1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 int ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap_reservation *caps_reservation) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *new_cap = NULL; 520 struct ceph_cap *cap; 521 int mds = session->s_mds; 522 int actual_wanted; 523 524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 525 session->s_mds, cap_id, ceph_cap_string(issued), seq); 526 527 /* 528 * If we are opening the file, include file mode wanted bits 529 * in wanted. 530 */ 531 if (fmode >= 0) 532 wanted |= ceph_caps_for_mode(fmode); 533 534 retry: 535 spin_lock(&ci->i_ceph_lock); 536 cap = __get_cap_for_mds(ci, mds); 537 if (!cap) { 538 if (new_cap) { 539 cap = new_cap; 540 new_cap = NULL; 541 } else { 542 spin_unlock(&ci->i_ceph_lock); 543 new_cap = get_cap(mdsc, caps_reservation); 544 if (new_cap == NULL) 545 return -ENOMEM; 546 goto retry; 547 } 548 549 cap->issued = 0; 550 cap->implemented = 0; 551 cap->mds = mds; 552 cap->mds_wanted = 0; 553 cap->mseq = 0; 554 555 cap->ci = ci; 556 __insert_cap_node(ci, cap); 557 558 /* add to session cap list */ 559 cap->session = session; 560 spin_lock(&session->s_cap_lock); 561 list_add_tail(&cap->session_caps, &session->s_caps); 562 session->s_nr_caps++; 563 spin_unlock(&session->s_cap_lock); 564 } else { 565 if (new_cap) 566 ceph_put_cap(mdsc, new_cap); 567 568 /* 569 * auth mds of the inode changed. we received the cap export 570 * message, but still haven't received the cap import message. 571 * handle_cap_export() updated the new auth MDS' cap. 572 * 573 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 574 * a message that was send before the cap import message. So 575 * don't remove caps. 576 */ 577 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 578 WARN_ON(cap != ci->i_auth_cap); 579 WARN_ON(cap->cap_id != cap_id); 580 seq = cap->seq; 581 mseq = cap->mseq; 582 issued |= cap->issued; 583 flags |= CEPH_CAP_FLAG_AUTH; 584 } 585 } 586 587 if (!ci->i_snap_realm) { 588 /* 589 * add this inode to the appropriate snap realm 590 */ 591 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 592 realmino); 593 if (realm) { 594 ceph_get_snap_realm(mdsc, realm); 595 spin_lock(&realm->inodes_with_caps_lock); 596 ci->i_snap_realm = realm; 597 list_add(&ci->i_snap_realm_item, 598 &realm->inodes_with_caps); 599 spin_unlock(&realm->inodes_with_caps_lock); 600 } else { 601 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 602 realmino); 603 WARN_ON(!realm); 604 } 605 } 606 607 __check_cap_issue(ci, cap, issued); 608 609 /* 610 * If we are issued caps we don't want, or the mds' wanted 611 * value appears to be off, queue a check so we'll release 612 * later and/or update the mds wanted value. 613 */ 614 actual_wanted = __ceph_caps_wanted(ci); 615 if ((wanted & ~actual_wanted) || 616 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 617 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 618 ceph_cap_string(issued), ceph_cap_string(wanted), 619 ceph_cap_string(actual_wanted)); 620 __cap_delay_requeue(mdsc, ci); 621 } 622 623 if (flags & CEPH_CAP_FLAG_AUTH) { 624 if (ci->i_auth_cap == NULL || 625 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) 626 ci->i_auth_cap = cap; 627 ci->i_cap_exporting_issued = 0; 628 } else { 629 WARN_ON(ci->i_auth_cap == cap); 630 } 631 632 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 633 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 634 ceph_cap_string(issued|cap->issued), seq, mds); 635 cap->cap_id = cap_id; 636 cap->issued = issued; 637 cap->implemented |= issued; 638 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 639 cap->mds_wanted = wanted; 640 else 641 cap->mds_wanted |= wanted; 642 cap->seq = seq; 643 cap->issue_seq = seq; 644 cap->mseq = mseq; 645 cap->cap_gen = session->s_cap_gen; 646 647 if (fmode >= 0) 648 __ceph_get_fmode(ci, fmode); 649 spin_unlock(&ci->i_ceph_lock); 650 wake_up_all(&ci->i_cap_wq); 651 return 0; 652 } 653 654 /* 655 * Return true if cap has not timed out and belongs to the current 656 * generation of the MDS session (i.e. has not gone 'stale' due to 657 * us losing touch with the mds). 658 */ 659 static int __cap_is_valid(struct ceph_cap *cap) 660 { 661 unsigned long ttl; 662 u32 gen; 663 664 spin_lock(&cap->session->s_gen_ttl_lock); 665 gen = cap->session->s_cap_gen; 666 ttl = cap->session->s_cap_ttl; 667 spin_unlock(&cap->session->s_gen_ttl_lock); 668 669 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 670 dout("__cap_is_valid %p cap %p issued %s " 671 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 672 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 673 return 0; 674 } 675 676 return 1; 677 } 678 679 /* 680 * Return set of valid cap bits issued to us. Note that caps time 681 * out, and may be invalidated in bulk if the client session times out 682 * and session->s_cap_gen is bumped. 683 */ 684 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 685 { 686 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 687 struct ceph_cap *cap; 688 struct rb_node *p; 689 690 if (implemented) 691 *implemented = 0; 692 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 693 cap = rb_entry(p, struct ceph_cap, ci_node); 694 if (!__cap_is_valid(cap)) 695 continue; 696 dout("__ceph_caps_issued %p cap %p issued %s\n", 697 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 698 have |= cap->issued; 699 if (implemented) 700 *implemented |= cap->implemented; 701 } 702 /* 703 * exclude caps issued by non-auth MDS, but are been revoking 704 * by the auth MDS. The non-auth MDS should be revoking/exporting 705 * these caps, but the message is delayed. 706 */ 707 if (ci->i_auth_cap) { 708 cap = ci->i_auth_cap; 709 have &= ~cap->implemented | cap->issued; 710 } 711 return have; 712 } 713 714 /* 715 * Get cap bits issued by caps other than @ocap 716 */ 717 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 718 { 719 int have = ci->i_snap_caps; 720 struct ceph_cap *cap; 721 struct rb_node *p; 722 723 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 724 cap = rb_entry(p, struct ceph_cap, ci_node); 725 if (cap == ocap) 726 continue; 727 if (!__cap_is_valid(cap)) 728 continue; 729 have |= cap->issued; 730 } 731 return have; 732 } 733 734 /* 735 * Move a cap to the end of the LRU (oldest caps at list head, newest 736 * at list tail). 737 */ 738 static void __touch_cap(struct ceph_cap *cap) 739 { 740 struct ceph_mds_session *s = cap->session; 741 742 spin_lock(&s->s_cap_lock); 743 if (s->s_cap_iterator == NULL) { 744 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 745 s->s_mds); 746 list_move_tail(&cap->session_caps, &s->s_caps); 747 } else { 748 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 749 &cap->ci->vfs_inode, cap, s->s_mds); 750 } 751 spin_unlock(&s->s_cap_lock); 752 } 753 754 /* 755 * Check if we hold the given mask. If so, move the cap(s) to the 756 * front of their respective LRUs. (This is the preferred way for 757 * callers to check for caps they want.) 758 */ 759 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 760 { 761 struct ceph_cap *cap; 762 struct rb_node *p; 763 int have = ci->i_snap_caps; 764 765 if ((have & mask) == mask) { 766 dout("__ceph_caps_issued_mask %p snap issued %s" 767 " (mask %s)\n", &ci->vfs_inode, 768 ceph_cap_string(have), 769 ceph_cap_string(mask)); 770 return 1; 771 } 772 773 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 774 cap = rb_entry(p, struct ceph_cap, ci_node); 775 if (!__cap_is_valid(cap)) 776 continue; 777 if ((cap->issued & mask) == mask) { 778 dout("__ceph_caps_issued_mask %p cap %p issued %s" 779 " (mask %s)\n", &ci->vfs_inode, cap, 780 ceph_cap_string(cap->issued), 781 ceph_cap_string(mask)); 782 if (touch) 783 __touch_cap(cap); 784 return 1; 785 } 786 787 /* does a combination of caps satisfy mask? */ 788 have |= cap->issued; 789 if ((have & mask) == mask) { 790 dout("__ceph_caps_issued_mask %p combo issued %s" 791 " (mask %s)\n", &ci->vfs_inode, 792 ceph_cap_string(cap->issued), 793 ceph_cap_string(mask)); 794 if (touch) { 795 struct rb_node *q; 796 797 /* touch this + preceding caps */ 798 __touch_cap(cap); 799 for (q = rb_first(&ci->i_caps); q != p; 800 q = rb_next(q)) { 801 cap = rb_entry(q, struct ceph_cap, 802 ci_node); 803 if (!__cap_is_valid(cap)) 804 continue; 805 __touch_cap(cap); 806 } 807 } 808 return 1; 809 } 810 } 811 812 return 0; 813 } 814 815 /* 816 * Return true if mask caps are currently being revoked by an MDS. 817 */ 818 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 819 struct ceph_cap *ocap, int mask) 820 { 821 struct ceph_cap *cap; 822 struct rb_node *p; 823 824 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 825 cap = rb_entry(p, struct ceph_cap, ci_node); 826 if (cap != ocap && 827 (cap->implemented & ~cap->issued & mask)) 828 return 1; 829 } 830 return 0; 831 } 832 833 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 834 { 835 struct inode *inode = &ci->vfs_inode; 836 int ret; 837 838 spin_lock(&ci->i_ceph_lock); 839 ret = __ceph_caps_revoking_other(ci, NULL, mask); 840 spin_unlock(&ci->i_ceph_lock); 841 dout("ceph_caps_revoking %p %s = %d\n", inode, 842 ceph_cap_string(mask), ret); 843 return ret; 844 } 845 846 int __ceph_caps_used(struct ceph_inode_info *ci) 847 { 848 int used = 0; 849 if (ci->i_pin_ref) 850 used |= CEPH_CAP_PIN; 851 if (ci->i_rd_ref) 852 used |= CEPH_CAP_FILE_RD; 853 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 854 used |= CEPH_CAP_FILE_CACHE; 855 if (ci->i_wr_ref) 856 used |= CEPH_CAP_FILE_WR; 857 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 858 used |= CEPH_CAP_FILE_BUFFER; 859 return used; 860 } 861 862 /* 863 * wanted, by virtue of open file modes 864 */ 865 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 866 { 867 int want = 0; 868 int mode; 869 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 870 if (ci->i_nr_by_mode[mode]) 871 want |= ceph_caps_for_mode(mode); 872 return want; 873 } 874 875 /* 876 * Return caps we have registered with the MDS(s) as 'wanted'. 877 */ 878 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 879 { 880 struct ceph_cap *cap; 881 struct rb_node *p; 882 int mds_wanted = 0; 883 884 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 885 cap = rb_entry(p, struct ceph_cap, ci_node); 886 if (!__cap_is_valid(cap)) 887 continue; 888 mds_wanted |= cap->mds_wanted; 889 } 890 return mds_wanted; 891 } 892 893 /* 894 * called under i_ceph_lock 895 */ 896 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 897 { 898 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_issued; 899 } 900 901 int ceph_is_any_caps(struct inode *inode) 902 { 903 struct ceph_inode_info *ci = ceph_inode(inode); 904 int ret; 905 906 spin_lock(&ci->i_ceph_lock); 907 ret = __ceph_is_any_caps(ci); 908 spin_unlock(&ci->i_ceph_lock); 909 910 return ret; 911 } 912 913 /* 914 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 915 * 916 * caller should hold i_ceph_lock. 917 * caller will not hold session s_mutex if called from destroy_inode. 918 */ 919 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 920 { 921 struct ceph_mds_session *session = cap->session; 922 struct ceph_inode_info *ci = cap->ci; 923 struct ceph_mds_client *mdsc = 924 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 925 int removed = 0; 926 927 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 928 929 /* remove from session list */ 930 spin_lock(&session->s_cap_lock); 931 /* 932 * s_cap_reconnect is protected by s_cap_lock. no one changes 933 * s_cap_gen while session is in the reconnect state. 934 */ 935 if (queue_release && 936 (!session->s_cap_reconnect || 937 cap->cap_gen == session->s_cap_gen)) 938 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id, 939 cap->mseq, cap->issue_seq); 940 941 if (session->s_cap_iterator == cap) { 942 /* not yet, we are iterating over this very cap */ 943 dout("__ceph_remove_cap delaying %p removal from session %p\n", 944 cap, cap->session); 945 } else { 946 list_del_init(&cap->session_caps); 947 session->s_nr_caps--; 948 cap->session = NULL; 949 removed = 1; 950 } 951 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 952 cap->ci = NULL; 953 spin_unlock(&session->s_cap_lock); 954 955 /* remove from inode list */ 956 rb_erase(&cap->ci_node, &ci->i_caps); 957 if (ci->i_auth_cap == cap) 958 ci->i_auth_cap = NULL; 959 960 if (removed) 961 ceph_put_cap(mdsc, cap); 962 963 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 964 struct ceph_snap_realm *realm = ci->i_snap_realm; 965 spin_lock(&realm->inodes_with_caps_lock); 966 list_del_init(&ci->i_snap_realm_item); 967 ci->i_snap_realm_counter++; 968 ci->i_snap_realm = NULL; 969 spin_unlock(&realm->inodes_with_caps_lock); 970 ceph_put_snap_realm(mdsc, realm); 971 } 972 if (!__ceph_is_any_real_caps(ci)) 973 __cap_delay_cancel(mdsc, ci); 974 } 975 976 /* 977 * Build and send a cap message to the given MDS. 978 * 979 * Caller should be holding s_mutex. 980 */ 981 static int send_cap_msg(struct ceph_mds_session *session, 982 u64 ino, u64 cid, int op, 983 int caps, int wanted, int dirty, 984 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 985 u64 size, u64 max_size, 986 struct timespec *mtime, struct timespec *atime, 987 u64 time_warp_seq, 988 kuid_t uid, kgid_t gid, umode_t mode, 989 u64 xattr_version, 990 struct ceph_buffer *xattrs_buf, 991 u64 follows) 992 { 993 struct ceph_mds_caps *fc; 994 struct ceph_msg *msg; 995 996 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 997 " seq %u/%u mseq %u follows %lld size %llu/%llu" 998 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 999 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 1000 ceph_cap_string(dirty), 1001 seq, issue_seq, mseq, follows, size, max_size, 1002 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 1003 1004 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false); 1005 if (!msg) 1006 return -ENOMEM; 1007 1008 msg->hdr.tid = cpu_to_le64(flush_tid); 1009 1010 fc = msg->front.iov_base; 1011 memset(fc, 0, sizeof(*fc)); 1012 1013 fc->cap_id = cpu_to_le64(cid); 1014 fc->op = cpu_to_le32(op); 1015 fc->seq = cpu_to_le32(seq); 1016 fc->issue_seq = cpu_to_le32(issue_seq); 1017 fc->migrate_seq = cpu_to_le32(mseq); 1018 fc->caps = cpu_to_le32(caps); 1019 fc->wanted = cpu_to_le32(wanted); 1020 fc->dirty = cpu_to_le32(dirty); 1021 fc->ino = cpu_to_le64(ino); 1022 fc->snap_follows = cpu_to_le64(follows); 1023 1024 fc->size = cpu_to_le64(size); 1025 fc->max_size = cpu_to_le64(max_size); 1026 if (mtime) 1027 ceph_encode_timespec(&fc->mtime, mtime); 1028 if (atime) 1029 ceph_encode_timespec(&fc->atime, atime); 1030 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1031 1032 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1033 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1034 fc->mode = cpu_to_le32(mode); 1035 1036 fc->xattr_version = cpu_to_le64(xattr_version); 1037 if (xattrs_buf) { 1038 msg->middle = ceph_buffer_get(xattrs_buf); 1039 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1040 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1041 } 1042 1043 ceph_con_send(&session->s_con, msg); 1044 return 0; 1045 } 1046 1047 void __queue_cap_release(struct ceph_mds_session *session, 1048 u64 ino, u64 cap_id, u32 migrate_seq, 1049 u32 issue_seq) 1050 { 1051 struct ceph_msg *msg; 1052 struct ceph_mds_cap_release *head; 1053 struct ceph_mds_cap_item *item; 1054 1055 BUG_ON(!session->s_num_cap_releases); 1056 msg = list_first_entry(&session->s_cap_releases, 1057 struct ceph_msg, list_head); 1058 1059 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1060 ino, session->s_mds, msg, session->s_num_cap_releases); 1061 1062 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1063 head = msg->front.iov_base; 1064 le32_add_cpu(&head->num, 1); 1065 item = msg->front.iov_base + msg->front.iov_len; 1066 item->ino = cpu_to_le64(ino); 1067 item->cap_id = cpu_to_le64(cap_id); 1068 item->migrate_seq = cpu_to_le32(migrate_seq); 1069 item->seq = cpu_to_le32(issue_seq); 1070 1071 session->s_num_cap_releases--; 1072 1073 msg->front.iov_len += sizeof(*item); 1074 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1075 dout(" release msg %p full\n", msg); 1076 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1077 } else { 1078 dout(" release msg %p at %d/%d (%d)\n", msg, 1079 (int)le32_to_cpu(head->num), 1080 (int)CEPH_CAPS_PER_RELEASE, 1081 (int)msg->front.iov_len); 1082 } 1083 } 1084 1085 /* 1086 * Queue cap releases when an inode is dropped from our cache. Since 1087 * inode is about to be destroyed, there is no need for i_ceph_lock. 1088 */ 1089 void ceph_queue_caps_release(struct inode *inode) 1090 { 1091 struct ceph_inode_info *ci = ceph_inode(inode); 1092 struct rb_node *p; 1093 1094 p = rb_first(&ci->i_caps); 1095 while (p) { 1096 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1097 p = rb_next(p); 1098 __ceph_remove_cap(cap, true); 1099 } 1100 } 1101 1102 /* 1103 * Send a cap msg on the given inode. Update our caps state, then 1104 * drop i_ceph_lock and send the message. 1105 * 1106 * Make note of max_size reported/requested from mds, revoked caps 1107 * that have now been implemented. 1108 * 1109 * Make half-hearted attempt ot to invalidate page cache if we are 1110 * dropping RDCACHE. Note that this will leave behind locked pages 1111 * that we'll then need to deal with elsewhere. 1112 * 1113 * Return non-zero if delayed release, or we experienced an error 1114 * such that the caller should requeue + retry later. 1115 * 1116 * called with i_ceph_lock, then drops it. 1117 * caller should hold snap_rwsem (read), s_mutex. 1118 */ 1119 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1120 int op, int used, int want, int retain, int flushing, 1121 unsigned *pflush_tid) 1122 __releases(cap->ci->i_ceph_lock) 1123 { 1124 struct ceph_inode_info *ci = cap->ci; 1125 struct inode *inode = &ci->vfs_inode; 1126 u64 cap_id = cap->cap_id; 1127 int held, revoking, dropping, keep; 1128 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1129 u64 size, max_size; 1130 struct timespec mtime, atime; 1131 int wake = 0; 1132 umode_t mode; 1133 kuid_t uid; 1134 kgid_t gid; 1135 struct ceph_mds_session *session; 1136 u64 xattr_version = 0; 1137 struct ceph_buffer *xattr_blob = NULL; 1138 int delayed = 0; 1139 u64 flush_tid = 0; 1140 int i; 1141 int ret; 1142 1143 held = cap->issued | cap->implemented; 1144 revoking = cap->implemented & ~cap->issued; 1145 retain &= ~revoking; 1146 dropping = cap->issued & ~retain; 1147 1148 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1149 inode, cap, cap->session, 1150 ceph_cap_string(held), ceph_cap_string(held & retain), 1151 ceph_cap_string(revoking)); 1152 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1153 1154 session = cap->session; 1155 1156 /* don't release wanted unless we've waited a bit. */ 1157 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1158 time_before(jiffies, ci->i_hold_caps_min)) { 1159 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1160 ceph_cap_string(cap->issued), 1161 ceph_cap_string(cap->issued & retain), 1162 ceph_cap_string(cap->mds_wanted), 1163 ceph_cap_string(want)); 1164 want |= cap->mds_wanted; 1165 retain |= cap->issued; 1166 delayed = 1; 1167 } 1168 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1169 1170 cap->issued &= retain; /* drop bits we don't want */ 1171 if (cap->implemented & ~cap->issued) { 1172 /* 1173 * Wake up any waiters on wanted -> needed transition. 1174 * This is due to the weird transition from buffered 1175 * to sync IO... we need to flush dirty pages _before_ 1176 * allowing sync writes to avoid reordering. 1177 */ 1178 wake = 1; 1179 } 1180 cap->implemented &= cap->issued | used; 1181 cap->mds_wanted = want; 1182 1183 if (flushing) { 1184 /* 1185 * assign a tid for flush operations so we can avoid 1186 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1187 * clean type races. track latest tid for every bit 1188 * so we can handle flush AxFw, flush Fw, and have the 1189 * first ack clean Ax. 1190 */ 1191 flush_tid = ++ci->i_cap_flush_last_tid; 1192 if (pflush_tid) 1193 *pflush_tid = flush_tid; 1194 dout(" cap_flush_tid %d\n", (int)flush_tid); 1195 for (i = 0; i < CEPH_CAP_BITS; i++) 1196 if (flushing & (1 << i)) 1197 ci->i_cap_flush_tid[i] = flush_tid; 1198 1199 follows = ci->i_head_snapc->seq; 1200 } else { 1201 follows = 0; 1202 } 1203 1204 keep = cap->implemented; 1205 seq = cap->seq; 1206 issue_seq = cap->issue_seq; 1207 mseq = cap->mseq; 1208 size = inode->i_size; 1209 ci->i_reported_size = size; 1210 max_size = ci->i_wanted_max_size; 1211 ci->i_requested_max_size = max_size; 1212 mtime = inode->i_mtime; 1213 atime = inode->i_atime; 1214 time_warp_seq = ci->i_time_warp_seq; 1215 uid = inode->i_uid; 1216 gid = inode->i_gid; 1217 mode = inode->i_mode; 1218 1219 if (flushing & CEPH_CAP_XATTR_EXCL) { 1220 __ceph_build_xattrs_blob(ci); 1221 xattr_blob = ci->i_xattrs.blob; 1222 xattr_version = ci->i_xattrs.version; 1223 } 1224 1225 spin_unlock(&ci->i_ceph_lock); 1226 1227 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1228 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1229 size, max_size, &mtime, &atime, time_warp_seq, 1230 uid, gid, mode, xattr_version, xattr_blob, 1231 follows); 1232 if (ret < 0) { 1233 dout("error sending cap msg, must requeue %p\n", inode); 1234 delayed = 1; 1235 } 1236 1237 if (wake) 1238 wake_up_all(&ci->i_cap_wq); 1239 1240 return delayed; 1241 } 1242 1243 /* 1244 * When a snapshot is taken, clients accumulate dirty metadata on 1245 * inodes with capabilities in ceph_cap_snaps to describe the file 1246 * state at the time the snapshot was taken. This must be flushed 1247 * asynchronously back to the MDS once sync writes complete and dirty 1248 * data is written out. 1249 * 1250 * Unless @again is true, skip cap_snaps that were already sent to 1251 * the MDS (i.e., during this session). 1252 * 1253 * Called under i_ceph_lock. Takes s_mutex as needed. 1254 */ 1255 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1256 struct ceph_mds_session **psession, 1257 int again) 1258 __releases(ci->i_ceph_lock) 1259 __acquires(ci->i_ceph_lock) 1260 { 1261 struct inode *inode = &ci->vfs_inode; 1262 int mds; 1263 struct ceph_cap_snap *capsnap; 1264 u32 mseq; 1265 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1266 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1267 session->s_mutex */ 1268 u64 next_follows = 0; /* keep track of how far we've gotten through the 1269 i_cap_snaps list, and skip these entries next time 1270 around to avoid an infinite loop */ 1271 1272 if (psession) 1273 session = *psession; 1274 1275 dout("__flush_snaps %p\n", inode); 1276 retry: 1277 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1278 /* avoid an infiniute loop after retry */ 1279 if (capsnap->follows < next_follows) 1280 continue; 1281 /* 1282 * we need to wait for sync writes to complete and for dirty 1283 * pages to be written out. 1284 */ 1285 if (capsnap->dirty_pages || capsnap->writing) 1286 break; 1287 1288 /* 1289 * if cap writeback already occurred, we should have dropped 1290 * the capsnap in ceph_put_wrbuffer_cap_refs. 1291 */ 1292 BUG_ON(capsnap->dirty == 0); 1293 1294 /* pick mds, take s_mutex */ 1295 if (ci->i_auth_cap == NULL) { 1296 dout("no auth cap (migrating?), doing nothing\n"); 1297 goto out; 1298 } 1299 1300 /* only flush each capsnap once */ 1301 if (!again && !list_empty(&capsnap->flushing_item)) { 1302 dout("already flushed %p, skipping\n", capsnap); 1303 continue; 1304 } 1305 1306 mds = ci->i_auth_cap->session->s_mds; 1307 mseq = ci->i_auth_cap->mseq; 1308 1309 if (session && session->s_mds != mds) { 1310 dout("oops, wrong session %p mutex\n", session); 1311 mutex_unlock(&session->s_mutex); 1312 ceph_put_mds_session(session); 1313 session = NULL; 1314 } 1315 if (!session) { 1316 spin_unlock(&ci->i_ceph_lock); 1317 mutex_lock(&mdsc->mutex); 1318 session = __ceph_lookup_mds_session(mdsc, mds); 1319 mutex_unlock(&mdsc->mutex); 1320 if (session) { 1321 dout("inverting session/ino locks on %p\n", 1322 session); 1323 mutex_lock(&session->s_mutex); 1324 } 1325 /* 1326 * if session == NULL, we raced against a cap 1327 * deletion or migration. retry, and we'll 1328 * get a better @mds value next time. 1329 */ 1330 spin_lock(&ci->i_ceph_lock); 1331 goto retry; 1332 } 1333 1334 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1335 atomic_inc(&capsnap->nref); 1336 if (!list_empty(&capsnap->flushing_item)) 1337 list_del_init(&capsnap->flushing_item); 1338 list_add_tail(&capsnap->flushing_item, 1339 &session->s_cap_snaps_flushing); 1340 spin_unlock(&ci->i_ceph_lock); 1341 1342 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1343 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1344 send_cap_msg(session, ceph_vino(inode).ino, 0, 1345 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1346 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1347 capsnap->size, 0, 1348 &capsnap->mtime, &capsnap->atime, 1349 capsnap->time_warp_seq, 1350 capsnap->uid, capsnap->gid, capsnap->mode, 1351 capsnap->xattr_version, capsnap->xattr_blob, 1352 capsnap->follows); 1353 1354 next_follows = capsnap->follows + 1; 1355 ceph_put_cap_snap(capsnap); 1356 1357 spin_lock(&ci->i_ceph_lock); 1358 goto retry; 1359 } 1360 1361 /* we flushed them all; remove this inode from the queue */ 1362 spin_lock(&mdsc->snap_flush_lock); 1363 list_del_init(&ci->i_snap_flush_item); 1364 spin_unlock(&mdsc->snap_flush_lock); 1365 1366 out: 1367 if (psession) 1368 *psession = session; 1369 else if (session) { 1370 mutex_unlock(&session->s_mutex); 1371 ceph_put_mds_session(session); 1372 } 1373 } 1374 1375 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1376 { 1377 spin_lock(&ci->i_ceph_lock); 1378 __ceph_flush_snaps(ci, NULL, 0); 1379 spin_unlock(&ci->i_ceph_lock); 1380 } 1381 1382 /* 1383 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1384 * Caller is then responsible for calling __mark_inode_dirty with the 1385 * returned flags value. 1386 */ 1387 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1388 { 1389 struct ceph_mds_client *mdsc = 1390 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1391 struct inode *inode = &ci->vfs_inode; 1392 int was = ci->i_dirty_caps; 1393 int dirty = 0; 1394 1395 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1396 ceph_cap_string(mask), ceph_cap_string(was), 1397 ceph_cap_string(was | mask)); 1398 ci->i_dirty_caps |= mask; 1399 if (was == 0) { 1400 if (!ci->i_head_snapc) 1401 ci->i_head_snapc = ceph_get_snap_context( 1402 ci->i_snap_realm->cached_context); 1403 dout(" inode %p now dirty snapc %p auth cap %p\n", 1404 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1405 WARN_ON(!ci->i_auth_cap); 1406 BUG_ON(!list_empty(&ci->i_dirty_item)); 1407 spin_lock(&mdsc->cap_dirty_lock); 1408 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1409 spin_unlock(&mdsc->cap_dirty_lock); 1410 if (ci->i_flushing_caps == 0) { 1411 ihold(inode); 1412 dirty |= I_DIRTY_SYNC; 1413 } 1414 } 1415 BUG_ON(list_empty(&ci->i_dirty_item)); 1416 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1417 (mask & CEPH_CAP_FILE_BUFFER)) 1418 dirty |= I_DIRTY_DATASYNC; 1419 __cap_delay_requeue(mdsc, ci); 1420 return dirty; 1421 } 1422 1423 /* 1424 * Add dirty inode to the flushing list. Assigned a seq number so we 1425 * can wait for caps to flush without starving. 1426 * 1427 * Called under i_ceph_lock. 1428 */ 1429 static int __mark_caps_flushing(struct inode *inode, 1430 struct ceph_mds_session *session) 1431 { 1432 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1433 struct ceph_inode_info *ci = ceph_inode(inode); 1434 int flushing; 1435 1436 BUG_ON(ci->i_dirty_caps == 0); 1437 BUG_ON(list_empty(&ci->i_dirty_item)); 1438 1439 flushing = ci->i_dirty_caps; 1440 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1441 ceph_cap_string(flushing), 1442 ceph_cap_string(ci->i_flushing_caps), 1443 ceph_cap_string(ci->i_flushing_caps | flushing)); 1444 ci->i_flushing_caps |= flushing; 1445 ci->i_dirty_caps = 0; 1446 dout(" inode %p now !dirty\n", inode); 1447 1448 spin_lock(&mdsc->cap_dirty_lock); 1449 list_del_init(&ci->i_dirty_item); 1450 1451 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1452 if (list_empty(&ci->i_flushing_item)) { 1453 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1454 mdsc->num_cap_flushing++; 1455 dout(" inode %p now flushing seq %lld\n", inode, 1456 ci->i_cap_flush_seq); 1457 } else { 1458 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1459 dout(" inode %p now flushing (more) seq %lld\n", inode, 1460 ci->i_cap_flush_seq); 1461 } 1462 spin_unlock(&mdsc->cap_dirty_lock); 1463 1464 return flushing; 1465 } 1466 1467 /* 1468 * try to invalidate mapping pages without blocking. 1469 */ 1470 static int try_nonblocking_invalidate(struct inode *inode) 1471 { 1472 struct ceph_inode_info *ci = ceph_inode(inode); 1473 u32 invalidating_gen = ci->i_rdcache_gen; 1474 1475 spin_unlock(&ci->i_ceph_lock); 1476 invalidate_mapping_pages(&inode->i_data, 0, -1); 1477 spin_lock(&ci->i_ceph_lock); 1478 1479 if (inode->i_data.nrpages == 0 && 1480 invalidating_gen == ci->i_rdcache_gen) { 1481 /* success. */ 1482 dout("try_nonblocking_invalidate %p success\n", inode); 1483 /* save any racing async invalidate some trouble */ 1484 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1485 return 0; 1486 } 1487 dout("try_nonblocking_invalidate %p failed\n", inode); 1488 return -1; 1489 } 1490 1491 /* 1492 * Swiss army knife function to examine currently used and wanted 1493 * versus held caps. Release, flush, ack revoked caps to mds as 1494 * appropriate. 1495 * 1496 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1497 * cap release further. 1498 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1499 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1500 * further delay. 1501 */ 1502 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1503 struct ceph_mds_session *session) 1504 { 1505 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1506 struct ceph_mds_client *mdsc = fsc->mdsc; 1507 struct inode *inode = &ci->vfs_inode; 1508 struct ceph_cap *cap; 1509 int file_wanted, used, cap_used; 1510 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1511 int issued, implemented, want, retain, revoking, flushing = 0; 1512 int mds = -1; /* keep track of how far we've gone through i_caps list 1513 to avoid an infinite loop on retry */ 1514 struct rb_node *p; 1515 int tried_invalidate = 0; 1516 int delayed = 0, sent = 0, force_requeue = 0, num; 1517 int queue_invalidate = 0; 1518 int is_delayed = flags & CHECK_CAPS_NODELAY; 1519 1520 /* if we are unmounting, flush any unused caps immediately. */ 1521 if (mdsc->stopping) 1522 is_delayed = 1; 1523 1524 spin_lock(&ci->i_ceph_lock); 1525 1526 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1527 flags |= CHECK_CAPS_FLUSH; 1528 1529 /* flush snaps first time around only */ 1530 if (!list_empty(&ci->i_cap_snaps)) 1531 __ceph_flush_snaps(ci, &session, 0); 1532 goto retry_locked; 1533 retry: 1534 spin_lock(&ci->i_ceph_lock); 1535 retry_locked: 1536 file_wanted = __ceph_caps_file_wanted(ci); 1537 used = __ceph_caps_used(ci); 1538 want = file_wanted | used; 1539 issued = __ceph_caps_issued(ci, &implemented); 1540 revoking = implemented & ~issued; 1541 1542 retain = want | CEPH_CAP_PIN; 1543 if (!mdsc->stopping && inode->i_nlink > 0) { 1544 if (want) { 1545 retain |= CEPH_CAP_ANY; /* be greedy */ 1546 } else { 1547 retain |= CEPH_CAP_ANY_SHARED; 1548 /* 1549 * keep RD only if we didn't have the file open RW, 1550 * because then the mds would revoke it anyway to 1551 * journal max_size=0. 1552 */ 1553 if (ci->i_max_size == 0) 1554 retain |= CEPH_CAP_ANY_RD; 1555 } 1556 } 1557 1558 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1559 " issued %s revoking %s retain %s %s%s%s\n", inode, 1560 ceph_cap_string(file_wanted), 1561 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1562 ceph_cap_string(ci->i_flushing_caps), 1563 ceph_cap_string(issued), ceph_cap_string(revoking), 1564 ceph_cap_string(retain), 1565 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1566 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1567 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1568 1569 /* 1570 * If we no longer need to hold onto old our caps, and we may 1571 * have cached pages, but don't want them, then try to invalidate. 1572 * If we fail, it's because pages are locked.... try again later. 1573 */ 1574 if ((!is_delayed || mdsc->stopping) && 1575 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1576 inode->i_data.nrpages && /* have cached pages */ 1577 (file_wanted == 0 || /* no open files */ 1578 (revoking & (CEPH_CAP_FILE_CACHE| 1579 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1580 !tried_invalidate) { 1581 dout("check_caps trying to invalidate on %p\n", inode); 1582 if (try_nonblocking_invalidate(inode) < 0) { 1583 if (revoking & (CEPH_CAP_FILE_CACHE| 1584 CEPH_CAP_FILE_LAZYIO)) { 1585 dout("check_caps queuing invalidate\n"); 1586 queue_invalidate = 1; 1587 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1588 } else { 1589 dout("check_caps failed to invalidate pages\n"); 1590 /* we failed to invalidate pages. check these 1591 caps again later. */ 1592 force_requeue = 1; 1593 __cap_set_timeouts(mdsc, ci); 1594 } 1595 } 1596 tried_invalidate = 1; 1597 goto retry_locked; 1598 } 1599 1600 num = 0; 1601 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1602 cap = rb_entry(p, struct ceph_cap, ci_node); 1603 num++; 1604 1605 /* avoid looping forever */ 1606 if (mds >= cap->mds || 1607 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1608 continue; 1609 1610 /* NOTE: no side-effects allowed, until we take s_mutex */ 1611 1612 cap_used = used; 1613 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1614 cap_used &= ~ci->i_auth_cap->issued; 1615 1616 revoking = cap->implemented & ~cap->issued; 1617 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1618 cap->mds, cap, ceph_cap_string(cap->issued), 1619 ceph_cap_string(cap_used), 1620 ceph_cap_string(cap->implemented), 1621 ceph_cap_string(revoking)); 1622 1623 if (cap == ci->i_auth_cap && 1624 (cap->issued & CEPH_CAP_FILE_WR)) { 1625 /* request larger max_size from MDS? */ 1626 if (ci->i_wanted_max_size > ci->i_max_size && 1627 ci->i_wanted_max_size > ci->i_requested_max_size) { 1628 dout("requesting new max_size\n"); 1629 goto ack; 1630 } 1631 1632 /* approaching file_max? */ 1633 if ((inode->i_size << 1) >= ci->i_max_size && 1634 (ci->i_reported_size << 1) < ci->i_max_size) { 1635 dout("i_size approaching max_size\n"); 1636 goto ack; 1637 } 1638 } 1639 /* flush anything dirty? */ 1640 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1641 ci->i_dirty_caps) { 1642 dout("flushing dirty caps\n"); 1643 goto ack; 1644 } 1645 1646 /* completed revocation? going down and there are no caps? */ 1647 if (revoking && (revoking & cap_used) == 0) { 1648 dout("completed revocation of %s\n", 1649 ceph_cap_string(cap->implemented & ~cap->issued)); 1650 goto ack; 1651 } 1652 1653 /* want more caps from mds? */ 1654 if (want & ~(cap->mds_wanted | cap->issued)) 1655 goto ack; 1656 1657 /* things we might delay */ 1658 if ((cap->issued & ~retain) == 0 && 1659 cap->mds_wanted == want) 1660 continue; /* nope, all good */ 1661 1662 if (is_delayed) 1663 goto ack; 1664 1665 /* delay? */ 1666 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1667 time_before(jiffies, ci->i_hold_caps_max)) { 1668 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1669 ceph_cap_string(cap->issued), 1670 ceph_cap_string(cap->issued & retain), 1671 ceph_cap_string(cap->mds_wanted), 1672 ceph_cap_string(want)); 1673 delayed++; 1674 continue; 1675 } 1676 1677 ack: 1678 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1679 dout(" skipping %p I_NOFLUSH set\n", inode); 1680 continue; 1681 } 1682 1683 if (session && session != cap->session) { 1684 dout("oops, wrong session %p mutex\n", session); 1685 mutex_unlock(&session->s_mutex); 1686 session = NULL; 1687 } 1688 if (!session) { 1689 session = cap->session; 1690 if (mutex_trylock(&session->s_mutex) == 0) { 1691 dout("inverting session/ino locks on %p\n", 1692 session); 1693 spin_unlock(&ci->i_ceph_lock); 1694 if (took_snap_rwsem) { 1695 up_read(&mdsc->snap_rwsem); 1696 took_snap_rwsem = 0; 1697 } 1698 mutex_lock(&session->s_mutex); 1699 goto retry; 1700 } 1701 } 1702 /* take snap_rwsem after session mutex */ 1703 if (!took_snap_rwsem) { 1704 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1705 dout("inverting snap/in locks on %p\n", 1706 inode); 1707 spin_unlock(&ci->i_ceph_lock); 1708 down_read(&mdsc->snap_rwsem); 1709 took_snap_rwsem = 1; 1710 goto retry; 1711 } 1712 took_snap_rwsem = 1; 1713 } 1714 1715 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1716 flushing = __mark_caps_flushing(inode, session); 1717 else 1718 flushing = 0; 1719 1720 mds = cap->mds; /* remember mds, so we don't repeat */ 1721 sent++; 1722 1723 /* __send_cap drops i_ceph_lock */ 1724 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1725 want, retain, flushing, NULL); 1726 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1727 } 1728 1729 /* 1730 * Reschedule delayed caps release if we delayed anything, 1731 * otherwise cancel. 1732 */ 1733 if (delayed && is_delayed) 1734 force_requeue = 1; /* __send_cap delayed release; requeue */ 1735 if (!delayed && !is_delayed) 1736 __cap_delay_cancel(mdsc, ci); 1737 else if (!is_delayed || force_requeue) 1738 __cap_delay_requeue(mdsc, ci); 1739 1740 spin_unlock(&ci->i_ceph_lock); 1741 1742 if (queue_invalidate) 1743 ceph_queue_invalidate(inode); 1744 1745 if (session) 1746 mutex_unlock(&session->s_mutex); 1747 if (took_snap_rwsem) 1748 up_read(&mdsc->snap_rwsem); 1749 } 1750 1751 /* 1752 * Try to flush dirty caps back to the auth mds. 1753 */ 1754 static int try_flush_caps(struct inode *inode, unsigned *flush_tid) 1755 { 1756 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1757 struct ceph_inode_info *ci = ceph_inode(inode); 1758 int flushing = 0; 1759 struct ceph_mds_session *session = NULL; 1760 1761 retry: 1762 spin_lock(&ci->i_ceph_lock); 1763 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1764 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1765 goto out; 1766 } 1767 if (ci->i_dirty_caps && ci->i_auth_cap) { 1768 struct ceph_cap *cap = ci->i_auth_cap; 1769 int used = __ceph_caps_used(ci); 1770 int want = __ceph_caps_wanted(ci); 1771 int delayed; 1772 1773 if (!session || session != cap->session) { 1774 spin_unlock(&ci->i_ceph_lock); 1775 if (session) 1776 mutex_unlock(&session->s_mutex); 1777 session = cap->session; 1778 mutex_lock(&session->s_mutex); 1779 goto retry; 1780 } 1781 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1782 goto out; 1783 1784 flushing = __mark_caps_flushing(inode, session); 1785 1786 /* __send_cap drops i_ceph_lock */ 1787 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1788 cap->issued | cap->implemented, flushing, 1789 flush_tid); 1790 if (!delayed) 1791 goto out_unlocked; 1792 1793 spin_lock(&ci->i_ceph_lock); 1794 __cap_delay_requeue(mdsc, ci); 1795 } 1796 out: 1797 spin_unlock(&ci->i_ceph_lock); 1798 out_unlocked: 1799 if (session) 1800 mutex_unlock(&session->s_mutex); 1801 return flushing; 1802 } 1803 1804 /* 1805 * Return true if we've flushed caps through the given flush_tid. 1806 */ 1807 static int caps_are_flushed(struct inode *inode, unsigned tid) 1808 { 1809 struct ceph_inode_info *ci = ceph_inode(inode); 1810 int i, ret = 1; 1811 1812 spin_lock(&ci->i_ceph_lock); 1813 for (i = 0; i < CEPH_CAP_BITS; i++) 1814 if ((ci->i_flushing_caps & (1 << i)) && 1815 ci->i_cap_flush_tid[i] <= tid) { 1816 /* still flushing this bit */ 1817 ret = 0; 1818 break; 1819 } 1820 spin_unlock(&ci->i_ceph_lock); 1821 return ret; 1822 } 1823 1824 /* 1825 * Wait on any unsafe replies for the given inode. First wait on the 1826 * newest request, and make that the upper bound. Then, if there are 1827 * more requests, keep waiting on the oldest as long as it is still older 1828 * than the original request. 1829 */ 1830 static void sync_write_wait(struct inode *inode) 1831 { 1832 struct ceph_inode_info *ci = ceph_inode(inode); 1833 struct list_head *head = &ci->i_unsafe_writes; 1834 struct ceph_osd_request *req; 1835 u64 last_tid; 1836 1837 spin_lock(&ci->i_unsafe_lock); 1838 if (list_empty(head)) 1839 goto out; 1840 1841 /* set upper bound as _last_ entry in chain */ 1842 req = list_entry(head->prev, struct ceph_osd_request, 1843 r_unsafe_item); 1844 last_tid = req->r_tid; 1845 1846 do { 1847 ceph_osdc_get_request(req); 1848 spin_unlock(&ci->i_unsafe_lock); 1849 dout("sync_write_wait on tid %llu (until %llu)\n", 1850 req->r_tid, last_tid); 1851 wait_for_completion(&req->r_safe_completion); 1852 spin_lock(&ci->i_unsafe_lock); 1853 ceph_osdc_put_request(req); 1854 1855 /* 1856 * from here on look at first entry in chain, since we 1857 * only want to wait for anything older than last_tid 1858 */ 1859 if (list_empty(head)) 1860 break; 1861 req = list_entry(head->next, struct ceph_osd_request, 1862 r_unsafe_item); 1863 } while (req->r_tid < last_tid); 1864 out: 1865 spin_unlock(&ci->i_unsafe_lock); 1866 } 1867 1868 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1869 { 1870 struct inode *inode = file->f_mapping->host; 1871 struct ceph_inode_info *ci = ceph_inode(inode); 1872 unsigned flush_tid; 1873 int ret; 1874 int dirty; 1875 1876 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1877 sync_write_wait(inode); 1878 1879 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1880 if (ret < 0) 1881 return ret; 1882 mutex_lock(&inode->i_mutex); 1883 1884 dirty = try_flush_caps(inode, &flush_tid); 1885 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1886 1887 /* 1888 * only wait on non-file metadata writeback (the mds 1889 * can recover size and mtime, so we don't need to 1890 * wait for that) 1891 */ 1892 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1893 dout("fsync waiting for flush_tid %u\n", flush_tid); 1894 ret = wait_event_interruptible(ci->i_cap_wq, 1895 caps_are_flushed(inode, flush_tid)); 1896 } 1897 1898 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1899 mutex_unlock(&inode->i_mutex); 1900 return ret; 1901 } 1902 1903 /* 1904 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1905 * queue inode for flush but don't do so immediately, because we can 1906 * get by with fewer MDS messages if we wait for data writeback to 1907 * complete first. 1908 */ 1909 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1910 { 1911 struct ceph_inode_info *ci = ceph_inode(inode); 1912 unsigned flush_tid; 1913 int err = 0; 1914 int dirty; 1915 int wait = wbc->sync_mode == WB_SYNC_ALL; 1916 1917 dout("write_inode %p wait=%d\n", inode, wait); 1918 if (wait) { 1919 dirty = try_flush_caps(inode, &flush_tid); 1920 if (dirty) 1921 err = wait_event_interruptible(ci->i_cap_wq, 1922 caps_are_flushed(inode, flush_tid)); 1923 } else { 1924 struct ceph_mds_client *mdsc = 1925 ceph_sb_to_client(inode->i_sb)->mdsc; 1926 1927 spin_lock(&ci->i_ceph_lock); 1928 if (__ceph_caps_dirty(ci)) 1929 __cap_delay_requeue_front(mdsc, ci); 1930 spin_unlock(&ci->i_ceph_lock); 1931 } 1932 return err; 1933 } 1934 1935 /* 1936 * After a recovering MDS goes active, we need to resend any caps 1937 * we were flushing. 1938 * 1939 * Caller holds session->s_mutex. 1940 */ 1941 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1942 struct ceph_mds_session *session) 1943 { 1944 struct ceph_cap_snap *capsnap; 1945 1946 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1947 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1948 flushing_item) { 1949 struct ceph_inode_info *ci = capsnap->ci; 1950 struct inode *inode = &ci->vfs_inode; 1951 struct ceph_cap *cap; 1952 1953 spin_lock(&ci->i_ceph_lock); 1954 cap = ci->i_auth_cap; 1955 if (cap && cap->session == session) { 1956 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1957 cap, capsnap); 1958 __ceph_flush_snaps(ci, &session, 1); 1959 } else { 1960 pr_err("%p auth cap %p not mds%d ???\n", inode, 1961 cap, session->s_mds); 1962 } 1963 spin_unlock(&ci->i_ceph_lock); 1964 } 1965 } 1966 1967 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1968 struct ceph_mds_session *session) 1969 { 1970 struct ceph_inode_info *ci; 1971 1972 kick_flushing_capsnaps(mdsc, session); 1973 1974 dout("kick_flushing_caps mds%d\n", session->s_mds); 1975 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1976 struct inode *inode = &ci->vfs_inode; 1977 struct ceph_cap *cap; 1978 int delayed = 0; 1979 1980 spin_lock(&ci->i_ceph_lock); 1981 cap = ci->i_auth_cap; 1982 if (cap && cap->session == session) { 1983 dout("kick_flushing_caps %p cap %p %s\n", inode, 1984 cap, ceph_cap_string(ci->i_flushing_caps)); 1985 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1986 __ceph_caps_used(ci), 1987 __ceph_caps_wanted(ci), 1988 cap->issued | cap->implemented, 1989 ci->i_flushing_caps, NULL); 1990 if (delayed) { 1991 spin_lock(&ci->i_ceph_lock); 1992 __cap_delay_requeue(mdsc, ci); 1993 spin_unlock(&ci->i_ceph_lock); 1994 } 1995 } else { 1996 pr_err("%p auth cap %p not mds%d ???\n", inode, 1997 cap, session->s_mds); 1998 spin_unlock(&ci->i_ceph_lock); 1999 } 2000 } 2001 } 2002 2003 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2004 struct ceph_mds_session *session, 2005 struct inode *inode) 2006 { 2007 struct ceph_inode_info *ci = ceph_inode(inode); 2008 struct ceph_cap *cap; 2009 int delayed = 0; 2010 2011 spin_lock(&ci->i_ceph_lock); 2012 cap = ci->i_auth_cap; 2013 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 2014 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 2015 2016 __ceph_flush_snaps(ci, &session, 1); 2017 2018 if (ci->i_flushing_caps) { 2019 spin_lock(&mdsc->cap_dirty_lock); 2020 list_move_tail(&ci->i_flushing_item, 2021 &cap->session->s_cap_flushing); 2022 spin_unlock(&mdsc->cap_dirty_lock); 2023 2024 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2025 __ceph_caps_used(ci), 2026 __ceph_caps_wanted(ci), 2027 cap->issued | cap->implemented, 2028 ci->i_flushing_caps, NULL); 2029 if (delayed) { 2030 spin_lock(&ci->i_ceph_lock); 2031 __cap_delay_requeue(mdsc, ci); 2032 spin_unlock(&ci->i_ceph_lock); 2033 } 2034 } else { 2035 spin_unlock(&ci->i_ceph_lock); 2036 } 2037 } 2038 2039 2040 /* 2041 * Take references to capabilities we hold, so that we don't release 2042 * them to the MDS prematurely. 2043 * 2044 * Protected by i_ceph_lock. 2045 */ 2046 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2047 { 2048 if (got & CEPH_CAP_PIN) 2049 ci->i_pin_ref++; 2050 if (got & CEPH_CAP_FILE_RD) 2051 ci->i_rd_ref++; 2052 if (got & CEPH_CAP_FILE_CACHE) 2053 ci->i_rdcache_ref++; 2054 if (got & CEPH_CAP_FILE_WR) 2055 ci->i_wr_ref++; 2056 if (got & CEPH_CAP_FILE_BUFFER) { 2057 if (ci->i_wb_ref == 0) 2058 ihold(&ci->vfs_inode); 2059 ci->i_wb_ref++; 2060 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2061 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2062 } 2063 } 2064 2065 /* 2066 * Try to grab cap references. Specify those refs we @want, and the 2067 * minimal set we @need. Also include the larger offset we are writing 2068 * to (when applicable), and check against max_size here as well. 2069 * Note that caller is responsible for ensuring max_size increases are 2070 * requested from the MDS. 2071 */ 2072 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2073 int *got, loff_t endoff, int *check_max, int *err) 2074 { 2075 struct inode *inode = &ci->vfs_inode; 2076 int ret = 0; 2077 int have, implemented; 2078 int file_wanted; 2079 2080 dout("get_cap_refs %p need %s want %s\n", inode, 2081 ceph_cap_string(need), ceph_cap_string(want)); 2082 spin_lock(&ci->i_ceph_lock); 2083 2084 /* make sure file is actually open */ 2085 file_wanted = __ceph_caps_file_wanted(ci); 2086 if ((file_wanted & need) == 0) { 2087 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2088 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2089 *err = -EBADF; 2090 ret = 1; 2091 goto out; 2092 } 2093 2094 /* finish pending truncate */ 2095 while (ci->i_truncate_pending) { 2096 spin_unlock(&ci->i_ceph_lock); 2097 __ceph_do_pending_vmtruncate(inode); 2098 spin_lock(&ci->i_ceph_lock); 2099 } 2100 2101 have = __ceph_caps_issued(ci, &implemented); 2102 2103 if (have & need & CEPH_CAP_FILE_WR) { 2104 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2105 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2106 inode, endoff, ci->i_max_size); 2107 if (endoff > ci->i_requested_max_size) { 2108 *check_max = 1; 2109 ret = 1; 2110 } 2111 goto out; 2112 } 2113 /* 2114 * If a sync write is in progress, we must wait, so that we 2115 * can get a final snapshot value for size+mtime. 2116 */ 2117 if (__ceph_have_pending_cap_snap(ci)) { 2118 dout("get_cap_refs %p cap_snap_pending\n", inode); 2119 goto out; 2120 } 2121 } 2122 2123 if ((have & need) == need) { 2124 /* 2125 * Look at (implemented & ~have & not) so that we keep waiting 2126 * on transition from wanted -> needed caps. This is needed 2127 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2128 * going before a prior buffered writeback happens. 2129 */ 2130 int not = want & ~(have & need); 2131 int revoking = implemented & ~have; 2132 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2133 inode, ceph_cap_string(have), ceph_cap_string(not), 2134 ceph_cap_string(revoking)); 2135 if ((revoking & not) == 0) { 2136 *got = need | (have & want); 2137 __take_cap_refs(ci, *got); 2138 ret = 1; 2139 } 2140 } else { 2141 dout("get_cap_refs %p have %s needed %s\n", inode, 2142 ceph_cap_string(have), ceph_cap_string(need)); 2143 } 2144 out: 2145 spin_unlock(&ci->i_ceph_lock); 2146 dout("get_cap_refs %p ret %d got %s\n", inode, 2147 ret, ceph_cap_string(*got)); 2148 return ret; 2149 } 2150 2151 /* 2152 * Check the offset we are writing up to against our current 2153 * max_size. If necessary, tell the MDS we want to write to 2154 * a larger offset. 2155 */ 2156 static void check_max_size(struct inode *inode, loff_t endoff) 2157 { 2158 struct ceph_inode_info *ci = ceph_inode(inode); 2159 int check = 0; 2160 2161 /* do we need to explicitly request a larger max_size? */ 2162 spin_lock(&ci->i_ceph_lock); 2163 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2164 dout("write %p at large endoff %llu, req max_size\n", 2165 inode, endoff); 2166 ci->i_wanted_max_size = endoff; 2167 } 2168 /* duplicate ceph_check_caps()'s logic */ 2169 if (ci->i_auth_cap && 2170 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2171 ci->i_wanted_max_size > ci->i_max_size && 2172 ci->i_wanted_max_size > ci->i_requested_max_size) 2173 check = 1; 2174 spin_unlock(&ci->i_ceph_lock); 2175 if (check) 2176 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2177 } 2178 2179 /* 2180 * Wait for caps, and take cap references. If we can't get a WR cap 2181 * due to a small max_size, make sure we check_max_size (and possibly 2182 * ask the mds) so we don't get hung up indefinitely. 2183 */ 2184 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2185 loff_t endoff) 2186 { 2187 int check_max, ret, err; 2188 2189 retry: 2190 if (endoff > 0) 2191 check_max_size(&ci->vfs_inode, endoff); 2192 check_max = 0; 2193 err = 0; 2194 ret = wait_event_interruptible(ci->i_cap_wq, 2195 try_get_cap_refs(ci, need, want, 2196 got, endoff, 2197 &check_max, &err)); 2198 if (err) 2199 ret = err; 2200 if (check_max) 2201 goto retry; 2202 return ret; 2203 } 2204 2205 /* 2206 * Take cap refs. Caller must already know we hold at least one ref 2207 * on the caps in question or we don't know this is safe. 2208 */ 2209 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2210 { 2211 spin_lock(&ci->i_ceph_lock); 2212 __take_cap_refs(ci, caps); 2213 spin_unlock(&ci->i_ceph_lock); 2214 } 2215 2216 /* 2217 * Release cap refs. 2218 * 2219 * If we released the last ref on any given cap, call ceph_check_caps 2220 * to release (or schedule a release). 2221 * 2222 * If we are releasing a WR cap (from a sync write), finalize any affected 2223 * cap_snap, and wake up any waiters. 2224 */ 2225 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2226 { 2227 struct inode *inode = &ci->vfs_inode; 2228 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2229 struct ceph_cap_snap *capsnap; 2230 2231 spin_lock(&ci->i_ceph_lock); 2232 if (had & CEPH_CAP_PIN) 2233 --ci->i_pin_ref; 2234 if (had & CEPH_CAP_FILE_RD) 2235 if (--ci->i_rd_ref == 0) 2236 last++; 2237 if (had & CEPH_CAP_FILE_CACHE) 2238 if (--ci->i_rdcache_ref == 0) 2239 last++; 2240 if (had & CEPH_CAP_FILE_BUFFER) { 2241 if (--ci->i_wb_ref == 0) { 2242 last++; 2243 put++; 2244 } 2245 dout("put_cap_refs %p wb %d -> %d (?)\n", 2246 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2247 } 2248 if (had & CEPH_CAP_FILE_WR) 2249 if (--ci->i_wr_ref == 0) { 2250 last++; 2251 if (!list_empty(&ci->i_cap_snaps)) { 2252 capsnap = list_first_entry(&ci->i_cap_snaps, 2253 struct ceph_cap_snap, 2254 ci_item); 2255 if (capsnap->writing) { 2256 capsnap->writing = 0; 2257 flushsnaps = 2258 __ceph_finish_cap_snap(ci, 2259 capsnap); 2260 wake = 1; 2261 } 2262 } 2263 } 2264 spin_unlock(&ci->i_ceph_lock); 2265 2266 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2267 last ? " last" : "", put ? " put" : ""); 2268 2269 if (last && !flushsnaps) 2270 ceph_check_caps(ci, 0, NULL); 2271 else if (flushsnaps) 2272 ceph_flush_snaps(ci); 2273 if (wake) 2274 wake_up_all(&ci->i_cap_wq); 2275 if (put) 2276 iput(inode); 2277 } 2278 2279 /* 2280 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2281 * context. Adjust per-snap dirty page accounting as appropriate. 2282 * Once all dirty data for a cap_snap is flushed, flush snapped file 2283 * metadata back to the MDS. If we dropped the last ref, call 2284 * ceph_check_caps. 2285 */ 2286 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2287 struct ceph_snap_context *snapc) 2288 { 2289 struct inode *inode = &ci->vfs_inode; 2290 int last = 0; 2291 int complete_capsnap = 0; 2292 int drop_capsnap = 0; 2293 int found = 0; 2294 struct ceph_cap_snap *capsnap = NULL; 2295 2296 spin_lock(&ci->i_ceph_lock); 2297 ci->i_wrbuffer_ref -= nr; 2298 last = !ci->i_wrbuffer_ref; 2299 2300 if (ci->i_head_snapc == snapc) { 2301 ci->i_wrbuffer_ref_head -= nr; 2302 if (ci->i_wrbuffer_ref_head == 0 && 2303 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2304 BUG_ON(!ci->i_head_snapc); 2305 ceph_put_snap_context(ci->i_head_snapc); 2306 ci->i_head_snapc = NULL; 2307 } 2308 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2309 inode, 2310 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2311 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2312 last ? " LAST" : ""); 2313 } else { 2314 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2315 if (capsnap->context == snapc) { 2316 found = 1; 2317 break; 2318 } 2319 } 2320 BUG_ON(!found); 2321 capsnap->dirty_pages -= nr; 2322 if (capsnap->dirty_pages == 0) { 2323 complete_capsnap = 1; 2324 if (capsnap->dirty == 0) 2325 /* cap writeback completed before we created 2326 * the cap_snap; no FLUSHSNAP is needed */ 2327 drop_capsnap = 1; 2328 } 2329 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2330 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2331 inode, capsnap, capsnap->context->seq, 2332 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2333 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2334 last ? " (wrbuffer last)" : "", 2335 complete_capsnap ? " (complete capsnap)" : "", 2336 drop_capsnap ? " (drop capsnap)" : ""); 2337 if (drop_capsnap) { 2338 ceph_put_snap_context(capsnap->context); 2339 list_del(&capsnap->ci_item); 2340 list_del(&capsnap->flushing_item); 2341 ceph_put_cap_snap(capsnap); 2342 } 2343 } 2344 2345 spin_unlock(&ci->i_ceph_lock); 2346 2347 if (last) { 2348 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2349 iput(inode); 2350 } else if (complete_capsnap) { 2351 ceph_flush_snaps(ci); 2352 wake_up_all(&ci->i_cap_wq); 2353 } 2354 if (drop_capsnap) 2355 iput(inode); 2356 } 2357 2358 /* 2359 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2360 */ 2361 static void invalidate_aliases(struct inode *inode) 2362 { 2363 struct dentry *dn, *prev = NULL; 2364 2365 dout("invalidate_aliases inode %p\n", inode); 2366 d_prune_aliases(inode); 2367 /* 2368 * For non-directory inode, d_find_alias() only returns 2369 * hashed dentry. After calling d_invalidate(), the 2370 * dentry becomes unhashed. 2371 * 2372 * For directory inode, d_find_alias() can return 2373 * unhashed dentry. But directory inode should have 2374 * one alias at most. 2375 */ 2376 while ((dn = d_find_alias(inode))) { 2377 if (dn == prev) { 2378 dput(dn); 2379 break; 2380 } 2381 d_invalidate(dn); 2382 if (prev) 2383 dput(prev); 2384 prev = dn; 2385 } 2386 if (prev) 2387 dput(prev); 2388 } 2389 2390 /* 2391 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2392 * actually be a revocation if it specifies a smaller cap set.) 2393 * 2394 * caller holds s_mutex and i_ceph_lock, we drop both. 2395 * 2396 * return value: 2397 * 0 - ok 2398 * 1 - check_caps on auth cap only (writeback) 2399 * 2 - check_caps (ack revoke) 2400 */ 2401 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2402 struct ceph_mds_session *session, 2403 struct ceph_cap *cap, 2404 struct ceph_buffer *xattr_buf) 2405 __releases(ci->i_ceph_lock) 2406 { 2407 struct ceph_inode_info *ci = ceph_inode(inode); 2408 int mds = session->s_mds; 2409 int seq = le32_to_cpu(grant->seq); 2410 int newcaps = le32_to_cpu(grant->caps); 2411 int issued, implemented, used, wanted, dirty; 2412 u64 size = le64_to_cpu(grant->size); 2413 u64 max_size = le64_to_cpu(grant->max_size); 2414 struct timespec mtime, atime, ctime; 2415 int check_caps = 0; 2416 int wake = 0; 2417 int writeback = 0; 2418 int queue_invalidate = 0; 2419 int deleted_inode = 0; 2420 int queue_revalidate = 0; 2421 2422 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2423 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2424 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2425 inode->i_size); 2426 2427 2428 /* 2429 * auth mds of the inode changed. we received the cap export message, 2430 * but still haven't received the cap import message. handle_cap_export 2431 * updated the new auth MDS' cap. 2432 * 2433 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2434 * that was sent before the cap import message. So don't remove caps. 2435 */ 2436 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2437 WARN_ON(cap != ci->i_auth_cap); 2438 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2439 seq = cap->seq; 2440 newcaps |= cap->issued; 2441 } 2442 2443 /* 2444 * If CACHE is being revoked, and we have no dirty buffers, 2445 * try to invalidate (once). (If there are dirty buffers, we 2446 * will invalidate _after_ writeback.) 2447 */ 2448 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2449 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2450 !ci->i_wrbuffer_ref) { 2451 if (try_nonblocking_invalidate(inode)) { 2452 /* there were locked pages.. invalidate later 2453 in a separate thread. */ 2454 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2455 queue_invalidate = 1; 2456 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2457 } 2458 } 2459 2460 ceph_fscache_invalidate(inode); 2461 } 2462 2463 /* side effects now are allowed */ 2464 2465 issued = __ceph_caps_issued(ci, &implemented); 2466 issued |= implemented | __ceph_caps_dirty(ci); 2467 2468 cap->cap_gen = session->s_cap_gen; 2469 cap->seq = seq; 2470 2471 __check_cap_issue(ci, cap, newcaps); 2472 2473 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2474 inode->i_mode = le32_to_cpu(grant->mode); 2475 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2476 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2477 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2478 from_kuid(&init_user_ns, inode->i_uid), 2479 from_kgid(&init_user_ns, inode->i_gid)); 2480 } 2481 2482 if ((issued & CEPH_CAP_LINK_EXCL) == 0) { 2483 set_nlink(inode, le32_to_cpu(grant->nlink)); 2484 if (inode->i_nlink == 0 && 2485 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2486 deleted_inode = 1; 2487 } 2488 2489 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2490 int len = le32_to_cpu(grant->xattr_len); 2491 u64 version = le64_to_cpu(grant->xattr_version); 2492 2493 if (version > ci->i_xattrs.version) { 2494 dout(" got new xattrs v%llu on %p len %d\n", 2495 version, inode, len); 2496 if (ci->i_xattrs.blob) 2497 ceph_buffer_put(ci->i_xattrs.blob); 2498 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2499 ci->i_xattrs.version = version; 2500 ceph_forget_all_cached_acls(inode); 2501 } 2502 } 2503 2504 /* Do we need to revalidate our fscache cookie. Don't bother on the 2505 * first cache cap as we already validate at cookie creation time. */ 2506 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2507 queue_revalidate = 1; 2508 2509 /* size/ctime/mtime/atime? */ 2510 ceph_fill_file_size(inode, issued, 2511 le32_to_cpu(grant->truncate_seq), 2512 le64_to_cpu(grant->truncate_size), size); 2513 ceph_decode_timespec(&mtime, &grant->mtime); 2514 ceph_decode_timespec(&atime, &grant->atime); 2515 ceph_decode_timespec(&ctime, &grant->ctime); 2516 ceph_fill_file_time(inode, issued, 2517 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2518 &atime); 2519 2520 2521 /* file layout may have changed */ 2522 ci->i_layout = grant->layout; 2523 2524 /* max size increase? */ 2525 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2526 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2527 ci->i_max_size = max_size; 2528 if (max_size >= ci->i_wanted_max_size) { 2529 ci->i_wanted_max_size = 0; /* reset */ 2530 ci->i_requested_max_size = 0; 2531 } 2532 wake = 1; 2533 } 2534 2535 /* check cap bits */ 2536 wanted = __ceph_caps_wanted(ci); 2537 used = __ceph_caps_used(ci); 2538 dirty = __ceph_caps_dirty(ci); 2539 dout(" my wanted = %s, used = %s, dirty %s\n", 2540 ceph_cap_string(wanted), 2541 ceph_cap_string(used), 2542 ceph_cap_string(dirty)); 2543 if (wanted != le32_to_cpu(grant->wanted)) { 2544 dout("mds wanted %s -> %s\n", 2545 ceph_cap_string(le32_to_cpu(grant->wanted)), 2546 ceph_cap_string(wanted)); 2547 /* imported cap may not have correct mds_wanted */ 2548 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2549 check_caps = 1; 2550 } 2551 2552 /* revocation, grant, or no-op? */ 2553 if (cap->issued & ~newcaps) { 2554 int revoking = cap->issued & ~newcaps; 2555 2556 dout("revocation: %s -> %s (revoking %s)\n", 2557 ceph_cap_string(cap->issued), 2558 ceph_cap_string(newcaps), 2559 ceph_cap_string(revoking)); 2560 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2561 writeback = 1; /* initiate writeback; will delay ack */ 2562 else if (revoking == CEPH_CAP_FILE_CACHE && 2563 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2564 queue_invalidate) 2565 ; /* do nothing yet, invalidation will be queued */ 2566 else if (cap == ci->i_auth_cap) 2567 check_caps = 1; /* check auth cap only */ 2568 else 2569 check_caps = 2; /* check all caps */ 2570 cap->issued = newcaps; 2571 cap->implemented |= newcaps; 2572 } else if (cap->issued == newcaps) { 2573 dout("caps unchanged: %s -> %s\n", 2574 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2575 } else { 2576 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2577 ceph_cap_string(newcaps)); 2578 /* non-auth MDS is revoking the newly grant caps ? */ 2579 if (cap == ci->i_auth_cap && 2580 __ceph_caps_revoking_other(ci, cap, newcaps)) 2581 check_caps = 2; 2582 2583 cap->issued = newcaps; 2584 cap->implemented |= newcaps; /* add bits only, to 2585 * avoid stepping on a 2586 * pending revocation */ 2587 wake = 1; 2588 } 2589 BUG_ON(cap->issued & ~cap->implemented); 2590 2591 spin_unlock(&ci->i_ceph_lock); 2592 2593 if (writeback) 2594 /* 2595 * queue inode for writeback: we can't actually call 2596 * filemap_write_and_wait, etc. from message handler 2597 * context. 2598 */ 2599 ceph_queue_writeback(inode); 2600 if (queue_invalidate) 2601 ceph_queue_invalidate(inode); 2602 if (deleted_inode) 2603 invalidate_aliases(inode); 2604 if (queue_revalidate) 2605 ceph_queue_revalidate(inode); 2606 if (wake) 2607 wake_up_all(&ci->i_cap_wq); 2608 2609 if (check_caps == 1) 2610 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2611 session); 2612 else if (check_caps == 2) 2613 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2614 else 2615 mutex_unlock(&session->s_mutex); 2616 } 2617 2618 /* 2619 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2620 * MDS has been safely committed. 2621 */ 2622 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2623 struct ceph_mds_caps *m, 2624 struct ceph_mds_session *session, 2625 struct ceph_cap *cap) 2626 __releases(ci->i_ceph_lock) 2627 { 2628 struct ceph_inode_info *ci = ceph_inode(inode); 2629 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2630 unsigned seq = le32_to_cpu(m->seq); 2631 int dirty = le32_to_cpu(m->dirty); 2632 int cleaned = 0; 2633 int drop = 0; 2634 int i; 2635 2636 for (i = 0; i < CEPH_CAP_BITS; i++) 2637 if ((dirty & (1 << i)) && 2638 flush_tid == ci->i_cap_flush_tid[i]) 2639 cleaned |= 1 << i; 2640 2641 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2642 " flushing %s -> %s\n", 2643 inode, session->s_mds, seq, ceph_cap_string(dirty), 2644 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2645 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2646 2647 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2648 goto out; 2649 2650 ci->i_flushing_caps &= ~cleaned; 2651 2652 spin_lock(&mdsc->cap_dirty_lock); 2653 if (ci->i_flushing_caps == 0) { 2654 list_del_init(&ci->i_flushing_item); 2655 if (!list_empty(&session->s_cap_flushing)) 2656 dout(" mds%d still flushing cap on %p\n", 2657 session->s_mds, 2658 &list_entry(session->s_cap_flushing.next, 2659 struct ceph_inode_info, 2660 i_flushing_item)->vfs_inode); 2661 mdsc->num_cap_flushing--; 2662 wake_up_all(&mdsc->cap_flushing_wq); 2663 dout(" inode %p now !flushing\n", inode); 2664 2665 if (ci->i_dirty_caps == 0) { 2666 dout(" inode %p now clean\n", inode); 2667 BUG_ON(!list_empty(&ci->i_dirty_item)); 2668 drop = 1; 2669 if (ci->i_wrbuffer_ref_head == 0) { 2670 BUG_ON(!ci->i_head_snapc); 2671 ceph_put_snap_context(ci->i_head_snapc); 2672 ci->i_head_snapc = NULL; 2673 } 2674 } else { 2675 BUG_ON(list_empty(&ci->i_dirty_item)); 2676 } 2677 } 2678 spin_unlock(&mdsc->cap_dirty_lock); 2679 wake_up_all(&ci->i_cap_wq); 2680 2681 out: 2682 spin_unlock(&ci->i_ceph_lock); 2683 if (drop) 2684 iput(inode); 2685 } 2686 2687 /* 2688 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2689 * throw away our cap_snap. 2690 * 2691 * Caller hold s_mutex. 2692 */ 2693 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2694 struct ceph_mds_caps *m, 2695 struct ceph_mds_session *session) 2696 { 2697 struct ceph_inode_info *ci = ceph_inode(inode); 2698 u64 follows = le64_to_cpu(m->snap_follows); 2699 struct ceph_cap_snap *capsnap; 2700 int drop = 0; 2701 2702 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2703 inode, ci, session->s_mds, follows); 2704 2705 spin_lock(&ci->i_ceph_lock); 2706 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2707 if (capsnap->follows == follows) { 2708 if (capsnap->flush_tid != flush_tid) { 2709 dout(" cap_snap %p follows %lld tid %lld !=" 2710 " %lld\n", capsnap, follows, 2711 flush_tid, capsnap->flush_tid); 2712 break; 2713 } 2714 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2715 dout(" removing %p cap_snap %p follows %lld\n", 2716 inode, capsnap, follows); 2717 ceph_put_snap_context(capsnap->context); 2718 list_del(&capsnap->ci_item); 2719 list_del(&capsnap->flushing_item); 2720 ceph_put_cap_snap(capsnap); 2721 drop = 1; 2722 break; 2723 } else { 2724 dout(" skipping cap_snap %p follows %lld\n", 2725 capsnap, capsnap->follows); 2726 } 2727 } 2728 spin_unlock(&ci->i_ceph_lock); 2729 if (drop) 2730 iput(inode); 2731 } 2732 2733 /* 2734 * Handle TRUNC from MDS, indicating file truncation. 2735 * 2736 * caller hold s_mutex. 2737 */ 2738 static void handle_cap_trunc(struct inode *inode, 2739 struct ceph_mds_caps *trunc, 2740 struct ceph_mds_session *session) 2741 __releases(ci->i_ceph_lock) 2742 { 2743 struct ceph_inode_info *ci = ceph_inode(inode); 2744 int mds = session->s_mds; 2745 int seq = le32_to_cpu(trunc->seq); 2746 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2747 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2748 u64 size = le64_to_cpu(trunc->size); 2749 int implemented = 0; 2750 int dirty = __ceph_caps_dirty(ci); 2751 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2752 int queue_trunc = 0; 2753 2754 issued |= implemented | dirty; 2755 2756 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2757 inode, mds, seq, truncate_size, truncate_seq); 2758 queue_trunc = ceph_fill_file_size(inode, issued, 2759 truncate_seq, truncate_size, size); 2760 spin_unlock(&ci->i_ceph_lock); 2761 2762 if (queue_trunc) { 2763 ceph_queue_vmtruncate(inode); 2764 ceph_fscache_invalidate(inode); 2765 } 2766 } 2767 2768 /* 2769 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2770 * different one. If we are the most recent migration we've seen (as 2771 * indicated by mseq), make note of the migrating cap bits for the 2772 * duration (until we see the corresponding IMPORT). 2773 * 2774 * caller holds s_mutex 2775 */ 2776 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2777 struct ceph_mds_cap_peer *ph, 2778 struct ceph_mds_session *session) 2779 { 2780 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2781 struct ceph_mds_session *tsession = NULL; 2782 struct ceph_cap *cap, *tcap; 2783 struct ceph_inode_info *ci = ceph_inode(inode); 2784 u64 t_cap_id; 2785 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2786 unsigned t_seq, t_mseq; 2787 int target, issued; 2788 int mds = session->s_mds; 2789 2790 if (ph) { 2791 t_cap_id = le64_to_cpu(ph->cap_id); 2792 t_seq = le32_to_cpu(ph->seq); 2793 t_mseq = le32_to_cpu(ph->mseq); 2794 target = le32_to_cpu(ph->mds); 2795 } else { 2796 t_cap_id = t_seq = t_mseq = 0; 2797 target = -1; 2798 } 2799 2800 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 2801 inode, ci, mds, mseq, target); 2802 retry: 2803 spin_lock(&ci->i_ceph_lock); 2804 cap = __get_cap_for_mds(ci, mds); 2805 if (!cap) 2806 goto out_unlock; 2807 2808 if (target < 0) { 2809 __ceph_remove_cap(cap, false); 2810 goto out_unlock; 2811 } 2812 2813 /* 2814 * now we know we haven't received the cap import message yet 2815 * because the exported cap still exist. 2816 */ 2817 2818 issued = cap->issued; 2819 WARN_ON(issued != cap->implemented); 2820 2821 tcap = __get_cap_for_mds(ci, target); 2822 if (tcap) { 2823 /* already have caps from the target */ 2824 if (tcap->cap_id != t_cap_id || 2825 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 2826 dout(" updating import cap %p mds%d\n", tcap, target); 2827 tcap->cap_id = t_cap_id; 2828 tcap->seq = t_seq - 1; 2829 tcap->issue_seq = t_seq - 1; 2830 tcap->mseq = t_mseq; 2831 tcap->issued |= issued; 2832 tcap->implemented |= issued; 2833 if (cap == ci->i_auth_cap) 2834 ci->i_auth_cap = tcap; 2835 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 2836 spin_lock(&mdsc->cap_dirty_lock); 2837 list_move_tail(&ci->i_flushing_item, 2838 &tcap->session->s_cap_flushing); 2839 spin_unlock(&mdsc->cap_dirty_lock); 2840 } 2841 } 2842 __ceph_remove_cap(cap, false); 2843 goto out_unlock; 2844 } 2845 2846 if (tsession) { 2847 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 2848 spin_unlock(&ci->i_ceph_lock); 2849 /* add placeholder for the export tagert */ 2850 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 2851 t_seq - 1, t_mseq, (u64)-1, flag, NULL); 2852 goto retry; 2853 } 2854 2855 spin_unlock(&ci->i_ceph_lock); 2856 mutex_unlock(&session->s_mutex); 2857 2858 /* open target session */ 2859 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 2860 if (!IS_ERR(tsession)) { 2861 if (mds > target) { 2862 mutex_lock(&session->s_mutex); 2863 mutex_lock_nested(&tsession->s_mutex, 2864 SINGLE_DEPTH_NESTING); 2865 } else { 2866 mutex_lock(&tsession->s_mutex); 2867 mutex_lock_nested(&session->s_mutex, 2868 SINGLE_DEPTH_NESTING); 2869 } 2870 ceph_add_cap_releases(mdsc, tsession); 2871 } else { 2872 WARN_ON(1); 2873 tsession = NULL; 2874 target = -1; 2875 } 2876 goto retry; 2877 2878 out_unlock: 2879 spin_unlock(&ci->i_ceph_lock); 2880 mutex_unlock(&session->s_mutex); 2881 if (tsession) { 2882 mutex_unlock(&tsession->s_mutex); 2883 ceph_put_mds_session(tsession); 2884 } 2885 } 2886 2887 /* 2888 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2889 * clean them up. 2890 * 2891 * caller holds s_mutex. 2892 */ 2893 static void handle_cap_import(struct ceph_mds_client *mdsc, 2894 struct inode *inode, struct ceph_mds_caps *im, 2895 struct ceph_mds_cap_peer *ph, 2896 struct ceph_mds_session *session, 2897 void *snaptrace, int snaptrace_len) 2898 { 2899 struct ceph_inode_info *ci = ceph_inode(inode); 2900 struct ceph_cap *cap; 2901 int mds = session->s_mds; 2902 unsigned issued = le32_to_cpu(im->caps); 2903 unsigned wanted = le32_to_cpu(im->wanted); 2904 unsigned seq = le32_to_cpu(im->seq); 2905 unsigned mseq = le32_to_cpu(im->migrate_seq); 2906 u64 realmino = le64_to_cpu(im->realm); 2907 u64 cap_id = le64_to_cpu(im->cap_id); 2908 u64 p_cap_id; 2909 int peer; 2910 2911 if (ph) { 2912 p_cap_id = le64_to_cpu(ph->cap_id); 2913 peer = le32_to_cpu(ph->mds); 2914 } else { 2915 p_cap_id = 0; 2916 peer = -1; 2917 } 2918 2919 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 2920 inode, ci, mds, mseq, peer); 2921 2922 spin_lock(&ci->i_ceph_lock); 2923 cap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 2924 if (cap && cap->cap_id == p_cap_id) { 2925 dout(" remove export cap %p mds%d flags %d\n", 2926 cap, peer, ph->flags); 2927 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 2928 (cap->seq != le32_to_cpu(ph->seq) || 2929 cap->mseq != le32_to_cpu(ph->mseq))) { 2930 pr_err("handle_cap_import: mismatched seq/mseq: " 2931 "ino (%llx.%llx) mds%d seq %d mseq %d " 2932 "importer mds%d has peer seq %d mseq %d\n", 2933 ceph_vinop(inode), peer, cap->seq, 2934 cap->mseq, mds, le32_to_cpu(ph->seq), 2935 le32_to_cpu(ph->mseq)); 2936 } 2937 ci->i_cap_exporting_issued = cap->issued; 2938 __ceph_remove_cap(cap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 2939 } 2940 2941 /* make sure we re-request max_size, if necessary */ 2942 ci->i_wanted_max_size = 0; 2943 ci->i_requested_max_size = 0; 2944 spin_unlock(&ci->i_ceph_lock); 2945 2946 down_write(&mdsc->snap_rwsem); 2947 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2948 false); 2949 downgrade_write(&mdsc->snap_rwsem); 2950 ceph_add_cap(inode, session, cap_id, -1, 2951 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2952 NULL /* no caps context */); 2953 kick_flushing_inode_caps(mdsc, session, inode); 2954 up_read(&mdsc->snap_rwsem); 2955 2956 } 2957 2958 /* 2959 * Handle a caps message from the MDS. 2960 * 2961 * Identify the appropriate session, inode, and call the right handler 2962 * based on the cap op. 2963 */ 2964 void ceph_handle_caps(struct ceph_mds_session *session, 2965 struct ceph_msg *msg) 2966 { 2967 struct ceph_mds_client *mdsc = session->s_mdsc; 2968 struct super_block *sb = mdsc->fsc->sb; 2969 struct inode *inode; 2970 struct ceph_inode_info *ci; 2971 struct ceph_cap *cap; 2972 struct ceph_mds_caps *h; 2973 struct ceph_mds_cap_peer *peer = NULL; 2974 int mds = session->s_mds; 2975 int op; 2976 u32 seq, mseq; 2977 struct ceph_vino vino; 2978 u64 cap_id; 2979 u64 size, max_size; 2980 u64 tid; 2981 void *snaptrace; 2982 size_t snaptrace_len; 2983 void *flock; 2984 void *end; 2985 u32 flock_len; 2986 2987 dout("handle_caps from mds%d\n", mds); 2988 2989 /* decode */ 2990 end = msg->front.iov_base + msg->front.iov_len; 2991 tid = le64_to_cpu(msg->hdr.tid); 2992 if (msg->front.iov_len < sizeof(*h)) 2993 goto bad; 2994 h = msg->front.iov_base; 2995 op = le32_to_cpu(h->op); 2996 vino.ino = le64_to_cpu(h->ino); 2997 vino.snap = CEPH_NOSNAP; 2998 cap_id = le64_to_cpu(h->cap_id); 2999 seq = le32_to_cpu(h->seq); 3000 mseq = le32_to_cpu(h->migrate_seq); 3001 size = le64_to_cpu(h->size); 3002 max_size = le64_to_cpu(h->max_size); 3003 3004 snaptrace = h + 1; 3005 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3006 3007 if (le16_to_cpu(msg->hdr.version) >= 2) { 3008 void *p = snaptrace + snaptrace_len; 3009 ceph_decode_32_safe(&p, end, flock_len, bad); 3010 if (p + flock_len > end) 3011 goto bad; 3012 flock = p; 3013 } else { 3014 flock = NULL; 3015 flock_len = 0; 3016 } 3017 3018 if (le16_to_cpu(msg->hdr.version) >= 3) { 3019 if (op == CEPH_CAP_OP_IMPORT) { 3020 void *p = flock + flock_len; 3021 if (p + sizeof(*peer) > end) 3022 goto bad; 3023 peer = p; 3024 } else if (op == CEPH_CAP_OP_EXPORT) { 3025 /* recorded in unused fields */ 3026 peer = (void *)&h->size; 3027 } 3028 } 3029 3030 mutex_lock(&session->s_mutex); 3031 session->s_seq++; 3032 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3033 (unsigned)seq); 3034 3035 if (op == CEPH_CAP_OP_IMPORT) 3036 ceph_add_cap_releases(mdsc, session); 3037 3038 /* lookup ino */ 3039 inode = ceph_find_inode(sb, vino); 3040 ci = ceph_inode(inode); 3041 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3042 vino.snap, inode); 3043 if (!inode) { 3044 dout(" i don't have ino %llx\n", vino.ino); 3045 3046 if (op == CEPH_CAP_OP_IMPORT) { 3047 spin_lock(&session->s_cap_lock); 3048 __queue_cap_release(session, vino.ino, cap_id, 3049 mseq, seq); 3050 spin_unlock(&session->s_cap_lock); 3051 } 3052 goto flush_cap_releases; 3053 } 3054 3055 /* these will work even if we don't have a cap yet */ 3056 switch (op) { 3057 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3058 handle_cap_flushsnap_ack(inode, tid, h, session); 3059 goto done; 3060 3061 case CEPH_CAP_OP_EXPORT: 3062 handle_cap_export(inode, h, peer, session); 3063 goto done_unlocked; 3064 3065 case CEPH_CAP_OP_IMPORT: 3066 handle_cap_import(mdsc, inode, h, peer, session, 3067 snaptrace, snaptrace_len); 3068 } 3069 3070 /* the rest require a cap */ 3071 spin_lock(&ci->i_ceph_lock); 3072 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3073 if (!cap) { 3074 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3075 inode, ceph_ino(inode), ceph_snap(inode), mds); 3076 spin_unlock(&ci->i_ceph_lock); 3077 goto flush_cap_releases; 3078 } 3079 3080 /* note that each of these drops i_ceph_lock for us */ 3081 switch (op) { 3082 case CEPH_CAP_OP_REVOKE: 3083 case CEPH_CAP_OP_GRANT: 3084 case CEPH_CAP_OP_IMPORT: 3085 handle_cap_grant(inode, h, session, cap, msg->middle); 3086 goto done_unlocked; 3087 3088 case CEPH_CAP_OP_FLUSH_ACK: 3089 handle_cap_flush_ack(inode, tid, h, session, cap); 3090 break; 3091 3092 case CEPH_CAP_OP_TRUNC: 3093 handle_cap_trunc(inode, h, session); 3094 break; 3095 3096 default: 3097 spin_unlock(&ci->i_ceph_lock); 3098 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3099 ceph_cap_op_name(op)); 3100 } 3101 3102 goto done; 3103 3104 flush_cap_releases: 3105 /* 3106 * send any full release message to try to move things 3107 * along for the mds (who clearly thinks we still have this 3108 * cap). 3109 */ 3110 ceph_add_cap_releases(mdsc, session); 3111 ceph_send_cap_releases(mdsc, session); 3112 3113 done: 3114 mutex_unlock(&session->s_mutex); 3115 done_unlocked: 3116 if (inode) 3117 iput(inode); 3118 return; 3119 3120 bad: 3121 pr_err("ceph_handle_caps: corrupt message\n"); 3122 ceph_msg_dump(msg); 3123 return; 3124 } 3125 3126 /* 3127 * Delayed work handler to process end of delayed cap release LRU list. 3128 */ 3129 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3130 { 3131 struct ceph_inode_info *ci; 3132 int flags = CHECK_CAPS_NODELAY; 3133 3134 dout("check_delayed_caps\n"); 3135 while (1) { 3136 spin_lock(&mdsc->cap_delay_lock); 3137 if (list_empty(&mdsc->cap_delay_list)) 3138 break; 3139 ci = list_first_entry(&mdsc->cap_delay_list, 3140 struct ceph_inode_info, 3141 i_cap_delay_list); 3142 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3143 time_before(jiffies, ci->i_hold_caps_max)) 3144 break; 3145 list_del_init(&ci->i_cap_delay_list); 3146 spin_unlock(&mdsc->cap_delay_lock); 3147 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3148 ceph_check_caps(ci, flags, NULL); 3149 } 3150 spin_unlock(&mdsc->cap_delay_lock); 3151 } 3152 3153 /* 3154 * Flush all dirty caps to the mds 3155 */ 3156 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3157 { 3158 struct ceph_inode_info *ci; 3159 struct inode *inode; 3160 3161 dout("flush_dirty_caps\n"); 3162 spin_lock(&mdsc->cap_dirty_lock); 3163 while (!list_empty(&mdsc->cap_dirty)) { 3164 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3165 i_dirty_item); 3166 inode = &ci->vfs_inode; 3167 ihold(inode); 3168 dout("flush_dirty_caps %p\n", inode); 3169 spin_unlock(&mdsc->cap_dirty_lock); 3170 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3171 iput(inode); 3172 spin_lock(&mdsc->cap_dirty_lock); 3173 } 3174 spin_unlock(&mdsc->cap_dirty_lock); 3175 dout("flush_dirty_caps done\n"); 3176 } 3177 3178 /* 3179 * Drop open file reference. If we were the last open file, 3180 * we may need to release capabilities to the MDS (or schedule 3181 * their delayed release). 3182 */ 3183 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3184 { 3185 struct inode *inode = &ci->vfs_inode; 3186 int last = 0; 3187 3188 spin_lock(&ci->i_ceph_lock); 3189 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3190 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3191 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3192 if (--ci->i_nr_by_mode[fmode] == 0) 3193 last++; 3194 spin_unlock(&ci->i_ceph_lock); 3195 3196 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3197 ceph_check_caps(ci, 0, NULL); 3198 } 3199 3200 /* 3201 * Helpers for embedding cap and dentry lease releases into mds 3202 * requests. 3203 * 3204 * @force is used by dentry_release (below) to force inclusion of a 3205 * record for the directory inode, even when there aren't any caps to 3206 * drop. 3207 */ 3208 int ceph_encode_inode_release(void **p, struct inode *inode, 3209 int mds, int drop, int unless, int force) 3210 { 3211 struct ceph_inode_info *ci = ceph_inode(inode); 3212 struct ceph_cap *cap; 3213 struct ceph_mds_request_release *rel = *p; 3214 int used, dirty; 3215 int ret = 0; 3216 3217 spin_lock(&ci->i_ceph_lock); 3218 used = __ceph_caps_used(ci); 3219 dirty = __ceph_caps_dirty(ci); 3220 3221 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3222 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3223 ceph_cap_string(unless)); 3224 3225 /* only drop unused, clean caps */ 3226 drop &= ~(used | dirty); 3227 3228 cap = __get_cap_for_mds(ci, mds); 3229 if (cap && __cap_is_valid(cap)) { 3230 if (force || 3231 ((cap->issued & drop) && 3232 (cap->issued & unless) == 0)) { 3233 if ((cap->issued & drop) && 3234 (cap->issued & unless) == 0) { 3235 int wanted = __ceph_caps_wanted(ci); 3236 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3237 wanted |= cap->mds_wanted; 3238 dout("encode_inode_release %p cap %p " 3239 "%s -> %s, wanted %s -> %s\n", inode, cap, 3240 ceph_cap_string(cap->issued), 3241 ceph_cap_string(cap->issued & ~drop), 3242 ceph_cap_string(cap->mds_wanted), 3243 ceph_cap_string(wanted)); 3244 3245 cap->issued &= ~drop; 3246 cap->implemented &= ~drop; 3247 cap->mds_wanted = wanted; 3248 } else { 3249 dout("encode_inode_release %p cap %p %s" 3250 " (force)\n", inode, cap, 3251 ceph_cap_string(cap->issued)); 3252 } 3253 3254 rel->ino = cpu_to_le64(ceph_ino(inode)); 3255 rel->cap_id = cpu_to_le64(cap->cap_id); 3256 rel->seq = cpu_to_le32(cap->seq); 3257 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3258 rel->mseq = cpu_to_le32(cap->mseq); 3259 rel->caps = cpu_to_le32(cap->issued); 3260 rel->wanted = cpu_to_le32(cap->mds_wanted); 3261 rel->dname_len = 0; 3262 rel->dname_seq = 0; 3263 *p += sizeof(*rel); 3264 ret = 1; 3265 } else { 3266 dout("encode_inode_release %p cap %p %s\n", 3267 inode, cap, ceph_cap_string(cap->issued)); 3268 } 3269 } 3270 spin_unlock(&ci->i_ceph_lock); 3271 return ret; 3272 } 3273 3274 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3275 int mds, int drop, int unless) 3276 { 3277 struct inode *dir = dentry->d_parent->d_inode; 3278 struct ceph_mds_request_release *rel = *p; 3279 struct ceph_dentry_info *di = ceph_dentry(dentry); 3280 int force = 0; 3281 int ret; 3282 3283 /* 3284 * force an record for the directory caps if we have a dentry lease. 3285 * this is racy (can't take i_ceph_lock and d_lock together), but it 3286 * doesn't have to be perfect; the mds will revoke anything we don't 3287 * release. 3288 */ 3289 spin_lock(&dentry->d_lock); 3290 if (di->lease_session && di->lease_session->s_mds == mds) 3291 force = 1; 3292 spin_unlock(&dentry->d_lock); 3293 3294 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3295 3296 spin_lock(&dentry->d_lock); 3297 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3298 dout("encode_dentry_release %p mds%d seq %d\n", 3299 dentry, mds, (int)di->lease_seq); 3300 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3301 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3302 *p += dentry->d_name.len; 3303 rel->dname_seq = cpu_to_le32(di->lease_seq); 3304 __ceph_mdsc_drop_dentry_lease(dentry); 3305 } 3306 spin_unlock(&dentry->d_lock); 3307 return ret; 3308 } 3309