xref: /openbmc/linux/fs/ceph/caps.c (revision 80310491)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8 
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12 
13 /*
14  * Capability management
15  *
16  * The Ceph metadata servers control client access to inode metadata
17  * and file data by issuing capabilities, granting clients permission
18  * to read and/or write both inode field and file data to OSDs
19  * (storage nodes).  Each capability consists of a set of bits
20  * indicating which operations are allowed.
21  *
22  * If the client holds a *_SHARED cap, the client has a coherent value
23  * that can be safely read from the cached inode.
24  *
25  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26  * client is allowed to change inode attributes (e.g., file size,
27  * mtime), note its dirty state in the ceph_cap, and asynchronously
28  * flush that metadata change to the MDS.
29  *
30  * In the event of a conflicting operation (perhaps by another
31  * client), the MDS will revoke the conflicting client capabilities.
32  *
33  * In order for a client to cache an inode, it must hold a capability
34  * with at least one MDS server.  When inodes are released, release
35  * notifications are batched and periodically sent en masse to the MDS
36  * cluster to release server state.
37  */
38 
39 
40 /*
41  * Generate readable cap strings for debugging output.
42  */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47 
48 static char *gcap_string(char *s, int c)
49 {
50 	if (c & CEPH_CAP_GSHARED)
51 		*s++ = 's';
52 	if (c & CEPH_CAP_GEXCL)
53 		*s++ = 'x';
54 	if (c & CEPH_CAP_GCACHE)
55 		*s++ = 'c';
56 	if (c & CEPH_CAP_GRD)
57 		*s++ = 'r';
58 	if (c & CEPH_CAP_GWR)
59 		*s++ = 'w';
60 	if (c & CEPH_CAP_GBUFFER)
61 		*s++ = 'b';
62 	if (c & CEPH_CAP_GLAZYIO)
63 		*s++ = 'l';
64 	return s;
65 }
66 
67 const char *ceph_cap_string(int caps)
68 {
69 	int i;
70 	char *s;
71 	int c;
72 
73 	spin_lock(&cap_str_lock);
74 	i = last_cap_str++;
75 	if (last_cap_str == MAX_CAP_STR)
76 		last_cap_str = 0;
77 	spin_unlock(&cap_str_lock);
78 
79 	s = cap_str[i];
80 
81 	if (caps & CEPH_CAP_PIN)
82 		*s++ = 'p';
83 
84 	c = (caps >> CEPH_CAP_SAUTH) & 3;
85 	if (c) {
86 		*s++ = 'A';
87 		s = gcap_string(s, c);
88 	}
89 
90 	c = (caps >> CEPH_CAP_SLINK) & 3;
91 	if (c) {
92 		*s++ = 'L';
93 		s = gcap_string(s, c);
94 	}
95 
96 	c = (caps >> CEPH_CAP_SXATTR) & 3;
97 	if (c) {
98 		*s++ = 'X';
99 		s = gcap_string(s, c);
100 	}
101 
102 	c = caps >> CEPH_CAP_SFILE;
103 	if (c) {
104 		*s++ = 'F';
105 		s = gcap_string(s, c);
106 	}
107 
108 	if (s == cap_str[i])
109 		*s++ = '-';
110 	*s = 0;
111 	return cap_str[i];
112 }
113 
114 /*
115  * Cap reservations
116  *
117  * Maintain a global pool of preallocated struct ceph_caps, referenced
118  * by struct ceph_caps_reservations.  This ensures that we preallocate
119  * memory needed to successfully process an MDS response.  (If an MDS
120  * sends us cap information and we fail to process it, we will have
121  * problems due to the client and MDS being out of sync.)
122  *
123  * Reservations are 'owned' by a ceph_cap_reservation context.
124  */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list;  /* unused (reserved or unreserved) */
127 static int caps_total_count;        /* total caps allocated */
128 static int caps_use_count;          /* in use */
129 static int caps_reserve_count;      /* unused, reserved */
130 static int caps_avail_count;        /* unused, unreserved */
131 
132 void __init ceph_caps_init(void)
133 {
134 	INIT_LIST_HEAD(&caps_list);
135 	spin_lock_init(&caps_list_lock);
136 }
137 
138 void ceph_caps_finalize(void)
139 {
140 	struct ceph_cap *cap;
141 
142 	spin_lock(&caps_list_lock);
143 	while (!list_empty(&caps_list)) {
144 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
145 		list_del(&cap->caps_item);
146 		kmem_cache_free(ceph_cap_cachep, cap);
147 	}
148 	caps_total_count = 0;
149 	caps_avail_count = 0;
150 	caps_use_count = 0;
151 	caps_reserve_count = 0;
152 	spin_unlock(&caps_list_lock);
153 }
154 
155 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
156 {
157 	int i;
158 	struct ceph_cap *cap;
159 	int have;
160 	int alloc = 0;
161 	LIST_HEAD(newcaps);
162 	int ret = 0;
163 
164 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
165 
166 	/* first reserve any caps that are already allocated */
167 	spin_lock(&caps_list_lock);
168 	if (caps_avail_count >= need)
169 		have = need;
170 	else
171 		have = caps_avail_count;
172 	caps_avail_count -= have;
173 	caps_reserve_count += have;
174 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
175 	       caps_avail_count);
176 	spin_unlock(&caps_list_lock);
177 
178 	for (i = have; i < need; i++) {
179 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
180 		if (!cap) {
181 			ret = -ENOMEM;
182 			goto out_alloc_count;
183 		}
184 		list_add(&cap->caps_item, &newcaps);
185 		alloc++;
186 	}
187 	BUG_ON(have + alloc != need);
188 
189 	spin_lock(&caps_list_lock);
190 	caps_total_count += alloc;
191 	caps_reserve_count += alloc;
192 	list_splice(&newcaps, &caps_list);
193 
194 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
195 	       caps_avail_count);
196 	spin_unlock(&caps_list_lock);
197 
198 	ctx->count = need;
199 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
200 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
201 	     caps_avail_count);
202 	return 0;
203 
204 out_alloc_count:
205 	/* we didn't manage to reserve as much as we needed */
206 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
207 		   ctx, need, have);
208 	return ret;
209 }
210 
211 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
212 {
213 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
214 	if (ctx->count) {
215 		spin_lock(&caps_list_lock);
216 		BUG_ON(caps_reserve_count < ctx->count);
217 		caps_reserve_count -= ctx->count;
218 		caps_avail_count += ctx->count;
219 		ctx->count = 0;
220 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
221 		     caps_total_count, caps_use_count, caps_reserve_count,
222 		     caps_avail_count);
223 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
224 		       caps_avail_count);
225 		spin_unlock(&caps_list_lock);
226 	}
227 	return 0;
228 }
229 
230 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
231 {
232 	struct ceph_cap *cap = NULL;
233 
234 	/* temporary, until we do something about cap import/export */
235 	if (!ctx)
236 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237 
238 	spin_lock(&caps_list_lock);
239 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
240 	     ctx, ctx->count, caps_total_count, caps_use_count,
241 	     caps_reserve_count, caps_avail_count);
242 	BUG_ON(!ctx->count);
243 	BUG_ON(ctx->count > caps_reserve_count);
244 	BUG_ON(list_empty(&caps_list));
245 
246 	ctx->count--;
247 	caps_reserve_count--;
248 	caps_use_count++;
249 
250 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
251 	list_del(&cap->caps_item);
252 
253 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
254 	       caps_avail_count);
255 	spin_unlock(&caps_list_lock);
256 	return cap;
257 }
258 
259 static void put_cap(struct ceph_cap *cap,
260 		    struct ceph_cap_reservation *ctx)
261 {
262 	spin_lock(&caps_list_lock);
263 	dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
264 	     ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count,
265 	     caps_reserve_count, caps_avail_count);
266 	caps_use_count--;
267 	/*
268 	 * Keep some preallocated caps around, at least enough to do a
269 	 * readdir (which needs to preallocate lots of them), to avoid
270 	 * lots of free/alloc churn.
271 	 */
272 	if (caps_avail_count >= caps_reserve_count +
273 	    ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) {
274 		caps_total_count--;
275 		kmem_cache_free(ceph_cap_cachep, cap);
276 	} else {
277 		if (ctx) {
278 			ctx->count++;
279 			caps_reserve_count++;
280 		} else {
281 			caps_avail_count++;
282 		}
283 		list_add(&cap->caps_item, &caps_list);
284 	}
285 
286 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
287 	       caps_avail_count);
288 	spin_unlock(&caps_list_lock);
289 }
290 
291 void ceph_reservation_status(struct ceph_client *client,
292 			     int *total, int *avail, int *used, int *reserved)
293 {
294 	if (total)
295 		*total = caps_total_count;
296 	if (avail)
297 		*avail = caps_avail_count;
298 	if (used)
299 		*used = caps_use_count;
300 	if (reserved)
301 		*reserved = caps_reserve_count;
302 }
303 
304 /*
305  * Find ceph_cap for given mds, if any.
306  *
307  * Called with i_lock held.
308  */
309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310 {
311 	struct ceph_cap *cap;
312 	struct rb_node *n = ci->i_caps.rb_node;
313 
314 	while (n) {
315 		cap = rb_entry(n, struct ceph_cap, ci_node);
316 		if (mds < cap->mds)
317 			n = n->rb_left;
318 		else if (mds > cap->mds)
319 			n = n->rb_right;
320 		else
321 			return cap;
322 	}
323 	return NULL;
324 }
325 
326 /*
327  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
328  * -1.
329  */
330 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
331 {
332 	struct ceph_cap *cap;
333 	int mds = -1;
334 	struct rb_node *p;
335 
336 	/* prefer mds with WR|WRBUFFER|EXCL caps */
337 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
338 		cap = rb_entry(p, struct ceph_cap, ci_node);
339 		mds = cap->mds;
340 		if (mseq)
341 			*mseq = cap->mseq;
342 		if (cap->issued & (CEPH_CAP_FILE_WR |
343 				   CEPH_CAP_FILE_BUFFER |
344 				   CEPH_CAP_FILE_EXCL))
345 			break;
346 	}
347 	return mds;
348 }
349 
350 int ceph_get_cap_mds(struct inode *inode)
351 {
352 	int mds;
353 	spin_lock(&inode->i_lock);
354 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
355 	spin_unlock(&inode->i_lock);
356 	return mds;
357 }
358 
359 /*
360  * Called under i_lock.
361  */
362 static void __insert_cap_node(struct ceph_inode_info *ci,
363 			      struct ceph_cap *new)
364 {
365 	struct rb_node **p = &ci->i_caps.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct ceph_cap *cap = NULL;
368 
369 	while (*p) {
370 		parent = *p;
371 		cap = rb_entry(parent, struct ceph_cap, ci_node);
372 		if (new->mds < cap->mds)
373 			p = &(*p)->rb_left;
374 		else if (new->mds > cap->mds)
375 			p = &(*p)->rb_right;
376 		else
377 			BUG();
378 	}
379 
380 	rb_link_node(&new->ci_node, parent, p);
381 	rb_insert_color(&new->ci_node, &ci->i_caps);
382 }
383 
384 /*
385  * (re)set cap hold timeouts, which control the delayed release
386  * of unused caps back to the MDS.  Should be called on cap use.
387  */
388 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
389 			       struct ceph_inode_info *ci)
390 {
391 	struct ceph_mount_args *ma = mdsc->client->mount_args;
392 
393 	ci->i_hold_caps_min = round_jiffies(jiffies +
394 					    ma->caps_wanted_delay_min * HZ);
395 	ci->i_hold_caps_max = round_jiffies(jiffies +
396 					    ma->caps_wanted_delay_max * HZ);
397 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
398 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
399 }
400 
401 /*
402  * (Re)queue cap at the end of the delayed cap release list.
403  *
404  * If I_FLUSH is set, leave the inode at the front of the list.
405  *
406  * Caller holds i_lock
407  *    -> we take mdsc->cap_delay_lock
408  */
409 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
410 				struct ceph_inode_info *ci)
411 {
412 	__cap_set_timeouts(mdsc, ci);
413 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
414 	     ci->i_ceph_flags, ci->i_hold_caps_max);
415 	if (!mdsc->stopping) {
416 		spin_lock(&mdsc->cap_delay_lock);
417 		if (!list_empty(&ci->i_cap_delay_list)) {
418 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
419 				goto no_change;
420 			list_del_init(&ci->i_cap_delay_list);
421 		}
422 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
423 no_change:
424 		spin_unlock(&mdsc->cap_delay_lock);
425 	}
426 }
427 
428 /*
429  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
430  * indicating we should send a cap message to flush dirty metadata
431  * asap, and move to the front of the delayed cap list.
432  */
433 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
434 				      struct ceph_inode_info *ci)
435 {
436 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
437 	spin_lock(&mdsc->cap_delay_lock);
438 	ci->i_ceph_flags |= CEPH_I_FLUSH;
439 	if (!list_empty(&ci->i_cap_delay_list))
440 		list_del_init(&ci->i_cap_delay_list);
441 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
442 	spin_unlock(&mdsc->cap_delay_lock);
443 }
444 
445 /*
446  * Cancel delayed work on cap.
447  *
448  * Caller must hold i_lock.
449  */
450 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
451 			       struct ceph_inode_info *ci)
452 {
453 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
454 	if (list_empty(&ci->i_cap_delay_list))
455 		return;
456 	spin_lock(&mdsc->cap_delay_lock);
457 	list_del_init(&ci->i_cap_delay_list);
458 	spin_unlock(&mdsc->cap_delay_lock);
459 }
460 
461 /*
462  * Common issue checks for add_cap, handle_cap_grant.
463  */
464 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
465 			      unsigned issued)
466 {
467 	unsigned had = __ceph_caps_issued(ci, NULL);
468 
469 	/*
470 	 * Each time we receive FILE_CACHE anew, we increment
471 	 * i_rdcache_gen.
472 	 */
473 	if ((issued & CEPH_CAP_FILE_CACHE) &&
474 	    (had & CEPH_CAP_FILE_CACHE) == 0)
475 		ci->i_rdcache_gen++;
476 
477 	/*
478 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
479 	 * don't know what happened to this directory while we didn't
480 	 * have the cap.
481 	 */
482 	if ((issued & CEPH_CAP_FILE_SHARED) &&
483 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
484 		ci->i_shared_gen++;
485 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
486 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
487 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
488 		}
489 	}
490 }
491 
492 /*
493  * Add a capability under the given MDS session.
494  *
495  * Caller should hold session snap_rwsem (read) and s_mutex.
496  *
497  * @fmode is the open file mode, if we are opening a file, otherwise
498  * it is < 0.  (This is so we can atomically add the cap and add an
499  * open file reference to it.)
500  */
501 int ceph_add_cap(struct inode *inode,
502 		 struct ceph_mds_session *session, u64 cap_id,
503 		 int fmode, unsigned issued, unsigned wanted,
504 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
505 		 struct ceph_cap_reservation *caps_reservation)
506 {
507 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
508 	struct ceph_inode_info *ci = ceph_inode(inode);
509 	struct ceph_cap *new_cap = NULL;
510 	struct ceph_cap *cap;
511 	int mds = session->s_mds;
512 	int actual_wanted;
513 
514 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
515 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
516 
517 	/*
518 	 * If we are opening the file, include file mode wanted bits
519 	 * in wanted.
520 	 */
521 	if (fmode >= 0)
522 		wanted |= ceph_caps_for_mode(fmode);
523 
524 retry:
525 	spin_lock(&inode->i_lock);
526 	cap = __get_cap_for_mds(ci, mds);
527 	if (!cap) {
528 		if (new_cap) {
529 			cap = new_cap;
530 			new_cap = NULL;
531 		} else {
532 			spin_unlock(&inode->i_lock);
533 			new_cap = get_cap(caps_reservation);
534 			if (new_cap == NULL)
535 				return -ENOMEM;
536 			goto retry;
537 		}
538 
539 		cap->issued = 0;
540 		cap->implemented = 0;
541 		cap->mds = mds;
542 		cap->mds_wanted = 0;
543 
544 		cap->ci = ci;
545 		__insert_cap_node(ci, cap);
546 
547 		/* clear out old exporting info?  (i.e. on cap import) */
548 		if (ci->i_cap_exporting_mds == mds) {
549 			ci->i_cap_exporting_issued = 0;
550 			ci->i_cap_exporting_mseq = 0;
551 			ci->i_cap_exporting_mds = -1;
552 		}
553 
554 		/* add to session cap list */
555 		cap->session = session;
556 		spin_lock(&session->s_cap_lock);
557 		list_add_tail(&cap->session_caps, &session->s_caps);
558 		session->s_nr_caps++;
559 		spin_unlock(&session->s_cap_lock);
560 	}
561 
562 	if (!ci->i_snap_realm) {
563 		/*
564 		 * add this inode to the appropriate snap realm
565 		 */
566 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
567 							       realmino);
568 		if (realm) {
569 			ceph_get_snap_realm(mdsc, realm);
570 			spin_lock(&realm->inodes_with_caps_lock);
571 			ci->i_snap_realm = realm;
572 			list_add(&ci->i_snap_realm_item,
573 				 &realm->inodes_with_caps);
574 			spin_unlock(&realm->inodes_with_caps_lock);
575 		} else {
576 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
577 			       realmino);
578 		}
579 	}
580 
581 	__check_cap_issue(ci, cap, issued);
582 
583 	/*
584 	 * If we are issued caps we don't want, or the mds' wanted
585 	 * value appears to be off, queue a check so we'll release
586 	 * later and/or update the mds wanted value.
587 	 */
588 	actual_wanted = __ceph_caps_wanted(ci);
589 	if ((wanted & ~actual_wanted) ||
590 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
591 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
592 		     ceph_cap_string(issued), ceph_cap_string(wanted),
593 		     ceph_cap_string(actual_wanted));
594 		__cap_delay_requeue(mdsc, ci);
595 	}
596 
597 	if (flags & CEPH_CAP_FLAG_AUTH)
598 		ci->i_auth_cap = cap;
599 	else if (ci->i_auth_cap == cap)
600 		ci->i_auth_cap = NULL;
601 
602 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
603 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
604 	     ceph_cap_string(issued|cap->issued), seq, mds);
605 	cap->cap_id = cap_id;
606 	cap->issued = issued;
607 	cap->implemented |= issued;
608 	cap->mds_wanted |= wanted;
609 	cap->seq = seq;
610 	cap->issue_seq = seq;
611 	cap->mseq = mseq;
612 	cap->cap_gen = session->s_cap_gen;
613 
614 	if (fmode >= 0)
615 		__ceph_get_fmode(ci, fmode);
616 	spin_unlock(&inode->i_lock);
617 	wake_up(&ci->i_cap_wq);
618 	return 0;
619 }
620 
621 /*
622  * Return true if cap has not timed out and belongs to the current
623  * generation of the MDS session (i.e. has not gone 'stale' due to
624  * us losing touch with the mds).
625  */
626 static int __cap_is_valid(struct ceph_cap *cap)
627 {
628 	unsigned long ttl;
629 	u32 gen;
630 
631 	spin_lock(&cap->session->s_cap_lock);
632 	gen = cap->session->s_cap_gen;
633 	ttl = cap->session->s_cap_ttl;
634 	spin_unlock(&cap->session->s_cap_lock);
635 
636 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
637 		dout("__cap_is_valid %p cap %p issued %s "
638 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
639 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
640 		return 0;
641 	}
642 
643 	return 1;
644 }
645 
646 /*
647  * Return set of valid cap bits issued to us.  Note that caps time
648  * out, and may be invalidated in bulk if the client session times out
649  * and session->s_cap_gen is bumped.
650  */
651 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
652 {
653 	int have = ci->i_snap_caps;
654 	struct ceph_cap *cap;
655 	struct rb_node *p;
656 
657 	if (implemented)
658 		*implemented = 0;
659 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
660 		cap = rb_entry(p, struct ceph_cap, ci_node);
661 		if (!__cap_is_valid(cap))
662 			continue;
663 		dout("__ceph_caps_issued %p cap %p issued %s\n",
664 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
665 		have |= cap->issued;
666 		if (implemented)
667 			*implemented |= cap->implemented;
668 	}
669 	return have;
670 }
671 
672 /*
673  * Get cap bits issued by caps other than @ocap
674  */
675 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
676 {
677 	int have = ci->i_snap_caps;
678 	struct ceph_cap *cap;
679 	struct rb_node *p;
680 
681 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
682 		cap = rb_entry(p, struct ceph_cap, ci_node);
683 		if (cap == ocap)
684 			continue;
685 		if (!__cap_is_valid(cap))
686 			continue;
687 		have |= cap->issued;
688 	}
689 	return have;
690 }
691 
692 /*
693  * Move a cap to the end of the LRU (oldest caps at list head, newest
694  * at list tail).
695  */
696 static void __touch_cap(struct ceph_cap *cap)
697 {
698 	struct ceph_mds_session *s = cap->session;
699 
700 	spin_lock(&s->s_cap_lock);
701 	if (!s->s_iterating_caps) {
702 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
703 		     s->s_mds);
704 		list_move_tail(&cap->session_caps, &s->s_caps);
705 	} else {
706 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
707 		     &cap->ci->vfs_inode, cap, s->s_mds);
708 	}
709 	spin_unlock(&s->s_cap_lock);
710 }
711 
712 /*
713  * Check if we hold the given mask.  If so, move the cap(s) to the
714  * front of their respective LRUs.  (This is the preferred way for
715  * callers to check for caps they want.)
716  */
717 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
718 {
719 	struct ceph_cap *cap;
720 	struct rb_node *p;
721 	int have = ci->i_snap_caps;
722 
723 	if ((have & mask) == mask) {
724 		dout("__ceph_caps_issued_mask %p snap issued %s"
725 		     " (mask %s)\n", &ci->vfs_inode,
726 		     ceph_cap_string(have),
727 		     ceph_cap_string(mask));
728 		return 1;
729 	}
730 
731 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
732 		cap = rb_entry(p, struct ceph_cap, ci_node);
733 		if (!__cap_is_valid(cap))
734 			continue;
735 		if ((cap->issued & mask) == mask) {
736 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
737 			     " (mask %s)\n", &ci->vfs_inode, cap,
738 			     ceph_cap_string(cap->issued),
739 			     ceph_cap_string(mask));
740 			if (touch)
741 				__touch_cap(cap);
742 			return 1;
743 		}
744 
745 		/* does a combination of caps satisfy mask? */
746 		have |= cap->issued;
747 		if ((have & mask) == mask) {
748 			dout("__ceph_caps_issued_mask %p combo issued %s"
749 			     " (mask %s)\n", &ci->vfs_inode,
750 			     ceph_cap_string(cap->issued),
751 			     ceph_cap_string(mask));
752 			if (touch) {
753 				struct rb_node *q;
754 
755 				/* touch this + preceeding caps */
756 				__touch_cap(cap);
757 				for (q = rb_first(&ci->i_caps); q != p;
758 				     q = rb_next(q)) {
759 					cap = rb_entry(q, struct ceph_cap,
760 						       ci_node);
761 					if (!__cap_is_valid(cap))
762 						continue;
763 					__touch_cap(cap);
764 				}
765 			}
766 			return 1;
767 		}
768 	}
769 
770 	return 0;
771 }
772 
773 /*
774  * Return true if mask caps are currently being revoked by an MDS.
775  */
776 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
777 {
778 	struct inode *inode = &ci->vfs_inode;
779 	struct ceph_cap *cap;
780 	struct rb_node *p;
781 	int ret = 0;
782 
783 	spin_lock(&inode->i_lock);
784 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
785 		cap = rb_entry(p, struct ceph_cap, ci_node);
786 		if (__cap_is_valid(cap) &&
787 		    (cap->implemented & ~cap->issued & mask)) {
788 			ret = 1;
789 			break;
790 		}
791 	}
792 	spin_unlock(&inode->i_lock);
793 	dout("ceph_caps_revoking %p %s = %d\n", inode,
794 	     ceph_cap_string(mask), ret);
795 	return ret;
796 }
797 
798 int __ceph_caps_used(struct ceph_inode_info *ci)
799 {
800 	int used = 0;
801 	if (ci->i_pin_ref)
802 		used |= CEPH_CAP_PIN;
803 	if (ci->i_rd_ref)
804 		used |= CEPH_CAP_FILE_RD;
805 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
806 		used |= CEPH_CAP_FILE_CACHE;
807 	if (ci->i_wr_ref)
808 		used |= CEPH_CAP_FILE_WR;
809 	if (ci->i_wrbuffer_ref)
810 		used |= CEPH_CAP_FILE_BUFFER;
811 	return used;
812 }
813 
814 /*
815  * wanted, by virtue of open file modes
816  */
817 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
818 {
819 	int want = 0;
820 	int mode;
821 	for (mode = 0; mode < 4; mode++)
822 		if (ci->i_nr_by_mode[mode])
823 			want |= ceph_caps_for_mode(mode);
824 	return want;
825 }
826 
827 /*
828  * Return caps we have registered with the MDS(s) as 'wanted'.
829  */
830 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
831 {
832 	struct ceph_cap *cap;
833 	struct rb_node *p;
834 	int mds_wanted = 0;
835 
836 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
837 		cap = rb_entry(p, struct ceph_cap, ci_node);
838 		if (!__cap_is_valid(cap))
839 			continue;
840 		mds_wanted |= cap->mds_wanted;
841 	}
842 	return mds_wanted;
843 }
844 
845 /*
846  * called under i_lock
847  */
848 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
849 {
850 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
851 }
852 
853 /*
854  * caller should hold i_lock, and session s_mutex.
855  * returns true if this is the last cap.  if so, caller should iput.
856  */
857 void __ceph_remove_cap(struct ceph_cap *cap,
858 		       struct ceph_cap_reservation *ctx)
859 {
860 	struct ceph_mds_session *session = cap->session;
861 	struct ceph_inode_info *ci = cap->ci;
862 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
863 
864 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
865 
866 	/* remove from session list */
867 	spin_lock(&session->s_cap_lock);
868 	list_del_init(&cap->session_caps);
869 	session->s_nr_caps--;
870 	spin_unlock(&session->s_cap_lock);
871 
872 	/* remove from inode list */
873 	rb_erase(&cap->ci_node, &ci->i_caps);
874 	cap->session = NULL;
875 	if (ci->i_auth_cap == cap)
876 		ci->i_auth_cap = NULL;
877 
878 	put_cap(cap, ctx);
879 
880 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
881 		struct ceph_snap_realm *realm = ci->i_snap_realm;
882 		spin_lock(&realm->inodes_with_caps_lock);
883 		list_del_init(&ci->i_snap_realm_item);
884 		ci->i_snap_realm_counter++;
885 		ci->i_snap_realm = NULL;
886 		spin_unlock(&realm->inodes_with_caps_lock);
887 		ceph_put_snap_realm(mdsc, realm);
888 	}
889 	if (!__ceph_is_any_real_caps(ci))
890 		__cap_delay_cancel(mdsc, ci);
891 }
892 
893 /*
894  * Build and send a cap message to the given MDS.
895  *
896  * Caller should be holding s_mutex.
897  */
898 static int send_cap_msg(struct ceph_mds_session *session,
899 			u64 ino, u64 cid, int op,
900 			int caps, int wanted, int dirty,
901 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
902 			u64 size, u64 max_size,
903 			struct timespec *mtime, struct timespec *atime,
904 			u64 time_warp_seq,
905 			uid_t uid, gid_t gid, mode_t mode,
906 			u64 xattr_version,
907 			struct ceph_buffer *xattrs_buf,
908 			u64 follows)
909 {
910 	struct ceph_mds_caps *fc;
911 	struct ceph_msg *msg;
912 
913 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
914 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
915 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
916 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
917 	     ceph_cap_string(dirty),
918 	     seq, issue_seq, mseq, follows, size, max_size,
919 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
920 
921 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
922 	if (IS_ERR(msg))
923 		return PTR_ERR(msg);
924 
925 	msg->hdr.tid = cpu_to_le64(flush_tid);
926 
927 	fc = msg->front.iov_base;
928 	memset(fc, 0, sizeof(*fc));
929 
930 	fc->cap_id = cpu_to_le64(cid);
931 	fc->op = cpu_to_le32(op);
932 	fc->seq = cpu_to_le32(seq);
933 	fc->issue_seq = cpu_to_le32(issue_seq);
934 	fc->migrate_seq = cpu_to_le32(mseq);
935 	fc->caps = cpu_to_le32(caps);
936 	fc->wanted = cpu_to_le32(wanted);
937 	fc->dirty = cpu_to_le32(dirty);
938 	fc->ino = cpu_to_le64(ino);
939 	fc->snap_follows = cpu_to_le64(follows);
940 
941 	fc->size = cpu_to_le64(size);
942 	fc->max_size = cpu_to_le64(max_size);
943 	if (mtime)
944 		ceph_encode_timespec(&fc->mtime, mtime);
945 	if (atime)
946 		ceph_encode_timespec(&fc->atime, atime);
947 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
948 
949 	fc->uid = cpu_to_le32(uid);
950 	fc->gid = cpu_to_le32(gid);
951 	fc->mode = cpu_to_le32(mode);
952 
953 	fc->xattr_version = cpu_to_le64(xattr_version);
954 	if (xattrs_buf) {
955 		msg->middle = ceph_buffer_get(xattrs_buf);
956 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
957 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
958 	}
959 
960 	ceph_con_send(&session->s_con, msg);
961 	return 0;
962 }
963 
964 /*
965  * Queue cap releases when an inode is dropped from our
966  * cache.
967  */
968 void ceph_queue_caps_release(struct inode *inode)
969 {
970 	struct ceph_inode_info *ci = ceph_inode(inode);
971 	struct rb_node *p;
972 
973 	spin_lock(&inode->i_lock);
974 	p = rb_first(&ci->i_caps);
975 	while (p) {
976 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
977 		struct ceph_mds_session *session = cap->session;
978 		struct ceph_msg *msg;
979 		struct ceph_mds_cap_release *head;
980 		struct ceph_mds_cap_item *item;
981 
982 		spin_lock(&session->s_cap_lock);
983 		BUG_ON(!session->s_num_cap_releases);
984 		msg = list_first_entry(&session->s_cap_releases,
985 				       struct ceph_msg, list_head);
986 
987 		dout(" adding %p release to mds%d msg %p (%d left)\n",
988 		     inode, session->s_mds, msg, session->s_num_cap_releases);
989 
990 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
991 		head = msg->front.iov_base;
992 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
993 		item = msg->front.iov_base + msg->front.iov_len;
994 		item->ino = cpu_to_le64(ceph_ino(inode));
995 		item->cap_id = cpu_to_le64(cap->cap_id);
996 		item->migrate_seq = cpu_to_le32(cap->mseq);
997 		item->seq = cpu_to_le32(cap->issue_seq);
998 
999 		session->s_num_cap_releases--;
1000 
1001 		msg->front.iov_len += sizeof(*item);
1002 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1003 			dout(" release msg %p full\n", msg);
1004 			list_move_tail(&msg->list_head,
1005 				       &session->s_cap_releases_done);
1006 		} else {
1007 			dout(" release msg %p at %d/%d (%d)\n", msg,
1008 			     (int)le32_to_cpu(head->num),
1009 			     (int)CEPH_CAPS_PER_RELEASE,
1010 			     (int)msg->front.iov_len);
1011 		}
1012 		spin_unlock(&session->s_cap_lock);
1013 		p = rb_next(p);
1014 		__ceph_remove_cap(cap, NULL);
1015 
1016 	}
1017 	spin_unlock(&inode->i_lock);
1018 }
1019 
1020 /*
1021  * Send a cap msg on the given inode.  Update our caps state, then
1022  * drop i_lock and send the message.
1023  *
1024  * Make note of max_size reported/requested from mds, revoked caps
1025  * that have now been implemented.
1026  *
1027  * Make half-hearted attempt ot to invalidate page cache if we are
1028  * dropping RDCACHE.  Note that this will leave behind locked pages
1029  * that we'll then need to deal with elsewhere.
1030  *
1031  * Return non-zero if delayed release, or we experienced an error
1032  * such that the caller should requeue + retry later.
1033  *
1034  * called with i_lock, then drops it.
1035  * caller should hold snap_rwsem (read), s_mutex.
1036  */
1037 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1038 		      int op, int used, int want, int retain, int flushing,
1039 		      unsigned *pflush_tid)
1040 	__releases(cap->ci->vfs_inode->i_lock)
1041 {
1042 	struct ceph_inode_info *ci = cap->ci;
1043 	struct inode *inode = &ci->vfs_inode;
1044 	u64 cap_id = cap->cap_id;
1045 	int held, revoking, dropping, keep;
1046 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1047 	u64 size, max_size;
1048 	struct timespec mtime, atime;
1049 	int wake = 0;
1050 	mode_t mode;
1051 	uid_t uid;
1052 	gid_t gid;
1053 	struct ceph_mds_session *session;
1054 	u64 xattr_version = 0;
1055 	int delayed = 0;
1056 	u64 flush_tid = 0;
1057 	int i;
1058 	int ret;
1059 
1060 	held = cap->issued | cap->implemented;
1061 	revoking = cap->implemented & ~cap->issued;
1062 	retain &= ~revoking;
1063 	dropping = cap->issued & ~retain;
1064 
1065 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1066 	     inode, cap, cap->session,
1067 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1068 	     ceph_cap_string(revoking));
1069 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1070 
1071 	session = cap->session;
1072 
1073 	/* don't release wanted unless we've waited a bit. */
1074 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1075 	    time_before(jiffies, ci->i_hold_caps_min)) {
1076 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1077 		     ceph_cap_string(cap->issued),
1078 		     ceph_cap_string(cap->issued & retain),
1079 		     ceph_cap_string(cap->mds_wanted),
1080 		     ceph_cap_string(want));
1081 		want |= cap->mds_wanted;
1082 		retain |= cap->issued;
1083 		delayed = 1;
1084 	}
1085 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1086 
1087 	cap->issued &= retain;  /* drop bits we don't want */
1088 	if (cap->implemented & ~cap->issued) {
1089 		/*
1090 		 * Wake up any waiters on wanted -> needed transition.
1091 		 * This is due to the weird transition from buffered
1092 		 * to sync IO... we need to flush dirty pages _before_
1093 		 * allowing sync writes to avoid reordering.
1094 		 */
1095 		wake = 1;
1096 	}
1097 	cap->implemented &= cap->issued | used;
1098 	cap->mds_wanted = want;
1099 
1100 	if (flushing) {
1101 		/*
1102 		 * assign a tid for flush operations so we can avoid
1103 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1104 		 * clean type races.  track latest tid for every bit
1105 		 * so we can handle flush AxFw, flush Fw, and have the
1106 		 * first ack clean Ax.
1107 		 */
1108 		flush_tid = ++ci->i_cap_flush_last_tid;
1109 		if (pflush_tid)
1110 			*pflush_tid = flush_tid;
1111 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1112 		for (i = 0; i < CEPH_CAP_BITS; i++)
1113 			if (flushing & (1 << i))
1114 				ci->i_cap_flush_tid[i] = flush_tid;
1115 	}
1116 
1117 	keep = cap->implemented;
1118 	seq = cap->seq;
1119 	issue_seq = cap->issue_seq;
1120 	mseq = cap->mseq;
1121 	size = inode->i_size;
1122 	ci->i_reported_size = size;
1123 	max_size = ci->i_wanted_max_size;
1124 	ci->i_requested_max_size = max_size;
1125 	mtime = inode->i_mtime;
1126 	atime = inode->i_atime;
1127 	time_warp_seq = ci->i_time_warp_seq;
1128 	follows = ci->i_snap_realm->cached_context->seq;
1129 	uid = inode->i_uid;
1130 	gid = inode->i_gid;
1131 	mode = inode->i_mode;
1132 
1133 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1134 		__ceph_build_xattrs_blob(ci);
1135 		xattr_version = ci->i_xattrs.version + 1;
1136 	}
1137 
1138 	spin_unlock(&inode->i_lock);
1139 
1140 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1141 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1142 		size, max_size, &mtime, &atime, time_warp_seq,
1143 		uid, gid, mode,
1144 		xattr_version,
1145 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1146 		follows);
1147 	if (ret < 0) {
1148 		dout("error sending cap msg, must requeue %p\n", inode);
1149 		delayed = 1;
1150 	}
1151 
1152 	if (wake)
1153 		wake_up(&ci->i_cap_wq);
1154 
1155 	return delayed;
1156 }
1157 
1158 /*
1159  * When a snapshot is taken, clients accumulate dirty metadata on
1160  * inodes with capabilities in ceph_cap_snaps to describe the file
1161  * state at the time the snapshot was taken.  This must be flushed
1162  * asynchronously back to the MDS once sync writes complete and dirty
1163  * data is written out.
1164  *
1165  * Called under i_lock.  Takes s_mutex as needed.
1166  */
1167 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1168 			struct ceph_mds_session **psession)
1169 {
1170 	struct inode *inode = &ci->vfs_inode;
1171 	int mds;
1172 	struct ceph_cap_snap *capsnap;
1173 	u32 mseq;
1174 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1175 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1176 						    session->s_mutex */
1177 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1178 			     i_cap_snaps list, and skip these entries next time
1179 			     around to avoid an infinite loop */
1180 
1181 	if (psession)
1182 		session = *psession;
1183 
1184 	dout("__flush_snaps %p\n", inode);
1185 retry:
1186 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1187 		/* avoid an infiniute loop after retry */
1188 		if (capsnap->follows < next_follows)
1189 			continue;
1190 		/*
1191 		 * we need to wait for sync writes to complete and for dirty
1192 		 * pages to be written out.
1193 		 */
1194 		if (capsnap->dirty_pages || capsnap->writing)
1195 			continue;
1196 
1197 		/* pick mds, take s_mutex */
1198 		mds = __ceph_get_cap_mds(ci, &mseq);
1199 		if (session && session->s_mds != mds) {
1200 			dout("oops, wrong session %p mutex\n", session);
1201 			mutex_unlock(&session->s_mutex);
1202 			ceph_put_mds_session(session);
1203 			session = NULL;
1204 		}
1205 		if (!session) {
1206 			spin_unlock(&inode->i_lock);
1207 			mutex_lock(&mdsc->mutex);
1208 			session = __ceph_lookup_mds_session(mdsc, mds);
1209 			mutex_unlock(&mdsc->mutex);
1210 			if (session) {
1211 				dout("inverting session/ino locks on %p\n",
1212 				     session);
1213 				mutex_lock(&session->s_mutex);
1214 			}
1215 			/*
1216 			 * if session == NULL, we raced against a cap
1217 			 * deletion.  retry, and we'll get a better
1218 			 * @mds value next time.
1219 			 */
1220 			spin_lock(&inode->i_lock);
1221 			goto retry;
1222 		}
1223 
1224 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1225 		atomic_inc(&capsnap->nref);
1226 		if (!list_empty(&capsnap->flushing_item))
1227 			list_del_init(&capsnap->flushing_item);
1228 		list_add_tail(&capsnap->flushing_item,
1229 			      &session->s_cap_snaps_flushing);
1230 		spin_unlock(&inode->i_lock);
1231 
1232 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1233 		     inode, capsnap, next_follows, capsnap->size);
1234 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1235 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1236 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1237 			     capsnap->size, 0,
1238 			     &capsnap->mtime, &capsnap->atime,
1239 			     capsnap->time_warp_seq,
1240 			     capsnap->uid, capsnap->gid, capsnap->mode,
1241 			     0, NULL,
1242 			     capsnap->follows);
1243 
1244 		next_follows = capsnap->follows + 1;
1245 		ceph_put_cap_snap(capsnap);
1246 
1247 		spin_lock(&inode->i_lock);
1248 		goto retry;
1249 	}
1250 
1251 	/* we flushed them all; remove this inode from the queue */
1252 	spin_lock(&mdsc->snap_flush_lock);
1253 	list_del_init(&ci->i_snap_flush_item);
1254 	spin_unlock(&mdsc->snap_flush_lock);
1255 
1256 	if (psession)
1257 		*psession = session;
1258 	else if (session) {
1259 		mutex_unlock(&session->s_mutex);
1260 		ceph_put_mds_session(session);
1261 	}
1262 }
1263 
1264 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1265 {
1266 	struct inode *inode = &ci->vfs_inode;
1267 
1268 	spin_lock(&inode->i_lock);
1269 	__ceph_flush_snaps(ci, NULL);
1270 	spin_unlock(&inode->i_lock);
1271 }
1272 
1273 /*
1274  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1275  * list.
1276  */
1277 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1278 {
1279 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1280 	struct inode *inode = &ci->vfs_inode;
1281 	int was = ci->i_dirty_caps;
1282 	int dirty = 0;
1283 
1284 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1285 	     ceph_cap_string(mask), ceph_cap_string(was),
1286 	     ceph_cap_string(was | mask));
1287 	ci->i_dirty_caps |= mask;
1288 	if (was == 0) {
1289 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1290 		BUG_ON(!list_empty(&ci->i_dirty_item));
1291 		spin_lock(&mdsc->cap_dirty_lock);
1292 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1293 		spin_unlock(&mdsc->cap_dirty_lock);
1294 		if (ci->i_flushing_caps == 0) {
1295 			igrab(inode);
1296 			dirty |= I_DIRTY_SYNC;
1297 		}
1298 	}
1299 	BUG_ON(list_empty(&ci->i_dirty_item));
1300 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1301 	    (mask & CEPH_CAP_FILE_BUFFER))
1302 		dirty |= I_DIRTY_DATASYNC;
1303 	if (dirty)
1304 		__mark_inode_dirty(inode, dirty);
1305 	__cap_delay_requeue(mdsc, ci);
1306 }
1307 
1308 /*
1309  * Add dirty inode to the flushing list.  Assigned a seq number so we
1310  * can wait for caps to flush without starving.
1311  *
1312  * Called under i_lock.
1313  */
1314 static int __mark_caps_flushing(struct inode *inode,
1315 				 struct ceph_mds_session *session)
1316 {
1317 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1318 	struct ceph_inode_info *ci = ceph_inode(inode);
1319 	int flushing;
1320 
1321 	BUG_ON(ci->i_dirty_caps == 0);
1322 	BUG_ON(list_empty(&ci->i_dirty_item));
1323 
1324 	flushing = ci->i_dirty_caps;
1325 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1326 	     ceph_cap_string(flushing),
1327 	     ceph_cap_string(ci->i_flushing_caps),
1328 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1329 	ci->i_flushing_caps |= flushing;
1330 	ci->i_dirty_caps = 0;
1331 	dout(" inode %p now !dirty\n", inode);
1332 
1333 	spin_lock(&mdsc->cap_dirty_lock);
1334 	list_del_init(&ci->i_dirty_item);
1335 
1336 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1337 	if (list_empty(&ci->i_flushing_item)) {
1338 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1339 		mdsc->num_cap_flushing++;
1340 		dout(" inode %p now flushing seq %lld\n", inode,
1341 		     ci->i_cap_flush_seq);
1342 	} else {
1343 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1344 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1345 		     ci->i_cap_flush_seq);
1346 	}
1347 	spin_unlock(&mdsc->cap_dirty_lock);
1348 
1349 	return flushing;
1350 }
1351 
1352 /*
1353  * Swiss army knife function to examine currently used and wanted
1354  * versus held caps.  Release, flush, ack revoked caps to mds as
1355  * appropriate.
1356  *
1357  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1358  *    cap release further.
1359  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1360  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1361  *    further delay.
1362  */
1363 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1364 		     struct ceph_mds_session *session)
1365 {
1366 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1367 	struct ceph_mds_client *mdsc = &client->mdsc;
1368 	struct inode *inode = &ci->vfs_inode;
1369 	struct ceph_cap *cap;
1370 	int file_wanted, used;
1371 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1372 	int drop_session_lock = session ? 0 : 1;
1373 	int issued, implemented, want, retain, revoking, flushing = 0;
1374 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1375 			   to avoid an infinite loop on retry */
1376 	struct rb_node *p;
1377 	int tried_invalidate = 0;
1378 	int delayed = 0, sent = 0, force_requeue = 0, num;
1379 	int queue_invalidate = 0;
1380 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1381 
1382 	/* if we are unmounting, flush any unused caps immediately. */
1383 	if (mdsc->stopping)
1384 		is_delayed = 1;
1385 
1386 	spin_lock(&inode->i_lock);
1387 
1388 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1389 		flags |= CHECK_CAPS_FLUSH;
1390 
1391 	/* flush snaps first time around only */
1392 	if (!list_empty(&ci->i_cap_snaps))
1393 		__ceph_flush_snaps(ci, &session);
1394 	goto retry_locked;
1395 retry:
1396 	spin_lock(&inode->i_lock);
1397 retry_locked:
1398 	file_wanted = __ceph_caps_file_wanted(ci);
1399 	used = __ceph_caps_used(ci);
1400 	want = file_wanted | used;
1401 	issued = __ceph_caps_issued(ci, &implemented);
1402 	revoking = implemented & ~issued;
1403 
1404 	retain = want | CEPH_CAP_PIN;
1405 	if (!mdsc->stopping && inode->i_nlink > 0) {
1406 		if (want) {
1407 			retain |= CEPH_CAP_ANY;       /* be greedy */
1408 		} else {
1409 			retain |= CEPH_CAP_ANY_SHARED;
1410 			/*
1411 			 * keep RD only if we didn't have the file open RW,
1412 			 * because then the mds would revoke it anyway to
1413 			 * journal max_size=0.
1414 			 */
1415 			if (ci->i_max_size == 0)
1416 				retain |= CEPH_CAP_ANY_RD;
1417 		}
1418 	}
1419 
1420 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1421 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1422 	     ceph_cap_string(file_wanted),
1423 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1424 	     ceph_cap_string(ci->i_flushing_caps),
1425 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1426 	     ceph_cap_string(retain),
1427 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1428 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1429 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1430 
1431 	/*
1432 	 * If we no longer need to hold onto old our caps, and we may
1433 	 * have cached pages, but don't want them, then try to invalidate.
1434 	 * If we fail, it's because pages are locked.... try again later.
1435 	 */
1436 	if ((!is_delayed || mdsc->stopping) &&
1437 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1438 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1439 	    (file_wanted == 0 ||                     /* no open files */
1440 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1441 	    !tried_invalidate) {
1442 		u32 invalidating_gen = ci->i_rdcache_gen;
1443 		int ret;
1444 
1445 		dout("check_caps trying to invalidate on %p\n", inode);
1446 		spin_unlock(&inode->i_lock);
1447 		ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
1448 		spin_lock(&inode->i_lock);
1449 		if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) {
1450 			/* success. */
1451 			ci->i_rdcache_gen = 0;
1452 			ci->i_rdcache_revoking = 0;
1453 		} else if (revoking & CEPH_CAP_FILE_CACHE) {
1454 			dout("check_caps queuing invalidate\n");
1455 			queue_invalidate = 1;
1456 			ci->i_rdcache_revoking = ci->i_rdcache_gen;
1457 		} else {
1458 			dout("check_caps failed to invalidate pages\n");
1459 			/* we failed to invalidate pages.  check these
1460 			   caps again later. */
1461 			force_requeue = 1;
1462 			__cap_set_timeouts(mdsc, ci);
1463 		}
1464 		tried_invalidate = 1;
1465 		goto retry_locked;
1466 	}
1467 
1468 	num = 0;
1469 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1470 		cap = rb_entry(p, struct ceph_cap, ci_node);
1471 		num++;
1472 
1473 		/* avoid looping forever */
1474 		if (mds >= cap->mds ||
1475 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1476 			continue;
1477 
1478 		/* NOTE: no side-effects allowed, until we take s_mutex */
1479 
1480 		revoking = cap->implemented & ~cap->issued;
1481 		if (revoking)
1482 			dout(" mds%d revoking %s\n", cap->mds,
1483 			     ceph_cap_string(revoking));
1484 
1485 		if (cap == ci->i_auth_cap &&
1486 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1487 			/* request larger max_size from MDS? */
1488 			if (ci->i_wanted_max_size > ci->i_max_size &&
1489 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1490 				dout("requesting new max_size\n");
1491 				goto ack;
1492 			}
1493 
1494 			/* approaching file_max? */
1495 			if ((inode->i_size << 1) >= ci->i_max_size &&
1496 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1497 				dout("i_size approaching max_size\n");
1498 				goto ack;
1499 			}
1500 		}
1501 		/* flush anything dirty? */
1502 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1503 		    ci->i_dirty_caps) {
1504 			dout("flushing dirty caps\n");
1505 			goto ack;
1506 		}
1507 
1508 		/* completed revocation? going down and there are no caps? */
1509 		if (revoking && (revoking & used) == 0) {
1510 			dout("completed revocation of %s\n",
1511 			     ceph_cap_string(cap->implemented & ~cap->issued));
1512 			goto ack;
1513 		}
1514 
1515 		/* want more caps from mds? */
1516 		if (want & ~(cap->mds_wanted | cap->issued))
1517 			goto ack;
1518 
1519 		/* things we might delay */
1520 		if ((cap->issued & ~retain) == 0 &&
1521 		    cap->mds_wanted == want)
1522 			continue;     /* nope, all good */
1523 
1524 		if (is_delayed)
1525 			goto ack;
1526 
1527 		/* delay? */
1528 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1529 		    time_before(jiffies, ci->i_hold_caps_max)) {
1530 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1531 			     ceph_cap_string(cap->issued),
1532 			     ceph_cap_string(cap->issued & retain),
1533 			     ceph_cap_string(cap->mds_wanted),
1534 			     ceph_cap_string(want));
1535 			delayed++;
1536 			continue;
1537 		}
1538 
1539 ack:
1540 		if (session && session != cap->session) {
1541 			dout("oops, wrong session %p mutex\n", session);
1542 			mutex_unlock(&session->s_mutex);
1543 			session = NULL;
1544 		}
1545 		if (!session) {
1546 			session = cap->session;
1547 			if (mutex_trylock(&session->s_mutex) == 0) {
1548 				dout("inverting session/ino locks on %p\n",
1549 				     session);
1550 				spin_unlock(&inode->i_lock);
1551 				if (took_snap_rwsem) {
1552 					up_read(&mdsc->snap_rwsem);
1553 					took_snap_rwsem = 0;
1554 				}
1555 				mutex_lock(&session->s_mutex);
1556 				goto retry;
1557 			}
1558 		}
1559 		/* take snap_rwsem after session mutex */
1560 		if (!took_snap_rwsem) {
1561 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1562 				dout("inverting snap/in locks on %p\n",
1563 				     inode);
1564 				spin_unlock(&inode->i_lock);
1565 				down_read(&mdsc->snap_rwsem);
1566 				took_snap_rwsem = 1;
1567 				goto retry;
1568 			}
1569 			took_snap_rwsem = 1;
1570 		}
1571 
1572 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1573 			flushing = __mark_caps_flushing(inode, session);
1574 
1575 		mds = cap->mds;  /* remember mds, so we don't repeat */
1576 		sent++;
1577 
1578 		/* __send_cap drops i_lock */
1579 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1580 				      retain, flushing, NULL);
1581 		goto retry; /* retake i_lock and restart our cap scan. */
1582 	}
1583 
1584 	/*
1585 	 * Reschedule delayed caps release if we delayed anything,
1586 	 * otherwise cancel.
1587 	 */
1588 	if (delayed && is_delayed)
1589 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1590 	if (!delayed && !is_delayed)
1591 		__cap_delay_cancel(mdsc, ci);
1592 	else if (!is_delayed || force_requeue)
1593 		__cap_delay_requeue(mdsc, ci);
1594 
1595 	spin_unlock(&inode->i_lock);
1596 
1597 	if (queue_invalidate)
1598 		ceph_queue_invalidate(inode);
1599 
1600 	if (session && drop_session_lock)
1601 		mutex_unlock(&session->s_mutex);
1602 	if (took_snap_rwsem)
1603 		up_read(&mdsc->snap_rwsem);
1604 }
1605 
1606 /*
1607  * Try to flush dirty caps back to the auth mds.
1608  */
1609 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1610 			  unsigned *flush_tid)
1611 {
1612 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1613 	struct ceph_inode_info *ci = ceph_inode(inode);
1614 	int unlock_session = session ? 0 : 1;
1615 	int flushing = 0;
1616 
1617 retry:
1618 	spin_lock(&inode->i_lock);
1619 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1620 		struct ceph_cap *cap = ci->i_auth_cap;
1621 		int used = __ceph_caps_used(ci);
1622 		int want = __ceph_caps_wanted(ci);
1623 		int delayed;
1624 
1625 		if (!session) {
1626 			spin_unlock(&inode->i_lock);
1627 			session = cap->session;
1628 			mutex_lock(&session->s_mutex);
1629 			goto retry;
1630 		}
1631 		BUG_ON(session != cap->session);
1632 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1633 			goto out;
1634 
1635 		flushing = __mark_caps_flushing(inode, session);
1636 
1637 		/* __send_cap drops i_lock */
1638 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1639 				     cap->issued | cap->implemented, flushing,
1640 				     flush_tid);
1641 		if (!delayed)
1642 			goto out_unlocked;
1643 
1644 		spin_lock(&inode->i_lock);
1645 		__cap_delay_requeue(mdsc, ci);
1646 	}
1647 out:
1648 	spin_unlock(&inode->i_lock);
1649 out_unlocked:
1650 	if (session && unlock_session)
1651 		mutex_unlock(&session->s_mutex);
1652 	return flushing;
1653 }
1654 
1655 /*
1656  * Return true if we've flushed caps through the given flush_tid.
1657  */
1658 static int caps_are_flushed(struct inode *inode, unsigned tid)
1659 {
1660 	struct ceph_inode_info *ci = ceph_inode(inode);
1661 	int dirty, i, ret = 1;
1662 
1663 	spin_lock(&inode->i_lock);
1664 	dirty = __ceph_caps_dirty(ci);
1665 	for (i = 0; i < CEPH_CAP_BITS; i++)
1666 		if ((ci->i_flushing_caps & (1 << i)) &&
1667 		    ci->i_cap_flush_tid[i] <= tid) {
1668 			/* still flushing this bit */
1669 			ret = 0;
1670 			break;
1671 		}
1672 	spin_unlock(&inode->i_lock);
1673 	return ret;
1674 }
1675 
1676 /*
1677  * Wait on any unsafe replies for the given inode.  First wait on the
1678  * newest request, and make that the upper bound.  Then, if there are
1679  * more requests, keep waiting on the oldest as long as it is still older
1680  * than the original request.
1681  */
1682 static void sync_write_wait(struct inode *inode)
1683 {
1684 	struct ceph_inode_info *ci = ceph_inode(inode);
1685 	struct list_head *head = &ci->i_unsafe_writes;
1686 	struct ceph_osd_request *req;
1687 	u64 last_tid;
1688 
1689 	spin_lock(&ci->i_unsafe_lock);
1690 	if (list_empty(head))
1691 		goto out;
1692 
1693 	/* set upper bound as _last_ entry in chain */
1694 	req = list_entry(head->prev, struct ceph_osd_request,
1695 			 r_unsafe_item);
1696 	last_tid = req->r_tid;
1697 
1698 	do {
1699 		ceph_osdc_get_request(req);
1700 		spin_unlock(&ci->i_unsafe_lock);
1701 		dout("sync_write_wait on tid %llu (until %llu)\n",
1702 		     req->r_tid, last_tid);
1703 		wait_for_completion(&req->r_safe_completion);
1704 		spin_lock(&ci->i_unsafe_lock);
1705 		ceph_osdc_put_request(req);
1706 
1707 		/*
1708 		 * from here on look at first entry in chain, since we
1709 		 * only want to wait for anything older than last_tid
1710 		 */
1711 		if (list_empty(head))
1712 			break;
1713 		req = list_entry(head->next, struct ceph_osd_request,
1714 				 r_unsafe_item);
1715 	} while (req->r_tid < last_tid);
1716 out:
1717 	spin_unlock(&ci->i_unsafe_lock);
1718 }
1719 
1720 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1721 {
1722 	struct inode *inode = dentry->d_inode;
1723 	struct ceph_inode_info *ci = ceph_inode(inode);
1724 	unsigned flush_tid;
1725 	int ret;
1726 	int dirty;
1727 
1728 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1729 	sync_write_wait(inode);
1730 
1731 	ret = filemap_write_and_wait(inode->i_mapping);
1732 	if (ret < 0)
1733 		return ret;
1734 
1735 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1736 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1737 
1738 	/*
1739 	 * only wait on non-file metadata writeback (the mds
1740 	 * can recover size and mtime, so we don't need to
1741 	 * wait for that)
1742 	 */
1743 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1744 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1745 		ret = wait_event_interruptible(ci->i_cap_wq,
1746 				       caps_are_flushed(inode, flush_tid));
1747 	}
1748 
1749 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1750 	return ret;
1751 }
1752 
1753 /*
1754  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1755  * queue inode for flush but don't do so immediately, because we can
1756  * get by with fewer MDS messages if we wait for data writeback to
1757  * complete first.
1758  */
1759 int ceph_write_inode(struct inode *inode, int wait)
1760 {
1761 	struct ceph_inode_info *ci = ceph_inode(inode);
1762 	unsigned flush_tid;
1763 	int err = 0;
1764 	int dirty;
1765 
1766 	dout("write_inode %p wait=%d\n", inode, wait);
1767 	if (wait) {
1768 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1769 		if (dirty)
1770 			err = wait_event_interruptible(ci->i_cap_wq,
1771 				       caps_are_flushed(inode, flush_tid));
1772 	} else {
1773 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1774 
1775 		spin_lock(&inode->i_lock);
1776 		if (__ceph_caps_dirty(ci))
1777 			__cap_delay_requeue_front(mdsc, ci);
1778 		spin_unlock(&inode->i_lock);
1779 	}
1780 	return err;
1781 }
1782 
1783 /*
1784  * After a recovering MDS goes active, we need to resend any caps
1785  * we were flushing.
1786  *
1787  * Caller holds session->s_mutex.
1788  */
1789 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1790 				   struct ceph_mds_session *session)
1791 {
1792 	struct ceph_cap_snap *capsnap;
1793 
1794 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1795 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1796 			    flushing_item) {
1797 		struct ceph_inode_info *ci = capsnap->ci;
1798 		struct inode *inode = &ci->vfs_inode;
1799 		struct ceph_cap *cap;
1800 
1801 		spin_lock(&inode->i_lock);
1802 		cap = ci->i_auth_cap;
1803 		if (cap && cap->session == session) {
1804 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1805 			     cap, capsnap);
1806 			__ceph_flush_snaps(ci, &session);
1807 		} else {
1808 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1809 			       cap, session->s_mds);
1810 			spin_unlock(&inode->i_lock);
1811 		}
1812 	}
1813 }
1814 
1815 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1816 			     struct ceph_mds_session *session)
1817 {
1818 	struct ceph_inode_info *ci;
1819 
1820 	kick_flushing_capsnaps(mdsc, session);
1821 
1822 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1823 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1824 		struct inode *inode = &ci->vfs_inode;
1825 		struct ceph_cap *cap;
1826 		int delayed = 0;
1827 
1828 		spin_lock(&inode->i_lock);
1829 		cap = ci->i_auth_cap;
1830 		if (cap && cap->session == session) {
1831 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1832 			     cap, ceph_cap_string(ci->i_flushing_caps));
1833 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1834 					     __ceph_caps_used(ci),
1835 					     __ceph_caps_wanted(ci),
1836 					     cap->issued | cap->implemented,
1837 					     ci->i_flushing_caps, NULL);
1838 			if (delayed) {
1839 				spin_lock(&inode->i_lock);
1840 				__cap_delay_requeue(mdsc, ci);
1841 				spin_unlock(&inode->i_lock);
1842 			}
1843 		} else {
1844 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1845 			       cap, session->s_mds);
1846 			spin_unlock(&inode->i_lock);
1847 		}
1848 	}
1849 }
1850 
1851 
1852 /*
1853  * Take references to capabilities we hold, so that we don't release
1854  * them to the MDS prematurely.
1855  *
1856  * Protected by i_lock.
1857  */
1858 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1859 {
1860 	if (got & CEPH_CAP_PIN)
1861 		ci->i_pin_ref++;
1862 	if (got & CEPH_CAP_FILE_RD)
1863 		ci->i_rd_ref++;
1864 	if (got & CEPH_CAP_FILE_CACHE)
1865 		ci->i_rdcache_ref++;
1866 	if (got & CEPH_CAP_FILE_WR)
1867 		ci->i_wr_ref++;
1868 	if (got & CEPH_CAP_FILE_BUFFER) {
1869 		if (ci->i_wrbuffer_ref == 0)
1870 			igrab(&ci->vfs_inode);
1871 		ci->i_wrbuffer_ref++;
1872 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1873 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1874 	}
1875 }
1876 
1877 /*
1878  * Try to grab cap references.  Specify those refs we @want, and the
1879  * minimal set we @need.  Also include the larger offset we are writing
1880  * to (when applicable), and check against max_size here as well.
1881  * Note that caller is responsible for ensuring max_size increases are
1882  * requested from the MDS.
1883  */
1884 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1885 			    int *got, loff_t endoff, int *check_max, int *err)
1886 {
1887 	struct inode *inode = &ci->vfs_inode;
1888 	int ret = 0;
1889 	int have, implemented;
1890 
1891 	dout("get_cap_refs %p need %s want %s\n", inode,
1892 	     ceph_cap_string(need), ceph_cap_string(want));
1893 	spin_lock(&inode->i_lock);
1894 
1895 	/* make sure we _have_ some caps! */
1896 	if (!__ceph_is_any_caps(ci)) {
1897 		dout("get_cap_refs %p no real caps\n", inode);
1898 		*err = -EBADF;
1899 		ret = 1;
1900 		goto out;
1901 	}
1902 
1903 	if (need & CEPH_CAP_FILE_WR) {
1904 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1905 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1906 			     inode, endoff, ci->i_max_size);
1907 			if (endoff > ci->i_wanted_max_size) {
1908 				*check_max = 1;
1909 				ret = 1;
1910 			}
1911 			goto out;
1912 		}
1913 		/*
1914 		 * If a sync write is in progress, we must wait, so that we
1915 		 * can get a final snapshot value for size+mtime.
1916 		 */
1917 		if (__ceph_have_pending_cap_snap(ci)) {
1918 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1919 			goto out;
1920 		}
1921 	}
1922 	have = __ceph_caps_issued(ci, &implemented);
1923 
1924 	/*
1925 	 * disallow writes while a truncate is pending
1926 	 */
1927 	if (ci->i_truncate_pending)
1928 		have &= ~CEPH_CAP_FILE_WR;
1929 
1930 	if ((have & need) == need) {
1931 		/*
1932 		 * Look at (implemented & ~have & not) so that we keep waiting
1933 		 * on transition from wanted -> needed caps.  This is needed
1934 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1935 		 * going before a prior buffered writeback happens.
1936 		 */
1937 		int not = want & ~(have & need);
1938 		int revoking = implemented & ~have;
1939 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1940 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1941 		     ceph_cap_string(revoking));
1942 		if ((revoking & not) == 0) {
1943 			*got = need | (have & want);
1944 			__take_cap_refs(ci, *got);
1945 			ret = 1;
1946 		}
1947 	} else {
1948 		dout("get_cap_refs %p have %s needed %s\n", inode,
1949 		     ceph_cap_string(have), ceph_cap_string(need));
1950 	}
1951 out:
1952 	spin_unlock(&inode->i_lock);
1953 	dout("get_cap_refs %p ret %d got %s\n", inode,
1954 	     ret, ceph_cap_string(*got));
1955 	return ret;
1956 }
1957 
1958 /*
1959  * Check the offset we are writing up to against our current
1960  * max_size.  If necessary, tell the MDS we want to write to
1961  * a larger offset.
1962  */
1963 static void check_max_size(struct inode *inode, loff_t endoff)
1964 {
1965 	struct ceph_inode_info *ci = ceph_inode(inode);
1966 	int check = 0;
1967 
1968 	/* do we need to explicitly request a larger max_size? */
1969 	spin_lock(&inode->i_lock);
1970 	if ((endoff >= ci->i_max_size ||
1971 	     endoff > (inode->i_size << 1)) &&
1972 	    endoff > ci->i_wanted_max_size) {
1973 		dout("write %p at large endoff %llu, req max_size\n",
1974 		     inode, endoff);
1975 		ci->i_wanted_max_size = endoff;
1976 		check = 1;
1977 	}
1978 	spin_unlock(&inode->i_lock);
1979 	if (check)
1980 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
1981 }
1982 
1983 /*
1984  * Wait for caps, and take cap references.  If we can't get a WR cap
1985  * due to a small max_size, make sure we check_max_size (and possibly
1986  * ask the mds) so we don't get hung up indefinitely.
1987  */
1988 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
1989 		  loff_t endoff)
1990 {
1991 	int check_max, ret, err;
1992 
1993 retry:
1994 	if (endoff > 0)
1995 		check_max_size(&ci->vfs_inode, endoff);
1996 	check_max = 0;
1997 	err = 0;
1998 	ret = wait_event_interruptible(ci->i_cap_wq,
1999 				       try_get_cap_refs(ci, need, want,
2000 							got, endoff,
2001 							&check_max, &err));
2002 	if (err)
2003 		ret = err;
2004 	if (check_max)
2005 		goto retry;
2006 	return ret;
2007 }
2008 
2009 /*
2010  * Take cap refs.  Caller must already know we hold at least one ref
2011  * on the caps in question or we don't know this is safe.
2012  */
2013 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2014 {
2015 	spin_lock(&ci->vfs_inode.i_lock);
2016 	__take_cap_refs(ci, caps);
2017 	spin_unlock(&ci->vfs_inode.i_lock);
2018 }
2019 
2020 /*
2021  * Release cap refs.
2022  *
2023  * If we released the last ref on any given cap, call ceph_check_caps
2024  * to release (or schedule a release).
2025  *
2026  * If we are releasing a WR cap (from a sync write), finalize any affected
2027  * cap_snap, and wake up any waiters.
2028  */
2029 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2030 {
2031 	struct inode *inode = &ci->vfs_inode;
2032 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2033 	struct ceph_cap_snap *capsnap;
2034 
2035 	spin_lock(&inode->i_lock);
2036 	if (had & CEPH_CAP_PIN)
2037 		--ci->i_pin_ref;
2038 	if (had & CEPH_CAP_FILE_RD)
2039 		if (--ci->i_rd_ref == 0)
2040 			last++;
2041 	if (had & CEPH_CAP_FILE_CACHE)
2042 		if (--ci->i_rdcache_ref == 0)
2043 			last++;
2044 	if (had & CEPH_CAP_FILE_BUFFER) {
2045 		if (--ci->i_wrbuffer_ref == 0) {
2046 			last++;
2047 			put++;
2048 		}
2049 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2050 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2051 	}
2052 	if (had & CEPH_CAP_FILE_WR)
2053 		if (--ci->i_wr_ref == 0) {
2054 			last++;
2055 			if (!list_empty(&ci->i_cap_snaps)) {
2056 				capsnap = list_first_entry(&ci->i_cap_snaps,
2057 						     struct ceph_cap_snap,
2058 						     ci_item);
2059 				if (capsnap->writing) {
2060 					capsnap->writing = 0;
2061 					flushsnaps =
2062 						__ceph_finish_cap_snap(ci,
2063 								       capsnap);
2064 					wake = 1;
2065 				}
2066 			}
2067 		}
2068 	spin_unlock(&inode->i_lock);
2069 
2070 	dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2071 	     last ? "last" : "");
2072 
2073 	if (last && !flushsnaps)
2074 		ceph_check_caps(ci, 0, NULL);
2075 	else if (flushsnaps)
2076 		ceph_flush_snaps(ci);
2077 	if (wake)
2078 		wake_up(&ci->i_cap_wq);
2079 	if (put)
2080 		iput(inode);
2081 }
2082 
2083 /*
2084  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2085  * context.  Adjust per-snap dirty page accounting as appropriate.
2086  * Once all dirty data for a cap_snap is flushed, flush snapped file
2087  * metadata back to the MDS.  If we dropped the last ref, call
2088  * ceph_check_caps.
2089  */
2090 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2091 				struct ceph_snap_context *snapc)
2092 {
2093 	struct inode *inode = &ci->vfs_inode;
2094 	int last = 0;
2095 	int last_snap = 0;
2096 	int found = 0;
2097 	struct ceph_cap_snap *capsnap = NULL;
2098 
2099 	spin_lock(&inode->i_lock);
2100 	ci->i_wrbuffer_ref -= nr;
2101 	last = !ci->i_wrbuffer_ref;
2102 
2103 	if (ci->i_head_snapc == snapc) {
2104 		ci->i_wrbuffer_ref_head -= nr;
2105 		if (!ci->i_wrbuffer_ref_head) {
2106 			ceph_put_snap_context(ci->i_head_snapc);
2107 			ci->i_head_snapc = NULL;
2108 		}
2109 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2110 		     inode,
2111 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2112 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2113 		     last ? " LAST" : "");
2114 	} else {
2115 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2116 			if (capsnap->context == snapc) {
2117 				found = 1;
2118 				capsnap->dirty_pages -= nr;
2119 				last_snap = !capsnap->dirty_pages;
2120 				break;
2121 			}
2122 		}
2123 		BUG_ON(!found);
2124 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2125 		     " snap %lld %d/%d -> %d/%d %s%s\n",
2126 		     inode, capsnap, capsnap->context->seq,
2127 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2128 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2129 		     last ? " (wrbuffer last)" : "",
2130 		     last_snap ? " (capsnap last)" : "");
2131 	}
2132 
2133 	spin_unlock(&inode->i_lock);
2134 
2135 	if (last) {
2136 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2137 		iput(inode);
2138 	} else if (last_snap) {
2139 		ceph_flush_snaps(ci);
2140 		wake_up(&ci->i_cap_wq);
2141 	}
2142 }
2143 
2144 /*
2145  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2146  * actually be a revocation if it specifies a smaller cap set.)
2147  *
2148  * caller holds s_mutex.
2149  * return value:
2150  *  0 - ok
2151  *  1 - check_caps on auth cap only (writeback)
2152  *  2 - check_caps (ack revoke)
2153  */
2154 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2155 			    struct ceph_mds_session *session,
2156 			    struct ceph_cap *cap,
2157 			    struct ceph_buffer *xattr_buf)
2158 	__releases(inode->i_lock)
2159 
2160 {
2161 	struct ceph_inode_info *ci = ceph_inode(inode);
2162 	int mds = session->s_mds;
2163 	int seq = le32_to_cpu(grant->seq);
2164 	int newcaps = le32_to_cpu(grant->caps);
2165 	int issued, implemented, used, wanted, dirty;
2166 	u64 size = le64_to_cpu(grant->size);
2167 	u64 max_size = le64_to_cpu(grant->max_size);
2168 	struct timespec mtime, atime, ctime;
2169 	int reply = 0;
2170 	int wake = 0;
2171 	int writeback = 0;
2172 	int revoked_rdcache = 0;
2173 	int queue_invalidate = 0;
2174 	int tried_invalidate = 0;
2175 	int ret;
2176 
2177 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2178 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2179 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2180 		inode->i_size);
2181 
2182 	/*
2183 	 * If CACHE is being revoked, and we have no dirty buffers,
2184 	 * try to invalidate (once).  (If there are dirty buffers, we
2185 	 * will invalidate _after_ writeback.)
2186 	 */
2187 restart:
2188 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2189 	    !ci->i_wrbuffer_ref && !tried_invalidate) {
2190 		dout("CACHE invalidation\n");
2191 		spin_unlock(&inode->i_lock);
2192 		tried_invalidate = 1;
2193 
2194 		ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
2195 		spin_lock(&inode->i_lock);
2196 		if (ret < 0) {
2197 			/* there were locked pages.. invalidate later
2198 			   in a separate thread. */
2199 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2200 				queue_invalidate = 1;
2201 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2202 			}
2203 		} else {
2204 			/* we successfully invalidated those pages */
2205 			revoked_rdcache = 1;
2206 			ci->i_rdcache_gen = 0;
2207 			ci->i_rdcache_revoking = 0;
2208 		}
2209 		goto restart;
2210 	}
2211 
2212 	/* side effects now are allowed */
2213 
2214 	issued = __ceph_caps_issued(ci, &implemented);
2215 	issued |= implemented | __ceph_caps_dirty(ci);
2216 
2217 	cap->cap_gen = session->s_cap_gen;
2218 
2219 	__check_cap_issue(ci, cap, newcaps);
2220 
2221 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2222 		inode->i_mode = le32_to_cpu(grant->mode);
2223 		inode->i_uid = le32_to_cpu(grant->uid);
2224 		inode->i_gid = le32_to_cpu(grant->gid);
2225 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2226 		     inode->i_uid, inode->i_gid);
2227 	}
2228 
2229 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2230 		inode->i_nlink = le32_to_cpu(grant->nlink);
2231 
2232 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2233 		int len = le32_to_cpu(grant->xattr_len);
2234 		u64 version = le64_to_cpu(grant->xattr_version);
2235 
2236 		if (version > ci->i_xattrs.version) {
2237 			dout(" got new xattrs v%llu on %p len %d\n",
2238 			     version, inode, len);
2239 			if (ci->i_xattrs.blob)
2240 				ceph_buffer_put(ci->i_xattrs.blob);
2241 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2242 			ci->i_xattrs.version = version;
2243 		}
2244 	}
2245 
2246 	/* size/ctime/mtime/atime? */
2247 	ceph_fill_file_size(inode, issued,
2248 			    le32_to_cpu(grant->truncate_seq),
2249 			    le64_to_cpu(grant->truncate_size), size);
2250 	ceph_decode_timespec(&mtime, &grant->mtime);
2251 	ceph_decode_timespec(&atime, &grant->atime);
2252 	ceph_decode_timespec(&ctime, &grant->ctime);
2253 	ceph_fill_file_time(inode, issued,
2254 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2255 			    &atime);
2256 
2257 	/* max size increase? */
2258 	if (max_size != ci->i_max_size) {
2259 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2260 		ci->i_max_size = max_size;
2261 		if (max_size >= ci->i_wanted_max_size) {
2262 			ci->i_wanted_max_size = 0;  /* reset */
2263 			ci->i_requested_max_size = 0;
2264 		}
2265 		wake = 1;
2266 	}
2267 
2268 	/* check cap bits */
2269 	wanted = __ceph_caps_wanted(ci);
2270 	used = __ceph_caps_used(ci);
2271 	dirty = __ceph_caps_dirty(ci);
2272 	dout(" my wanted = %s, used = %s, dirty %s\n",
2273 	     ceph_cap_string(wanted),
2274 	     ceph_cap_string(used),
2275 	     ceph_cap_string(dirty));
2276 	if (wanted != le32_to_cpu(grant->wanted)) {
2277 		dout("mds wanted %s -> %s\n",
2278 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2279 		     ceph_cap_string(wanted));
2280 		grant->wanted = cpu_to_le32(wanted);
2281 	}
2282 
2283 	cap->seq = seq;
2284 
2285 	/* file layout may have changed */
2286 	ci->i_layout = grant->layout;
2287 
2288 	/* revocation, grant, or no-op? */
2289 	if (cap->issued & ~newcaps) {
2290 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2291 		     ceph_cap_string(newcaps));
2292 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2293 			writeback = 1; /* will delay ack */
2294 		else if (dirty & ~newcaps)
2295 			reply = 1;     /* initiate writeback in check_caps */
2296 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2297 			   revoked_rdcache)
2298 			reply = 2;     /* send revoke ack in check_caps */
2299 		cap->issued = newcaps;
2300 	} else if (cap->issued == newcaps) {
2301 		dout("caps unchanged: %s -> %s\n",
2302 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2303 	} else {
2304 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2305 		     ceph_cap_string(newcaps));
2306 		cap->issued = newcaps;
2307 		cap->implemented |= newcaps; /* add bits only, to
2308 					      * avoid stepping on a
2309 					      * pending revocation */
2310 		wake = 1;
2311 	}
2312 
2313 	spin_unlock(&inode->i_lock);
2314 	if (writeback)
2315 		/*
2316 		 * queue inode for writeback: we can't actually call
2317 		 * filemap_write_and_wait, etc. from message handler
2318 		 * context.
2319 		 */
2320 		ceph_queue_writeback(inode);
2321 	if (queue_invalidate)
2322 		ceph_queue_invalidate(inode);
2323 	if (wake)
2324 		wake_up(&ci->i_cap_wq);
2325 	return reply;
2326 }
2327 
2328 /*
2329  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2330  * MDS has been safely committed.
2331  */
2332 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2333 				 struct ceph_mds_caps *m,
2334 				 struct ceph_mds_session *session,
2335 				 struct ceph_cap *cap)
2336 	__releases(inode->i_lock)
2337 {
2338 	struct ceph_inode_info *ci = ceph_inode(inode);
2339 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2340 	unsigned seq = le32_to_cpu(m->seq);
2341 	int dirty = le32_to_cpu(m->dirty);
2342 	int cleaned = 0;
2343 	int drop = 0;
2344 	int i;
2345 
2346 	for (i = 0; i < CEPH_CAP_BITS; i++)
2347 		if ((dirty & (1 << i)) &&
2348 		    flush_tid == ci->i_cap_flush_tid[i])
2349 			cleaned |= 1 << i;
2350 
2351 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2352 	     " flushing %s -> %s\n",
2353 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2354 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2355 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2356 
2357 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2358 		goto out;
2359 
2360 	ci->i_flushing_caps &= ~cleaned;
2361 
2362 	spin_lock(&mdsc->cap_dirty_lock);
2363 	if (ci->i_flushing_caps == 0) {
2364 		list_del_init(&ci->i_flushing_item);
2365 		if (!list_empty(&session->s_cap_flushing))
2366 			dout(" mds%d still flushing cap on %p\n",
2367 			     session->s_mds,
2368 			     &list_entry(session->s_cap_flushing.next,
2369 					 struct ceph_inode_info,
2370 					 i_flushing_item)->vfs_inode);
2371 		mdsc->num_cap_flushing--;
2372 		wake_up(&mdsc->cap_flushing_wq);
2373 		dout(" inode %p now !flushing\n", inode);
2374 
2375 		if (ci->i_dirty_caps == 0) {
2376 			dout(" inode %p now clean\n", inode);
2377 			BUG_ON(!list_empty(&ci->i_dirty_item));
2378 			drop = 1;
2379 		} else {
2380 			BUG_ON(list_empty(&ci->i_dirty_item));
2381 		}
2382 	}
2383 	spin_unlock(&mdsc->cap_dirty_lock);
2384 	wake_up(&ci->i_cap_wq);
2385 
2386 out:
2387 	spin_unlock(&inode->i_lock);
2388 	if (drop)
2389 		iput(inode);
2390 }
2391 
2392 /*
2393  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2394  * throw away our cap_snap.
2395  *
2396  * Caller hold s_mutex.
2397  */
2398 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2399 				     struct ceph_mds_caps *m,
2400 				     struct ceph_mds_session *session)
2401 {
2402 	struct ceph_inode_info *ci = ceph_inode(inode);
2403 	u64 follows = le64_to_cpu(m->snap_follows);
2404 	struct ceph_cap_snap *capsnap;
2405 	int drop = 0;
2406 
2407 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2408 	     inode, ci, session->s_mds, follows);
2409 
2410 	spin_lock(&inode->i_lock);
2411 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2412 		if (capsnap->follows == follows) {
2413 			if (capsnap->flush_tid != flush_tid) {
2414 				dout(" cap_snap %p follows %lld tid %lld !="
2415 				     " %lld\n", capsnap, follows,
2416 				     flush_tid, capsnap->flush_tid);
2417 				break;
2418 			}
2419 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2420 			dout(" removing cap_snap %p follows %lld\n",
2421 			     capsnap, follows);
2422 			ceph_put_snap_context(capsnap->context);
2423 			list_del(&capsnap->ci_item);
2424 			list_del(&capsnap->flushing_item);
2425 			ceph_put_cap_snap(capsnap);
2426 			drop = 1;
2427 			break;
2428 		} else {
2429 			dout(" skipping cap_snap %p follows %lld\n",
2430 			     capsnap, capsnap->follows);
2431 		}
2432 	}
2433 	spin_unlock(&inode->i_lock);
2434 	if (drop)
2435 		iput(inode);
2436 }
2437 
2438 /*
2439  * Handle TRUNC from MDS, indicating file truncation.
2440  *
2441  * caller hold s_mutex.
2442  */
2443 static void handle_cap_trunc(struct inode *inode,
2444 			     struct ceph_mds_caps *trunc,
2445 			     struct ceph_mds_session *session)
2446 	__releases(inode->i_lock)
2447 {
2448 	struct ceph_inode_info *ci = ceph_inode(inode);
2449 	int mds = session->s_mds;
2450 	int seq = le32_to_cpu(trunc->seq);
2451 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2452 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2453 	u64 size = le64_to_cpu(trunc->size);
2454 	int implemented = 0;
2455 	int dirty = __ceph_caps_dirty(ci);
2456 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2457 	int queue_trunc = 0;
2458 
2459 	issued |= implemented | dirty;
2460 
2461 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2462 	     inode, mds, seq, truncate_size, truncate_seq);
2463 	queue_trunc = ceph_fill_file_size(inode, issued,
2464 					  truncate_seq, truncate_size, size);
2465 	spin_unlock(&inode->i_lock);
2466 
2467 	if (queue_trunc)
2468 		ceph_queue_vmtruncate(inode);
2469 }
2470 
2471 /*
2472  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2473  * different one.  If we are the most recent migration we've seen (as
2474  * indicated by mseq), make note of the migrating cap bits for the
2475  * duration (until we see the corresponding IMPORT).
2476  *
2477  * caller holds s_mutex
2478  */
2479 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2480 			      struct ceph_mds_session *session)
2481 {
2482 	struct ceph_inode_info *ci = ceph_inode(inode);
2483 	int mds = session->s_mds;
2484 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2485 	struct ceph_cap *cap = NULL, *t;
2486 	struct rb_node *p;
2487 	int remember = 1;
2488 
2489 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2490 	     inode, ci, mds, mseq);
2491 
2492 	spin_lock(&inode->i_lock);
2493 
2494 	/* make sure we haven't seen a higher mseq */
2495 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2496 		t = rb_entry(p, struct ceph_cap, ci_node);
2497 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2498 			dout(" higher mseq on cap from mds%d\n",
2499 			     t->session->s_mds);
2500 			remember = 0;
2501 		}
2502 		if (t->session->s_mds == mds)
2503 			cap = t;
2504 	}
2505 
2506 	if (cap) {
2507 		if (remember) {
2508 			/* make note */
2509 			ci->i_cap_exporting_mds = mds;
2510 			ci->i_cap_exporting_mseq = mseq;
2511 			ci->i_cap_exporting_issued = cap->issued;
2512 		}
2513 		__ceph_remove_cap(cap, NULL);
2514 	} else {
2515 		WARN_ON(!cap);
2516 	}
2517 
2518 	spin_unlock(&inode->i_lock);
2519 }
2520 
2521 /*
2522  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2523  * clean them up.
2524  *
2525  * caller holds s_mutex.
2526  */
2527 static void handle_cap_import(struct ceph_mds_client *mdsc,
2528 			      struct inode *inode, struct ceph_mds_caps *im,
2529 			      struct ceph_mds_session *session,
2530 			      void *snaptrace, int snaptrace_len)
2531 {
2532 	struct ceph_inode_info *ci = ceph_inode(inode);
2533 	int mds = session->s_mds;
2534 	unsigned issued = le32_to_cpu(im->caps);
2535 	unsigned wanted = le32_to_cpu(im->wanted);
2536 	unsigned seq = le32_to_cpu(im->seq);
2537 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2538 	u64 realmino = le64_to_cpu(im->realm);
2539 	u64 cap_id = le64_to_cpu(im->cap_id);
2540 
2541 	if (ci->i_cap_exporting_mds >= 0 &&
2542 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2543 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2544 		     " - cleared exporting from mds%d\n",
2545 		     inode, ci, mds, mseq,
2546 		     ci->i_cap_exporting_mds);
2547 		ci->i_cap_exporting_issued = 0;
2548 		ci->i_cap_exporting_mseq = 0;
2549 		ci->i_cap_exporting_mds = -1;
2550 	} else {
2551 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2552 		     inode, ci, mds, mseq);
2553 	}
2554 
2555 	down_write(&mdsc->snap_rwsem);
2556 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2557 			       false);
2558 	downgrade_write(&mdsc->snap_rwsem);
2559 	ceph_add_cap(inode, session, cap_id, -1,
2560 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2561 		     NULL /* no caps context */);
2562 	try_flush_caps(inode, session, NULL);
2563 	up_read(&mdsc->snap_rwsem);
2564 }
2565 
2566 /*
2567  * Handle a caps message from the MDS.
2568  *
2569  * Identify the appropriate session, inode, and call the right handler
2570  * based on the cap op.
2571  */
2572 void ceph_handle_caps(struct ceph_mds_session *session,
2573 		      struct ceph_msg *msg)
2574 {
2575 	struct ceph_mds_client *mdsc = session->s_mdsc;
2576 	struct super_block *sb = mdsc->client->sb;
2577 	struct inode *inode;
2578 	struct ceph_cap *cap;
2579 	struct ceph_mds_caps *h;
2580 	int mds = le64_to_cpu(msg->hdr.src.name.num);
2581 	int op;
2582 	u32 seq;
2583 	struct ceph_vino vino;
2584 	u64 cap_id;
2585 	u64 size, max_size;
2586 	u64 tid;
2587 	int check_caps = 0;
2588 	int r;
2589 
2590 	dout("handle_caps from mds%d\n", mds);
2591 
2592 	/* decode */
2593 	tid = le64_to_cpu(msg->hdr.tid);
2594 	if (msg->front.iov_len < sizeof(*h))
2595 		goto bad;
2596 	h = msg->front.iov_base;
2597 	op = le32_to_cpu(h->op);
2598 	vino.ino = le64_to_cpu(h->ino);
2599 	vino.snap = CEPH_NOSNAP;
2600 	cap_id = le64_to_cpu(h->cap_id);
2601 	seq = le32_to_cpu(h->seq);
2602 	size = le64_to_cpu(h->size);
2603 	max_size = le64_to_cpu(h->max_size);
2604 
2605 	mutex_lock(&session->s_mutex);
2606 	session->s_seq++;
2607 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2608 	     (unsigned)seq);
2609 
2610 	/* lookup ino */
2611 	inode = ceph_find_inode(sb, vino);
2612 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2613 	     vino.snap, inode);
2614 	if (!inode) {
2615 		dout(" i don't have ino %llx\n", vino.ino);
2616 		goto done;
2617 	}
2618 
2619 	/* these will work even if we don't have a cap yet */
2620 	switch (op) {
2621 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2622 		handle_cap_flushsnap_ack(inode, tid, h, session);
2623 		goto done;
2624 
2625 	case CEPH_CAP_OP_EXPORT:
2626 		handle_cap_export(inode, h, session);
2627 		goto done;
2628 
2629 	case CEPH_CAP_OP_IMPORT:
2630 		handle_cap_import(mdsc, inode, h, session,
2631 				  msg->middle,
2632 				  le32_to_cpu(h->snap_trace_len));
2633 		check_caps = 1; /* we may have sent a RELEASE to the old auth */
2634 		goto done;
2635 	}
2636 
2637 	/* the rest require a cap */
2638 	spin_lock(&inode->i_lock);
2639 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2640 	if (!cap) {
2641 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2642 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2643 		spin_unlock(&inode->i_lock);
2644 		goto done;
2645 	}
2646 
2647 	/* note that each of these drops i_lock for us */
2648 	switch (op) {
2649 	case CEPH_CAP_OP_REVOKE:
2650 	case CEPH_CAP_OP_GRANT:
2651 		r = handle_cap_grant(inode, h, session, cap, msg->middle);
2652 		if (r == 1)
2653 			ceph_check_caps(ceph_inode(inode),
2654 					CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2655 					session);
2656 		else if (r == 2)
2657 			ceph_check_caps(ceph_inode(inode),
2658 					CHECK_CAPS_NODELAY,
2659 					session);
2660 		break;
2661 
2662 	case CEPH_CAP_OP_FLUSH_ACK:
2663 		handle_cap_flush_ack(inode, tid, h, session, cap);
2664 		break;
2665 
2666 	case CEPH_CAP_OP_TRUNC:
2667 		handle_cap_trunc(inode, h, session);
2668 		break;
2669 
2670 	default:
2671 		spin_unlock(&inode->i_lock);
2672 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2673 		       ceph_cap_op_name(op));
2674 	}
2675 
2676 done:
2677 	mutex_unlock(&session->s_mutex);
2678 
2679 	if (check_caps)
2680 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2681 	if (inode)
2682 		iput(inode);
2683 	return;
2684 
2685 bad:
2686 	pr_err("ceph_handle_caps: corrupt message\n");
2687 	ceph_msg_dump(msg);
2688 	return;
2689 }
2690 
2691 /*
2692  * Delayed work handler to process end of delayed cap release LRU list.
2693  */
2694 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2695 {
2696 	struct ceph_inode_info *ci;
2697 	int flags = CHECK_CAPS_NODELAY;
2698 
2699 	dout("check_delayed_caps\n");
2700 	while (1) {
2701 		spin_lock(&mdsc->cap_delay_lock);
2702 		if (list_empty(&mdsc->cap_delay_list))
2703 			break;
2704 		ci = list_first_entry(&mdsc->cap_delay_list,
2705 				      struct ceph_inode_info,
2706 				      i_cap_delay_list);
2707 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2708 		    time_before(jiffies, ci->i_hold_caps_max))
2709 			break;
2710 		list_del_init(&ci->i_cap_delay_list);
2711 		spin_unlock(&mdsc->cap_delay_lock);
2712 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2713 		ceph_check_caps(ci, flags, NULL);
2714 	}
2715 	spin_unlock(&mdsc->cap_delay_lock);
2716 }
2717 
2718 /*
2719  * Flush all dirty caps to the mds
2720  */
2721 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2722 {
2723 	struct ceph_inode_info *ci;
2724 	struct inode *inode;
2725 
2726 	dout("flush_dirty_caps\n");
2727 	spin_lock(&mdsc->cap_dirty_lock);
2728 	while (!list_empty(&mdsc->cap_dirty)) {
2729 		ci = list_first_entry(&mdsc->cap_dirty,
2730 				      struct ceph_inode_info,
2731 				      i_dirty_item);
2732 		inode = igrab(&ci->vfs_inode);
2733 		spin_unlock(&mdsc->cap_dirty_lock);
2734 		if (inode) {
2735 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2736 					NULL);
2737 			iput(inode);
2738 		}
2739 		spin_lock(&mdsc->cap_dirty_lock);
2740 	}
2741 	spin_unlock(&mdsc->cap_dirty_lock);
2742 }
2743 
2744 /*
2745  * Drop open file reference.  If we were the last open file,
2746  * we may need to release capabilities to the MDS (or schedule
2747  * their delayed release).
2748  */
2749 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2750 {
2751 	struct inode *inode = &ci->vfs_inode;
2752 	int last = 0;
2753 
2754 	spin_lock(&inode->i_lock);
2755 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2756 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2757 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2758 	if (--ci->i_nr_by_mode[fmode] == 0)
2759 		last++;
2760 	spin_unlock(&inode->i_lock);
2761 
2762 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2763 		ceph_check_caps(ci, 0, NULL);
2764 }
2765 
2766 /*
2767  * Helpers for embedding cap and dentry lease releases into mds
2768  * requests.
2769  *
2770  * @force is used by dentry_release (below) to force inclusion of a
2771  * record for the directory inode, even when there aren't any caps to
2772  * drop.
2773  */
2774 int ceph_encode_inode_release(void **p, struct inode *inode,
2775 			      int mds, int drop, int unless, int force)
2776 {
2777 	struct ceph_inode_info *ci = ceph_inode(inode);
2778 	struct ceph_cap *cap;
2779 	struct ceph_mds_request_release *rel = *p;
2780 	int ret = 0;
2781 
2782 	dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2783 	     mds, ceph_cap_string(drop), ceph_cap_string(unless));
2784 
2785 	spin_lock(&inode->i_lock);
2786 	cap = __get_cap_for_mds(ci, mds);
2787 	if (cap && __cap_is_valid(cap)) {
2788 		if (force ||
2789 		    ((cap->issued & drop) &&
2790 		     (cap->issued & unless) == 0)) {
2791 			if ((cap->issued & drop) &&
2792 			    (cap->issued & unless) == 0) {
2793 				dout("encode_inode_release %p cap %p %s -> "
2794 				     "%s\n", inode, cap,
2795 				     ceph_cap_string(cap->issued),
2796 				     ceph_cap_string(cap->issued & ~drop));
2797 				cap->issued &= ~drop;
2798 				cap->implemented &= ~drop;
2799 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2800 					int wanted = __ceph_caps_wanted(ci);
2801 					dout("  wanted %s -> %s (act %s)\n",
2802 					     ceph_cap_string(cap->mds_wanted),
2803 					     ceph_cap_string(cap->mds_wanted &
2804 							     ~wanted),
2805 					     ceph_cap_string(wanted));
2806 					cap->mds_wanted &= wanted;
2807 				}
2808 			} else {
2809 				dout("encode_inode_release %p cap %p %s"
2810 				     " (force)\n", inode, cap,
2811 				     ceph_cap_string(cap->issued));
2812 			}
2813 
2814 			rel->ino = cpu_to_le64(ceph_ino(inode));
2815 			rel->cap_id = cpu_to_le64(cap->cap_id);
2816 			rel->seq = cpu_to_le32(cap->seq);
2817 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2818 			rel->mseq = cpu_to_le32(cap->mseq);
2819 			rel->caps = cpu_to_le32(cap->issued);
2820 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2821 			rel->dname_len = 0;
2822 			rel->dname_seq = 0;
2823 			*p += sizeof(*rel);
2824 			ret = 1;
2825 		} else {
2826 			dout("encode_inode_release %p cap %p %s\n",
2827 			     inode, cap, ceph_cap_string(cap->issued));
2828 		}
2829 	}
2830 	spin_unlock(&inode->i_lock);
2831 	return ret;
2832 }
2833 
2834 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2835 			       int mds, int drop, int unless)
2836 {
2837 	struct inode *dir = dentry->d_parent->d_inode;
2838 	struct ceph_mds_request_release *rel = *p;
2839 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2840 	int force = 0;
2841 	int ret;
2842 
2843 	/*
2844 	 * force an record for the directory caps if we have a dentry lease.
2845 	 * this is racy (can't take i_lock and d_lock together), but it
2846 	 * doesn't have to be perfect; the mds will revoke anything we don't
2847 	 * release.
2848 	 */
2849 	spin_lock(&dentry->d_lock);
2850 	if (di->lease_session && di->lease_session->s_mds == mds)
2851 		force = 1;
2852 	spin_unlock(&dentry->d_lock);
2853 
2854 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2855 
2856 	spin_lock(&dentry->d_lock);
2857 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2858 		dout("encode_dentry_release %p mds%d seq %d\n",
2859 		     dentry, mds, (int)di->lease_seq);
2860 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2861 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2862 		*p += dentry->d_name.len;
2863 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2864 	}
2865 	spin_unlock(&dentry->d_lock);
2866 	return ret;
2867 }
2868