1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/vmalloc.h> 7 #include <linux/wait.h> 8 9 #include "super.h" 10 #include "decode.h" 11 #include "messenger.h" 12 13 /* 14 * Capability management 15 * 16 * The Ceph metadata servers control client access to inode metadata 17 * and file data by issuing capabilities, granting clients permission 18 * to read and/or write both inode field and file data to OSDs 19 * (storage nodes). Each capability consists of a set of bits 20 * indicating which operations are allowed. 21 * 22 * If the client holds a *_SHARED cap, the client has a coherent value 23 * that can be safely read from the cached inode. 24 * 25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 26 * client is allowed to change inode attributes (e.g., file size, 27 * mtime), note its dirty state in the ceph_cap, and asynchronously 28 * flush that metadata change to the MDS. 29 * 30 * In the event of a conflicting operation (perhaps by another 31 * client), the MDS will revoke the conflicting client capabilities. 32 * 33 * In order for a client to cache an inode, it must hold a capability 34 * with at least one MDS server. When inodes are released, release 35 * notifications are batched and periodically sent en masse to the MDS 36 * cluster to release server state. 37 */ 38 39 40 /* 41 * Generate readable cap strings for debugging output. 42 */ 43 #define MAX_CAP_STR 20 44 static char cap_str[MAX_CAP_STR][40]; 45 static DEFINE_SPINLOCK(cap_str_lock); 46 static int last_cap_str; 47 48 static char *gcap_string(char *s, int c) 49 { 50 if (c & CEPH_CAP_GSHARED) 51 *s++ = 's'; 52 if (c & CEPH_CAP_GEXCL) 53 *s++ = 'x'; 54 if (c & CEPH_CAP_GCACHE) 55 *s++ = 'c'; 56 if (c & CEPH_CAP_GRD) 57 *s++ = 'r'; 58 if (c & CEPH_CAP_GWR) 59 *s++ = 'w'; 60 if (c & CEPH_CAP_GBUFFER) 61 *s++ = 'b'; 62 if (c & CEPH_CAP_GLAZYIO) 63 *s++ = 'l'; 64 return s; 65 } 66 67 const char *ceph_cap_string(int caps) 68 { 69 int i; 70 char *s; 71 int c; 72 73 spin_lock(&cap_str_lock); 74 i = last_cap_str++; 75 if (last_cap_str == MAX_CAP_STR) 76 last_cap_str = 0; 77 spin_unlock(&cap_str_lock); 78 79 s = cap_str[i]; 80 81 if (caps & CEPH_CAP_PIN) 82 *s++ = 'p'; 83 84 c = (caps >> CEPH_CAP_SAUTH) & 3; 85 if (c) { 86 *s++ = 'A'; 87 s = gcap_string(s, c); 88 } 89 90 c = (caps >> CEPH_CAP_SLINK) & 3; 91 if (c) { 92 *s++ = 'L'; 93 s = gcap_string(s, c); 94 } 95 96 c = (caps >> CEPH_CAP_SXATTR) & 3; 97 if (c) { 98 *s++ = 'X'; 99 s = gcap_string(s, c); 100 } 101 102 c = caps >> CEPH_CAP_SFILE; 103 if (c) { 104 *s++ = 'F'; 105 s = gcap_string(s, c); 106 } 107 108 if (s == cap_str[i]) 109 *s++ = '-'; 110 *s = 0; 111 return cap_str[i]; 112 } 113 114 /* 115 * Cap reservations 116 * 117 * Maintain a global pool of preallocated struct ceph_caps, referenced 118 * by struct ceph_caps_reservations. This ensures that we preallocate 119 * memory needed to successfully process an MDS response. (If an MDS 120 * sends us cap information and we fail to process it, we will have 121 * problems due to the client and MDS being out of sync.) 122 * 123 * Reservations are 'owned' by a ceph_cap_reservation context. 124 */ 125 static spinlock_t caps_list_lock; 126 static struct list_head caps_list; /* unused (reserved or unreserved) */ 127 static int caps_total_count; /* total caps allocated */ 128 static int caps_use_count; /* in use */ 129 static int caps_reserve_count; /* unused, reserved */ 130 static int caps_avail_count; /* unused, unreserved */ 131 132 void __init ceph_caps_init(void) 133 { 134 INIT_LIST_HEAD(&caps_list); 135 spin_lock_init(&caps_list_lock); 136 } 137 138 void ceph_caps_finalize(void) 139 { 140 struct ceph_cap *cap; 141 142 spin_lock(&caps_list_lock); 143 while (!list_empty(&caps_list)) { 144 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 145 list_del(&cap->caps_item); 146 kmem_cache_free(ceph_cap_cachep, cap); 147 } 148 caps_total_count = 0; 149 caps_avail_count = 0; 150 caps_use_count = 0; 151 caps_reserve_count = 0; 152 spin_unlock(&caps_list_lock); 153 } 154 155 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 156 { 157 int i; 158 struct ceph_cap *cap; 159 int have; 160 int alloc = 0; 161 LIST_HEAD(newcaps); 162 int ret = 0; 163 164 dout("reserve caps ctx=%p need=%d\n", ctx, need); 165 166 /* first reserve any caps that are already allocated */ 167 spin_lock(&caps_list_lock); 168 if (caps_avail_count >= need) 169 have = need; 170 else 171 have = caps_avail_count; 172 caps_avail_count -= have; 173 caps_reserve_count += have; 174 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 175 caps_avail_count); 176 spin_unlock(&caps_list_lock); 177 178 for (i = have; i < need; i++) { 179 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 180 if (!cap) { 181 ret = -ENOMEM; 182 goto out_alloc_count; 183 } 184 list_add(&cap->caps_item, &newcaps); 185 alloc++; 186 } 187 BUG_ON(have + alloc != need); 188 189 spin_lock(&caps_list_lock); 190 caps_total_count += alloc; 191 caps_reserve_count += alloc; 192 list_splice(&newcaps, &caps_list); 193 194 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 195 caps_avail_count); 196 spin_unlock(&caps_list_lock); 197 198 ctx->count = need; 199 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 200 ctx, caps_total_count, caps_use_count, caps_reserve_count, 201 caps_avail_count); 202 return 0; 203 204 out_alloc_count: 205 /* we didn't manage to reserve as much as we needed */ 206 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 207 ctx, need, have); 208 return ret; 209 } 210 211 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 212 { 213 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 214 if (ctx->count) { 215 spin_lock(&caps_list_lock); 216 BUG_ON(caps_reserve_count < ctx->count); 217 caps_reserve_count -= ctx->count; 218 caps_avail_count += ctx->count; 219 ctx->count = 0; 220 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 221 caps_total_count, caps_use_count, caps_reserve_count, 222 caps_avail_count); 223 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 224 caps_avail_count); 225 spin_unlock(&caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 231 { 232 struct ceph_cap *cap = NULL; 233 234 /* temporary, until we do something about cap import/export */ 235 if (!ctx) 236 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 237 238 spin_lock(&caps_list_lock); 239 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 240 ctx, ctx->count, caps_total_count, caps_use_count, 241 caps_reserve_count, caps_avail_count); 242 BUG_ON(!ctx->count); 243 BUG_ON(ctx->count > caps_reserve_count); 244 BUG_ON(list_empty(&caps_list)); 245 246 ctx->count--; 247 caps_reserve_count--; 248 caps_use_count++; 249 250 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 251 list_del(&cap->caps_item); 252 253 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 254 caps_avail_count); 255 spin_unlock(&caps_list_lock); 256 return cap; 257 } 258 259 static void put_cap(struct ceph_cap *cap, 260 struct ceph_cap_reservation *ctx) 261 { 262 spin_lock(&caps_list_lock); 263 dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 264 ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count, 265 caps_reserve_count, caps_avail_count); 266 caps_use_count--; 267 /* 268 * Keep some preallocated caps around, at least enough to do a 269 * readdir (which needs to preallocate lots of them), to avoid 270 * lots of free/alloc churn. 271 */ 272 if (caps_avail_count >= caps_reserve_count + 273 ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) { 274 caps_total_count--; 275 kmem_cache_free(ceph_cap_cachep, cap); 276 } else { 277 if (ctx) { 278 ctx->count++; 279 caps_reserve_count++; 280 } else { 281 caps_avail_count++; 282 } 283 list_add(&cap->caps_item, &caps_list); 284 } 285 286 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 287 caps_avail_count); 288 spin_unlock(&caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_client *client, 292 int *total, int *avail, int *used, int *reserved) 293 { 294 if (total) 295 *total = caps_total_count; 296 if (avail) 297 *avail = caps_avail_count; 298 if (used) 299 *used = caps_use_count; 300 if (reserved) 301 *reserved = caps_reserve_count; 302 } 303 304 /* 305 * Find ceph_cap for given mds, if any. 306 * 307 * Called with i_lock held. 308 */ 309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 310 { 311 struct ceph_cap *cap; 312 struct rb_node *n = ci->i_caps.rb_node; 313 314 while (n) { 315 cap = rb_entry(n, struct ceph_cap, ci_node); 316 if (mds < cap->mds) 317 n = n->rb_left; 318 else if (mds > cap->mds) 319 n = n->rb_right; 320 else 321 return cap; 322 } 323 return NULL; 324 } 325 326 /* 327 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 328 * -1. 329 */ 330 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 331 { 332 struct ceph_cap *cap; 333 int mds = -1; 334 struct rb_node *p; 335 336 /* prefer mds with WR|WRBUFFER|EXCL caps */ 337 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 338 cap = rb_entry(p, struct ceph_cap, ci_node); 339 mds = cap->mds; 340 if (mseq) 341 *mseq = cap->mseq; 342 if (cap->issued & (CEPH_CAP_FILE_WR | 343 CEPH_CAP_FILE_BUFFER | 344 CEPH_CAP_FILE_EXCL)) 345 break; 346 } 347 return mds; 348 } 349 350 int ceph_get_cap_mds(struct inode *inode) 351 { 352 int mds; 353 spin_lock(&inode->i_lock); 354 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 355 spin_unlock(&inode->i_lock); 356 return mds; 357 } 358 359 /* 360 * Called under i_lock. 361 */ 362 static void __insert_cap_node(struct ceph_inode_info *ci, 363 struct ceph_cap *new) 364 { 365 struct rb_node **p = &ci->i_caps.rb_node; 366 struct rb_node *parent = NULL; 367 struct ceph_cap *cap = NULL; 368 369 while (*p) { 370 parent = *p; 371 cap = rb_entry(parent, struct ceph_cap, ci_node); 372 if (new->mds < cap->mds) 373 p = &(*p)->rb_left; 374 else if (new->mds > cap->mds) 375 p = &(*p)->rb_right; 376 else 377 BUG(); 378 } 379 380 rb_link_node(&new->ci_node, parent, p); 381 rb_insert_color(&new->ci_node, &ci->i_caps); 382 } 383 384 /* 385 * (re)set cap hold timeouts, which control the delayed release 386 * of unused caps back to the MDS. Should be called on cap use. 387 */ 388 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 389 struct ceph_inode_info *ci) 390 { 391 struct ceph_mount_args *ma = mdsc->client->mount_args; 392 393 ci->i_hold_caps_min = round_jiffies(jiffies + 394 ma->caps_wanted_delay_min * HZ); 395 ci->i_hold_caps_max = round_jiffies(jiffies + 396 ma->caps_wanted_delay_max * HZ); 397 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 398 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 399 } 400 401 /* 402 * (Re)queue cap at the end of the delayed cap release list. 403 * 404 * If I_FLUSH is set, leave the inode at the front of the list. 405 * 406 * Caller holds i_lock 407 * -> we take mdsc->cap_delay_lock 408 */ 409 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 410 struct ceph_inode_info *ci) 411 { 412 __cap_set_timeouts(mdsc, ci); 413 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 414 ci->i_ceph_flags, ci->i_hold_caps_max); 415 if (!mdsc->stopping) { 416 spin_lock(&mdsc->cap_delay_lock); 417 if (!list_empty(&ci->i_cap_delay_list)) { 418 if (ci->i_ceph_flags & CEPH_I_FLUSH) 419 goto no_change; 420 list_del_init(&ci->i_cap_delay_list); 421 } 422 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 423 no_change: 424 spin_unlock(&mdsc->cap_delay_lock); 425 } 426 } 427 428 /* 429 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 430 * indicating we should send a cap message to flush dirty metadata 431 * asap, and move to the front of the delayed cap list. 432 */ 433 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 434 struct ceph_inode_info *ci) 435 { 436 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 437 spin_lock(&mdsc->cap_delay_lock); 438 ci->i_ceph_flags |= CEPH_I_FLUSH; 439 if (!list_empty(&ci->i_cap_delay_list)) 440 list_del_init(&ci->i_cap_delay_list); 441 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 442 spin_unlock(&mdsc->cap_delay_lock); 443 } 444 445 /* 446 * Cancel delayed work on cap. 447 * 448 * Caller must hold i_lock. 449 */ 450 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 451 struct ceph_inode_info *ci) 452 { 453 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 454 if (list_empty(&ci->i_cap_delay_list)) 455 return; 456 spin_lock(&mdsc->cap_delay_lock); 457 list_del_init(&ci->i_cap_delay_list); 458 spin_unlock(&mdsc->cap_delay_lock); 459 } 460 461 /* 462 * Common issue checks for add_cap, handle_cap_grant. 463 */ 464 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 465 unsigned issued) 466 { 467 unsigned had = __ceph_caps_issued(ci, NULL); 468 469 /* 470 * Each time we receive FILE_CACHE anew, we increment 471 * i_rdcache_gen. 472 */ 473 if ((issued & CEPH_CAP_FILE_CACHE) && 474 (had & CEPH_CAP_FILE_CACHE) == 0) 475 ci->i_rdcache_gen++; 476 477 /* 478 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 479 * don't know what happened to this directory while we didn't 480 * have the cap. 481 */ 482 if ((issued & CEPH_CAP_FILE_SHARED) && 483 (had & CEPH_CAP_FILE_SHARED) == 0) { 484 ci->i_shared_gen++; 485 if (S_ISDIR(ci->vfs_inode.i_mode)) { 486 dout(" marking %p NOT complete\n", &ci->vfs_inode); 487 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 488 } 489 } 490 } 491 492 /* 493 * Add a capability under the given MDS session. 494 * 495 * Caller should hold session snap_rwsem (read) and s_mutex. 496 * 497 * @fmode is the open file mode, if we are opening a file, otherwise 498 * it is < 0. (This is so we can atomically add the cap and add an 499 * open file reference to it.) 500 */ 501 int ceph_add_cap(struct inode *inode, 502 struct ceph_mds_session *session, u64 cap_id, 503 int fmode, unsigned issued, unsigned wanted, 504 unsigned seq, unsigned mseq, u64 realmino, int flags, 505 struct ceph_cap_reservation *caps_reservation) 506 { 507 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 508 struct ceph_inode_info *ci = ceph_inode(inode); 509 struct ceph_cap *new_cap = NULL; 510 struct ceph_cap *cap; 511 int mds = session->s_mds; 512 int actual_wanted; 513 514 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 515 session->s_mds, cap_id, ceph_cap_string(issued), seq); 516 517 /* 518 * If we are opening the file, include file mode wanted bits 519 * in wanted. 520 */ 521 if (fmode >= 0) 522 wanted |= ceph_caps_for_mode(fmode); 523 524 retry: 525 spin_lock(&inode->i_lock); 526 cap = __get_cap_for_mds(ci, mds); 527 if (!cap) { 528 if (new_cap) { 529 cap = new_cap; 530 new_cap = NULL; 531 } else { 532 spin_unlock(&inode->i_lock); 533 new_cap = get_cap(caps_reservation); 534 if (new_cap == NULL) 535 return -ENOMEM; 536 goto retry; 537 } 538 539 cap->issued = 0; 540 cap->implemented = 0; 541 cap->mds = mds; 542 cap->mds_wanted = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* clear out old exporting info? (i.e. on cap import) */ 548 if (ci->i_cap_exporting_mds == mds) { 549 ci->i_cap_exporting_issued = 0; 550 ci->i_cap_exporting_mseq = 0; 551 ci->i_cap_exporting_mds = -1; 552 } 553 554 /* add to session cap list */ 555 cap->session = session; 556 spin_lock(&session->s_cap_lock); 557 list_add_tail(&cap->session_caps, &session->s_caps); 558 session->s_nr_caps++; 559 spin_unlock(&session->s_cap_lock); 560 } 561 562 if (!ci->i_snap_realm) { 563 /* 564 * add this inode to the appropriate snap realm 565 */ 566 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 567 realmino); 568 if (realm) { 569 ceph_get_snap_realm(mdsc, realm); 570 spin_lock(&realm->inodes_with_caps_lock); 571 ci->i_snap_realm = realm; 572 list_add(&ci->i_snap_realm_item, 573 &realm->inodes_with_caps); 574 spin_unlock(&realm->inodes_with_caps_lock); 575 } else { 576 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 577 realmino); 578 } 579 } 580 581 __check_cap_issue(ci, cap, issued); 582 583 /* 584 * If we are issued caps we don't want, or the mds' wanted 585 * value appears to be off, queue a check so we'll release 586 * later and/or update the mds wanted value. 587 */ 588 actual_wanted = __ceph_caps_wanted(ci); 589 if ((wanted & ~actual_wanted) || 590 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 591 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 592 ceph_cap_string(issued), ceph_cap_string(wanted), 593 ceph_cap_string(actual_wanted)); 594 __cap_delay_requeue(mdsc, ci); 595 } 596 597 if (flags & CEPH_CAP_FLAG_AUTH) 598 ci->i_auth_cap = cap; 599 else if (ci->i_auth_cap == cap) 600 ci->i_auth_cap = NULL; 601 602 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 603 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 604 ceph_cap_string(issued|cap->issued), seq, mds); 605 cap->cap_id = cap_id; 606 cap->issued = issued; 607 cap->implemented |= issued; 608 cap->mds_wanted |= wanted; 609 cap->seq = seq; 610 cap->issue_seq = seq; 611 cap->mseq = mseq; 612 cap->cap_gen = session->s_cap_gen; 613 614 if (fmode >= 0) 615 __ceph_get_fmode(ci, fmode); 616 spin_unlock(&inode->i_lock); 617 wake_up(&ci->i_cap_wq); 618 return 0; 619 } 620 621 /* 622 * Return true if cap has not timed out and belongs to the current 623 * generation of the MDS session (i.e. has not gone 'stale' due to 624 * us losing touch with the mds). 625 */ 626 static int __cap_is_valid(struct ceph_cap *cap) 627 { 628 unsigned long ttl; 629 u32 gen; 630 631 spin_lock(&cap->session->s_cap_lock); 632 gen = cap->session->s_cap_gen; 633 ttl = cap->session->s_cap_ttl; 634 spin_unlock(&cap->session->s_cap_lock); 635 636 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 637 dout("__cap_is_valid %p cap %p issued %s " 638 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 639 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 640 return 0; 641 } 642 643 return 1; 644 } 645 646 /* 647 * Return set of valid cap bits issued to us. Note that caps time 648 * out, and may be invalidated in bulk if the client session times out 649 * and session->s_cap_gen is bumped. 650 */ 651 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 652 { 653 int have = ci->i_snap_caps; 654 struct ceph_cap *cap; 655 struct rb_node *p; 656 657 if (implemented) 658 *implemented = 0; 659 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 660 cap = rb_entry(p, struct ceph_cap, ci_node); 661 if (!__cap_is_valid(cap)) 662 continue; 663 dout("__ceph_caps_issued %p cap %p issued %s\n", 664 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 665 have |= cap->issued; 666 if (implemented) 667 *implemented |= cap->implemented; 668 } 669 return have; 670 } 671 672 /* 673 * Get cap bits issued by caps other than @ocap 674 */ 675 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 676 { 677 int have = ci->i_snap_caps; 678 struct ceph_cap *cap; 679 struct rb_node *p; 680 681 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 682 cap = rb_entry(p, struct ceph_cap, ci_node); 683 if (cap == ocap) 684 continue; 685 if (!__cap_is_valid(cap)) 686 continue; 687 have |= cap->issued; 688 } 689 return have; 690 } 691 692 /* 693 * Move a cap to the end of the LRU (oldest caps at list head, newest 694 * at list tail). 695 */ 696 static void __touch_cap(struct ceph_cap *cap) 697 { 698 struct ceph_mds_session *s = cap->session; 699 700 spin_lock(&s->s_cap_lock); 701 if (!s->s_iterating_caps) { 702 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 703 s->s_mds); 704 list_move_tail(&cap->session_caps, &s->s_caps); 705 } else { 706 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 707 &cap->ci->vfs_inode, cap, s->s_mds); 708 } 709 spin_unlock(&s->s_cap_lock); 710 } 711 712 /* 713 * Check if we hold the given mask. If so, move the cap(s) to the 714 * front of their respective LRUs. (This is the preferred way for 715 * callers to check for caps they want.) 716 */ 717 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 718 { 719 struct ceph_cap *cap; 720 struct rb_node *p; 721 int have = ci->i_snap_caps; 722 723 if ((have & mask) == mask) { 724 dout("__ceph_caps_issued_mask %p snap issued %s" 725 " (mask %s)\n", &ci->vfs_inode, 726 ceph_cap_string(have), 727 ceph_cap_string(mask)); 728 return 1; 729 } 730 731 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 732 cap = rb_entry(p, struct ceph_cap, ci_node); 733 if (!__cap_is_valid(cap)) 734 continue; 735 if ((cap->issued & mask) == mask) { 736 dout("__ceph_caps_issued_mask %p cap %p issued %s" 737 " (mask %s)\n", &ci->vfs_inode, cap, 738 ceph_cap_string(cap->issued), 739 ceph_cap_string(mask)); 740 if (touch) 741 __touch_cap(cap); 742 return 1; 743 } 744 745 /* does a combination of caps satisfy mask? */ 746 have |= cap->issued; 747 if ((have & mask) == mask) { 748 dout("__ceph_caps_issued_mask %p combo issued %s" 749 " (mask %s)\n", &ci->vfs_inode, 750 ceph_cap_string(cap->issued), 751 ceph_cap_string(mask)); 752 if (touch) { 753 struct rb_node *q; 754 755 /* touch this + preceeding caps */ 756 __touch_cap(cap); 757 for (q = rb_first(&ci->i_caps); q != p; 758 q = rb_next(q)) { 759 cap = rb_entry(q, struct ceph_cap, 760 ci_node); 761 if (!__cap_is_valid(cap)) 762 continue; 763 __touch_cap(cap); 764 } 765 } 766 return 1; 767 } 768 } 769 770 return 0; 771 } 772 773 /* 774 * Return true if mask caps are currently being revoked by an MDS. 775 */ 776 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 777 { 778 struct inode *inode = &ci->vfs_inode; 779 struct ceph_cap *cap; 780 struct rb_node *p; 781 int ret = 0; 782 783 spin_lock(&inode->i_lock); 784 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 785 cap = rb_entry(p, struct ceph_cap, ci_node); 786 if (__cap_is_valid(cap) && 787 (cap->implemented & ~cap->issued & mask)) { 788 ret = 1; 789 break; 790 } 791 } 792 spin_unlock(&inode->i_lock); 793 dout("ceph_caps_revoking %p %s = %d\n", inode, 794 ceph_cap_string(mask), ret); 795 return ret; 796 } 797 798 int __ceph_caps_used(struct ceph_inode_info *ci) 799 { 800 int used = 0; 801 if (ci->i_pin_ref) 802 used |= CEPH_CAP_PIN; 803 if (ci->i_rd_ref) 804 used |= CEPH_CAP_FILE_RD; 805 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 806 used |= CEPH_CAP_FILE_CACHE; 807 if (ci->i_wr_ref) 808 used |= CEPH_CAP_FILE_WR; 809 if (ci->i_wrbuffer_ref) 810 used |= CEPH_CAP_FILE_BUFFER; 811 return used; 812 } 813 814 /* 815 * wanted, by virtue of open file modes 816 */ 817 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 818 { 819 int want = 0; 820 int mode; 821 for (mode = 0; mode < 4; mode++) 822 if (ci->i_nr_by_mode[mode]) 823 want |= ceph_caps_for_mode(mode); 824 return want; 825 } 826 827 /* 828 * Return caps we have registered with the MDS(s) as 'wanted'. 829 */ 830 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 831 { 832 struct ceph_cap *cap; 833 struct rb_node *p; 834 int mds_wanted = 0; 835 836 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 837 cap = rb_entry(p, struct ceph_cap, ci_node); 838 if (!__cap_is_valid(cap)) 839 continue; 840 mds_wanted |= cap->mds_wanted; 841 } 842 return mds_wanted; 843 } 844 845 /* 846 * called under i_lock 847 */ 848 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 849 { 850 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 851 } 852 853 /* 854 * caller should hold i_lock, and session s_mutex. 855 * returns true if this is the last cap. if so, caller should iput. 856 */ 857 void __ceph_remove_cap(struct ceph_cap *cap, 858 struct ceph_cap_reservation *ctx) 859 { 860 struct ceph_mds_session *session = cap->session; 861 struct ceph_inode_info *ci = cap->ci; 862 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 863 864 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 865 866 /* remove from session list */ 867 spin_lock(&session->s_cap_lock); 868 list_del_init(&cap->session_caps); 869 session->s_nr_caps--; 870 spin_unlock(&session->s_cap_lock); 871 872 /* remove from inode list */ 873 rb_erase(&cap->ci_node, &ci->i_caps); 874 cap->session = NULL; 875 if (ci->i_auth_cap == cap) 876 ci->i_auth_cap = NULL; 877 878 put_cap(cap, ctx); 879 880 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 881 struct ceph_snap_realm *realm = ci->i_snap_realm; 882 spin_lock(&realm->inodes_with_caps_lock); 883 list_del_init(&ci->i_snap_realm_item); 884 ci->i_snap_realm_counter++; 885 ci->i_snap_realm = NULL; 886 spin_unlock(&realm->inodes_with_caps_lock); 887 ceph_put_snap_realm(mdsc, realm); 888 } 889 if (!__ceph_is_any_real_caps(ci)) 890 __cap_delay_cancel(mdsc, ci); 891 } 892 893 /* 894 * Build and send a cap message to the given MDS. 895 * 896 * Caller should be holding s_mutex. 897 */ 898 static int send_cap_msg(struct ceph_mds_session *session, 899 u64 ino, u64 cid, int op, 900 int caps, int wanted, int dirty, 901 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 902 u64 size, u64 max_size, 903 struct timespec *mtime, struct timespec *atime, 904 u64 time_warp_seq, 905 uid_t uid, gid_t gid, mode_t mode, 906 u64 xattr_version, 907 struct ceph_buffer *xattrs_buf, 908 u64 follows) 909 { 910 struct ceph_mds_caps *fc; 911 struct ceph_msg *msg; 912 913 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 914 " seq %u/%u mseq %u follows %lld size %llu/%llu" 915 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 916 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 917 ceph_cap_string(dirty), 918 seq, issue_seq, mseq, follows, size, max_size, 919 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 920 921 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL); 922 if (IS_ERR(msg)) 923 return PTR_ERR(msg); 924 925 msg->hdr.tid = cpu_to_le64(flush_tid); 926 927 fc = msg->front.iov_base; 928 memset(fc, 0, sizeof(*fc)); 929 930 fc->cap_id = cpu_to_le64(cid); 931 fc->op = cpu_to_le32(op); 932 fc->seq = cpu_to_le32(seq); 933 fc->issue_seq = cpu_to_le32(issue_seq); 934 fc->migrate_seq = cpu_to_le32(mseq); 935 fc->caps = cpu_to_le32(caps); 936 fc->wanted = cpu_to_le32(wanted); 937 fc->dirty = cpu_to_le32(dirty); 938 fc->ino = cpu_to_le64(ino); 939 fc->snap_follows = cpu_to_le64(follows); 940 941 fc->size = cpu_to_le64(size); 942 fc->max_size = cpu_to_le64(max_size); 943 if (mtime) 944 ceph_encode_timespec(&fc->mtime, mtime); 945 if (atime) 946 ceph_encode_timespec(&fc->atime, atime); 947 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 948 949 fc->uid = cpu_to_le32(uid); 950 fc->gid = cpu_to_le32(gid); 951 fc->mode = cpu_to_le32(mode); 952 953 fc->xattr_version = cpu_to_le64(xattr_version); 954 if (xattrs_buf) { 955 msg->middle = ceph_buffer_get(xattrs_buf); 956 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 957 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 958 } 959 960 ceph_con_send(&session->s_con, msg); 961 return 0; 962 } 963 964 /* 965 * Queue cap releases when an inode is dropped from our 966 * cache. 967 */ 968 void ceph_queue_caps_release(struct inode *inode) 969 { 970 struct ceph_inode_info *ci = ceph_inode(inode); 971 struct rb_node *p; 972 973 spin_lock(&inode->i_lock); 974 p = rb_first(&ci->i_caps); 975 while (p) { 976 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 977 struct ceph_mds_session *session = cap->session; 978 struct ceph_msg *msg; 979 struct ceph_mds_cap_release *head; 980 struct ceph_mds_cap_item *item; 981 982 spin_lock(&session->s_cap_lock); 983 BUG_ON(!session->s_num_cap_releases); 984 msg = list_first_entry(&session->s_cap_releases, 985 struct ceph_msg, list_head); 986 987 dout(" adding %p release to mds%d msg %p (%d left)\n", 988 inode, session->s_mds, msg, session->s_num_cap_releases); 989 990 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 991 head = msg->front.iov_base; 992 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 993 item = msg->front.iov_base + msg->front.iov_len; 994 item->ino = cpu_to_le64(ceph_ino(inode)); 995 item->cap_id = cpu_to_le64(cap->cap_id); 996 item->migrate_seq = cpu_to_le32(cap->mseq); 997 item->seq = cpu_to_le32(cap->issue_seq); 998 999 session->s_num_cap_releases--; 1000 1001 msg->front.iov_len += sizeof(*item); 1002 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1003 dout(" release msg %p full\n", msg); 1004 list_move_tail(&msg->list_head, 1005 &session->s_cap_releases_done); 1006 } else { 1007 dout(" release msg %p at %d/%d (%d)\n", msg, 1008 (int)le32_to_cpu(head->num), 1009 (int)CEPH_CAPS_PER_RELEASE, 1010 (int)msg->front.iov_len); 1011 } 1012 spin_unlock(&session->s_cap_lock); 1013 p = rb_next(p); 1014 __ceph_remove_cap(cap, NULL); 1015 1016 } 1017 spin_unlock(&inode->i_lock); 1018 } 1019 1020 /* 1021 * Send a cap msg on the given inode. Update our caps state, then 1022 * drop i_lock and send the message. 1023 * 1024 * Make note of max_size reported/requested from mds, revoked caps 1025 * that have now been implemented. 1026 * 1027 * Make half-hearted attempt ot to invalidate page cache if we are 1028 * dropping RDCACHE. Note that this will leave behind locked pages 1029 * that we'll then need to deal with elsewhere. 1030 * 1031 * Return non-zero if delayed release, or we experienced an error 1032 * such that the caller should requeue + retry later. 1033 * 1034 * called with i_lock, then drops it. 1035 * caller should hold snap_rwsem (read), s_mutex. 1036 */ 1037 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1038 int op, int used, int want, int retain, int flushing, 1039 unsigned *pflush_tid) 1040 __releases(cap->ci->vfs_inode->i_lock) 1041 { 1042 struct ceph_inode_info *ci = cap->ci; 1043 struct inode *inode = &ci->vfs_inode; 1044 u64 cap_id = cap->cap_id; 1045 int held, revoking, dropping, keep; 1046 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1047 u64 size, max_size; 1048 struct timespec mtime, atime; 1049 int wake = 0; 1050 mode_t mode; 1051 uid_t uid; 1052 gid_t gid; 1053 struct ceph_mds_session *session; 1054 u64 xattr_version = 0; 1055 int delayed = 0; 1056 u64 flush_tid = 0; 1057 int i; 1058 int ret; 1059 1060 held = cap->issued | cap->implemented; 1061 revoking = cap->implemented & ~cap->issued; 1062 retain &= ~revoking; 1063 dropping = cap->issued & ~retain; 1064 1065 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1066 inode, cap, cap->session, 1067 ceph_cap_string(held), ceph_cap_string(held & retain), 1068 ceph_cap_string(revoking)); 1069 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1070 1071 session = cap->session; 1072 1073 /* don't release wanted unless we've waited a bit. */ 1074 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1075 time_before(jiffies, ci->i_hold_caps_min)) { 1076 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1077 ceph_cap_string(cap->issued), 1078 ceph_cap_string(cap->issued & retain), 1079 ceph_cap_string(cap->mds_wanted), 1080 ceph_cap_string(want)); 1081 want |= cap->mds_wanted; 1082 retain |= cap->issued; 1083 delayed = 1; 1084 } 1085 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1086 1087 cap->issued &= retain; /* drop bits we don't want */ 1088 if (cap->implemented & ~cap->issued) { 1089 /* 1090 * Wake up any waiters on wanted -> needed transition. 1091 * This is due to the weird transition from buffered 1092 * to sync IO... we need to flush dirty pages _before_ 1093 * allowing sync writes to avoid reordering. 1094 */ 1095 wake = 1; 1096 } 1097 cap->implemented &= cap->issued | used; 1098 cap->mds_wanted = want; 1099 1100 if (flushing) { 1101 /* 1102 * assign a tid for flush operations so we can avoid 1103 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1104 * clean type races. track latest tid for every bit 1105 * so we can handle flush AxFw, flush Fw, and have the 1106 * first ack clean Ax. 1107 */ 1108 flush_tid = ++ci->i_cap_flush_last_tid; 1109 if (pflush_tid) 1110 *pflush_tid = flush_tid; 1111 dout(" cap_flush_tid %d\n", (int)flush_tid); 1112 for (i = 0; i < CEPH_CAP_BITS; i++) 1113 if (flushing & (1 << i)) 1114 ci->i_cap_flush_tid[i] = flush_tid; 1115 } 1116 1117 keep = cap->implemented; 1118 seq = cap->seq; 1119 issue_seq = cap->issue_seq; 1120 mseq = cap->mseq; 1121 size = inode->i_size; 1122 ci->i_reported_size = size; 1123 max_size = ci->i_wanted_max_size; 1124 ci->i_requested_max_size = max_size; 1125 mtime = inode->i_mtime; 1126 atime = inode->i_atime; 1127 time_warp_seq = ci->i_time_warp_seq; 1128 follows = ci->i_snap_realm->cached_context->seq; 1129 uid = inode->i_uid; 1130 gid = inode->i_gid; 1131 mode = inode->i_mode; 1132 1133 if (dropping & CEPH_CAP_XATTR_EXCL) { 1134 __ceph_build_xattrs_blob(ci); 1135 xattr_version = ci->i_xattrs.version + 1; 1136 } 1137 1138 spin_unlock(&inode->i_lock); 1139 1140 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1141 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1142 size, max_size, &mtime, &atime, time_warp_seq, 1143 uid, gid, mode, 1144 xattr_version, 1145 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1146 follows); 1147 if (ret < 0) { 1148 dout("error sending cap msg, must requeue %p\n", inode); 1149 delayed = 1; 1150 } 1151 1152 if (wake) 1153 wake_up(&ci->i_cap_wq); 1154 1155 return delayed; 1156 } 1157 1158 /* 1159 * When a snapshot is taken, clients accumulate dirty metadata on 1160 * inodes with capabilities in ceph_cap_snaps to describe the file 1161 * state at the time the snapshot was taken. This must be flushed 1162 * asynchronously back to the MDS once sync writes complete and dirty 1163 * data is written out. 1164 * 1165 * Called under i_lock. Takes s_mutex as needed. 1166 */ 1167 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1168 struct ceph_mds_session **psession) 1169 { 1170 struct inode *inode = &ci->vfs_inode; 1171 int mds; 1172 struct ceph_cap_snap *capsnap; 1173 u32 mseq; 1174 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1175 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1176 session->s_mutex */ 1177 u64 next_follows = 0; /* keep track of how far we've gotten through the 1178 i_cap_snaps list, and skip these entries next time 1179 around to avoid an infinite loop */ 1180 1181 if (psession) 1182 session = *psession; 1183 1184 dout("__flush_snaps %p\n", inode); 1185 retry: 1186 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1187 /* avoid an infiniute loop after retry */ 1188 if (capsnap->follows < next_follows) 1189 continue; 1190 /* 1191 * we need to wait for sync writes to complete and for dirty 1192 * pages to be written out. 1193 */ 1194 if (capsnap->dirty_pages || capsnap->writing) 1195 continue; 1196 1197 /* pick mds, take s_mutex */ 1198 mds = __ceph_get_cap_mds(ci, &mseq); 1199 if (session && session->s_mds != mds) { 1200 dout("oops, wrong session %p mutex\n", session); 1201 mutex_unlock(&session->s_mutex); 1202 ceph_put_mds_session(session); 1203 session = NULL; 1204 } 1205 if (!session) { 1206 spin_unlock(&inode->i_lock); 1207 mutex_lock(&mdsc->mutex); 1208 session = __ceph_lookup_mds_session(mdsc, mds); 1209 mutex_unlock(&mdsc->mutex); 1210 if (session) { 1211 dout("inverting session/ino locks on %p\n", 1212 session); 1213 mutex_lock(&session->s_mutex); 1214 } 1215 /* 1216 * if session == NULL, we raced against a cap 1217 * deletion. retry, and we'll get a better 1218 * @mds value next time. 1219 */ 1220 spin_lock(&inode->i_lock); 1221 goto retry; 1222 } 1223 1224 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1225 atomic_inc(&capsnap->nref); 1226 if (!list_empty(&capsnap->flushing_item)) 1227 list_del_init(&capsnap->flushing_item); 1228 list_add_tail(&capsnap->flushing_item, 1229 &session->s_cap_snaps_flushing); 1230 spin_unlock(&inode->i_lock); 1231 1232 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1233 inode, capsnap, next_follows, capsnap->size); 1234 send_cap_msg(session, ceph_vino(inode).ino, 0, 1235 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1236 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1237 capsnap->size, 0, 1238 &capsnap->mtime, &capsnap->atime, 1239 capsnap->time_warp_seq, 1240 capsnap->uid, capsnap->gid, capsnap->mode, 1241 0, NULL, 1242 capsnap->follows); 1243 1244 next_follows = capsnap->follows + 1; 1245 ceph_put_cap_snap(capsnap); 1246 1247 spin_lock(&inode->i_lock); 1248 goto retry; 1249 } 1250 1251 /* we flushed them all; remove this inode from the queue */ 1252 spin_lock(&mdsc->snap_flush_lock); 1253 list_del_init(&ci->i_snap_flush_item); 1254 spin_unlock(&mdsc->snap_flush_lock); 1255 1256 if (psession) 1257 *psession = session; 1258 else if (session) { 1259 mutex_unlock(&session->s_mutex); 1260 ceph_put_mds_session(session); 1261 } 1262 } 1263 1264 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1265 { 1266 struct inode *inode = &ci->vfs_inode; 1267 1268 spin_lock(&inode->i_lock); 1269 __ceph_flush_snaps(ci, NULL); 1270 spin_unlock(&inode->i_lock); 1271 } 1272 1273 /* 1274 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1275 * list. 1276 */ 1277 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1278 { 1279 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 1280 struct inode *inode = &ci->vfs_inode; 1281 int was = ci->i_dirty_caps; 1282 int dirty = 0; 1283 1284 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1285 ceph_cap_string(mask), ceph_cap_string(was), 1286 ceph_cap_string(was | mask)); 1287 ci->i_dirty_caps |= mask; 1288 if (was == 0) { 1289 dout(" inode %p now dirty\n", &ci->vfs_inode); 1290 BUG_ON(!list_empty(&ci->i_dirty_item)); 1291 spin_lock(&mdsc->cap_dirty_lock); 1292 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1293 spin_unlock(&mdsc->cap_dirty_lock); 1294 if (ci->i_flushing_caps == 0) { 1295 igrab(inode); 1296 dirty |= I_DIRTY_SYNC; 1297 } 1298 } 1299 BUG_ON(list_empty(&ci->i_dirty_item)); 1300 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1301 (mask & CEPH_CAP_FILE_BUFFER)) 1302 dirty |= I_DIRTY_DATASYNC; 1303 if (dirty) 1304 __mark_inode_dirty(inode, dirty); 1305 __cap_delay_requeue(mdsc, ci); 1306 } 1307 1308 /* 1309 * Add dirty inode to the flushing list. Assigned a seq number so we 1310 * can wait for caps to flush without starving. 1311 * 1312 * Called under i_lock. 1313 */ 1314 static int __mark_caps_flushing(struct inode *inode, 1315 struct ceph_mds_session *session) 1316 { 1317 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1318 struct ceph_inode_info *ci = ceph_inode(inode); 1319 int flushing; 1320 1321 BUG_ON(ci->i_dirty_caps == 0); 1322 BUG_ON(list_empty(&ci->i_dirty_item)); 1323 1324 flushing = ci->i_dirty_caps; 1325 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1326 ceph_cap_string(flushing), 1327 ceph_cap_string(ci->i_flushing_caps), 1328 ceph_cap_string(ci->i_flushing_caps | flushing)); 1329 ci->i_flushing_caps |= flushing; 1330 ci->i_dirty_caps = 0; 1331 dout(" inode %p now !dirty\n", inode); 1332 1333 spin_lock(&mdsc->cap_dirty_lock); 1334 list_del_init(&ci->i_dirty_item); 1335 1336 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1337 if (list_empty(&ci->i_flushing_item)) { 1338 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1339 mdsc->num_cap_flushing++; 1340 dout(" inode %p now flushing seq %lld\n", inode, 1341 ci->i_cap_flush_seq); 1342 } else { 1343 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1344 dout(" inode %p now flushing (more) seq %lld\n", inode, 1345 ci->i_cap_flush_seq); 1346 } 1347 spin_unlock(&mdsc->cap_dirty_lock); 1348 1349 return flushing; 1350 } 1351 1352 /* 1353 * Swiss army knife function to examine currently used and wanted 1354 * versus held caps. Release, flush, ack revoked caps to mds as 1355 * appropriate. 1356 * 1357 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1358 * cap release further. 1359 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1360 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1361 * further delay. 1362 */ 1363 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1364 struct ceph_mds_session *session) 1365 { 1366 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1367 struct ceph_mds_client *mdsc = &client->mdsc; 1368 struct inode *inode = &ci->vfs_inode; 1369 struct ceph_cap *cap; 1370 int file_wanted, used; 1371 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1372 int drop_session_lock = session ? 0 : 1; 1373 int issued, implemented, want, retain, revoking, flushing = 0; 1374 int mds = -1; /* keep track of how far we've gone through i_caps list 1375 to avoid an infinite loop on retry */ 1376 struct rb_node *p; 1377 int tried_invalidate = 0; 1378 int delayed = 0, sent = 0, force_requeue = 0, num; 1379 int queue_invalidate = 0; 1380 int is_delayed = flags & CHECK_CAPS_NODELAY; 1381 1382 /* if we are unmounting, flush any unused caps immediately. */ 1383 if (mdsc->stopping) 1384 is_delayed = 1; 1385 1386 spin_lock(&inode->i_lock); 1387 1388 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1389 flags |= CHECK_CAPS_FLUSH; 1390 1391 /* flush snaps first time around only */ 1392 if (!list_empty(&ci->i_cap_snaps)) 1393 __ceph_flush_snaps(ci, &session); 1394 goto retry_locked; 1395 retry: 1396 spin_lock(&inode->i_lock); 1397 retry_locked: 1398 file_wanted = __ceph_caps_file_wanted(ci); 1399 used = __ceph_caps_used(ci); 1400 want = file_wanted | used; 1401 issued = __ceph_caps_issued(ci, &implemented); 1402 revoking = implemented & ~issued; 1403 1404 retain = want | CEPH_CAP_PIN; 1405 if (!mdsc->stopping && inode->i_nlink > 0) { 1406 if (want) { 1407 retain |= CEPH_CAP_ANY; /* be greedy */ 1408 } else { 1409 retain |= CEPH_CAP_ANY_SHARED; 1410 /* 1411 * keep RD only if we didn't have the file open RW, 1412 * because then the mds would revoke it anyway to 1413 * journal max_size=0. 1414 */ 1415 if (ci->i_max_size == 0) 1416 retain |= CEPH_CAP_ANY_RD; 1417 } 1418 } 1419 1420 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1421 " issued %s revoking %s retain %s %s%s%s\n", inode, 1422 ceph_cap_string(file_wanted), 1423 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1424 ceph_cap_string(ci->i_flushing_caps), 1425 ceph_cap_string(issued), ceph_cap_string(revoking), 1426 ceph_cap_string(retain), 1427 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1428 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1429 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1430 1431 /* 1432 * If we no longer need to hold onto old our caps, and we may 1433 * have cached pages, but don't want them, then try to invalidate. 1434 * If we fail, it's because pages are locked.... try again later. 1435 */ 1436 if ((!is_delayed || mdsc->stopping) && 1437 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1438 ci->i_rdcache_gen && /* may have cached pages */ 1439 (file_wanted == 0 || /* no open files */ 1440 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ 1441 !tried_invalidate) { 1442 u32 invalidating_gen = ci->i_rdcache_gen; 1443 int ret; 1444 1445 dout("check_caps trying to invalidate on %p\n", inode); 1446 spin_unlock(&inode->i_lock); 1447 ret = invalidate_mapping_pages(&inode->i_data, 0, -1); 1448 spin_lock(&inode->i_lock); 1449 if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) { 1450 /* success. */ 1451 ci->i_rdcache_gen = 0; 1452 ci->i_rdcache_revoking = 0; 1453 } else if (revoking & CEPH_CAP_FILE_CACHE) { 1454 dout("check_caps queuing invalidate\n"); 1455 queue_invalidate = 1; 1456 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1457 } else { 1458 dout("check_caps failed to invalidate pages\n"); 1459 /* we failed to invalidate pages. check these 1460 caps again later. */ 1461 force_requeue = 1; 1462 __cap_set_timeouts(mdsc, ci); 1463 } 1464 tried_invalidate = 1; 1465 goto retry_locked; 1466 } 1467 1468 num = 0; 1469 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1470 cap = rb_entry(p, struct ceph_cap, ci_node); 1471 num++; 1472 1473 /* avoid looping forever */ 1474 if (mds >= cap->mds || 1475 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1476 continue; 1477 1478 /* NOTE: no side-effects allowed, until we take s_mutex */ 1479 1480 revoking = cap->implemented & ~cap->issued; 1481 if (revoking) 1482 dout(" mds%d revoking %s\n", cap->mds, 1483 ceph_cap_string(revoking)); 1484 1485 if (cap == ci->i_auth_cap && 1486 (cap->issued & CEPH_CAP_FILE_WR)) { 1487 /* request larger max_size from MDS? */ 1488 if (ci->i_wanted_max_size > ci->i_max_size && 1489 ci->i_wanted_max_size > ci->i_requested_max_size) { 1490 dout("requesting new max_size\n"); 1491 goto ack; 1492 } 1493 1494 /* approaching file_max? */ 1495 if ((inode->i_size << 1) >= ci->i_max_size && 1496 (ci->i_reported_size << 1) < ci->i_max_size) { 1497 dout("i_size approaching max_size\n"); 1498 goto ack; 1499 } 1500 } 1501 /* flush anything dirty? */ 1502 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1503 ci->i_dirty_caps) { 1504 dout("flushing dirty caps\n"); 1505 goto ack; 1506 } 1507 1508 /* completed revocation? going down and there are no caps? */ 1509 if (revoking && (revoking & used) == 0) { 1510 dout("completed revocation of %s\n", 1511 ceph_cap_string(cap->implemented & ~cap->issued)); 1512 goto ack; 1513 } 1514 1515 /* want more caps from mds? */ 1516 if (want & ~(cap->mds_wanted | cap->issued)) 1517 goto ack; 1518 1519 /* things we might delay */ 1520 if ((cap->issued & ~retain) == 0 && 1521 cap->mds_wanted == want) 1522 continue; /* nope, all good */ 1523 1524 if (is_delayed) 1525 goto ack; 1526 1527 /* delay? */ 1528 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1529 time_before(jiffies, ci->i_hold_caps_max)) { 1530 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1531 ceph_cap_string(cap->issued), 1532 ceph_cap_string(cap->issued & retain), 1533 ceph_cap_string(cap->mds_wanted), 1534 ceph_cap_string(want)); 1535 delayed++; 1536 continue; 1537 } 1538 1539 ack: 1540 if (session && session != cap->session) { 1541 dout("oops, wrong session %p mutex\n", session); 1542 mutex_unlock(&session->s_mutex); 1543 session = NULL; 1544 } 1545 if (!session) { 1546 session = cap->session; 1547 if (mutex_trylock(&session->s_mutex) == 0) { 1548 dout("inverting session/ino locks on %p\n", 1549 session); 1550 spin_unlock(&inode->i_lock); 1551 if (took_snap_rwsem) { 1552 up_read(&mdsc->snap_rwsem); 1553 took_snap_rwsem = 0; 1554 } 1555 mutex_lock(&session->s_mutex); 1556 goto retry; 1557 } 1558 } 1559 /* take snap_rwsem after session mutex */ 1560 if (!took_snap_rwsem) { 1561 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1562 dout("inverting snap/in locks on %p\n", 1563 inode); 1564 spin_unlock(&inode->i_lock); 1565 down_read(&mdsc->snap_rwsem); 1566 took_snap_rwsem = 1; 1567 goto retry; 1568 } 1569 took_snap_rwsem = 1; 1570 } 1571 1572 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1573 flushing = __mark_caps_flushing(inode, session); 1574 1575 mds = cap->mds; /* remember mds, so we don't repeat */ 1576 sent++; 1577 1578 /* __send_cap drops i_lock */ 1579 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1580 retain, flushing, NULL); 1581 goto retry; /* retake i_lock and restart our cap scan. */ 1582 } 1583 1584 /* 1585 * Reschedule delayed caps release if we delayed anything, 1586 * otherwise cancel. 1587 */ 1588 if (delayed && is_delayed) 1589 force_requeue = 1; /* __send_cap delayed release; requeue */ 1590 if (!delayed && !is_delayed) 1591 __cap_delay_cancel(mdsc, ci); 1592 else if (!is_delayed || force_requeue) 1593 __cap_delay_requeue(mdsc, ci); 1594 1595 spin_unlock(&inode->i_lock); 1596 1597 if (queue_invalidate) 1598 ceph_queue_invalidate(inode); 1599 1600 if (session && drop_session_lock) 1601 mutex_unlock(&session->s_mutex); 1602 if (took_snap_rwsem) 1603 up_read(&mdsc->snap_rwsem); 1604 } 1605 1606 /* 1607 * Try to flush dirty caps back to the auth mds. 1608 */ 1609 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1610 unsigned *flush_tid) 1611 { 1612 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1613 struct ceph_inode_info *ci = ceph_inode(inode); 1614 int unlock_session = session ? 0 : 1; 1615 int flushing = 0; 1616 1617 retry: 1618 spin_lock(&inode->i_lock); 1619 if (ci->i_dirty_caps && ci->i_auth_cap) { 1620 struct ceph_cap *cap = ci->i_auth_cap; 1621 int used = __ceph_caps_used(ci); 1622 int want = __ceph_caps_wanted(ci); 1623 int delayed; 1624 1625 if (!session) { 1626 spin_unlock(&inode->i_lock); 1627 session = cap->session; 1628 mutex_lock(&session->s_mutex); 1629 goto retry; 1630 } 1631 BUG_ON(session != cap->session); 1632 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1633 goto out; 1634 1635 flushing = __mark_caps_flushing(inode, session); 1636 1637 /* __send_cap drops i_lock */ 1638 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1639 cap->issued | cap->implemented, flushing, 1640 flush_tid); 1641 if (!delayed) 1642 goto out_unlocked; 1643 1644 spin_lock(&inode->i_lock); 1645 __cap_delay_requeue(mdsc, ci); 1646 } 1647 out: 1648 spin_unlock(&inode->i_lock); 1649 out_unlocked: 1650 if (session && unlock_session) 1651 mutex_unlock(&session->s_mutex); 1652 return flushing; 1653 } 1654 1655 /* 1656 * Return true if we've flushed caps through the given flush_tid. 1657 */ 1658 static int caps_are_flushed(struct inode *inode, unsigned tid) 1659 { 1660 struct ceph_inode_info *ci = ceph_inode(inode); 1661 int dirty, i, ret = 1; 1662 1663 spin_lock(&inode->i_lock); 1664 dirty = __ceph_caps_dirty(ci); 1665 for (i = 0; i < CEPH_CAP_BITS; i++) 1666 if ((ci->i_flushing_caps & (1 << i)) && 1667 ci->i_cap_flush_tid[i] <= tid) { 1668 /* still flushing this bit */ 1669 ret = 0; 1670 break; 1671 } 1672 spin_unlock(&inode->i_lock); 1673 return ret; 1674 } 1675 1676 /* 1677 * Wait on any unsafe replies for the given inode. First wait on the 1678 * newest request, and make that the upper bound. Then, if there are 1679 * more requests, keep waiting on the oldest as long as it is still older 1680 * than the original request. 1681 */ 1682 static void sync_write_wait(struct inode *inode) 1683 { 1684 struct ceph_inode_info *ci = ceph_inode(inode); 1685 struct list_head *head = &ci->i_unsafe_writes; 1686 struct ceph_osd_request *req; 1687 u64 last_tid; 1688 1689 spin_lock(&ci->i_unsafe_lock); 1690 if (list_empty(head)) 1691 goto out; 1692 1693 /* set upper bound as _last_ entry in chain */ 1694 req = list_entry(head->prev, struct ceph_osd_request, 1695 r_unsafe_item); 1696 last_tid = req->r_tid; 1697 1698 do { 1699 ceph_osdc_get_request(req); 1700 spin_unlock(&ci->i_unsafe_lock); 1701 dout("sync_write_wait on tid %llu (until %llu)\n", 1702 req->r_tid, last_tid); 1703 wait_for_completion(&req->r_safe_completion); 1704 spin_lock(&ci->i_unsafe_lock); 1705 ceph_osdc_put_request(req); 1706 1707 /* 1708 * from here on look at first entry in chain, since we 1709 * only want to wait for anything older than last_tid 1710 */ 1711 if (list_empty(head)) 1712 break; 1713 req = list_entry(head->next, struct ceph_osd_request, 1714 r_unsafe_item); 1715 } while (req->r_tid < last_tid); 1716 out: 1717 spin_unlock(&ci->i_unsafe_lock); 1718 } 1719 1720 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) 1721 { 1722 struct inode *inode = dentry->d_inode; 1723 struct ceph_inode_info *ci = ceph_inode(inode); 1724 unsigned flush_tid; 1725 int ret; 1726 int dirty; 1727 1728 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1729 sync_write_wait(inode); 1730 1731 ret = filemap_write_and_wait(inode->i_mapping); 1732 if (ret < 0) 1733 return ret; 1734 1735 dirty = try_flush_caps(inode, NULL, &flush_tid); 1736 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1737 1738 /* 1739 * only wait on non-file metadata writeback (the mds 1740 * can recover size and mtime, so we don't need to 1741 * wait for that) 1742 */ 1743 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1744 dout("fsync waiting for flush_tid %u\n", flush_tid); 1745 ret = wait_event_interruptible(ci->i_cap_wq, 1746 caps_are_flushed(inode, flush_tid)); 1747 } 1748 1749 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1750 return ret; 1751 } 1752 1753 /* 1754 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1755 * queue inode for flush but don't do so immediately, because we can 1756 * get by with fewer MDS messages if we wait for data writeback to 1757 * complete first. 1758 */ 1759 int ceph_write_inode(struct inode *inode, int wait) 1760 { 1761 struct ceph_inode_info *ci = ceph_inode(inode); 1762 unsigned flush_tid; 1763 int err = 0; 1764 int dirty; 1765 1766 dout("write_inode %p wait=%d\n", inode, wait); 1767 if (wait) { 1768 dirty = try_flush_caps(inode, NULL, &flush_tid); 1769 if (dirty) 1770 err = wait_event_interruptible(ci->i_cap_wq, 1771 caps_are_flushed(inode, flush_tid)); 1772 } else { 1773 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1774 1775 spin_lock(&inode->i_lock); 1776 if (__ceph_caps_dirty(ci)) 1777 __cap_delay_requeue_front(mdsc, ci); 1778 spin_unlock(&inode->i_lock); 1779 } 1780 return err; 1781 } 1782 1783 /* 1784 * After a recovering MDS goes active, we need to resend any caps 1785 * we were flushing. 1786 * 1787 * Caller holds session->s_mutex. 1788 */ 1789 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1790 struct ceph_mds_session *session) 1791 { 1792 struct ceph_cap_snap *capsnap; 1793 1794 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1795 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1796 flushing_item) { 1797 struct ceph_inode_info *ci = capsnap->ci; 1798 struct inode *inode = &ci->vfs_inode; 1799 struct ceph_cap *cap; 1800 1801 spin_lock(&inode->i_lock); 1802 cap = ci->i_auth_cap; 1803 if (cap && cap->session == session) { 1804 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1805 cap, capsnap); 1806 __ceph_flush_snaps(ci, &session); 1807 } else { 1808 pr_err("%p auth cap %p not mds%d ???\n", inode, 1809 cap, session->s_mds); 1810 spin_unlock(&inode->i_lock); 1811 } 1812 } 1813 } 1814 1815 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1816 struct ceph_mds_session *session) 1817 { 1818 struct ceph_inode_info *ci; 1819 1820 kick_flushing_capsnaps(mdsc, session); 1821 1822 dout("kick_flushing_caps mds%d\n", session->s_mds); 1823 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1824 struct inode *inode = &ci->vfs_inode; 1825 struct ceph_cap *cap; 1826 int delayed = 0; 1827 1828 spin_lock(&inode->i_lock); 1829 cap = ci->i_auth_cap; 1830 if (cap && cap->session == session) { 1831 dout("kick_flushing_caps %p cap %p %s\n", inode, 1832 cap, ceph_cap_string(ci->i_flushing_caps)); 1833 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1834 __ceph_caps_used(ci), 1835 __ceph_caps_wanted(ci), 1836 cap->issued | cap->implemented, 1837 ci->i_flushing_caps, NULL); 1838 if (delayed) { 1839 spin_lock(&inode->i_lock); 1840 __cap_delay_requeue(mdsc, ci); 1841 spin_unlock(&inode->i_lock); 1842 } 1843 } else { 1844 pr_err("%p auth cap %p not mds%d ???\n", inode, 1845 cap, session->s_mds); 1846 spin_unlock(&inode->i_lock); 1847 } 1848 } 1849 } 1850 1851 1852 /* 1853 * Take references to capabilities we hold, so that we don't release 1854 * them to the MDS prematurely. 1855 * 1856 * Protected by i_lock. 1857 */ 1858 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1859 { 1860 if (got & CEPH_CAP_PIN) 1861 ci->i_pin_ref++; 1862 if (got & CEPH_CAP_FILE_RD) 1863 ci->i_rd_ref++; 1864 if (got & CEPH_CAP_FILE_CACHE) 1865 ci->i_rdcache_ref++; 1866 if (got & CEPH_CAP_FILE_WR) 1867 ci->i_wr_ref++; 1868 if (got & CEPH_CAP_FILE_BUFFER) { 1869 if (ci->i_wrbuffer_ref == 0) 1870 igrab(&ci->vfs_inode); 1871 ci->i_wrbuffer_ref++; 1872 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1873 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1874 } 1875 } 1876 1877 /* 1878 * Try to grab cap references. Specify those refs we @want, and the 1879 * minimal set we @need. Also include the larger offset we are writing 1880 * to (when applicable), and check against max_size here as well. 1881 * Note that caller is responsible for ensuring max_size increases are 1882 * requested from the MDS. 1883 */ 1884 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1885 int *got, loff_t endoff, int *check_max, int *err) 1886 { 1887 struct inode *inode = &ci->vfs_inode; 1888 int ret = 0; 1889 int have, implemented; 1890 1891 dout("get_cap_refs %p need %s want %s\n", inode, 1892 ceph_cap_string(need), ceph_cap_string(want)); 1893 spin_lock(&inode->i_lock); 1894 1895 /* make sure we _have_ some caps! */ 1896 if (!__ceph_is_any_caps(ci)) { 1897 dout("get_cap_refs %p no real caps\n", inode); 1898 *err = -EBADF; 1899 ret = 1; 1900 goto out; 1901 } 1902 1903 if (need & CEPH_CAP_FILE_WR) { 1904 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1905 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1906 inode, endoff, ci->i_max_size); 1907 if (endoff > ci->i_wanted_max_size) { 1908 *check_max = 1; 1909 ret = 1; 1910 } 1911 goto out; 1912 } 1913 /* 1914 * If a sync write is in progress, we must wait, so that we 1915 * can get a final snapshot value for size+mtime. 1916 */ 1917 if (__ceph_have_pending_cap_snap(ci)) { 1918 dout("get_cap_refs %p cap_snap_pending\n", inode); 1919 goto out; 1920 } 1921 } 1922 have = __ceph_caps_issued(ci, &implemented); 1923 1924 /* 1925 * disallow writes while a truncate is pending 1926 */ 1927 if (ci->i_truncate_pending) 1928 have &= ~CEPH_CAP_FILE_WR; 1929 1930 if ((have & need) == need) { 1931 /* 1932 * Look at (implemented & ~have & not) so that we keep waiting 1933 * on transition from wanted -> needed caps. This is needed 1934 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 1935 * going before a prior buffered writeback happens. 1936 */ 1937 int not = want & ~(have & need); 1938 int revoking = implemented & ~have; 1939 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 1940 inode, ceph_cap_string(have), ceph_cap_string(not), 1941 ceph_cap_string(revoking)); 1942 if ((revoking & not) == 0) { 1943 *got = need | (have & want); 1944 __take_cap_refs(ci, *got); 1945 ret = 1; 1946 } 1947 } else { 1948 dout("get_cap_refs %p have %s needed %s\n", inode, 1949 ceph_cap_string(have), ceph_cap_string(need)); 1950 } 1951 out: 1952 spin_unlock(&inode->i_lock); 1953 dout("get_cap_refs %p ret %d got %s\n", inode, 1954 ret, ceph_cap_string(*got)); 1955 return ret; 1956 } 1957 1958 /* 1959 * Check the offset we are writing up to against our current 1960 * max_size. If necessary, tell the MDS we want to write to 1961 * a larger offset. 1962 */ 1963 static void check_max_size(struct inode *inode, loff_t endoff) 1964 { 1965 struct ceph_inode_info *ci = ceph_inode(inode); 1966 int check = 0; 1967 1968 /* do we need to explicitly request a larger max_size? */ 1969 spin_lock(&inode->i_lock); 1970 if ((endoff >= ci->i_max_size || 1971 endoff > (inode->i_size << 1)) && 1972 endoff > ci->i_wanted_max_size) { 1973 dout("write %p at large endoff %llu, req max_size\n", 1974 inode, endoff); 1975 ci->i_wanted_max_size = endoff; 1976 check = 1; 1977 } 1978 spin_unlock(&inode->i_lock); 1979 if (check) 1980 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 1981 } 1982 1983 /* 1984 * Wait for caps, and take cap references. If we can't get a WR cap 1985 * due to a small max_size, make sure we check_max_size (and possibly 1986 * ask the mds) so we don't get hung up indefinitely. 1987 */ 1988 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 1989 loff_t endoff) 1990 { 1991 int check_max, ret, err; 1992 1993 retry: 1994 if (endoff > 0) 1995 check_max_size(&ci->vfs_inode, endoff); 1996 check_max = 0; 1997 err = 0; 1998 ret = wait_event_interruptible(ci->i_cap_wq, 1999 try_get_cap_refs(ci, need, want, 2000 got, endoff, 2001 &check_max, &err)); 2002 if (err) 2003 ret = err; 2004 if (check_max) 2005 goto retry; 2006 return ret; 2007 } 2008 2009 /* 2010 * Take cap refs. Caller must already know we hold at least one ref 2011 * on the caps in question or we don't know this is safe. 2012 */ 2013 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2014 { 2015 spin_lock(&ci->vfs_inode.i_lock); 2016 __take_cap_refs(ci, caps); 2017 spin_unlock(&ci->vfs_inode.i_lock); 2018 } 2019 2020 /* 2021 * Release cap refs. 2022 * 2023 * If we released the last ref on any given cap, call ceph_check_caps 2024 * to release (or schedule a release). 2025 * 2026 * If we are releasing a WR cap (from a sync write), finalize any affected 2027 * cap_snap, and wake up any waiters. 2028 */ 2029 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2030 { 2031 struct inode *inode = &ci->vfs_inode; 2032 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2033 struct ceph_cap_snap *capsnap; 2034 2035 spin_lock(&inode->i_lock); 2036 if (had & CEPH_CAP_PIN) 2037 --ci->i_pin_ref; 2038 if (had & CEPH_CAP_FILE_RD) 2039 if (--ci->i_rd_ref == 0) 2040 last++; 2041 if (had & CEPH_CAP_FILE_CACHE) 2042 if (--ci->i_rdcache_ref == 0) 2043 last++; 2044 if (had & CEPH_CAP_FILE_BUFFER) { 2045 if (--ci->i_wrbuffer_ref == 0) { 2046 last++; 2047 put++; 2048 } 2049 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2050 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2051 } 2052 if (had & CEPH_CAP_FILE_WR) 2053 if (--ci->i_wr_ref == 0) { 2054 last++; 2055 if (!list_empty(&ci->i_cap_snaps)) { 2056 capsnap = list_first_entry(&ci->i_cap_snaps, 2057 struct ceph_cap_snap, 2058 ci_item); 2059 if (capsnap->writing) { 2060 capsnap->writing = 0; 2061 flushsnaps = 2062 __ceph_finish_cap_snap(ci, 2063 capsnap); 2064 wake = 1; 2065 } 2066 } 2067 } 2068 spin_unlock(&inode->i_lock); 2069 2070 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had), 2071 last ? "last" : ""); 2072 2073 if (last && !flushsnaps) 2074 ceph_check_caps(ci, 0, NULL); 2075 else if (flushsnaps) 2076 ceph_flush_snaps(ci); 2077 if (wake) 2078 wake_up(&ci->i_cap_wq); 2079 if (put) 2080 iput(inode); 2081 } 2082 2083 /* 2084 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2085 * context. Adjust per-snap dirty page accounting as appropriate. 2086 * Once all dirty data for a cap_snap is flushed, flush snapped file 2087 * metadata back to the MDS. If we dropped the last ref, call 2088 * ceph_check_caps. 2089 */ 2090 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2091 struct ceph_snap_context *snapc) 2092 { 2093 struct inode *inode = &ci->vfs_inode; 2094 int last = 0; 2095 int last_snap = 0; 2096 int found = 0; 2097 struct ceph_cap_snap *capsnap = NULL; 2098 2099 spin_lock(&inode->i_lock); 2100 ci->i_wrbuffer_ref -= nr; 2101 last = !ci->i_wrbuffer_ref; 2102 2103 if (ci->i_head_snapc == snapc) { 2104 ci->i_wrbuffer_ref_head -= nr; 2105 if (!ci->i_wrbuffer_ref_head) { 2106 ceph_put_snap_context(ci->i_head_snapc); 2107 ci->i_head_snapc = NULL; 2108 } 2109 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2110 inode, 2111 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2112 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2113 last ? " LAST" : ""); 2114 } else { 2115 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2116 if (capsnap->context == snapc) { 2117 found = 1; 2118 capsnap->dirty_pages -= nr; 2119 last_snap = !capsnap->dirty_pages; 2120 break; 2121 } 2122 } 2123 BUG_ON(!found); 2124 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2125 " snap %lld %d/%d -> %d/%d %s%s\n", 2126 inode, capsnap, capsnap->context->seq, 2127 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2128 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2129 last ? " (wrbuffer last)" : "", 2130 last_snap ? " (capsnap last)" : ""); 2131 } 2132 2133 spin_unlock(&inode->i_lock); 2134 2135 if (last) { 2136 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2137 iput(inode); 2138 } else if (last_snap) { 2139 ceph_flush_snaps(ci); 2140 wake_up(&ci->i_cap_wq); 2141 } 2142 } 2143 2144 /* 2145 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2146 * actually be a revocation if it specifies a smaller cap set.) 2147 * 2148 * caller holds s_mutex. 2149 * return value: 2150 * 0 - ok 2151 * 1 - check_caps on auth cap only (writeback) 2152 * 2 - check_caps (ack revoke) 2153 */ 2154 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2155 struct ceph_mds_session *session, 2156 struct ceph_cap *cap, 2157 struct ceph_buffer *xattr_buf) 2158 __releases(inode->i_lock) 2159 2160 { 2161 struct ceph_inode_info *ci = ceph_inode(inode); 2162 int mds = session->s_mds; 2163 int seq = le32_to_cpu(grant->seq); 2164 int newcaps = le32_to_cpu(grant->caps); 2165 int issued, implemented, used, wanted, dirty; 2166 u64 size = le64_to_cpu(grant->size); 2167 u64 max_size = le64_to_cpu(grant->max_size); 2168 struct timespec mtime, atime, ctime; 2169 int reply = 0; 2170 int wake = 0; 2171 int writeback = 0; 2172 int revoked_rdcache = 0; 2173 int queue_invalidate = 0; 2174 int tried_invalidate = 0; 2175 int ret; 2176 2177 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2178 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2179 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2180 inode->i_size); 2181 2182 /* 2183 * If CACHE is being revoked, and we have no dirty buffers, 2184 * try to invalidate (once). (If there are dirty buffers, we 2185 * will invalidate _after_ writeback.) 2186 */ 2187 restart: 2188 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2189 !ci->i_wrbuffer_ref && !tried_invalidate) { 2190 dout("CACHE invalidation\n"); 2191 spin_unlock(&inode->i_lock); 2192 tried_invalidate = 1; 2193 2194 ret = invalidate_mapping_pages(&inode->i_data, 0, -1); 2195 spin_lock(&inode->i_lock); 2196 if (ret < 0) { 2197 /* there were locked pages.. invalidate later 2198 in a separate thread. */ 2199 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2200 queue_invalidate = 1; 2201 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2202 } 2203 } else { 2204 /* we successfully invalidated those pages */ 2205 revoked_rdcache = 1; 2206 ci->i_rdcache_gen = 0; 2207 ci->i_rdcache_revoking = 0; 2208 } 2209 goto restart; 2210 } 2211 2212 /* side effects now are allowed */ 2213 2214 issued = __ceph_caps_issued(ci, &implemented); 2215 issued |= implemented | __ceph_caps_dirty(ci); 2216 2217 cap->cap_gen = session->s_cap_gen; 2218 2219 __check_cap_issue(ci, cap, newcaps); 2220 2221 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2222 inode->i_mode = le32_to_cpu(grant->mode); 2223 inode->i_uid = le32_to_cpu(grant->uid); 2224 inode->i_gid = le32_to_cpu(grant->gid); 2225 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2226 inode->i_uid, inode->i_gid); 2227 } 2228 2229 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2230 inode->i_nlink = le32_to_cpu(grant->nlink); 2231 2232 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2233 int len = le32_to_cpu(grant->xattr_len); 2234 u64 version = le64_to_cpu(grant->xattr_version); 2235 2236 if (version > ci->i_xattrs.version) { 2237 dout(" got new xattrs v%llu on %p len %d\n", 2238 version, inode, len); 2239 if (ci->i_xattrs.blob) 2240 ceph_buffer_put(ci->i_xattrs.blob); 2241 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2242 ci->i_xattrs.version = version; 2243 } 2244 } 2245 2246 /* size/ctime/mtime/atime? */ 2247 ceph_fill_file_size(inode, issued, 2248 le32_to_cpu(grant->truncate_seq), 2249 le64_to_cpu(grant->truncate_size), size); 2250 ceph_decode_timespec(&mtime, &grant->mtime); 2251 ceph_decode_timespec(&atime, &grant->atime); 2252 ceph_decode_timespec(&ctime, &grant->ctime); 2253 ceph_fill_file_time(inode, issued, 2254 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2255 &atime); 2256 2257 /* max size increase? */ 2258 if (max_size != ci->i_max_size) { 2259 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2260 ci->i_max_size = max_size; 2261 if (max_size >= ci->i_wanted_max_size) { 2262 ci->i_wanted_max_size = 0; /* reset */ 2263 ci->i_requested_max_size = 0; 2264 } 2265 wake = 1; 2266 } 2267 2268 /* check cap bits */ 2269 wanted = __ceph_caps_wanted(ci); 2270 used = __ceph_caps_used(ci); 2271 dirty = __ceph_caps_dirty(ci); 2272 dout(" my wanted = %s, used = %s, dirty %s\n", 2273 ceph_cap_string(wanted), 2274 ceph_cap_string(used), 2275 ceph_cap_string(dirty)); 2276 if (wanted != le32_to_cpu(grant->wanted)) { 2277 dout("mds wanted %s -> %s\n", 2278 ceph_cap_string(le32_to_cpu(grant->wanted)), 2279 ceph_cap_string(wanted)); 2280 grant->wanted = cpu_to_le32(wanted); 2281 } 2282 2283 cap->seq = seq; 2284 2285 /* file layout may have changed */ 2286 ci->i_layout = grant->layout; 2287 2288 /* revocation, grant, or no-op? */ 2289 if (cap->issued & ~newcaps) { 2290 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2291 ceph_cap_string(newcaps)); 2292 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2293 writeback = 1; /* will delay ack */ 2294 else if (dirty & ~newcaps) 2295 reply = 1; /* initiate writeback in check_caps */ 2296 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2297 revoked_rdcache) 2298 reply = 2; /* send revoke ack in check_caps */ 2299 cap->issued = newcaps; 2300 } else if (cap->issued == newcaps) { 2301 dout("caps unchanged: %s -> %s\n", 2302 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2303 } else { 2304 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2305 ceph_cap_string(newcaps)); 2306 cap->issued = newcaps; 2307 cap->implemented |= newcaps; /* add bits only, to 2308 * avoid stepping on a 2309 * pending revocation */ 2310 wake = 1; 2311 } 2312 2313 spin_unlock(&inode->i_lock); 2314 if (writeback) 2315 /* 2316 * queue inode for writeback: we can't actually call 2317 * filemap_write_and_wait, etc. from message handler 2318 * context. 2319 */ 2320 ceph_queue_writeback(inode); 2321 if (queue_invalidate) 2322 ceph_queue_invalidate(inode); 2323 if (wake) 2324 wake_up(&ci->i_cap_wq); 2325 return reply; 2326 } 2327 2328 /* 2329 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2330 * MDS has been safely committed. 2331 */ 2332 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2333 struct ceph_mds_caps *m, 2334 struct ceph_mds_session *session, 2335 struct ceph_cap *cap) 2336 __releases(inode->i_lock) 2337 { 2338 struct ceph_inode_info *ci = ceph_inode(inode); 2339 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 2340 unsigned seq = le32_to_cpu(m->seq); 2341 int dirty = le32_to_cpu(m->dirty); 2342 int cleaned = 0; 2343 int drop = 0; 2344 int i; 2345 2346 for (i = 0; i < CEPH_CAP_BITS; i++) 2347 if ((dirty & (1 << i)) && 2348 flush_tid == ci->i_cap_flush_tid[i]) 2349 cleaned |= 1 << i; 2350 2351 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2352 " flushing %s -> %s\n", 2353 inode, session->s_mds, seq, ceph_cap_string(dirty), 2354 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2355 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2356 2357 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2358 goto out; 2359 2360 ci->i_flushing_caps &= ~cleaned; 2361 2362 spin_lock(&mdsc->cap_dirty_lock); 2363 if (ci->i_flushing_caps == 0) { 2364 list_del_init(&ci->i_flushing_item); 2365 if (!list_empty(&session->s_cap_flushing)) 2366 dout(" mds%d still flushing cap on %p\n", 2367 session->s_mds, 2368 &list_entry(session->s_cap_flushing.next, 2369 struct ceph_inode_info, 2370 i_flushing_item)->vfs_inode); 2371 mdsc->num_cap_flushing--; 2372 wake_up(&mdsc->cap_flushing_wq); 2373 dout(" inode %p now !flushing\n", inode); 2374 2375 if (ci->i_dirty_caps == 0) { 2376 dout(" inode %p now clean\n", inode); 2377 BUG_ON(!list_empty(&ci->i_dirty_item)); 2378 drop = 1; 2379 } else { 2380 BUG_ON(list_empty(&ci->i_dirty_item)); 2381 } 2382 } 2383 spin_unlock(&mdsc->cap_dirty_lock); 2384 wake_up(&ci->i_cap_wq); 2385 2386 out: 2387 spin_unlock(&inode->i_lock); 2388 if (drop) 2389 iput(inode); 2390 } 2391 2392 /* 2393 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2394 * throw away our cap_snap. 2395 * 2396 * Caller hold s_mutex. 2397 */ 2398 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2399 struct ceph_mds_caps *m, 2400 struct ceph_mds_session *session) 2401 { 2402 struct ceph_inode_info *ci = ceph_inode(inode); 2403 u64 follows = le64_to_cpu(m->snap_follows); 2404 struct ceph_cap_snap *capsnap; 2405 int drop = 0; 2406 2407 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2408 inode, ci, session->s_mds, follows); 2409 2410 spin_lock(&inode->i_lock); 2411 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2412 if (capsnap->follows == follows) { 2413 if (capsnap->flush_tid != flush_tid) { 2414 dout(" cap_snap %p follows %lld tid %lld !=" 2415 " %lld\n", capsnap, follows, 2416 flush_tid, capsnap->flush_tid); 2417 break; 2418 } 2419 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2420 dout(" removing cap_snap %p follows %lld\n", 2421 capsnap, follows); 2422 ceph_put_snap_context(capsnap->context); 2423 list_del(&capsnap->ci_item); 2424 list_del(&capsnap->flushing_item); 2425 ceph_put_cap_snap(capsnap); 2426 drop = 1; 2427 break; 2428 } else { 2429 dout(" skipping cap_snap %p follows %lld\n", 2430 capsnap, capsnap->follows); 2431 } 2432 } 2433 spin_unlock(&inode->i_lock); 2434 if (drop) 2435 iput(inode); 2436 } 2437 2438 /* 2439 * Handle TRUNC from MDS, indicating file truncation. 2440 * 2441 * caller hold s_mutex. 2442 */ 2443 static void handle_cap_trunc(struct inode *inode, 2444 struct ceph_mds_caps *trunc, 2445 struct ceph_mds_session *session) 2446 __releases(inode->i_lock) 2447 { 2448 struct ceph_inode_info *ci = ceph_inode(inode); 2449 int mds = session->s_mds; 2450 int seq = le32_to_cpu(trunc->seq); 2451 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2452 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2453 u64 size = le64_to_cpu(trunc->size); 2454 int implemented = 0; 2455 int dirty = __ceph_caps_dirty(ci); 2456 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2457 int queue_trunc = 0; 2458 2459 issued |= implemented | dirty; 2460 2461 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2462 inode, mds, seq, truncate_size, truncate_seq); 2463 queue_trunc = ceph_fill_file_size(inode, issued, 2464 truncate_seq, truncate_size, size); 2465 spin_unlock(&inode->i_lock); 2466 2467 if (queue_trunc) 2468 ceph_queue_vmtruncate(inode); 2469 } 2470 2471 /* 2472 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2473 * different one. If we are the most recent migration we've seen (as 2474 * indicated by mseq), make note of the migrating cap bits for the 2475 * duration (until we see the corresponding IMPORT). 2476 * 2477 * caller holds s_mutex 2478 */ 2479 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2480 struct ceph_mds_session *session) 2481 { 2482 struct ceph_inode_info *ci = ceph_inode(inode); 2483 int mds = session->s_mds; 2484 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2485 struct ceph_cap *cap = NULL, *t; 2486 struct rb_node *p; 2487 int remember = 1; 2488 2489 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2490 inode, ci, mds, mseq); 2491 2492 spin_lock(&inode->i_lock); 2493 2494 /* make sure we haven't seen a higher mseq */ 2495 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2496 t = rb_entry(p, struct ceph_cap, ci_node); 2497 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2498 dout(" higher mseq on cap from mds%d\n", 2499 t->session->s_mds); 2500 remember = 0; 2501 } 2502 if (t->session->s_mds == mds) 2503 cap = t; 2504 } 2505 2506 if (cap) { 2507 if (remember) { 2508 /* make note */ 2509 ci->i_cap_exporting_mds = mds; 2510 ci->i_cap_exporting_mseq = mseq; 2511 ci->i_cap_exporting_issued = cap->issued; 2512 } 2513 __ceph_remove_cap(cap, NULL); 2514 } else { 2515 WARN_ON(!cap); 2516 } 2517 2518 spin_unlock(&inode->i_lock); 2519 } 2520 2521 /* 2522 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2523 * clean them up. 2524 * 2525 * caller holds s_mutex. 2526 */ 2527 static void handle_cap_import(struct ceph_mds_client *mdsc, 2528 struct inode *inode, struct ceph_mds_caps *im, 2529 struct ceph_mds_session *session, 2530 void *snaptrace, int snaptrace_len) 2531 { 2532 struct ceph_inode_info *ci = ceph_inode(inode); 2533 int mds = session->s_mds; 2534 unsigned issued = le32_to_cpu(im->caps); 2535 unsigned wanted = le32_to_cpu(im->wanted); 2536 unsigned seq = le32_to_cpu(im->seq); 2537 unsigned mseq = le32_to_cpu(im->migrate_seq); 2538 u64 realmino = le64_to_cpu(im->realm); 2539 u64 cap_id = le64_to_cpu(im->cap_id); 2540 2541 if (ci->i_cap_exporting_mds >= 0 && 2542 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2543 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2544 " - cleared exporting from mds%d\n", 2545 inode, ci, mds, mseq, 2546 ci->i_cap_exporting_mds); 2547 ci->i_cap_exporting_issued = 0; 2548 ci->i_cap_exporting_mseq = 0; 2549 ci->i_cap_exporting_mds = -1; 2550 } else { 2551 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2552 inode, ci, mds, mseq); 2553 } 2554 2555 down_write(&mdsc->snap_rwsem); 2556 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2557 false); 2558 downgrade_write(&mdsc->snap_rwsem); 2559 ceph_add_cap(inode, session, cap_id, -1, 2560 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2561 NULL /* no caps context */); 2562 try_flush_caps(inode, session, NULL); 2563 up_read(&mdsc->snap_rwsem); 2564 } 2565 2566 /* 2567 * Handle a caps message from the MDS. 2568 * 2569 * Identify the appropriate session, inode, and call the right handler 2570 * based on the cap op. 2571 */ 2572 void ceph_handle_caps(struct ceph_mds_session *session, 2573 struct ceph_msg *msg) 2574 { 2575 struct ceph_mds_client *mdsc = session->s_mdsc; 2576 struct super_block *sb = mdsc->client->sb; 2577 struct inode *inode; 2578 struct ceph_cap *cap; 2579 struct ceph_mds_caps *h; 2580 int mds = le64_to_cpu(msg->hdr.src.name.num); 2581 int op; 2582 u32 seq; 2583 struct ceph_vino vino; 2584 u64 cap_id; 2585 u64 size, max_size; 2586 u64 tid; 2587 int check_caps = 0; 2588 int r; 2589 2590 dout("handle_caps from mds%d\n", mds); 2591 2592 /* decode */ 2593 tid = le64_to_cpu(msg->hdr.tid); 2594 if (msg->front.iov_len < sizeof(*h)) 2595 goto bad; 2596 h = msg->front.iov_base; 2597 op = le32_to_cpu(h->op); 2598 vino.ino = le64_to_cpu(h->ino); 2599 vino.snap = CEPH_NOSNAP; 2600 cap_id = le64_to_cpu(h->cap_id); 2601 seq = le32_to_cpu(h->seq); 2602 size = le64_to_cpu(h->size); 2603 max_size = le64_to_cpu(h->max_size); 2604 2605 mutex_lock(&session->s_mutex); 2606 session->s_seq++; 2607 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2608 (unsigned)seq); 2609 2610 /* lookup ino */ 2611 inode = ceph_find_inode(sb, vino); 2612 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2613 vino.snap, inode); 2614 if (!inode) { 2615 dout(" i don't have ino %llx\n", vino.ino); 2616 goto done; 2617 } 2618 2619 /* these will work even if we don't have a cap yet */ 2620 switch (op) { 2621 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2622 handle_cap_flushsnap_ack(inode, tid, h, session); 2623 goto done; 2624 2625 case CEPH_CAP_OP_EXPORT: 2626 handle_cap_export(inode, h, session); 2627 goto done; 2628 2629 case CEPH_CAP_OP_IMPORT: 2630 handle_cap_import(mdsc, inode, h, session, 2631 msg->middle, 2632 le32_to_cpu(h->snap_trace_len)); 2633 check_caps = 1; /* we may have sent a RELEASE to the old auth */ 2634 goto done; 2635 } 2636 2637 /* the rest require a cap */ 2638 spin_lock(&inode->i_lock); 2639 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2640 if (!cap) { 2641 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", 2642 inode, ceph_ino(inode), ceph_snap(inode), mds); 2643 spin_unlock(&inode->i_lock); 2644 goto done; 2645 } 2646 2647 /* note that each of these drops i_lock for us */ 2648 switch (op) { 2649 case CEPH_CAP_OP_REVOKE: 2650 case CEPH_CAP_OP_GRANT: 2651 r = handle_cap_grant(inode, h, session, cap, msg->middle); 2652 if (r == 1) 2653 ceph_check_caps(ceph_inode(inode), 2654 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2655 session); 2656 else if (r == 2) 2657 ceph_check_caps(ceph_inode(inode), 2658 CHECK_CAPS_NODELAY, 2659 session); 2660 break; 2661 2662 case CEPH_CAP_OP_FLUSH_ACK: 2663 handle_cap_flush_ack(inode, tid, h, session, cap); 2664 break; 2665 2666 case CEPH_CAP_OP_TRUNC: 2667 handle_cap_trunc(inode, h, session); 2668 break; 2669 2670 default: 2671 spin_unlock(&inode->i_lock); 2672 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2673 ceph_cap_op_name(op)); 2674 } 2675 2676 done: 2677 mutex_unlock(&session->s_mutex); 2678 2679 if (check_caps) 2680 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL); 2681 if (inode) 2682 iput(inode); 2683 return; 2684 2685 bad: 2686 pr_err("ceph_handle_caps: corrupt message\n"); 2687 ceph_msg_dump(msg); 2688 return; 2689 } 2690 2691 /* 2692 * Delayed work handler to process end of delayed cap release LRU list. 2693 */ 2694 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2695 { 2696 struct ceph_inode_info *ci; 2697 int flags = CHECK_CAPS_NODELAY; 2698 2699 dout("check_delayed_caps\n"); 2700 while (1) { 2701 spin_lock(&mdsc->cap_delay_lock); 2702 if (list_empty(&mdsc->cap_delay_list)) 2703 break; 2704 ci = list_first_entry(&mdsc->cap_delay_list, 2705 struct ceph_inode_info, 2706 i_cap_delay_list); 2707 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2708 time_before(jiffies, ci->i_hold_caps_max)) 2709 break; 2710 list_del_init(&ci->i_cap_delay_list); 2711 spin_unlock(&mdsc->cap_delay_lock); 2712 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2713 ceph_check_caps(ci, flags, NULL); 2714 } 2715 spin_unlock(&mdsc->cap_delay_lock); 2716 } 2717 2718 /* 2719 * Flush all dirty caps to the mds 2720 */ 2721 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2722 { 2723 struct ceph_inode_info *ci; 2724 struct inode *inode; 2725 2726 dout("flush_dirty_caps\n"); 2727 spin_lock(&mdsc->cap_dirty_lock); 2728 while (!list_empty(&mdsc->cap_dirty)) { 2729 ci = list_first_entry(&mdsc->cap_dirty, 2730 struct ceph_inode_info, 2731 i_dirty_item); 2732 inode = igrab(&ci->vfs_inode); 2733 spin_unlock(&mdsc->cap_dirty_lock); 2734 if (inode) { 2735 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2736 NULL); 2737 iput(inode); 2738 } 2739 spin_lock(&mdsc->cap_dirty_lock); 2740 } 2741 spin_unlock(&mdsc->cap_dirty_lock); 2742 } 2743 2744 /* 2745 * Drop open file reference. If we were the last open file, 2746 * we may need to release capabilities to the MDS (or schedule 2747 * their delayed release). 2748 */ 2749 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2750 { 2751 struct inode *inode = &ci->vfs_inode; 2752 int last = 0; 2753 2754 spin_lock(&inode->i_lock); 2755 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2756 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2757 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2758 if (--ci->i_nr_by_mode[fmode] == 0) 2759 last++; 2760 spin_unlock(&inode->i_lock); 2761 2762 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2763 ceph_check_caps(ci, 0, NULL); 2764 } 2765 2766 /* 2767 * Helpers for embedding cap and dentry lease releases into mds 2768 * requests. 2769 * 2770 * @force is used by dentry_release (below) to force inclusion of a 2771 * record for the directory inode, even when there aren't any caps to 2772 * drop. 2773 */ 2774 int ceph_encode_inode_release(void **p, struct inode *inode, 2775 int mds, int drop, int unless, int force) 2776 { 2777 struct ceph_inode_info *ci = ceph_inode(inode); 2778 struct ceph_cap *cap; 2779 struct ceph_mds_request_release *rel = *p; 2780 int ret = 0; 2781 2782 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode, 2783 mds, ceph_cap_string(drop), ceph_cap_string(unless)); 2784 2785 spin_lock(&inode->i_lock); 2786 cap = __get_cap_for_mds(ci, mds); 2787 if (cap && __cap_is_valid(cap)) { 2788 if (force || 2789 ((cap->issued & drop) && 2790 (cap->issued & unless) == 0)) { 2791 if ((cap->issued & drop) && 2792 (cap->issued & unless) == 0) { 2793 dout("encode_inode_release %p cap %p %s -> " 2794 "%s\n", inode, cap, 2795 ceph_cap_string(cap->issued), 2796 ceph_cap_string(cap->issued & ~drop)); 2797 cap->issued &= ~drop; 2798 cap->implemented &= ~drop; 2799 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2800 int wanted = __ceph_caps_wanted(ci); 2801 dout(" wanted %s -> %s (act %s)\n", 2802 ceph_cap_string(cap->mds_wanted), 2803 ceph_cap_string(cap->mds_wanted & 2804 ~wanted), 2805 ceph_cap_string(wanted)); 2806 cap->mds_wanted &= wanted; 2807 } 2808 } else { 2809 dout("encode_inode_release %p cap %p %s" 2810 " (force)\n", inode, cap, 2811 ceph_cap_string(cap->issued)); 2812 } 2813 2814 rel->ino = cpu_to_le64(ceph_ino(inode)); 2815 rel->cap_id = cpu_to_le64(cap->cap_id); 2816 rel->seq = cpu_to_le32(cap->seq); 2817 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2818 rel->mseq = cpu_to_le32(cap->mseq); 2819 rel->caps = cpu_to_le32(cap->issued); 2820 rel->wanted = cpu_to_le32(cap->mds_wanted); 2821 rel->dname_len = 0; 2822 rel->dname_seq = 0; 2823 *p += sizeof(*rel); 2824 ret = 1; 2825 } else { 2826 dout("encode_inode_release %p cap %p %s\n", 2827 inode, cap, ceph_cap_string(cap->issued)); 2828 } 2829 } 2830 spin_unlock(&inode->i_lock); 2831 return ret; 2832 } 2833 2834 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2835 int mds, int drop, int unless) 2836 { 2837 struct inode *dir = dentry->d_parent->d_inode; 2838 struct ceph_mds_request_release *rel = *p; 2839 struct ceph_dentry_info *di = ceph_dentry(dentry); 2840 int force = 0; 2841 int ret; 2842 2843 /* 2844 * force an record for the directory caps if we have a dentry lease. 2845 * this is racy (can't take i_lock and d_lock together), but it 2846 * doesn't have to be perfect; the mds will revoke anything we don't 2847 * release. 2848 */ 2849 spin_lock(&dentry->d_lock); 2850 if (di->lease_session && di->lease_session->s_mds == mds) 2851 force = 1; 2852 spin_unlock(&dentry->d_lock); 2853 2854 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2855 2856 spin_lock(&dentry->d_lock); 2857 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2858 dout("encode_dentry_release %p mds%d seq %d\n", 2859 dentry, mds, (int)di->lease_seq); 2860 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2861 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2862 *p += dentry->d_name.len; 2863 rel->dname_seq = cpu_to_le32(di->lease_seq); 2864 } 2865 spin_unlock(&dentry->d_lock); 2866 return ret; 2867 } 2868