xref: /openbmc/linux/fs/ceph/caps.c (revision 0b0c06d1)
1 #include "ceph_debug.h"
2 
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10 
11 #include "super.h"
12 #include "decode.h"
13 #include "messenger.h"
14 
15 /*
16  * Capability management
17  *
18  * The Ceph metadata servers control client access to inode metadata
19  * and file data by issuing capabilities, granting clients permission
20  * to read and/or write both inode field and file data to OSDs
21  * (storage nodes).  Each capability consists of a set of bits
22  * indicating which operations are allowed.
23  *
24  * If the client holds a *_SHARED cap, the client has a coherent value
25  * that can be safely read from the cached inode.
26  *
27  * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
28  * client is allowed to change inode attributes (e.g., file size,
29  * mtime), note its dirty state in the ceph_cap, and asynchronously
30  * flush that metadata change to the MDS.
31  *
32  * In the event of a conflicting operation (perhaps by another
33  * client), the MDS will revoke the conflicting client capabilities.
34  *
35  * In order for a client to cache an inode, it must hold a capability
36  * with at least one MDS server.  When inodes are released, release
37  * notifications are batched and periodically sent en masse to the MDS
38  * cluster to release server state.
39  */
40 
41 
42 /*
43  * Generate readable cap strings for debugging output.
44  */
45 #define MAX_CAP_STR 20
46 static char cap_str[MAX_CAP_STR][40];
47 static DEFINE_SPINLOCK(cap_str_lock);
48 static int last_cap_str;
49 
50 static char *gcap_string(char *s, int c)
51 {
52 	if (c & CEPH_CAP_GSHARED)
53 		*s++ = 's';
54 	if (c & CEPH_CAP_GEXCL)
55 		*s++ = 'x';
56 	if (c & CEPH_CAP_GCACHE)
57 		*s++ = 'c';
58 	if (c & CEPH_CAP_GRD)
59 		*s++ = 'r';
60 	if (c & CEPH_CAP_GWR)
61 		*s++ = 'w';
62 	if (c & CEPH_CAP_GBUFFER)
63 		*s++ = 'b';
64 	if (c & CEPH_CAP_GLAZYIO)
65 		*s++ = 'l';
66 	return s;
67 }
68 
69 const char *ceph_cap_string(int caps)
70 {
71 	int i;
72 	char *s;
73 	int c;
74 
75 	spin_lock(&cap_str_lock);
76 	i = last_cap_str++;
77 	if (last_cap_str == MAX_CAP_STR)
78 		last_cap_str = 0;
79 	spin_unlock(&cap_str_lock);
80 
81 	s = cap_str[i];
82 
83 	if (caps & CEPH_CAP_PIN)
84 		*s++ = 'p';
85 
86 	c = (caps >> CEPH_CAP_SAUTH) & 3;
87 	if (c) {
88 		*s++ = 'A';
89 		s = gcap_string(s, c);
90 	}
91 
92 	c = (caps >> CEPH_CAP_SLINK) & 3;
93 	if (c) {
94 		*s++ = 'L';
95 		s = gcap_string(s, c);
96 	}
97 
98 	c = (caps >> CEPH_CAP_SXATTR) & 3;
99 	if (c) {
100 		*s++ = 'X';
101 		s = gcap_string(s, c);
102 	}
103 
104 	c = caps >> CEPH_CAP_SFILE;
105 	if (c) {
106 		*s++ = 'F';
107 		s = gcap_string(s, c);
108 	}
109 
110 	if (s == cap_str[i])
111 		*s++ = '-';
112 	*s = 0;
113 	return cap_str[i];
114 }
115 
116 /*
117  * Cap reservations
118  *
119  * Maintain a global pool of preallocated struct ceph_caps, referenced
120  * by struct ceph_caps_reservations.  This ensures that we preallocate
121  * memory needed to successfully process an MDS response.  (If an MDS
122  * sends us cap information and we fail to process it, we will have
123  * problems due to the client and MDS being out of sync.)
124  *
125  * Reservations are 'owned' by a ceph_cap_reservation context.
126  */
127 static spinlock_t caps_list_lock;
128 static struct list_head caps_list;  /* unused (reserved or unreserved) */
129 static int caps_total_count;        /* total caps allocated */
130 static int caps_use_count;          /* in use */
131 static int caps_reserve_count;      /* unused, reserved */
132 static int caps_avail_count;        /* unused, unreserved */
133 static int caps_min_count;          /* keep at least this many (unreserved) */
134 
135 void __init ceph_caps_init(void)
136 {
137 	INIT_LIST_HEAD(&caps_list);
138 	spin_lock_init(&caps_list_lock);
139 }
140 
141 void ceph_caps_finalize(void)
142 {
143 	struct ceph_cap *cap;
144 
145 	spin_lock(&caps_list_lock);
146 	while (!list_empty(&caps_list)) {
147 		cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
148 		list_del(&cap->caps_item);
149 		kmem_cache_free(ceph_cap_cachep, cap);
150 	}
151 	caps_total_count = 0;
152 	caps_avail_count = 0;
153 	caps_use_count = 0;
154 	caps_reserve_count = 0;
155 	caps_min_count = 0;
156 	spin_unlock(&caps_list_lock);
157 }
158 
159 void ceph_adjust_min_caps(int delta)
160 {
161 	spin_lock(&caps_list_lock);
162 	caps_min_count += delta;
163 	BUG_ON(caps_min_count < 0);
164 	spin_unlock(&caps_list_lock);
165 }
166 
167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
168 {
169 	int i;
170 	struct ceph_cap *cap;
171 	int have;
172 	int alloc = 0;
173 	LIST_HEAD(newcaps);
174 	int ret = 0;
175 
176 	dout("reserve caps ctx=%p need=%d\n", ctx, need);
177 
178 	/* first reserve any caps that are already allocated */
179 	spin_lock(&caps_list_lock);
180 	if (caps_avail_count >= need)
181 		have = need;
182 	else
183 		have = caps_avail_count;
184 	caps_avail_count -= have;
185 	caps_reserve_count += have;
186 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
187 	       caps_avail_count);
188 	spin_unlock(&caps_list_lock);
189 
190 	for (i = have; i < need; i++) {
191 		cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
192 		if (!cap) {
193 			ret = -ENOMEM;
194 			goto out_alloc_count;
195 		}
196 		list_add(&cap->caps_item, &newcaps);
197 		alloc++;
198 	}
199 	BUG_ON(have + alloc != need);
200 
201 	spin_lock(&caps_list_lock);
202 	caps_total_count += alloc;
203 	caps_reserve_count += alloc;
204 	list_splice(&newcaps, &caps_list);
205 
206 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
207 	       caps_avail_count);
208 	spin_unlock(&caps_list_lock);
209 
210 	ctx->count = need;
211 	dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
212 	     ctx, caps_total_count, caps_use_count, caps_reserve_count,
213 	     caps_avail_count);
214 	return 0;
215 
216 out_alloc_count:
217 	/* we didn't manage to reserve as much as we needed */
218 	pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
219 		   ctx, need, have);
220 	return ret;
221 }
222 
223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
224 {
225 	dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
226 	if (ctx->count) {
227 		spin_lock(&caps_list_lock);
228 		BUG_ON(caps_reserve_count < ctx->count);
229 		caps_reserve_count -= ctx->count;
230 		caps_avail_count += ctx->count;
231 		ctx->count = 0;
232 		dout("unreserve caps %d = %d used + %d resv + %d avail\n",
233 		     caps_total_count, caps_use_count, caps_reserve_count,
234 		     caps_avail_count);
235 		BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
236 		       caps_avail_count);
237 		spin_unlock(&caps_list_lock);
238 	}
239 	return 0;
240 }
241 
242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
243 {
244 	struct ceph_cap *cap = NULL;
245 
246 	/* temporary, until we do something about cap import/export */
247 	if (!ctx)
248 		return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
249 
250 	spin_lock(&caps_list_lock);
251 	dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
252 	     ctx, ctx->count, caps_total_count, caps_use_count,
253 	     caps_reserve_count, caps_avail_count);
254 	BUG_ON(!ctx->count);
255 	BUG_ON(ctx->count > caps_reserve_count);
256 	BUG_ON(list_empty(&caps_list));
257 
258 	ctx->count--;
259 	caps_reserve_count--;
260 	caps_use_count++;
261 
262 	cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
263 	list_del(&cap->caps_item);
264 
265 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
266 	       caps_avail_count);
267 	spin_unlock(&caps_list_lock);
268 	return cap;
269 }
270 
271 void ceph_put_cap(struct ceph_cap *cap)
272 {
273 	spin_lock(&caps_list_lock);
274 	dout("put_cap %p %d = %d used + %d resv + %d avail\n",
275 	     cap, caps_total_count, caps_use_count,
276 	     caps_reserve_count, caps_avail_count);
277 	caps_use_count--;
278 	/*
279 	 * Keep some preallocated caps around (ceph_min_count), to
280 	 * avoid lots of free/alloc churn.
281 	 */
282 	if (caps_avail_count >= caps_reserve_count + caps_min_count) {
283 		caps_total_count--;
284 		kmem_cache_free(ceph_cap_cachep, cap);
285 	} else {
286 		caps_avail_count++;
287 		list_add(&cap->caps_item, &caps_list);
288 	}
289 
290 	BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
291 	       caps_avail_count);
292 	spin_unlock(&caps_list_lock);
293 }
294 
295 void ceph_reservation_status(struct ceph_client *client,
296 			     int *total, int *avail, int *used, int *reserved,
297 			     int *min)
298 {
299 	if (total)
300 		*total = caps_total_count;
301 	if (avail)
302 		*avail = caps_avail_count;
303 	if (used)
304 		*used = caps_use_count;
305 	if (reserved)
306 		*reserved = caps_reserve_count;
307 	if (min)
308 		*min = caps_min_count;
309 }
310 
311 /*
312  * Find ceph_cap for given mds, if any.
313  *
314  * Called with i_lock held.
315  */
316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
317 {
318 	struct ceph_cap *cap;
319 	struct rb_node *n = ci->i_caps.rb_node;
320 
321 	while (n) {
322 		cap = rb_entry(n, struct ceph_cap, ci_node);
323 		if (mds < cap->mds)
324 			n = n->rb_left;
325 		else if (mds > cap->mds)
326 			n = n->rb_right;
327 		else
328 			return cap;
329 	}
330 	return NULL;
331 }
332 
333 /*
334  * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
335  * -1.
336  */
337 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
338 {
339 	struct ceph_cap *cap;
340 	int mds = -1;
341 	struct rb_node *p;
342 
343 	/* prefer mds with WR|WRBUFFER|EXCL caps */
344 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
345 		cap = rb_entry(p, struct ceph_cap, ci_node);
346 		mds = cap->mds;
347 		if (mseq)
348 			*mseq = cap->mseq;
349 		if (cap->issued & (CEPH_CAP_FILE_WR |
350 				   CEPH_CAP_FILE_BUFFER |
351 				   CEPH_CAP_FILE_EXCL))
352 			break;
353 	}
354 	return mds;
355 }
356 
357 int ceph_get_cap_mds(struct inode *inode)
358 {
359 	int mds;
360 	spin_lock(&inode->i_lock);
361 	mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
362 	spin_unlock(&inode->i_lock);
363 	return mds;
364 }
365 
366 /*
367  * Called under i_lock.
368  */
369 static void __insert_cap_node(struct ceph_inode_info *ci,
370 			      struct ceph_cap *new)
371 {
372 	struct rb_node **p = &ci->i_caps.rb_node;
373 	struct rb_node *parent = NULL;
374 	struct ceph_cap *cap = NULL;
375 
376 	while (*p) {
377 		parent = *p;
378 		cap = rb_entry(parent, struct ceph_cap, ci_node);
379 		if (new->mds < cap->mds)
380 			p = &(*p)->rb_left;
381 		else if (new->mds > cap->mds)
382 			p = &(*p)->rb_right;
383 		else
384 			BUG();
385 	}
386 
387 	rb_link_node(&new->ci_node, parent, p);
388 	rb_insert_color(&new->ci_node, &ci->i_caps);
389 }
390 
391 /*
392  * (re)set cap hold timeouts, which control the delayed release
393  * of unused caps back to the MDS.  Should be called on cap use.
394  */
395 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
396 			       struct ceph_inode_info *ci)
397 {
398 	struct ceph_mount_args *ma = mdsc->client->mount_args;
399 
400 	ci->i_hold_caps_min = round_jiffies(jiffies +
401 					    ma->caps_wanted_delay_min * HZ);
402 	ci->i_hold_caps_max = round_jiffies(jiffies +
403 					    ma->caps_wanted_delay_max * HZ);
404 	dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
405 	     ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
406 }
407 
408 /*
409  * (Re)queue cap at the end of the delayed cap release list.
410  *
411  * If I_FLUSH is set, leave the inode at the front of the list.
412  *
413  * Caller holds i_lock
414  *    -> we take mdsc->cap_delay_lock
415  */
416 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
417 				struct ceph_inode_info *ci)
418 {
419 	__cap_set_timeouts(mdsc, ci);
420 	dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
421 	     ci->i_ceph_flags, ci->i_hold_caps_max);
422 	if (!mdsc->stopping) {
423 		spin_lock(&mdsc->cap_delay_lock);
424 		if (!list_empty(&ci->i_cap_delay_list)) {
425 			if (ci->i_ceph_flags & CEPH_I_FLUSH)
426 				goto no_change;
427 			list_del_init(&ci->i_cap_delay_list);
428 		}
429 		list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
430 no_change:
431 		spin_unlock(&mdsc->cap_delay_lock);
432 	}
433 }
434 
435 /*
436  * Queue an inode for immediate writeback.  Mark inode with I_FLUSH,
437  * indicating we should send a cap message to flush dirty metadata
438  * asap, and move to the front of the delayed cap list.
439  */
440 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
441 				      struct ceph_inode_info *ci)
442 {
443 	dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
444 	spin_lock(&mdsc->cap_delay_lock);
445 	ci->i_ceph_flags |= CEPH_I_FLUSH;
446 	if (!list_empty(&ci->i_cap_delay_list))
447 		list_del_init(&ci->i_cap_delay_list);
448 	list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
449 	spin_unlock(&mdsc->cap_delay_lock);
450 }
451 
452 /*
453  * Cancel delayed work on cap.
454  *
455  * Caller must hold i_lock.
456  */
457 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
458 			       struct ceph_inode_info *ci)
459 {
460 	dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
461 	if (list_empty(&ci->i_cap_delay_list))
462 		return;
463 	spin_lock(&mdsc->cap_delay_lock);
464 	list_del_init(&ci->i_cap_delay_list);
465 	spin_unlock(&mdsc->cap_delay_lock);
466 }
467 
468 /*
469  * Common issue checks for add_cap, handle_cap_grant.
470  */
471 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
472 			      unsigned issued)
473 {
474 	unsigned had = __ceph_caps_issued(ci, NULL);
475 
476 	/*
477 	 * Each time we receive FILE_CACHE anew, we increment
478 	 * i_rdcache_gen.
479 	 */
480 	if ((issued & CEPH_CAP_FILE_CACHE) &&
481 	    (had & CEPH_CAP_FILE_CACHE) == 0)
482 		ci->i_rdcache_gen++;
483 
484 	/*
485 	 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
486 	 * don't know what happened to this directory while we didn't
487 	 * have the cap.
488 	 */
489 	if ((issued & CEPH_CAP_FILE_SHARED) &&
490 	    (had & CEPH_CAP_FILE_SHARED) == 0) {
491 		ci->i_shared_gen++;
492 		if (S_ISDIR(ci->vfs_inode.i_mode)) {
493 			dout(" marking %p NOT complete\n", &ci->vfs_inode);
494 			ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
495 		}
496 	}
497 }
498 
499 /*
500  * Add a capability under the given MDS session.
501  *
502  * Caller should hold session snap_rwsem (read) and s_mutex.
503  *
504  * @fmode is the open file mode, if we are opening a file, otherwise
505  * it is < 0.  (This is so we can atomically add the cap and add an
506  * open file reference to it.)
507  */
508 int ceph_add_cap(struct inode *inode,
509 		 struct ceph_mds_session *session, u64 cap_id,
510 		 int fmode, unsigned issued, unsigned wanted,
511 		 unsigned seq, unsigned mseq, u64 realmino, int flags,
512 		 struct ceph_cap_reservation *caps_reservation)
513 {
514 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
515 	struct ceph_inode_info *ci = ceph_inode(inode);
516 	struct ceph_cap *new_cap = NULL;
517 	struct ceph_cap *cap;
518 	int mds = session->s_mds;
519 	int actual_wanted;
520 
521 	dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
522 	     session->s_mds, cap_id, ceph_cap_string(issued), seq);
523 
524 	/*
525 	 * If we are opening the file, include file mode wanted bits
526 	 * in wanted.
527 	 */
528 	if (fmode >= 0)
529 		wanted |= ceph_caps_for_mode(fmode);
530 
531 retry:
532 	spin_lock(&inode->i_lock);
533 	cap = __get_cap_for_mds(ci, mds);
534 	if (!cap) {
535 		if (new_cap) {
536 			cap = new_cap;
537 			new_cap = NULL;
538 		} else {
539 			spin_unlock(&inode->i_lock);
540 			new_cap = get_cap(caps_reservation);
541 			if (new_cap == NULL)
542 				return -ENOMEM;
543 			goto retry;
544 		}
545 
546 		cap->issued = 0;
547 		cap->implemented = 0;
548 		cap->mds = mds;
549 		cap->mds_wanted = 0;
550 
551 		cap->ci = ci;
552 		__insert_cap_node(ci, cap);
553 
554 		/* clear out old exporting info?  (i.e. on cap import) */
555 		if (ci->i_cap_exporting_mds == mds) {
556 			ci->i_cap_exporting_issued = 0;
557 			ci->i_cap_exporting_mseq = 0;
558 			ci->i_cap_exporting_mds = -1;
559 		}
560 
561 		/* add to session cap list */
562 		cap->session = session;
563 		spin_lock(&session->s_cap_lock);
564 		list_add_tail(&cap->session_caps, &session->s_caps);
565 		session->s_nr_caps++;
566 		spin_unlock(&session->s_cap_lock);
567 	}
568 
569 	if (!ci->i_snap_realm) {
570 		/*
571 		 * add this inode to the appropriate snap realm
572 		 */
573 		struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
574 							       realmino);
575 		if (realm) {
576 			ceph_get_snap_realm(mdsc, realm);
577 			spin_lock(&realm->inodes_with_caps_lock);
578 			ci->i_snap_realm = realm;
579 			list_add(&ci->i_snap_realm_item,
580 				 &realm->inodes_with_caps);
581 			spin_unlock(&realm->inodes_with_caps_lock);
582 		} else {
583 			pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
584 			       realmino);
585 		}
586 	}
587 
588 	__check_cap_issue(ci, cap, issued);
589 
590 	/*
591 	 * If we are issued caps we don't want, or the mds' wanted
592 	 * value appears to be off, queue a check so we'll release
593 	 * later and/or update the mds wanted value.
594 	 */
595 	actual_wanted = __ceph_caps_wanted(ci);
596 	if ((wanted & ~actual_wanted) ||
597 	    (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
598 		dout(" issued %s, mds wanted %s, actual %s, queueing\n",
599 		     ceph_cap_string(issued), ceph_cap_string(wanted),
600 		     ceph_cap_string(actual_wanted));
601 		__cap_delay_requeue(mdsc, ci);
602 	}
603 
604 	if (flags & CEPH_CAP_FLAG_AUTH)
605 		ci->i_auth_cap = cap;
606 	else if (ci->i_auth_cap == cap)
607 		ci->i_auth_cap = NULL;
608 
609 	dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
610 	     inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
611 	     ceph_cap_string(issued|cap->issued), seq, mds);
612 	cap->cap_id = cap_id;
613 	cap->issued = issued;
614 	cap->implemented |= issued;
615 	cap->mds_wanted |= wanted;
616 	cap->seq = seq;
617 	cap->issue_seq = seq;
618 	cap->mseq = mseq;
619 	cap->cap_gen = session->s_cap_gen;
620 
621 	if (fmode >= 0)
622 		__ceph_get_fmode(ci, fmode);
623 	spin_unlock(&inode->i_lock);
624 	wake_up(&ci->i_cap_wq);
625 	return 0;
626 }
627 
628 /*
629  * Return true if cap has not timed out and belongs to the current
630  * generation of the MDS session (i.e. has not gone 'stale' due to
631  * us losing touch with the mds).
632  */
633 static int __cap_is_valid(struct ceph_cap *cap)
634 {
635 	unsigned long ttl;
636 	u32 gen;
637 
638 	spin_lock(&cap->session->s_cap_lock);
639 	gen = cap->session->s_cap_gen;
640 	ttl = cap->session->s_cap_ttl;
641 	spin_unlock(&cap->session->s_cap_lock);
642 
643 	if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
644 		dout("__cap_is_valid %p cap %p issued %s "
645 		     "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
646 		     cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
647 		return 0;
648 	}
649 
650 	return 1;
651 }
652 
653 /*
654  * Return set of valid cap bits issued to us.  Note that caps time
655  * out, and may be invalidated in bulk if the client session times out
656  * and session->s_cap_gen is bumped.
657  */
658 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
659 {
660 	int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
661 	struct ceph_cap *cap;
662 	struct rb_node *p;
663 
664 	if (implemented)
665 		*implemented = 0;
666 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
667 		cap = rb_entry(p, struct ceph_cap, ci_node);
668 		if (!__cap_is_valid(cap))
669 			continue;
670 		dout("__ceph_caps_issued %p cap %p issued %s\n",
671 		     &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
672 		have |= cap->issued;
673 		if (implemented)
674 			*implemented |= cap->implemented;
675 	}
676 	return have;
677 }
678 
679 /*
680  * Get cap bits issued by caps other than @ocap
681  */
682 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
683 {
684 	int have = ci->i_snap_caps;
685 	struct ceph_cap *cap;
686 	struct rb_node *p;
687 
688 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
689 		cap = rb_entry(p, struct ceph_cap, ci_node);
690 		if (cap == ocap)
691 			continue;
692 		if (!__cap_is_valid(cap))
693 			continue;
694 		have |= cap->issued;
695 	}
696 	return have;
697 }
698 
699 /*
700  * Move a cap to the end of the LRU (oldest caps at list head, newest
701  * at list tail).
702  */
703 static void __touch_cap(struct ceph_cap *cap)
704 {
705 	struct ceph_mds_session *s = cap->session;
706 
707 	spin_lock(&s->s_cap_lock);
708 	if (s->s_cap_iterator == NULL) {
709 		dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
710 		     s->s_mds);
711 		list_move_tail(&cap->session_caps, &s->s_caps);
712 	} else {
713 		dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
714 		     &cap->ci->vfs_inode, cap, s->s_mds);
715 	}
716 	spin_unlock(&s->s_cap_lock);
717 }
718 
719 /*
720  * Check if we hold the given mask.  If so, move the cap(s) to the
721  * front of their respective LRUs.  (This is the preferred way for
722  * callers to check for caps they want.)
723  */
724 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
725 {
726 	struct ceph_cap *cap;
727 	struct rb_node *p;
728 	int have = ci->i_snap_caps;
729 
730 	if ((have & mask) == mask) {
731 		dout("__ceph_caps_issued_mask %p snap issued %s"
732 		     " (mask %s)\n", &ci->vfs_inode,
733 		     ceph_cap_string(have),
734 		     ceph_cap_string(mask));
735 		return 1;
736 	}
737 
738 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
739 		cap = rb_entry(p, struct ceph_cap, ci_node);
740 		if (!__cap_is_valid(cap))
741 			continue;
742 		if ((cap->issued & mask) == mask) {
743 			dout("__ceph_caps_issued_mask %p cap %p issued %s"
744 			     " (mask %s)\n", &ci->vfs_inode, cap,
745 			     ceph_cap_string(cap->issued),
746 			     ceph_cap_string(mask));
747 			if (touch)
748 				__touch_cap(cap);
749 			return 1;
750 		}
751 
752 		/* does a combination of caps satisfy mask? */
753 		have |= cap->issued;
754 		if ((have & mask) == mask) {
755 			dout("__ceph_caps_issued_mask %p combo issued %s"
756 			     " (mask %s)\n", &ci->vfs_inode,
757 			     ceph_cap_string(cap->issued),
758 			     ceph_cap_string(mask));
759 			if (touch) {
760 				struct rb_node *q;
761 
762 				/* touch this + preceeding caps */
763 				__touch_cap(cap);
764 				for (q = rb_first(&ci->i_caps); q != p;
765 				     q = rb_next(q)) {
766 					cap = rb_entry(q, struct ceph_cap,
767 						       ci_node);
768 					if (!__cap_is_valid(cap))
769 						continue;
770 					__touch_cap(cap);
771 				}
772 			}
773 			return 1;
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 /*
781  * Return true if mask caps are currently being revoked by an MDS.
782  */
783 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
784 {
785 	struct inode *inode = &ci->vfs_inode;
786 	struct ceph_cap *cap;
787 	struct rb_node *p;
788 	int ret = 0;
789 
790 	spin_lock(&inode->i_lock);
791 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
792 		cap = rb_entry(p, struct ceph_cap, ci_node);
793 		if (__cap_is_valid(cap) &&
794 		    (cap->implemented & ~cap->issued & mask)) {
795 			ret = 1;
796 			break;
797 		}
798 	}
799 	spin_unlock(&inode->i_lock);
800 	dout("ceph_caps_revoking %p %s = %d\n", inode,
801 	     ceph_cap_string(mask), ret);
802 	return ret;
803 }
804 
805 int __ceph_caps_used(struct ceph_inode_info *ci)
806 {
807 	int used = 0;
808 	if (ci->i_pin_ref)
809 		used |= CEPH_CAP_PIN;
810 	if (ci->i_rd_ref)
811 		used |= CEPH_CAP_FILE_RD;
812 	if (ci->i_rdcache_ref || ci->i_rdcache_gen)
813 		used |= CEPH_CAP_FILE_CACHE;
814 	if (ci->i_wr_ref)
815 		used |= CEPH_CAP_FILE_WR;
816 	if (ci->i_wrbuffer_ref)
817 		used |= CEPH_CAP_FILE_BUFFER;
818 	return used;
819 }
820 
821 /*
822  * wanted, by virtue of open file modes
823  */
824 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
825 {
826 	int want = 0;
827 	int mode;
828 	for (mode = 0; mode < 4; mode++)
829 		if (ci->i_nr_by_mode[mode])
830 			want |= ceph_caps_for_mode(mode);
831 	return want;
832 }
833 
834 /*
835  * Return caps we have registered with the MDS(s) as 'wanted'.
836  */
837 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
838 {
839 	struct ceph_cap *cap;
840 	struct rb_node *p;
841 	int mds_wanted = 0;
842 
843 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
844 		cap = rb_entry(p, struct ceph_cap, ci_node);
845 		if (!__cap_is_valid(cap))
846 			continue;
847 		mds_wanted |= cap->mds_wanted;
848 	}
849 	return mds_wanted;
850 }
851 
852 /*
853  * called under i_lock
854  */
855 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
856 {
857 	return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
858 }
859 
860 /*
861  * caller should hold i_lock.
862  * caller will not hold session s_mutex if called from destroy_inode.
863  */
864 void __ceph_remove_cap(struct ceph_cap *cap)
865 {
866 	struct ceph_mds_session *session = cap->session;
867 	struct ceph_inode_info *ci = cap->ci;
868 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
869 
870 	dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
871 
872 	/* remove from inode list */
873 	rb_erase(&cap->ci_node, &ci->i_caps);
874 	cap->ci = NULL;
875 	if (ci->i_auth_cap == cap)
876 		ci->i_auth_cap = NULL;
877 
878 	/* remove from session list */
879 	spin_lock(&session->s_cap_lock);
880 	if (session->s_cap_iterator == cap) {
881 		/* not yet, we are iterating over this very cap */
882 		dout("__ceph_remove_cap  delaying %p removal from session %p\n",
883 		     cap, cap->session);
884 	} else {
885 		list_del_init(&cap->session_caps);
886 		session->s_nr_caps--;
887 		cap->session = NULL;
888 	}
889 	spin_unlock(&session->s_cap_lock);
890 
891 	if (cap->session == NULL)
892 		ceph_put_cap(cap);
893 
894 	if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
895 		struct ceph_snap_realm *realm = ci->i_snap_realm;
896 		spin_lock(&realm->inodes_with_caps_lock);
897 		list_del_init(&ci->i_snap_realm_item);
898 		ci->i_snap_realm_counter++;
899 		ci->i_snap_realm = NULL;
900 		spin_unlock(&realm->inodes_with_caps_lock);
901 		ceph_put_snap_realm(mdsc, realm);
902 	}
903 	if (!__ceph_is_any_real_caps(ci))
904 		__cap_delay_cancel(mdsc, ci);
905 }
906 
907 /*
908  * Build and send a cap message to the given MDS.
909  *
910  * Caller should be holding s_mutex.
911  */
912 static int send_cap_msg(struct ceph_mds_session *session,
913 			u64 ino, u64 cid, int op,
914 			int caps, int wanted, int dirty,
915 			u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
916 			u64 size, u64 max_size,
917 			struct timespec *mtime, struct timespec *atime,
918 			u64 time_warp_seq,
919 			uid_t uid, gid_t gid, mode_t mode,
920 			u64 xattr_version,
921 			struct ceph_buffer *xattrs_buf,
922 			u64 follows)
923 {
924 	struct ceph_mds_caps *fc;
925 	struct ceph_msg *msg;
926 
927 	dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
928 	     " seq %u/%u mseq %u follows %lld size %llu/%llu"
929 	     " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
930 	     cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
931 	     ceph_cap_string(dirty),
932 	     seq, issue_seq, mseq, follows, size, max_size,
933 	     xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
934 
935 	msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
936 	if (IS_ERR(msg))
937 		return PTR_ERR(msg);
938 
939 	msg->hdr.tid = cpu_to_le64(flush_tid);
940 
941 	fc = msg->front.iov_base;
942 	memset(fc, 0, sizeof(*fc));
943 
944 	fc->cap_id = cpu_to_le64(cid);
945 	fc->op = cpu_to_le32(op);
946 	fc->seq = cpu_to_le32(seq);
947 	fc->issue_seq = cpu_to_le32(issue_seq);
948 	fc->migrate_seq = cpu_to_le32(mseq);
949 	fc->caps = cpu_to_le32(caps);
950 	fc->wanted = cpu_to_le32(wanted);
951 	fc->dirty = cpu_to_le32(dirty);
952 	fc->ino = cpu_to_le64(ino);
953 	fc->snap_follows = cpu_to_le64(follows);
954 
955 	fc->size = cpu_to_le64(size);
956 	fc->max_size = cpu_to_le64(max_size);
957 	if (mtime)
958 		ceph_encode_timespec(&fc->mtime, mtime);
959 	if (atime)
960 		ceph_encode_timespec(&fc->atime, atime);
961 	fc->time_warp_seq = cpu_to_le32(time_warp_seq);
962 
963 	fc->uid = cpu_to_le32(uid);
964 	fc->gid = cpu_to_le32(gid);
965 	fc->mode = cpu_to_le32(mode);
966 
967 	fc->xattr_version = cpu_to_le64(xattr_version);
968 	if (xattrs_buf) {
969 		msg->middle = ceph_buffer_get(xattrs_buf);
970 		fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
971 		msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
972 	}
973 
974 	ceph_con_send(&session->s_con, msg);
975 	return 0;
976 }
977 
978 /*
979  * Queue cap releases when an inode is dropped from our cache.  Since
980  * inode is about to be destroyed, there is no need for i_lock.
981  */
982 void ceph_queue_caps_release(struct inode *inode)
983 {
984 	struct ceph_inode_info *ci = ceph_inode(inode);
985 	struct rb_node *p;
986 
987 	p = rb_first(&ci->i_caps);
988 	while (p) {
989 		struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
990 		struct ceph_mds_session *session = cap->session;
991 		struct ceph_msg *msg;
992 		struct ceph_mds_cap_release *head;
993 		struct ceph_mds_cap_item *item;
994 
995 		spin_lock(&session->s_cap_lock);
996 		BUG_ON(!session->s_num_cap_releases);
997 		msg = list_first_entry(&session->s_cap_releases,
998 				       struct ceph_msg, list_head);
999 
1000 		dout(" adding %p release to mds%d msg %p (%d left)\n",
1001 		     inode, session->s_mds, msg, session->s_num_cap_releases);
1002 
1003 		BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1004 		head = msg->front.iov_base;
1005 		head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1006 		item = msg->front.iov_base + msg->front.iov_len;
1007 		item->ino = cpu_to_le64(ceph_ino(inode));
1008 		item->cap_id = cpu_to_le64(cap->cap_id);
1009 		item->migrate_seq = cpu_to_le32(cap->mseq);
1010 		item->seq = cpu_to_le32(cap->issue_seq);
1011 
1012 		session->s_num_cap_releases--;
1013 
1014 		msg->front.iov_len += sizeof(*item);
1015 		if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1016 			dout(" release msg %p full\n", msg);
1017 			list_move_tail(&msg->list_head,
1018 				       &session->s_cap_releases_done);
1019 		} else {
1020 			dout(" release msg %p at %d/%d (%d)\n", msg,
1021 			     (int)le32_to_cpu(head->num),
1022 			     (int)CEPH_CAPS_PER_RELEASE,
1023 			     (int)msg->front.iov_len);
1024 		}
1025 		spin_unlock(&session->s_cap_lock);
1026 		p = rb_next(p);
1027 		__ceph_remove_cap(cap);
1028 	}
1029 }
1030 
1031 /*
1032  * Send a cap msg on the given inode.  Update our caps state, then
1033  * drop i_lock and send the message.
1034  *
1035  * Make note of max_size reported/requested from mds, revoked caps
1036  * that have now been implemented.
1037  *
1038  * Make half-hearted attempt ot to invalidate page cache if we are
1039  * dropping RDCACHE.  Note that this will leave behind locked pages
1040  * that we'll then need to deal with elsewhere.
1041  *
1042  * Return non-zero if delayed release, or we experienced an error
1043  * such that the caller should requeue + retry later.
1044  *
1045  * called with i_lock, then drops it.
1046  * caller should hold snap_rwsem (read), s_mutex.
1047  */
1048 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1049 		      int op, int used, int want, int retain, int flushing,
1050 		      unsigned *pflush_tid)
1051 	__releases(cap->ci->vfs_inode->i_lock)
1052 {
1053 	struct ceph_inode_info *ci = cap->ci;
1054 	struct inode *inode = &ci->vfs_inode;
1055 	u64 cap_id = cap->cap_id;
1056 	int held, revoking, dropping, keep;
1057 	u64 seq, issue_seq, mseq, time_warp_seq, follows;
1058 	u64 size, max_size;
1059 	struct timespec mtime, atime;
1060 	int wake = 0;
1061 	mode_t mode;
1062 	uid_t uid;
1063 	gid_t gid;
1064 	struct ceph_mds_session *session;
1065 	u64 xattr_version = 0;
1066 	int delayed = 0;
1067 	u64 flush_tid = 0;
1068 	int i;
1069 	int ret;
1070 
1071 	held = cap->issued | cap->implemented;
1072 	revoking = cap->implemented & ~cap->issued;
1073 	retain &= ~revoking;
1074 	dropping = cap->issued & ~retain;
1075 
1076 	dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1077 	     inode, cap, cap->session,
1078 	     ceph_cap_string(held), ceph_cap_string(held & retain),
1079 	     ceph_cap_string(revoking));
1080 	BUG_ON((retain & CEPH_CAP_PIN) == 0);
1081 
1082 	session = cap->session;
1083 
1084 	/* don't release wanted unless we've waited a bit. */
1085 	if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1086 	    time_before(jiffies, ci->i_hold_caps_min)) {
1087 		dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1088 		     ceph_cap_string(cap->issued),
1089 		     ceph_cap_string(cap->issued & retain),
1090 		     ceph_cap_string(cap->mds_wanted),
1091 		     ceph_cap_string(want));
1092 		want |= cap->mds_wanted;
1093 		retain |= cap->issued;
1094 		delayed = 1;
1095 	}
1096 	ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1097 
1098 	cap->issued &= retain;  /* drop bits we don't want */
1099 	if (cap->implemented & ~cap->issued) {
1100 		/*
1101 		 * Wake up any waiters on wanted -> needed transition.
1102 		 * This is due to the weird transition from buffered
1103 		 * to sync IO... we need to flush dirty pages _before_
1104 		 * allowing sync writes to avoid reordering.
1105 		 */
1106 		wake = 1;
1107 	}
1108 	cap->implemented &= cap->issued | used;
1109 	cap->mds_wanted = want;
1110 
1111 	if (flushing) {
1112 		/*
1113 		 * assign a tid for flush operations so we can avoid
1114 		 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1115 		 * clean type races.  track latest tid for every bit
1116 		 * so we can handle flush AxFw, flush Fw, and have the
1117 		 * first ack clean Ax.
1118 		 */
1119 		flush_tid = ++ci->i_cap_flush_last_tid;
1120 		if (pflush_tid)
1121 			*pflush_tid = flush_tid;
1122 		dout(" cap_flush_tid %d\n", (int)flush_tid);
1123 		for (i = 0; i < CEPH_CAP_BITS; i++)
1124 			if (flushing & (1 << i))
1125 				ci->i_cap_flush_tid[i] = flush_tid;
1126 	}
1127 
1128 	keep = cap->implemented;
1129 	seq = cap->seq;
1130 	issue_seq = cap->issue_seq;
1131 	mseq = cap->mseq;
1132 	size = inode->i_size;
1133 	ci->i_reported_size = size;
1134 	max_size = ci->i_wanted_max_size;
1135 	ci->i_requested_max_size = max_size;
1136 	mtime = inode->i_mtime;
1137 	atime = inode->i_atime;
1138 	time_warp_seq = ci->i_time_warp_seq;
1139 	follows = ci->i_snap_realm->cached_context->seq;
1140 	uid = inode->i_uid;
1141 	gid = inode->i_gid;
1142 	mode = inode->i_mode;
1143 
1144 	if (dropping & CEPH_CAP_XATTR_EXCL) {
1145 		__ceph_build_xattrs_blob(ci);
1146 		xattr_version = ci->i_xattrs.version + 1;
1147 	}
1148 
1149 	spin_unlock(&inode->i_lock);
1150 
1151 	ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1152 		op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1153 		size, max_size, &mtime, &atime, time_warp_seq,
1154 		uid, gid, mode,
1155 		xattr_version,
1156 		(flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1157 		follows);
1158 	if (ret < 0) {
1159 		dout("error sending cap msg, must requeue %p\n", inode);
1160 		delayed = 1;
1161 	}
1162 
1163 	if (wake)
1164 		wake_up(&ci->i_cap_wq);
1165 
1166 	return delayed;
1167 }
1168 
1169 /*
1170  * When a snapshot is taken, clients accumulate dirty metadata on
1171  * inodes with capabilities in ceph_cap_snaps to describe the file
1172  * state at the time the snapshot was taken.  This must be flushed
1173  * asynchronously back to the MDS once sync writes complete and dirty
1174  * data is written out.
1175  *
1176  * Called under i_lock.  Takes s_mutex as needed.
1177  */
1178 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1179 			struct ceph_mds_session **psession)
1180 {
1181 	struct inode *inode = &ci->vfs_inode;
1182 	int mds;
1183 	struct ceph_cap_snap *capsnap;
1184 	u32 mseq;
1185 	struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1186 	struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1187 						    session->s_mutex */
1188 	u64 next_follows = 0;  /* keep track of how far we've gotten through the
1189 			     i_cap_snaps list, and skip these entries next time
1190 			     around to avoid an infinite loop */
1191 
1192 	if (psession)
1193 		session = *psession;
1194 
1195 	dout("__flush_snaps %p\n", inode);
1196 retry:
1197 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1198 		/* avoid an infiniute loop after retry */
1199 		if (capsnap->follows < next_follows)
1200 			continue;
1201 		/*
1202 		 * we need to wait for sync writes to complete and for dirty
1203 		 * pages to be written out.
1204 		 */
1205 		if (capsnap->dirty_pages || capsnap->writing)
1206 			continue;
1207 
1208 		/*
1209 		 * if cap writeback already occurred, we should have dropped
1210 		 * the capsnap in ceph_put_wrbuffer_cap_refs.
1211 		 */
1212 		BUG_ON(capsnap->dirty == 0);
1213 
1214 		/* pick mds, take s_mutex */
1215 		mds = __ceph_get_cap_mds(ci, &mseq);
1216 		if (session && session->s_mds != mds) {
1217 			dout("oops, wrong session %p mutex\n", session);
1218 			mutex_unlock(&session->s_mutex);
1219 			ceph_put_mds_session(session);
1220 			session = NULL;
1221 		}
1222 		if (!session) {
1223 			spin_unlock(&inode->i_lock);
1224 			mutex_lock(&mdsc->mutex);
1225 			session = __ceph_lookup_mds_session(mdsc, mds);
1226 			mutex_unlock(&mdsc->mutex);
1227 			if (session) {
1228 				dout("inverting session/ino locks on %p\n",
1229 				     session);
1230 				mutex_lock(&session->s_mutex);
1231 			}
1232 			/*
1233 			 * if session == NULL, we raced against a cap
1234 			 * deletion.  retry, and we'll get a better
1235 			 * @mds value next time.
1236 			 */
1237 			spin_lock(&inode->i_lock);
1238 			goto retry;
1239 		}
1240 
1241 		capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1242 		atomic_inc(&capsnap->nref);
1243 		if (!list_empty(&capsnap->flushing_item))
1244 			list_del_init(&capsnap->flushing_item);
1245 		list_add_tail(&capsnap->flushing_item,
1246 			      &session->s_cap_snaps_flushing);
1247 		spin_unlock(&inode->i_lock);
1248 
1249 		dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1250 		     inode, capsnap, next_follows, capsnap->size);
1251 		send_cap_msg(session, ceph_vino(inode).ino, 0,
1252 			     CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1253 			     capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1254 			     capsnap->size, 0,
1255 			     &capsnap->mtime, &capsnap->atime,
1256 			     capsnap->time_warp_seq,
1257 			     capsnap->uid, capsnap->gid, capsnap->mode,
1258 			     0, NULL,
1259 			     capsnap->follows);
1260 
1261 		next_follows = capsnap->follows + 1;
1262 		ceph_put_cap_snap(capsnap);
1263 
1264 		spin_lock(&inode->i_lock);
1265 		goto retry;
1266 	}
1267 
1268 	/* we flushed them all; remove this inode from the queue */
1269 	spin_lock(&mdsc->snap_flush_lock);
1270 	list_del_init(&ci->i_snap_flush_item);
1271 	spin_unlock(&mdsc->snap_flush_lock);
1272 
1273 	if (psession)
1274 		*psession = session;
1275 	else if (session) {
1276 		mutex_unlock(&session->s_mutex);
1277 		ceph_put_mds_session(session);
1278 	}
1279 }
1280 
1281 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1282 {
1283 	struct inode *inode = &ci->vfs_inode;
1284 
1285 	spin_lock(&inode->i_lock);
1286 	__ceph_flush_snaps(ci, NULL);
1287 	spin_unlock(&inode->i_lock);
1288 }
1289 
1290 /*
1291  * Mark caps dirty.  If inode is newly dirty, add to the global dirty
1292  * list.
1293  */
1294 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1295 {
1296 	struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1297 	struct inode *inode = &ci->vfs_inode;
1298 	int was = ci->i_dirty_caps;
1299 	int dirty = 0;
1300 
1301 	dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1302 	     ceph_cap_string(mask), ceph_cap_string(was),
1303 	     ceph_cap_string(was | mask));
1304 	ci->i_dirty_caps |= mask;
1305 	if (was == 0) {
1306 		dout(" inode %p now dirty\n", &ci->vfs_inode);
1307 		BUG_ON(!list_empty(&ci->i_dirty_item));
1308 		spin_lock(&mdsc->cap_dirty_lock);
1309 		list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1310 		spin_unlock(&mdsc->cap_dirty_lock);
1311 		if (ci->i_flushing_caps == 0) {
1312 			igrab(inode);
1313 			dirty |= I_DIRTY_SYNC;
1314 		}
1315 	}
1316 	BUG_ON(list_empty(&ci->i_dirty_item));
1317 	if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1318 	    (mask & CEPH_CAP_FILE_BUFFER))
1319 		dirty |= I_DIRTY_DATASYNC;
1320 	if (dirty)
1321 		__mark_inode_dirty(inode, dirty);
1322 	__cap_delay_requeue(mdsc, ci);
1323 }
1324 
1325 /*
1326  * Add dirty inode to the flushing list.  Assigned a seq number so we
1327  * can wait for caps to flush without starving.
1328  *
1329  * Called under i_lock.
1330  */
1331 static int __mark_caps_flushing(struct inode *inode,
1332 				 struct ceph_mds_session *session)
1333 {
1334 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1335 	struct ceph_inode_info *ci = ceph_inode(inode);
1336 	int flushing;
1337 
1338 	BUG_ON(ci->i_dirty_caps == 0);
1339 	BUG_ON(list_empty(&ci->i_dirty_item));
1340 
1341 	flushing = ci->i_dirty_caps;
1342 	dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1343 	     ceph_cap_string(flushing),
1344 	     ceph_cap_string(ci->i_flushing_caps),
1345 	     ceph_cap_string(ci->i_flushing_caps | flushing));
1346 	ci->i_flushing_caps |= flushing;
1347 	ci->i_dirty_caps = 0;
1348 	dout(" inode %p now !dirty\n", inode);
1349 
1350 	spin_lock(&mdsc->cap_dirty_lock);
1351 	list_del_init(&ci->i_dirty_item);
1352 
1353 	ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1354 	if (list_empty(&ci->i_flushing_item)) {
1355 		list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1356 		mdsc->num_cap_flushing++;
1357 		dout(" inode %p now flushing seq %lld\n", inode,
1358 		     ci->i_cap_flush_seq);
1359 	} else {
1360 		list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1361 		dout(" inode %p now flushing (more) seq %lld\n", inode,
1362 		     ci->i_cap_flush_seq);
1363 	}
1364 	spin_unlock(&mdsc->cap_dirty_lock);
1365 
1366 	return flushing;
1367 }
1368 
1369 /*
1370  * try to invalidate mapping pages without blocking.
1371  */
1372 static int mapping_is_empty(struct address_space *mapping)
1373 {
1374 	struct page *page = find_get_page(mapping, 0);
1375 
1376 	if (!page)
1377 		return 1;
1378 
1379 	put_page(page);
1380 	return 0;
1381 }
1382 
1383 static int try_nonblocking_invalidate(struct inode *inode)
1384 {
1385 	struct ceph_inode_info *ci = ceph_inode(inode);
1386 	u32 invalidating_gen = ci->i_rdcache_gen;
1387 
1388 	spin_unlock(&inode->i_lock);
1389 	invalidate_mapping_pages(&inode->i_data, 0, -1);
1390 	spin_lock(&inode->i_lock);
1391 
1392 	if (mapping_is_empty(&inode->i_data) &&
1393 	    invalidating_gen == ci->i_rdcache_gen) {
1394 		/* success. */
1395 		dout("try_nonblocking_invalidate %p success\n", inode);
1396 		ci->i_rdcache_gen = 0;
1397 		ci->i_rdcache_revoking = 0;
1398 		return 0;
1399 	}
1400 	dout("try_nonblocking_invalidate %p failed\n", inode);
1401 	return -1;
1402 }
1403 
1404 /*
1405  * Swiss army knife function to examine currently used and wanted
1406  * versus held caps.  Release, flush, ack revoked caps to mds as
1407  * appropriate.
1408  *
1409  *  CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1410  *    cap release further.
1411  *  CHECK_CAPS_AUTHONLY - we should only check the auth cap
1412  *  CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1413  *    further delay.
1414  */
1415 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1416 		     struct ceph_mds_session *session)
1417 	__releases(session->s_mutex)
1418 {
1419 	struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1420 	struct ceph_mds_client *mdsc = &client->mdsc;
1421 	struct inode *inode = &ci->vfs_inode;
1422 	struct ceph_cap *cap;
1423 	int file_wanted, used;
1424 	int took_snap_rwsem = 0;             /* true if mdsc->snap_rwsem held */
1425 	int issued, implemented, want, retain, revoking, flushing = 0;
1426 	int mds = -1;   /* keep track of how far we've gone through i_caps list
1427 			   to avoid an infinite loop on retry */
1428 	struct rb_node *p;
1429 	int tried_invalidate = 0;
1430 	int delayed = 0, sent = 0, force_requeue = 0, num;
1431 	int queue_invalidate = 0;
1432 	int is_delayed = flags & CHECK_CAPS_NODELAY;
1433 
1434 	/* if we are unmounting, flush any unused caps immediately. */
1435 	if (mdsc->stopping)
1436 		is_delayed = 1;
1437 
1438 	spin_lock(&inode->i_lock);
1439 
1440 	if (ci->i_ceph_flags & CEPH_I_FLUSH)
1441 		flags |= CHECK_CAPS_FLUSH;
1442 
1443 	/* flush snaps first time around only */
1444 	if (!list_empty(&ci->i_cap_snaps))
1445 		__ceph_flush_snaps(ci, &session);
1446 	goto retry_locked;
1447 retry:
1448 	spin_lock(&inode->i_lock);
1449 retry_locked:
1450 	file_wanted = __ceph_caps_file_wanted(ci);
1451 	used = __ceph_caps_used(ci);
1452 	want = file_wanted | used;
1453 	issued = __ceph_caps_issued(ci, &implemented);
1454 	revoking = implemented & ~issued;
1455 
1456 	retain = want | CEPH_CAP_PIN;
1457 	if (!mdsc->stopping && inode->i_nlink > 0) {
1458 		if (want) {
1459 			retain |= CEPH_CAP_ANY;       /* be greedy */
1460 		} else {
1461 			retain |= CEPH_CAP_ANY_SHARED;
1462 			/*
1463 			 * keep RD only if we didn't have the file open RW,
1464 			 * because then the mds would revoke it anyway to
1465 			 * journal max_size=0.
1466 			 */
1467 			if (ci->i_max_size == 0)
1468 				retain |= CEPH_CAP_ANY_RD;
1469 		}
1470 	}
1471 
1472 	dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1473 	     " issued %s revoking %s retain %s %s%s%s\n", inode,
1474 	     ceph_cap_string(file_wanted),
1475 	     ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1476 	     ceph_cap_string(ci->i_flushing_caps),
1477 	     ceph_cap_string(issued), ceph_cap_string(revoking),
1478 	     ceph_cap_string(retain),
1479 	     (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1480 	     (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1481 	     (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1482 
1483 	/*
1484 	 * If we no longer need to hold onto old our caps, and we may
1485 	 * have cached pages, but don't want them, then try to invalidate.
1486 	 * If we fail, it's because pages are locked.... try again later.
1487 	 */
1488 	if ((!is_delayed || mdsc->stopping) &&
1489 	    ci->i_wrbuffer_ref == 0 &&               /* no dirty pages... */
1490 	    ci->i_rdcache_gen &&                     /* may have cached pages */
1491 	    (file_wanted == 0 ||                     /* no open files */
1492 	     (revoking & CEPH_CAP_FILE_CACHE)) &&     /*  or revoking cache */
1493 	    !tried_invalidate) {
1494 		dout("check_caps trying to invalidate on %p\n", inode);
1495 		if (try_nonblocking_invalidate(inode) < 0) {
1496 			if (revoking & CEPH_CAP_FILE_CACHE) {
1497 				dout("check_caps queuing invalidate\n");
1498 				queue_invalidate = 1;
1499 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
1500 			} else {
1501 				dout("check_caps failed to invalidate pages\n");
1502 				/* we failed to invalidate pages.  check these
1503 				   caps again later. */
1504 				force_requeue = 1;
1505 				__cap_set_timeouts(mdsc, ci);
1506 			}
1507 		}
1508 		tried_invalidate = 1;
1509 		goto retry_locked;
1510 	}
1511 
1512 	num = 0;
1513 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1514 		cap = rb_entry(p, struct ceph_cap, ci_node);
1515 		num++;
1516 
1517 		/* avoid looping forever */
1518 		if (mds >= cap->mds ||
1519 		    ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1520 			continue;
1521 
1522 		/* NOTE: no side-effects allowed, until we take s_mutex */
1523 
1524 		revoking = cap->implemented & ~cap->issued;
1525 		if (revoking)
1526 			dout(" mds%d revoking %s\n", cap->mds,
1527 			     ceph_cap_string(revoking));
1528 
1529 		if (cap == ci->i_auth_cap &&
1530 		    (cap->issued & CEPH_CAP_FILE_WR)) {
1531 			/* request larger max_size from MDS? */
1532 			if (ci->i_wanted_max_size > ci->i_max_size &&
1533 			    ci->i_wanted_max_size > ci->i_requested_max_size) {
1534 				dout("requesting new max_size\n");
1535 				goto ack;
1536 			}
1537 
1538 			/* approaching file_max? */
1539 			if ((inode->i_size << 1) >= ci->i_max_size &&
1540 			    (ci->i_reported_size << 1) < ci->i_max_size) {
1541 				dout("i_size approaching max_size\n");
1542 				goto ack;
1543 			}
1544 		}
1545 		/* flush anything dirty? */
1546 		if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1547 		    ci->i_dirty_caps) {
1548 			dout("flushing dirty caps\n");
1549 			goto ack;
1550 		}
1551 
1552 		/* completed revocation? going down and there are no caps? */
1553 		if (revoking && (revoking & used) == 0) {
1554 			dout("completed revocation of %s\n",
1555 			     ceph_cap_string(cap->implemented & ~cap->issued));
1556 			goto ack;
1557 		}
1558 
1559 		/* want more caps from mds? */
1560 		if (want & ~(cap->mds_wanted | cap->issued))
1561 			goto ack;
1562 
1563 		/* things we might delay */
1564 		if ((cap->issued & ~retain) == 0 &&
1565 		    cap->mds_wanted == want)
1566 			continue;     /* nope, all good */
1567 
1568 		if (is_delayed)
1569 			goto ack;
1570 
1571 		/* delay? */
1572 		if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1573 		    time_before(jiffies, ci->i_hold_caps_max)) {
1574 			dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1575 			     ceph_cap_string(cap->issued),
1576 			     ceph_cap_string(cap->issued & retain),
1577 			     ceph_cap_string(cap->mds_wanted),
1578 			     ceph_cap_string(want));
1579 			delayed++;
1580 			continue;
1581 		}
1582 
1583 ack:
1584 		if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1585 			dout(" skipping %p I_NOFLUSH set\n", inode);
1586 			continue;
1587 		}
1588 
1589 		if (session && session != cap->session) {
1590 			dout("oops, wrong session %p mutex\n", session);
1591 			mutex_unlock(&session->s_mutex);
1592 			session = NULL;
1593 		}
1594 		if (!session) {
1595 			session = cap->session;
1596 			if (mutex_trylock(&session->s_mutex) == 0) {
1597 				dout("inverting session/ino locks on %p\n",
1598 				     session);
1599 				spin_unlock(&inode->i_lock);
1600 				if (took_snap_rwsem) {
1601 					up_read(&mdsc->snap_rwsem);
1602 					took_snap_rwsem = 0;
1603 				}
1604 				mutex_lock(&session->s_mutex);
1605 				goto retry;
1606 			}
1607 		}
1608 		/* take snap_rwsem after session mutex */
1609 		if (!took_snap_rwsem) {
1610 			if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1611 				dout("inverting snap/in locks on %p\n",
1612 				     inode);
1613 				spin_unlock(&inode->i_lock);
1614 				down_read(&mdsc->snap_rwsem);
1615 				took_snap_rwsem = 1;
1616 				goto retry;
1617 			}
1618 			took_snap_rwsem = 1;
1619 		}
1620 
1621 		if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1622 			flushing = __mark_caps_flushing(inode, session);
1623 
1624 		mds = cap->mds;  /* remember mds, so we don't repeat */
1625 		sent++;
1626 
1627 		/* __send_cap drops i_lock */
1628 		delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1629 				      retain, flushing, NULL);
1630 		goto retry; /* retake i_lock and restart our cap scan. */
1631 	}
1632 
1633 	/*
1634 	 * Reschedule delayed caps release if we delayed anything,
1635 	 * otherwise cancel.
1636 	 */
1637 	if (delayed && is_delayed)
1638 		force_requeue = 1;   /* __send_cap delayed release; requeue */
1639 	if (!delayed && !is_delayed)
1640 		__cap_delay_cancel(mdsc, ci);
1641 	else if (!is_delayed || force_requeue)
1642 		__cap_delay_requeue(mdsc, ci);
1643 
1644 	spin_unlock(&inode->i_lock);
1645 
1646 	if (queue_invalidate)
1647 		ceph_queue_invalidate(inode);
1648 
1649 	if (session)
1650 		mutex_unlock(&session->s_mutex);
1651 	if (took_snap_rwsem)
1652 		up_read(&mdsc->snap_rwsem);
1653 }
1654 
1655 /*
1656  * Try to flush dirty caps back to the auth mds.
1657  */
1658 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1659 			  unsigned *flush_tid)
1660 {
1661 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1662 	struct ceph_inode_info *ci = ceph_inode(inode);
1663 	int unlock_session = session ? 0 : 1;
1664 	int flushing = 0;
1665 
1666 retry:
1667 	spin_lock(&inode->i_lock);
1668 	if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1669 		dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1670 		goto out;
1671 	}
1672 	if (ci->i_dirty_caps && ci->i_auth_cap) {
1673 		struct ceph_cap *cap = ci->i_auth_cap;
1674 		int used = __ceph_caps_used(ci);
1675 		int want = __ceph_caps_wanted(ci);
1676 		int delayed;
1677 
1678 		if (!session) {
1679 			spin_unlock(&inode->i_lock);
1680 			session = cap->session;
1681 			mutex_lock(&session->s_mutex);
1682 			goto retry;
1683 		}
1684 		BUG_ON(session != cap->session);
1685 		if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1686 			goto out;
1687 
1688 		flushing = __mark_caps_flushing(inode, session);
1689 
1690 		/* __send_cap drops i_lock */
1691 		delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1692 				     cap->issued | cap->implemented, flushing,
1693 				     flush_tid);
1694 		if (!delayed)
1695 			goto out_unlocked;
1696 
1697 		spin_lock(&inode->i_lock);
1698 		__cap_delay_requeue(mdsc, ci);
1699 	}
1700 out:
1701 	spin_unlock(&inode->i_lock);
1702 out_unlocked:
1703 	if (session && unlock_session)
1704 		mutex_unlock(&session->s_mutex);
1705 	return flushing;
1706 }
1707 
1708 /*
1709  * Return true if we've flushed caps through the given flush_tid.
1710  */
1711 static int caps_are_flushed(struct inode *inode, unsigned tid)
1712 {
1713 	struct ceph_inode_info *ci = ceph_inode(inode);
1714 	int dirty, i, ret = 1;
1715 
1716 	spin_lock(&inode->i_lock);
1717 	dirty = __ceph_caps_dirty(ci);
1718 	for (i = 0; i < CEPH_CAP_BITS; i++)
1719 		if ((ci->i_flushing_caps & (1 << i)) &&
1720 		    ci->i_cap_flush_tid[i] <= tid) {
1721 			/* still flushing this bit */
1722 			ret = 0;
1723 			break;
1724 		}
1725 	spin_unlock(&inode->i_lock);
1726 	return ret;
1727 }
1728 
1729 /*
1730  * Wait on any unsafe replies for the given inode.  First wait on the
1731  * newest request, and make that the upper bound.  Then, if there are
1732  * more requests, keep waiting on the oldest as long as it is still older
1733  * than the original request.
1734  */
1735 static void sync_write_wait(struct inode *inode)
1736 {
1737 	struct ceph_inode_info *ci = ceph_inode(inode);
1738 	struct list_head *head = &ci->i_unsafe_writes;
1739 	struct ceph_osd_request *req;
1740 	u64 last_tid;
1741 
1742 	spin_lock(&ci->i_unsafe_lock);
1743 	if (list_empty(head))
1744 		goto out;
1745 
1746 	/* set upper bound as _last_ entry in chain */
1747 	req = list_entry(head->prev, struct ceph_osd_request,
1748 			 r_unsafe_item);
1749 	last_tid = req->r_tid;
1750 
1751 	do {
1752 		ceph_osdc_get_request(req);
1753 		spin_unlock(&ci->i_unsafe_lock);
1754 		dout("sync_write_wait on tid %llu (until %llu)\n",
1755 		     req->r_tid, last_tid);
1756 		wait_for_completion(&req->r_safe_completion);
1757 		spin_lock(&ci->i_unsafe_lock);
1758 		ceph_osdc_put_request(req);
1759 
1760 		/*
1761 		 * from here on look at first entry in chain, since we
1762 		 * only want to wait for anything older than last_tid
1763 		 */
1764 		if (list_empty(head))
1765 			break;
1766 		req = list_entry(head->next, struct ceph_osd_request,
1767 				 r_unsafe_item);
1768 	} while (req->r_tid < last_tid);
1769 out:
1770 	spin_unlock(&ci->i_unsafe_lock);
1771 }
1772 
1773 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1774 {
1775 	struct inode *inode = dentry->d_inode;
1776 	struct ceph_inode_info *ci = ceph_inode(inode);
1777 	unsigned flush_tid;
1778 	int ret;
1779 	int dirty;
1780 
1781 	dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1782 	sync_write_wait(inode);
1783 
1784 	ret = filemap_write_and_wait(inode->i_mapping);
1785 	if (ret < 0)
1786 		return ret;
1787 
1788 	dirty = try_flush_caps(inode, NULL, &flush_tid);
1789 	dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1790 
1791 	/*
1792 	 * only wait on non-file metadata writeback (the mds
1793 	 * can recover size and mtime, so we don't need to
1794 	 * wait for that)
1795 	 */
1796 	if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1797 		dout("fsync waiting for flush_tid %u\n", flush_tid);
1798 		ret = wait_event_interruptible(ci->i_cap_wq,
1799 				       caps_are_flushed(inode, flush_tid));
1800 	}
1801 
1802 	dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Flush any dirty caps back to the mds.  If we aren't asked to wait,
1808  * queue inode for flush but don't do so immediately, because we can
1809  * get by with fewer MDS messages if we wait for data writeback to
1810  * complete first.
1811  */
1812 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1813 {
1814 	struct ceph_inode_info *ci = ceph_inode(inode);
1815 	unsigned flush_tid;
1816 	int err = 0;
1817 	int dirty;
1818 	int wait = wbc->sync_mode == WB_SYNC_ALL;
1819 
1820 	dout("write_inode %p wait=%d\n", inode, wait);
1821 	if (wait) {
1822 		dirty = try_flush_caps(inode, NULL, &flush_tid);
1823 		if (dirty)
1824 			err = wait_event_interruptible(ci->i_cap_wq,
1825 				       caps_are_flushed(inode, flush_tid));
1826 	} else {
1827 		struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1828 
1829 		spin_lock(&inode->i_lock);
1830 		if (__ceph_caps_dirty(ci))
1831 			__cap_delay_requeue_front(mdsc, ci);
1832 		spin_unlock(&inode->i_lock);
1833 	}
1834 	return err;
1835 }
1836 
1837 /*
1838  * After a recovering MDS goes active, we need to resend any caps
1839  * we were flushing.
1840  *
1841  * Caller holds session->s_mutex.
1842  */
1843 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1844 				   struct ceph_mds_session *session)
1845 {
1846 	struct ceph_cap_snap *capsnap;
1847 
1848 	dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1849 	list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1850 			    flushing_item) {
1851 		struct ceph_inode_info *ci = capsnap->ci;
1852 		struct inode *inode = &ci->vfs_inode;
1853 		struct ceph_cap *cap;
1854 
1855 		spin_lock(&inode->i_lock);
1856 		cap = ci->i_auth_cap;
1857 		if (cap && cap->session == session) {
1858 			dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1859 			     cap, capsnap);
1860 			__ceph_flush_snaps(ci, &session);
1861 		} else {
1862 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1863 			       cap, session->s_mds);
1864 		}
1865 		spin_unlock(&inode->i_lock);
1866 	}
1867 }
1868 
1869 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1870 			     struct ceph_mds_session *session)
1871 {
1872 	struct ceph_inode_info *ci;
1873 
1874 	kick_flushing_capsnaps(mdsc, session);
1875 
1876 	dout("kick_flushing_caps mds%d\n", session->s_mds);
1877 	list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1878 		struct inode *inode = &ci->vfs_inode;
1879 		struct ceph_cap *cap;
1880 		int delayed = 0;
1881 
1882 		spin_lock(&inode->i_lock);
1883 		cap = ci->i_auth_cap;
1884 		if (cap && cap->session == session) {
1885 			dout("kick_flushing_caps %p cap %p %s\n", inode,
1886 			     cap, ceph_cap_string(ci->i_flushing_caps));
1887 			delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1888 					     __ceph_caps_used(ci),
1889 					     __ceph_caps_wanted(ci),
1890 					     cap->issued | cap->implemented,
1891 					     ci->i_flushing_caps, NULL);
1892 			if (delayed) {
1893 				spin_lock(&inode->i_lock);
1894 				__cap_delay_requeue(mdsc, ci);
1895 				spin_unlock(&inode->i_lock);
1896 			}
1897 		} else {
1898 			pr_err("%p auth cap %p not mds%d ???\n", inode,
1899 			       cap, session->s_mds);
1900 			spin_unlock(&inode->i_lock);
1901 		}
1902 	}
1903 }
1904 
1905 
1906 /*
1907  * Take references to capabilities we hold, so that we don't release
1908  * them to the MDS prematurely.
1909  *
1910  * Protected by i_lock.
1911  */
1912 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1913 {
1914 	if (got & CEPH_CAP_PIN)
1915 		ci->i_pin_ref++;
1916 	if (got & CEPH_CAP_FILE_RD)
1917 		ci->i_rd_ref++;
1918 	if (got & CEPH_CAP_FILE_CACHE)
1919 		ci->i_rdcache_ref++;
1920 	if (got & CEPH_CAP_FILE_WR)
1921 		ci->i_wr_ref++;
1922 	if (got & CEPH_CAP_FILE_BUFFER) {
1923 		if (ci->i_wrbuffer_ref == 0)
1924 			igrab(&ci->vfs_inode);
1925 		ci->i_wrbuffer_ref++;
1926 		dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1927 		     &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1928 	}
1929 }
1930 
1931 /*
1932  * Try to grab cap references.  Specify those refs we @want, and the
1933  * minimal set we @need.  Also include the larger offset we are writing
1934  * to (when applicable), and check against max_size here as well.
1935  * Note that caller is responsible for ensuring max_size increases are
1936  * requested from the MDS.
1937  */
1938 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1939 			    int *got, loff_t endoff, int *check_max, int *err)
1940 {
1941 	struct inode *inode = &ci->vfs_inode;
1942 	int ret = 0;
1943 	int have, implemented;
1944 	int file_wanted;
1945 
1946 	dout("get_cap_refs %p need %s want %s\n", inode,
1947 	     ceph_cap_string(need), ceph_cap_string(want));
1948 	spin_lock(&inode->i_lock);
1949 
1950 	/* make sure file is actually open */
1951 	file_wanted = __ceph_caps_file_wanted(ci);
1952 	if ((file_wanted & need) == 0) {
1953 		dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1954 		     ceph_cap_string(need), ceph_cap_string(file_wanted));
1955 		*err = -EBADF;
1956 		ret = 1;
1957 		goto out;
1958 	}
1959 
1960 	if (need & CEPH_CAP_FILE_WR) {
1961 		if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1962 			dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1963 			     inode, endoff, ci->i_max_size);
1964 			if (endoff > ci->i_wanted_max_size) {
1965 				*check_max = 1;
1966 				ret = 1;
1967 			}
1968 			goto out;
1969 		}
1970 		/*
1971 		 * If a sync write is in progress, we must wait, so that we
1972 		 * can get a final snapshot value for size+mtime.
1973 		 */
1974 		if (__ceph_have_pending_cap_snap(ci)) {
1975 			dout("get_cap_refs %p cap_snap_pending\n", inode);
1976 			goto out;
1977 		}
1978 	}
1979 	have = __ceph_caps_issued(ci, &implemented);
1980 
1981 	/*
1982 	 * disallow writes while a truncate is pending
1983 	 */
1984 	if (ci->i_truncate_pending)
1985 		have &= ~CEPH_CAP_FILE_WR;
1986 
1987 	if ((have & need) == need) {
1988 		/*
1989 		 * Look at (implemented & ~have & not) so that we keep waiting
1990 		 * on transition from wanted -> needed caps.  This is needed
1991 		 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1992 		 * going before a prior buffered writeback happens.
1993 		 */
1994 		int not = want & ~(have & need);
1995 		int revoking = implemented & ~have;
1996 		dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1997 		     inode, ceph_cap_string(have), ceph_cap_string(not),
1998 		     ceph_cap_string(revoking));
1999 		if ((revoking & not) == 0) {
2000 			*got = need | (have & want);
2001 			__take_cap_refs(ci, *got);
2002 			ret = 1;
2003 		}
2004 	} else {
2005 		dout("get_cap_refs %p have %s needed %s\n", inode,
2006 		     ceph_cap_string(have), ceph_cap_string(need));
2007 	}
2008 out:
2009 	spin_unlock(&inode->i_lock);
2010 	dout("get_cap_refs %p ret %d got %s\n", inode,
2011 	     ret, ceph_cap_string(*got));
2012 	return ret;
2013 }
2014 
2015 /*
2016  * Check the offset we are writing up to against our current
2017  * max_size.  If necessary, tell the MDS we want to write to
2018  * a larger offset.
2019  */
2020 static void check_max_size(struct inode *inode, loff_t endoff)
2021 {
2022 	struct ceph_inode_info *ci = ceph_inode(inode);
2023 	int check = 0;
2024 
2025 	/* do we need to explicitly request a larger max_size? */
2026 	spin_lock(&inode->i_lock);
2027 	if ((endoff >= ci->i_max_size ||
2028 	     endoff > (inode->i_size << 1)) &&
2029 	    endoff > ci->i_wanted_max_size) {
2030 		dout("write %p at large endoff %llu, req max_size\n",
2031 		     inode, endoff);
2032 		ci->i_wanted_max_size = endoff;
2033 		check = 1;
2034 	}
2035 	spin_unlock(&inode->i_lock);
2036 	if (check)
2037 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2038 }
2039 
2040 /*
2041  * Wait for caps, and take cap references.  If we can't get a WR cap
2042  * due to a small max_size, make sure we check_max_size (and possibly
2043  * ask the mds) so we don't get hung up indefinitely.
2044  */
2045 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2046 		  loff_t endoff)
2047 {
2048 	int check_max, ret, err;
2049 
2050 retry:
2051 	if (endoff > 0)
2052 		check_max_size(&ci->vfs_inode, endoff);
2053 	check_max = 0;
2054 	err = 0;
2055 	ret = wait_event_interruptible(ci->i_cap_wq,
2056 				       try_get_cap_refs(ci, need, want,
2057 							got, endoff,
2058 							&check_max, &err));
2059 	if (err)
2060 		ret = err;
2061 	if (check_max)
2062 		goto retry;
2063 	return ret;
2064 }
2065 
2066 /*
2067  * Take cap refs.  Caller must already know we hold at least one ref
2068  * on the caps in question or we don't know this is safe.
2069  */
2070 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2071 {
2072 	spin_lock(&ci->vfs_inode.i_lock);
2073 	__take_cap_refs(ci, caps);
2074 	spin_unlock(&ci->vfs_inode.i_lock);
2075 }
2076 
2077 /*
2078  * Release cap refs.
2079  *
2080  * If we released the last ref on any given cap, call ceph_check_caps
2081  * to release (or schedule a release).
2082  *
2083  * If we are releasing a WR cap (from a sync write), finalize any affected
2084  * cap_snap, and wake up any waiters.
2085  */
2086 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2087 {
2088 	struct inode *inode = &ci->vfs_inode;
2089 	int last = 0, put = 0, flushsnaps = 0, wake = 0;
2090 	struct ceph_cap_snap *capsnap;
2091 
2092 	spin_lock(&inode->i_lock);
2093 	if (had & CEPH_CAP_PIN)
2094 		--ci->i_pin_ref;
2095 	if (had & CEPH_CAP_FILE_RD)
2096 		if (--ci->i_rd_ref == 0)
2097 			last++;
2098 	if (had & CEPH_CAP_FILE_CACHE)
2099 		if (--ci->i_rdcache_ref == 0)
2100 			last++;
2101 	if (had & CEPH_CAP_FILE_BUFFER) {
2102 		if (--ci->i_wrbuffer_ref == 0) {
2103 			last++;
2104 			put++;
2105 		}
2106 		dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2107 		     inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2108 	}
2109 	if (had & CEPH_CAP_FILE_WR)
2110 		if (--ci->i_wr_ref == 0) {
2111 			last++;
2112 			if (!list_empty(&ci->i_cap_snaps)) {
2113 				capsnap = list_first_entry(&ci->i_cap_snaps,
2114 						     struct ceph_cap_snap,
2115 						     ci_item);
2116 				if (capsnap->writing) {
2117 					capsnap->writing = 0;
2118 					flushsnaps =
2119 						__ceph_finish_cap_snap(ci,
2120 								       capsnap);
2121 					wake = 1;
2122 				}
2123 			}
2124 		}
2125 	spin_unlock(&inode->i_lock);
2126 
2127 	dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2128 	     last ? " last" : "", put ? " put" : "");
2129 
2130 	if (last && !flushsnaps)
2131 		ceph_check_caps(ci, 0, NULL);
2132 	else if (flushsnaps)
2133 		ceph_flush_snaps(ci);
2134 	if (wake)
2135 		wake_up(&ci->i_cap_wq);
2136 	if (put)
2137 		iput(inode);
2138 }
2139 
2140 /*
2141  * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2142  * context.  Adjust per-snap dirty page accounting as appropriate.
2143  * Once all dirty data for a cap_snap is flushed, flush snapped file
2144  * metadata back to the MDS.  If we dropped the last ref, call
2145  * ceph_check_caps.
2146  */
2147 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2148 				struct ceph_snap_context *snapc)
2149 {
2150 	struct inode *inode = &ci->vfs_inode;
2151 	int last = 0;
2152 	int complete_capsnap = 0;
2153 	int drop_capsnap = 0;
2154 	int found = 0;
2155 	struct ceph_cap_snap *capsnap = NULL;
2156 
2157 	spin_lock(&inode->i_lock);
2158 	ci->i_wrbuffer_ref -= nr;
2159 	last = !ci->i_wrbuffer_ref;
2160 
2161 	if (ci->i_head_snapc == snapc) {
2162 		ci->i_wrbuffer_ref_head -= nr;
2163 		if (!ci->i_wrbuffer_ref_head) {
2164 			ceph_put_snap_context(ci->i_head_snapc);
2165 			ci->i_head_snapc = NULL;
2166 		}
2167 		dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2168 		     inode,
2169 		     ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2170 		     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2171 		     last ? " LAST" : "");
2172 	} else {
2173 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2174 			if (capsnap->context == snapc) {
2175 				found = 1;
2176 				break;
2177 			}
2178 		}
2179 		BUG_ON(!found);
2180 		capsnap->dirty_pages -= nr;
2181 		if (capsnap->dirty_pages == 0) {
2182 			complete_capsnap = 1;
2183 			if (capsnap->dirty == 0)
2184 				/* cap writeback completed before we created
2185 				 * the cap_snap; no FLUSHSNAP is needed */
2186 				drop_capsnap = 1;
2187 		}
2188 		dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2189 		     " snap %lld %d/%d -> %d/%d %s%s%s\n",
2190 		     inode, capsnap, capsnap->context->seq,
2191 		     ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2192 		     ci->i_wrbuffer_ref, capsnap->dirty_pages,
2193 		     last ? " (wrbuffer last)" : "",
2194 		     complete_capsnap ? " (complete capsnap)" : "",
2195 		     drop_capsnap ? " (drop capsnap)" : "");
2196 		if (drop_capsnap) {
2197 			ceph_put_snap_context(capsnap->context);
2198 			list_del(&capsnap->ci_item);
2199 			list_del(&capsnap->flushing_item);
2200 			ceph_put_cap_snap(capsnap);
2201 		}
2202 	}
2203 
2204 	spin_unlock(&inode->i_lock);
2205 
2206 	if (last) {
2207 		ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2208 		iput(inode);
2209 	} else if (complete_capsnap) {
2210 		ceph_flush_snaps(ci);
2211 		wake_up(&ci->i_cap_wq);
2212 	}
2213 	if (drop_capsnap)
2214 		iput(inode);
2215 }
2216 
2217 /*
2218  * Handle a cap GRANT message from the MDS.  (Note that a GRANT may
2219  * actually be a revocation if it specifies a smaller cap set.)
2220  *
2221  * caller holds s_mutex and i_lock, we drop both.
2222  *
2223  * return value:
2224  *  0 - ok
2225  *  1 - check_caps on auth cap only (writeback)
2226  *  2 - check_caps (ack revoke)
2227  */
2228 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2229 			     struct ceph_mds_session *session,
2230 			     struct ceph_cap *cap,
2231 			     struct ceph_buffer *xattr_buf)
2232 	__releases(inode->i_lock)
2233 	__releases(session->s_mutex)
2234 {
2235 	struct ceph_inode_info *ci = ceph_inode(inode);
2236 	int mds = session->s_mds;
2237 	int seq = le32_to_cpu(grant->seq);
2238 	int newcaps = le32_to_cpu(grant->caps);
2239 	int issued, implemented, used, wanted, dirty;
2240 	u64 size = le64_to_cpu(grant->size);
2241 	u64 max_size = le64_to_cpu(grant->max_size);
2242 	struct timespec mtime, atime, ctime;
2243 	int check_caps = 0;
2244 	int wake = 0;
2245 	int writeback = 0;
2246 	int revoked_rdcache = 0;
2247 	int queue_invalidate = 0;
2248 
2249 	dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2250 	     inode, cap, mds, seq, ceph_cap_string(newcaps));
2251 	dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2252 		inode->i_size);
2253 
2254 	/*
2255 	 * If CACHE is being revoked, and we have no dirty buffers,
2256 	 * try to invalidate (once).  (If there are dirty buffers, we
2257 	 * will invalidate _after_ writeback.)
2258 	 */
2259 	if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2260 	    !ci->i_wrbuffer_ref) {
2261 		if (try_nonblocking_invalidate(inode) == 0) {
2262 			revoked_rdcache = 1;
2263 		} else {
2264 			/* there were locked pages.. invalidate later
2265 			   in a separate thread. */
2266 			if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2267 				queue_invalidate = 1;
2268 				ci->i_rdcache_revoking = ci->i_rdcache_gen;
2269 			}
2270 		}
2271 	}
2272 
2273 	/* side effects now are allowed */
2274 
2275 	issued = __ceph_caps_issued(ci, &implemented);
2276 	issued |= implemented | __ceph_caps_dirty(ci);
2277 
2278 	cap->cap_gen = session->s_cap_gen;
2279 
2280 	__check_cap_issue(ci, cap, newcaps);
2281 
2282 	if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2283 		inode->i_mode = le32_to_cpu(grant->mode);
2284 		inode->i_uid = le32_to_cpu(grant->uid);
2285 		inode->i_gid = le32_to_cpu(grant->gid);
2286 		dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2287 		     inode->i_uid, inode->i_gid);
2288 	}
2289 
2290 	if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2291 		inode->i_nlink = le32_to_cpu(grant->nlink);
2292 
2293 	if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2294 		int len = le32_to_cpu(grant->xattr_len);
2295 		u64 version = le64_to_cpu(grant->xattr_version);
2296 
2297 		if (version > ci->i_xattrs.version) {
2298 			dout(" got new xattrs v%llu on %p len %d\n",
2299 			     version, inode, len);
2300 			if (ci->i_xattrs.blob)
2301 				ceph_buffer_put(ci->i_xattrs.blob);
2302 			ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2303 			ci->i_xattrs.version = version;
2304 		}
2305 	}
2306 
2307 	/* size/ctime/mtime/atime? */
2308 	ceph_fill_file_size(inode, issued,
2309 			    le32_to_cpu(grant->truncate_seq),
2310 			    le64_to_cpu(grant->truncate_size), size);
2311 	ceph_decode_timespec(&mtime, &grant->mtime);
2312 	ceph_decode_timespec(&atime, &grant->atime);
2313 	ceph_decode_timespec(&ctime, &grant->ctime);
2314 	ceph_fill_file_time(inode, issued,
2315 			    le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2316 			    &atime);
2317 
2318 	/* max size increase? */
2319 	if (max_size != ci->i_max_size) {
2320 		dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2321 		ci->i_max_size = max_size;
2322 		if (max_size >= ci->i_wanted_max_size) {
2323 			ci->i_wanted_max_size = 0;  /* reset */
2324 			ci->i_requested_max_size = 0;
2325 		}
2326 		wake = 1;
2327 	}
2328 
2329 	/* check cap bits */
2330 	wanted = __ceph_caps_wanted(ci);
2331 	used = __ceph_caps_used(ci);
2332 	dirty = __ceph_caps_dirty(ci);
2333 	dout(" my wanted = %s, used = %s, dirty %s\n",
2334 	     ceph_cap_string(wanted),
2335 	     ceph_cap_string(used),
2336 	     ceph_cap_string(dirty));
2337 	if (wanted != le32_to_cpu(grant->wanted)) {
2338 		dout("mds wanted %s -> %s\n",
2339 		     ceph_cap_string(le32_to_cpu(grant->wanted)),
2340 		     ceph_cap_string(wanted));
2341 		grant->wanted = cpu_to_le32(wanted);
2342 	}
2343 
2344 	cap->seq = seq;
2345 
2346 	/* file layout may have changed */
2347 	ci->i_layout = grant->layout;
2348 
2349 	/* revocation, grant, or no-op? */
2350 	if (cap->issued & ~newcaps) {
2351 		dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2352 		     ceph_cap_string(newcaps));
2353 		if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2354 			writeback = 1; /* will delay ack */
2355 		else if (dirty & ~newcaps)
2356 			check_caps = 1;  /* initiate writeback in check_caps */
2357 		else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2358 			   revoked_rdcache)
2359 			check_caps = 2;     /* send revoke ack in check_caps */
2360 		cap->issued = newcaps;
2361 		cap->implemented |= newcaps;
2362 	} else if (cap->issued == newcaps) {
2363 		dout("caps unchanged: %s -> %s\n",
2364 		     ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2365 	} else {
2366 		dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2367 		     ceph_cap_string(newcaps));
2368 		cap->issued = newcaps;
2369 		cap->implemented |= newcaps; /* add bits only, to
2370 					      * avoid stepping on a
2371 					      * pending revocation */
2372 		wake = 1;
2373 	}
2374 	BUG_ON(cap->issued & ~cap->implemented);
2375 
2376 	spin_unlock(&inode->i_lock);
2377 	if (writeback)
2378 		/*
2379 		 * queue inode for writeback: we can't actually call
2380 		 * filemap_write_and_wait, etc. from message handler
2381 		 * context.
2382 		 */
2383 		ceph_queue_writeback(inode);
2384 	if (queue_invalidate)
2385 		ceph_queue_invalidate(inode);
2386 	if (wake)
2387 		wake_up(&ci->i_cap_wq);
2388 
2389 	if (check_caps == 1)
2390 		ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2391 				session);
2392 	else if (check_caps == 2)
2393 		ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2394 	else
2395 		mutex_unlock(&session->s_mutex);
2396 }
2397 
2398 /*
2399  * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2400  * MDS has been safely committed.
2401  */
2402 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2403 				 struct ceph_mds_caps *m,
2404 				 struct ceph_mds_session *session,
2405 				 struct ceph_cap *cap)
2406 	__releases(inode->i_lock)
2407 {
2408 	struct ceph_inode_info *ci = ceph_inode(inode);
2409 	struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2410 	unsigned seq = le32_to_cpu(m->seq);
2411 	int dirty = le32_to_cpu(m->dirty);
2412 	int cleaned = 0;
2413 	int drop = 0;
2414 	int i;
2415 
2416 	for (i = 0; i < CEPH_CAP_BITS; i++)
2417 		if ((dirty & (1 << i)) &&
2418 		    flush_tid == ci->i_cap_flush_tid[i])
2419 			cleaned |= 1 << i;
2420 
2421 	dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2422 	     " flushing %s -> %s\n",
2423 	     inode, session->s_mds, seq, ceph_cap_string(dirty),
2424 	     ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2425 	     ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2426 
2427 	if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2428 		goto out;
2429 
2430 	ci->i_flushing_caps &= ~cleaned;
2431 
2432 	spin_lock(&mdsc->cap_dirty_lock);
2433 	if (ci->i_flushing_caps == 0) {
2434 		list_del_init(&ci->i_flushing_item);
2435 		if (!list_empty(&session->s_cap_flushing))
2436 			dout(" mds%d still flushing cap on %p\n",
2437 			     session->s_mds,
2438 			     &list_entry(session->s_cap_flushing.next,
2439 					 struct ceph_inode_info,
2440 					 i_flushing_item)->vfs_inode);
2441 		mdsc->num_cap_flushing--;
2442 		wake_up(&mdsc->cap_flushing_wq);
2443 		dout(" inode %p now !flushing\n", inode);
2444 
2445 		if (ci->i_dirty_caps == 0) {
2446 			dout(" inode %p now clean\n", inode);
2447 			BUG_ON(!list_empty(&ci->i_dirty_item));
2448 			drop = 1;
2449 		} else {
2450 			BUG_ON(list_empty(&ci->i_dirty_item));
2451 		}
2452 	}
2453 	spin_unlock(&mdsc->cap_dirty_lock);
2454 	wake_up(&ci->i_cap_wq);
2455 
2456 out:
2457 	spin_unlock(&inode->i_lock);
2458 	if (drop)
2459 		iput(inode);
2460 }
2461 
2462 /*
2463  * Handle FLUSHSNAP_ACK.  MDS has flushed snap data to disk and we can
2464  * throw away our cap_snap.
2465  *
2466  * Caller hold s_mutex.
2467  */
2468 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2469 				     struct ceph_mds_caps *m,
2470 				     struct ceph_mds_session *session)
2471 {
2472 	struct ceph_inode_info *ci = ceph_inode(inode);
2473 	u64 follows = le64_to_cpu(m->snap_follows);
2474 	struct ceph_cap_snap *capsnap;
2475 	int drop = 0;
2476 
2477 	dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2478 	     inode, ci, session->s_mds, follows);
2479 
2480 	spin_lock(&inode->i_lock);
2481 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2482 		if (capsnap->follows == follows) {
2483 			if (capsnap->flush_tid != flush_tid) {
2484 				dout(" cap_snap %p follows %lld tid %lld !="
2485 				     " %lld\n", capsnap, follows,
2486 				     flush_tid, capsnap->flush_tid);
2487 				break;
2488 			}
2489 			WARN_ON(capsnap->dirty_pages || capsnap->writing);
2490 			dout(" removing %p cap_snap %p follows %lld\n",
2491 			     inode, capsnap, follows);
2492 			ceph_put_snap_context(capsnap->context);
2493 			list_del(&capsnap->ci_item);
2494 			list_del(&capsnap->flushing_item);
2495 			ceph_put_cap_snap(capsnap);
2496 			drop = 1;
2497 			break;
2498 		} else {
2499 			dout(" skipping cap_snap %p follows %lld\n",
2500 			     capsnap, capsnap->follows);
2501 		}
2502 	}
2503 	spin_unlock(&inode->i_lock);
2504 	if (drop)
2505 		iput(inode);
2506 }
2507 
2508 /*
2509  * Handle TRUNC from MDS, indicating file truncation.
2510  *
2511  * caller hold s_mutex.
2512  */
2513 static void handle_cap_trunc(struct inode *inode,
2514 			     struct ceph_mds_caps *trunc,
2515 			     struct ceph_mds_session *session)
2516 	__releases(inode->i_lock)
2517 {
2518 	struct ceph_inode_info *ci = ceph_inode(inode);
2519 	int mds = session->s_mds;
2520 	int seq = le32_to_cpu(trunc->seq);
2521 	u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2522 	u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2523 	u64 size = le64_to_cpu(trunc->size);
2524 	int implemented = 0;
2525 	int dirty = __ceph_caps_dirty(ci);
2526 	int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2527 	int queue_trunc = 0;
2528 
2529 	issued |= implemented | dirty;
2530 
2531 	dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2532 	     inode, mds, seq, truncate_size, truncate_seq);
2533 	queue_trunc = ceph_fill_file_size(inode, issued,
2534 					  truncate_seq, truncate_size, size);
2535 	spin_unlock(&inode->i_lock);
2536 
2537 	if (queue_trunc)
2538 		ceph_queue_vmtruncate(inode);
2539 }
2540 
2541 /*
2542  * Handle EXPORT from MDS.  Cap is being migrated _from_ this mds to a
2543  * different one.  If we are the most recent migration we've seen (as
2544  * indicated by mseq), make note of the migrating cap bits for the
2545  * duration (until we see the corresponding IMPORT).
2546  *
2547  * caller holds s_mutex
2548  */
2549 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2550 			      struct ceph_mds_session *session)
2551 {
2552 	struct ceph_inode_info *ci = ceph_inode(inode);
2553 	int mds = session->s_mds;
2554 	unsigned mseq = le32_to_cpu(ex->migrate_seq);
2555 	struct ceph_cap *cap = NULL, *t;
2556 	struct rb_node *p;
2557 	int remember = 1;
2558 
2559 	dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2560 	     inode, ci, mds, mseq);
2561 
2562 	spin_lock(&inode->i_lock);
2563 
2564 	/* make sure we haven't seen a higher mseq */
2565 	for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2566 		t = rb_entry(p, struct ceph_cap, ci_node);
2567 		if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2568 			dout(" higher mseq on cap from mds%d\n",
2569 			     t->session->s_mds);
2570 			remember = 0;
2571 		}
2572 		if (t->session->s_mds == mds)
2573 			cap = t;
2574 	}
2575 
2576 	if (cap) {
2577 		if (remember) {
2578 			/* make note */
2579 			ci->i_cap_exporting_mds = mds;
2580 			ci->i_cap_exporting_mseq = mseq;
2581 			ci->i_cap_exporting_issued = cap->issued;
2582 		}
2583 		__ceph_remove_cap(cap);
2584 	}
2585 	/* else, we already released it */
2586 
2587 	spin_unlock(&inode->i_lock);
2588 }
2589 
2590 /*
2591  * Handle cap IMPORT.  If there are temp bits from an older EXPORT,
2592  * clean them up.
2593  *
2594  * caller holds s_mutex.
2595  */
2596 static void handle_cap_import(struct ceph_mds_client *mdsc,
2597 			      struct inode *inode, struct ceph_mds_caps *im,
2598 			      struct ceph_mds_session *session,
2599 			      void *snaptrace, int snaptrace_len)
2600 {
2601 	struct ceph_inode_info *ci = ceph_inode(inode);
2602 	int mds = session->s_mds;
2603 	unsigned issued = le32_to_cpu(im->caps);
2604 	unsigned wanted = le32_to_cpu(im->wanted);
2605 	unsigned seq = le32_to_cpu(im->seq);
2606 	unsigned mseq = le32_to_cpu(im->migrate_seq);
2607 	u64 realmino = le64_to_cpu(im->realm);
2608 	u64 cap_id = le64_to_cpu(im->cap_id);
2609 
2610 	if (ci->i_cap_exporting_mds >= 0 &&
2611 	    ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2612 		dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2613 		     " - cleared exporting from mds%d\n",
2614 		     inode, ci, mds, mseq,
2615 		     ci->i_cap_exporting_mds);
2616 		ci->i_cap_exporting_issued = 0;
2617 		ci->i_cap_exporting_mseq = 0;
2618 		ci->i_cap_exporting_mds = -1;
2619 	} else {
2620 		dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2621 		     inode, ci, mds, mseq);
2622 	}
2623 
2624 	down_write(&mdsc->snap_rwsem);
2625 	ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2626 			       false);
2627 	downgrade_write(&mdsc->snap_rwsem);
2628 	ceph_add_cap(inode, session, cap_id, -1,
2629 		     issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2630 		     NULL /* no caps context */);
2631 	try_flush_caps(inode, session, NULL);
2632 	up_read(&mdsc->snap_rwsem);
2633 }
2634 
2635 /*
2636  * Handle a caps message from the MDS.
2637  *
2638  * Identify the appropriate session, inode, and call the right handler
2639  * based on the cap op.
2640  */
2641 void ceph_handle_caps(struct ceph_mds_session *session,
2642 		      struct ceph_msg *msg)
2643 {
2644 	struct ceph_mds_client *mdsc = session->s_mdsc;
2645 	struct super_block *sb = mdsc->client->sb;
2646 	struct inode *inode;
2647 	struct ceph_cap *cap;
2648 	struct ceph_mds_caps *h;
2649 	int mds = session->s_mds;
2650 	int op;
2651 	u32 seq;
2652 	struct ceph_vino vino;
2653 	u64 cap_id;
2654 	u64 size, max_size;
2655 	u64 tid;
2656 	void *snaptrace;
2657 
2658 	dout("handle_caps from mds%d\n", mds);
2659 
2660 	/* decode */
2661 	tid = le64_to_cpu(msg->hdr.tid);
2662 	if (msg->front.iov_len < sizeof(*h))
2663 		goto bad;
2664 	h = msg->front.iov_base;
2665 	snaptrace = h + 1;
2666 	op = le32_to_cpu(h->op);
2667 	vino.ino = le64_to_cpu(h->ino);
2668 	vino.snap = CEPH_NOSNAP;
2669 	cap_id = le64_to_cpu(h->cap_id);
2670 	seq = le32_to_cpu(h->seq);
2671 	size = le64_to_cpu(h->size);
2672 	max_size = le64_to_cpu(h->max_size);
2673 
2674 	mutex_lock(&session->s_mutex);
2675 	session->s_seq++;
2676 	dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2677 	     (unsigned)seq);
2678 
2679 	/* lookup ino */
2680 	inode = ceph_find_inode(sb, vino);
2681 	dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2682 	     vino.snap, inode);
2683 	if (!inode) {
2684 		dout(" i don't have ino %llx\n", vino.ino);
2685 		goto done;
2686 	}
2687 
2688 	/* these will work even if we don't have a cap yet */
2689 	switch (op) {
2690 	case CEPH_CAP_OP_FLUSHSNAP_ACK:
2691 		handle_cap_flushsnap_ack(inode, tid, h, session);
2692 		goto done;
2693 
2694 	case CEPH_CAP_OP_EXPORT:
2695 		handle_cap_export(inode, h, session);
2696 		goto done;
2697 
2698 	case CEPH_CAP_OP_IMPORT:
2699 		handle_cap_import(mdsc, inode, h, session,
2700 				  snaptrace, le32_to_cpu(h->snap_trace_len));
2701 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY,
2702 				session);
2703 		goto done_unlocked;
2704 	}
2705 
2706 	/* the rest require a cap */
2707 	spin_lock(&inode->i_lock);
2708 	cap = __get_cap_for_mds(ceph_inode(inode), mds);
2709 	if (!cap) {
2710 		dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2711 		     inode, ceph_ino(inode), ceph_snap(inode), mds);
2712 		spin_unlock(&inode->i_lock);
2713 		goto done;
2714 	}
2715 
2716 	/* note that each of these drops i_lock for us */
2717 	switch (op) {
2718 	case CEPH_CAP_OP_REVOKE:
2719 	case CEPH_CAP_OP_GRANT:
2720 		handle_cap_grant(inode, h, session, cap, msg->middle);
2721 		goto done_unlocked;
2722 
2723 	case CEPH_CAP_OP_FLUSH_ACK:
2724 		handle_cap_flush_ack(inode, tid, h, session, cap);
2725 		break;
2726 
2727 	case CEPH_CAP_OP_TRUNC:
2728 		handle_cap_trunc(inode, h, session);
2729 		break;
2730 
2731 	default:
2732 		spin_unlock(&inode->i_lock);
2733 		pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2734 		       ceph_cap_op_name(op));
2735 	}
2736 
2737 done:
2738 	mutex_unlock(&session->s_mutex);
2739 done_unlocked:
2740 	if (inode)
2741 		iput(inode);
2742 	return;
2743 
2744 bad:
2745 	pr_err("ceph_handle_caps: corrupt message\n");
2746 	ceph_msg_dump(msg);
2747 	return;
2748 }
2749 
2750 /*
2751  * Delayed work handler to process end of delayed cap release LRU list.
2752  */
2753 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2754 {
2755 	struct ceph_inode_info *ci;
2756 	int flags = CHECK_CAPS_NODELAY;
2757 
2758 	dout("check_delayed_caps\n");
2759 	while (1) {
2760 		spin_lock(&mdsc->cap_delay_lock);
2761 		if (list_empty(&mdsc->cap_delay_list))
2762 			break;
2763 		ci = list_first_entry(&mdsc->cap_delay_list,
2764 				      struct ceph_inode_info,
2765 				      i_cap_delay_list);
2766 		if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2767 		    time_before(jiffies, ci->i_hold_caps_max))
2768 			break;
2769 		list_del_init(&ci->i_cap_delay_list);
2770 		spin_unlock(&mdsc->cap_delay_lock);
2771 		dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2772 		ceph_check_caps(ci, flags, NULL);
2773 	}
2774 	spin_unlock(&mdsc->cap_delay_lock);
2775 }
2776 
2777 /*
2778  * Flush all dirty caps to the mds
2779  */
2780 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2781 {
2782 	struct ceph_inode_info *ci, *nci = NULL;
2783 	struct inode *inode, *ninode = NULL;
2784 	struct list_head *p, *n;
2785 
2786 	dout("flush_dirty_caps\n");
2787 	spin_lock(&mdsc->cap_dirty_lock);
2788 	list_for_each_safe(p, n, &mdsc->cap_dirty) {
2789 		if (nci) {
2790 			ci = nci;
2791 			inode = ninode;
2792 			ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2793 			dout("flush_dirty_caps inode %p (was next inode)\n",
2794 			     inode);
2795 		} else {
2796 			ci = list_entry(p, struct ceph_inode_info,
2797 					i_dirty_item);
2798 			inode = igrab(&ci->vfs_inode);
2799 			BUG_ON(!inode);
2800 			dout("flush_dirty_caps inode %p\n", inode);
2801 		}
2802 		if (n != &mdsc->cap_dirty) {
2803 			nci = list_entry(n, struct ceph_inode_info,
2804 					 i_dirty_item);
2805 			ninode = igrab(&nci->vfs_inode);
2806 			BUG_ON(!ninode);
2807 			nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2808 			dout("flush_dirty_caps next inode %p, noflush\n",
2809 			     ninode);
2810 		} else {
2811 			nci = NULL;
2812 			ninode = NULL;
2813 		}
2814 		spin_unlock(&mdsc->cap_dirty_lock);
2815 		if (inode) {
2816 			ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2817 					NULL);
2818 			iput(inode);
2819 		}
2820 		spin_lock(&mdsc->cap_dirty_lock);
2821 	}
2822 	spin_unlock(&mdsc->cap_dirty_lock);
2823 }
2824 
2825 /*
2826  * Drop open file reference.  If we were the last open file,
2827  * we may need to release capabilities to the MDS (or schedule
2828  * their delayed release).
2829  */
2830 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2831 {
2832 	struct inode *inode = &ci->vfs_inode;
2833 	int last = 0;
2834 
2835 	spin_lock(&inode->i_lock);
2836 	dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2837 	     ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2838 	BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2839 	if (--ci->i_nr_by_mode[fmode] == 0)
2840 		last++;
2841 	spin_unlock(&inode->i_lock);
2842 
2843 	if (last && ci->i_vino.snap == CEPH_NOSNAP)
2844 		ceph_check_caps(ci, 0, NULL);
2845 }
2846 
2847 /*
2848  * Helpers for embedding cap and dentry lease releases into mds
2849  * requests.
2850  *
2851  * @force is used by dentry_release (below) to force inclusion of a
2852  * record for the directory inode, even when there aren't any caps to
2853  * drop.
2854  */
2855 int ceph_encode_inode_release(void **p, struct inode *inode,
2856 			      int mds, int drop, int unless, int force)
2857 {
2858 	struct ceph_inode_info *ci = ceph_inode(inode);
2859 	struct ceph_cap *cap;
2860 	struct ceph_mds_request_release *rel = *p;
2861 	int ret = 0;
2862 	int used = 0;
2863 
2864 	spin_lock(&inode->i_lock);
2865 	used = __ceph_caps_used(ci);
2866 
2867 	dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode,
2868 	     mds, ceph_cap_string(used), ceph_cap_string(drop),
2869 	     ceph_cap_string(unless));
2870 
2871 	/* only drop unused caps */
2872 	drop &= ~used;
2873 
2874 	cap = __get_cap_for_mds(ci, mds);
2875 	if (cap && __cap_is_valid(cap)) {
2876 		if (force ||
2877 		    ((cap->issued & drop) &&
2878 		     (cap->issued & unless) == 0)) {
2879 			if ((cap->issued & drop) &&
2880 			    (cap->issued & unless) == 0) {
2881 				dout("encode_inode_release %p cap %p %s -> "
2882 				     "%s\n", inode, cap,
2883 				     ceph_cap_string(cap->issued),
2884 				     ceph_cap_string(cap->issued & ~drop));
2885 				cap->issued &= ~drop;
2886 				cap->implemented &= ~drop;
2887 				if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2888 					int wanted = __ceph_caps_wanted(ci);
2889 					dout("  wanted %s -> %s (act %s)\n",
2890 					     ceph_cap_string(cap->mds_wanted),
2891 					     ceph_cap_string(cap->mds_wanted &
2892 							     ~wanted),
2893 					     ceph_cap_string(wanted));
2894 					cap->mds_wanted &= wanted;
2895 				}
2896 			} else {
2897 				dout("encode_inode_release %p cap %p %s"
2898 				     " (force)\n", inode, cap,
2899 				     ceph_cap_string(cap->issued));
2900 			}
2901 
2902 			rel->ino = cpu_to_le64(ceph_ino(inode));
2903 			rel->cap_id = cpu_to_le64(cap->cap_id);
2904 			rel->seq = cpu_to_le32(cap->seq);
2905 			rel->issue_seq = cpu_to_le32(cap->issue_seq),
2906 			rel->mseq = cpu_to_le32(cap->mseq);
2907 			rel->caps = cpu_to_le32(cap->issued);
2908 			rel->wanted = cpu_to_le32(cap->mds_wanted);
2909 			rel->dname_len = 0;
2910 			rel->dname_seq = 0;
2911 			*p += sizeof(*rel);
2912 			ret = 1;
2913 		} else {
2914 			dout("encode_inode_release %p cap %p %s\n",
2915 			     inode, cap, ceph_cap_string(cap->issued));
2916 		}
2917 	}
2918 	spin_unlock(&inode->i_lock);
2919 	return ret;
2920 }
2921 
2922 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2923 			       int mds, int drop, int unless)
2924 {
2925 	struct inode *dir = dentry->d_parent->d_inode;
2926 	struct ceph_mds_request_release *rel = *p;
2927 	struct ceph_dentry_info *di = ceph_dentry(dentry);
2928 	int force = 0;
2929 	int ret;
2930 
2931 	/*
2932 	 * force an record for the directory caps if we have a dentry lease.
2933 	 * this is racy (can't take i_lock and d_lock together), but it
2934 	 * doesn't have to be perfect; the mds will revoke anything we don't
2935 	 * release.
2936 	 */
2937 	spin_lock(&dentry->d_lock);
2938 	if (di->lease_session && di->lease_session->s_mds == mds)
2939 		force = 1;
2940 	spin_unlock(&dentry->d_lock);
2941 
2942 	ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2943 
2944 	spin_lock(&dentry->d_lock);
2945 	if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2946 		dout("encode_dentry_release %p mds%d seq %d\n",
2947 		     dentry, mds, (int)di->lease_seq);
2948 		rel->dname_len = cpu_to_le32(dentry->d_name.len);
2949 		memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2950 		*p += dentry->d_name.len;
2951 		rel->dname_seq = cpu_to_le32(di->lease_seq);
2952 	}
2953 	spin_unlock(&dentry->d_lock);
2954 	return ret;
2955 }
2956