xref: /openbmc/linux/fs/ceph/caps.c (revision 1fa6ac37)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "decode.h"
13 #include "messenger.h"
14 
15 /*
16  * Capability management
17  *
18  * The Ceph metadata servers control client access to inode metadata
19  * and file data by issuing capabilities, granting clients permission
20  * to read and/or write both inode field and file data to OSDs
21  * (storage nodes).  Each capability consists of a set of bits
22  * indicating which operations are allowed.
23  *
24  * If the client holds a *_SHARED cap, the client has a coherent value
25  * that can be safely read from the cached inode.
26  *
27  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28  * client is allowed to change inode attributes (e.g., file size,
29  * mtime), note its dirty state in the ceph_cap, and asynchronously
30  * flush that metadata change to the MDS.
31  *
32  * In the event of a conflicting operation (perhaps by another
33  * client), the MDS will revoke the conflicting client capabilities.
34  *
35  * In order for a client to cache an inode, it must hold a capability
36  * with at least one MDS server.  When inodes are released, release
37  * notifications are batched and periodically sent en masse to the MDS
38  * cluster to release server state.
39  */
40 
41 
42 /*
43  * Generate readable cap strings for debugging output.
44  */
45 #define MAX_CAP_STR 20
46 static char cap_str[MAX_CAP_STR][40];
47 static DEFINE_SPINLOCK(cap_str_lock);
48 static int last_cap_str;
49 
50 static char *gcap_string(char *s, int c)
51 {
52 	if (c & CEPH_CAP_GSHARED)
53 		*s++ = 's';
54 	if (c & CEPH_CAP_GEXCL)
55 		*s++ = 'x';
56 	if (c & CEPH_CAP_GCACHE)
57 		*s++ = 'c';
58 	if (c & CEPH_CAP_GRD)
59 		*s++ = 'r';
60 	if (c & CEPH_CAP_GWR)
61 		*s++ = 'w';
62 	if (c & CEPH_CAP_GBUFFER)
63 		*s++ = 'b';
64 	if (c & CEPH_CAP_GLAZYIO)
65 		*s++ = 'l';
66 	return s;
67 }
68 
69 const char *ceph_cap_string(int caps)
70 {
71 	int i;
72 	char *s;
73 	int c;
74 
75 	spin_lock(&cap_str_lock);
76 	i = last_cap_str++;
77 	if (last_cap_str == MAX_CAP_STR)
78 		last_cap_str = 0;
79 	spin_unlock(&cap_str_lock);
80 
81 	s = cap_str[i];
82 
83 	if (caps & CEPH_CAP_PIN)
84 		*s++ = 'p';
85 
86 	c = (caps >> CEPH_CAP_SAUTH) & 3;
87 	if (c) {
88 		*s++ = 'A';
89 		s = gcap_string(s, c);
90 	}
91 
92 	c = (caps >> CEPH_CAP_SLINK) & 3;
93 	if (c) {
94 		*s++ = 'L';
95 		s = gcap_string(s, c);
96 	}
97 
98 	c = (caps >> CEPH_CAP_SXATTR) & 3;
99 	if (c) {
100 		*s++ = 'X';
101 		s = gcap_string(s, c);
102 	}
103 
104 	c = caps >> CEPH_CAP_SFILE;
105 	if (c) {
106 		*s++ = 'F';
107 		s = gcap_string(s, c);
108 	}
109 
110 	if (s == cap_str[i])
111 		*s++ = '-';
112 	*s = 0;
113 	return cap_str[i];
114 }
115 
116 /*
117  * Cap reservations
118  *
119  * Maintain a global pool of preallocated struct ceph_caps, referenced
120  * by struct ceph_caps_reservations.  This ensures that we preallocate
121  * memory needed to successfully process an MDS response.  (If an MDS
122  * sends us cap information and we fail to process it, we will have
123  * problems due to the client and MDS being out of sync.)
124  *
125  * Reservations are 'owned' by a ceph_cap_reservation context.
126  */
127 static spinlock_t caps_list_lock;
128 static struct list_head caps_list;  /* unused (reserved or unreserved) */
129 static int caps_total_count;        /* total caps allocated */
130 static int caps_use_count;          /* in use */
131 static int caps_reserve_count;      /* unused, reserved */
132 static int caps_avail_count;        /* unused, unreserved */
133 static int caps_min_count;          /* keep at least this many (unreserved) */
134 
135 void __init ceph_caps_init(void)
136 {
137 	INIT_LIST_HEAD(&caps_list);
138 	spin_lock_init(&caps_list_lock);
139 }
140 
141 void ceph_caps_finalize(void)
142 {
143 	struct ceph_cap *cap;
144 
145 	spin_lock(&caps_list_lock);
146 	while (!list_empty(&caps_list)) {
147 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
148 		list_del(&cap->caps_item);
149 		kmem_cache_free(ceph_cap_cachep, cap);
150 	}
151 	caps_total_count = 0;
152 	caps_avail_count = 0;
153 	caps_use_count = 0;
154 	caps_reserve_count = 0;
155 	caps_min_count = 0;
156 	spin_unlock(&caps_list_lock);
157 }
158 
159 void ceph_adjust_min_caps(int delta)
160 {
161 	spin_lock(&caps_list_lock);
162 	caps_min_count += delta;
163 	BUG_ON(caps_min_count < 0);
164 	spin_unlock(&caps_list_lock);
165 }
166 
167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
168 {
169 	int i;
170 	struct ceph_cap *cap;
171 	int have;
172 	int alloc = 0;
173 	LIST_HEAD(newcaps);
174 	int ret = 0;
175 
176 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
177 
178 	/* first reserve any caps that are already allocated */
179 	spin_lock(&caps_list_lock);
180 	if (caps_avail_count >= need)
181 		have = need;
182 	else
183 		have = caps_avail_count;
184 	caps_avail_count -= have;
185 	caps_reserve_count += have;
186 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
187 	       caps_avail_count);
188 	spin_unlock(&caps_list_lock);
189 
190 	for (i = have; i < need; i++) {
191 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
192 		if (!cap) {
193 			ret = -ENOMEM;
194 			goto out_alloc_count;
195 		}
196 		list_add(&cap->caps_item, &newcaps);
197 		alloc++;
198 	}
199 	BUG_ON(have + alloc != need);
200 
201 	spin_lock(&caps_list_lock);
202 	caps_total_count += alloc;
203 	caps_reserve_count += alloc;
204 	list_splice(&newcaps, &caps_list);
205 
206 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
207 	       caps_avail_count);
208 	spin_unlock(&caps_list_lock);
209 
210 	ctx->count = need;
211 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
212 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
213 	     caps_avail_count);
214 	return 0;
215 
216 out_alloc_count:
217 	/* we didn't manage to reserve as much as we needed */
218 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
219 		   ctx, need, have);
220 	return ret;
221 }
222 
223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
224 {
225 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
226 	if (ctx->count) {
227 		spin_lock(&caps_list_lock);
228 		BUG_ON(caps_reserve_count < ctx->count);
229 		caps_reserve_count -= ctx->count;
230 		caps_avail_count += ctx->count;
231 		ctx->count = 0;
232 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
233 		     caps_total_count, caps_use_count, caps_reserve_count,
234 		     caps_avail_count);
235 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
236 		       caps_avail_count);
237 		spin_unlock(&caps_list_lock);
238 	}
239 	return 0;
240 }
241 
242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
243 {
244 	struct ceph_cap *cap = NULL;
245 
246 	/* temporary, until we do something about cap import/export */
247 	if (!ctx)
248 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
249 
250 	spin_lock(&caps_list_lock);
251 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
252 	     ctx, ctx->count, caps_total_count, caps_use_count,
253 	     caps_reserve_count, caps_avail_count);
254 	BUG_ON(!ctx->count);
255 	BUG_ON(ctx->count > caps_reserve_count);
256 	BUG_ON(list_empty(&caps_list));
257 
258 	ctx->count--;
259 	caps_reserve_count--;
260 	caps_use_count++;
261 
262 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
263 	list_del(&cap->caps_item);
264 
265 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
266 	       caps_avail_count);
267 	spin_unlock(&caps_list_lock);
268 	return cap;
269 }
270 
271 void ceph_put_cap(struct ceph_cap *cap)
272 {
273 	spin_lock(&caps_list_lock);
274 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
275 	     cap, caps_total_count, caps_use_count,
276 	     caps_reserve_count, caps_avail_count);
277 	caps_use_count--;
278 	/*
279 	 * Keep some preallocated caps around (ceph_min_count), to
280 	 * avoid lots of free/alloc churn.
281 	 */
282 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
283 		caps_total_count--;
284 		kmem_cache_free(ceph_cap_cachep, cap);
285 	} else {
286 		caps_avail_count++;
287 		list_add(&cap->caps_item, &caps_list);
288 	}
289 
290 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
291 	       caps_avail_count);
292 	spin_unlock(&caps_list_lock);
293 }
294 
295 void ceph_reservation_status(struct ceph_client *client,
296 			     int *total, int *avail, int *used, int *reserved,
297 			     int *min)
298 {
299 	if (total)
300 		*total = caps_total_count;
301 	if (avail)
302 		*avail = caps_avail_count;
303 	if (used)
304 		*used = caps_use_count;
305 	if (reserved)
306 		*reserved = caps_reserve_count;
307 	if (min)
308 		*min = caps_min_count;
309 }
310 
311 /*
312  * Find ceph_cap for given mds, if any.
313  *
314  * Called with i_lock held.
315  */
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
317 {
318 	struct ceph_cap *cap;
319 	struct rb_node *n = ci->i_caps.rb_node;
320 
321 	while (n) {
322 		cap = rb_entry(n, struct ceph_cap, ci_node);
323 		if (mds < cap->mds)
324 			n = n->rb_left;
325 		else if (mds > cap->mds)
326 			n = n->rb_right;
327 		else
328 			return cap;
329 	}
330 	return NULL;
331 }
332 
333 /*
334  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
335  * -1.
336  */
337 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
338 {
339 	struct ceph_cap *cap;
340 	int mds = -1;
341 	struct rb_node *p;
342 
343 	/* prefer mds with WR|WRBUFFER|EXCL caps */
344 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
345 		cap = rb_entry(p, struct ceph_cap, ci_node);
346 		mds = cap->mds;
347 		if (mseq)
348 			*mseq = cap->mseq;
349 		if (cap->issued & (CEPH_CAP_FILE_WR |
350 				   CEPH_CAP_FILE_BUFFER |
351 				   CEPH_CAP_FILE_EXCL))
352 			break;
353 	}
354 	return mds;
355 }
356 
357 int ceph_get_cap_mds(struct inode *inode)
358 {
359 	int mds;
360 	spin_lock(&inode->i_lock);
361 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
362 	spin_unlock(&inode->i_lock);
363 	return mds;
364 }
365 
366 /*
367  * Called under i_lock.
368  */
369 static void __insert_cap_node(struct ceph_inode_info *ci,
370 			      struct ceph_cap *new)
371 {
372 	struct rb_node **p = &ci->i_caps.rb_node;
373 	struct rb_node *parent = NULL;
374 	struct ceph_cap *cap = NULL;
375 
376 	while (*p) {
377 		parent = *p;
378 		cap = rb_entry(parent, struct ceph_cap, ci_node);
379 		if (new->mds < cap->mds)
380 			p = &(*p)->rb_left;
381 		else if (new->mds > cap->mds)
382 			p = &(*p)->rb_right;
383 		else
384 			BUG();
385 	}
386 
387 	rb_link_node(&new->ci_node, parent, p);
388 	rb_insert_color(&new->ci_node, &ci->i_caps);
389 }
390 
391 /*
392  * (re)set cap hold timeouts, which control the delayed release
393  * of unused caps back to the MDS.  Should be called on cap use.
394  */
395 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
396 			       struct ceph_inode_info *ci)
397 {
398 	struct ceph_mount_args *ma = mdsc->client->mount_args;
399 
400 	ci->i_hold_caps_min = round_jiffies(jiffies +
401 					    ma->caps_wanted_delay_min * HZ);
402 	ci->i_hold_caps_max = round_jiffies(jiffies +
403 					    ma->caps_wanted_delay_max * HZ);
404 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
405 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
406 }
407 
408 /*
409  * (Re)queue cap at the end of the delayed cap release list.
410  *
411  * If I_FLUSH is set, leave the inode at the front of the list.
412  *
413  * Caller holds i_lock
414  *    -> we take mdsc->cap_delay_lock
415  */
416 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
417 				struct ceph_inode_info *ci)
418 {
419 	__cap_set_timeouts(mdsc, ci);
420 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
421 	     ci->i_ceph_flags, ci->i_hold_caps_max);
422 	if (!mdsc->stopping) {
423 		spin_lock(&mdsc->cap_delay_lock);
424 		if (!list_empty(&ci->i_cap_delay_list)) {
425 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
426 				goto no_change;
427 			list_del_init(&ci->i_cap_delay_list);
428 		}
429 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
430 no_change:
431 		spin_unlock(&mdsc->cap_delay_lock);
432 	}
433 }
434 
435 /*
436  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
437  * indicating we should send a cap message to flush dirty metadata
438  * asap, and move to the front of the delayed cap list.
439  */
440 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
441 				      struct ceph_inode_info *ci)
442 {
443 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
444 	spin_lock(&mdsc->cap_delay_lock);
445 	ci->i_ceph_flags |= CEPH_I_FLUSH;
446 	if (!list_empty(&ci->i_cap_delay_list))
447 		list_del_init(&ci->i_cap_delay_list);
448 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
449 	spin_unlock(&mdsc->cap_delay_lock);
450 }
451 
452 /*
453  * Cancel delayed work on cap.
454  *
455  * Caller must hold i_lock.
456  */
457 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
458 			       struct ceph_inode_info *ci)
459 {
460 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
461 	if (list_empty(&ci->i_cap_delay_list))
462 		return;
463 	spin_lock(&mdsc->cap_delay_lock);
464 	list_del_init(&ci->i_cap_delay_list);
465 	spin_unlock(&mdsc->cap_delay_lock);
466 }
467 
468 /*
469  * Common issue checks for add_cap, handle_cap_grant.
470  */
471 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
472 			      unsigned issued)
473 {
474 	unsigned had = __ceph_caps_issued(ci, NULL);
475 
476 	/*
477 	 * Each time we receive FILE_CACHE anew, we increment
478 	 * i_rdcache_gen.
479 	 */
480 	if ((issued & CEPH_CAP_FILE_CACHE) &&
481 	    (had & CEPH_CAP_FILE_CACHE) == 0)
482 		ci->i_rdcache_gen++;
483 
484 	/*
485 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
486 	 * don't know what happened to this directory while we didn't
487 	 * have the cap.
488 	 */
489 	if ((issued & CEPH_CAP_FILE_SHARED) &&
490 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
491 		ci->i_shared_gen++;
492 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
493 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
494 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
495 		}
496 	}
497 }
498 
499 /*
500  * Add a capability under the given MDS session.
501  *
502  * Caller should hold session snap_rwsem (read) and s_mutex.
503  *
504  * @fmode is the open file mode, if we are opening a file, otherwise
505  * it is < 0.  (This is so we can atomically add the cap and add an
506  * open file reference to it.)
507  */
508 int ceph_add_cap(struct inode *inode,
509 		 struct ceph_mds_session *session, u64 cap_id,
510 		 int fmode, unsigned issued, unsigned wanted,
511 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
512 		 struct ceph_cap_reservation *caps_reservation)
513 {
514 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
515 	struct ceph_inode_info *ci = ceph_inode(inode);
516 	struct ceph_cap *new_cap = NULL;
517 	struct ceph_cap *cap;
518 	int mds = session->s_mds;
519 	int actual_wanted;
520 
521 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
522 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
523 
524 	/*
525 	 * If we are opening the file, include file mode wanted bits
526 	 * in wanted.
527 	 */
528 	if (fmode >= 0)
529 		wanted |= ceph_caps_for_mode(fmode);
530 
531 retry:
532 	spin_lock(&inode->i_lock);
533 	cap = __get_cap_for_mds(ci, mds);
534 	if (!cap) {
535 		if (new_cap) {
536 			cap = new_cap;
537 			new_cap = NULL;
538 		} else {
539 			spin_unlock(&inode->i_lock);
540 			new_cap = get_cap(caps_reservation);
541 			if (new_cap == NULL)
542 				return -ENOMEM;
543 			goto retry;
544 		}
545 
546 		cap->issued = 0;
547 		cap->implemented = 0;
548 		cap->mds = mds;
549 		cap->mds_wanted = 0;
550 
551 		cap->ci = ci;
552 		__insert_cap_node(ci, cap);
553 
554 		/* clear out old exporting info?  (i.e. on cap import) */
555 		if (ci->i_cap_exporting_mds == mds) {
556 			ci->i_cap_exporting_issued = 0;
557 			ci->i_cap_exporting_mseq = 0;
558 			ci->i_cap_exporting_mds = -1;
559 		}
560 
561 		/* add to session cap list */
562 		cap->session = session;
563 		spin_lock(&session->s_cap_lock);
564 		list_add_tail(&cap->session_caps, &session->s_caps);
565 		session->s_nr_caps++;
566 		spin_unlock(&session->s_cap_lock);
567 	}
568 
569 	if (!ci->i_snap_realm) {
570 		/*
571 		 * add this inode to the appropriate snap realm
572 		 */
573 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
574 							       realmino);
575 		if (realm) {
576 			ceph_get_snap_realm(mdsc, realm);
577 			spin_lock(&realm->inodes_with_caps_lock);
578 			ci->i_snap_realm = realm;
579 			list_add(&ci->i_snap_realm_item,
580 				 &realm->inodes_with_caps);
581 			spin_unlock(&realm->inodes_with_caps_lock);
582 		} else {
583 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
584 			       realmino);
585 		}
586 	}
587 
588 	__check_cap_issue(ci, cap, issued);
589 
590 	/*
591 	 * If we are issued caps we don't want, or the mds' wanted
592 	 * value appears to be off, queue a check so we'll release
593 	 * later and/or update the mds wanted value.
594 	 */
595 	actual_wanted = __ceph_caps_wanted(ci);
596 	if ((wanted & ~actual_wanted) ||
597 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
598 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
599 		     ceph_cap_string(issued), ceph_cap_string(wanted),
600 		     ceph_cap_string(actual_wanted));
601 		__cap_delay_requeue(mdsc, ci);
602 	}
603 
604 	if (flags & CEPH_CAP_FLAG_AUTH)
605 		ci->i_auth_cap = cap;
606 	else if (ci->i_auth_cap == cap)
607 		ci->i_auth_cap = NULL;
608 
609 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
610 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
611 	     ceph_cap_string(issued|cap->issued), seq, mds);
612 	cap->cap_id = cap_id;
613 	cap->issued = issued;
614 	cap->implemented |= issued;
615 	cap->mds_wanted |= wanted;
616 	cap->seq = seq;
617 	cap->issue_seq = seq;
618 	cap->mseq = mseq;
619 	cap->cap_gen = session->s_cap_gen;
620 
621 	if (fmode >= 0)
622 		__ceph_get_fmode(ci, fmode);
623 	spin_unlock(&inode->i_lock);
624 	wake_up(&ci->i_cap_wq);
625 	return 0;
626 }
627 
628 /*
629  * Return true if cap has not timed out and belongs to the current
630  * generation of the MDS session (i.e. has not gone 'stale' due to
631  * us losing touch with the mds).
632  */
633 static int __cap_is_valid(struct ceph_cap *cap)
634 {
635 	unsigned long ttl;
636 	u32 gen;
637 
638 	spin_lock(&cap->session->s_cap_lock);
639 	gen = cap->session->s_cap_gen;
640 	ttl = cap->session->s_cap_ttl;
641 	spin_unlock(&cap->session->s_cap_lock);
642 
643 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
644 		dout("__cap_is_valid %p cap %p issued %s "
645 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
646 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
647 		return 0;
648 	}
649 
650 	return 1;
651 }
652 
653 /*
654  * Return set of valid cap bits issued to us.  Note that caps time
655  * out, and may be invalidated in bulk if the client session times out
656  * and session->s_cap_gen is bumped.
657  */
658 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
659 {
660 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
661 	struct ceph_cap *cap;
662 	struct rb_node *p;
663 
664 	if (implemented)
665 		*implemented = 0;
666 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
667 		cap = rb_entry(p, struct ceph_cap, ci_node);
668 		if (!__cap_is_valid(cap))
669 			continue;
670 		dout("__ceph_caps_issued %p cap %p issued %s\n",
671 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
672 		have |= cap->issued;
673 		if (implemented)
674 			*implemented |= cap->implemented;
675 	}
676 	return have;
677 }
678 
679 /*
680  * Get cap bits issued by caps other than @ocap
681  */
682 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
683 {
684 	int have = ci->i_snap_caps;
685 	struct ceph_cap *cap;
686 	struct rb_node *p;
687 
688 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
689 		cap = rb_entry(p, struct ceph_cap, ci_node);
690 		if (cap == ocap)
691 			continue;
692 		if (!__cap_is_valid(cap))
693 			continue;
694 		have |= cap->issued;
695 	}
696 	return have;
697 }
698 
699 /*
700  * Move a cap to the end of the LRU (oldest caps at list head, newest
701  * at list tail).
702  */
703 static void __touch_cap(struct ceph_cap *cap)
704 {
705 	struct ceph_mds_session *s = cap->session;
706 
707 	spin_lock(&s->s_cap_lock);
708 	if (s->s_cap_iterator == NULL) {
709 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
710 		     s->s_mds);
711 		list_move_tail(&cap->session_caps, &s->s_caps);
712 	} else {
713 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
714 		     &cap->ci->vfs_inode, cap, s->s_mds);
715 	}
716 	spin_unlock(&s->s_cap_lock);
717 }
718 
719 /*
720  * Check if we hold the given mask.  If so, move the cap(s) to the
721  * front of their respective LRUs.  (This is the preferred way for
722  * callers to check for caps they want.)
723  */
724 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
725 {
726 	struct ceph_cap *cap;
727 	struct rb_node *p;
728 	int have = ci->i_snap_caps;
729 
730 	if ((have & mask) == mask) {
731 		dout("__ceph_caps_issued_mask %p snap issued %s"
732 		     " (mask %s)\n", &ci->vfs_inode,
733 		     ceph_cap_string(have),
734 		     ceph_cap_string(mask));
735 		return 1;
736 	}
737 
738 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
739 		cap = rb_entry(p, struct ceph_cap, ci_node);
740 		if (!__cap_is_valid(cap))
741 			continue;
742 		if ((cap->issued & mask) == mask) {
743 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
744 			     " (mask %s)\n", &ci->vfs_inode, cap,
745 			     ceph_cap_string(cap->issued),
746 			     ceph_cap_string(mask));
747 			if (touch)
748 				__touch_cap(cap);
749 			return 1;
750 		}
751 
752 		/* does a combination of caps satisfy mask? */
753 		have |= cap->issued;
754 		if ((have & mask) == mask) {
755 			dout("__ceph_caps_issued_mask %p combo issued %s"
756 			     " (mask %s)\n", &ci->vfs_inode,
757 			     ceph_cap_string(cap->issued),
758 			     ceph_cap_string(mask));
759 			if (touch) {
760 				struct rb_node *q;
761 
762 				/* touch this + preceeding caps */
763 				__touch_cap(cap);
764 				for (q = rb_first(&ci->i_caps); q != p;
765 				     q = rb_next(q)) {
766 					cap = rb_entry(q, struct ceph_cap,
767 						       ci_node);
768 					if (!__cap_is_valid(cap))
769 						continue;
770 					__touch_cap(cap);
771 				}
772 			}
773 			return 1;
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 /*
781  * Return true if mask caps are currently being revoked by an MDS.
782  */
783 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
784 {
785 	struct inode *inode = &ci->vfs_inode;
786 	struct ceph_cap *cap;
787 	struct rb_node *p;
788 	int ret = 0;
789 
790 	spin_lock(&inode->i_lock);
791 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
792 		cap = rb_entry(p, struct ceph_cap, ci_node);
793 		if (__cap_is_valid(cap) &&
794 		    (cap->implemented & ~cap->issued & mask)) {
795 			ret = 1;
796 			break;
797 		}
798 	}
799 	spin_unlock(&inode->i_lock);
800 	dout("ceph_caps_revoking %p %s = %d\n", inode,
801 	     ceph_cap_string(mask), ret);
802 	return ret;
803 }
804 
805 int __ceph_caps_used(struct ceph_inode_info *ci)
806 {
807 	int used = 0;
808 	if (ci->i_pin_ref)
809 		used |= CEPH_CAP_PIN;
810 	if (ci->i_rd_ref)
811 		used |= CEPH_CAP_FILE_RD;
812 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
813 		used |= CEPH_CAP_FILE_CACHE;
814 	if (ci->i_wr_ref)
815 		used |= CEPH_CAP_FILE_WR;
816 	if (ci->i_wrbuffer_ref)
817 		used |= CEPH_CAP_FILE_BUFFER;
818 	return used;
819 }
820 
821 /*
822  * wanted, by virtue of open file modes
823  */
824 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
825 {
826 	int want = 0;
827 	int mode;
828 	for (mode = 0; mode < 4; mode++)
829 		if (ci->i_nr_by_mode[mode])
830 			want |= ceph_caps_for_mode(mode);
831 	return want;
832 }
833 
834 /*
835  * Return caps we have registered with the MDS(s) as 'wanted'.
836  */
837 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
838 {
839 	struct ceph_cap *cap;
840 	struct rb_node *p;
841 	int mds_wanted = 0;
842 
843 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
844 		cap = rb_entry(p, struct ceph_cap, ci_node);
845 		if (!__cap_is_valid(cap))
846 			continue;
847 		mds_wanted |= cap->mds_wanted;
848 	}
849 	return mds_wanted;
850 }
851 
852 /*
853  * called under i_lock
854  */
855 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
856 {
857 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
858 }
859 
860 /*
861  * Remove a cap.  Take steps to deal with a racing iterate_session_caps.
862  *
863  * caller should hold i_lock.
864  * caller will not hold session s_mutex if called from destroy_inode.
865  */
866 void __ceph_remove_cap(struct ceph_cap *cap)
867 {
868 	struct ceph_mds_session *session = cap->session;
869 	struct ceph_inode_info *ci = cap->ci;
870 	struct ceph_mds_client *mdsc =
871 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
872 	int removed = 0;
873 
874 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
875 
876 	/* remove from session list */
877 	spin_lock(&session->s_cap_lock);
878 	if (session->s_cap_iterator == cap) {
879 		/* not yet, we are iterating over this very cap */
880 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
881 		     cap, cap->session);
882 	} else {
883 		list_del_init(&cap->session_caps);
884 		session->s_nr_caps--;
885 		cap->session = NULL;
886 		removed = 1;
887 	}
888 	/* protect backpointer with s_cap_lock: see iterate_session_caps */
889 	cap->ci = NULL;
890 	spin_unlock(&session->s_cap_lock);
891 
892 	/* remove from inode list */
893 	rb_erase(&cap->ci_node, &ci->i_caps);
894 	if (ci->i_auth_cap == cap)
895 		ci->i_auth_cap = NULL;
896 
897 	if (removed)
898 		ceph_put_cap(cap);
899 
900 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
901 		struct ceph_snap_realm *realm = ci->i_snap_realm;
902 		spin_lock(&realm->inodes_with_caps_lock);
903 		list_del_init(&ci->i_snap_realm_item);
904 		ci->i_snap_realm_counter++;
905 		ci->i_snap_realm = NULL;
906 		spin_unlock(&realm->inodes_with_caps_lock);
907 		ceph_put_snap_realm(mdsc, realm);
908 	}
909 	if (!__ceph_is_any_real_caps(ci))
910 		__cap_delay_cancel(mdsc, ci);
911 }
912 
913 /*
914  * Build and send a cap message to the given MDS.
915  *
916  * Caller should be holding s_mutex.
917  */
918 static int send_cap_msg(struct ceph_mds_session *session,
919 			u64 ino, u64 cid, int op,
920 			int caps, int wanted, int dirty,
921 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
922 			u64 size, u64 max_size,
923 			struct timespec *mtime, struct timespec *atime,
924 			u64 time_warp_seq,
925 			uid_t uid, gid_t gid, mode_t mode,
926 			u64 xattr_version,
927 			struct ceph_buffer *xattrs_buf,
928 			u64 follows)
929 {
930 	struct ceph_mds_caps *fc;
931 	struct ceph_msg *msg;
932 
933 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
934 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
935 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
936 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
937 	     ceph_cap_string(dirty),
938 	     seq, issue_seq, mseq, follows, size, max_size,
939 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
940 
941 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS);
942 	if (!msg)
943 		return -ENOMEM;
944 
945 	msg->hdr.tid = cpu_to_le64(flush_tid);
946 
947 	fc = msg->front.iov_base;
948 	memset(fc, 0, sizeof(*fc));
949 
950 	fc->cap_id = cpu_to_le64(cid);
951 	fc->op = cpu_to_le32(op);
952 	fc->seq = cpu_to_le32(seq);
953 	fc->issue_seq = cpu_to_le32(issue_seq);
954 	fc->migrate_seq = cpu_to_le32(mseq);
955 	fc->caps = cpu_to_le32(caps);
956 	fc->wanted = cpu_to_le32(wanted);
957 	fc->dirty = cpu_to_le32(dirty);
958 	fc->ino = cpu_to_le64(ino);
959 	fc->snap_follows = cpu_to_le64(follows);
960 
961 	fc->size = cpu_to_le64(size);
962 	fc->max_size = cpu_to_le64(max_size);
963 	if (mtime)
964 		ceph_encode_timespec(&fc->mtime, mtime);
965 	if (atime)
966 		ceph_encode_timespec(&fc->atime, atime);
967 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
968 
969 	fc->uid = cpu_to_le32(uid);
970 	fc->gid = cpu_to_le32(gid);
971 	fc->mode = cpu_to_le32(mode);
972 
973 	fc->xattr_version = cpu_to_le64(xattr_version);
974 	if (xattrs_buf) {
975 		msg->middle = ceph_buffer_get(xattrs_buf);
976 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
977 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
978 	}
979 
980 	ceph_con_send(&session->s_con, msg);
981 	return 0;
982 }
983 
984 static void __queue_cap_release(struct ceph_mds_session *session,
985 				u64 ino, u64 cap_id, u32 migrate_seq,
986 				u32 issue_seq)
987 {
988 	struct ceph_msg *msg;
989 	struct ceph_mds_cap_release *head;
990 	struct ceph_mds_cap_item *item;
991 
992 	spin_lock(&session->s_cap_lock);
993 	BUG_ON(!session->s_num_cap_releases);
994 	msg = list_first_entry(&session->s_cap_releases,
995 			       struct ceph_msg, list_head);
996 
997 	dout(" adding %llx release to mds%d msg %p (%d left)\n",
998 	     ino, session->s_mds, msg, session->s_num_cap_releases);
999 
1000 	BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1001 	head = msg->front.iov_base;
1002 	head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1003 	item = msg->front.iov_base + msg->front.iov_len;
1004 	item->ino = cpu_to_le64(ino);
1005 	item->cap_id = cpu_to_le64(cap_id);
1006 	item->migrate_seq = cpu_to_le32(migrate_seq);
1007 	item->seq = cpu_to_le32(issue_seq);
1008 
1009 	session->s_num_cap_releases--;
1010 
1011 	msg->front.iov_len += sizeof(*item);
1012 	if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1013 		dout(" release msg %p full\n", msg);
1014 		list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1015 	} else {
1016 		dout(" release msg %p at %d/%d (%d)\n", msg,
1017 		     (int)le32_to_cpu(head->num),
1018 		     (int)CEPH_CAPS_PER_RELEASE,
1019 		     (int)msg->front.iov_len);
1020 	}
1021 	spin_unlock(&session->s_cap_lock);
1022 }
1023 
1024 /*
1025  * Queue cap releases when an inode is dropped from our cache.  Since
1026  * inode is about to be destroyed, there is no need for i_lock.
1027  */
1028 void ceph_queue_caps_release(struct inode *inode)
1029 {
1030 	struct ceph_inode_info *ci = ceph_inode(inode);
1031 	struct rb_node *p;
1032 
1033 	p = rb_first(&ci->i_caps);
1034 	while (p) {
1035 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1036 		struct ceph_mds_session *session = cap->session;
1037 
1038 		__queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1039 				    cap->mseq, cap->issue_seq);
1040 		p = rb_next(p);
1041 		__ceph_remove_cap(cap);
1042 	}
1043 }
1044 
1045 /*
1046  * Send a cap msg on the given inode.  Update our caps state, then
1047  * drop i_lock and send the message.
1048  *
1049  * Make note of max_size reported/requested from mds, revoked caps
1050  * that have now been implemented.
1051  *
1052  * Make half-hearted attempt ot to invalidate page cache if we are
1053  * dropping RDCACHE.  Note that this will leave behind locked pages
1054  * that we'll then need to deal with elsewhere.
1055  *
1056  * Return non-zero if delayed release, or we experienced an error
1057  * such that the caller should requeue + retry later.
1058  *
1059  * called with i_lock, then drops it.
1060  * caller should hold snap_rwsem (read), s_mutex.
1061  */
1062 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1063 		      int op, int used, int want, int retain, int flushing,
1064 		      unsigned *pflush_tid)
1065 	__releases(cap->ci->vfs_inode->i_lock)
1066 {
1067 	struct ceph_inode_info *ci = cap->ci;
1068 	struct inode *inode = &ci->vfs_inode;
1069 	u64 cap_id = cap->cap_id;
1070 	int held, revoking, dropping, keep;
1071 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1072 	u64 size, max_size;
1073 	struct timespec mtime, atime;
1074 	int wake = 0;
1075 	mode_t mode;
1076 	uid_t uid;
1077 	gid_t gid;
1078 	struct ceph_mds_session *session;
1079 	u64 xattr_version = 0;
1080 	int delayed = 0;
1081 	u64 flush_tid = 0;
1082 	int i;
1083 	int ret;
1084 
1085 	held = cap->issued | cap->implemented;
1086 	revoking = cap->implemented & ~cap->issued;
1087 	retain &= ~revoking;
1088 	dropping = cap->issued & ~retain;
1089 
1090 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1091 	     inode, cap, cap->session,
1092 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1093 	     ceph_cap_string(revoking));
1094 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1095 
1096 	session = cap->session;
1097 
1098 	/* don't release wanted unless we've waited a bit. */
1099 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1100 	    time_before(jiffies, ci->i_hold_caps_min)) {
1101 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1102 		     ceph_cap_string(cap->issued),
1103 		     ceph_cap_string(cap->issued & retain),
1104 		     ceph_cap_string(cap->mds_wanted),
1105 		     ceph_cap_string(want));
1106 		want |= cap->mds_wanted;
1107 		retain |= cap->issued;
1108 		delayed = 1;
1109 	}
1110 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1111 
1112 	cap->issued &= retain;  /* drop bits we don't want */
1113 	if (cap->implemented & ~cap->issued) {
1114 		/*
1115 		 * Wake up any waiters on wanted -> needed transition.
1116 		 * This is due to the weird transition from buffered
1117 		 * to sync IO... we need to flush dirty pages _before_
1118 		 * allowing sync writes to avoid reordering.
1119 		 */
1120 		wake = 1;
1121 	}
1122 	cap->implemented &= cap->issued | used;
1123 	cap->mds_wanted = want;
1124 
1125 	if (flushing) {
1126 		/*
1127 		 * assign a tid for flush operations so we can avoid
1128 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1129 		 * clean type races.  track latest tid for every bit
1130 		 * so we can handle flush AxFw, flush Fw, and have the
1131 		 * first ack clean Ax.
1132 		 */
1133 		flush_tid = ++ci->i_cap_flush_last_tid;
1134 		if (pflush_tid)
1135 			*pflush_tid = flush_tid;
1136 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1137 		for (i = 0; i < CEPH_CAP_BITS; i++)
1138 			if (flushing & (1 << i))
1139 				ci->i_cap_flush_tid[i] = flush_tid;
1140 	}
1141 
1142 	keep = cap->implemented;
1143 	seq = cap->seq;
1144 	issue_seq = cap->issue_seq;
1145 	mseq = cap->mseq;
1146 	size = inode->i_size;
1147 	ci->i_reported_size = size;
1148 	max_size = ci->i_wanted_max_size;
1149 	ci->i_requested_max_size = max_size;
1150 	mtime = inode->i_mtime;
1151 	atime = inode->i_atime;
1152 	time_warp_seq = ci->i_time_warp_seq;
1153 	follows = ci->i_snap_realm->cached_context->seq;
1154 	uid = inode->i_uid;
1155 	gid = inode->i_gid;
1156 	mode = inode->i_mode;
1157 
1158 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1159 		__ceph_build_xattrs_blob(ci);
1160 		xattr_version = ci->i_xattrs.version + 1;
1161 	}
1162 
1163 	spin_unlock(&inode->i_lock);
1164 
1165 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1166 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1167 		size, max_size, &mtime, &atime, time_warp_seq,
1168 		uid, gid, mode,
1169 		xattr_version,
1170 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1171 		follows);
1172 	if (ret < 0) {
1173 		dout("error sending cap msg, must requeue %p\n", inode);
1174 		delayed = 1;
1175 	}
1176 
1177 	if (wake)
1178 		wake_up(&ci->i_cap_wq);
1179 
1180 	return delayed;
1181 }
1182 
1183 /*
1184  * When a snapshot is taken, clients accumulate dirty metadata on
1185  * inodes with capabilities in ceph_cap_snaps to describe the file
1186  * state at the time the snapshot was taken.  This must be flushed
1187  * asynchronously back to the MDS once sync writes complete and dirty
1188  * data is written out.
1189  *
1190  * Called under i_lock.  Takes s_mutex as needed.
1191  */
1192 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1193 			struct ceph_mds_session **psession)
1194 {
1195 	struct inode *inode = &ci->vfs_inode;
1196 	int mds;
1197 	struct ceph_cap_snap *capsnap;
1198 	u32 mseq;
1199 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1200 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1201 						    session->s_mutex */
1202 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1203 			     i_cap_snaps list, and skip these entries next time
1204 			     around to avoid an infinite loop */
1205 
1206 	if (psession)
1207 		session = *psession;
1208 
1209 	dout("__flush_snaps %p\n", inode);
1210 retry:
1211 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1212 		/* avoid an infiniute loop after retry */
1213 		if (capsnap->follows < next_follows)
1214 			continue;
1215 		/*
1216 		 * we need to wait for sync writes to complete and for dirty
1217 		 * pages to be written out.
1218 		 */
1219 		if (capsnap->dirty_pages || capsnap->writing)
1220 			continue;
1221 
1222 		/*
1223 		 * if cap writeback already occurred, we should have dropped
1224 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1225 		 */
1226 		BUG_ON(capsnap->dirty == 0);
1227 
1228 		/* pick mds, take s_mutex */
1229 		mds = __ceph_get_cap_mds(ci, &mseq);
1230 		if (session && session->s_mds != mds) {
1231 			dout("oops, wrong session %p mutex\n", session);
1232 			mutex_unlock(&session->s_mutex);
1233 			ceph_put_mds_session(session);
1234 			session = NULL;
1235 		}
1236 		if (!session) {
1237 			spin_unlock(&inode->i_lock);
1238 			mutex_lock(&mdsc->mutex);
1239 			session = __ceph_lookup_mds_session(mdsc, mds);
1240 			mutex_unlock(&mdsc->mutex);
1241 			if (session) {
1242 				dout("inverting session/ino locks on %p\n",
1243 				     session);
1244 				mutex_lock(&session->s_mutex);
1245 			}
1246 			/*
1247 			 * if session == NULL, we raced against a cap
1248 			 * deletion.  retry, and we'll get a better
1249 			 * @mds value next time.
1250 			 */
1251 			spin_lock(&inode->i_lock);
1252 			goto retry;
1253 		}
1254 
1255 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1256 		atomic_inc(&capsnap->nref);
1257 		if (!list_empty(&capsnap->flushing_item))
1258 			list_del_init(&capsnap->flushing_item);
1259 		list_add_tail(&capsnap->flushing_item,
1260 			      &session->s_cap_snaps_flushing);
1261 		spin_unlock(&inode->i_lock);
1262 
1263 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1264 		     inode, capsnap, next_follows, capsnap->size);
1265 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1266 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1267 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1268 			     capsnap->size, 0,
1269 			     &capsnap->mtime, &capsnap->atime,
1270 			     capsnap->time_warp_seq,
1271 			     capsnap->uid, capsnap->gid, capsnap->mode,
1272 			     0, NULL,
1273 			     capsnap->follows);
1274 
1275 		next_follows = capsnap->follows + 1;
1276 		ceph_put_cap_snap(capsnap);
1277 
1278 		spin_lock(&inode->i_lock);
1279 		goto retry;
1280 	}
1281 
1282 	/* we flushed them all; remove this inode from the queue */
1283 	spin_lock(&mdsc->snap_flush_lock);
1284 	list_del_init(&ci->i_snap_flush_item);
1285 	spin_unlock(&mdsc->snap_flush_lock);
1286 
1287 	if (psession)
1288 		*psession = session;
1289 	else if (session) {
1290 		mutex_unlock(&session->s_mutex);
1291 		ceph_put_mds_session(session);
1292 	}
1293 }
1294 
1295 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1296 {
1297 	struct inode *inode = &ci->vfs_inode;
1298 
1299 	spin_lock(&inode->i_lock);
1300 	__ceph_flush_snaps(ci, NULL);
1301 	spin_unlock(&inode->i_lock);
1302 }
1303 
1304 /*
1305  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1306  * list.
1307  */
1308 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1309 {
1310 	struct ceph_mds_client *mdsc =
1311 		&ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1312 	struct inode *inode = &ci->vfs_inode;
1313 	int was = ci->i_dirty_caps;
1314 	int dirty = 0;
1315 
1316 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1317 	     ceph_cap_string(mask), ceph_cap_string(was),
1318 	     ceph_cap_string(was | mask));
1319 	ci->i_dirty_caps |= mask;
1320 	if (was == 0) {
1321 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1322 		BUG_ON(!list_empty(&ci->i_dirty_item));
1323 		spin_lock(&mdsc->cap_dirty_lock);
1324 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1325 		spin_unlock(&mdsc->cap_dirty_lock);
1326 		if (ci->i_flushing_caps == 0) {
1327 			igrab(inode);
1328 			dirty |= I_DIRTY_SYNC;
1329 		}
1330 	}
1331 	BUG_ON(list_empty(&ci->i_dirty_item));
1332 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1333 	    (mask & CEPH_CAP_FILE_BUFFER))
1334 		dirty |= I_DIRTY_DATASYNC;
1335 	if (dirty)
1336 		__mark_inode_dirty(inode, dirty);
1337 	__cap_delay_requeue(mdsc, ci);
1338 }
1339 
1340 /*
1341  * Add dirty inode to the flushing list.  Assigned a seq number so we
1342  * can wait for caps to flush without starving.
1343  *
1344  * Called under i_lock.
1345  */
1346 static int __mark_caps_flushing(struct inode *inode,
1347 				 struct ceph_mds_session *session)
1348 {
1349 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1350 	struct ceph_inode_info *ci = ceph_inode(inode);
1351 	int flushing;
1352 
1353 	BUG_ON(ci->i_dirty_caps == 0);
1354 	BUG_ON(list_empty(&ci->i_dirty_item));
1355 
1356 	flushing = ci->i_dirty_caps;
1357 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1358 	     ceph_cap_string(flushing),
1359 	     ceph_cap_string(ci->i_flushing_caps),
1360 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1361 	ci->i_flushing_caps |= flushing;
1362 	ci->i_dirty_caps = 0;
1363 	dout(" inode %p now !dirty\n", inode);
1364 
1365 	spin_lock(&mdsc->cap_dirty_lock);
1366 	list_del_init(&ci->i_dirty_item);
1367 
1368 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1369 	if (list_empty(&ci->i_flushing_item)) {
1370 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1371 		mdsc->num_cap_flushing++;
1372 		dout(" inode %p now flushing seq %lld\n", inode,
1373 		     ci->i_cap_flush_seq);
1374 	} else {
1375 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1376 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1377 		     ci->i_cap_flush_seq);
1378 	}
1379 	spin_unlock(&mdsc->cap_dirty_lock);
1380 
1381 	return flushing;
1382 }
1383 
1384 /*
1385  * try to invalidate mapping pages without blocking.
1386  */
1387 static int mapping_is_empty(struct address_space *mapping)
1388 {
1389 	struct page *page = find_get_page(mapping, 0);
1390 
1391 	if (!page)
1392 		return 1;
1393 
1394 	put_page(page);
1395 	return 0;
1396 }
1397 
1398 static int try_nonblocking_invalidate(struct inode *inode)
1399 {
1400 	struct ceph_inode_info *ci = ceph_inode(inode);
1401 	u32 invalidating_gen = ci->i_rdcache_gen;
1402 
1403 	spin_unlock(&inode->i_lock);
1404 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1405 	spin_lock(&inode->i_lock);
1406 
1407 	if (mapping_is_empty(&inode->i_data) &&
1408 	    invalidating_gen == ci->i_rdcache_gen) {
1409 		/* success. */
1410 		dout("try_nonblocking_invalidate %p success\n", inode);
1411 		ci->i_rdcache_gen = 0;
1412 		ci->i_rdcache_revoking = 0;
1413 		return 0;
1414 	}
1415 	dout("try_nonblocking_invalidate %p failed\n", inode);
1416 	return -1;
1417 }
1418 
1419 /*
1420  * Swiss army knife function to examine currently used and wanted
1421  * versus held caps.  Release, flush, ack revoked caps to mds as
1422  * appropriate.
1423  *
1424  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1425  *    cap release further.
1426  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1427  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1428  *    further delay.
1429  */
1430 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1431 		     struct ceph_mds_session *session)
1432 	__releases(session->s_mutex)
1433 {
1434 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1435 	struct ceph_mds_client *mdsc = &client->mdsc;
1436 	struct inode *inode = &ci->vfs_inode;
1437 	struct ceph_cap *cap;
1438 	int file_wanted, used;
1439 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1440 	int issued, implemented, want, retain, revoking, flushing = 0;
1441 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1442 			   to avoid an infinite loop on retry */
1443 	struct rb_node *p;
1444 	int tried_invalidate = 0;
1445 	int delayed = 0, sent = 0, force_requeue = 0, num;
1446 	int queue_invalidate = 0;
1447 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1448 
1449 	/* if we are unmounting, flush any unused caps immediately. */
1450 	if (mdsc->stopping)
1451 		is_delayed = 1;
1452 
1453 	spin_lock(&inode->i_lock);
1454 
1455 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1456 		flags |= CHECK_CAPS_FLUSH;
1457 
1458 	/* flush snaps first time around only */
1459 	if (!list_empty(&ci->i_cap_snaps))
1460 		__ceph_flush_snaps(ci, &session);
1461 	goto retry_locked;
1462 retry:
1463 	spin_lock(&inode->i_lock);
1464 retry_locked:
1465 	file_wanted = __ceph_caps_file_wanted(ci);
1466 	used = __ceph_caps_used(ci);
1467 	want = file_wanted | used;
1468 	issued = __ceph_caps_issued(ci, &implemented);
1469 	revoking = implemented & ~issued;
1470 
1471 	retain = want | CEPH_CAP_PIN;
1472 	if (!mdsc->stopping && inode->i_nlink > 0) {
1473 		if (want) {
1474 			retain |= CEPH_CAP_ANY;       /* be greedy */
1475 		} else {
1476 			retain |= CEPH_CAP_ANY_SHARED;
1477 			/*
1478 			 * keep RD only if we didn't have the file open RW,
1479 			 * because then the mds would revoke it anyway to
1480 			 * journal max_size=0.
1481 			 */
1482 			if (ci->i_max_size == 0)
1483 				retain |= CEPH_CAP_ANY_RD;
1484 		}
1485 	}
1486 
1487 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1488 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1489 	     ceph_cap_string(file_wanted),
1490 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1491 	     ceph_cap_string(ci->i_flushing_caps),
1492 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1493 	     ceph_cap_string(retain),
1494 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1495 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1496 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1497 
1498 	/*
1499 	 * If we no longer need to hold onto old our caps, and we may
1500 	 * have cached pages, but don't want them, then try to invalidate.
1501 	 * If we fail, it's because pages are locked.... try again later.
1502 	 */
1503 	if ((!is_delayed || mdsc->stopping) &&
1504 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1505 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1506 	    (file_wanted == 0 ||                     /* no open files */
1507 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1508 	    !tried_invalidate) {
1509 		dout("check_caps trying to invalidate on %p\n", inode);
1510 		if (try_nonblocking_invalidate(inode) < 0) {
1511 			if (revoking & CEPH_CAP_FILE_CACHE) {
1512 				dout("check_caps queuing invalidate\n");
1513 				queue_invalidate = 1;
1514 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1515 			} else {
1516 				dout("check_caps failed to invalidate pages\n");
1517 				/* we failed to invalidate pages.  check these
1518 				   caps again later. */
1519 				force_requeue = 1;
1520 				__cap_set_timeouts(mdsc, ci);
1521 			}
1522 		}
1523 		tried_invalidate = 1;
1524 		goto retry_locked;
1525 	}
1526 
1527 	num = 0;
1528 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1529 		cap = rb_entry(p, struct ceph_cap, ci_node);
1530 		num++;
1531 
1532 		/* avoid looping forever */
1533 		if (mds >= cap->mds ||
1534 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1535 			continue;
1536 
1537 		/* NOTE: no side-effects allowed, until we take s_mutex */
1538 
1539 		revoking = cap->implemented & ~cap->issued;
1540 		if (revoking)
1541 			dout(" mds%d revoking %s\n", cap->mds,
1542 			     ceph_cap_string(revoking));
1543 
1544 		if (cap == ci->i_auth_cap &&
1545 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1546 			/* request larger max_size from MDS? */
1547 			if (ci->i_wanted_max_size > ci->i_max_size &&
1548 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1549 				dout("requesting new max_size\n");
1550 				goto ack;
1551 			}
1552 
1553 			/* approaching file_max? */
1554 			if ((inode->i_size << 1) >= ci->i_max_size &&
1555 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1556 				dout("i_size approaching max_size\n");
1557 				goto ack;
1558 			}
1559 		}
1560 		/* flush anything dirty? */
1561 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1562 		    ci->i_dirty_caps) {
1563 			dout("flushing dirty caps\n");
1564 			goto ack;
1565 		}
1566 
1567 		/* completed revocation? going down and there are no caps? */
1568 		if (revoking && (revoking & used) == 0) {
1569 			dout("completed revocation of %s\n",
1570 			     ceph_cap_string(cap->implemented & ~cap->issued));
1571 			goto ack;
1572 		}
1573 
1574 		/* want more caps from mds? */
1575 		if (want & ~(cap->mds_wanted | cap->issued))
1576 			goto ack;
1577 
1578 		/* things we might delay */
1579 		if ((cap->issued & ~retain) == 0 &&
1580 		    cap->mds_wanted == want)
1581 			continue;     /* nope, all good */
1582 
1583 		if (is_delayed)
1584 			goto ack;
1585 
1586 		/* delay? */
1587 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1588 		    time_before(jiffies, ci->i_hold_caps_max)) {
1589 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1590 			     ceph_cap_string(cap->issued),
1591 			     ceph_cap_string(cap->issued & retain),
1592 			     ceph_cap_string(cap->mds_wanted),
1593 			     ceph_cap_string(want));
1594 			delayed++;
1595 			continue;
1596 		}
1597 
1598 ack:
1599 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1600 			dout(" skipping %p I_NOFLUSH set\n", inode);
1601 			continue;
1602 		}
1603 
1604 		if (session && session != cap->session) {
1605 			dout("oops, wrong session %p mutex\n", session);
1606 			mutex_unlock(&session->s_mutex);
1607 			session = NULL;
1608 		}
1609 		if (!session) {
1610 			session = cap->session;
1611 			if (mutex_trylock(&session->s_mutex) == 0) {
1612 				dout("inverting session/ino locks on %p\n",
1613 				     session);
1614 				spin_unlock(&inode->i_lock);
1615 				if (took_snap_rwsem) {
1616 					up_read(&mdsc->snap_rwsem);
1617 					took_snap_rwsem = 0;
1618 				}
1619 				mutex_lock(&session->s_mutex);
1620 				goto retry;
1621 			}
1622 		}
1623 		/* take snap_rwsem after session mutex */
1624 		if (!took_snap_rwsem) {
1625 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1626 				dout("inverting snap/in locks on %p\n",
1627 				     inode);
1628 				spin_unlock(&inode->i_lock);
1629 				down_read(&mdsc->snap_rwsem);
1630 				took_snap_rwsem = 1;
1631 				goto retry;
1632 			}
1633 			took_snap_rwsem = 1;
1634 		}
1635 
1636 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1637 			flushing = __mark_caps_flushing(inode, session);
1638 
1639 		mds = cap->mds;  /* remember mds, so we don't repeat */
1640 		sent++;
1641 
1642 		/* __send_cap drops i_lock */
1643 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1644 				      retain, flushing, NULL);
1645 		goto retry; /* retake i_lock and restart our cap scan. */
1646 	}
1647 
1648 	/*
1649 	 * Reschedule delayed caps release if we delayed anything,
1650 	 * otherwise cancel.
1651 	 */
1652 	if (delayed && is_delayed)
1653 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1654 	if (!delayed && !is_delayed)
1655 		__cap_delay_cancel(mdsc, ci);
1656 	else if (!is_delayed || force_requeue)
1657 		__cap_delay_requeue(mdsc, ci);
1658 
1659 	spin_unlock(&inode->i_lock);
1660 
1661 	if (queue_invalidate)
1662 		ceph_queue_invalidate(inode);
1663 
1664 	if (session)
1665 		mutex_unlock(&session->s_mutex);
1666 	if (took_snap_rwsem)
1667 		up_read(&mdsc->snap_rwsem);
1668 }
1669 
1670 /*
1671  * Try to flush dirty caps back to the auth mds.
1672  */
1673 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1674 			  unsigned *flush_tid)
1675 {
1676 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
1677 	struct ceph_inode_info *ci = ceph_inode(inode);
1678 	int unlock_session = session ? 0 : 1;
1679 	int flushing = 0;
1680 
1681 retry:
1682 	spin_lock(&inode->i_lock);
1683 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1684 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1685 		goto out;
1686 	}
1687 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1688 		struct ceph_cap *cap = ci->i_auth_cap;
1689 		int used = __ceph_caps_used(ci);
1690 		int want = __ceph_caps_wanted(ci);
1691 		int delayed;
1692 
1693 		if (!session) {
1694 			spin_unlock(&inode->i_lock);
1695 			session = cap->session;
1696 			mutex_lock(&session->s_mutex);
1697 			goto retry;
1698 		}
1699 		BUG_ON(session != cap->session);
1700 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1701 			goto out;
1702 
1703 		flushing = __mark_caps_flushing(inode, session);
1704 
1705 		/* __send_cap drops i_lock */
1706 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1707 				     cap->issued | cap->implemented, flushing,
1708 				     flush_tid);
1709 		if (!delayed)
1710 			goto out_unlocked;
1711 
1712 		spin_lock(&inode->i_lock);
1713 		__cap_delay_requeue(mdsc, ci);
1714 	}
1715 out:
1716 	spin_unlock(&inode->i_lock);
1717 out_unlocked:
1718 	if (session && unlock_session)
1719 		mutex_unlock(&session->s_mutex);
1720 	return flushing;
1721 }
1722 
1723 /*
1724  * Return true if we've flushed caps through the given flush_tid.
1725  */
1726 static int caps_are_flushed(struct inode *inode, unsigned tid)
1727 {
1728 	struct ceph_inode_info *ci = ceph_inode(inode);
1729 	int i, ret = 1;
1730 
1731 	spin_lock(&inode->i_lock);
1732 	for (i = 0; i < CEPH_CAP_BITS; i++)
1733 		if ((ci->i_flushing_caps & (1 << i)) &&
1734 		    ci->i_cap_flush_tid[i] <= tid) {
1735 			/* still flushing this bit */
1736 			ret = 0;
1737 			break;
1738 		}
1739 	spin_unlock(&inode->i_lock);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Wait on any unsafe replies for the given inode.  First wait on the
1745  * newest request, and make that the upper bound.  Then, if there are
1746  * more requests, keep waiting on the oldest as long as it is still older
1747  * than the original request.
1748  */
1749 static void sync_write_wait(struct inode *inode)
1750 {
1751 	struct ceph_inode_info *ci = ceph_inode(inode);
1752 	struct list_head *head = &ci->i_unsafe_writes;
1753 	struct ceph_osd_request *req;
1754 	u64 last_tid;
1755 
1756 	spin_lock(&ci->i_unsafe_lock);
1757 	if (list_empty(head))
1758 		goto out;
1759 
1760 	/* set upper bound as _last_ entry in chain */
1761 	req = list_entry(head->prev, struct ceph_osd_request,
1762 			 r_unsafe_item);
1763 	last_tid = req->r_tid;
1764 
1765 	do {
1766 		ceph_osdc_get_request(req);
1767 		spin_unlock(&ci->i_unsafe_lock);
1768 		dout("sync_write_wait on tid %llu (until %llu)\n",
1769 		     req->r_tid, last_tid);
1770 		wait_for_completion(&req->r_safe_completion);
1771 		spin_lock(&ci->i_unsafe_lock);
1772 		ceph_osdc_put_request(req);
1773 
1774 		/*
1775 		 * from here on look at first entry in chain, since we
1776 		 * only want to wait for anything older than last_tid
1777 		 */
1778 		if (list_empty(head))
1779 			break;
1780 		req = list_entry(head->next, struct ceph_osd_request,
1781 				 r_unsafe_item);
1782 	} while (req->r_tid < last_tid);
1783 out:
1784 	spin_unlock(&ci->i_unsafe_lock);
1785 }
1786 
1787 int ceph_fsync(struct file *file, int datasync)
1788 {
1789 	struct inode *inode = file->f_mapping->host;
1790 	struct ceph_inode_info *ci = ceph_inode(inode);
1791 	unsigned flush_tid;
1792 	int ret;
1793 	int dirty;
1794 
1795 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1796 	sync_write_wait(inode);
1797 
1798 	ret = filemap_write_and_wait(inode->i_mapping);
1799 	if (ret < 0)
1800 		return ret;
1801 
1802 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1803 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1804 
1805 	/*
1806 	 * only wait on non-file metadata writeback (the mds
1807 	 * can recover size and mtime, so we don't need to
1808 	 * wait for that)
1809 	 */
1810 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1811 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1812 		ret = wait_event_interruptible(ci->i_cap_wq,
1813 				       caps_are_flushed(inode, flush_tid));
1814 	}
1815 
1816 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1822  * queue inode for flush but don't do so immediately, because we can
1823  * get by with fewer MDS messages if we wait for data writeback to
1824  * complete first.
1825  */
1826 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1827 {
1828 	struct ceph_inode_info *ci = ceph_inode(inode);
1829 	unsigned flush_tid;
1830 	int err = 0;
1831 	int dirty;
1832 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1833 
1834 	dout("write_inode %p wait=%d\n", inode, wait);
1835 	if (wait) {
1836 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1837 		if (dirty)
1838 			err = wait_event_interruptible(ci->i_cap_wq,
1839 				       caps_are_flushed(inode, flush_tid));
1840 	} else {
1841 		struct ceph_mds_client *mdsc =
1842 			&ceph_sb_to_client(inode->i_sb)->mdsc;
1843 
1844 		spin_lock(&inode->i_lock);
1845 		if (__ceph_caps_dirty(ci))
1846 			__cap_delay_requeue_front(mdsc, ci);
1847 		spin_unlock(&inode->i_lock);
1848 	}
1849 	return err;
1850 }
1851 
1852 /*
1853  * After a recovering MDS goes active, we need to resend any caps
1854  * we were flushing.
1855  *
1856  * Caller holds session->s_mutex.
1857  */
1858 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1859 				   struct ceph_mds_session *session)
1860 {
1861 	struct ceph_cap_snap *capsnap;
1862 
1863 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1864 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1865 			    flushing_item) {
1866 		struct ceph_inode_info *ci = capsnap->ci;
1867 		struct inode *inode = &ci->vfs_inode;
1868 		struct ceph_cap *cap;
1869 
1870 		spin_lock(&inode->i_lock);
1871 		cap = ci->i_auth_cap;
1872 		if (cap && cap->session == session) {
1873 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1874 			     cap, capsnap);
1875 			__ceph_flush_snaps(ci, &session);
1876 		} else {
1877 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1878 			       cap, session->s_mds);
1879 		}
1880 		spin_unlock(&inode->i_lock);
1881 	}
1882 }
1883 
1884 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1885 			     struct ceph_mds_session *session)
1886 {
1887 	struct ceph_inode_info *ci;
1888 
1889 	kick_flushing_capsnaps(mdsc, session);
1890 
1891 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1892 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1893 		struct inode *inode = &ci->vfs_inode;
1894 		struct ceph_cap *cap;
1895 		int delayed = 0;
1896 
1897 		spin_lock(&inode->i_lock);
1898 		cap = ci->i_auth_cap;
1899 		if (cap && cap->session == session) {
1900 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1901 			     cap, ceph_cap_string(ci->i_flushing_caps));
1902 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1903 					     __ceph_caps_used(ci),
1904 					     __ceph_caps_wanted(ci),
1905 					     cap->issued | cap->implemented,
1906 					     ci->i_flushing_caps, NULL);
1907 			if (delayed) {
1908 				spin_lock(&inode->i_lock);
1909 				__cap_delay_requeue(mdsc, ci);
1910 				spin_unlock(&inode->i_lock);
1911 			}
1912 		} else {
1913 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1914 			       cap, session->s_mds);
1915 			spin_unlock(&inode->i_lock);
1916 		}
1917 	}
1918 }
1919 
1920 
1921 /*
1922  * Take references to capabilities we hold, so that we don't release
1923  * them to the MDS prematurely.
1924  *
1925  * Protected by i_lock.
1926  */
1927 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1928 {
1929 	if (got & CEPH_CAP_PIN)
1930 		ci->i_pin_ref++;
1931 	if (got & CEPH_CAP_FILE_RD)
1932 		ci->i_rd_ref++;
1933 	if (got & CEPH_CAP_FILE_CACHE)
1934 		ci->i_rdcache_ref++;
1935 	if (got & CEPH_CAP_FILE_WR)
1936 		ci->i_wr_ref++;
1937 	if (got & CEPH_CAP_FILE_BUFFER) {
1938 		if (ci->i_wrbuffer_ref == 0)
1939 			igrab(&ci->vfs_inode);
1940 		ci->i_wrbuffer_ref++;
1941 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1942 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1943 	}
1944 }
1945 
1946 /*
1947  * Try to grab cap references.  Specify those refs we @want, and the
1948  * minimal set we @need.  Also include the larger offset we are writing
1949  * to (when applicable), and check against max_size here as well.
1950  * Note that caller is responsible for ensuring max_size increases are
1951  * requested from the MDS.
1952  */
1953 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1954 			    int *got, loff_t endoff, int *check_max, int *err)
1955 {
1956 	struct inode *inode = &ci->vfs_inode;
1957 	int ret = 0;
1958 	int have, implemented;
1959 	int file_wanted;
1960 
1961 	dout("get_cap_refs %p need %s want %s\n", inode,
1962 	     ceph_cap_string(need), ceph_cap_string(want));
1963 	spin_lock(&inode->i_lock);
1964 
1965 	/* make sure file is actually open */
1966 	file_wanted = __ceph_caps_file_wanted(ci);
1967 	if ((file_wanted & need) == 0) {
1968 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1969 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
1970 		*err = -EBADF;
1971 		ret = 1;
1972 		goto out;
1973 	}
1974 
1975 	if (need & CEPH_CAP_FILE_WR) {
1976 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1977 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1978 			     inode, endoff, ci->i_max_size);
1979 			if (endoff > ci->i_wanted_max_size) {
1980 				*check_max = 1;
1981 				ret = 1;
1982 			}
1983 			goto out;
1984 		}
1985 		/*
1986 		 * If a sync write is in progress, we must wait, so that we
1987 		 * can get a final snapshot value for size+mtime.
1988 		 */
1989 		if (__ceph_have_pending_cap_snap(ci)) {
1990 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1991 			goto out;
1992 		}
1993 	}
1994 	have = __ceph_caps_issued(ci, &implemented);
1995 
1996 	/*
1997 	 * disallow writes while a truncate is pending
1998 	 */
1999 	if (ci->i_truncate_pending)
2000 		have &= ~CEPH_CAP_FILE_WR;
2001 
2002 	if ((have & need) == need) {
2003 		/*
2004 		 * Look at (implemented & ~have & not) so that we keep waiting
2005 		 * on transition from wanted -> needed caps.  This is needed
2006 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2007 		 * going before a prior buffered writeback happens.
2008 		 */
2009 		int not = want & ~(have & need);
2010 		int revoking = implemented & ~have;
2011 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2012 		     inode, ceph_cap_string(have), ceph_cap_string(not),
2013 		     ceph_cap_string(revoking));
2014 		if ((revoking & not) == 0) {
2015 			*got = need | (have & want);
2016 			__take_cap_refs(ci, *got);
2017 			ret = 1;
2018 		}
2019 	} else {
2020 		dout("get_cap_refs %p have %s needed %s\n", inode,
2021 		     ceph_cap_string(have), ceph_cap_string(need));
2022 	}
2023 out:
2024 	spin_unlock(&inode->i_lock);
2025 	dout("get_cap_refs %p ret %d got %s\n", inode,
2026 	     ret, ceph_cap_string(*got));
2027 	return ret;
2028 }
2029 
2030 /*
2031  * Check the offset we are writing up to against our current
2032  * max_size.  If necessary, tell the MDS we want to write to
2033  * a larger offset.
2034  */
2035 static void check_max_size(struct inode *inode, loff_t endoff)
2036 {
2037 	struct ceph_inode_info *ci = ceph_inode(inode);
2038 	int check = 0;
2039 
2040 	/* do we need to explicitly request a larger max_size? */
2041 	spin_lock(&inode->i_lock);
2042 	if ((endoff >= ci->i_max_size ||
2043 	     endoff > (inode->i_size << 1)) &&
2044 	    endoff > ci->i_wanted_max_size) {
2045 		dout("write %p at large endoff %llu, req max_size\n",
2046 		     inode, endoff);
2047 		ci->i_wanted_max_size = endoff;
2048 		check = 1;
2049 	}
2050 	spin_unlock(&inode->i_lock);
2051 	if (check)
2052 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2053 }
2054 
2055 /*
2056  * Wait for caps, and take cap references.  If we can't get a WR cap
2057  * due to a small max_size, make sure we check_max_size (and possibly
2058  * ask the mds) so we don't get hung up indefinitely.
2059  */
2060 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2061 		  loff_t endoff)
2062 {
2063 	int check_max, ret, err;
2064 
2065 retry:
2066 	if (endoff > 0)
2067 		check_max_size(&ci->vfs_inode, endoff);
2068 	check_max = 0;
2069 	err = 0;
2070 	ret = wait_event_interruptible(ci->i_cap_wq,
2071 				       try_get_cap_refs(ci, need, want,
2072 							got, endoff,
2073 							&check_max, &err));
2074 	if (err)
2075 		ret = err;
2076 	if (check_max)
2077 		goto retry;
2078 	return ret;
2079 }
2080 
2081 /*
2082  * Take cap refs.  Caller must already know we hold at least one ref
2083  * on the caps in question or we don't know this is safe.
2084  */
2085 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2086 {
2087 	spin_lock(&ci->vfs_inode.i_lock);
2088 	__take_cap_refs(ci, caps);
2089 	spin_unlock(&ci->vfs_inode.i_lock);
2090 }
2091 
2092 /*
2093  * Release cap refs.
2094  *
2095  * If we released the last ref on any given cap, call ceph_check_caps
2096  * to release (or schedule a release).
2097  *
2098  * If we are releasing a WR cap (from a sync write), finalize any affected
2099  * cap_snap, and wake up any waiters.
2100  */
2101 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2102 {
2103 	struct inode *inode = &ci->vfs_inode;
2104 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2105 	struct ceph_cap_snap *capsnap;
2106 
2107 	spin_lock(&inode->i_lock);
2108 	if (had & CEPH_CAP_PIN)
2109 		--ci->i_pin_ref;
2110 	if (had & CEPH_CAP_FILE_RD)
2111 		if (--ci->i_rd_ref == 0)
2112 			last++;
2113 	if (had & CEPH_CAP_FILE_CACHE)
2114 		if (--ci->i_rdcache_ref == 0)
2115 			last++;
2116 	if (had & CEPH_CAP_FILE_BUFFER) {
2117 		if (--ci->i_wrbuffer_ref == 0) {
2118 			last++;
2119 			put++;
2120 		}
2121 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2122 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2123 	}
2124 	if (had & CEPH_CAP_FILE_WR)
2125 		if (--ci->i_wr_ref == 0) {
2126 			last++;
2127 			if (!list_empty(&ci->i_cap_snaps)) {
2128 				capsnap = list_first_entry(&ci->i_cap_snaps,
2129 						     struct ceph_cap_snap,
2130 						     ci_item);
2131 				if (capsnap->writing) {
2132 					capsnap->writing = 0;
2133 					flushsnaps =
2134 						__ceph_finish_cap_snap(ci,
2135 								       capsnap);
2136 					wake = 1;
2137 				}
2138 			}
2139 		}
2140 	spin_unlock(&inode->i_lock);
2141 
2142 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2143 	     last ? " last" : "", put ? " put" : "");
2144 
2145 	if (last && !flushsnaps)
2146 		ceph_check_caps(ci, 0, NULL);
2147 	else if (flushsnaps)
2148 		ceph_flush_snaps(ci);
2149 	if (wake)
2150 		wake_up(&ci->i_cap_wq);
2151 	if (put)
2152 		iput(inode);
2153 }
2154 
2155 /*
2156  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2157  * context.  Adjust per-snap dirty page accounting as appropriate.
2158  * Once all dirty data for a cap_snap is flushed, flush snapped file
2159  * metadata back to the MDS.  If we dropped the last ref, call
2160  * ceph_check_caps.
2161  */
2162 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2163 				struct ceph_snap_context *snapc)
2164 {
2165 	struct inode *inode = &ci->vfs_inode;
2166 	int last = 0;
2167 	int complete_capsnap = 0;
2168 	int drop_capsnap = 0;
2169 	int found = 0;
2170 	struct ceph_cap_snap *capsnap = NULL;
2171 
2172 	spin_lock(&inode->i_lock);
2173 	ci->i_wrbuffer_ref -= nr;
2174 	last = !ci->i_wrbuffer_ref;
2175 
2176 	if (ci->i_head_snapc == snapc) {
2177 		ci->i_wrbuffer_ref_head -= nr;
2178 		if (!ci->i_wrbuffer_ref_head) {
2179 			ceph_put_snap_context(ci->i_head_snapc);
2180 			ci->i_head_snapc = NULL;
2181 		}
2182 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2183 		     inode,
2184 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2185 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2186 		     last ? " LAST" : "");
2187 	} else {
2188 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2189 			if (capsnap->context == snapc) {
2190 				found = 1;
2191 				break;
2192 			}
2193 		}
2194 		BUG_ON(!found);
2195 		capsnap->dirty_pages -= nr;
2196 		if (capsnap->dirty_pages == 0) {
2197 			complete_capsnap = 1;
2198 			if (capsnap->dirty == 0)
2199 				/* cap writeback completed before we created
2200 				 * the cap_snap; no FLUSHSNAP is needed */
2201 				drop_capsnap = 1;
2202 		}
2203 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2204 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2205 		     inode, capsnap, capsnap->context->seq,
2206 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2207 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2208 		     last ? " (wrbuffer last)" : "",
2209 		     complete_capsnap ? " (complete capsnap)" : "",
2210 		     drop_capsnap ? " (drop capsnap)" : "");
2211 		if (drop_capsnap) {
2212 			ceph_put_snap_context(capsnap->context);
2213 			list_del(&capsnap->ci_item);
2214 			list_del(&capsnap->flushing_item);
2215 			ceph_put_cap_snap(capsnap);
2216 		}
2217 	}
2218 
2219 	spin_unlock(&inode->i_lock);
2220 
2221 	if (last) {
2222 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2223 		iput(inode);
2224 	} else if (complete_capsnap) {
2225 		ceph_flush_snaps(ci);
2226 		wake_up(&ci->i_cap_wq);
2227 	}
2228 	if (drop_capsnap)
2229 		iput(inode);
2230 }
2231 
2232 /*
2233  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2234  * actually be a revocation if it specifies a smaller cap set.)
2235  *
2236  * caller holds s_mutex and i_lock, we drop both.
2237  *
2238  * return value:
2239  *  0 - ok
2240  *  1 - check_caps on auth cap only (writeback)
2241  *  2 - check_caps (ack revoke)
2242  */
2243 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2244 			     struct ceph_mds_session *session,
2245 			     struct ceph_cap *cap,
2246 			     struct ceph_buffer *xattr_buf)
2247 	__releases(inode->i_lock)
2248 	__releases(session->s_mutex)
2249 {
2250 	struct ceph_inode_info *ci = ceph_inode(inode);
2251 	int mds = session->s_mds;
2252 	int seq = le32_to_cpu(grant->seq);
2253 	int newcaps = le32_to_cpu(grant->caps);
2254 	int issued, implemented, used, wanted, dirty;
2255 	u64 size = le64_to_cpu(grant->size);
2256 	u64 max_size = le64_to_cpu(grant->max_size);
2257 	struct timespec mtime, atime, ctime;
2258 	int check_caps = 0;
2259 	int wake = 0;
2260 	int writeback = 0;
2261 	int revoked_rdcache = 0;
2262 	int queue_invalidate = 0;
2263 
2264 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2265 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2266 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2267 		inode->i_size);
2268 
2269 	/*
2270 	 * If CACHE is being revoked, and we have no dirty buffers,
2271 	 * try to invalidate (once).  (If there are dirty buffers, we
2272 	 * will invalidate _after_ writeback.)
2273 	 */
2274 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2275 	    !ci->i_wrbuffer_ref) {
2276 		if (try_nonblocking_invalidate(inode) == 0) {
2277 			revoked_rdcache = 1;
2278 		} else {
2279 			/* there were locked pages.. invalidate later
2280 			   in a separate thread. */
2281 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2282 				queue_invalidate = 1;
2283 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2284 			}
2285 		}
2286 	}
2287 
2288 	/* side effects now are allowed */
2289 
2290 	issued = __ceph_caps_issued(ci, &implemented);
2291 	issued |= implemented | __ceph_caps_dirty(ci);
2292 
2293 	cap->cap_gen = session->s_cap_gen;
2294 
2295 	__check_cap_issue(ci, cap, newcaps);
2296 
2297 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2298 		inode->i_mode = le32_to_cpu(grant->mode);
2299 		inode->i_uid = le32_to_cpu(grant->uid);
2300 		inode->i_gid = le32_to_cpu(grant->gid);
2301 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2302 		     inode->i_uid, inode->i_gid);
2303 	}
2304 
2305 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2306 		inode->i_nlink = le32_to_cpu(grant->nlink);
2307 
2308 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2309 		int len = le32_to_cpu(grant->xattr_len);
2310 		u64 version = le64_to_cpu(grant->xattr_version);
2311 
2312 		if (version > ci->i_xattrs.version) {
2313 			dout(" got new xattrs v%llu on %p len %d\n",
2314 			     version, inode, len);
2315 			if (ci->i_xattrs.blob)
2316 				ceph_buffer_put(ci->i_xattrs.blob);
2317 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2318 			ci->i_xattrs.version = version;
2319 		}
2320 	}
2321 
2322 	/* size/ctime/mtime/atime? */
2323 	ceph_fill_file_size(inode, issued,
2324 			    le32_to_cpu(grant->truncate_seq),
2325 			    le64_to_cpu(grant->truncate_size), size);
2326 	ceph_decode_timespec(&mtime, &grant->mtime);
2327 	ceph_decode_timespec(&atime, &grant->atime);
2328 	ceph_decode_timespec(&ctime, &grant->ctime);
2329 	ceph_fill_file_time(inode, issued,
2330 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2331 			    &atime);
2332 
2333 	/* max size increase? */
2334 	if (max_size != ci->i_max_size) {
2335 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2336 		ci->i_max_size = max_size;
2337 		if (max_size >= ci->i_wanted_max_size) {
2338 			ci->i_wanted_max_size = 0;  /* reset */
2339 			ci->i_requested_max_size = 0;
2340 		}
2341 		wake = 1;
2342 	}
2343 
2344 	/* check cap bits */
2345 	wanted = __ceph_caps_wanted(ci);
2346 	used = __ceph_caps_used(ci);
2347 	dirty = __ceph_caps_dirty(ci);
2348 	dout(" my wanted = %s, used = %s, dirty %s\n",
2349 	     ceph_cap_string(wanted),
2350 	     ceph_cap_string(used),
2351 	     ceph_cap_string(dirty));
2352 	if (wanted != le32_to_cpu(grant->wanted)) {
2353 		dout("mds wanted %s -> %s\n",
2354 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2355 		     ceph_cap_string(wanted));
2356 		grant->wanted = cpu_to_le32(wanted);
2357 	}
2358 
2359 	cap->seq = seq;
2360 
2361 	/* file layout may have changed */
2362 	ci->i_layout = grant->layout;
2363 
2364 	/* revocation, grant, or no-op? */
2365 	if (cap->issued & ~newcaps) {
2366 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2367 		     ceph_cap_string(newcaps));
2368 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2369 			writeback = 1; /* will delay ack */
2370 		else if (dirty & ~newcaps)
2371 			check_caps = 1;  /* initiate writeback in check_caps */
2372 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2373 			   revoked_rdcache)
2374 			check_caps = 2;     /* send revoke ack in check_caps */
2375 		cap->issued = newcaps;
2376 		cap->implemented |= newcaps;
2377 	} else if (cap->issued == newcaps) {
2378 		dout("caps unchanged: %s -> %s\n",
2379 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2380 	} else {
2381 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2382 		     ceph_cap_string(newcaps));
2383 		cap->issued = newcaps;
2384 		cap->implemented |= newcaps; /* add bits only, to
2385 					      * avoid stepping on a
2386 					      * pending revocation */
2387 		wake = 1;
2388 	}
2389 	BUG_ON(cap->issued & ~cap->implemented);
2390 
2391 	spin_unlock(&inode->i_lock);
2392 	if (writeback)
2393 		/*
2394 		 * queue inode for writeback: we can't actually call
2395 		 * filemap_write_and_wait, etc. from message handler
2396 		 * context.
2397 		 */
2398 		ceph_queue_writeback(inode);
2399 	if (queue_invalidate)
2400 		ceph_queue_invalidate(inode);
2401 	if (wake)
2402 		wake_up(&ci->i_cap_wq);
2403 
2404 	if (check_caps == 1)
2405 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2406 				session);
2407 	else if (check_caps == 2)
2408 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2409 	else
2410 		mutex_unlock(&session->s_mutex);
2411 }
2412 
2413 /*
2414  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2415  * MDS has been safely committed.
2416  */
2417 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2418 				 struct ceph_mds_caps *m,
2419 				 struct ceph_mds_session *session,
2420 				 struct ceph_cap *cap)
2421 	__releases(inode->i_lock)
2422 {
2423 	struct ceph_inode_info *ci = ceph_inode(inode);
2424 	struct ceph_mds_client *mdsc = &ceph_sb_to_client(inode->i_sb)->mdsc;
2425 	unsigned seq = le32_to_cpu(m->seq);
2426 	int dirty = le32_to_cpu(m->dirty);
2427 	int cleaned = 0;
2428 	int drop = 0;
2429 	int i;
2430 
2431 	for (i = 0; i < CEPH_CAP_BITS; i++)
2432 		if ((dirty & (1 << i)) &&
2433 		    flush_tid == ci->i_cap_flush_tid[i])
2434 			cleaned |= 1 << i;
2435 
2436 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2437 	     " flushing %s -> %s\n",
2438 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2439 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2440 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2441 
2442 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2443 		goto out;
2444 
2445 	ci->i_flushing_caps &= ~cleaned;
2446 
2447 	spin_lock(&mdsc->cap_dirty_lock);
2448 	if (ci->i_flushing_caps == 0) {
2449 		list_del_init(&ci->i_flushing_item);
2450 		if (!list_empty(&session->s_cap_flushing))
2451 			dout(" mds%d still flushing cap on %p\n",
2452 			     session->s_mds,
2453 			     &list_entry(session->s_cap_flushing.next,
2454 					 struct ceph_inode_info,
2455 					 i_flushing_item)->vfs_inode);
2456 		mdsc->num_cap_flushing--;
2457 		wake_up(&mdsc->cap_flushing_wq);
2458 		dout(" inode %p now !flushing\n", inode);
2459 
2460 		if (ci->i_dirty_caps == 0) {
2461 			dout(" inode %p now clean\n", inode);
2462 			BUG_ON(!list_empty(&ci->i_dirty_item));
2463 			drop = 1;
2464 		} else {
2465 			BUG_ON(list_empty(&ci->i_dirty_item));
2466 		}
2467 	}
2468 	spin_unlock(&mdsc->cap_dirty_lock);
2469 	wake_up(&ci->i_cap_wq);
2470 
2471 out:
2472 	spin_unlock(&inode->i_lock);
2473 	if (drop)
2474 		iput(inode);
2475 }
2476 
2477 /*
2478  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2479  * throw away our cap_snap.
2480  *
2481  * Caller hold s_mutex.
2482  */
2483 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2484 				     struct ceph_mds_caps *m,
2485 				     struct ceph_mds_session *session)
2486 {
2487 	struct ceph_inode_info *ci = ceph_inode(inode);
2488 	u64 follows = le64_to_cpu(m->snap_follows);
2489 	struct ceph_cap_snap *capsnap;
2490 	int drop = 0;
2491 
2492 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2493 	     inode, ci, session->s_mds, follows);
2494 
2495 	spin_lock(&inode->i_lock);
2496 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2497 		if (capsnap->follows == follows) {
2498 			if (capsnap->flush_tid != flush_tid) {
2499 				dout(" cap_snap %p follows %lld tid %lld !="
2500 				     " %lld\n", capsnap, follows,
2501 				     flush_tid, capsnap->flush_tid);
2502 				break;
2503 			}
2504 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2505 			dout(" removing %p cap_snap %p follows %lld\n",
2506 			     inode, capsnap, follows);
2507 			ceph_put_snap_context(capsnap->context);
2508 			list_del(&capsnap->ci_item);
2509 			list_del(&capsnap->flushing_item);
2510 			ceph_put_cap_snap(capsnap);
2511 			drop = 1;
2512 			break;
2513 		} else {
2514 			dout(" skipping cap_snap %p follows %lld\n",
2515 			     capsnap, capsnap->follows);
2516 		}
2517 	}
2518 	spin_unlock(&inode->i_lock);
2519 	if (drop)
2520 		iput(inode);
2521 }
2522 
2523 /*
2524  * Handle TRUNC from MDS, indicating file truncation.
2525  *
2526  * caller hold s_mutex.
2527  */
2528 static void handle_cap_trunc(struct inode *inode,
2529 			     struct ceph_mds_caps *trunc,
2530 			     struct ceph_mds_session *session)
2531 	__releases(inode->i_lock)
2532 {
2533 	struct ceph_inode_info *ci = ceph_inode(inode);
2534 	int mds = session->s_mds;
2535 	int seq = le32_to_cpu(trunc->seq);
2536 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2537 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2538 	u64 size = le64_to_cpu(trunc->size);
2539 	int implemented = 0;
2540 	int dirty = __ceph_caps_dirty(ci);
2541 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2542 	int queue_trunc = 0;
2543 
2544 	issued |= implemented | dirty;
2545 
2546 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2547 	     inode, mds, seq, truncate_size, truncate_seq);
2548 	queue_trunc = ceph_fill_file_size(inode, issued,
2549 					  truncate_seq, truncate_size, size);
2550 	spin_unlock(&inode->i_lock);
2551 
2552 	if (queue_trunc)
2553 		ceph_queue_vmtruncate(inode);
2554 }
2555 
2556 /*
2557  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2558  * different one.  If we are the most recent migration we've seen (as
2559  * indicated by mseq), make note of the migrating cap bits for the
2560  * duration (until we see the corresponding IMPORT).
2561  *
2562  * caller holds s_mutex
2563  */
2564 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2565 			      struct ceph_mds_session *session)
2566 {
2567 	struct ceph_inode_info *ci = ceph_inode(inode);
2568 	int mds = session->s_mds;
2569 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2570 	struct ceph_cap *cap = NULL, *t;
2571 	struct rb_node *p;
2572 	int remember = 1;
2573 
2574 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2575 	     inode, ci, mds, mseq);
2576 
2577 	spin_lock(&inode->i_lock);
2578 
2579 	/* make sure we haven't seen a higher mseq */
2580 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2581 		t = rb_entry(p, struct ceph_cap, ci_node);
2582 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2583 			dout(" higher mseq on cap from mds%d\n",
2584 			     t->session->s_mds);
2585 			remember = 0;
2586 		}
2587 		if (t->session->s_mds == mds)
2588 			cap = t;
2589 	}
2590 
2591 	if (cap) {
2592 		if (remember) {
2593 			/* make note */
2594 			ci->i_cap_exporting_mds = mds;
2595 			ci->i_cap_exporting_mseq = mseq;
2596 			ci->i_cap_exporting_issued = cap->issued;
2597 		}
2598 		__ceph_remove_cap(cap);
2599 	}
2600 	/* else, we already released it */
2601 
2602 	spin_unlock(&inode->i_lock);
2603 }
2604 
2605 /*
2606  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2607  * clean them up.
2608  *
2609  * caller holds s_mutex.
2610  */
2611 static void handle_cap_import(struct ceph_mds_client *mdsc,
2612 			      struct inode *inode, struct ceph_mds_caps *im,
2613 			      struct ceph_mds_session *session,
2614 			      void *snaptrace, int snaptrace_len)
2615 {
2616 	struct ceph_inode_info *ci = ceph_inode(inode);
2617 	int mds = session->s_mds;
2618 	unsigned issued = le32_to_cpu(im->caps);
2619 	unsigned wanted = le32_to_cpu(im->wanted);
2620 	unsigned seq = le32_to_cpu(im->seq);
2621 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2622 	u64 realmino = le64_to_cpu(im->realm);
2623 	u64 cap_id = le64_to_cpu(im->cap_id);
2624 
2625 	if (ci->i_cap_exporting_mds >= 0 &&
2626 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2627 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2628 		     " - cleared exporting from mds%d\n",
2629 		     inode, ci, mds, mseq,
2630 		     ci->i_cap_exporting_mds);
2631 		ci->i_cap_exporting_issued = 0;
2632 		ci->i_cap_exporting_mseq = 0;
2633 		ci->i_cap_exporting_mds = -1;
2634 	} else {
2635 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2636 		     inode, ci, mds, mseq);
2637 	}
2638 
2639 	down_write(&mdsc->snap_rwsem);
2640 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2641 			       false);
2642 	downgrade_write(&mdsc->snap_rwsem);
2643 	ceph_add_cap(inode, session, cap_id, -1,
2644 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2645 		     NULL /* no caps context */);
2646 	try_flush_caps(inode, session, NULL);
2647 	up_read(&mdsc->snap_rwsem);
2648 }
2649 
2650 /*
2651  * Handle a caps message from the MDS.
2652  *
2653  * Identify the appropriate session, inode, and call the right handler
2654  * based on the cap op.
2655  */
2656 void ceph_handle_caps(struct ceph_mds_session *session,
2657 		      struct ceph_msg *msg)
2658 {
2659 	struct ceph_mds_client *mdsc = session->s_mdsc;
2660 	struct super_block *sb = mdsc->client->sb;
2661 	struct inode *inode;
2662 	struct ceph_cap *cap;
2663 	struct ceph_mds_caps *h;
2664 	int mds = session->s_mds;
2665 	int op;
2666 	u32 seq, mseq;
2667 	struct ceph_vino vino;
2668 	u64 cap_id;
2669 	u64 size, max_size;
2670 	u64 tid;
2671 	void *snaptrace;
2672 
2673 	dout("handle_caps from mds%d\n", mds);
2674 
2675 	/* decode */
2676 	tid = le64_to_cpu(msg->hdr.tid);
2677 	if (msg->front.iov_len < sizeof(*h))
2678 		goto bad;
2679 	h = msg->front.iov_base;
2680 	snaptrace = h + 1;
2681 	op = le32_to_cpu(h->op);
2682 	vino.ino = le64_to_cpu(h->ino);
2683 	vino.snap = CEPH_NOSNAP;
2684 	cap_id = le64_to_cpu(h->cap_id);
2685 	seq = le32_to_cpu(h->seq);
2686 	mseq = le32_to_cpu(h->migrate_seq);
2687 	size = le64_to_cpu(h->size);
2688 	max_size = le64_to_cpu(h->max_size);
2689 
2690 	mutex_lock(&session->s_mutex);
2691 	session->s_seq++;
2692 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2693 	     (unsigned)seq);
2694 
2695 	/* lookup ino */
2696 	inode = ceph_find_inode(sb, vino);
2697 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2698 	     vino.snap, inode);
2699 	if (!inode) {
2700 		dout(" i don't have ino %llx\n", vino.ino);
2701 
2702 		if (op == CEPH_CAP_OP_IMPORT)
2703 			__queue_cap_release(session, vino.ino, cap_id,
2704 					    mseq, seq);
2705 
2706 		/*
2707 		 * send any full release message to try to move things
2708 		 * along for the mds (who clearly thinks we still have this
2709 		 * cap).
2710 		 */
2711 		ceph_add_cap_releases(mdsc, session, -1);
2712 		ceph_send_cap_releases(mdsc, session);
2713 		goto done;
2714 	}
2715 
2716 	/* these will work even if we don't have a cap yet */
2717 	switch (op) {
2718 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2719 		handle_cap_flushsnap_ack(inode, tid, h, session);
2720 		goto done;
2721 
2722 	case CEPH_CAP_OP_EXPORT:
2723 		handle_cap_export(inode, h, session);
2724 		goto done;
2725 
2726 	case CEPH_CAP_OP_IMPORT:
2727 		handle_cap_import(mdsc, inode, h, session,
2728 				  snaptrace, le32_to_cpu(h->snap_trace_len));
2729 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2730 				session);
2731 		goto done_unlocked;
2732 	}
2733 
2734 	/* the rest require a cap */
2735 	spin_lock(&inode->i_lock);
2736 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2737 	if (!cap) {
2738 		dout(" no cap on %p ino %llx.%llx from mds%d\n",
2739 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2740 		spin_unlock(&inode->i_lock);
2741 		goto done;
2742 	}
2743 
2744 	/* note that each of these drops i_lock for us */
2745 	switch (op) {
2746 	case CEPH_CAP_OP_REVOKE:
2747 	case CEPH_CAP_OP_GRANT:
2748 		handle_cap_grant(inode, h, session, cap, msg->middle);
2749 		goto done_unlocked;
2750 
2751 	case CEPH_CAP_OP_FLUSH_ACK:
2752 		handle_cap_flush_ack(inode, tid, h, session, cap);
2753 		break;
2754 
2755 	case CEPH_CAP_OP_TRUNC:
2756 		handle_cap_trunc(inode, h, session);
2757 		break;
2758 
2759 	default:
2760 		spin_unlock(&inode->i_lock);
2761 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2762 		       ceph_cap_op_name(op));
2763 	}
2764 
2765 done:
2766 	mutex_unlock(&session->s_mutex);
2767 done_unlocked:
2768 	if (inode)
2769 		iput(inode);
2770 	return;
2771 
2772 bad:
2773 	pr_err("ceph_handle_caps: corrupt message\n");
2774 	ceph_msg_dump(msg);
2775 	return;
2776 }
2777 
2778 /*
2779  * Delayed work handler to process end of delayed cap release LRU list.
2780  */
2781 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2782 {
2783 	struct ceph_inode_info *ci;
2784 	int flags = CHECK_CAPS_NODELAY;
2785 
2786 	dout("check_delayed_caps\n");
2787 	while (1) {
2788 		spin_lock(&mdsc->cap_delay_lock);
2789 		if (list_empty(&mdsc->cap_delay_list))
2790 			break;
2791 		ci = list_first_entry(&mdsc->cap_delay_list,
2792 				      struct ceph_inode_info,
2793 				      i_cap_delay_list);
2794 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2795 		    time_before(jiffies, ci->i_hold_caps_max))
2796 			break;
2797 		list_del_init(&ci->i_cap_delay_list);
2798 		spin_unlock(&mdsc->cap_delay_lock);
2799 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2800 		ceph_check_caps(ci, flags, NULL);
2801 	}
2802 	spin_unlock(&mdsc->cap_delay_lock);
2803 }
2804 
2805 /*
2806  * Flush all dirty caps to the mds
2807  */
2808 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2809 {
2810 	struct ceph_inode_info *ci, *nci = NULL;
2811 	struct inode *inode, *ninode = NULL;
2812 	struct list_head *p, *n;
2813 
2814 	dout("flush_dirty_caps\n");
2815 	spin_lock(&mdsc->cap_dirty_lock);
2816 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2817 		if (nci) {
2818 			ci = nci;
2819 			inode = ninode;
2820 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2821 			dout("flush_dirty_caps inode %p (was next inode)\n",
2822 			     inode);
2823 		} else {
2824 			ci = list_entry(p, struct ceph_inode_info,
2825 					i_dirty_item);
2826 			inode = igrab(&ci->vfs_inode);
2827 			BUG_ON(!inode);
2828 			dout("flush_dirty_caps inode %p\n", inode);
2829 		}
2830 		if (n != &mdsc->cap_dirty) {
2831 			nci = list_entry(n, struct ceph_inode_info,
2832 					 i_dirty_item);
2833 			ninode = igrab(&nci->vfs_inode);
2834 			BUG_ON(!ninode);
2835 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2836 			dout("flush_dirty_caps next inode %p, noflush\n",
2837 			     ninode);
2838 		} else {
2839 			nci = NULL;
2840 			ninode = NULL;
2841 		}
2842 		spin_unlock(&mdsc->cap_dirty_lock);
2843 		if (inode) {
2844 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2845 					NULL);
2846 			iput(inode);
2847 		}
2848 		spin_lock(&mdsc->cap_dirty_lock);
2849 	}
2850 	spin_unlock(&mdsc->cap_dirty_lock);
2851 }
2852 
2853 /*
2854  * Drop open file reference.  If we were the last open file,
2855  * we may need to release capabilities to the MDS (or schedule
2856  * their delayed release).
2857  */
2858 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2859 {
2860 	struct inode *inode = &ci->vfs_inode;
2861 	int last = 0;
2862 
2863 	spin_lock(&inode->i_lock);
2864 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2865 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2866 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2867 	if (--ci->i_nr_by_mode[fmode] == 0)
2868 		last++;
2869 	spin_unlock(&inode->i_lock);
2870 
2871 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2872 		ceph_check_caps(ci, 0, NULL);
2873 }
2874 
2875 /*
2876  * Helpers for embedding cap and dentry lease releases into mds
2877  * requests.
2878  *
2879  * @force is used by dentry_release (below) to force inclusion of a
2880  * record for the directory inode, even when there aren't any caps to
2881  * drop.
2882  */
2883 int ceph_encode_inode_release(void **p, struct inode *inode,
2884 			      int mds, int drop, int unless, int force)
2885 {
2886 	struct ceph_inode_info *ci = ceph_inode(inode);
2887 	struct ceph_cap *cap;
2888 	struct ceph_mds_request_release *rel = *p;
2889 	int ret = 0;
2890 	int used = 0;
2891 
2892 	spin_lock(&inode->i_lock);
2893 	used = __ceph_caps_used(ci);
2894 
2895 	dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode,
2896 	     mds, ceph_cap_string(used), ceph_cap_string(drop),
2897 	     ceph_cap_string(unless));
2898 
2899 	/* only drop unused caps */
2900 	drop &= ~used;
2901 
2902 	cap = __get_cap_for_mds(ci, mds);
2903 	if (cap && __cap_is_valid(cap)) {
2904 		if (force ||
2905 		    ((cap->issued & drop) &&
2906 		     (cap->issued & unless) == 0)) {
2907 			if ((cap->issued & drop) &&
2908 			    (cap->issued & unless) == 0) {
2909 				dout("encode_inode_release %p cap %p %s -> "
2910 				     "%s\n", inode, cap,
2911 				     ceph_cap_string(cap->issued),
2912 				     ceph_cap_string(cap->issued & ~drop));
2913 				cap->issued &= ~drop;
2914 				cap->implemented &= ~drop;
2915 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2916 					int wanted = __ceph_caps_wanted(ci);
2917 					dout("  wanted %s -> %s (act %s)\n",
2918 					     ceph_cap_string(cap->mds_wanted),
2919 					     ceph_cap_string(cap->mds_wanted &
2920 							     ~wanted),
2921 					     ceph_cap_string(wanted));
2922 					cap->mds_wanted &= wanted;
2923 				}
2924 			} else {
2925 				dout("encode_inode_release %p cap %p %s"
2926 				     " (force)\n", inode, cap,
2927 				     ceph_cap_string(cap->issued));
2928 			}
2929 
2930 			rel->ino = cpu_to_le64(ceph_ino(inode));
2931 			rel->cap_id = cpu_to_le64(cap->cap_id);
2932 			rel->seq = cpu_to_le32(cap->seq);
2933 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2934 			rel->mseq = cpu_to_le32(cap->mseq);
2935 			rel->caps = cpu_to_le32(cap->issued);
2936 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2937 			rel->dname_len = 0;
2938 			rel->dname_seq = 0;
2939 			*p += sizeof(*rel);
2940 			ret = 1;
2941 		} else {
2942 			dout("encode_inode_release %p cap %p %s\n",
2943 			     inode, cap, ceph_cap_string(cap->issued));
2944 		}
2945 	}
2946 	spin_unlock(&inode->i_lock);
2947 	return ret;
2948 }
2949 
2950 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2951 			       int mds, int drop, int unless)
2952 {
2953 	struct inode *dir = dentry->d_parent->d_inode;
2954 	struct ceph_mds_request_release *rel = *p;
2955 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2956 	int force = 0;
2957 	int ret;
2958 
2959 	/*
2960 	 * force an record for the directory caps if we have a dentry lease.
2961 	 * this is racy (can't take i_lock and d_lock together), but it
2962 	 * doesn't have to be perfect; the mds will revoke anything we don't
2963 	 * release.
2964 	 */
2965 	spin_lock(&dentry->d_lock);
2966 	if (di->lease_session && di->lease_session->s_mds == mds)
2967 		force = 1;
2968 	spin_unlock(&dentry->d_lock);
2969 
2970 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2971 
2972 	spin_lock(&dentry->d_lock);
2973 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2974 		dout("encode_dentry_release %p mds%d seq %d\n",
2975 		     dentry, mds, (int)di->lease_seq);
2976 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2977 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2978 		*p += dentry->d_name.len;
2979 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2980 	}
2981 	spin_unlock(&dentry->d_lock);
2982 	return ret;
2983 }
2984