xref: /openbmc/linux/fs/ceph/caps.c (revision 916623da)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8 #include <linux/writeback.h>
9 
10 #include "super.h"
11 #include "decode.h"
12 #include "messenger.h"
13 
14 /*
15  * Capability management
16  *
17  * The Ceph metadata servers control client access to inode metadata
18  * and file data by issuing capabilities, granting clients permission
19  * to read and/or write both inode field and file data to OSDs
20  * (storage nodes).  Each capability consists of a set of bits
21  * indicating which operations are allowed.
22  *
23  * If the client holds a *_SHARED cap, the client has a coherent value
24  * that can be safely read from the cached inode.
25  *
26  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
27  * client is allowed to change inode attributes (e.g., file size,
28  * mtime), note its dirty state in the ceph_cap, and asynchronously
29  * flush that metadata change to the MDS.
30  *
31  * In the event of a conflicting operation (perhaps by another
32  * client), the MDS will revoke the conflicting client capabilities.
33  *
34  * In order for a client to cache an inode, it must hold a capability
35  * with at least one MDS server.  When inodes are released, release
36  * notifications are batched and periodically sent en masse to the MDS
37  * cluster to release server state.
38  */
39 
40 
41 /*
42  * Generate readable cap strings for debugging output.
43  */
44 #define MAX_CAP_STR 20
45 static char cap_str[MAX_CAP_STR][40];
46 static DEFINE_SPINLOCK(cap_str_lock);
47 static int last_cap_str;
48 
49 static char *gcap_string(char *s, int c)
50 {
51 	if (c & CEPH_CAP_GSHARED)
52 		*s++ = 's';
53 	if (c & CEPH_CAP_GEXCL)
54 		*s++ = 'x';
55 	if (c & CEPH_CAP_GCACHE)
56 		*s++ = 'c';
57 	if (c & CEPH_CAP_GRD)
58 		*s++ = 'r';
59 	if (c & CEPH_CAP_GWR)
60 		*s++ = 'w';
61 	if (c & CEPH_CAP_GBUFFER)
62 		*s++ = 'b';
63 	if (c & CEPH_CAP_GLAZYIO)
64 		*s++ = 'l';
65 	return s;
66 }
67 
68 const char *ceph_cap_string(int caps)
69 {
70 	int i;
71 	char *s;
72 	int c;
73 
74 	spin_lock(&cap_str_lock);
75 	i = last_cap_str++;
76 	if (last_cap_str == MAX_CAP_STR)
77 		last_cap_str = 0;
78 	spin_unlock(&cap_str_lock);
79 
80 	s = cap_str[i];
81 
82 	if (caps & CEPH_CAP_PIN)
83 		*s++ = 'p';
84 
85 	c = (caps >> CEPH_CAP_SAUTH) & 3;
86 	if (c) {
87 		*s++ = 'A';
88 		s = gcap_string(s, c);
89 	}
90 
91 	c = (caps >> CEPH_CAP_SLINK) & 3;
92 	if (c) {
93 		*s++ = 'L';
94 		s = gcap_string(s, c);
95 	}
96 
97 	c = (caps >> CEPH_CAP_SXATTR) & 3;
98 	if (c) {
99 		*s++ = 'X';
100 		s = gcap_string(s, c);
101 	}
102 
103 	c = caps >> CEPH_CAP_SFILE;
104 	if (c) {
105 		*s++ = 'F';
106 		s = gcap_string(s, c);
107 	}
108 
109 	if (s == cap_str[i])
110 		*s++ = '-';
111 	*s = 0;
112 	return cap_str[i];
113 }
114 
115 /*
116  * Cap reservations
117  *
118  * Maintain a global pool of preallocated struct ceph_caps, referenced
119  * by struct ceph_caps_reservations.  This ensures that we preallocate
120  * memory needed to successfully process an MDS response.  (If an MDS
121  * sends us cap information and we fail to process it, we will have
122  * problems due to the client and MDS being out of sync.)
123  *
124  * Reservations are 'owned' by a ceph_cap_reservation context.
125  */
126 static spinlock_t caps_list_lock;
127 static struct list_head caps_list;  /* unused (reserved or unreserved) */
128 static int caps_total_count;        /* total caps allocated */
129 static int caps_use_count;          /* in use */
130 static int caps_reserve_count;      /* unused, reserved */
131 static int caps_avail_count;        /* unused, unreserved */
132 static int caps_min_count;          /* keep at least this many (unreserved) */
133 
134 void __init ceph_caps_init(void)
135 {
136 	INIT_LIST_HEAD(&caps_list);
137 	spin_lock_init(&caps_list_lock);
138 }
139 
140 void ceph_caps_finalize(void)
141 {
142 	struct ceph_cap *cap;
143 
144 	spin_lock(&caps_list_lock);
145 	while (!list_empty(&caps_list)) {
146 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
147 		list_del(&cap->caps_item);
148 		kmem_cache_free(ceph_cap_cachep, cap);
149 	}
150 	caps_total_count = 0;
151 	caps_avail_count = 0;
152 	caps_use_count = 0;
153 	caps_reserve_count = 0;
154 	caps_min_count = 0;
155 	spin_unlock(&caps_list_lock);
156 }
157 
158 void ceph_adjust_min_caps(int delta)
159 {
160 	spin_lock(&caps_list_lock);
161 	caps_min_count += delta;
162 	BUG_ON(caps_min_count < 0);
163 	spin_unlock(&caps_list_lock);
164 }
165 
166 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
167 {
168 	int i;
169 	struct ceph_cap *cap;
170 	int have;
171 	int alloc = 0;
172 	LIST_HEAD(newcaps);
173 	int ret = 0;
174 
175 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
176 
177 	/* first reserve any caps that are already allocated */
178 	spin_lock(&caps_list_lock);
179 	if (caps_avail_count >= need)
180 		have = need;
181 	else
182 		have = caps_avail_count;
183 	caps_avail_count -= have;
184 	caps_reserve_count += have;
185 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
186 	       caps_avail_count);
187 	spin_unlock(&caps_list_lock);
188 
189 	for (i = have; i < need; i++) {
190 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
191 		if (!cap) {
192 			ret = -ENOMEM;
193 			goto out_alloc_count;
194 		}
195 		list_add(&cap->caps_item, &newcaps);
196 		alloc++;
197 	}
198 	BUG_ON(have + alloc != need);
199 
200 	spin_lock(&caps_list_lock);
201 	caps_total_count += alloc;
202 	caps_reserve_count += alloc;
203 	list_splice(&newcaps, &caps_list);
204 
205 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
206 	       caps_avail_count);
207 	spin_unlock(&caps_list_lock);
208 
209 	ctx->count = need;
210 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
211 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
212 	     caps_avail_count);
213 	return 0;
214 
215 out_alloc_count:
216 	/* we didn't manage to reserve as much as we needed */
217 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
218 		   ctx, need, have);
219 	return ret;
220 }
221 
222 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
223 {
224 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
225 	if (ctx->count) {
226 		spin_lock(&caps_list_lock);
227 		BUG_ON(caps_reserve_count < ctx->count);
228 		caps_reserve_count -= ctx->count;
229 		caps_avail_count += ctx->count;
230 		ctx->count = 0;
231 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
232 		     caps_total_count, caps_use_count, caps_reserve_count,
233 		     caps_avail_count);
234 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
235 		       caps_avail_count);
236 		spin_unlock(&caps_list_lock);
237 	}
238 	return 0;
239 }
240 
241 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
242 {
243 	struct ceph_cap *cap = NULL;
244 
245 	/* temporary, until we do something about cap import/export */
246 	if (!ctx)
247 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
248 
249 	spin_lock(&caps_list_lock);
250 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
251 	     ctx, ctx->count, caps_total_count, caps_use_count,
252 	     caps_reserve_count, caps_avail_count);
253 	BUG_ON(!ctx->count);
254 	BUG_ON(ctx->count > caps_reserve_count);
255 	BUG_ON(list_empty(&caps_list));
256 
257 	ctx->count--;
258 	caps_reserve_count--;
259 	caps_use_count++;
260 
261 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
262 	list_del(&cap->caps_item);
263 
264 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
265 	       caps_avail_count);
266 	spin_unlock(&caps_list_lock);
267 	return cap;
268 }
269 
270 void ceph_put_cap(struct ceph_cap *cap)
271 {
272 	spin_lock(&caps_list_lock);
273 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
274 	     cap, caps_total_count, caps_use_count,
275 	     caps_reserve_count, caps_avail_count);
276 	caps_use_count--;
277 	/*
278 	 * Keep some preallocated caps around (ceph_min_count), to
279 	 * avoid lots of free/alloc churn.
280 	 */
281 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
282 		caps_total_count--;
283 		kmem_cache_free(ceph_cap_cachep, cap);
284 	} else {
285 		caps_avail_count++;
286 		list_add(&cap->caps_item, &caps_list);
287 	}
288 
289 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
290 	       caps_avail_count);
291 	spin_unlock(&caps_list_lock);
292 }
293 
294 void ceph_reservation_status(struct ceph_client *client,
295 			     int *total, int *avail, int *used, int *reserved,
296 			     int *min)
297 {
298 	if (total)
299 		*total = caps_total_count;
300 	if (avail)
301 		*avail = caps_avail_count;
302 	if (used)
303 		*used = caps_use_count;
304 	if (reserved)
305 		*reserved = caps_reserve_count;
306 	if (min)
307 		*min = caps_min_count;
308 }
309 
310 /*
311  * Find ceph_cap for given mds, if any.
312  *
313  * Called with i_lock held.
314  */
315 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
316 {
317 	struct ceph_cap *cap;
318 	struct rb_node *n = ci->i_caps.rb_node;
319 
320 	while (n) {
321 		cap = rb_entry(n, struct ceph_cap, ci_node);
322 		if (mds < cap->mds)
323 			n = n->rb_left;
324 		else if (mds > cap->mds)
325 			n = n->rb_right;
326 		else
327 			return cap;
328 	}
329 	return NULL;
330 }
331 
332 /*
333  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
334  * -1.
335  */
336 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
337 {
338 	struct ceph_cap *cap;
339 	int mds = -1;
340 	struct rb_node *p;
341 
342 	/* prefer mds with WR|WRBUFFER|EXCL caps */
343 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
344 		cap = rb_entry(p, struct ceph_cap, ci_node);
345 		mds = cap->mds;
346 		if (mseq)
347 			*mseq = cap->mseq;
348 		if (cap->issued & (CEPH_CAP_FILE_WR |
349 				   CEPH_CAP_FILE_BUFFER |
350 				   CEPH_CAP_FILE_EXCL))
351 			break;
352 	}
353 	return mds;
354 }
355 
356 int ceph_get_cap_mds(struct inode *inode)
357 {
358 	int mds;
359 	spin_lock(&inode->i_lock);
360 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
361 	spin_unlock(&inode->i_lock);
362 	return mds;
363 }
364 
365 /*
366  * Called under i_lock.
367  */
368 static void __insert_cap_node(struct ceph_inode_info *ci,
369 			      struct ceph_cap *new)
370 {
371 	struct rb_node **p = &ci->i_caps.rb_node;
372 	struct rb_node *parent = NULL;
373 	struct ceph_cap *cap = NULL;
374 
375 	while (*p) {
376 		parent = *p;
377 		cap = rb_entry(parent, struct ceph_cap, ci_node);
378 		if (new->mds < cap->mds)
379 			p = &(*p)->rb_left;
380 		else if (new->mds > cap->mds)
381 			p = &(*p)->rb_right;
382 		else
383 			BUG();
384 	}
385 
386 	rb_link_node(&new->ci_node, parent, p);
387 	rb_insert_color(&new->ci_node, &ci->i_caps);
388 }
389 
390 /*
391  * (re)set cap hold timeouts, which control the delayed release
392  * of unused caps back to the MDS.  Should be called on cap use.
393  */
394 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
395 			       struct ceph_inode_info *ci)
396 {
397 	struct ceph_mount_args *ma = mdsc->client->mount_args;
398 
399 	ci->i_hold_caps_min = round_jiffies(jiffies +
400 					    ma->caps_wanted_delay_min * HZ);
401 	ci->i_hold_caps_max = round_jiffies(jiffies +
402 					    ma->caps_wanted_delay_max * HZ);
403 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
404 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
405 }
406 
407 /*
408  * (Re)queue cap at the end of the delayed cap release list.
409  *
410  * If I_FLUSH is set, leave the inode at the front of the list.
411  *
412  * Caller holds i_lock
413  *    -> we take mdsc->cap_delay_lock
414  */
415 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
416 				struct ceph_inode_info *ci)
417 {
418 	__cap_set_timeouts(mdsc, ci);
419 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
420 	     ci->i_ceph_flags, ci->i_hold_caps_max);
421 	if (!mdsc->stopping) {
422 		spin_lock(&mdsc->cap_delay_lock);
423 		if (!list_empty(&ci->i_cap_delay_list)) {
424 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
425 				goto no_change;
426 			list_del_init(&ci->i_cap_delay_list);
427 		}
428 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
429 no_change:
430 		spin_unlock(&mdsc->cap_delay_lock);
431 	}
432 }
433 
434 /*
435  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
436  * indicating we should send a cap message to flush dirty metadata
437  * asap, and move to the front of the delayed cap list.
438  */
439 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
440 				      struct ceph_inode_info *ci)
441 {
442 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
443 	spin_lock(&mdsc->cap_delay_lock);
444 	ci->i_ceph_flags |= CEPH_I_FLUSH;
445 	if (!list_empty(&ci->i_cap_delay_list))
446 		list_del_init(&ci->i_cap_delay_list);
447 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
448 	spin_unlock(&mdsc->cap_delay_lock);
449 }
450 
451 /*
452  * Cancel delayed work on cap.
453  *
454  * Caller must hold i_lock.
455  */
456 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
457 			       struct ceph_inode_info *ci)
458 {
459 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
460 	if (list_empty(&ci->i_cap_delay_list))
461 		return;
462 	spin_lock(&mdsc->cap_delay_lock);
463 	list_del_init(&ci->i_cap_delay_list);
464 	spin_unlock(&mdsc->cap_delay_lock);
465 }
466 
467 /*
468  * Common issue checks for add_cap, handle_cap_grant.
469  */
470 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
471 			      unsigned issued)
472 {
473 	unsigned had = __ceph_caps_issued(ci, NULL);
474 
475 	/*
476 	 * Each time we receive FILE_CACHE anew, we increment
477 	 * i_rdcache_gen.
478 	 */
479 	if ((issued & CEPH_CAP_FILE_CACHE) &&
480 	    (had & CEPH_CAP_FILE_CACHE) == 0)
481 		ci->i_rdcache_gen++;
482 
483 	/*
484 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
485 	 * don't know what happened to this directory while we didn't
486 	 * have the cap.
487 	 */
488 	if ((issued & CEPH_CAP_FILE_SHARED) &&
489 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
490 		ci->i_shared_gen++;
491 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
492 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
493 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
494 		}
495 	}
496 }
497 
498 /*
499  * Add a capability under the given MDS session.
500  *
501  * Caller should hold session snap_rwsem (read) and s_mutex.
502  *
503  * @fmode is the open file mode, if we are opening a file, otherwise
504  * it is < 0.  (This is so we can atomically add the cap and add an
505  * open file reference to it.)
506  */
507 int ceph_add_cap(struct inode *inode,
508 		 struct ceph_mds_session *session, u64 cap_id,
509 		 int fmode, unsigned issued, unsigned wanted,
510 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
511 		 struct ceph_cap_reservation *caps_reservation)
512 {
513 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
514 	struct ceph_inode_info *ci = ceph_inode(inode);
515 	struct ceph_cap *new_cap = NULL;
516 	struct ceph_cap *cap;
517 	int mds = session->s_mds;
518 	int actual_wanted;
519 
520 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
521 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
522 
523 	/*
524 	 * If we are opening the file, include file mode wanted bits
525 	 * in wanted.
526 	 */
527 	if (fmode >= 0)
528 		wanted |= ceph_caps_for_mode(fmode);
529 
530 retry:
531 	spin_lock(&inode->i_lock);
532 	cap = __get_cap_for_mds(ci, mds);
533 	if (!cap) {
534 		if (new_cap) {
535 			cap = new_cap;
536 			new_cap = NULL;
537 		} else {
538 			spin_unlock(&inode->i_lock);
539 			new_cap = get_cap(caps_reservation);
540 			if (new_cap == NULL)
541 				return -ENOMEM;
542 			goto retry;
543 		}
544 
545 		cap->issued = 0;
546 		cap->implemented = 0;
547 		cap->mds = mds;
548 		cap->mds_wanted = 0;
549 
550 		cap->ci = ci;
551 		__insert_cap_node(ci, cap);
552 
553 		/* clear out old exporting info?  (i.e. on cap import) */
554 		if (ci->i_cap_exporting_mds == mds) {
555 			ci->i_cap_exporting_issued = 0;
556 			ci->i_cap_exporting_mseq = 0;
557 			ci->i_cap_exporting_mds = -1;
558 		}
559 
560 		/* add to session cap list */
561 		cap->session = session;
562 		spin_lock(&session->s_cap_lock);
563 		list_add_tail(&cap->session_caps, &session->s_caps);
564 		session->s_nr_caps++;
565 		spin_unlock(&session->s_cap_lock);
566 	}
567 
568 	if (!ci->i_snap_realm) {
569 		/*
570 		 * add this inode to the appropriate snap realm
571 		 */
572 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
573 							       realmino);
574 		if (realm) {
575 			ceph_get_snap_realm(mdsc, realm);
576 			spin_lock(&realm->inodes_with_caps_lock);
577 			ci->i_snap_realm = realm;
578 			list_add(&ci->i_snap_realm_item,
579 				 &realm->inodes_with_caps);
580 			spin_unlock(&realm->inodes_with_caps_lock);
581 		} else {
582 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
583 			       realmino);
584 		}
585 	}
586 
587 	__check_cap_issue(ci, cap, issued);
588 
589 	/*
590 	 * If we are issued caps we don't want, or the mds' wanted
591 	 * value appears to be off, queue a check so we'll release
592 	 * later and/or update the mds wanted value.
593 	 */
594 	actual_wanted = __ceph_caps_wanted(ci);
595 	if ((wanted & ~actual_wanted) ||
596 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
597 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
598 		     ceph_cap_string(issued), ceph_cap_string(wanted),
599 		     ceph_cap_string(actual_wanted));
600 		__cap_delay_requeue(mdsc, ci);
601 	}
602 
603 	if (flags & CEPH_CAP_FLAG_AUTH)
604 		ci->i_auth_cap = cap;
605 	else if (ci->i_auth_cap == cap)
606 		ci->i_auth_cap = NULL;
607 
608 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
609 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
610 	     ceph_cap_string(issued|cap->issued), seq, mds);
611 	cap->cap_id = cap_id;
612 	cap->issued = issued;
613 	cap->implemented |= issued;
614 	cap->mds_wanted |= wanted;
615 	cap->seq = seq;
616 	cap->issue_seq = seq;
617 	cap->mseq = mseq;
618 	cap->cap_gen = session->s_cap_gen;
619 
620 	if (fmode >= 0)
621 		__ceph_get_fmode(ci, fmode);
622 	spin_unlock(&inode->i_lock);
623 	wake_up(&ci->i_cap_wq);
624 	return 0;
625 }
626 
627 /*
628  * Return true if cap has not timed out and belongs to the current
629  * generation of the MDS session (i.e. has not gone 'stale' due to
630  * us losing touch with the mds).
631  */
632 static int __cap_is_valid(struct ceph_cap *cap)
633 {
634 	unsigned long ttl;
635 	u32 gen;
636 
637 	spin_lock(&cap->session->s_cap_lock);
638 	gen = cap->session->s_cap_gen;
639 	ttl = cap->session->s_cap_ttl;
640 	spin_unlock(&cap->session->s_cap_lock);
641 
642 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
643 		dout("__cap_is_valid %p cap %p issued %s "
644 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
645 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
646 		return 0;
647 	}
648 
649 	return 1;
650 }
651 
652 /*
653  * Return set of valid cap bits issued to us.  Note that caps time
654  * out, and may be invalidated in bulk if the client session times out
655  * and session->s_cap_gen is bumped.
656  */
657 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
658 {
659 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
660 	struct ceph_cap *cap;
661 	struct rb_node *p;
662 
663 	if (implemented)
664 		*implemented = 0;
665 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
666 		cap = rb_entry(p, struct ceph_cap, ci_node);
667 		if (!__cap_is_valid(cap))
668 			continue;
669 		dout("__ceph_caps_issued %p cap %p issued %s\n",
670 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
671 		have |= cap->issued;
672 		if (implemented)
673 			*implemented |= cap->implemented;
674 	}
675 	return have;
676 }
677 
678 /*
679  * Get cap bits issued by caps other than @ocap
680  */
681 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
682 {
683 	int have = ci->i_snap_caps;
684 	struct ceph_cap *cap;
685 	struct rb_node *p;
686 
687 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
688 		cap = rb_entry(p, struct ceph_cap, ci_node);
689 		if (cap == ocap)
690 			continue;
691 		if (!__cap_is_valid(cap))
692 			continue;
693 		have |= cap->issued;
694 	}
695 	return have;
696 }
697 
698 /*
699  * Move a cap to the end of the LRU (oldest caps at list head, newest
700  * at list tail).
701  */
702 static void __touch_cap(struct ceph_cap *cap)
703 {
704 	struct ceph_mds_session *s = cap->session;
705 
706 	spin_lock(&s->s_cap_lock);
707 	if (s->s_cap_iterator == NULL) {
708 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
709 		     s->s_mds);
710 		list_move_tail(&cap->session_caps, &s->s_caps);
711 	} else {
712 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
713 		     &cap->ci->vfs_inode, cap, s->s_mds);
714 	}
715 	spin_unlock(&s->s_cap_lock);
716 }
717 
718 /*
719  * Check if we hold the given mask.  If so, move the cap(s) to the
720  * front of their respective LRUs.  (This is the preferred way for
721  * callers to check for caps they want.)
722  */
723 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
724 {
725 	struct ceph_cap *cap;
726 	struct rb_node *p;
727 	int have = ci->i_snap_caps;
728 
729 	if ((have & mask) == mask) {
730 		dout("__ceph_caps_issued_mask %p snap issued %s"
731 		     " (mask %s)\n", &ci->vfs_inode,
732 		     ceph_cap_string(have),
733 		     ceph_cap_string(mask));
734 		return 1;
735 	}
736 
737 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
738 		cap = rb_entry(p, struct ceph_cap, ci_node);
739 		if (!__cap_is_valid(cap))
740 			continue;
741 		if ((cap->issued & mask) == mask) {
742 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
743 			     " (mask %s)\n", &ci->vfs_inode, cap,
744 			     ceph_cap_string(cap->issued),
745 			     ceph_cap_string(mask));
746 			if (touch)
747 				__touch_cap(cap);
748 			return 1;
749 		}
750 
751 		/* does a combination of caps satisfy mask? */
752 		have |= cap->issued;
753 		if ((have & mask) == mask) {
754 			dout("__ceph_caps_issued_mask %p combo issued %s"
755 			     " (mask %s)\n", &ci->vfs_inode,
756 			     ceph_cap_string(cap->issued),
757 			     ceph_cap_string(mask));
758 			if (touch) {
759 				struct rb_node *q;
760 
761 				/* touch this + preceeding caps */
762 				__touch_cap(cap);
763 				for (q = rb_first(&ci->i_caps); q != p;
764 				     q = rb_next(q)) {
765 					cap = rb_entry(q, struct ceph_cap,
766 						       ci_node);
767 					if (!__cap_is_valid(cap))
768 						continue;
769 					__touch_cap(cap);
770 				}
771 			}
772 			return 1;
773 		}
774 	}
775 
776 	return 0;
777 }
778 
779 /*
780  * Return true if mask caps are currently being revoked by an MDS.
781  */
782 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
783 {
784 	struct inode *inode = &ci->vfs_inode;
785 	struct ceph_cap *cap;
786 	struct rb_node *p;
787 	int ret = 0;
788 
789 	spin_lock(&inode->i_lock);
790 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
791 		cap = rb_entry(p, struct ceph_cap, ci_node);
792 		if (__cap_is_valid(cap) &&
793 		    (cap->implemented & ~cap->issued & mask)) {
794 			ret = 1;
795 			break;
796 		}
797 	}
798 	spin_unlock(&inode->i_lock);
799 	dout("ceph_caps_revoking %p %s = %d\n", inode,
800 	     ceph_cap_string(mask), ret);
801 	return ret;
802 }
803 
804 int __ceph_caps_used(struct ceph_inode_info *ci)
805 {
806 	int used = 0;
807 	if (ci->i_pin_ref)
808 		used |= CEPH_CAP_PIN;
809 	if (ci->i_rd_ref)
810 		used |= CEPH_CAP_FILE_RD;
811 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
812 		used |= CEPH_CAP_FILE_CACHE;
813 	if (ci->i_wr_ref)
814 		used |= CEPH_CAP_FILE_WR;
815 	if (ci->i_wrbuffer_ref)
816 		used |= CEPH_CAP_FILE_BUFFER;
817 	return used;
818 }
819 
820 /*
821  * wanted, by virtue of open file modes
822  */
823 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
824 {
825 	int want = 0;
826 	int mode;
827 	for (mode = 0; mode < 4; mode++)
828 		if (ci->i_nr_by_mode[mode])
829 			want |= ceph_caps_for_mode(mode);
830 	return want;
831 }
832 
833 /*
834  * Return caps we have registered with the MDS(s) as 'wanted'.
835  */
836 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
837 {
838 	struct ceph_cap *cap;
839 	struct rb_node *p;
840 	int mds_wanted = 0;
841 
842 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
843 		cap = rb_entry(p, struct ceph_cap, ci_node);
844 		if (!__cap_is_valid(cap))
845 			continue;
846 		mds_wanted |= cap->mds_wanted;
847 	}
848 	return mds_wanted;
849 }
850 
851 /*
852  * called under i_lock
853  */
854 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
855 {
856 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
857 }
858 
859 /*
860  * caller should hold i_lock.
861  * caller will not hold session s_mutex if called from destroy_inode.
862  */
863 void __ceph_remove_cap(struct ceph_cap *cap)
864 {
865 	struct ceph_mds_session *session = cap->session;
866 	struct ceph_inode_info *ci = cap->ci;
867 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
868 
869 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
870 
871 	/* remove from inode list */
872 	rb_erase(&cap->ci_node, &ci->i_caps);
873 	cap->ci = NULL;
874 	if (ci->i_auth_cap == cap)
875 		ci->i_auth_cap = NULL;
876 
877 	/* remove from session list */
878 	spin_lock(&session->s_cap_lock);
879 	if (session->s_cap_iterator == cap) {
880 		/* not yet, we are iterating over this very cap */
881 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
882 		     cap, cap->session);
883 	} else {
884 		list_del_init(&cap->session_caps);
885 		session->s_nr_caps--;
886 		cap->session = NULL;
887 	}
888 	spin_unlock(&session->s_cap_lock);
889 
890 	if (cap->session == NULL)
891 		ceph_put_cap(cap);
892 
893 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
894 		struct ceph_snap_realm *realm = ci->i_snap_realm;
895 		spin_lock(&realm->inodes_with_caps_lock);
896 		list_del_init(&ci->i_snap_realm_item);
897 		ci->i_snap_realm_counter++;
898 		ci->i_snap_realm = NULL;
899 		spin_unlock(&realm->inodes_with_caps_lock);
900 		ceph_put_snap_realm(mdsc, realm);
901 	}
902 	if (!__ceph_is_any_real_caps(ci))
903 		__cap_delay_cancel(mdsc, ci);
904 }
905 
906 /*
907  * Build and send a cap message to the given MDS.
908  *
909  * Caller should be holding s_mutex.
910  */
911 static int send_cap_msg(struct ceph_mds_session *session,
912 			u64 ino, u64 cid, int op,
913 			int caps, int wanted, int dirty,
914 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
915 			u64 size, u64 max_size,
916 			struct timespec *mtime, struct timespec *atime,
917 			u64 time_warp_seq,
918 			uid_t uid, gid_t gid, mode_t mode,
919 			u64 xattr_version,
920 			struct ceph_buffer *xattrs_buf,
921 			u64 follows)
922 {
923 	struct ceph_mds_caps *fc;
924 	struct ceph_msg *msg;
925 
926 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
927 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
928 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
929 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
930 	     ceph_cap_string(dirty),
931 	     seq, issue_seq, mseq, follows, size, max_size,
932 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
933 
934 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
935 	if (IS_ERR(msg))
936 		return PTR_ERR(msg);
937 
938 	msg->hdr.tid = cpu_to_le64(flush_tid);
939 
940 	fc = msg->front.iov_base;
941 	memset(fc, 0, sizeof(*fc));
942 
943 	fc->cap_id = cpu_to_le64(cid);
944 	fc->op = cpu_to_le32(op);
945 	fc->seq = cpu_to_le32(seq);
946 	fc->issue_seq = cpu_to_le32(issue_seq);
947 	fc->migrate_seq = cpu_to_le32(mseq);
948 	fc->caps = cpu_to_le32(caps);
949 	fc->wanted = cpu_to_le32(wanted);
950 	fc->dirty = cpu_to_le32(dirty);
951 	fc->ino = cpu_to_le64(ino);
952 	fc->snap_follows = cpu_to_le64(follows);
953 
954 	fc->size = cpu_to_le64(size);
955 	fc->max_size = cpu_to_le64(max_size);
956 	if (mtime)
957 		ceph_encode_timespec(&fc->mtime, mtime);
958 	if (atime)
959 		ceph_encode_timespec(&fc->atime, atime);
960 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
961 
962 	fc->uid = cpu_to_le32(uid);
963 	fc->gid = cpu_to_le32(gid);
964 	fc->mode = cpu_to_le32(mode);
965 
966 	fc->xattr_version = cpu_to_le64(xattr_version);
967 	if (xattrs_buf) {
968 		msg->middle = ceph_buffer_get(xattrs_buf);
969 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
970 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
971 	}
972 
973 	ceph_con_send(&session->s_con, msg);
974 	return 0;
975 }
976 
977 /*
978  * Queue cap releases when an inode is dropped from our cache.  Since
979  * inode is about to be destroyed, there is no need for i_lock.
980  */
981 void ceph_queue_caps_release(struct inode *inode)
982 {
983 	struct ceph_inode_info *ci = ceph_inode(inode);
984 	struct rb_node *p;
985 
986 	p = rb_first(&ci->i_caps);
987 	while (p) {
988 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
989 		struct ceph_mds_session *session = cap->session;
990 		struct ceph_msg *msg;
991 		struct ceph_mds_cap_release *head;
992 		struct ceph_mds_cap_item *item;
993 
994 		spin_lock(&session->s_cap_lock);
995 		BUG_ON(!session->s_num_cap_releases);
996 		msg = list_first_entry(&session->s_cap_releases,
997 				       struct ceph_msg, list_head);
998 
999 		dout(" adding %p release to mds%d msg %p (%d left)\n",
1000 		     inode, session->s_mds, msg, session->s_num_cap_releases);
1001 
1002 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1003 		head = msg->front.iov_base;
1004 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1005 		item = msg->front.iov_base + msg->front.iov_len;
1006 		item->ino = cpu_to_le64(ceph_ino(inode));
1007 		item->cap_id = cpu_to_le64(cap->cap_id);
1008 		item->migrate_seq = cpu_to_le32(cap->mseq);
1009 		item->seq = cpu_to_le32(cap->issue_seq);
1010 
1011 		session->s_num_cap_releases--;
1012 
1013 		msg->front.iov_len += sizeof(*item);
1014 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1015 			dout(" release msg %p full\n", msg);
1016 			list_move_tail(&msg->list_head,
1017 				       &session->s_cap_releases_done);
1018 		} else {
1019 			dout(" release msg %p at %d/%d (%d)\n", msg,
1020 			     (int)le32_to_cpu(head->num),
1021 			     (int)CEPH_CAPS_PER_RELEASE,
1022 			     (int)msg->front.iov_len);
1023 		}
1024 		spin_unlock(&session->s_cap_lock);
1025 		p = rb_next(p);
1026 		__ceph_remove_cap(cap);
1027 	}
1028 }
1029 
1030 /*
1031  * Send a cap msg on the given inode.  Update our caps state, then
1032  * drop i_lock and send the message.
1033  *
1034  * Make note of max_size reported/requested from mds, revoked caps
1035  * that have now been implemented.
1036  *
1037  * Make half-hearted attempt ot to invalidate page cache if we are
1038  * dropping RDCACHE.  Note that this will leave behind locked pages
1039  * that we'll then need to deal with elsewhere.
1040  *
1041  * Return non-zero if delayed release, or we experienced an error
1042  * such that the caller should requeue + retry later.
1043  *
1044  * called with i_lock, then drops it.
1045  * caller should hold snap_rwsem (read), s_mutex.
1046  */
1047 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1048 		      int op, int used, int want, int retain, int flushing,
1049 		      unsigned *pflush_tid)
1050 	__releases(cap->ci->vfs_inode->i_lock)
1051 {
1052 	struct ceph_inode_info *ci = cap->ci;
1053 	struct inode *inode = &ci->vfs_inode;
1054 	u64 cap_id = cap->cap_id;
1055 	int held, revoking, dropping, keep;
1056 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1057 	u64 size, max_size;
1058 	struct timespec mtime, atime;
1059 	int wake = 0;
1060 	mode_t mode;
1061 	uid_t uid;
1062 	gid_t gid;
1063 	struct ceph_mds_session *session;
1064 	u64 xattr_version = 0;
1065 	int delayed = 0;
1066 	u64 flush_tid = 0;
1067 	int i;
1068 	int ret;
1069 
1070 	held = cap->issued | cap->implemented;
1071 	revoking = cap->implemented & ~cap->issued;
1072 	retain &= ~revoking;
1073 	dropping = cap->issued & ~retain;
1074 
1075 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1076 	     inode, cap, cap->session,
1077 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1078 	     ceph_cap_string(revoking));
1079 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1080 
1081 	session = cap->session;
1082 
1083 	/* don't release wanted unless we've waited a bit. */
1084 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1085 	    time_before(jiffies, ci->i_hold_caps_min)) {
1086 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1087 		     ceph_cap_string(cap->issued),
1088 		     ceph_cap_string(cap->issued & retain),
1089 		     ceph_cap_string(cap->mds_wanted),
1090 		     ceph_cap_string(want));
1091 		want |= cap->mds_wanted;
1092 		retain |= cap->issued;
1093 		delayed = 1;
1094 	}
1095 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1096 
1097 	cap->issued &= retain;  /* drop bits we don't want */
1098 	if (cap->implemented & ~cap->issued) {
1099 		/*
1100 		 * Wake up any waiters on wanted -> needed transition.
1101 		 * This is due to the weird transition from buffered
1102 		 * to sync IO... we need to flush dirty pages _before_
1103 		 * allowing sync writes to avoid reordering.
1104 		 */
1105 		wake = 1;
1106 	}
1107 	cap->implemented &= cap->issued | used;
1108 	cap->mds_wanted = want;
1109 
1110 	if (flushing) {
1111 		/*
1112 		 * assign a tid for flush operations so we can avoid
1113 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1114 		 * clean type races.  track latest tid for every bit
1115 		 * so we can handle flush AxFw, flush Fw, and have the
1116 		 * first ack clean Ax.
1117 		 */
1118 		flush_tid = ++ci->i_cap_flush_last_tid;
1119 		if (pflush_tid)
1120 			*pflush_tid = flush_tid;
1121 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1122 		for (i = 0; i < CEPH_CAP_BITS; i++)
1123 			if (flushing & (1 << i))
1124 				ci->i_cap_flush_tid[i] = flush_tid;
1125 	}
1126 
1127 	keep = cap->implemented;
1128 	seq = cap->seq;
1129 	issue_seq = cap->issue_seq;
1130 	mseq = cap->mseq;
1131 	size = inode->i_size;
1132 	ci->i_reported_size = size;
1133 	max_size = ci->i_wanted_max_size;
1134 	ci->i_requested_max_size = max_size;
1135 	mtime = inode->i_mtime;
1136 	atime = inode->i_atime;
1137 	time_warp_seq = ci->i_time_warp_seq;
1138 	follows = ci->i_snap_realm->cached_context->seq;
1139 	uid = inode->i_uid;
1140 	gid = inode->i_gid;
1141 	mode = inode->i_mode;
1142 
1143 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1144 		__ceph_build_xattrs_blob(ci);
1145 		xattr_version = ci->i_xattrs.version + 1;
1146 	}
1147 
1148 	spin_unlock(&inode->i_lock);
1149 
1150 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1151 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1152 		size, max_size, &mtime, &atime, time_warp_seq,
1153 		uid, gid, mode,
1154 		xattr_version,
1155 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1156 		follows);
1157 	if (ret < 0) {
1158 		dout("error sending cap msg, must requeue %p\n", inode);
1159 		delayed = 1;
1160 	}
1161 
1162 	if (wake)
1163 		wake_up(&ci->i_cap_wq);
1164 
1165 	return delayed;
1166 }
1167 
1168 /*
1169  * When a snapshot is taken, clients accumulate dirty metadata on
1170  * inodes with capabilities in ceph_cap_snaps to describe the file
1171  * state at the time the snapshot was taken.  This must be flushed
1172  * asynchronously back to the MDS once sync writes complete and dirty
1173  * data is written out.
1174  *
1175  * Called under i_lock.  Takes s_mutex as needed.
1176  */
1177 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1178 			struct ceph_mds_session **psession)
1179 {
1180 	struct inode *inode = &ci->vfs_inode;
1181 	int mds;
1182 	struct ceph_cap_snap *capsnap;
1183 	u32 mseq;
1184 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1185 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1186 						    session->s_mutex */
1187 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1188 			     i_cap_snaps list, and skip these entries next time
1189 			     around to avoid an infinite loop */
1190 
1191 	if (psession)
1192 		session = *psession;
1193 
1194 	dout("__flush_snaps %p\n", inode);
1195 retry:
1196 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1197 		/* avoid an infiniute loop after retry */
1198 		if (capsnap->follows < next_follows)
1199 			continue;
1200 		/*
1201 		 * we need to wait for sync writes to complete and for dirty
1202 		 * pages to be written out.
1203 		 */
1204 		if (capsnap->dirty_pages || capsnap->writing)
1205 			continue;
1206 
1207 		/* pick mds, take s_mutex */
1208 		mds = __ceph_get_cap_mds(ci, &mseq);
1209 		if (session && session->s_mds != mds) {
1210 			dout("oops, wrong session %p mutex\n", session);
1211 			mutex_unlock(&session->s_mutex);
1212 			ceph_put_mds_session(session);
1213 			session = NULL;
1214 		}
1215 		if (!session) {
1216 			spin_unlock(&inode->i_lock);
1217 			mutex_lock(&mdsc->mutex);
1218 			session = __ceph_lookup_mds_session(mdsc, mds);
1219 			mutex_unlock(&mdsc->mutex);
1220 			if (session) {
1221 				dout("inverting session/ino locks on %p\n",
1222 				     session);
1223 				mutex_lock(&session->s_mutex);
1224 			}
1225 			/*
1226 			 * if session == NULL, we raced against a cap
1227 			 * deletion.  retry, and we'll get a better
1228 			 * @mds value next time.
1229 			 */
1230 			spin_lock(&inode->i_lock);
1231 			goto retry;
1232 		}
1233 
1234 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1235 		atomic_inc(&capsnap->nref);
1236 		if (!list_empty(&capsnap->flushing_item))
1237 			list_del_init(&capsnap->flushing_item);
1238 		list_add_tail(&capsnap->flushing_item,
1239 			      &session->s_cap_snaps_flushing);
1240 		spin_unlock(&inode->i_lock);
1241 
1242 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1243 		     inode, capsnap, next_follows, capsnap->size);
1244 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1245 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1246 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1247 			     capsnap->size, 0,
1248 			     &capsnap->mtime, &capsnap->atime,
1249 			     capsnap->time_warp_seq,
1250 			     capsnap->uid, capsnap->gid, capsnap->mode,
1251 			     0, NULL,
1252 			     capsnap->follows);
1253 
1254 		next_follows = capsnap->follows + 1;
1255 		ceph_put_cap_snap(capsnap);
1256 
1257 		spin_lock(&inode->i_lock);
1258 		goto retry;
1259 	}
1260 
1261 	/* we flushed them all; remove this inode from the queue */
1262 	spin_lock(&mdsc->snap_flush_lock);
1263 	list_del_init(&ci->i_snap_flush_item);
1264 	spin_unlock(&mdsc->snap_flush_lock);
1265 
1266 	if (psession)
1267 		*psession = session;
1268 	else if (session) {
1269 		mutex_unlock(&session->s_mutex);
1270 		ceph_put_mds_session(session);
1271 	}
1272 }
1273 
1274 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1275 {
1276 	struct inode *inode = &ci->vfs_inode;
1277 
1278 	spin_lock(&inode->i_lock);
1279 	__ceph_flush_snaps(ci, NULL);
1280 	spin_unlock(&inode->i_lock);
1281 }
1282 
1283 /*
1284  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1285  * list.
1286  */
1287 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1288 {
1289 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1290 	struct inode *inode = &ci->vfs_inode;
1291 	int was = ci->i_dirty_caps;
1292 	int dirty = 0;
1293 
1294 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1295 	     ceph_cap_string(mask), ceph_cap_string(was),
1296 	     ceph_cap_string(was | mask));
1297 	ci->i_dirty_caps |= mask;
1298 	if (was == 0) {
1299 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1300 		BUG_ON(!list_empty(&ci->i_dirty_item));
1301 		spin_lock(&mdsc->cap_dirty_lock);
1302 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1303 		spin_unlock(&mdsc->cap_dirty_lock);
1304 		if (ci->i_flushing_caps == 0) {
1305 			igrab(inode);
1306 			dirty |= I_DIRTY_SYNC;
1307 		}
1308 	}
1309 	BUG_ON(list_empty(&ci->i_dirty_item));
1310 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1311 	    (mask & CEPH_CAP_FILE_BUFFER))
1312 		dirty |= I_DIRTY_DATASYNC;
1313 	if (dirty)
1314 		__mark_inode_dirty(inode, dirty);
1315 	__cap_delay_requeue(mdsc, ci);
1316 }
1317 
1318 /*
1319  * Add dirty inode to the flushing list.  Assigned a seq number so we
1320  * can wait for caps to flush without starving.
1321  *
1322  * Called under i_lock.
1323  */
1324 static int __mark_caps_flushing(struct inode *inode,
1325 				 struct ceph_mds_session *session)
1326 {
1327 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1328 	struct ceph_inode_info *ci = ceph_inode(inode);
1329 	int flushing;
1330 
1331 	BUG_ON(ci->i_dirty_caps == 0);
1332 	BUG_ON(list_empty(&ci->i_dirty_item));
1333 
1334 	flushing = ci->i_dirty_caps;
1335 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1336 	     ceph_cap_string(flushing),
1337 	     ceph_cap_string(ci->i_flushing_caps),
1338 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1339 	ci->i_flushing_caps |= flushing;
1340 	ci->i_dirty_caps = 0;
1341 	dout(" inode %p now !dirty\n", inode);
1342 
1343 	spin_lock(&mdsc->cap_dirty_lock);
1344 	list_del_init(&ci->i_dirty_item);
1345 
1346 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1347 	if (list_empty(&ci->i_flushing_item)) {
1348 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1349 		mdsc->num_cap_flushing++;
1350 		dout(" inode %p now flushing seq %lld\n", inode,
1351 		     ci->i_cap_flush_seq);
1352 	} else {
1353 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1354 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1355 		     ci->i_cap_flush_seq);
1356 	}
1357 	spin_unlock(&mdsc->cap_dirty_lock);
1358 
1359 	return flushing;
1360 }
1361 
1362 /*
1363  * try to invalidate mapping pages without blocking.
1364  */
1365 static int mapping_is_empty(struct address_space *mapping)
1366 {
1367 	struct page *page = find_get_page(mapping, 0);
1368 
1369 	if (!page)
1370 		return 1;
1371 
1372 	put_page(page);
1373 	return 0;
1374 }
1375 
1376 static int try_nonblocking_invalidate(struct inode *inode)
1377 {
1378 	struct ceph_inode_info *ci = ceph_inode(inode);
1379 	u32 invalidating_gen = ci->i_rdcache_gen;
1380 
1381 	spin_unlock(&inode->i_lock);
1382 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1383 	spin_lock(&inode->i_lock);
1384 
1385 	if (mapping_is_empty(&inode->i_data) &&
1386 	    invalidating_gen == ci->i_rdcache_gen) {
1387 		/* success. */
1388 		dout("try_nonblocking_invalidate %p success\n", inode);
1389 		ci->i_rdcache_gen = 0;
1390 		ci->i_rdcache_revoking = 0;
1391 		return 0;
1392 	}
1393 	dout("try_nonblocking_invalidate %p failed\n", inode);
1394 	return -1;
1395 }
1396 
1397 /*
1398  * Swiss army knife function to examine currently used and wanted
1399  * versus held caps.  Release, flush, ack revoked caps to mds as
1400  * appropriate.
1401  *
1402  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1403  *    cap release further.
1404  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1405  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1406  *    further delay.
1407  */
1408 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1409 		     struct ceph_mds_session *session)
1410 	__releases(session->s_mutex)
1411 {
1412 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1413 	struct ceph_mds_client *mdsc = &client->mdsc;
1414 	struct inode *inode = &ci->vfs_inode;
1415 	struct ceph_cap *cap;
1416 	int file_wanted, used;
1417 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1418 	int issued, implemented, want, retain, revoking, flushing = 0;
1419 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1420 			   to avoid an infinite loop on retry */
1421 	struct rb_node *p;
1422 	int tried_invalidate = 0;
1423 	int delayed = 0, sent = 0, force_requeue = 0, num;
1424 	int queue_invalidate = 0;
1425 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1426 
1427 	/* if we are unmounting, flush any unused caps immediately. */
1428 	if (mdsc->stopping)
1429 		is_delayed = 1;
1430 
1431 	spin_lock(&inode->i_lock);
1432 
1433 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1434 		flags |= CHECK_CAPS_FLUSH;
1435 
1436 	/* flush snaps first time around only */
1437 	if (!list_empty(&ci->i_cap_snaps))
1438 		__ceph_flush_snaps(ci, &session);
1439 	goto retry_locked;
1440 retry:
1441 	spin_lock(&inode->i_lock);
1442 retry_locked:
1443 	file_wanted = __ceph_caps_file_wanted(ci);
1444 	used = __ceph_caps_used(ci);
1445 	want = file_wanted | used;
1446 	issued = __ceph_caps_issued(ci, &implemented);
1447 	revoking = implemented & ~issued;
1448 
1449 	retain = want | CEPH_CAP_PIN;
1450 	if (!mdsc->stopping && inode->i_nlink > 0) {
1451 		if (want) {
1452 			retain |= CEPH_CAP_ANY;       /* be greedy */
1453 		} else {
1454 			retain |= CEPH_CAP_ANY_SHARED;
1455 			/*
1456 			 * keep RD only if we didn't have the file open RW,
1457 			 * because then the mds would revoke it anyway to
1458 			 * journal max_size=0.
1459 			 */
1460 			if (ci->i_max_size == 0)
1461 				retain |= CEPH_CAP_ANY_RD;
1462 		}
1463 	}
1464 
1465 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1466 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1467 	     ceph_cap_string(file_wanted),
1468 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1469 	     ceph_cap_string(ci->i_flushing_caps),
1470 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1471 	     ceph_cap_string(retain),
1472 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1473 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1474 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1475 
1476 	/*
1477 	 * If we no longer need to hold onto old our caps, and we may
1478 	 * have cached pages, but don't want them, then try to invalidate.
1479 	 * If we fail, it's because pages are locked.... try again later.
1480 	 */
1481 	if ((!is_delayed || mdsc->stopping) &&
1482 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1483 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1484 	    (file_wanted == 0 ||                     /* no open files */
1485 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1486 	    !tried_invalidate) {
1487 		dout("check_caps trying to invalidate on %p\n", inode);
1488 		if (try_nonblocking_invalidate(inode) < 0) {
1489 			if (revoking & CEPH_CAP_FILE_CACHE) {
1490 				dout("check_caps queuing invalidate\n");
1491 				queue_invalidate = 1;
1492 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1493 			} else {
1494 				dout("check_caps failed to invalidate pages\n");
1495 				/* we failed to invalidate pages.  check these
1496 				   caps again later. */
1497 				force_requeue = 1;
1498 				__cap_set_timeouts(mdsc, ci);
1499 			}
1500 		}
1501 		tried_invalidate = 1;
1502 		goto retry_locked;
1503 	}
1504 
1505 	num = 0;
1506 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1507 		cap = rb_entry(p, struct ceph_cap, ci_node);
1508 		num++;
1509 
1510 		/* avoid looping forever */
1511 		if (mds >= cap->mds ||
1512 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1513 			continue;
1514 
1515 		/* NOTE: no side-effects allowed, until we take s_mutex */
1516 
1517 		revoking = cap->implemented & ~cap->issued;
1518 		if (revoking)
1519 			dout(" mds%d revoking %s\n", cap->mds,
1520 			     ceph_cap_string(revoking));
1521 
1522 		if (cap == ci->i_auth_cap &&
1523 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1524 			/* request larger max_size from MDS? */
1525 			if (ci->i_wanted_max_size > ci->i_max_size &&
1526 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1527 				dout("requesting new max_size\n");
1528 				goto ack;
1529 			}
1530 
1531 			/* approaching file_max? */
1532 			if ((inode->i_size << 1) >= ci->i_max_size &&
1533 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1534 				dout("i_size approaching max_size\n");
1535 				goto ack;
1536 			}
1537 		}
1538 		/* flush anything dirty? */
1539 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1540 		    ci->i_dirty_caps) {
1541 			dout("flushing dirty caps\n");
1542 			goto ack;
1543 		}
1544 
1545 		/* completed revocation? going down and there are no caps? */
1546 		if (revoking && (revoking & used) == 0) {
1547 			dout("completed revocation of %s\n",
1548 			     ceph_cap_string(cap->implemented & ~cap->issued));
1549 			goto ack;
1550 		}
1551 
1552 		/* want more caps from mds? */
1553 		if (want & ~(cap->mds_wanted | cap->issued))
1554 			goto ack;
1555 
1556 		/* things we might delay */
1557 		if ((cap->issued & ~retain) == 0 &&
1558 		    cap->mds_wanted == want)
1559 			continue;     /* nope, all good */
1560 
1561 		if (is_delayed)
1562 			goto ack;
1563 
1564 		/* delay? */
1565 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1566 		    time_before(jiffies, ci->i_hold_caps_max)) {
1567 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1568 			     ceph_cap_string(cap->issued),
1569 			     ceph_cap_string(cap->issued & retain),
1570 			     ceph_cap_string(cap->mds_wanted),
1571 			     ceph_cap_string(want));
1572 			delayed++;
1573 			continue;
1574 		}
1575 
1576 ack:
1577 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1578 			dout(" skipping %p I_NOFLUSH set\n", inode);
1579 			continue;
1580 		}
1581 
1582 		if (session && session != cap->session) {
1583 			dout("oops, wrong session %p mutex\n", session);
1584 			mutex_unlock(&session->s_mutex);
1585 			session = NULL;
1586 		}
1587 		if (!session) {
1588 			session = cap->session;
1589 			if (mutex_trylock(&session->s_mutex) == 0) {
1590 				dout("inverting session/ino locks on %p\n",
1591 				     session);
1592 				spin_unlock(&inode->i_lock);
1593 				if (took_snap_rwsem) {
1594 					up_read(&mdsc->snap_rwsem);
1595 					took_snap_rwsem = 0;
1596 				}
1597 				mutex_lock(&session->s_mutex);
1598 				goto retry;
1599 			}
1600 		}
1601 		/* take snap_rwsem after session mutex */
1602 		if (!took_snap_rwsem) {
1603 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1604 				dout("inverting snap/in locks on %p\n",
1605 				     inode);
1606 				spin_unlock(&inode->i_lock);
1607 				down_read(&mdsc->snap_rwsem);
1608 				took_snap_rwsem = 1;
1609 				goto retry;
1610 			}
1611 			took_snap_rwsem = 1;
1612 		}
1613 
1614 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1615 			flushing = __mark_caps_flushing(inode, session);
1616 
1617 		mds = cap->mds;  /* remember mds, so we don't repeat */
1618 		sent++;
1619 
1620 		/* __send_cap drops i_lock */
1621 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1622 				      retain, flushing, NULL);
1623 		goto retry; /* retake i_lock and restart our cap scan. */
1624 	}
1625 
1626 	/*
1627 	 * Reschedule delayed caps release if we delayed anything,
1628 	 * otherwise cancel.
1629 	 */
1630 	if (delayed && is_delayed)
1631 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1632 	if (!delayed && !is_delayed)
1633 		__cap_delay_cancel(mdsc, ci);
1634 	else if (!is_delayed || force_requeue)
1635 		__cap_delay_requeue(mdsc, ci);
1636 
1637 	spin_unlock(&inode->i_lock);
1638 
1639 	if (queue_invalidate)
1640 		ceph_queue_invalidate(inode);
1641 
1642 	if (session)
1643 		mutex_unlock(&session->s_mutex);
1644 	if (took_snap_rwsem)
1645 		up_read(&mdsc->snap_rwsem);
1646 }
1647 
1648 /*
1649  * Try to flush dirty caps back to the auth mds.
1650  */
1651 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1652 			  unsigned *flush_tid)
1653 {
1654 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1655 	struct ceph_inode_info *ci = ceph_inode(inode);
1656 	int unlock_session = session ? 0 : 1;
1657 	int flushing = 0;
1658 
1659 retry:
1660 	spin_lock(&inode->i_lock);
1661 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1662 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1663 		goto out;
1664 	}
1665 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1666 		struct ceph_cap *cap = ci->i_auth_cap;
1667 		int used = __ceph_caps_used(ci);
1668 		int want = __ceph_caps_wanted(ci);
1669 		int delayed;
1670 
1671 		if (!session) {
1672 			spin_unlock(&inode->i_lock);
1673 			session = cap->session;
1674 			mutex_lock(&session->s_mutex);
1675 			goto retry;
1676 		}
1677 		BUG_ON(session != cap->session);
1678 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1679 			goto out;
1680 
1681 		flushing = __mark_caps_flushing(inode, session);
1682 
1683 		/* __send_cap drops i_lock */
1684 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1685 				     cap->issued | cap->implemented, flushing,
1686 				     flush_tid);
1687 		if (!delayed)
1688 			goto out_unlocked;
1689 
1690 		spin_lock(&inode->i_lock);
1691 		__cap_delay_requeue(mdsc, ci);
1692 	}
1693 out:
1694 	spin_unlock(&inode->i_lock);
1695 out_unlocked:
1696 	if (session && unlock_session)
1697 		mutex_unlock(&session->s_mutex);
1698 	return flushing;
1699 }
1700 
1701 /*
1702  * Return true if we've flushed caps through the given flush_tid.
1703  */
1704 static int caps_are_flushed(struct inode *inode, unsigned tid)
1705 {
1706 	struct ceph_inode_info *ci = ceph_inode(inode);
1707 	int dirty, i, ret = 1;
1708 
1709 	spin_lock(&inode->i_lock);
1710 	dirty = __ceph_caps_dirty(ci);
1711 	for (i = 0; i < CEPH_CAP_BITS; i++)
1712 		if ((ci->i_flushing_caps & (1 << i)) &&
1713 		    ci->i_cap_flush_tid[i] <= tid) {
1714 			/* still flushing this bit */
1715 			ret = 0;
1716 			break;
1717 		}
1718 	spin_unlock(&inode->i_lock);
1719 	return ret;
1720 }
1721 
1722 /*
1723  * Wait on any unsafe replies for the given inode.  First wait on the
1724  * newest request, and make that the upper bound.  Then, if there are
1725  * more requests, keep waiting on the oldest as long as it is still older
1726  * than the original request.
1727  */
1728 static void sync_write_wait(struct inode *inode)
1729 {
1730 	struct ceph_inode_info *ci = ceph_inode(inode);
1731 	struct list_head *head = &ci->i_unsafe_writes;
1732 	struct ceph_osd_request *req;
1733 	u64 last_tid;
1734 
1735 	spin_lock(&ci->i_unsafe_lock);
1736 	if (list_empty(head))
1737 		goto out;
1738 
1739 	/* set upper bound as _last_ entry in chain */
1740 	req = list_entry(head->prev, struct ceph_osd_request,
1741 			 r_unsafe_item);
1742 	last_tid = req->r_tid;
1743 
1744 	do {
1745 		ceph_osdc_get_request(req);
1746 		spin_unlock(&ci->i_unsafe_lock);
1747 		dout("sync_write_wait on tid %llu (until %llu)\n",
1748 		     req->r_tid, last_tid);
1749 		wait_for_completion(&req->r_safe_completion);
1750 		spin_lock(&ci->i_unsafe_lock);
1751 		ceph_osdc_put_request(req);
1752 
1753 		/*
1754 		 * from here on look at first entry in chain, since we
1755 		 * only want to wait for anything older than last_tid
1756 		 */
1757 		if (list_empty(head))
1758 			break;
1759 		req = list_entry(head->next, struct ceph_osd_request,
1760 				 r_unsafe_item);
1761 	} while (req->r_tid < last_tid);
1762 out:
1763 	spin_unlock(&ci->i_unsafe_lock);
1764 }
1765 
1766 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1767 {
1768 	struct inode *inode = dentry->d_inode;
1769 	struct ceph_inode_info *ci = ceph_inode(inode);
1770 	unsigned flush_tid;
1771 	int ret;
1772 	int dirty;
1773 
1774 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1775 	sync_write_wait(inode);
1776 
1777 	ret = filemap_write_and_wait(inode->i_mapping);
1778 	if (ret < 0)
1779 		return ret;
1780 
1781 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1782 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1783 
1784 	/*
1785 	 * only wait on non-file metadata writeback (the mds
1786 	 * can recover size and mtime, so we don't need to
1787 	 * wait for that)
1788 	 */
1789 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1790 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1791 		ret = wait_event_interruptible(ci->i_cap_wq,
1792 				       caps_are_flushed(inode, flush_tid));
1793 	}
1794 
1795 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1801  * queue inode for flush but don't do so immediately, because we can
1802  * get by with fewer MDS messages if we wait for data writeback to
1803  * complete first.
1804  */
1805 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1806 {
1807 	struct ceph_inode_info *ci = ceph_inode(inode);
1808 	unsigned flush_tid;
1809 	int err = 0;
1810 	int dirty;
1811 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1812 
1813 	dout("write_inode %p wait=%d\n", inode, wait);
1814 	if (wait) {
1815 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1816 		if (dirty)
1817 			err = wait_event_interruptible(ci->i_cap_wq,
1818 				       caps_are_flushed(inode, flush_tid));
1819 	} else {
1820 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1821 
1822 		spin_lock(&inode->i_lock);
1823 		if (__ceph_caps_dirty(ci))
1824 			__cap_delay_requeue_front(mdsc, ci);
1825 		spin_unlock(&inode->i_lock);
1826 	}
1827 	return err;
1828 }
1829 
1830 /*
1831  * After a recovering MDS goes active, we need to resend any caps
1832  * we were flushing.
1833  *
1834  * Caller holds session->s_mutex.
1835  */
1836 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1837 				   struct ceph_mds_session *session)
1838 {
1839 	struct ceph_cap_snap *capsnap;
1840 
1841 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1842 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1843 			    flushing_item) {
1844 		struct ceph_inode_info *ci = capsnap->ci;
1845 		struct inode *inode = &ci->vfs_inode;
1846 		struct ceph_cap *cap;
1847 
1848 		spin_lock(&inode->i_lock);
1849 		cap = ci->i_auth_cap;
1850 		if (cap && cap->session == session) {
1851 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1852 			     cap, capsnap);
1853 			__ceph_flush_snaps(ci, &session);
1854 		} else {
1855 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1856 			       cap, session->s_mds);
1857 			spin_unlock(&inode->i_lock);
1858 		}
1859 	}
1860 }
1861 
1862 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1863 			     struct ceph_mds_session *session)
1864 {
1865 	struct ceph_inode_info *ci;
1866 
1867 	kick_flushing_capsnaps(mdsc, session);
1868 
1869 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1870 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1871 		struct inode *inode = &ci->vfs_inode;
1872 		struct ceph_cap *cap;
1873 		int delayed = 0;
1874 
1875 		spin_lock(&inode->i_lock);
1876 		cap = ci->i_auth_cap;
1877 		if (cap && cap->session == session) {
1878 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1879 			     cap, ceph_cap_string(ci->i_flushing_caps));
1880 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1881 					     __ceph_caps_used(ci),
1882 					     __ceph_caps_wanted(ci),
1883 					     cap->issued | cap->implemented,
1884 					     ci->i_flushing_caps, NULL);
1885 			if (delayed) {
1886 				spin_lock(&inode->i_lock);
1887 				__cap_delay_requeue(mdsc, ci);
1888 				spin_unlock(&inode->i_lock);
1889 			}
1890 		} else {
1891 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1892 			       cap, session->s_mds);
1893 			spin_unlock(&inode->i_lock);
1894 		}
1895 	}
1896 }
1897 
1898 
1899 /*
1900  * Take references to capabilities we hold, so that we don't release
1901  * them to the MDS prematurely.
1902  *
1903  * Protected by i_lock.
1904  */
1905 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1906 {
1907 	if (got & CEPH_CAP_PIN)
1908 		ci->i_pin_ref++;
1909 	if (got & CEPH_CAP_FILE_RD)
1910 		ci->i_rd_ref++;
1911 	if (got & CEPH_CAP_FILE_CACHE)
1912 		ci->i_rdcache_ref++;
1913 	if (got & CEPH_CAP_FILE_WR)
1914 		ci->i_wr_ref++;
1915 	if (got & CEPH_CAP_FILE_BUFFER) {
1916 		if (ci->i_wrbuffer_ref == 0)
1917 			igrab(&ci->vfs_inode);
1918 		ci->i_wrbuffer_ref++;
1919 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1920 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1921 	}
1922 }
1923 
1924 /*
1925  * Try to grab cap references.  Specify those refs we @want, and the
1926  * minimal set we @need.  Also include the larger offset we are writing
1927  * to (when applicable), and check against max_size here as well.
1928  * Note that caller is responsible for ensuring max_size increases are
1929  * requested from the MDS.
1930  */
1931 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1932 			    int *got, loff_t endoff, int *check_max, int *err)
1933 {
1934 	struct inode *inode = &ci->vfs_inode;
1935 	int ret = 0;
1936 	int have, implemented;
1937 	int file_wanted;
1938 
1939 	dout("get_cap_refs %p need %s want %s\n", inode,
1940 	     ceph_cap_string(need), ceph_cap_string(want));
1941 	spin_lock(&inode->i_lock);
1942 
1943 	/* make sure file is actually open */
1944 	file_wanted = __ceph_caps_file_wanted(ci);
1945 	if ((file_wanted & need) == 0) {
1946 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1947 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
1948 		*err = -EBADF;
1949 		ret = 1;
1950 		goto out;
1951 	}
1952 
1953 	if (need & CEPH_CAP_FILE_WR) {
1954 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1955 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1956 			     inode, endoff, ci->i_max_size);
1957 			if (endoff > ci->i_wanted_max_size) {
1958 				*check_max = 1;
1959 				ret = 1;
1960 			}
1961 			goto out;
1962 		}
1963 		/*
1964 		 * If a sync write is in progress, we must wait, so that we
1965 		 * can get a final snapshot value for size+mtime.
1966 		 */
1967 		if (__ceph_have_pending_cap_snap(ci)) {
1968 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1969 			goto out;
1970 		}
1971 	}
1972 	have = __ceph_caps_issued(ci, &implemented);
1973 
1974 	/*
1975 	 * disallow writes while a truncate is pending
1976 	 */
1977 	if (ci->i_truncate_pending)
1978 		have &= ~CEPH_CAP_FILE_WR;
1979 
1980 	if ((have & need) == need) {
1981 		/*
1982 		 * Look at (implemented & ~have & not) so that we keep waiting
1983 		 * on transition from wanted -> needed caps.  This is needed
1984 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1985 		 * going before a prior buffered writeback happens.
1986 		 */
1987 		int not = want & ~(have & need);
1988 		int revoking = implemented & ~have;
1989 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1990 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1991 		     ceph_cap_string(revoking));
1992 		if ((revoking & not) == 0) {
1993 			*got = need | (have & want);
1994 			__take_cap_refs(ci, *got);
1995 			ret = 1;
1996 		}
1997 	} else {
1998 		dout("get_cap_refs %p have %s needed %s\n", inode,
1999 		     ceph_cap_string(have), ceph_cap_string(need));
2000 	}
2001 out:
2002 	spin_unlock(&inode->i_lock);
2003 	dout("get_cap_refs %p ret %d got %s\n", inode,
2004 	     ret, ceph_cap_string(*got));
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Check the offset we are writing up to against our current
2010  * max_size.  If necessary, tell the MDS we want to write to
2011  * a larger offset.
2012  */
2013 static void check_max_size(struct inode *inode, loff_t endoff)
2014 {
2015 	struct ceph_inode_info *ci = ceph_inode(inode);
2016 	int check = 0;
2017 
2018 	/* do we need to explicitly request a larger max_size? */
2019 	spin_lock(&inode->i_lock);
2020 	if ((endoff >= ci->i_max_size ||
2021 	     endoff > (inode->i_size << 1)) &&
2022 	    endoff > ci->i_wanted_max_size) {
2023 		dout("write %p at large endoff %llu, req max_size\n",
2024 		     inode, endoff);
2025 		ci->i_wanted_max_size = endoff;
2026 		check = 1;
2027 	}
2028 	spin_unlock(&inode->i_lock);
2029 	if (check)
2030 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2031 }
2032 
2033 /*
2034  * Wait for caps, and take cap references.  If we can't get a WR cap
2035  * due to a small max_size, make sure we check_max_size (and possibly
2036  * ask the mds) so we don't get hung up indefinitely.
2037  */
2038 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2039 		  loff_t endoff)
2040 {
2041 	int check_max, ret, err;
2042 
2043 retry:
2044 	if (endoff > 0)
2045 		check_max_size(&ci->vfs_inode, endoff);
2046 	check_max = 0;
2047 	err = 0;
2048 	ret = wait_event_interruptible(ci->i_cap_wq,
2049 				       try_get_cap_refs(ci, need, want,
2050 							got, endoff,
2051 							&check_max, &err));
2052 	if (err)
2053 		ret = err;
2054 	if (check_max)
2055 		goto retry;
2056 	return ret;
2057 }
2058 
2059 /*
2060  * Take cap refs.  Caller must already know we hold at least one ref
2061  * on the caps in question or we don't know this is safe.
2062  */
2063 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2064 {
2065 	spin_lock(&ci->vfs_inode.i_lock);
2066 	__take_cap_refs(ci, caps);
2067 	spin_unlock(&ci->vfs_inode.i_lock);
2068 }
2069 
2070 /*
2071  * Release cap refs.
2072  *
2073  * If we released the last ref on any given cap, call ceph_check_caps
2074  * to release (or schedule a release).
2075  *
2076  * If we are releasing a WR cap (from a sync write), finalize any affected
2077  * cap_snap, and wake up any waiters.
2078  */
2079 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2080 {
2081 	struct inode *inode = &ci->vfs_inode;
2082 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2083 	struct ceph_cap_snap *capsnap;
2084 
2085 	spin_lock(&inode->i_lock);
2086 	if (had & CEPH_CAP_PIN)
2087 		--ci->i_pin_ref;
2088 	if (had & CEPH_CAP_FILE_RD)
2089 		if (--ci->i_rd_ref == 0)
2090 			last++;
2091 	if (had & CEPH_CAP_FILE_CACHE)
2092 		if (--ci->i_rdcache_ref == 0)
2093 			last++;
2094 	if (had & CEPH_CAP_FILE_BUFFER) {
2095 		if (--ci->i_wrbuffer_ref == 0) {
2096 			last++;
2097 			put++;
2098 		}
2099 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2100 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2101 	}
2102 	if (had & CEPH_CAP_FILE_WR)
2103 		if (--ci->i_wr_ref == 0) {
2104 			last++;
2105 			if (!list_empty(&ci->i_cap_snaps)) {
2106 				capsnap = list_first_entry(&ci->i_cap_snaps,
2107 						     struct ceph_cap_snap,
2108 						     ci_item);
2109 				if (capsnap->writing) {
2110 					capsnap->writing = 0;
2111 					flushsnaps =
2112 						__ceph_finish_cap_snap(ci,
2113 								       capsnap);
2114 					wake = 1;
2115 				}
2116 			}
2117 		}
2118 	spin_unlock(&inode->i_lock);
2119 
2120 	dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2121 	     last ? "last" : "");
2122 
2123 	if (last && !flushsnaps)
2124 		ceph_check_caps(ci, 0, NULL);
2125 	else if (flushsnaps)
2126 		ceph_flush_snaps(ci);
2127 	if (wake)
2128 		wake_up(&ci->i_cap_wq);
2129 	if (put)
2130 		iput(inode);
2131 }
2132 
2133 /*
2134  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2135  * context.  Adjust per-snap dirty page accounting as appropriate.
2136  * Once all dirty data for a cap_snap is flushed, flush snapped file
2137  * metadata back to the MDS.  If we dropped the last ref, call
2138  * ceph_check_caps.
2139  */
2140 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2141 				struct ceph_snap_context *snapc)
2142 {
2143 	struct inode *inode = &ci->vfs_inode;
2144 	int last = 0;
2145 	int last_snap = 0;
2146 	int found = 0;
2147 	struct ceph_cap_snap *capsnap = NULL;
2148 
2149 	spin_lock(&inode->i_lock);
2150 	ci->i_wrbuffer_ref -= nr;
2151 	last = !ci->i_wrbuffer_ref;
2152 
2153 	if (ci->i_head_snapc == snapc) {
2154 		ci->i_wrbuffer_ref_head -= nr;
2155 		if (!ci->i_wrbuffer_ref_head) {
2156 			ceph_put_snap_context(ci->i_head_snapc);
2157 			ci->i_head_snapc = NULL;
2158 		}
2159 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2160 		     inode,
2161 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2162 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2163 		     last ? " LAST" : "");
2164 	} else {
2165 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2166 			if (capsnap->context == snapc) {
2167 				found = 1;
2168 				capsnap->dirty_pages -= nr;
2169 				last_snap = !capsnap->dirty_pages;
2170 				break;
2171 			}
2172 		}
2173 		BUG_ON(!found);
2174 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2175 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2176 		     inode, capsnap, capsnap->context->seq,
2177 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2178 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2179 		     last ? " (wrbuffer last)" : "",
2180 		     last_snap ? " (capsnap last)" : "");
2181 	}
2182 
2183 	spin_unlock(&inode->i_lock);
2184 
2185 	if (last) {
2186 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2187 		iput(inode);
2188 	} else if (last_snap) {
2189 		ceph_flush_snaps(ci);
2190 		wake_up(&ci->i_cap_wq);
2191 	}
2192 }
2193 
2194 /*
2195  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2196  * actually be a revocation if it specifies a smaller cap set.)
2197  *
2198  * caller holds s_mutex and i_lock, we drop both.
2199  *
2200  * return value:
2201  *  0 - ok
2202  *  1 - check_caps on auth cap only (writeback)
2203  *  2 - check_caps (ack revoke)
2204  */
2205 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2206 			     struct ceph_mds_session *session,
2207 			     struct ceph_cap *cap,
2208 			     struct ceph_buffer *xattr_buf)
2209 	__releases(inode->i_lock)
2210 	__releases(session->s_mutex)
2211 {
2212 	struct ceph_inode_info *ci = ceph_inode(inode);
2213 	int mds = session->s_mds;
2214 	int seq = le32_to_cpu(grant->seq);
2215 	int newcaps = le32_to_cpu(grant->caps);
2216 	int issued, implemented, used, wanted, dirty;
2217 	u64 size = le64_to_cpu(grant->size);
2218 	u64 max_size = le64_to_cpu(grant->max_size);
2219 	struct timespec mtime, atime, ctime;
2220 	int check_caps = 0;
2221 	int wake = 0;
2222 	int writeback = 0;
2223 	int revoked_rdcache = 0;
2224 	int queue_invalidate = 0;
2225 
2226 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2227 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2228 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2229 		inode->i_size);
2230 
2231 	/*
2232 	 * If CACHE is being revoked, and we have no dirty buffers,
2233 	 * try to invalidate (once).  (If there are dirty buffers, we
2234 	 * will invalidate _after_ writeback.)
2235 	 */
2236 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2237 	    !ci->i_wrbuffer_ref) {
2238 		if (try_nonblocking_invalidate(inode) == 0) {
2239 			revoked_rdcache = 1;
2240 		} else {
2241 			/* there were locked pages.. invalidate later
2242 			   in a separate thread. */
2243 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2244 				queue_invalidate = 1;
2245 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2246 			}
2247 		}
2248 	}
2249 
2250 	/* side effects now are allowed */
2251 
2252 	issued = __ceph_caps_issued(ci, &implemented);
2253 	issued |= implemented | __ceph_caps_dirty(ci);
2254 
2255 	cap->cap_gen = session->s_cap_gen;
2256 
2257 	__check_cap_issue(ci, cap, newcaps);
2258 
2259 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2260 		inode->i_mode = le32_to_cpu(grant->mode);
2261 		inode->i_uid = le32_to_cpu(grant->uid);
2262 		inode->i_gid = le32_to_cpu(grant->gid);
2263 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2264 		     inode->i_uid, inode->i_gid);
2265 	}
2266 
2267 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2268 		inode->i_nlink = le32_to_cpu(grant->nlink);
2269 
2270 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2271 		int len = le32_to_cpu(grant->xattr_len);
2272 		u64 version = le64_to_cpu(grant->xattr_version);
2273 
2274 		if (version > ci->i_xattrs.version) {
2275 			dout(" got new xattrs v%llu on %p len %d\n",
2276 			     version, inode, len);
2277 			if (ci->i_xattrs.blob)
2278 				ceph_buffer_put(ci->i_xattrs.blob);
2279 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2280 			ci->i_xattrs.version = version;
2281 		}
2282 	}
2283 
2284 	/* size/ctime/mtime/atime? */
2285 	ceph_fill_file_size(inode, issued,
2286 			    le32_to_cpu(grant->truncate_seq),
2287 			    le64_to_cpu(grant->truncate_size), size);
2288 	ceph_decode_timespec(&mtime, &grant->mtime);
2289 	ceph_decode_timespec(&atime, &grant->atime);
2290 	ceph_decode_timespec(&ctime, &grant->ctime);
2291 	ceph_fill_file_time(inode, issued,
2292 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2293 			    &atime);
2294 
2295 	/* max size increase? */
2296 	if (max_size != ci->i_max_size) {
2297 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2298 		ci->i_max_size = max_size;
2299 		if (max_size >= ci->i_wanted_max_size) {
2300 			ci->i_wanted_max_size = 0;  /* reset */
2301 			ci->i_requested_max_size = 0;
2302 		}
2303 		wake = 1;
2304 	}
2305 
2306 	/* check cap bits */
2307 	wanted = __ceph_caps_wanted(ci);
2308 	used = __ceph_caps_used(ci);
2309 	dirty = __ceph_caps_dirty(ci);
2310 	dout(" my wanted = %s, used = %s, dirty %s\n",
2311 	     ceph_cap_string(wanted),
2312 	     ceph_cap_string(used),
2313 	     ceph_cap_string(dirty));
2314 	if (wanted != le32_to_cpu(grant->wanted)) {
2315 		dout("mds wanted %s -> %s\n",
2316 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2317 		     ceph_cap_string(wanted));
2318 		grant->wanted = cpu_to_le32(wanted);
2319 	}
2320 
2321 	cap->seq = seq;
2322 
2323 	/* file layout may have changed */
2324 	ci->i_layout = grant->layout;
2325 
2326 	/* revocation, grant, or no-op? */
2327 	if (cap->issued & ~newcaps) {
2328 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2329 		     ceph_cap_string(newcaps));
2330 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2331 			writeback = 1; /* will delay ack */
2332 		else if (dirty & ~newcaps)
2333 			check_caps = 1;  /* initiate writeback in check_caps */
2334 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2335 			   revoked_rdcache)
2336 			check_caps = 2;     /* send revoke ack in check_caps */
2337 		cap->issued = newcaps;
2338 		cap->implemented |= newcaps;
2339 	} else if (cap->issued == newcaps) {
2340 		dout("caps unchanged: %s -> %s\n",
2341 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2342 	} else {
2343 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2344 		     ceph_cap_string(newcaps));
2345 		cap->issued = newcaps;
2346 		cap->implemented |= newcaps; /* add bits only, to
2347 					      * avoid stepping on a
2348 					      * pending revocation */
2349 		wake = 1;
2350 	}
2351 	BUG_ON(cap->issued & ~cap->implemented);
2352 
2353 	spin_unlock(&inode->i_lock);
2354 	if (writeback)
2355 		/*
2356 		 * queue inode for writeback: we can't actually call
2357 		 * filemap_write_and_wait, etc. from message handler
2358 		 * context.
2359 		 */
2360 		ceph_queue_writeback(inode);
2361 	if (queue_invalidate)
2362 		ceph_queue_invalidate(inode);
2363 	if (wake)
2364 		wake_up(&ci->i_cap_wq);
2365 
2366 	if (check_caps == 1)
2367 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2368 				session);
2369 	else if (check_caps == 2)
2370 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2371 	else
2372 		mutex_unlock(&session->s_mutex);
2373 }
2374 
2375 /*
2376  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2377  * MDS has been safely committed.
2378  */
2379 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2380 				 struct ceph_mds_caps *m,
2381 				 struct ceph_mds_session *session,
2382 				 struct ceph_cap *cap)
2383 	__releases(inode->i_lock)
2384 {
2385 	struct ceph_inode_info *ci = ceph_inode(inode);
2386 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2387 	unsigned seq = le32_to_cpu(m->seq);
2388 	int dirty = le32_to_cpu(m->dirty);
2389 	int cleaned = 0;
2390 	int drop = 0;
2391 	int i;
2392 
2393 	for (i = 0; i < CEPH_CAP_BITS; i++)
2394 		if ((dirty & (1 << i)) &&
2395 		    flush_tid == ci->i_cap_flush_tid[i])
2396 			cleaned |= 1 << i;
2397 
2398 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2399 	     " flushing %s -> %s\n",
2400 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2401 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2402 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2403 
2404 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2405 		goto out;
2406 
2407 	ci->i_flushing_caps &= ~cleaned;
2408 
2409 	spin_lock(&mdsc->cap_dirty_lock);
2410 	if (ci->i_flushing_caps == 0) {
2411 		list_del_init(&ci->i_flushing_item);
2412 		if (!list_empty(&session->s_cap_flushing))
2413 			dout(" mds%d still flushing cap on %p\n",
2414 			     session->s_mds,
2415 			     &list_entry(session->s_cap_flushing.next,
2416 					 struct ceph_inode_info,
2417 					 i_flushing_item)->vfs_inode);
2418 		mdsc->num_cap_flushing--;
2419 		wake_up(&mdsc->cap_flushing_wq);
2420 		dout(" inode %p now !flushing\n", inode);
2421 
2422 		if (ci->i_dirty_caps == 0) {
2423 			dout(" inode %p now clean\n", inode);
2424 			BUG_ON(!list_empty(&ci->i_dirty_item));
2425 			drop = 1;
2426 		} else {
2427 			BUG_ON(list_empty(&ci->i_dirty_item));
2428 		}
2429 	}
2430 	spin_unlock(&mdsc->cap_dirty_lock);
2431 	wake_up(&ci->i_cap_wq);
2432 
2433 out:
2434 	spin_unlock(&inode->i_lock);
2435 	if (drop)
2436 		iput(inode);
2437 }
2438 
2439 /*
2440  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2441  * throw away our cap_snap.
2442  *
2443  * Caller hold s_mutex.
2444  */
2445 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2446 				     struct ceph_mds_caps *m,
2447 				     struct ceph_mds_session *session)
2448 {
2449 	struct ceph_inode_info *ci = ceph_inode(inode);
2450 	u64 follows = le64_to_cpu(m->snap_follows);
2451 	struct ceph_cap_snap *capsnap;
2452 	int drop = 0;
2453 
2454 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2455 	     inode, ci, session->s_mds, follows);
2456 
2457 	spin_lock(&inode->i_lock);
2458 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2459 		if (capsnap->follows == follows) {
2460 			if (capsnap->flush_tid != flush_tid) {
2461 				dout(" cap_snap %p follows %lld tid %lld !="
2462 				     " %lld\n", capsnap, follows,
2463 				     flush_tid, capsnap->flush_tid);
2464 				break;
2465 			}
2466 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2467 			dout(" removing cap_snap %p follows %lld\n",
2468 			     capsnap, follows);
2469 			ceph_put_snap_context(capsnap->context);
2470 			list_del(&capsnap->ci_item);
2471 			list_del(&capsnap->flushing_item);
2472 			ceph_put_cap_snap(capsnap);
2473 			drop = 1;
2474 			break;
2475 		} else {
2476 			dout(" skipping cap_snap %p follows %lld\n",
2477 			     capsnap, capsnap->follows);
2478 		}
2479 	}
2480 	spin_unlock(&inode->i_lock);
2481 	if (drop)
2482 		iput(inode);
2483 }
2484 
2485 /*
2486  * Handle TRUNC from MDS, indicating file truncation.
2487  *
2488  * caller hold s_mutex.
2489  */
2490 static void handle_cap_trunc(struct inode *inode,
2491 			     struct ceph_mds_caps *trunc,
2492 			     struct ceph_mds_session *session)
2493 	__releases(inode->i_lock)
2494 {
2495 	struct ceph_inode_info *ci = ceph_inode(inode);
2496 	int mds = session->s_mds;
2497 	int seq = le32_to_cpu(trunc->seq);
2498 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2499 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2500 	u64 size = le64_to_cpu(trunc->size);
2501 	int implemented = 0;
2502 	int dirty = __ceph_caps_dirty(ci);
2503 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2504 	int queue_trunc = 0;
2505 
2506 	issued |= implemented | dirty;
2507 
2508 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2509 	     inode, mds, seq, truncate_size, truncate_seq);
2510 	queue_trunc = ceph_fill_file_size(inode, issued,
2511 					  truncate_seq, truncate_size, size);
2512 	spin_unlock(&inode->i_lock);
2513 
2514 	if (queue_trunc)
2515 		ceph_queue_vmtruncate(inode);
2516 }
2517 
2518 /*
2519  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2520  * different one.  If we are the most recent migration we've seen (as
2521  * indicated by mseq), make note of the migrating cap bits for the
2522  * duration (until we see the corresponding IMPORT).
2523  *
2524  * caller holds s_mutex
2525  */
2526 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2527 			      struct ceph_mds_session *session)
2528 {
2529 	struct ceph_inode_info *ci = ceph_inode(inode);
2530 	int mds = session->s_mds;
2531 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2532 	struct ceph_cap *cap = NULL, *t;
2533 	struct rb_node *p;
2534 	int remember = 1;
2535 
2536 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2537 	     inode, ci, mds, mseq);
2538 
2539 	spin_lock(&inode->i_lock);
2540 
2541 	/* make sure we haven't seen a higher mseq */
2542 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2543 		t = rb_entry(p, struct ceph_cap, ci_node);
2544 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2545 			dout(" higher mseq on cap from mds%d\n",
2546 			     t->session->s_mds);
2547 			remember = 0;
2548 		}
2549 		if (t->session->s_mds == mds)
2550 			cap = t;
2551 	}
2552 
2553 	if (cap) {
2554 		if (remember) {
2555 			/* make note */
2556 			ci->i_cap_exporting_mds = mds;
2557 			ci->i_cap_exporting_mseq = mseq;
2558 			ci->i_cap_exporting_issued = cap->issued;
2559 		}
2560 		__ceph_remove_cap(cap);
2561 	}
2562 	/* else, we already released it */
2563 
2564 	spin_unlock(&inode->i_lock);
2565 }
2566 
2567 /*
2568  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2569  * clean them up.
2570  *
2571  * caller holds s_mutex.
2572  */
2573 static void handle_cap_import(struct ceph_mds_client *mdsc,
2574 			      struct inode *inode, struct ceph_mds_caps *im,
2575 			      struct ceph_mds_session *session,
2576 			      void *snaptrace, int snaptrace_len)
2577 {
2578 	struct ceph_inode_info *ci = ceph_inode(inode);
2579 	int mds = session->s_mds;
2580 	unsigned issued = le32_to_cpu(im->caps);
2581 	unsigned wanted = le32_to_cpu(im->wanted);
2582 	unsigned seq = le32_to_cpu(im->seq);
2583 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2584 	u64 realmino = le64_to_cpu(im->realm);
2585 	u64 cap_id = le64_to_cpu(im->cap_id);
2586 
2587 	if (ci->i_cap_exporting_mds >= 0 &&
2588 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2589 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2590 		     " - cleared exporting from mds%d\n",
2591 		     inode, ci, mds, mseq,
2592 		     ci->i_cap_exporting_mds);
2593 		ci->i_cap_exporting_issued = 0;
2594 		ci->i_cap_exporting_mseq = 0;
2595 		ci->i_cap_exporting_mds = -1;
2596 	} else {
2597 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2598 		     inode, ci, mds, mseq);
2599 	}
2600 
2601 	down_write(&mdsc->snap_rwsem);
2602 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2603 			       false);
2604 	downgrade_write(&mdsc->snap_rwsem);
2605 	ceph_add_cap(inode, session, cap_id, -1,
2606 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2607 		     NULL /* no caps context */);
2608 	try_flush_caps(inode, session, NULL);
2609 	up_read(&mdsc->snap_rwsem);
2610 }
2611 
2612 /*
2613  * Handle a caps message from the MDS.
2614  *
2615  * Identify the appropriate session, inode, and call the right handler
2616  * based on the cap op.
2617  */
2618 void ceph_handle_caps(struct ceph_mds_session *session,
2619 		      struct ceph_msg *msg)
2620 {
2621 	struct ceph_mds_client *mdsc = session->s_mdsc;
2622 	struct super_block *sb = mdsc->client->sb;
2623 	struct inode *inode;
2624 	struct ceph_cap *cap;
2625 	struct ceph_mds_caps *h;
2626 	int mds = session->s_mds;
2627 	int op;
2628 	u32 seq;
2629 	struct ceph_vino vino;
2630 	u64 cap_id;
2631 	u64 size, max_size;
2632 	u64 tid;
2633 	void *snaptrace;
2634 
2635 	dout("handle_caps from mds%d\n", mds);
2636 
2637 	/* decode */
2638 	tid = le64_to_cpu(msg->hdr.tid);
2639 	if (msg->front.iov_len < sizeof(*h))
2640 		goto bad;
2641 	h = msg->front.iov_base;
2642 	snaptrace = h + 1;
2643 	op = le32_to_cpu(h->op);
2644 	vino.ino = le64_to_cpu(h->ino);
2645 	vino.snap = CEPH_NOSNAP;
2646 	cap_id = le64_to_cpu(h->cap_id);
2647 	seq = le32_to_cpu(h->seq);
2648 	size = le64_to_cpu(h->size);
2649 	max_size = le64_to_cpu(h->max_size);
2650 
2651 	mutex_lock(&session->s_mutex);
2652 	session->s_seq++;
2653 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2654 	     (unsigned)seq);
2655 
2656 	/* lookup ino */
2657 	inode = ceph_find_inode(sb, vino);
2658 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2659 	     vino.snap, inode);
2660 	if (!inode) {
2661 		dout(" i don't have ino %llx\n", vino.ino);
2662 		goto done;
2663 	}
2664 
2665 	/* these will work even if we don't have a cap yet */
2666 	switch (op) {
2667 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2668 		handle_cap_flushsnap_ack(inode, tid, h, session);
2669 		goto done;
2670 
2671 	case CEPH_CAP_OP_EXPORT:
2672 		handle_cap_export(inode, h, session);
2673 		goto done;
2674 
2675 	case CEPH_CAP_OP_IMPORT:
2676 		handle_cap_import(mdsc, inode, h, session,
2677 				  snaptrace, le32_to_cpu(h->snap_trace_len));
2678 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2679 				session);
2680 		goto done_unlocked;
2681 	}
2682 
2683 	/* the rest require a cap */
2684 	spin_lock(&inode->i_lock);
2685 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2686 	if (!cap) {
2687 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2688 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2689 		spin_unlock(&inode->i_lock);
2690 		goto done;
2691 	}
2692 
2693 	/* note that each of these drops i_lock for us */
2694 	switch (op) {
2695 	case CEPH_CAP_OP_REVOKE:
2696 	case CEPH_CAP_OP_GRANT:
2697 		handle_cap_grant(inode, h, session, cap, msg->middle);
2698 		goto done_unlocked;
2699 
2700 	case CEPH_CAP_OP_FLUSH_ACK:
2701 		handle_cap_flush_ack(inode, tid, h, session, cap);
2702 		break;
2703 
2704 	case CEPH_CAP_OP_TRUNC:
2705 		handle_cap_trunc(inode, h, session);
2706 		break;
2707 
2708 	default:
2709 		spin_unlock(&inode->i_lock);
2710 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2711 		       ceph_cap_op_name(op));
2712 	}
2713 
2714 done:
2715 	mutex_unlock(&session->s_mutex);
2716 done_unlocked:
2717 	if (inode)
2718 		iput(inode);
2719 	return;
2720 
2721 bad:
2722 	pr_err("ceph_handle_caps: corrupt message\n");
2723 	ceph_msg_dump(msg);
2724 	return;
2725 }
2726 
2727 /*
2728  * Delayed work handler to process end of delayed cap release LRU list.
2729  */
2730 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2731 {
2732 	struct ceph_inode_info *ci;
2733 	int flags = CHECK_CAPS_NODELAY;
2734 
2735 	dout("check_delayed_caps\n");
2736 	while (1) {
2737 		spin_lock(&mdsc->cap_delay_lock);
2738 		if (list_empty(&mdsc->cap_delay_list))
2739 			break;
2740 		ci = list_first_entry(&mdsc->cap_delay_list,
2741 				      struct ceph_inode_info,
2742 				      i_cap_delay_list);
2743 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2744 		    time_before(jiffies, ci->i_hold_caps_max))
2745 			break;
2746 		list_del_init(&ci->i_cap_delay_list);
2747 		spin_unlock(&mdsc->cap_delay_lock);
2748 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2749 		ceph_check_caps(ci, flags, NULL);
2750 	}
2751 	spin_unlock(&mdsc->cap_delay_lock);
2752 }
2753 
2754 /*
2755  * Flush all dirty caps to the mds
2756  */
2757 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2758 {
2759 	struct ceph_inode_info *ci, *nci = NULL;
2760 	struct inode *inode, *ninode = NULL;
2761 	struct list_head *p, *n;
2762 
2763 	dout("flush_dirty_caps\n");
2764 	spin_lock(&mdsc->cap_dirty_lock);
2765 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2766 		if (nci) {
2767 			ci = nci;
2768 			inode = ninode;
2769 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2770 			dout("flush_dirty_caps inode %p (was next inode)\n",
2771 			     inode);
2772 		} else {
2773 			ci = list_entry(p, struct ceph_inode_info,
2774 					i_dirty_item);
2775 			inode = igrab(&ci->vfs_inode);
2776 			BUG_ON(!inode);
2777 			dout("flush_dirty_caps inode %p\n", inode);
2778 		}
2779 		if (n != &mdsc->cap_dirty) {
2780 			nci = list_entry(n, struct ceph_inode_info,
2781 					 i_dirty_item);
2782 			ninode = igrab(&nci->vfs_inode);
2783 			BUG_ON(!ninode);
2784 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2785 			dout("flush_dirty_caps next inode %p, noflush\n",
2786 			     ninode);
2787 		} else {
2788 			nci = NULL;
2789 			ninode = NULL;
2790 		}
2791 		spin_unlock(&mdsc->cap_dirty_lock);
2792 		if (inode) {
2793 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2794 					NULL);
2795 			iput(inode);
2796 		}
2797 		spin_lock(&mdsc->cap_dirty_lock);
2798 	}
2799 	spin_unlock(&mdsc->cap_dirty_lock);
2800 }
2801 
2802 /*
2803  * Drop open file reference.  If we were the last open file,
2804  * we may need to release capabilities to the MDS (or schedule
2805  * their delayed release).
2806  */
2807 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2808 {
2809 	struct inode *inode = &ci->vfs_inode;
2810 	int last = 0;
2811 
2812 	spin_lock(&inode->i_lock);
2813 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2814 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2815 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2816 	if (--ci->i_nr_by_mode[fmode] == 0)
2817 		last++;
2818 	spin_unlock(&inode->i_lock);
2819 
2820 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2821 		ceph_check_caps(ci, 0, NULL);
2822 }
2823 
2824 /*
2825  * Helpers for embedding cap and dentry lease releases into mds
2826  * requests.
2827  *
2828  * @force is used by dentry_release (below) to force inclusion of a
2829  * record for the directory inode, even when there aren't any caps to
2830  * drop.
2831  */
2832 int ceph_encode_inode_release(void **p, struct inode *inode,
2833 			      int mds, int drop, int unless, int force)
2834 {
2835 	struct ceph_inode_info *ci = ceph_inode(inode);
2836 	struct ceph_cap *cap;
2837 	struct ceph_mds_request_release *rel = *p;
2838 	int ret = 0;
2839 	int used = 0;
2840 
2841 	spin_lock(&inode->i_lock);
2842 	used = __ceph_caps_used(ci);
2843 
2844 	dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode,
2845 	     mds, ceph_cap_string(used), ceph_cap_string(drop),
2846 	     ceph_cap_string(unless));
2847 
2848 	/* only drop unused caps */
2849 	drop &= ~used;
2850 
2851 	cap = __get_cap_for_mds(ci, mds);
2852 	if (cap && __cap_is_valid(cap)) {
2853 		if (force ||
2854 		    ((cap->issued & drop) &&
2855 		     (cap->issued & unless) == 0)) {
2856 			if ((cap->issued & drop) &&
2857 			    (cap->issued & unless) == 0) {
2858 				dout("encode_inode_release %p cap %p %s -> "
2859 				     "%s\n", inode, cap,
2860 				     ceph_cap_string(cap->issued),
2861 				     ceph_cap_string(cap->issued & ~drop));
2862 				cap->issued &= ~drop;
2863 				cap->implemented &= ~drop;
2864 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2865 					int wanted = __ceph_caps_wanted(ci);
2866 					dout("  wanted %s -> %s (act %s)\n",
2867 					     ceph_cap_string(cap->mds_wanted),
2868 					     ceph_cap_string(cap->mds_wanted &
2869 							     ~wanted),
2870 					     ceph_cap_string(wanted));
2871 					cap->mds_wanted &= wanted;
2872 				}
2873 			} else {
2874 				dout("encode_inode_release %p cap %p %s"
2875 				     " (force)\n", inode, cap,
2876 				     ceph_cap_string(cap->issued));
2877 			}
2878 
2879 			rel->ino = cpu_to_le64(ceph_ino(inode));
2880 			rel->cap_id = cpu_to_le64(cap->cap_id);
2881 			rel->seq = cpu_to_le32(cap->seq);
2882 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2883 			rel->mseq = cpu_to_le32(cap->mseq);
2884 			rel->caps = cpu_to_le32(cap->issued);
2885 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2886 			rel->dname_len = 0;
2887 			rel->dname_seq = 0;
2888 			*p += sizeof(*rel);
2889 			ret = 1;
2890 		} else {
2891 			dout("encode_inode_release %p cap %p %s\n",
2892 			     inode, cap, ceph_cap_string(cap->issued));
2893 		}
2894 	}
2895 	spin_unlock(&inode->i_lock);
2896 	return ret;
2897 }
2898 
2899 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2900 			       int mds, int drop, int unless)
2901 {
2902 	struct inode *dir = dentry->d_parent->d_inode;
2903 	struct ceph_mds_request_release *rel = *p;
2904 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2905 	int force = 0;
2906 	int ret;
2907 
2908 	/*
2909 	 * force an record for the directory caps if we have a dentry lease.
2910 	 * this is racy (can't take i_lock and d_lock together), but it
2911 	 * doesn't have to be perfect; the mds will revoke anything we don't
2912 	 * release.
2913 	 */
2914 	spin_lock(&dentry->d_lock);
2915 	if (di->lease_session && di->lease_session->s_mds == mds)
2916 		force = 1;
2917 	spin_unlock(&dentry->d_lock);
2918 
2919 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2920 
2921 	spin_lock(&dentry->d_lock);
2922 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2923 		dout("encode_dentry_release %p mds%d seq %d\n",
2924 		     dentry, mds, (int)di->lease_seq);
2925 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2926 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2927 		*p += dentry->d_name.len;
2928 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2929 	}
2930 	spin_unlock(&dentry->d_lock);
2931 	return ret;
2932 }
2933