack(inode, tid, h, session, cap); 2702 break; 2703 2704 case CEPH_CAP_OP_TRUNC: 2705 handle_cap_trunc(inode, h, session); 2706 break; 2707 2708 default: 2709 spin_unlock(&inode->i_lock); 2710 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2711 ceph_cap_op_name(op)); 2712 } 2713 2714 done: 2715 mutex_unlock(&session->s_mutex); 2716 done_unlocked: 2717 if (inode) 2718 iput(inode); 2719 return; 2720 2721 bad: 2722 pr_err("ceph_handle_caps: corrupt message\n"); 2723 ceph_msg_dump(msg); 2724 return; 2725 } 2726 2727 /* 2728 * Delayed work handler to process end of delayed cap release LRU list. 2729 */ 2730 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2731 { 2732 struct ceph_inode_info *ci; 2733 int flags = CHECK_CAPS_NODELAY; 2734 2735 dout("check_delayed_caps\n"); 2736 while (1) { 2737 spin_lock(&mdsc->cap_delay_lock); 2738 if (list_empty(&mdsc->cap_delay_list)) 2739 break; 2740 ci = list_first_entry(&mdsc->cap_delay_list, 2741 struct ceph_inode_info, 2742 i_cap_delay_list); 2743 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2744 time_before(jiffies, ci->i_hold_caps_max)) 2745 break; 2746 list_del_init(&ci->i_cap_delay_list); 2747 spin_unlock(&mdsc->cap_delay_lock); 2748 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2749 ceph_check_caps(ci, flags, NULL); 2750 } 2751 spin_unlock(&mdsc->cap_delay_lock); 2752 } 2753 2754 /* 2755 * Flush all dirty caps to the mds 2756 */ 2757 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2758 { 2759 struct ceph_inode_info *ci, *nci = NULL; 2760 struct inode *inode, *ninode = NULL; 2761 struct list_head *p, *n; 2762 2763 dout("flush_dirty_caps\n"); 2764 spin_lock(&mdsc->cap_dirty_lock); 2765 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2766 if (nci) { 2767 ci = nci; 2768 inode = ninode; 2769 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2770 dout("flush_dirty_caps inode %p (was next inode)\n", 2771 inode); 2772 } else { 2773 ci = list_entry(p, struct ceph_inode_info, 2774 i_dirty_item); 2775 inode = igrab(&ci->vfs_inode); 2776 BUG_ON(!inode); 2777 dout("flush_dirty_caps inode %p\n", inode); 2778 } 2779 if (n != &mdsc->cap_dirty) { 2780 nci = list_entry(n, struct ceph_inode_info, 2781 i_dirty_item); 2782 ninode = igrab(&nci->vfs_inode); 2783 BUG_ON(!ninode); 2784 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2785 dout("flush_dirty_caps next inode %p, noflush\n", 2786 ninode); 2787 } else { 2788 nci = NULL; 2789 ninode = NULL; 2790 } 2791 spin_unlock(&mdsc->cap_dirty_lock); 2792 if (inode) { 2793 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2794 NULL); 2795 iput(inode); 2796 } 2797 spin_lock(&mdsc->cap_dirty_lock); 2798 } 2799 spin_unlock(&mdsc->cap_dirty_lock); 2800 } 2801 2802 /* 2803 * Drop open file reference. If we were the last open file, 2804 * we may need to release capabilities to the MDS (or schedule 2805 * their delayed release). 2806 */ 2807 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2808 { 2809 struct inode *inode = &ci->vfs_inode; 2810 int last = 0; 2811 2812 spin_lock(&inode->i_lock); 2813 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2814 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2815 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2816 if (--ci->i_nr_by_mode[fmode] == 0) 2817 last++; 2818 spin_unlock(&inode->i_lock); 2819 2820 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2821 ceph_check_caps(ci, 0, NULL); 2822 } 2823 2824 /* 2825 * Helpers for embedding cap and dentry lease releases into mds 2826 * requests. 2827 * 2828 * @force is used by dentry_release (below) to force inclusion of a 2829 * record for the directory inode, even when there aren't any caps to 2830 * drop. 2831 */ 2832 int ceph_encode_inode_release(void **p, struct inode *inode, 2833 int mds, int drop, int unless, int force) 2834 { 2835 struct ceph_inode_info *ci = ceph_inode(inode); 2836 struct ceph_cap *cap; 2837 struct ceph_mds_request_release *rel = *p; 2838 int ret = 0; 2839 int used = 0; 2840 2841 spin_lock(&inode->i_lock); 2842 used = __ceph_caps_used(ci); 2843 2844 dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode, 2845 mds, ceph_cap_string(used), ceph_cap_string(drop), 2846 ceph_cap_string(unless)); 2847 2848 /* only drop unused caps */ 2849 drop &= ~used; 2850 2851 cap = __get_cap_for_mds(ci, mds); 2852 if (cap && __cap_is_valid(cap)) { 2853 if (force || 2854 ((cap->issued & drop) && 2855 (cap->issued & unless) == 0)) { 2856 if ((cap->issued & drop) && 2857 (cap->issued & unless) == 0) { 2858 dout("encode_inode_release %p cap %p %s -> " 2859 "%s\n", inode, cap, 2860 ceph_cap_string(cap->issued), 2861 ceph_cap_string(cap->issued & ~drop)); 2862 cap->issued &= ~drop; 2863 cap->implemented &= ~drop; 2864 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2865 int wanted = __ceph_caps_wanted(ci); 2866 dout(" wanted %s -> %s (act %s)\n", 2867 ceph_cap_string(cap->mds_wanted), 2868 ceph_cap_string(cap->mds_wanted & 2869 ~wanted), 2870 ceph_cap_string(wanted)); 2871 cap->mds_wanted &= wanted; 2872 } 2873 } else { 2874 dout("encode_inode_release %p cap %p %s" 2875 " (force)\n", inode, cap, 2876 ceph_cap_string(cap->issued)); 2877 } 2878 2879 rel->ino = cpu_to_le64(ceph_ino(inode)); 2880 rel->cap_id = cpu_to_le64(cap->cap_id); 2881 rel->seq = cpu_to_le32(cap->seq); 2882 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2883 rel->mseq = cpu_to_le32(cap->mseq); 2884 rel->caps = cpu_to_le32(cap->issued); 2885 rel->wanted = cpu_to_le32(cap->mds_wanted); 2886 rel->dname_len = 0; 2887 rel->dname_seq = 0; 2888 *p += sizeof(*rel); 2889 ret = 1; 2890 } else { 2891 dout("encode_inode_release %p cap %p %s\n", 2892 inode, cap, ceph_cap_string(cap->issued)); 2893 } 2894 } 2895 spin_unlock(&inode->i_lock); 2896 return ret; 2897 } 2898 2899 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2900 int mds, int drop, int unless) 2901 { 2902 struct inode *dir = dentry->d_parent->d_inode; 2903 struct ceph_mds_request_release *rel = *p; 2904 struct ceph_dentry_info *di = ceph_dentry(dentry); 2905 int force = 0; 2906 int ret; 2907 2908 /* 2909 * force an record for the directory caps if we have a dentry lease. 2910 * this is racy (can't take i_lock and d_lock together), but it 2911 * doesn't have to be perfect; the mds will revoke anything we don't 2912 * release. 2913 */ 2914 spin_lock(&dentry->d_lock); 2915 if (di->lease_session && di->lease_session->s_mds == mds) 2916 force = 1; 2917 spin_unlock(&dentry->d_lock); 2918 2919 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2920 2921 spin_lock(&dentry->d_lock); 2922 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2923 dout("encode_dentry_release %p mds%d seq %d\n", 2924 dentry, mds, (int)di->lease_seq); 2925 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2926 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2927 *p += dentry->d_name.len; 2928 rel->dname_seq = cpu_to_le32(di->lease_seq); 2929 } 2930 spin_unlock(&dentry->d_lock); 2931 return ret; 2932 } 2933