1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 void ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap **new_cap) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *cap; 520 int mds = session->s_mds; 521 int actual_wanted; 522 523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 524 session->s_mds, cap_id, ceph_cap_string(issued), seq); 525 526 /* 527 * If we are opening the file, include file mode wanted bits 528 * in wanted. 529 */ 530 if (fmode >= 0) 531 wanted |= ceph_caps_for_mode(fmode); 532 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 cap = *new_cap; 536 *new_cap = NULL; 537 538 cap->issued = 0; 539 cap->implemented = 0; 540 cap->mds = mds; 541 cap->mds_wanted = 0; 542 cap->mseq = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* add to session cap list */ 548 cap->session = session; 549 spin_lock(&session->s_cap_lock); 550 list_add_tail(&cap->session_caps, &session->s_caps); 551 session->s_nr_caps++; 552 spin_unlock(&session->s_cap_lock); 553 } else { 554 /* 555 * auth mds of the inode changed. we received the cap export 556 * message, but still haven't received the cap import message. 557 * handle_cap_export() updated the new auth MDS' cap. 558 * 559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 560 * a message that was send before the cap import message. So 561 * don't remove caps. 562 */ 563 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 564 WARN_ON(cap != ci->i_auth_cap); 565 WARN_ON(cap->cap_id != cap_id); 566 seq = cap->seq; 567 mseq = cap->mseq; 568 issued |= cap->issued; 569 flags |= CEPH_CAP_FLAG_AUTH; 570 } 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 ceph_get_snap_realm(mdsc, realm); 581 spin_lock(&realm->inodes_with_caps_lock); 582 ci->i_snap_realm = realm; 583 list_add(&ci->i_snap_realm_item, 584 &realm->inodes_with_caps); 585 spin_unlock(&realm->inodes_with_caps_lock); 586 } else { 587 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 588 realmino); 589 WARN_ON(!realm); 590 } 591 } 592 593 __check_cap_issue(ci, cap, issued); 594 595 /* 596 * If we are issued caps we don't want, or the mds' wanted 597 * value appears to be off, queue a check so we'll release 598 * later and/or update the mds wanted value. 599 */ 600 actual_wanted = __ceph_caps_wanted(ci); 601 if ((wanted & ~actual_wanted) || 602 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 603 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 604 ceph_cap_string(issued), ceph_cap_string(wanted), 605 ceph_cap_string(actual_wanted)); 606 __cap_delay_requeue(mdsc, ci); 607 } 608 609 if (flags & CEPH_CAP_FLAG_AUTH) { 610 if (ci->i_auth_cap == NULL || 611 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 612 ci->i_auth_cap = cap; 613 cap->mds_wanted = wanted; 614 } 615 } else { 616 WARN_ON(ci->i_auth_cap == cap); 617 } 618 619 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 620 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 621 ceph_cap_string(issued|cap->issued), seq, mds); 622 cap->cap_id = cap_id; 623 cap->issued = issued; 624 cap->implemented |= issued; 625 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 626 cap->mds_wanted = wanted; 627 else 628 cap->mds_wanted |= wanted; 629 cap->seq = seq; 630 cap->issue_seq = seq; 631 cap->mseq = mseq; 632 cap->cap_gen = session->s_cap_gen; 633 634 if (fmode >= 0) 635 __ceph_get_fmode(ci, fmode); 636 } 637 638 /* 639 * Return true if cap has not timed out and belongs to the current 640 * generation of the MDS session (i.e. has not gone 'stale' due to 641 * us losing touch with the mds). 642 */ 643 static int __cap_is_valid(struct ceph_cap *cap) 644 { 645 unsigned long ttl; 646 u32 gen; 647 648 spin_lock(&cap->session->s_gen_ttl_lock); 649 gen = cap->session->s_cap_gen; 650 ttl = cap->session->s_cap_ttl; 651 spin_unlock(&cap->session->s_gen_ttl_lock); 652 653 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 654 dout("__cap_is_valid %p cap %p issued %s " 655 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 656 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 657 return 0; 658 } 659 660 return 1; 661 } 662 663 /* 664 * Return set of valid cap bits issued to us. Note that caps time 665 * out, and may be invalidated in bulk if the client session times out 666 * and session->s_cap_gen is bumped. 667 */ 668 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 669 { 670 int have = ci->i_snap_caps; 671 struct ceph_cap *cap; 672 struct rb_node *p; 673 674 if (implemented) 675 *implemented = 0; 676 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 677 cap = rb_entry(p, struct ceph_cap, ci_node); 678 if (!__cap_is_valid(cap)) 679 continue; 680 dout("__ceph_caps_issued %p cap %p issued %s\n", 681 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 682 have |= cap->issued; 683 if (implemented) 684 *implemented |= cap->implemented; 685 } 686 /* 687 * exclude caps issued by non-auth MDS, but are been revoking 688 * by the auth MDS. The non-auth MDS should be revoking/exporting 689 * these caps, but the message is delayed. 690 */ 691 if (ci->i_auth_cap) { 692 cap = ci->i_auth_cap; 693 have &= ~cap->implemented | cap->issued; 694 } 695 return have; 696 } 697 698 /* 699 * Get cap bits issued by caps other than @ocap 700 */ 701 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 702 { 703 int have = ci->i_snap_caps; 704 struct ceph_cap *cap; 705 struct rb_node *p; 706 707 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 708 cap = rb_entry(p, struct ceph_cap, ci_node); 709 if (cap == ocap) 710 continue; 711 if (!__cap_is_valid(cap)) 712 continue; 713 have |= cap->issued; 714 } 715 return have; 716 } 717 718 /* 719 * Move a cap to the end of the LRU (oldest caps at list head, newest 720 * at list tail). 721 */ 722 static void __touch_cap(struct ceph_cap *cap) 723 { 724 struct ceph_mds_session *s = cap->session; 725 726 spin_lock(&s->s_cap_lock); 727 if (s->s_cap_iterator == NULL) { 728 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 729 s->s_mds); 730 list_move_tail(&cap->session_caps, &s->s_caps); 731 } else { 732 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 733 &cap->ci->vfs_inode, cap, s->s_mds); 734 } 735 spin_unlock(&s->s_cap_lock); 736 } 737 738 /* 739 * Check if we hold the given mask. If so, move the cap(s) to the 740 * front of their respective LRUs. (This is the preferred way for 741 * callers to check for caps they want.) 742 */ 743 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 744 { 745 struct ceph_cap *cap; 746 struct rb_node *p; 747 int have = ci->i_snap_caps; 748 749 if ((have & mask) == mask) { 750 dout("__ceph_caps_issued_mask %p snap issued %s" 751 " (mask %s)\n", &ci->vfs_inode, 752 ceph_cap_string(have), 753 ceph_cap_string(mask)); 754 return 1; 755 } 756 757 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 758 cap = rb_entry(p, struct ceph_cap, ci_node); 759 if (!__cap_is_valid(cap)) 760 continue; 761 if ((cap->issued & mask) == mask) { 762 dout("__ceph_caps_issued_mask %p cap %p issued %s" 763 " (mask %s)\n", &ci->vfs_inode, cap, 764 ceph_cap_string(cap->issued), 765 ceph_cap_string(mask)); 766 if (touch) 767 __touch_cap(cap); 768 return 1; 769 } 770 771 /* does a combination of caps satisfy mask? */ 772 have |= cap->issued; 773 if ((have & mask) == mask) { 774 dout("__ceph_caps_issued_mask %p combo issued %s" 775 " (mask %s)\n", &ci->vfs_inode, 776 ceph_cap_string(cap->issued), 777 ceph_cap_string(mask)); 778 if (touch) { 779 struct rb_node *q; 780 781 /* touch this + preceding caps */ 782 __touch_cap(cap); 783 for (q = rb_first(&ci->i_caps); q != p; 784 q = rb_next(q)) { 785 cap = rb_entry(q, struct ceph_cap, 786 ci_node); 787 if (!__cap_is_valid(cap)) 788 continue; 789 __touch_cap(cap); 790 } 791 } 792 return 1; 793 } 794 } 795 796 return 0; 797 } 798 799 /* 800 * Return true if mask caps are currently being revoked by an MDS. 801 */ 802 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 803 struct ceph_cap *ocap, int mask) 804 { 805 struct ceph_cap *cap; 806 struct rb_node *p; 807 808 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 809 cap = rb_entry(p, struct ceph_cap, ci_node); 810 if (cap != ocap && 811 (cap->implemented & ~cap->issued & mask)) 812 return 1; 813 } 814 return 0; 815 } 816 817 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 818 { 819 struct inode *inode = &ci->vfs_inode; 820 int ret; 821 822 spin_lock(&ci->i_ceph_lock); 823 ret = __ceph_caps_revoking_other(ci, NULL, mask); 824 spin_unlock(&ci->i_ceph_lock); 825 dout("ceph_caps_revoking %p %s = %d\n", inode, 826 ceph_cap_string(mask), ret); 827 return ret; 828 } 829 830 int __ceph_caps_used(struct ceph_inode_info *ci) 831 { 832 int used = 0; 833 if (ci->i_pin_ref) 834 used |= CEPH_CAP_PIN; 835 if (ci->i_rd_ref) 836 used |= CEPH_CAP_FILE_RD; 837 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 838 used |= CEPH_CAP_FILE_CACHE; 839 if (ci->i_wr_ref) 840 used |= CEPH_CAP_FILE_WR; 841 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 842 used |= CEPH_CAP_FILE_BUFFER; 843 return used; 844 } 845 846 /* 847 * wanted, by virtue of open file modes 848 */ 849 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 850 { 851 int want = 0; 852 int mode; 853 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 854 if (ci->i_nr_by_mode[mode]) 855 want |= ceph_caps_for_mode(mode); 856 return want; 857 } 858 859 /* 860 * Return caps we have registered with the MDS(s) as 'wanted'. 861 */ 862 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 863 { 864 struct ceph_cap *cap; 865 struct rb_node *p; 866 int mds_wanted = 0; 867 868 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 869 cap = rb_entry(p, struct ceph_cap, ci_node); 870 if (!__cap_is_valid(cap)) 871 continue; 872 if (cap == ci->i_auth_cap) 873 mds_wanted |= cap->mds_wanted; 874 else 875 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 876 } 877 return mds_wanted; 878 } 879 880 /* 881 * called under i_ceph_lock 882 */ 883 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 884 { 885 return !RB_EMPTY_ROOT(&ci->i_caps); 886 } 887 888 int ceph_is_any_caps(struct inode *inode) 889 { 890 struct ceph_inode_info *ci = ceph_inode(inode); 891 int ret; 892 893 spin_lock(&ci->i_ceph_lock); 894 ret = __ceph_is_any_caps(ci); 895 spin_unlock(&ci->i_ceph_lock); 896 897 return ret; 898 } 899 900 /* 901 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 902 * 903 * caller should hold i_ceph_lock. 904 * caller will not hold session s_mutex if called from destroy_inode. 905 */ 906 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 907 { 908 struct ceph_mds_session *session = cap->session; 909 struct ceph_inode_info *ci = cap->ci; 910 struct ceph_mds_client *mdsc = 911 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 912 int removed = 0; 913 914 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 915 916 /* remove from session list */ 917 spin_lock(&session->s_cap_lock); 918 /* 919 * s_cap_reconnect is protected by s_cap_lock. no one changes 920 * s_cap_gen while session is in the reconnect state. 921 */ 922 if (queue_release && 923 (!session->s_cap_reconnect || 924 cap->cap_gen == session->s_cap_gen)) 925 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id, 926 cap->mseq, cap->issue_seq); 927 928 if (session->s_cap_iterator == cap) { 929 /* not yet, we are iterating over this very cap */ 930 dout("__ceph_remove_cap delaying %p removal from session %p\n", 931 cap, cap->session); 932 } else { 933 list_del_init(&cap->session_caps); 934 session->s_nr_caps--; 935 cap->session = NULL; 936 removed = 1; 937 } 938 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 939 cap->ci = NULL; 940 spin_unlock(&session->s_cap_lock); 941 942 /* remove from inode list */ 943 rb_erase(&cap->ci_node, &ci->i_caps); 944 if (ci->i_auth_cap == cap) 945 ci->i_auth_cap = NULL; 946 947 if (removed) 948 ceph_put_cap(mdsc, cap); 949 950 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 951 struct ceph_snap_realm *realm = ci->i_snap_realm; 952 spin_lock(&realm->inodes_with_caps_lock); 953 list_del_init(&ci->i_snap_realm_item); 954 ci->i_snap_realm_counter++; 955 ci->i_snap_realm = NULL; 956 spin_unlock(&realm->inodes_with_caps_lock); 957 ceph_put_snap_realm(mdsc, realm); 958 } 959 if (!__ceph_is_any_real_caps(ci)) 960 __cap_delay_cancel(mdsc, ci); 961 } 962 963 /* 964 * Build and send a cap message to the given MDS. 965 * 966 * Caller should be holding s_mutex. 967 */ 968 static int send_cap_msg(struct ceph_mds_session *session, 969 u64 ino, u64 cid, int op, 970 int caps, int wanted, int dirty, 971 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 972 u64 size, u64 max_size, 973 struct timespec *mtime, struct timespec *atime, 974 u64 time_warp_seq, 975 kuid_t uid, kgid_t gid, umode_t mode, 976 u64 xattr_version, 977 struct ceph_buffer *xattrs_buf, 978 u64 follows, bool inline_data) 979 { 980 struct ceph_mds_caps *fc; 981 struct ceph_msg *msg; 982 void *p; 983 size_t extra_len; 984 985 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 986 " seq %u/%u mseq %u follows %lld size %llu/%llu" 987 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 988 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 989 ceph_cap_string(dirty), 990 seq, issue_seq, mseq, follows, size, max_size, 991 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 992 993 /* flock buffer size + inline version + inline data size */ 994 extra_len = 4 + 8 + 4; 995 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len, 996 GFP_NOFS, false); 997 if (!msg) 998 return -ENOMEM; 999 1000 msg->hdr.tid = cpu_to_le64(flush_tid); 1001 1002 fc = msg->front.iov_base; 1003 memset(fc, 0, sizeof(*fc)); 1004 1005 fc->cap_id = cpu_to_le64(cid); 1006 fc->op = cpu_to_le32(op); 1007 fc->seq = cpu_to_le32(seq); 1008 fc->issue_seq = cpu_to_le32(issue_seq); 1009 fc->migrate_seq = cpu_to_le32(mseq); 1010 fc->caps = cpu_to_le32(caps); 1011 fc->wanted = cpu_to_le32(wanted); 1012 fc->dirty = cpu_to_le32(dirty); 1013 fc->ino = cpu_to_le64(ino); 1014 fc->snap_follows = cpu_to_le64(follows); 1015 1016 fc->size = cpu_to_le64(size); 1017 fc->max_size = cpu_to_le64(max_size); 1018 if (mtime) 1019 ceph_encode_timespec(&fc->mtime, mtime); 1020 if (atime) 1021 ceph_encode_timespec(&fc->atime, atime); 1022 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1023 1024 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1025 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1026 fc->mode = cpu_to_le32(mode); 1027 1028 p = fc + 1; 1029 /* flock buffer size */ 1030 ceph_encode_32(&p, 0); 1031 /* inline version */ 1032 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE); 1033 /* inline data size */ 1034 ceph_encode_32(&p, 0); 1035 1036 fc->xattr_version = cpu_to_le64(xattr_version); 1037 if (xattrs_buf) { 1038 msg->middle = ceph_buffer_get(xattrs_buf); 1039 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1040 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1041 } 1042 1043 ceph_con_send(&session->s_con, msg); 1044 return 0; 1045 } 1046 1047 void __queue_cap_release(struct ceph_mds_session *session, 1048 u64 ino, u64 cap_id, u32 migrate_seq, 1049 u32 issue_seq) 1050 { 1051 struct ceph_msg *msg; 1052 struct ceph_mds_cap_release *head; 1053 struct ceph_mds_cap_item *item; 1054 1055 BUG_ON(!session->s_num_cap_releases); 1056 msg = list_first_entry(&session->s_cap_releases, 1057 struct ceph_msg, list_head); 1058 1059 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1060 ino, session->s_mds, msg, session->s_num_cap_releases); 1061 1062 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1063 head = msg->front.iov_base; 1064 le32_add_cpu(&head->num, 1); 1065 item = msg->front.iov_base + msg->front.iov_len; 1066 item->ino = cpu_to_le64(ino); 1067 item->cap_id = cpu_to_le64(cap_id); 1068 item->migrate_seq = cpu_to_le32(migrate_seq); 1069 item->seq = cpu_to_le32(issue_seq); 1070 1071 session->s_num_cap_releases--; 1072 1073 msg->front.iov_len += sizeof(*item); 1074 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1075 dout(" release msg %p full\n", msg); 1076 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1077 } else { 1078 dout(" release msg %p at %d/%d (%d)\n", msg, 1079 (int)le32_to_cpu(head->num), 1080 (int)CEPH_CAPS_PER_RELEASE, 1081 (int)msg->front.iov_len); 1082 } 1083 } 1084 1085 /* 1086 * Queue cap releases when an inode is dropped from our cache. Since 1087 * inode is about to be destroyed, there is no need for i_ceph_lock. 1088 */ 1089 void ceph_queue_caps_release(struct inode *inode) 1090 { 1091 struct ceph_inode_info *ci = ceph_inode(inode); 1092 struct rb_node *p; 1093 1094 p = rb_first(&ci->i_caps); 1095 while (p) { 1096 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1097 p = rb_next(p); 1098 __ceph_remove_cap(cap, true); 1099 } 1100 } 1101 1102 /* 1103 * Send a cap msg on the given inode. Update our caps state, then 1104 * drop i_ceph_lock and send the message. 1105 * 1106 * Make note of max_size reported/requested from mds, revoked caps 1107 * that have now been implemented. 1108 * 1109 * Make half-hearted attempt ot to invalidate page cache if we are 1110 * dropping RDCACHE. Note that this will leave behind locked pages 1111 * that we'll then need to deal with elsewhere. 1112 * 1113 * Return non-zero if delayed release, or we experienced an error 1114 * such that the caller should requeue + retry later. 1115 * 1116 * called with i_ceph_lock, then drops it. 1117 * caller should hold snap_rwsem (read), s_mutex. 1118 */ 1119 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1120 int op, int used, int want, int retain, int flushing, 1121 unsigned *pflush_tid) 1122 __releases(cap->ci->i_ceph_lock) 1123 { 1124 struct ceph_inode_info *ci = cap->ci; 1125 struct inode *inode = &ci->vfs_inode; 1126 u64 cap_id = cap->cap_id; 1127 int held, revoking, dropping, keep; 1128 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1129 u64 size, max_size; 1130 struct timespec mtime, atime; 1131 int wake = 0; 1132 umode_t mode; 1133 kuid_t uid; 1134 kgid_t gid; 1135 struct ceph_mds_session *session; 1136 u64 xattr_version = 0; 1137 struct ceph_buffer *xattr_blob = NULL; 1138 int delayed = 0; 1139 u64 flush_tid = 0; 1140 int i; 1141 int ret; 1142 bool inline_data; 1143 1144 held = cap->issued | cap->implemented; 1145 revoking = cap->implemented & ~cap->issued; 1146 retain &= ~revoking; 1147 dropping = cap->issued & ~retain; 1148 1149 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1150 inode, cap, cap->session, 1151 ceph_cap_string(held), ceph_cap_string(held & retain), 1152 ceph_cap_string(revoking)); 1153 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1154 1155 session = cap->session; 1156 1157 /* don't release wanted unless we've waited a bit. */ 1158 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1159 time_before(jiffies, ci->i_hold_caps_min)) { 1160 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1161 ceph_cap_string(cap->issued), 1162 ceph_cap_string(cap->issued & retain), 1163 ceph_cap_string(cap->mds_wanted), 1164 ceph_cap_string(want)); 1165 want |= cap->mds_wanted; 1166 retain |= cap->issued; 1167 delayed = 1; 1168 } 1169 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1170 1171 cap->issued &= retain; /* drop bits we don't want */ 1172 if (cap->implemented & ~cap->issued) { 1173 /* 1174 * Wake up any waiters on wanted -> needed transition. 1175 * This is due to the weird transition from buffered 1176 * to sync IO... we need to flush dirty pages _before_ 1177 * allowing sync writes to avoid reordering. 1178 */ 1179 wake = 1; 1180 } 1181 cap->implemented &= cap->issued | used; 1182 cap->mds_wanted = want; 1183 1184 if (flushing) { 1185 /* 1186 * assign a tid for flush operations so we can avoid 1187 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1188 * clean type races. track latest tid for every bit 1189 * so we can handle flush AxFw, flush Fw, and have the 1190 * first ack clean Ax. 1191 */ 1192 flush_tid = ++ci->i_cap_flush_last_tid; 1193 if (pflush_tid) 1194 *pflush_tid = flush_tid; 1195 dout(" cap_flush_tid %d\n", (int)flush_tid); 1196 for (i = 0; i < CEPH_CAP_BITS; i++) 1197 if (flushing & (1 << i)) 1198 ci->i_cap_flush_tid[i] = flush_tid; 1199 1200 follows = ci->i_head_snapc->seq; 1201 } else { 1202 follows = 0; 1203 } 1204 1205 keep = cap->implemented; 1206 seq = cap->seq; 1207 issue_seq = cap->issue_seq; 1208 mseq = cap->mseq; 1209 size = inode->i_size; 1210 ci->i_reported_size = size; 1211 max_size = ci->i_wanted_max_size; 1212 ci->i_requested_max_size = max_size; 1213 mtime = inode->i_mtime; 1214 atime = inode->i_atime; 1215 time_warp_seq = ci->i_time_warp_seq; 1216 uid = inode->i_uid; 1217 gid = inode->i_gid; 1218 mode = inode->i_mode; 1219 1220 if (flushing & CEPH_CAP_XATTR_EXCL) { 1221 __ceph_build_xattrs_blob(ci); 1222 xattr_blob = ci->i_xattrs.blob; 1223 xattr_version = ci->i_xattrs.version; 1224 } 1225 1226 inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 1227 1228 spin_unlock(&ci->i_ceph_lock); 1229 1230 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1231 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1232 size, max_size, &mtime, &atime, time_warp_seq, 1233 uid, gid, mode, xattr_version, xattr_blob, 1234 follows, inline_data); 1235 if (ret < 0) { 1236 dout("error sending cap msg, must requeue %p\n", inode); 1237 delayed = 1; 1238 } 1239 1240 if (wake) 1241 wake_up_all(&ci->i_cap_wq); 1242 1243 return delayed; 1244 } 1245 1246 /* 1247 * When a snapshot is taken, clients accumulate dirty metadata on 1248 * inodes with capabilities in ceph_cap_snaps to describe the file 1249 * state at the time the snapshot was taken. This must be flushed 1250 * asynchronously back to the MDS once sync writes complete and dirty 1251 * data is written out. 1252 * 1253 * Unless @again is true, skip cap_snaps that were already sent to 1254 * the MDS (i.e., during this session). 1255 * 1256 * Called under i_ceph_lock. Takes s_mutex as needed. 1257 */ 1258 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1259 struct ceph_mds_session **psession, 1260 int again) 1261 __releases(ci->i_ceph_lock) 1262 __acquires(ci->i_ceph_lock) 1263 { 1264 struct inode *inode = &ci->vfs_inode; 1265 int mds; 1266 struct ceph_cap_snap *capsnap; 1267 u32 mseq; 1268 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1269 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1270 session->s_mutex */ 1271 u64 next_follows = 0; /* keep track of how far we've gotten through the 1272 i_cap_snaps list, and skip these entries next time 1273 around to avoid an infinite loop */ 1274 1275 if (psession) 1276 session = *psession; 1277 1278 dout("__flush_snaps %p\n", inode); 1279 retry: 1280 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1281 /* avoid an infiniute loop after retry */ 1282 if (capsnap->follows < next_follows) 1283 continue; 1284 /* 1285 * we need to wait for sync writes to complete and for dirty 1286 * pages to be written out. 1287 */ 1288 if (capsnap->dirty_pages || capsnap->writing) 1289 break; 1290 1291 /* 1292 * if cap writeback already occurred, we should have dropped 1293 * the capsnap in ceph_put_wrbuffer_cap_refs. 1294 */ 1295 BUG_ON(capsnap->dirty == 0); 1296 1297 /* pick mds, take s_mutex */ 1298 if (ci->i_auth_cap == NULL) { 1299 dout("no auth cap (migrating?), doing nothing\n"); 1300 goto out; 1301 } 1302 1303 /* only flush each capsnap once */ 1304 if (!again && !list_empty(&capsnap->flushing_item)) { 1305 dout("already flushed %p, skipping\n", capsnap); 1306 continue; 1307 } 1308 1309 mds = ci->i_auth_cap->session->s_mds; 1310 mseq = ci->i_auth_cap->mseq; 1311 1312 if (session && session->s_mds != mds) { 1313 dout("oops, wrong session %p mutex\n", session); 1314 mutex_unlock(&session->s_mutex); 1315 ceph_put_mds_session(session); 1316 session = NULL; 1317 } 1318 if (!session) { 1319 spin_unlock(&ci->i_ceph_lock); 1320 mutex_lock(&mdsc->mutex); 1321 session = __ceph_lookup_mds_session(mdsc, mds); 1322 mutex_unlock(&mdsc->mutex); 1323 if (session) { 1324 dout("inverting session/ino locks on %p\n", 1325 session); 1326 mutex_lock(&session->s_mutex); 1327 } 1328 /* 1329 * if session == NULL, we raced against a cap 1330 * deletion or migration. retry, and we'll 1331 * get a better @mds value next time. 1332 */ 1333 spin_lock(&ci->i_ceph_lock); 1334 goto retry; 1335 } 1336 1337 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1338 atomic_inc(&capsnap->nref); 1339 if (!list_empty(&capsnap->flushing_item)) 1340 list_del_init(&capsnap->flushing_item); 1341 list_add_tail(&capsnap->flushing_item, 1342 &session->s_cap_snaps_flushing); 1343 spin_unlock(&ci->i_ceph_lock); 1344 1345 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1346 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1347 send_cap_msg(session, ceph_vino(inode).ino, 0, 1348 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1349 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1350 capsnap->size, 0, 1351 &capsnap->mtime, &capsnap->atime, 1352 capsnap->time_warp_seq, 1353 capsnap->uid, capsnap->gid, capsnap->mode, 1354 capsnap->xattr_version, capsnap->xattr_blob, 1355 capsnap->follows, capsnap->inline_data); 1356 1357 next_follows = capsnap->follows + 1; 1358 ceph_put_cap_snap(capsnap); 1359 1360 spin_lock(&ci->i_ceph_lock); 1361 goto retry; 1362 } 1363 1364 /* we flushed them all; remove this inode from the queue */ 1365 spin_lock(&mdsc->snap_flush_lock); 1366 list_del_init(&ci->i_snap_flush_item); 1367 spin_unlock(&mdsc->snap_flush_lock); 1368 1369 out: 1370 if (psession) 1371 *psession = session; 1372 else if (session) { 1373 mutex_unlock(&session->s_mutex); 1374 ceph_put_mds_session(session); 1375 } 1376 } 1377 1378 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1379 { 1380 spin_lock(&ci->i_ceph_lock); 1381 __ceph_flush_snaps(ci, NULL, 0); 1382 spin_unlock(&ci->i_ceph_lock); 1383 } 1384 1385 /* 1386 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1387 * Caller is then responsible for calling __mark_inode_dirty with the 1388 * returned flags value. 1389 */ 1390 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1391 { 1392 struct ceph_mds_client *mdsc = 1393 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1394 struct inode *inode = &ci->vfs_inode; 1395 int was = ci->i_dirty_caps; 1396 int dirty = 0; 1397 1398 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1399 ceph_cap_string(mask), ceph_cap_string(was), 1400 ceph_cap_string(was | mask)); 1401 ci->i_dirty_caps |= mask; 1402 if (was == 0) { 1403 if (!ci->i_head_snapc) 1404 ci->i_head_snapc = ceph_get_snap_context( 1405 ci->i_snap_realm->cached_context); 1406 dout(" inode %p now dirty snapc %p auth cap %p\n", 1407 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1408 WARN_ON(!ci->i_auth_cap); 1409 BUG_ON(!list_empty(&ci->i_dirty_item)); 1410 spin_lock(&mdsc->cap_dirty_lock); 1411 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1412 spin_unlock(&mdsc->cap_dirty_lock); 1413 if (ci->i_flushing_caps == 0) { 1414 ihold(inode); 1415 dirty |= I_DIRTY_SYNC; 1416 } 1417 } 1418 BUG_ON(list_empty(&ci->i_dirty_item)); 1419 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1420 (mask & CEPH_CAP_FILE_BUFFER)) 1421 dirty |= I_DIRTY_DATASYNC; 1422 __cap_delay_requeue(mdsc, ci); 1423 return dirty; 1424 } 1425 1426 /* 1427 * Add dirty inode to the flushing list. Assigned a seq number so we 1428 * can wait for caps to flush without starving. 1429 * 1430 * Called under i_ceph_lock. 1431 */ 1432 static int __mark_caps_flushing(struct inode *inode, 1433 struct ceph_mds_session *session) 1434 { 1435 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1436 struct ceph_inode_info *ci = ceph_inode(inode); 1437 int flushing; 1438 1439 BUG_ON(ci->i_dirty_caps == 0); 1440 BUG_ON(list_empty(&ci->i_dirty_item)); 1441 1442 flushing = ci->i_dirty_caps; 1443 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1444 ceph_cap_string(flushing), 1445 ceph_cap_string(ci->i_flushing_caps), 1446 ceph_cap_string(ci->i_flushing_caps | flushing)); 1447 ci->i_flushing_caps |= flushing; 1448 ci->i_dirty_caps = 0; 1449 dout(" inode %p now !dirty\n", inode); 1450 1451 spin_lock(&mdsc->cap_dirty_lock); 1452 list_del_init(&ci->i_dirty_item); 1453 1454 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1455 if (list_empty(&ci->i_flushing_item)) { 1456 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1457 mdsc->num_cap_flushing++; 1458 dout(" inode %p now flushing seq %lld\n", inode, 1459 ci->i_cap_flush_seq); 1460 } else { 1461 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1462 dout(" inode %p now flushing (more) seq %lld\n", inode, 1463 ci->i_cap_flush_seq); 1464 } 1465 spin_unlock(&mdsc->cap_dirty_lock); 1466 1467 return flushing; 1468 } 1469 1470 /* 1471 * try to invalidate mapping pages without blocking. 1472 */ 1473 static int try_nonblocking_invalidate(struct inode *inode) 1474 { 1475 struct ceph_inode_info *ci = ceph_inode(inode); 1476 u32 invalidating_gen = ci->i_rdcache_gen; 1477 1478 spin_unlock(&ci->i_ceph_lock); 1479 invalidate_mapping_pages(&inode->i_data, 0, -1); 1480 spin_lock(&ci->i_ceph_lock); 1481 1482 if (inode->i_data.nrpages == 0 && 1483 invalidating_gen == ci->i_rdcache_gen) { 1484 /* success. */ 1485 dout("try_nonblocking_invalidate %p success\n", inode); 1486 /* save any racing async invalidate some trouble */ 1487 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1488 return 0; 1489 } 1490 dout("try_nonblocking_invalidate %p failed\n", inode); 1491 return -1; 1492 } 1493 1494 /* 1495 * Swiss army knife function to examine currently used and wanted 1496 * versus held caps. Release, flush, ack revoked caps to mds as 1497 * appropriate. 1498 * 1499 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1500 * cap release further. 1501 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1502 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1503 * further delay. 1504 */ 1505 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1506 struct ceph_mds_session *session) 1507 { 1508 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1509 struct ceph_mds_client *mdsc = fsc->mdsc; 1510 struct inode *inode = &ci->vfs_inode; 1511 struct ceph_cap *cap; 1512 int file_wanted, used, cap_used; 1513 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1514 int issued, implemented, want, retain, revoking, flushing = 0; 1515 int mds = -1; /* keep track of how far we've gone through i_caps list 1516 to avoid an infinite loop on retry */ 1517 struct rb_node *p; 1518 int tried_invalidate = 0; 1519 int delayed = 0, sent = 0, force_requeue = 0, num; 1520 int queue_invalidate = 0; 1521 int is_delayed = flags & CHECK_CAPS_NODELAY; 1522 1523 /* if we are unmounting, flush any unused caps immediately. */ 1524 if (mdsc->stopping) 1525 is_delayed = 1; 1526 1527 spin_lock(&ci->i_ceph_lock); 1528 1529 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1530 flags |= CHECK_CAPS_FLUSH; 1531 1532 /* flush snaps first time around only */ 1533 if (!list_empty(&ci->i_cap_snaps)) 1534 __ceph_flush_snaps(ci, &session, 0); 1535 goto retry_locked; 1536 retry: 1537 spin_lock(&ci->i_ceph_lock); 1538 retry_locked: 1539 file_wanted = __ceph_caps_file_wanted(ci); 1540 used = __ceph_caps_used(ci); 1541 want = file_wanted | used; 1542 issued = __ceph_caps_issued(ci, &implemented); 1543 revoking = implemented & ~issued; 1544 1545 retain = want | CEPH_CAP_PIN; 1546 if (!mdsc->stopping && inode->i_nlink > 0) { 1547 if (want) { 1548 retain |= CEPH_CAP_ANY; /* be greedy */ 1549 } else { 1550 retain |= CEPH_CAP_ANY_SHARED; 1551 /* 1552 * keep RD only if we didn't have the file open RW, 1553 * because then the mds would revoke it anyway to 1554 * journal max_size=0. 1555 */ 1556 if (ci->i_max_size == 0) 1557 retain |= CEPH_CAP_ANY_RD; 1558 } 1559 } 1560 1561 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1562 " issued %s revoking %s retain %s %s%s%s\n", inode, 1563 ceph_cap_string(file_wanted), 1564 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1565 ceph_cap_string(ci->i_flushing_caps), 1566 ceph_cap_string(issued), ceph_cap_string(revoking), 1567 ceph_cap_string(retain), 1568 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1569 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1570 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1571 1572 /* 1573 * If we no longer need to hold onto old our caps, and we may 1574 * have cached pages, but don't want them, then try to invalidate. 1575 * If we fail, it's because pages are locked.... try again later. 1576 */ 1577 if ((!is_delayed || mdsc->stopping) && 1578 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1579 inode->i_data.nrpages && /* have cached pages */ 1580 (file_wanted == 0 || /* no open files */ 1581 (revoking & (CEPH_CAP_FILE_CACHE| 1582 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1583 !tried_invalidate) { 1584 dout("check_caps trying to invalidate on %p\n", inode); 1585 if (try_nonblocking_invalidate(inode) < 0) { 1586 if (revoking & (CEPH_CAP_FILE_CACHE| 1587 CEPH_CAP_FILE_LAZYIO)) { 1588 dout("check_caps queuing invalidate\n"); 1589 queue_invalidate = 1; 1590 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1591 } else { 1592 dout("check_caps failed to invalidate pages\n"); 1593 /* we failed to invalidate pages. check these 1594 caps again later. */ 1595 force_requeue = 1; 1596 __cap_set_timeouts(mdsc, ci); 1597 } 1598 } 1599 tried_invalidate = 1; 1600 goto retry_locked; 1601 } 1602 1603 num = 0; 1604 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1605 cap = rb_entry(p, struct ceph_cap, ci_node); 1606 num++; 1607 1608 /* avoid looping forever */ 1609 if (mds >= cap->mds || 1610 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1611 continue; 1612 1613 /* NOTE: no side-effects allowed, until we take s_mutex */ 1614 1615 cap_used = used; 1616 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1617 cap_used &= ~ci->i_auth_cap->issued; 1618 1619 revoking = cap->implemented & ~cap->issued; 1620 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1621 cap->mds, cap, ceph_cap_string(cap->issued), 1622 ceph_cap_string(cap_used), 1623 ceph_cap_string(cap->implemented), 1624 ceph_cap_string(revoking)); 1625 1626 if (cap == ci->i_auth_cap && 1627 (cap->issued & CEPH_CAP_FILE_WR)) { 1628 /* request larger max_size from MDS? */ 1629 if (ci->i_wanted_max_size > ci->i_max_size && 1630 ci->i_wanted_max_size > ci->i_requested_max_size) { 1631 dout("requesting new max_size\n"); 1632 goto ack; 1633 } 1634 1635 /* approaching file_max? */ 1636 if ((inode->i_size << 1) >= ci->i_max_size && 1637 (ci->i_reported_size << 1) < ci->i_max_size) { 1638 dout("i_size approaching max_size\n"); 1639 goto ack; 1640 } 1641 } 1642 /* flush anything dirty? */ 1643 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1644 ci->i_dirty_caps) { 1645 dout("flushing dirty caps\n"); 1646 goto ack; 1647 } 1648 1649 /* completed revocation? going down and there are no caps? */ 1650 if (revoking && (revoking & cap_used) == 0) { 1651 dout("completed revocation of %s\n", 1652 ceph_cap_string(cap->implemented & ~cap->issued)); 1653 goto ack; 1654 } 1655 1656 /* want more caps from mds? */ 1657 if (want & ~(cap->mds_wanted | cap->issued)) 1658 goto ack; 1659 1660 /* things we might delay */ 1661 if ((cap->issued & ~retain) == 0 && 1662 cap->mds_wanted == want) 1663 continue; /* nope, all good */ 1664 1665 if (is_delayed) 1666 goto ack; 1667 1668 /* delay? */ 1669 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1670 time_before(jiffies, ci->i_hold_caps_max)) { 1671 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1672 ceph_cap_string(cap->issued), 1673 ceph_cap_string(cap->issued & retain), 1674 ceph_cap_string(cap->mds_wanted), 1675 ceph_cap_string(want)); 1676 delayed++; 1677 continue; 1678 } 1679 1680 ack: 1681 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1682 dout(" skipping %p I_NOFLUSH set\n", inode); 1683 continue; 1684 } 1685 1686 if (session && session != cap->session) { 1687 dout("oops, wrong session %p mutex\n", session); 1688 mutex_unlock(&session->s_mutex); 1689 session = NULL; 1690 } 1691 if (!session) { 1692 session = cap->session; 1693 if (mutex_trylock(&session->s_mutex) == 0) { 1694 dout("inverting session/ino locks on %p\n", 1695 session); 1696 spin_unlock(&ci->i_ceph_lock); 1697 if (took_snap_rwsem) { 1698 up_read(&mdsc->snap_rwsem); 1699 took_snap_rwsem = 0; 1700 } 1701 mutex_lock(&session->s_mutex); 1702 goto retry; 1703 } 1704 } 1705 /* take snap_rwsem after session mutex */ 1706 if (!took_snap_rwsem) { 1707 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1708 dout("inverting snap/in locks on %p\n", 1709 inode); 1710 spin_unlock(&ci->i_ceph_lock); 1711 down_read(&mdsc->snap_rwsem); 1712 took_snap_rwsem = 1; 1713 goto retry; 1714 } 1715 took_snap_rwsem = 1; 1716 } 1717 1718 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1719 flushing = __mark_caps_flushing(inode, session); 1720 else 1721 flushing = 0; 1722 1723 mds = cap->mds; /* remember mds, so we don't repeat */ 1724 sent++; 1725 1726 /* __send_cap drops i_ceph_lock */ 1727 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1728 want, retain, flushing, NULL); 1729 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1730 } 1731 1732 /* 1733 * Reschedule delayed caps release if we delayed anything, 1734 * otherwise cancel. 1735 */ 1736 if (delayed && is_delayed) 1737 force_requeue = 1; /* __send_cap delayed release; requeue */ 1738 if (!delayed && !is_delayed) 1739 __cap_delay_cancel(mdsc, ci); 1740 else if (!is_delayed || force_requeue) 1741 __cap_delay_requeue(mdsc, ci); 1742 1743 spin_unlock(&ci->i_ceph_lock); 1744 1745 if (queue_invalidate) 1746 ceph_queue_invalidate(inode); 1747 1748 if (session) 1749 mutex_unlock(&session->s_mutex); 1750 if (took_snap_rwsem) 1751 up_read(&mdsc->snap_rwsem); 1752 } 1753 1754 /* 1755 * Try to flush dirty caps back to the auth mds. 1756 */ 1757 static int try_flush_caps(struct inode *inode, unsigned *flush_tid) 1758 { 1759 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1760 struct ceph_inode_info *ci = ceph_inode(inode); 1761 int flushing = 0; 1762 struct ceph_mds_session *session = NULL; 1763 1764 retry: 1765 spin_lock(&ci->i_ceph_lock); 1766 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1767 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1768 goto out; 1769 } 1770 if (ci->i_dirty_caps && ci->i_auth_cap) { 1771 struct ceph_cap *cap = ci->i_auth_cap; 1772 int used = __ceph_caps_used(ci); 1773 int want = __ceph_caps_wanted(ci); 1774 int delayed; 1775 1776 if (!session || session != cap->session) { 1777 spin_unlock(&ci->i_ceph_lock); 1778 if (session) 1779 mutex_unlock(&session->s_mutex); 1780 session = cap->session; 1781 mutex_lock(&session->s_mutex); 1782 goto retry; 1783 } 1784 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1785 goto out; 1786 1787 flushing = __mark_caps_flushing(inode, session); 1788 1789 /* __send_cap drops i_ceph_lock */ 1790 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1791 cap->issued | cap->implemented, flushing, 1792 flush_tid); 1793 if (!delayed) 1794 goto out_unlocked; 1795 1796 spin_lock(&ci->i_ceph_lock); 1797 __cap_delay_requeue(mdsc, ci); 1798 } 1799 out: 1800 spin_unlock(&ci->i_ceph_lock); 1801 out_unlocked: 1802 if (session) 1803 mutex_unlock(&session->s_mutex); 1804 return flushing; 1805 } 1806 1807 /* 1808 * Return true if we've flushed caps through the given flush_tid. 1809 */ 1810 static int caps_are_flushed(struct inode *inode, unsigned tid) 1811 { 1812 struct ceph_inode_info *ci = ceph_inode(inode); 1813 int i, ret = 1; 1814 1815 spin_lock(&ci->i_ceph_lock); 1816 for (i = 0; i < CEPH_CAP_BITS; i++) 1817 if ((ci->i_flushing_caps & (1 << i)) && 1818 ci->i_cap_flush_tid[i] <= tid) { 1819 /* still flushing this bit */ 1820 ret = 0; 1821 break; 1822 } 1823 spin_unlock(&ci->i_ceph_lock); 1824 return ret; 1825 } 1826 1827 /* 1828 * Wait on any unsafe replies for the given inode. First wait on the 1829 * newest request, and make that the upper bound. Then, if there are 1830 * more requests, keep waiting on the oldest as long as it is still older 1831 * than the original request. 1832 */ 1833 static void sync_write_wait(struct inode *inode) 1834 { 1835 struct ceph_inode_info *ci = ceph_inode(inode); 1836 struct list_head *head = &ci->i_unsafe_writes; 1837 struct ceph_osd_request *req; 1838 u64 last_tid; 1839 1840 spin_lock(&ci->i_unsafe_lock); 1841 if (list_empty(head)) 1842 goto out; 1843 1844 /* set upper bound as _last_ entry in chain */ 1845 req = list_entry(head->prev, struct ceph_osd_request, 1846 r_unsafe_item); 1847 last_tid = req->r_tid; 1848 1849 do { 1850 ceph_osdc_get_request(req); 1851 spin_unlock(&ci->i_unsafe_lock); 1852 dout("sync_write_wait on tid %llu (until %llu)\n", 1853 req->r_tid, last_tid); 1854 wait_for_completion(&req->r_safe_completion); 1855 spin_lock(&ci->i_unsafe_lock); 1856 ceph_osdc_put_request(req); 1857 1858 /* 1859 * from here on look at first entry in chain, since we 1860 * only want to wait for anything older than last_tid 1861 */ 1862 if (list_empty(head)) 1863 break; 1864 req = list_entry(head->next, struct ceph_osd_request, 1865 r_unsafe_item); 1866 } while (req->r_tid < last_tid); 1867 out: 1868 spin_unlock(&ci->i_unsafe_lock); 1869 } 1870 1871 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1872 { 1873 struct inode *inode = file->f_mapping->host; 1874 struct ceph_inode_info *ci = ceph_inode(inode); 1875 unsigned flush_tid; 1876 int ret; 1877 int dirty; 1878 1879 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1880 sync_write_wait(inode); 1881 1882 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1883 if (ret < 0) 1884 return ret; 1885 mutex_lock(&inode->i_mutex); 1886 1887 dirty = try_flush_caps(inode, &flush_tid); 1888 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1889 1890 /* 1891 * only wait on non-file metadata writeback (the mds 1892 * can recover size and mtime, so we don't need to 1893 * wait for that) 1894 */ 1895 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1896 dout("fsync waiting for flush_tid %u\n", flush_tid); 1897 ret = wait_event_interruptible(ci->i_cap_wq, 1898 caps_are_flushed(inode, flush_tid)); 1899 } 1900 1901 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1902 mutex_unlock(&inode->i_mutex); 1903 return ret; 1904 } 1905 1906 /* 1907 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1908 * queue inode for flush but don't do so immediately, because we can 1909 * get by with fewer MDS messages if we wait for data writeback to 1910 * complete first. 1911 */ 1912 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1913 { 1914 struct ceph_inode_info *ci = ceph_inode(inode); 1915 unsigned flush_tid; 1916 int err = 0; 1917 int dirty; 1918 int wait = wbc->sync_mode == WB_SYNC_ALL; 1919 1920 dout("write_inode %p wait=%d\n", inode, wait); 1921 if (wait) { 1922 dirty = try_flush_caps(inode, &flush_tid); 1923 if (dirty) 1924 err = wait_event_interruptible(ci->i_cap_wq, 1925 caps_are_flushed(inode, flush_tid)); 1926 } else { 1927 struct ceph_mds_client *mdsc = 1928 ceph_sb_to_client(inode->i_sb)->mdsc; 1929 1930 spin_lock(&ci->i_ceph_lock); 1931 if (__ceph_caps_dirty(ci)) 1932 __cap_delay_requeue_front(mdsc, ci); 1933 spin_unlock(&ci->i_ceph_lock); 1934 } 1935 return err; 1936 } 1937 1938 /* 1939 * After a recovering MDS goes active, we need to resend any caps 1940 * we were flushing. 1941 * 1942 * Caller holds session->s_mutex. 1943 */ 1944 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1945 struct ceph_mds_session *session) 1946 { 1947 struct ceph_cap_snap *capsnap; 1948 1949 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1950 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1951 flushing_item) { 1952 struct ceph_inode_info *ci = capsnap->ci; 1953 struct inode *inode = &ci->vfs_inode; 1954 struct ceph_cap *cap; 1955 1956 spin_lock(&ci->i_ceph_lock); 1957 cap = ci->i_auth_cap; 1958 if (cap && cap->session == session) { 1959 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1960 cap, capsnap); 1961 __ceph_flush_snaps(ci, &session, 1); 1962 } else { 1963 pr_err("%p auth cap %p not mds%d ???\n", inode, 1964 cap, session->s_mds); 1965 } 1966 spin_unlock(&ci->i_ceph_lock); 1967 } 1968 } 1969 1970 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1971 struct ceph_mds_session *session) 1972 { 1973 struct ceph_inode_info *ci; 1974 1975 kick_flushing_capsnaps(mdsc, session); 1976 1977 dout("kick_flushing_caps mds%d\n", session->s_mds); 1978 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1979 struct inode *inode = &ci->vfs_inode; 1980 struct ceph_cap *cap; 1981 int delayed = 0; 1982 1983 spin_lock(&ci->i_ceph_lock); 1984 cap = ci->i_auth_cap; 1985 if (cap && cap->session == session) { 1986 dout("kick_flushing_caps %p cap %p %s\n", inode, 1987 cap, ceph_cap_string(ci->i_flushing_caps)); 1988 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1989 __ceph_caps_used(ci), 1990 __ceph_caps_wanted(ci), 1991 cap->issued | cap->implemented, 1992 ci->i_flushing_caps, NULL); 1993 if (delayed) { 1994 spin_lock(&ci->i_ceph_lock); 1995 __cap_delay_requeue(mdsc, ci); 1996 spin_unlock(&ci->i_ceph_lock); 1997 } 1998 } else { 1999 pr_err("%p auth cap %p not mds%d ???\n", inode, 2000 cap, session->s_mds); 2001 spin_unlock(&ci->i_ceph_lock); 2002 } 2003 } 2004 } 2005 2006 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2007 struct ceph_mds_session *session, 2008 struct inode *inode) 2009 { 2010 struct ceph_inode_info *ci = ceph_inode(inode); 2011 struct ceph_cap *cap; 2012 int delayed = 0; 2013 2014 spin_lock(&ci->i_ceph_lock); 2015 cap = ci->i_auth_cap; 2016 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 2017 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 2018 2019 __ceph_flush_snaps(ci, &session, 1); 2020 2021 if (ci->i_flushing_caps) { 2022 spin_lock(&mdsc->cap_dirty_lock); 2023 list_move_tail(&ci->i_flushing_item, 2024 &cap->session->s_cap_flushing); 2025 spin_unlock(&mdsc->cap_dirty_lock); 2026 2027 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2028 __ceph_caps_used(ci), 2029 __ceph_caps_wanted(ci), 2030 cap->issued | cap->implemented, 2031 ci->i_flushing_caps, NULL); 2032 if (delayed) { 2033 spin_lock(&ci->i_ceph_lock); 2034 __cap_delay_requeue(mdsc, ci); 2035 spin_unlock(&ci->i_ceph_lock); 2036 } 2037 } else { 2038 spin_unlock(&ci->i_ceph_lock); 2039 } 2040 } 2041 2042 2043 /* 2044 * Take references to capabilities we hold, so that we don't release 2045 * them to the MDS prematurely. 2046 * 2047 * Protected by i_ceph_lock. 2048 */ 2049 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2050 { 2051 if (got & CEPH_CAP_PIN) 2052 ci->i_pin_ref++; 2053 if (got & CEPH_CAP_FILE_RD) 2054 ci->i_rd_ref++; 2055 if (got & CEPH_CAP_FILE_CACHE) 2056 ci->i_rdcache_ref++; 2057 if (got & CEPH_CAP_FILE_WR) 2058 ci->i_wr_ref++; 2059 if (got & CEPH_CAP_FILE_BUFFER) { 2060 if (ci->i_wb_ref == 0) 2061 ihold(&ci->vfs_inode); 2062 ci->i_wb_ref++; 2063 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2064 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2065 } 2066 } 2067 2068 /* 2069 * Try to grab cap references. Specify those refs we @want, and the 2070 * minimal set we @need. Also include the larger offset we are writing 2071 * to (when applicable), and check against max_size here as well. 2072 * Note that caller is responsible for ensuring max_size increases are 2073 * requested from the MDS. 2074 */ 2075 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2076 loff_t endoff, int *got, struct page **pinned_page, 2077 int *check_max, int *err) 2078 { 2079 struct inode *inode = &ci->vfs_inode; 2080 int ret = 0; 2081 int have, implemented, _got = 0; 2082 int file_wanted; 2083 2084 dout("get_cap_refs %p need %s want %s\n", inode, 2085 ceph_cap_string(need), ceph_cap_string(want)); 2086 again: 2087 spin_lock(&ci->i_ceph_lock); 2088 2089 /* make sure file is actually open */ 2090 file_wanted = __ceph_caps_file_wanted(ci); 2091 if ((file_wanted & need) == 0) { 2092 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2093 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2094 *err = -EBADF; 2095 ret = 1; 2096 goto out_unlock; 2097 } 2098 2099 /* finish pending truncate */ 2100 while (ci->i_truncate_pending) { 2101 spin_unlock(&ci->i_ceph_lock); 2102 __ceph_do_pending_vmtruncate(inode); 2103 spin_lock(&ci->i_ceph_lock); 2104 } 2105 2106 have = __ceph_caps_issued(ci, &implemented); 2107 2108 if (have & need & CEPH_CAP_FILE_WR) { 2109 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2110 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2111 inode, endoff, ci->i_max_size); 2112 if (endoff > ci->i_requested_max_size) { 2113 *check_max = 1; 2114 ret = 1; 2115 } 2116 goto out_unlock; 2117 } 2118 /* 2119 * If a sync write is in progress, we must wait, so that we 2120 * can get a final snapshot value for size+mtime. 2121 */ 2122 if (__ceph_have_pending_cap_snap(ci)) { 2123 dout("get_cap_refs %p cap_snap_pending\n", inode); 2124 goto out_unlock; 2125 } 2126 } 2127 2128 if ((have & need) == need) { 2129 /* 2130 * Look at (implemented & ~have & not) so that we keep waiting 2131 * on transition from wanted -> needed caps. This is needed 2132 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2133 * going before a prior buffered writeback happens. 2134 */ 2135 int not = want & ~(have & need); 2136 int revoking = implemented & ~have; 2137 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2138 inode, ceph_cap_string(have), ceph_cap_string(not), 2139 ceph_cap_string(revoking)); 2140 if ((revoking & not) == 0) { 2141 _got = need | (have & want); 2142 __take_cap_refs(ci, _got); 2143 ret = 1; 2144 } 2145 } else { 2146 dout("get_cap_refs %p have %s needed %s\n", inode, 2147 ceph_cap_string(have), ceph_cap_string(need)); 2148 } 2149 out_unlock: 2150 spin_unlock(&ci->i_ceph_lock); 2151 2152 if (ci->i_inline_version != CEPH_INLINE_NONE && 2153 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 2154 i_size_read(inode) > 0) { 2155 int ret1; 2156 struct page *page = find_get_page(inode->i_mapping, 0); 2157 if (page) { 2158 if (PageUptodate(page)) { 2159 *pinned_page = page; 2160 goto out; 2161 } 2162 page_cache_release(page); 2163 } 2164 /* 2165 * drop cap refs first because getattr while holding 2166 * caps refs can cause deadlock. 2167 */ 2168 ceph_put_cap_refs(ci, _got); 2169 _got = 0; 2170 2171 /* getattr request will bring inline data into page cache */ 2172 ret1 = __ceph_do_getattr(inode, NULL, 2173 CEPH_STAT_CAP_INLINE_DATA, true); 2174 if (ret1 >= 0) { 2175 ret = 0; 2176 goto again; 2177 } 2178 *err = ret1; 2179 ret = 1; 2180 } 2181 out: 2182 dout("get_cap_refs %p ret %d got %s\n", inode, 2183 ret, ceph_cap_string(_got)); 2184 *got = _got; 2185 return ret; 2186 } 2187 2188 /* 2189 * Check the offset we are writing up to against our current 2190 * max_size. If necessary, tell the MDS we want to write to 2191 * a larger offset. 2192 */ 2193 static void check_max_size(struct inode *inode, loff_t endoff) 2194 { 2195 struct ceph_inode_info *ci = ceph_inode(inode); 2196 int check = 0; 2197 2198 /* do we need to explicitly request a larger max_size? */ 2199 spin_lock(&ci->i_ceph_lock); 2200 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2201 dout("write %p at large endoff %llu, req max_size\n", 2202 inode, endoff); 2203 ci->i_wanted_max_size = endoff; 2204 } 2205 /* duplicate ceph_check_caps()'s logic */ 2206 if (ci->i_auth_cap && 2207 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2208 ci->i_wanted_max_size > ci->i_max_size && 2209 ci->i_wanted_max_size > ci->i_requested_max_size) 2210 check = 1; 2211 spin_unlock(&ci->i_ceph_lock); 2212 if (check) 2213 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2214 } 2215 2216 /* 2217 * Wait for caps, and take cap references. If we can't get a WR cap 2218 * due to a small max_size, make sure we check_max_size (and possibly 2219 * ask the mds) so we don't get hung up indefinitely. 2220 */ 2221 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 2222 loff_t endoff, int *got, struct page **pinned_page) 2223 { 2224 int check_max, ret, err; 2225 2226 retry: 2227 if (endoff > 0) 2228 check_max_size(&ci->vfs_inode, endoff); 2229 check_max = 0; 2230 err = 0; 2231 ret = wait_event_interruptible(ci->i_cap_wq, 2232 try_get_cap_refs(ci, need, want, endoff, 2233 got, pinned_page, 2234 &check_max, &err)); 2235 if (err) 2236 ret = err; 2237 if (check_max) 2238 goto retry; 2239 return ret; 2240 } 2241 2242 /* 2243 * Take cap refs. Caller must already know we hold at least one ref 2244 * on the caps in question or we don't know this is safe. 2245 */ 2246 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2247 { 2248 spin_lock(&ci->i_ceph_lock); 2249 __take_cap_refs(ci, caps); 2250 spin_unlock(&ci->i_ceph_lock); 2251 } 2252 2253 /* 2254 * Release cap refs. 2255 * 2256 * If we released the last ref on any given cap, call ceph_check_caps 2257 * to release (or schedule a release). 2258 * 2259 * If we are releasing a WR cap (from a sync write), finalize any affected 2260 * cap_snap, and wake up any waiters. 2261 */ 2262 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2263 { 2264 struct inode *inode = &ci->vfs_inode; 2265 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2266 struct ceph_cap_snap *capsnap; 2267 2268 spin_lock(&ci->i_ceph_lock); 2269 if (had & CEPH_CAP_PIN) 2270 --ci->i_pin_ref; 2271 if (had & CEPH_CAP_FILE_RD) 2272 if (--ci->i_rd_ref == 0) 2273 last++; 2274 if (had & CEPH_CAP_FILE_CACHE) 2275 if (--ci->i_rdcache_ref == 0) 2276 last++; 2277 if (had & CEPH_CAP_FILE_BUFFER) { 2278 if (--ci->i_wb_ref == 0) { 2279 last++; 2280 put++; 2281 } 2282 dout("put_cap_refs %p wb %d -> %d (?)\n", 2283 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2284 } 2285 if (had & CEPH_CAP_FILE_WR) 2286 if (--ci->i_wr_ref == 0) { 2287 last++; 2288 if (!list_empty(&ci->i_cap_snaps)) { 2289 capsnap = list_first_entry(&ci->i_cap_snaps, 2290 struct ceph_cap_snap, 2291 ci_item); 2292 if (capsnap->writing) { 2293 capsnap->writing = 0; 2294 flushsnaps = 2295 __ceph_finish_cap_snap(ci, 2296 capsnap); 2297 wake = 1; 2298 } 2299 } 2300 } 2301 spin_unlock(&ci->i_ceph_lock); 2302 2303 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2304 last ? " last" : "", put ? " put" : ""); 2305 2306 if (last && !flushsnaps) 2307 ceph_check_caps(ci, 0, NULL); 2308 else if (flushsnaps) 2309 ceph_flush_snaps(ci); 2310 if (wake) 2311 wake_up_all(&ci->i_cap_wq); 2312 if (put) 2313 iput(inode); 2314 } 2315 2316 /* 2317 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2318 * context. Adjust per-snap dirty page accounting as appropriate. 2319 * Once all dirty data for a cap_snap is flushed, flush snapped file 2320 * metadata back to the MDS. If we dropped the last ref, call 2321 * ceph_check_caps. 2322 */ 2323 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2324 struct ceph_snap_context *snapc) 2325 { 2326 struct inode *inode = &ci->vfs_inode; 2327 int last = 0; 2328 int complete_capsnap = 0; 2329 int drop_capsnap = 0; 2330 int found = 0; 2331 struct ceph_cap_snap *capsnap = NULL; 2332 2333 spin_lock(&ci->i_ceph_lock); 2334 ci->i_wrbuffer_ref -= nr; 2335 last = !ci->i_wrbuffer_ref; 2336 2337 if (ci->i_head_snapc == snapc) { 2338 ci->i_wrbuffer_ref_head -= nr; 2339 if (ci->i_wrbuffer_ref_head == 0 && 2340 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2341 BUG_ON(!ci->i_head_snapc); 2342 ceph_put_snap_context(ci->i_head_snapc); 2343 ci->i_head_snapc = NULL; 2344 } 2345 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2346 inode, 2347 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2348 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2349 last ? " LAST" : ""); 2350 } else { 2351 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2352 if (capsnap->context == snapc) { 2353 found = 1; 2354 break; 2355 } 2356 } 2357 BUG_ON(!found); 2358 capsnap->dirty_pages -= nr; 2359 if (capsnap->dirty_pages == 0) { 2360 complete_capsnap = 1; 2361 if (capsnap->dirty == 0) 2362 /* cap writeback completed before we created 2363 * the cap_snap; no FLUSHSNAP is needed */ 2364 drop_capsnap = 1; 2365 } 2366 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2367 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2368 inode, capsnap, capsnap->context->seq, 2369 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2370 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2371 last ? " (wrbuffer last)" : "", 2372 complete_capsnap ? " (complete capsnap)" : "", 2373 drop_capsnap ? " (drop capsnap)" : ""); 2374 if (drop_capsnap) { 2375 ceph_put_snap_context(capsnap->context); 2376 list_del(&capsnap->ci_item); 2377 list_del(&capsnap->flushing_item); 2378 ceph_put_cap_snap(capsnap); 2379 } 2380 } 2381 2382 spin_unlock(&ci->i_ceph_lock); 2383 2384 if (last) { 2385 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2386 iput(inode); 2387 } else if (complete_capsnap) { 2388 ceph_flush_snaps(ci); 2389 wake_up_all(&ci->i_cap_wq); 2390 } 2391 if (drop_capsnap) 2392 iput(inode); 2393 } 2394 2395 /* 2396 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2397 */ 2398 static void invalidate_aliases(struct inode *inode) 2399 { 2400 struct dentry *dn, *prev = NULL; 2401 2402 dout("invalidate_aliases inode %p\n", inode); 2403 d_prune_aliases(inode); 2404 /* 2405 * For non-directory inode, d_find_alias() only returns 2406 * hashed dentry. After calling d_invalidate(), the 2407 * dentry becomes unhashed. 2408 * 2409 * For directory inode, d_find_alias() can return 2410 * unhashed dentry. But directory inode should have 2411 * one alias at most. 2412 */ 2413 while ((dn = d_find_alias(inode))) { 2414 if (dn == prev) { 2415 dput(dn); 2416 break; 2417 } 2418 d_invalidate(dn); 2419 if (prev) 2420 dput(prev); 2421 prev = dn; 2422 } 2423 if (prev) 2424 dput(prev); 2425 } 2426 2427 /* 2428 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2429 * actually be a revocation if it specifies a smaller cap set.) 2430 * 2431 * caller holds s_mutex and i_ceph_lock, we drop both. 2432 */ 2433 static void handle_cap_grant(struct ceph_mds_client *mdsc, 2434 struct inode *inode, struct ceph_mds_caps *grant, 2435 void *snaptrace, int snaptrace_len, 2436 u64 inline_version, 2437 void *inline_data, int inline_len, 2438 struct ceph_buffer *xattr_buf, 2439 struct ceph_mds_session *session, 2440 struct ceph_cap *cap, int issued) 2441 __releases(ci->i_ceph_lock) 2442 { 2443 struct ceph_inode_info *ci = ceph_inode(inode); 2444 int mds = session->s_mds; 2445 int seq = le32_to_cpu(grant->seq); 2446 int newcaps = le32_to_cpu(grant->caps); 2447 int used, wanted, dirty; 2448 u64 size = le64_to_cpu(grant->size); 2449 u64 max_size = le64_to_cpu(grant->max_size); 2450 struct timespec mtime, atime, ctime; 2451 int check_caps = 0; 2452 bool wake = false; 2453 bool writeback = false; 2454 bool queue_trunc = false; 2455 bool queue_invalidate = false; 2456 bool queue_revalidate = false; 2457 bool deleted_inode = false; 2458 bool fill_inline = false; 2459 2460 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2461 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2462 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2463 inode->i_size); 2464 2465 2466 /* 2467 * auth mds of the inode changed. we received the cap export message, 2468 * but still haven't received the cap import message. handle_cap_export 2469 * updated the new auth MDS' cap. 2470 * 2471 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2472 * that was sent before the cap import message. So don't remove caps. 2473 */ 2474 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2475 WARN_ON(cap != ci->i_auth_cap); 2476 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2477 seq = cap->seq; 2478 newcaps |= cap->issued; 2479 } 2480 2481 /* 2482 * If CACHE is being revoked, and we have no dirty buffers, 2483 * try to invalidate (once). (If there are dirty buffers, we 2484 * will invalidate _after_ writeback.) 2485 */ 2486 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2487 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2488 !ci->i_wrbuffer_ref) { 2489 if (try_nonblocking_invalidate(inode)) { 2490 /* there were locked pages.. invalidate later 2491 in a separate thread. */ 2492 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2493 queue_invalidate = true; 2494 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2495 } 2496 } 2497 2498 ceph_fscache_invalidate(inode); 2499 } 2500 2501 /* side effects now are allowed */ 2502 cap->cap_gen = session->s_cap_gen; 2503 cap->seq = seq; 2504 2505 __check_cap_issue(ci, cap, newcaps); 2506 2507 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2508 (issued & CEPH_CAP_AUTH_EXCL) == 0) { 2509 inode->i_mode = le32_to_cpu(grant->mode); 2510 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2511 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2512 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2513 from_kuid(&init_user_ns, inode->i_uid), 2514 from_kgid(&init_user_ns, inode->i_gid)); 2515 } 2516 2517 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2518 (issued & CEPH_CAP_LINK_EXCL) == 0) { 2519 set_nlink(inode, le32_to_cpu(grant->nlink)); 2520 if (inode->i_nlink == 0 && 2521 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2522 deleted_inode = true; 2523 } 2524 2525 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2526 int len = le32_to_cpu(grant->xattr_len); 2527 u64 version = le64_to_cpu(grant->xattr_version); 2528 2529 if (version > ci->i_xattrs.version) { 2530 dout(" got new xattrs v%llu on %p len %d\n", 2531 version, inode, len); 2532 if (ci->i_xattrs.blob) 2533 ceph_buffer_put(ci->i_xattrs.blob); 2534 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2535 ci->i_xattrs.version = version; 2536 ceph_forget_all_cached_acls(inode); 2537 } 2538 } 2539 2540 /* Do we need to revalidate our fscache cookie. Don't bother on the 2541 * first cache cap as we already validate at cookie creation time. */ 2542 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2543 queue_revalidate = true; 2544 2545 if (newcaps & CEPH_CAP_ANY_RD) { 2546 /* ctime/mtime/atime? */ 2547 ceph_decode_timespec(&mtime, &grant->mtime); 2548 ceph_decode_timespec(&atime, &grant->atime); 2549 ceph_decode_timespec(&ctime, &grant->ctime); 2550 ceph_fill_file_time(inode, issued, 2551 le32_to_cpu(grant->time_warp_seq), 2552 &ctime, &mtime, &atime); 2553 } 2554 2555 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { 2556 /* file layout may have changed */ 2557 ci->i_layout = grant->layout; 2558 /* size/truncate_seq? */ 2559 queue_trunc = ceph_fill_file_size(inode, issued, 2560 le32_to_cpu(grant->truncate_seq), 2561 le64_to_cpu(grant->truncate_size), 2562 size); 2563 /* max size increase? */ 2564 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2565 dout("max_size %lld -> %llu\n", 2566 ci->i_max_size, max_size); 2567 ci->i_max_size = max_size; 2568 if (max_size >= ci->i_wanted_max_size) { 2569 ci->i_wanted_max_size = 0; /* reset */ 2570 ci->i_requested_max_size = 0; 2571 } 2572 wake = true; 2573 } 2574 } 2575 2576 /* check cap bits */ 2577 wanted = __ceph_caps_wanted(ci); 2578 used = __ceph_caps_used(ci); 2579 dirty = __ceph_caps_dirty(ci); 2580 dout(" my wanted = %s, used = %s, dirty %s\n", 2581 ceph_cap_string(wanted), 2582 ceph_cap_string(used), 2583 ceph_cap_string(dirty)); 2584 if (wanted != le32_to_cpu(grant->wanted)) { 2585 dout("mds wanted %s -> %s\n", 2586 ceph_cap_string(le32_to_cpu(grant->wanted)), 2587 ceph_cap_string(wanted)); 2588 /* imported cap may not have correct mds_wanted */ 2589 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2590 check_caps = 1; 2591 } 2592 2593 /* revocation, grant, or no-op? */ 2594 if (cap->issued & ~newcaps) { 2595 int revoking = cap->issued & ~newcaps; 2596 2597 dout("revocation: %s -> %s (revoking %s)\n", 2598 ceph_cap_string(cap->issued), 2599 ceph_cap_string(newcaps), 2600 ceph_cap_string(revoking)); 2601 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2602 writeback = true; /* initiate writeback; will delay ack */ 2603 else if (revoking == CEPH_CAP_FILE_CACHE && 2604 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2605 queue_invalidate) 2606 ; /* do nothing yet, invalidation will be queued */ 2607 else if (cap == ci->i_auth_cap) 2608 check_caps = 1; /* check auth cap only */ 2609 else 2610 check_caps = 2; /* check all caps */ 2611 cap->issued = newcaps; 2612 cap->implemented |= newcaps; 2613 } else if (cap->issued == newcaps) { 2614 dout("caps unchanged: %s -> %s\n", 2615 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2616 } else { 2617 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2618 ceph_cap_string(newcaps)); 2619 /* non-auth MDS is revoking the newly grant caps ? */ 2620 if (cap == ci->i_auth_cap && 2621 __ceph_caps_revoking_other(ci, cap, newcaps)) 2622 check_caps = 2; 2623 2624 cap->issued = newcaps; 2625 cap->implemented |= newcaps; /* add bits only, to 2626 * avoid stepping on a 2627 * pending revocation */ 2628 wake = true; 2629 } 2630 BUG_ON(cap->issued & ~cap->implemented); 2631 2632 if (inline_version > 0 && inline_version >= ci->i_inline_version) { 2633 ci->i_inline_version = inline_version; 2634 if (ci->i_inline_version != CEPH_INLINE_NONE && 2635 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) 2636 fill_inline = true; 2637 } 2638 2639 spin_unlock(&ci->i_ceph_lock); 2640 2641 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { 2642 down_write(&mdsc->snap_rwsem); 2643 ceph_update_snap_trace(mdsc, snaptrace, 2644 snaptrace + snaptrace_len, false); 2645 downgrade_write(&mdsc->snap_rwsem); 2646 kick_flushing_inode_caps(mdsc, session, inode); 2647 up_read(&mdsc->snap_rwsem); 2648 if (newcaps & ~issued) 2649 wake = true; 2650 } 2651 2652 if (fill_inline) 2653 ceph_fill_inline_data(inode, NULL, inline_data, inline_len); 2654 2655 if (queue_trunc) { 2656 ceph_queue_vmtruncate(inode); 2657 ceph_queue_revalidate(inode); 2658 } else if (queue_revalidate) 2659 ceph_queue_revalidate(inode); 2660 2661 if (writeback) 2662 /* 2663 * queue inode for writeback: we can't actually call 2664 * filemap_write_and_wait, etc. from message handler 2665 * context. 2666 */ 2667 ceph_queue_writeback(inode); 2668 if (queue_invalidate) 2669 ceph_queue_invalidate(inode); 2670 if (deleted_inode) 2671 invalidate_aliases(inode); 2672 if (wake) 2673 wake_up_all(&ci->i_cap_wq); 2674 2675 if (check_caps == 1) 2676 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2677 session); 2678 else if (check_caps == 2) 2679 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2680 else 2681 mutex_unlock(&session->s_mutex); 2682 } 2683 2684 /* 2685 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2686 * MDS has been safely committed. 2687 */ 2688 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2689 struct ceph_mds_caps *m, 2690 struct ceph_mds_session *session, 2691 struct ceph_cap *cap) 2692 __releases(ci->i_ceph_lock) 2693 { 2694 struct ceph_inode_info *ci = ceph_inode(inode); 2695 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2696 unsigned seq = le32_to_cpu(m->seq); 2697 int dirty = le32_to_cpu(m->dirty); 2698 int cleaned = 0; 2699 int drop = 0; 2700 int i; 2701 2702 for (i = 0; i < CEPH_CAP_BITS; i++) 2703 if ((dirty & (1 << i)) && 2704 (u16)flush_tid == ci->i_cap_flush_tid[i]) 2705 cleaned |= 1 << i; 2706 2707 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2708 " flushing %s -> %s\n", 2709 inode, session->s_mds, seq, ceph_cap_string(dirty), 2710 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2711 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2712 2713 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2714 goto out; 2715 2716 ci->i_flushing_caps &= ~cleaned; 2717 2718 spin_lock(&mdsc->cap_dirty_lock); 2719 if (ci->i_flushing_caps == 0) { 2720 list_del_init(&ci->i_flushing_item); 2721 if (!list_empty(&session->s_cap_flushing)) 2722 dout(" mds%d still flushing cap on %p\n", 2723 session->s_mds, 2724 &list_entry(session->s_cap_flushing.next, 2725 struct ceph_inode_info, 2726 i_flushing_item)->vfs_inode); 2727 mdsc->num_cap_flushing--; 2728 wake_up_all(&mdsc->cap_flushing_wq); 2729 dout(" inode %p now !flushing\n", inode); 2730 2731 if (ci->i_dirty_caps == 0) { 2732 dout(" inode %p now clean\n", inode); 2733 BUG_ON(!list_empty(&ci->i_dirty_item)); 2734 drop = 1; 2735 if (ci->i_wrbuffer_ref_head == 0) { 2736 BUG_ON(!ci->i_head_snapc); 2737 ceph_put_snap_context(ci->i_head_snapc); 2738 ci->i_head_snapc = NULL; 2739 } 2740 } else { 2741 BUG_ON(list_empty(&ci->i_dirty_item)); 2742 } 2743 } 2744 spin_unlock(&mdsc->cap_dirty_lock); 2745 wake_up_all(&ci->i_cap_wq); 2746 2747 out: 2748 spin_unlock(&ci->i_ceph_lock); 2749 if (drop) 2750 iput(inode); 2751 } 2752 2753 /* 2754 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2755 * throw away our cap_snap. 2756 * 2757 * Caller hold s_mutex. 2758 */ 2759 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2760 struct ceph_mds_caps *m, 2761 struct ceph_mds_session *session) 2762 { 2763 struct ceph_inode_info *ci = ceph_inode(inode); 2764 u64 follows = le64_to_cpu(m->snap_follows); 2765 struct ceph_cap_snap *capsnap; 2766 int drop = 0; 2767 2768 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2769 inode, ci, session->s_mds, follows); 2770 2771 spin_lock(&ci->i_ceph_lock); 2772 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2773 if (capsnap->follows == follows) { 2774 if (capsnap->flush_tid != flush_tid) { 2775 dout(" cap_snap %p follows %lld tid %lld !=" 2776 " %lld\n", capsnap, follows, 2777 flush_tid, capsnap->flush_tid); 2778 break; 2779 } 2780 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2781 dout(" removing %p cap_snap %p follows %lld\n", 2782 inode, capsnap, follows); 2783 ceph_put_snap_context(capsnap->context); 2784 list_del(&capsnap->ci_item); 2785 list_del(&capsnap->flushing_item); 2786 ceph_put_cap_snap(capsnap); 2787 drop = 1; 2788 break; 2789 } else { 2790 dout(" skipping cap_snap %p follows %lld\n", 2791 capsnap, capsnap->follows); 2792 } 2793 } 2794 spin_unlock(&ci->i_ceph_lock); 2795 if (drop) 2796 iput(inode); 2797 } 2798 2799 /* 2800 * Handle TRUNC from MDS, indicating file truncation. 2801 * 2802 * caller hold s_mutex. 2803 */ 2804 static void handle_cap_trunc(struct inode *inode, 2805 struct ceph_mds_caps *trunc, 2806 struct ceph_mds_session *session) 2807 __releases(ci->i_ceph_lock) 2808 { 2809 struct ceph_inode_info *ci = ceph_inode(inode); 2810 int mds = session->s_mds; 2811 int seq = le32_to_cpu(trunc->seq); 2812 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2813 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2814 u64 size = le64_to_cpu(trunc->size); 2815 int implemented = 0; 2816 int dirty = __ceph_caps_dirty(ci); 2817 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2818 int queue_trunc = 0; 2819 2820 issued |= implemented | dirty; 2821 2822 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2823 inode, mds, seq, truncate_size, truncate_seq); 2824 queue_trunc = ceph_fill_file_size(inode, issued, 2825 truncate_seq, truncate_size, size); 2826 spin_unlock(&ci->i_ceph_lock); 2827 2828 if (queue_trunc) { 2829 ceph_queue_vmtruncate(inode); 2830 ceph_fscache_invalidate(inode); 2831 } 2832 } 2833 2834 /* 2835 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2836 * different one. If we are the most recent migration we've seen (as 2837 * indicated by mseq), make note of the migrating cap bits for the 2838 * duration (until we see the corresponding IMPORT). 2839 * 2840 * caller holds s_mutex 2841 */ 2842 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2843 struct ceph_mds_cap_peer *ph, 2844 struct ceph_mds_session *session) 2845 { 2846 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2847 struct ceph_mds_session *tsession = NULL; 2848 struct ceph_cap *cap, *tcap, *new_cap = NULL; 2849 struct ceph_inode_info *ci = ceph_inode(inode); 2850 u64 t_cap_id; 2851 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2852 unsigned t_seq, t_mseq; 2853 int target, issued; 2854 int mds = session->s_mds; 2855 2856 if (ph) { 2857 t_cap_id = le64_to_cpu(ph->cap_id); 2858 t_seq = le32_to_cpu(ph->seq); 2859 t_mseq = le32_to_cpu(ph->mseq); 2860 target = le32_to_cpu(ph->mds); 2861 } else { 2862 t_cap_id = t_seq = t_mseq = 0; 2863 target = -1; 2864 } 2865 2866 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 2867 inode, ci, mds, mseq, target); 2868 retry: 2869 spin_lock(&ci->i_ceph_lock); 2870 cap = __get_cap_for_mds(ci, mds); 2871 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) 2872 goto out_unlock; 2873 2874 if (target < 0) { 2875 __ceph_remove_cap(cap, false); 2876 goto out_unlock; 2877 } 2878 2879 /* 2880 * now we know we haven't received the cap import message yet 2881 * because the exported cap still exist. 2882 */ 2883 2884 issued = cap->issued; 2885 WARN_ON(issued != cap->implemented); 2886 2887 tcap = __get_cap_for_mds(ci, target); 2888 if (tcap) { 2889 /* already have caps from the target */ 2890 if (tcap->cap_id != t_cap_id || 2891 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 2892 dout(" updating import cap %p mds%d\n", tcap, target); 2893 tcap->cap_id = t_cap_id; 2894 tcap->seq = t_seq - 1; 2895 tcap->issue_seq = t_seq - 1; 2896 tcap->mseq = t_mseq; 2897 tcap->issued |= issued; 2898 tcap->implemented |= issued; 2899 if (cap == ci->i_auth_cap) 2900 ci->i_auth_cap = tcap; 2901 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 2902 spin_lock(&mdsc->cap_dirty_lock); 2903 list_move_tail(&ci->i_flushing_item, 2904 &tcap->session->s_cap_flushing); 2905 spin_unlock(&mdsc->cap_dirty_lock); 2906 } 2907 } 2908 __ceph_remove_cap(cap, false); 2909 goto out_unlock; 2910 } else if (tsession) { 2911 /* add placeholder for the export tagert */ 2912 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 2913 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 2914 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); 2915 2916 __ceph_remove_cap(cap, false); 2917 goto out_unlock; 2918 } 2919 2920 spin_unlock(&ci->i_ceph_lock); 2921 mutex_unlock(&session->s_mutex); 2922 2923 /* open target session */ 2924 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 2925 if (!IS_ERR(tsession)) { 2926 if (mds > target) { 2927 mutex_lock(&session->s_mutex); 2928 mutex_lock_nested(&tsession->s_mutex, 2929 SINGLE_DEPTH_NESTING); 2930 } else { 2931 mutex_lock(&tsession->s_mutex); 2932 mutex_lock_nested(&session->s_mutex, 2933 SINGLE_DEPTH_NESTING); 2934 } 2935 ceph_add_cap_releases(mdsc, tsession); 2936 new_cap = ceph_get_cap(mdsc, NULL); 2937 } else { 2938 WARN_ON(1); 2939 tsession = NULL; 2940 target = -1; 2941 } 2942 goto retry; 2943 2944 out_unlock: 2945 spin_unlock(&ci->i_ceph_lock); 2946 mutex_unlock(&session->s_mutex); 2947 if (tsession) { 2948 mutex_unlock(&tsession->s_mutex); 2949 ceph_put_mds_session(tsession); 2950 } 2951 if (new_cap) 2952 ceph_put_cap(mdsc, new_cap); 2953 } 2954 2955 /* 2956 * Handle cap IMPORT. 2957 * 2958 * caller holds s_mutex. acquires i_ceph_lock 2959 */ 2960 static void handle_cap_import(struct ceph_mds_client *mdsc, 2961 struct inode *inode, struct ceph_mds_caps *im, 2962 struct ceph_mds_cap_peer *ph, 2963 struct ceph_mds_session *session, 2964 struct ceph_cap **target_cap, int *old_issued) 2965 __acquires(ci->i_ceph_lock) 2966 { 2967 struct ceph_inode_info *ci = ceph_inode(inode); 2968 struct ceph_cap *cap, *ocap, *new_cap = NULL; 2969 int mds = session->s_mds; 2970 int issued; 2971 unsigned caps = le32_to_cpu(im->caps); 2972 unsigned wanted = le32_to_cpu(im->wanted); 2973 unsigned seq = le32_to_cpu(im->seq); 2974 unsigned mseq = le32_to_cpu(im->migrate_seq); 2975 u64 realmino = le64_to_cpu(im->realm); 2976 u64 cap_id = le64_to_cpu(im->cap_id); 2977 u64 p_cap_id; 2978 int peer; 2979 2980 if (ph) { 2981 p_cap_id = le64_to_cpu(ph->cap_id); 2982 peer = le32_to_cpu(ph->mds); 2983 } else { 2984 p_cap_id = 0; 2985 peer = -1; 2986 } 2987 2988 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 2989 inode, ci, mds, mseq, peer); 2990 2991 retry: 2992 spin_lock(&ci->i_ceph_lock); 2993 cap = __get_cap_for_mds(ci, mds); 2994 if (!cap) { 2995 if (!new_cap) { 2996 spin_unlock(&ci->i_ceph_lock); 2997 new_cap = ceph_get_cap(mdsc, NULL); 2998 goto retry; 2999 } 3000 cap = new_cap; 3001 } else { 3002 if (new_cap) { 3003 ceph_put_cap(mdsc, new_cap); 3004 new_cap = NULL; 3005 } 3006 } 3007 3008 __ceph_caps_issued(ci, &issued); 3009 issued |= __ceph_caps_dirty(ci); 3010 3011 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq, 3012 realmino, CEPH_CAP_FLAG_AUTH, &new_cap); 3013 3014 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 3015 if (ocap && ocap->cap_id == p_cap_id) { 3016 dout(" remove export cap %p mds%d flags %d\n", 3017 ocap, peer, ph->flags); 3018 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 3019 (ocap->seq != le32_to_cpu(ph->seq) || 3020 ocap->mseq != le32_to_cpu(ph->mseq))) { 3021 pr_err("handle_cap_import: mismatched seq/mseq: " 3022 "ino (%llx.%llx) mds%d seq %d mseq %d " 3023 "importer mds%d has peer seq %d mseq %d\n", 3024 ceph_vinop(inode), peer, ocap->seq, 3025 ocap->mseq, mds, le32_to_cpu(ph->seq), 3026 le32_to_cpu(ph->mseq)); 3027 } 3028 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 3029 } 3030 3031 /* make sure we re-request max_size, if necessary */ 3032 ci->i_wanted_max_size = 0; 3033 ci->i_requested_max_size = 0; 3034 3035 *old_issued = issued; 3036 *target_cap = cap; 3037 } 3038 3039 /* 3040 * Handle a caps message from the MDS. 3041 * 3042 * Identify the appropriate session, inode, and call the right handler 3043 * based on the cap op. 3044 */ 3045 void ceph_handle_caps(struct ceph_mds_session *session, 3046 struct ceph_msg *msg) 3047 { 3048 struct ceph_mds_client *mdsc = session->s_mdsc; 3049 struct super_block *sb = mdsc->fsc->sb; 3050 struct inode *inode; 3051 struct ceph_inode_info *ci; 3052 struct ceph_cap *cap; 3053 struct ceph_mds_caps *h; 3054 struct ceph_mds_cap_peer *peer = NULL; 3055 int mds = session->s_mds; 3056 int op, issued; 3057 u32 seq, mseq; 3058 struct ceph_vino vino; 3059 u64 cap_id; 3060 u64 size, max_size; 3061 u64 tid; 3062 u64 inline_version = 0; 3063 void *inline_data = NULL; 3064 u32 inline_len = 0; 3065 void *snaptrace; 3066 size_t snaptrace_len; 3067 void *p, *end; 3068 3069 dout("handle_caps from mds%d\n", mds); 3070 3071 /* decode */ 3072 end = msg->front.iov_base + msg->front.iov_len; 3073 tid = le64_to_cpu(msg->hdr.tid); 3074 if (msg->front.iov_len < sizeof(*h)) 3075 goto bad; 3076 h = msg->front.iov_base; 3077 op = le32_to_cpu(h->op); 3078 vino.ino = le64_to_cpu(h->ino); 3079 vino.snap = CEPH_NOSNAP; 3080 cap_id = le64_to_cpu(h->cap_id); 3081 seq = le32_to_cpu(h->seq); 3082 mseq = le32_to_cpu(h->migrate_seq); 3083 size = le64_to_cpu(h->size); 3084 max_size = le64_to_cpu(h->max_size); 3085 3086 snaptrace = h + 1; 3087 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3088 p = snaptrace + snaptrace_len; 3089 3090 if (le16_to_cpu(msg->hdr.version) >= 2) { 3091 u32 flock_len; 3092 ceph_decode_32_safe(&p, end, flock_len, bad); 3093 if (p + flock_len > end) 3094 goto bad; 3095 p += flock_len; 3096 } 3097 3098 if (le16_to_cpu(msg->hdr.version) >= 3) { 3099 if (op == CEPH_CAP_OP_IMPORT) { 3100 if (p + sizeof(*peer) > end) 3101 goto bad; 3102 peer = p; 3103 p += sizeof(*peer); 3104 } else if (op == CEPH_CAP_OP_EXPORT) { 3105 /* recorded in unused fields */ 3106 peer = (void *)&h->size; 3107 } 3108 } 3109 3110 if (le16_to_cpu(msg->hdr.version) >= 4) { 3111 ceph_decode_64_safe(&p, end, inline_version, bad); 3112 ceph_decode_32_safe(&p, end, inline_len, bad); 3113 if (p + inline_len > end) 3114 goto bad; 3115 inline_data = p; 3116 p += inline_len; 3117 } 3118 3119 /* lookup ino */ 3120 inode = ceph_find_inode(sb, vino); 3121 ci = ceph_inode(inode); 3122 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3123 vino.snap, inode); 3124 3125 mutex_lock(&session->s_mutex); 3126 session->s_seq++; 3127 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3128 (unsigned)seq); 3129 3130 if (op == CEPH_CAP_OP_IMPORT) 3131 ceph_add_cap_releases(mdsc, session); 3132 3133 if (!inode) { 3134 dout(" i don't have ino %llx\n", vino.ino); 3135 3136 if (op == CEPH_CAP_OP_IMPORT) { 3137 spin_lock(&session->s_cap_lock); 3138 __queue_cap_release(session, vino.ino, cap_id, 3139 mseq, seq); 3140 spin_unlock(&session->s_cap_lock); 3141 } 3142 goto flush_cap_releases; 3143 } 3144 3145 /* these will work even if we don't have a cap yet */ 3146 switch (op) { 3147 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3148 handle_cap_flushsnap_ack(inode, tid, h, session); 3149 goto done; 3150 3151 case CEPH_CAP_OP_EXPORT: 3152 handle_cap_export(inode, h, peer, session); 3153 goto done_unlocked; 3154 3155 case CEPH_CAP_OP_IMPORT: 3156 handle_cap_import(mdsc, inode, h, peer, session, 3157 &cap, &issued); 3158 handle_cap_grant(mdsc, inode, h, snaptrace, snaptrace_len, 3159 inline_version, inline_data, inline_len, 3160 msg->middle, session, cap, issued); 3161 goto done_unlocked; 3162 } 3163 3164 /* the rest require a cap */ 3165 spin_lock(&ci->i_ceph_lock); 3166 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3167 if (!cap) { 3168 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3169 inode, ceph_ino(inode), ceph_snap(inode), mds); 3170 spin_unlock(&ci->i_ceph_lock); 3171 goto flush_cap_releases; 3172 } 3173 3174 /* note that each of these drops i_ceph_lock for us */ 3175 switch (op) { 3176 case CEPH_CAP_OP_REVOKE: 3177 case CEPH_CAP_OP_GRANT: 3178 __ceph_caps_issued(ci, &issued); 3179 issued |= __ceph_caps_dirty(ci); 3180 handle_cap_grant(mdsc, inode, h, NULL, 0, 3181 inline_version, inline_data, inline_len, 3182 msg->middle, session, cap, issued); 3183 goto done_unlocked; 3184 3185 case CEPH_CAP_OP_FLUSH_ACK: 3186 handle_cap_flush_ack(inode, tid, h, session, cap); 3187 break; 3188 3189 case CEPH_CAP_OP_TRUNC: 3190 handle_cap_trunc(inode, h, session); 3191 break; 3192 3193 default: 3194 spin_unlock(&ci->i_ceph_lock); 3195 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3196 ceph_cap_op_name(op)); 3197 } 3198 3199 goto done; 3200 3201 flush_cap_releases: 3202 /* 3203 * send any full release message to try to move things 3204 * along for the mds (who clearly thinks we still have this 3205 * cap). 3206 */ 3207 ceph_add_cap_releases(mdsc, session); 3208 ceph_send_cap_releases(mdsc, session); 3209 3210 done: 3211 mutex_unlock(&session->s_mutex); 3212 done_unlocked: 3213 iput(inode); 3214 return; 3215 3216 bad: 3217 pr_err("ceph_handle_caps: corrupt message\n"); 3218 ceph_msg_dump(msg); 3219 return; 3220 } 3221 3222 /* 3223 * Delayed work handler to process end of delayed cap release LRU list. 3224 */ 3225 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3226 { 3227 struct ceph_inode_info *ci; 3228 int flags = CHECK_CAPS_NODELAY; 3229 3230 dout("check_delayed_caps\n"); 3231 while (1) { 3232 spin_lock(&mdsc->cap_delay_lock); 3233 if (list_empty(&mdsc->cap_delay_list)) 3234 break; 3235 ci = list_first_entry(&mdsc->cap_delay_list, 3236 struct ceph_inode_info, 3237 i_cap_delay_list); 3238 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3239 time_before(jiffies, ci->i_hold_caps_max)) 3240 break; 3241 list_del_init(&ci->i_cap_delay_list); 3242 spin_unlock(&mdsc->cap_delay_lock); 3243 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3244 ceph_check_caps(ci, flags, NULL); 3245 } 3246 spin_unlock(&mdsc->cap_delay_lock); 3247 } 3248 3249 /* 3250 * Flush all dirty caps to the mds 3251 */ 3252 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3253 { 3254 struct ceph_inode_info *ci; 3255 struct inode *inode; 3256 3257 dout("flush_dirty_caps\n"); 3258 spin_lock(&mdsc->cap_dirty_lock); 3259 while (!list_empty(&mdsc->cap_dirty)) { 3260 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3261 i_dirty_item); 3262 inode = &ci->vfs_inode; 3263 ihold(inode); 3264 dout("flush_dirty_caps %p\n", inode); 3265 spin_unlock(&mdsc->cap_dirty_lock); 3266 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3267 iput(inode); 3268 spin_lock(&mdsc->cap_dirty_lock); 3269 } 3270 spin_unlock(&mdsc->cap_dirty_lock); 3271 dout("flush_dirty_caps done\n"); 3272 } 3273 3274 /* 3275 * Drop open file reference. If we were the last open file, 3276 * we may need to release capabilities to the MDS (or schedule 3277 * their delayed release). 3278 */ 3279 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3280 { 3281 struct inode *inode = &ci->vfs_inode; 3282 int last = 0; 3283 3284 spin_lock(&ci->i_ceph_lock); 3285 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3286 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3287 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3288 if (--ci->i_nr_by_mode[fmode] == 0) 3289 last++; 3290 spin_unlock(&ci->i_ceph_lock); 3291 3292 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3293 ceph_check_caps(ci, 0, NULL); 3294 } 3295 3296 /* 3297 * Helpers for embedding cap and dentry lease releases into mds 3298 * requests. 3299 * 3300 * @force is used by dentry_release (below) to force inclusion of a 3301 * record for the directory inode, even when there aren't any caps to 3302 * drop. 3303 */ 3304 int ceph_encode_inode_release(void **p, struct inode *inode, 3305 int mds, int drop, int unless, int force) 3306 { 3307 struct ceph_inode_info *ci = ceph_inode(inode); 3308 struct ceph_cap *cap; 3309 struct ceph_mds_request_release *rel = *p; 3310 int used, dirty; 3311 int ret = 0; 3312 3313 spin_lock(&ci->i_ceph_lock); 3314 used = __ceph_caps_used(ci); 3315 dirty = __ceph_caps_dirty(ci); 3316 3317 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3318 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3319 ceph_cap_string(unless)); 3320 3321 /* only drop unused, clean caps */ 3322 drop &= ~(used | dirty); 3323 3324 cap = __get_cap_for_mds(ci, mds); 3325 if (cap && __cap_is_valid(cap)) { 3326 if (force || 3327 ((cap->issued & drop) && 3328 (cap->issued & unless) == 0)) { 3329 if ((cap->issued & drop) && 3330 (cap->issued & unless) == 0) { 3331 int wanted = __ceph_caps_wanted(ci); 3332 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3333 wanted |= cap->mds_wanted; 3334 dout("encode_inode_release %p cap %p " 3335 "%s -> %s, wanted %s -> %s\n", inode, cap, 3336 ceph_cap_string(cap->issued), 3337 ceph_cap_string(cap->issued & ~drop), 3338 ceph_cap_string(cap->mds_wanted), 3339 ceph_cap_string(wanted)); 3340 3341 cap->issued &= ~drop; 3342 cap->implemented &= ~drop; 3343 cap->mds_wanted = wanted; 3344 } else { 3345 dout("encode_inode_release %p cap %p %s" 3346 " (force)\n", inode, cap, 3347 ceph_cap_string(cap->issued)); 3348 } 3349 3350 rel->ino = cpu_to_le64(ceph_ino(inode)); 3351 rel->cap_id = cpu_to_le64(cap->cap_id); 3352 rel->seq = cpu_to_le32(cap->seq); 3353 rel->issue_seq = cpu_to_le32(cap->issue_seq); 3354 rel->mseq = cpu_to_le32(cap->mseq); 3355 rel->caps = cpu_to_le32(cap->implemented); 3356 rel->wanted = cpu_to_le32(cap->mds_wanted); 3357 rel->dname_len = 0; 3358 rel->dname_seq = 0; 3359 *p += sizeof(*rel); 3360 ret = 1; 3361 } else { 3362 dout("encode_inode_release %p cap %p %s\n", 3363 inode, cap, ceph_cap_string(cap->issued)); 3364 } 3365 } 3366 spin_unlock(&ci->i_ceph_lock); 3367 return ret; 3368 } 3369 3370 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3371 int mds, int drop, int unless) 3372 { 3373 struct inode *dir = dentry->d_parent->d_inode; 3374 struct ceph_mds_request_release *rel = *p; 3375 struct ceph_dentry_info *di = ceph_dentry(dentry); 3376 int force = 0; 3377 int ret; 3378 3379 /* 3380 * force an record for the directory caps if we have a dentry lease. 3381 * this is racy (can't take i_ceph_lock and d_lock together), but it 3382 * doesn't have to be perfect; the mds will revoke anything we don't 3383 * release. 3384 */ 3385 spin_lock(&dentry->d_lock); 3386 if (di->lease_session && di->lease_session->s_mds == mds) 3387 force = 1; 3388 spin_unlock(&dentry->d_lock); 3389 3390 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3391 3392 spin_lock(&dentry->d_lock); 3393 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3394 dout("encode_dentry_release %p mds%d seq %d\n", 3395 dentry, mds, (int)di->lease_seq); 3396 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3397 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3398 *p += dentry->d_name.len; 3399 rel->dname_seq = cpu_to_le32(di->lease_seq); 3400 __ceph_mdsc_drop_dentry_lease(dentry); 3401 } 3402 spin_unlock(&dentry->d_lock); 3403 return ret; 3404 } 3405