1 #include "ceph_debug.h" 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "decode.h" 13 #include "messenger.h" 14 15 /* 16 * Capability management 17 * 18 * The Ceph metadata servers control client access to inode metadata 19 * and file data by issuing capabilities, granting clients permission 20 * to read and/or write both inode field and file data to OSDs 21 * (storage nodes). Each capability consists of a set of bits 22 * indicating which operations are allowed. 23 * 24 * If the client holds a *_SHARED cap, the client has a coherent value 25 * that can be safely read from the cached inode. 26 * 27 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 28 * client is allowed to change inode attributes (e.g., file size, 29 * mtime), note its dirty state in the ceph_cap, and asynchronously 30 * flush that metadata change to the MDS. 31 * 32 * In the event of a conflicting operation (perhaps by another 33 * client), the MDS will revoke the conflicting client capabilities. 34 * 35 * In order for a client to cache an inode, it must hold a capability 36 * with at least one MDS server. When inodes are released, release 37 * notifications are batched and periodically sent en masse to the MDS 38 * cluster to release server state. 39 */ 40 41 42 /* 43 * Generate readable cap strings for debugging output. 44 */ 45 #define MAX_CAP_STR 20 46 static char cap_str[MAX_CAP_STR][40]; 47 static DEFINE_SPINLOCK(cap_str_lock); 48 static int last_cap_str; 49 50 static char *gcap_string(char *s, int c) 51 { 52 if (c & CEPH_CAP_GSHARED) 53 *s++ = 's'; 54 if (c & CEPH_CAP_GEXCL) 55 *s++ = 'x'; 56 if (c & CEPH_CAP_GCACHE) 57 *s++ = 'c'; 58 if (c & CEPH_CAP_GRD) 59 *s++ = 'r'; 60 if (c & CEPH_CAP_GWR) 61 *s++ = 'w'; 62 if (c & CEPH_CAP_GBUFFER) 63 *s++ = 'b'; 64 if (c & CEPH_CAP_GLAZYIO) 65 *s++ = 'l'; 66 return s; 67 } 68 69 const char *ceph_cap_string(int caps) 70 { 71 int i; 72 char *s; 73 int c; 74 75 spin_lock(&cap_str_lock); 76 i = last_cap_str++; 77 if (last_cap_str == MAX_CAP_STR) 78 last_cap_str = 0; 79 spin_unlock(&cap_str_lock); 80 81 s = cap_str[i]; 82 83 if (caps & CEPH_CAP_PIN) 84 *s++ = 'p'; 85 86 c = (caps >> CEPH_CAP_SAUTH) & 3; 87 if (c) { 88 *s++ = 'A'; 89 s = gcap_string(s, c); 90 } 91 92 c = (caps >> CEPH_CAP_SLINK) & 3; 93 if (c) { 94 *s++ = 'L'; 95 s = gcap_string(s, c); 96 } 97 98 c = (caps >> CEPH_CAP_SXATTR) & 3; 99 if (c) { 100 *s++ = 'X'; 101 s = gcap_string(s, c); 102 } 103 104 c = caps >> CEPH_CAP_SFILE; 105 if (c) { 106 *s++ = 'F'; 107 s = gcap_string(s, c); 108 } 109 110 if (s == cap_str[i]) 111 *s++ = '-'; 112 *s = 0; 113 return cap_str[i]; 114 } 115 116 /* 117 * Cap reservations 118 * 119 * Maintain a global pool of preallocated struct ceph_caps, referenced 120 * by struct ceph_caps_reservations. This ensures that we preallocate 121 * memory needed to successfully process an MDS response. (If an MDS 122 * sends us cap information and we fail to process it, we will have 123 * problems due to the client and MDS being out of sync.) 124 * 125 * Reservations are 'owned' by a ceph_cap_reservation context. 126 */ 127 static spinlock_t caps_list_lock; 128 static struct list_head caps_list; /* unused (reserved or unreserved) */ 129 static int caps_total_count; /* total caps allocated */ 130 static int caps_use_count; /* in use */ 131 static int caps_reserve_count; /* unused, reserved */ 132 static int caps_avail_count; /* unused, unreserved */ 133 static int caps_min_count; /* keep at least this many (unreserved) */ 134 135 void __init ceph_caps_init(void) 136 { 137 INIT_LIST_HEAD(&caps_list); 138 spin_lock_init(&caps_list_lock); 139 } 140 141 void ceph_caps_finalize(void) 142 { 143 struct ceph_cap *cap; 144 145 spin_lock(&caps_list_lock); 146 while (!list_empty(&caps_list)) { 147 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 148 list_del(&cap->caps_item); 149 kmem_cache_free(ceph_cap_cachep, cap); 150 } 151 caps_total_count = 0; 152 caps_avail_count = 0; 153 caps_use_count = 0; 154 caps_reserve_count = 0; 155 caps_min_count = 0; 156 spin_unlock(&caps_list_lock); 157 } 158 159 void ceph_adjust_min_caps(int delta) 160 { 161 spin_lock(&caps_list_lock); 162 caps_min_count += delta; 163 BUG_ON(caps_min_count < 0); 164 spin_unlock(&caps_list_lock); 165 } 166 167 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need) 168 { 169 int i; 170 struct ceph_cap *cap; 171 int have; 172 int alloc = 0; 173 LIST_HEAD(newcaps); 174 int ret = 0; 175 176 dout("reserve caps ctx=%p need=%d\n", ctx, need); 177 178 /* first reserve any caps that are already allocated */ 179 spin_lock(&caps_list_lock); 180 if (caps_avail_count >= need) 181 have = need; 182 else 183 have = caps_avail_count; 184 caps_avail_count -= have; 185 caps_reserve_count += have; 186 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 187 caps_avail_count); 188 spin_unlock(&caps_list_lock); 189 190 for (i = have; i < need; i++) { 191 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 192 if (!cap) { 193 ret = -ENOMEM; 194 goto out_alloc_count; 195 } 196 list_add(&cap->caps_item, &newcaps); 197 alloc++; 198 } 199 BUG_ON(have + alloc != need); 200 201 spin_lock(&caps_list_lock); 202 caps_total_count += alloc; 203 caps_reserve_count += alloc; 204 list_splice(&newcaps, &caps_list); 205 206 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 207 caps_avail_count); 208 spin_unlock(&caps_list_lock); 209 210 ctx->count = need; 211 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 212 ctx, caps_total_count, caps_use_count, caps_reserve_count, 213 caps_avail_count); 214 return 0; 215 216 out_alloc_count: 217 /* we didn't manage to reserve as much as we needed */ 218 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 219 ctx, need, have); 220 return ret; 221 } 222 223 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx) 224 { 225 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 226 if (ctx->count) { 227 spin_lock(&caps_list_lock); 228 BUG_ON(caps_reserve_count < ctx->count); 229 caps_reserve_count -= ctx->count; 230 caps_avail_count += ctx->count; 231 ctx->count = 0; 232 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 233 caps_total_count, caps_use_count, caps_reserve_count, 234 caps_avail_count); 235 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 236 caps_avail_count); 237 spin_unlock(&caps_list_lock); 238 } 239 return 0; 240 } 241 242 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx) 243 { 244 struct ceph_cap *cap = NULL; 245 246 /* temporary, until we do something about cap import/export */ 247 if (!ctx) 248 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 249 250 spin_lock(&caps_list_lock); 251 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 252 ctx, ctx->count, caps_total_count, caps_use_count, 253 caps_reserve_count, caps_avail_count); 254 BUG_ON(!ctx->count); 255 BUG_ON(ctx->count > caps_reserve_count); 256 BUG_ON(list_empty(&caps_list)); 257 258 ctx->count--; 259 caps_reserve_count--; 260 caps_use_count++; 261 262 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item); 263 list_del(&cap->caps_item); 264 265 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 266 caps_avail_count); 267 spin_unlock(&caps_list_lock); 268 return cap; 269 } 270 271 void ceph_put_cap(struct ceph_cap *cap) 272 { 273 spin_lock(&caps_list_lock); 274 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 275 cap, caps_total_count, caps_use_count, 276 caps_reserve_count, caps_avail_count); 277 caps_use_count--; 278 /* 279 * Keep some preallocated caps around (ceph_min_count), to 280 * avoid lots of free/alloc churn. 281 */ 282 if (caps_avail_count >= caps_reserve_count + caps_min_count) { 283 caps_total_count--; 284 kmem_cache_free(ceph_cap_cachep, cap); 285 } else { 286 caps_avail_count++; 287 list_add(&cap->caps_item, &caps_list); 288 } 289 290 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count + 291 caps_avail_count); 292 spin_unlock(&caps_list_lock); 293 } 294 295 void ceph_reservation_status(struct ceph_client *client, 296 int *total, int *avail, int *used, int *reserved, 297 int *min) 298 { 299 if (total) 300 *total = caps_total_count; 301 if (avail) 302 *avail = caps_avail_count; 303 if (used) 304 *used = caps_use_count; 305 if (reserved) 306 *reserved = caps_reserve_count; 307 if (min) 308 *min = caps_min_count; 309 } 310 311 /* 312 * Find ceph_cap for given mds, if any. 313 * 314 * Called with i_lock held. 315 */ 316 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 317 { 318 struct ceph_cap *cap; 319 struct rb_node *n = ci->i_caps.rb_node; 320 321 while (n) { 322 cap = rb_entry(n, struct ceph_cap, ci_node); 323 if (mds < cap->mds) 324 n = n->rb_left; 325 else if (mds > cap->mds) 326 n = n->rb_right; 327 else 328 return cap; 329 } 330 return NULL; 331 } 332 333 /* 334 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else 335 * -1. 336 */ 337 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq) 338 { 339 struct ceph_cap *cap; 340 int mds = -1; 341 struct rb_node *p; 342 343 /* prefer mds with WR|WRBUFFER|EXCL caps */ 344 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 345 cap = rb_entry(p, struct ceph_cap, ci_node); 346 mds = cap->mds; 347 if (mseq) 348 *mseq = cap->mseq; 349 if (cap->issued & (CEPH_CAP_FILE_WR | 350 CEPH_CAP_FILE_BUFFER | 351 CEPH_CAP_FILE_EXCL)) 352 break; 353 } 354 return mds; 355 } 356 357 int ceph_get_cap_mds(struct inode *inode) 358 { 359 int mds; 360 spin_lock(&inode->i_lock); 361 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL); 362 spin_unlock(&inode->i_lock); 363 return mds; 364 } 365 366 /* 367 * Called under i_lock. 368 */ 369 static void __insert_cap_node(struct ceph_inode_info *ci, 370 struct ceph_cap *new) 371 { 372 struct rb_node **p = &ci->i_caps.rb_node; 373 struct rb_node *parent = NULL; 374 struct ceph_cap *cap = NULL; 375 376 while (*p) { 377 parent = *p; 378 cap = rb_entry(parent, struct ceph_cap, ci_node); 379 if (new->mds < cap->mds) 380 p = &(*p)->rb_left; 381 else if (new->mds > cap->mds) 382 p = &(*p)->rb_right; 383 else 384 BUG(); 385 } 386 387 rb_link_node(&new->ci_node, parent, p); 388 rb_insert_color(&new->ci_node, &ci->i_caps); 389 } 390 391 /* 392 * (re)set cap hold timeouts, which control the delayed release 393 * of unused caps back to the MDS. Should be called on cap use. 394 */ 395 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 396 struct ceph_inode_info *ci) 397 { 398 struct ceph_mount_args *ma = mdsc->client->mount_args; 399 400 ci->i_hold_caps_min = round_jiffies(jiffies + 401 ma->caps_wanted_delay_min * HZ); 402 ci->i_hold_caps_max = round_jiffies(jiffies + 403 ma->caps_wanted_delay_max * HZ); 404 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 405 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 406 } 407 408 /* 409 * (Re)queue cap at the end of the delayed cap release list. 410 * 411 * If I_FLUSH is set, leave the inode at the front of the list. 412 * 413 * Caller holds i_lock 414 * -> we take mdsc->cap_delay_lock 415 */ 416 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 417 struct ceph_inode_info *ci) 418 { 419 __cap_set_timeouts(mdsc, ci); 420 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 421 ci->i_ceph_flags, ci->i_hold_caps_max); 422 if (!mdsc->stopping) { 423 spin_lock(&mdsc->cap_delay_lock); 424 if (!list_empty(&ci->i_cap_delay_list)) { 425 if (ci->i_ceph_flags & CEPH_I_FLUSH) 426 goto no_change; 427 list_del_init(&ci->i_cap_delay_list); 428 } 429 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 430 no_change: 431 spin_unlock(&mdsc->cap_delay_lock); 432 } 433 } 434 435 /* 436 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 437 * indicating we should send a cap message to flush dirty metadata 438 * asap, and move to the front of the delayed cap list. 439 */ 440 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 441 struct ceph_inode_info *ci) 442 { 443 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 444 spin_lock(&mdsc->cap_delay_lock); 445 ci->i_ceph_flags |= CEPH_I_FLUSH; 446 if (!list_empty(&ci->i_cap_delay_list)) 447 list_del_init(&ci->i_cap_delay_list); 448 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 449 spin_unlock(&mdsc->cap_delay_lock); 450 } 451 452 /* 453 * Cancel delayed work on cap. 454 * 455 * Caller must hold i_lock. 456 */ 457 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 458 struct ceph_inode_info *ci) 459 { 460 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 461 if (list_empty(&ci->i_cap_delay_list)) 462 return; 463 spin_lock(&mdsc->cap_delay_lock); 464 list_del_init(&ci->i_cap_delay_list); 465 spin_unlock(&mdsc->cap_delay_lock); 466 } 467 468 /* 469 * Common issue checks for add_cap, handle_cap_grant. 470 */ 471 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 472 unsigned issued) 473 { 474 unsigned had = __ceph_caps_issued(ci, NULL); 475 476 /* 477 * Each time we receive FILE_CACHE anew, we increment 478 * i_rdcache_gen. 479 */ 480 if ((issued & CEPH_CAP_FILE_CACHE) && 481 (had & CEPH_CAP_FILE_CACHE) == 0) 482 ci->i_rdcache_gen++; 483 484 /* 485 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 486 * don't know what happened to this directory while we didn't 487 * have the cap. 488 */ 489 if ((issued & CEPH_CAP_FILE_SHARED) && 490 (had & CEPH_CAP_FILE_SHARED) == 0) { 491 ci->i_shared_gen++; 492 if (S_ISDIR(ci->vfs_inode.i_mode)) { 493 dout(" marking %p NOT complete\n", &ci->vfs_inode); 494 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 495 } 496 } 497 } 498 499 /* 500 * Add a capability under the given MDS session. 501 * 502 * Caller should hold session snap_rwsem (read) and s_mutex. 503 * 504 * @fmode is the open file mode, if we are opening a file, otherwise 505 * it is < 0. (This is so we can atomically add the cap and add an 506 * open file reference to it.) 507 */ 508 int ceph_add_cap(struct inode *inode, 509 struct ceph_mds_session *session, u64 cap_id, 510 int fmode, unsigned issued, unsigned wanted, 511 unsigned seq, unsigned mseq, u64 realmino, int flags, 512 struct ceph_cap_reservation *caps_reservation) 513 { 514 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 515 struct ceph_inode_info *ci = ceph_inode(inode); 516 struct ceph_cap *new_cap = NULL; 517 struct ceph_cap *cap; 518 int mds = session->s_mds; 519 int actual_wanted; 520 521 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 522 session->s_mds, cap_id, ceph_cap_string(issued), seq); 523 524 /* 525 * If we are opening the file, include file mode wanted bits 526 * in wanted. 527 */ 528 if (fmode >= 0) 529 wanted |= ceph_caps_for_mode(fmode); 530 531 retry: 532 spin_lock(&inode->i_lock); 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 if (new_cap) { 536 cap = new_cap; 537 new_cap = NULL; 538 } else { 539 spin_unlock(&inode->i_lock); 540 new_cap = get_cap(caps_reservation); 541 if (new_cap == NULL) 542 return -ENOMEM; 543 goto retry; 544 } 545 546 cap->issued = 0; 547 cap->implemented = 0; 548 cap->mds = mds; 549 cap->mds_wanted = 0; 550 551 cap->ci = ci; 552 __insert_cap_node(ci, cap); 553 554 /* clear out old exporting info? (i.e. on cap import) */ 555 if (ci->i_cap_exporting_mds == mds) { 556 ci->i_cap_exporting_issued = 0; 557 ci->i_cap_exporting_mseq = 0; 558 ci->i_cap_exporting_mds = -1; 559 } 560 561 /* add to session cap list */ 562 cap->session = session; 563 spin_lock(&session->s_cap_lock); 564 list_add_tail(&cap->session_caps, &session->s_caps); 565 session->s_nr_caps++; 566 spin_unlock(&session->s_cap_lock); 567 } 568 569 if (!ci->i_snap_realm) { 570 /* 571 * add this inode to the appropriate snap realm 572 */ 573 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 574 realmino); 575 if (realm) { 576 ceph_get_snap_realm(mdsc, realm); 577 spin_lock(&realm->inodes_with_caps_lock); 578 ci->i_snap_realm = realm; 579 list_add(&ci->i_snap_realm_item, 580 &realm->inodes_with_caps); 581 spin_unlock(&realm->inodes_with_caps_lock); 582 } else { 583 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 584 realmino); 585 } 586 } 587 588 __check_cap_issue(ci, cap, issued); 589 590 /* 591 * If we are issued caps we don't want, or the mds' wanted 592 * value appears to be off, queue a check so we'll release 593 * later and/or update the mds wanted value. 594 */ 595 actual_wanted = __ceph_caps_wanted(ci); 596 if ((wanted & ~actual_wanted) || 597 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 598 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 599 ceph_cap_string(issued), ceph_cap_string(wanted), 600 ceph_cap_string(actual_wanted)); 601 __cap_delay_requeue(mdsc, ci); 602 } 603 604 if (flags & CEPH_CAP_FLAG_AUTH) 605 ci->i_auth_cap = cap; 606 else if (ci->i_auth_cap == cap) 607 ci->i_auth_cap = NULL; 608 609 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 610 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 611 ceph_cap_string(issued|cap->issued), seq, mds); 612 cap->cap_id = cap_id; 613 cap->issued = issued; 614 cap->implemented |= issued; 615 cap->mds_wanted |= wanted; 616 cap->seq = seq; 617 cap->issue_seq = seq; 618 cap->mseq = mseq; 619 cap->cap_gen = session->s_cap_gen; 620 621 if (fmode >= 0) 622 __ceph_get_fmode(ci, fmode); 623 spin_unlock(&inode->i_lock); 624 wake_up(&ci->i_cap_wq); 625 return 0; 626 } 627 628 /* 629 * Return true if cap has not timed out and belongs to the current 630 * generation of the MDS session (i.e. has not gone 'stale' due to 631 * us losing touch with the mds). 632 */ 633 static int __cap_is_valid(struct ceph_cap *cap) 634 { 635 unsigned long ttl; 636 u32 gen; 637 638 spin_lock(&cap->session->s_cap_lock); 639 gen = cap->session->s_cap_gen; 640 ttl = cap->session->s_cap_ttl; 641 spin_unlock(&cap->session->s_cap_lock); 642 643 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 644 dout("__cap_is_valid %p cap %p issued %s " 645 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 646 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 647 return 0; 648 } 649 650 return 1; 651 } 652 653 /* 654 * Return set of valid cap bits issued to us. Note that caps time 655 * out, and may be invalidated in bulk if the client session times out 656 * and session->s_cap_gen is bumped. 657 */ 658 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 659 { 660 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 661 struct ceph_cap *cap; 662 struct rb_node *p; 663 664 if (implemented) 665 *implemented = 0; 666 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 667 cap = rb_entry(p, struct ceph_cap, ci_node); 668 if (!__cap_is_valid(cap)) 669 continue; 670 dout("__ceph_caps_issued %p cap %p issued %s\n", 671 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 672 have |= cap->issued; 673 if (implemented) 674 *implemented |= cap->implemented; 675 } 676 return have; 677 } 678 679 /* 680 * Get cap bits issued by caps other than @ocap 681 */ 682 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 683 { 684 int have = ci->i_snap_caps; 685 struct ceph_cap *cap; 686 struct rb_node *p; 687 688 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 689 cap = rb_entry(p, struct ceph_cap, ci_node); 690 if (cap == ocap) 691 continue; 692 if (!__cap_is_valid(cap)) 693 continue; 694 have |= cap->issued; 695 } 696 return have; 697 } 698 699 /* 700 * Move a cap to the end of the LRU (oldest caps at list head, newest 701 * at list tail). 702 */ 703 static void __touch_cap(struct ceph_cap *cap) 704 { 705 struct ceph_mds_session *s = cap->session; 706 707 spin_lock(&s->s_cap_lock); 708 if (s->s_cap_iterator == NULL) { 709 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 710 s->s_mds); 711 list_move_tail(&cap->session_caps, &s->s_caps); 712 } else { 713 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 714 &cap->ci->vfs_inode, cap, s->s_mds); 715 } 716 spin_unlock(&s->s_cap_lock); 717 } 718 719 /* 720 * Check if we hold the given mask. If so, move the cap(s) to the 721 * front of their respective LRUs. (This is the preferred way for 722 * callers to check for caps they want.) 723 */ 724 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 725 { 726 struct ceph_cap *cap; 727 struct rb_node *p; 728 int have = ci->i_snap_caps; 729 730 if ((have & mask) == mask) { 731 dout("__ceph_caps_issued_mask %p snap issued %s" 732 " (mask %s)\n", &ci->vfs_inode, 733 ceph_cap_string(have), 734 ceph_cap_string(mask)); 735 return 1; 736 } 737 738 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 739 cap = rb_entry(p, struct ceph_cap, ci_node); 740 if (!__cap_is_valid(cap)) 741 continue; 742 if ((cap->issued & mask) == mask) { 743 dout("__ceph_caps_issued_mask %p cap %p issued %s" 744 " (mask %s)\n", &ci->vfs_inode, cap, 745 ceph_cap_string(cap->issued), 746 ceph_cap_string(mask)); 747 if (touch) 748 __touch_cap(cap); 749 return 1; 750 } 751 752 /* does a combination of caps satisfy mask? */ 753 have |= cap->issued; 754 if ((have & mask) == mask) { 755 dout("__ceph_caps_issued_mask %p combo issued %s" 756 " (mask %s)\n", &ci->vfs_inode, 757 ceph_cap_string(cap->issued), 758 ceph_cap_string(mask)); 759 if (touch) { 760 struct rb_node *q; 761 762 /* touch this + preceeding caps */ 763 __touch_cap(cap); 764 for (q = rb_first(&ci->i_caps); q != p; 765 q = rb_next(q)) { 766 cap = rb_entry(q, struct ceph_cap, 767 ci_node); 768 if (!__cap_is_valid(cap)) 769 continue; 770 __touch_cap(cap); 771 } 772 } 773 return 1; 774 } 775 } 776 777 return 0; 778 } 779 780 /* 781 * Return true if mask caps are currently being revoked by an MDS. 782 */ 783 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 784 { 785 struct inode *inode = &ci->vfs_inode; 786 struct ceph_cap *cap; 787 struct rb_node *p; 788 int ret = 0; 789 790 spin_lock(&inode->i_lock); 791 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 792 cap = rb_entry(p, struct ceph_cap, ci_node); 793 if (__cap_is_valid(cap) && 794 (cap->implemented & ~cap->issued & mask)) { 795 ret = 1; 796 break; 797 } 798 } 799 spin_unlock(&inode->i_lock); 800 dout("ceph_caps_revoking %p %s = %d\n", inode, 801 ceph_cap_string(mask), ret); 802 return ret; 803 } 804 805 int __ceph_caps_used(struct ceph_inode_info *ci) 806 { 807 int used = 0; 808 if (ci->i_pin_ref) 809 used |= CEPH_CAP_PIN; 810 if (ci->i_rd_ref) 811 used |= CEPH_CAP_FILE_RD; 812 if (ci->i_rdcache_ref || ci->i_rdcache_gen) 813 used |= CEPH_CAP_FILE_CACHE; 814 if (ci->i_wr_ref) 815 used |= CEPH_CAP_FILE_WR; 816 if (ci->i_wrbuffer_ref) 817 used |= CEPH_CAP_FILE_BUFFER; 818 return used; 819 } 820 821 /* 822 * wanted, by virtue of open file modes 823 */ 824 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 825 { 826 int want = 0; 827 int mode; 828 for (mode = 0; mode < 4; mode++) 829 if (ci->i_nr_by_mode[mode]) 830 want |= ceph_caps_for_mode(mode); 831 return want; 832 } 833 834 /* 835 * Return caps we have registered with the MDS(s) as 'wanted'. 836 */ 837 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 838 { 839 struct ceph_cap *cap; 840 struct rb_node *p; 841 int mds_wanted = 0; 842 843 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 844 cap = rb_entry(p, struct ceph_cap, ci_node); 845 if (!__cap_is_valid(cap)) 846 continue; 847 mds_wanted |= cap->mds_wanted; 848 } 849 return mds_wanted; 850 } 851 852 /* 853 * called under i_lock 854 */ 855 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 856 { 857 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 858 } 859 860 /* 861 * caller should hold i_lock. 862 * caller will not hold session s_mutex if called from destroy_inode. 863 */ 864 void __ceph_remove_cap(struct ceph_cap *cap) 865 { 866 struct ceph_mds_session *session = cap->session; 867 struct ceph_inode_info *ci = cap->ci; 868 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 869 870 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 871 872 /* remove from inode list */ 873 rb_erase(&cap->ci_node, &ci->i_caps); 874 cap->ci = NULL; 875 if (ci->i_auth_cap == cap) 876 ci->i_auth_cap = NULL; 877 878 /* remove from session list */ 879 spin_lock(&session->s_cap_lock); 880 if (session->s_cap_iterator == cap) { 881 /* not yet, we are iterating over this very cap */ 882 dout("__ceph_remove_cap delaying %p removal from session %p\n", 883 cap, cap->session); 884 } else { 885 list_del_init(&cap->session_caps); 886 session->s_nr_caps--; 887 cap->session = NULL; 888 } 889 spin_unlock(&session->s_cap_lock); 890 891 if (cap->session == NULL) 892 ceph_put_cap(cap); 893 894 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 895 struct ceph_snap_realm *realm = ci->i_snap_realm; 896 spin_lock(&realm->inodes_with_caps_lock); 897 list_del_init(&ci->i_snap_realm_item); 898 ci->i_snap_realm_counter++; 899 ci->i_snap_realm = NULL; 900 spin_unlock(&realm->inodes_with_caps_lock); 901 ceph_put_snap_realm(mdsc, realm); 902 } 903 if (!__ceph_is_any_real_caps(ci)) 904 __cap_delay_cancel(mdsc, ci); 905 } 906 907 /* 908 * Build and send a cap message to the given MDS. 909 * 910 * Caller should be holding s_mutex. 911 */ 912 static int send_cap_msg(struct ceph_mds_session *session, 913 u64 ino, u64 cid, int op, 914 int caps, int wanted, int dirty, 915 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 916 u64 size, u64 max_size, 917 struct timespec *mtime, struct timespec *atime, 918 u64 time_warp_seq, 919 uid_t uid, gid_t gid, mode_t mode, 920 u64 xattr_version, 921 struct ceph_buffer *xattrs_buf, 922 u64 follows) 923 { 924 struct ceph_mds_caps *fc; 925 struct ceph_msg *msg; 926 927 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 928 " seq %u/%u mseq %u follows %lld size %llu/%llu" 929 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 930 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 931 ceph_cap_string(dirty), 932 seq, issue_seq, mseq, follows, size, max_size, 933 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 934 935 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL); 936 if (IS_ERR(msg)) 937 return PTR_ERR(msg); 938 939 msg->hdr.tid = cpu_to_le64(flush_tid); 940 941 fc = msg->front.iov_base; 942 memset(fc, 0, sizeof(*fc)); 943 944 fc->cap_id = cpu_to_le64(cid); 945 fc->op = cpu_to_le32(op); 946 fc->seq = cpu_to_le32(seq); 947 fc->issue_seq = cpu_to_le32(issue_seq); 948 fc->migrate_seq = cpu_to_le32(mseq); 949 fc->caps = cpu_to_le32(caps); 950 fc->wanted = cpu_to_le32(wanted); 951 fc->dirty = cpu_to_le32(dirty); 952 fc->ino = cpu_to_le64(ino); 953 fc->snap_follows = cpu_to_le64(follows); 954 955 fc->size = cpu_to_le64(size); 956 fc->max_size = cpu_to_le64(max_size); 957 if (mtime) 958 ceph_encode_timespec(&fc->mtime, mtime); 959 if (atime) 960 ceph_encode_timespec(&fc->atime, atime); 961 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 962 963 fc->uid = cpu_to_le32(uid); 964 fc->gid = cpu_to_le32(gid); 965 fc->mode = cpu_to_le32(mode); 966 967 fc->xattr_version = cpu_to_le64(xattr_version); 968 if (xattrs_buf) { 969 msg->middle = ceph_buffer_get(xattrs_buf); 970 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 971 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 972 } 973 974 ceph_con_send(&session->s_con, msg); 975 return 0; 976 } 977 978 /* 979 * Queue cap releases when an inode is dropped from our cache. Since 980 * inode is about to be destroyed, there is no need for i_lock. 981 */ 982 void ceph_queue_caps_release(struct inode *inode) 983 { 984 struct ceph_inode_info *ci = ceph_inode(inode); 985 struct rb_node *p; 986 987 p = rb_first(&ci->i_caps); 988 while (p) { 989 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 990 struct ceph_mds_session *session = cap->session; 991 struct ceph_msg *msg; 992 struct ceph_mds_cap_release *head; 993 struct ceph_mds_cap_item *item; 994 995 spin_lock(&session->s_cap_lock); 996 BUG_ON(!session->s_num_cap_releases); 997 msg = list_first_entry(&session->s_cap_releases, 998 struct ceph_msg, list_head); 999 1000 dout(" adding %p release to mds%d msg %p (%d left)\n", 1001 inode, session->s_mds, msg, session->s_num_cap_releases); 1002 1003 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1004 head = msg->front.iov_base; 1005 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1006 item = msg->front.iov_base + msg->front.iov_len; 1007 item->ino = cpu_to_le64(ceph_ino(inode)); 1008 item->cap_id = cpu_to_le64(cap->cap_id); 1009 item->migrate_seq = cpu_to_le32(cap->mseq); 1010 item->seq = cpu_to_le32(cap->issue_seq); 1011 1012 session->s_num_cap_releases--; 1013 1014 msg->front.iov_len += sizeof(*item); 1015 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1016 dout(" release msg %p full\n", msg); 1017 list_move_tail(&msg->list_head, 1018 &session->s_cap_releases_done); 1019 } else { 1020 dout(" release msg %p at %d/%d (%d)\n", msg, 1021 (int)le32_to_cpu(head->num), 1022 (int)CEPH_CAPS_PER_RELEASE, 1023 (int)msg->front.iov_len); 1024 } 1025 spin_unlock(&session->s_cap_lock); 1026 p = rb_next(p); 1027 __ceph_remove_cap(cap); 1028 } 1029 } 1030 1031 /* 1032 * Send a cap msg on the given inode. Update our caps state, then 1033 * drop i_lock and send the message. 1034 * 1035 * Make note of max_size reported/requested from mds, revoked caps 1036 * that have now been implemented. 1037 * 1038 * Make half-hearted attempt ot to invalidate page cache if we are 1039 * dropping RDCACHE. Note that this will leave behind locked pages 1040 * that we'll then need to deal with elsewhere. 1041 * 1042 * Return non-zero if delayed release, or we experienced an error 1043 * such that the caller should requeue + retry later. 1044 * 1045 * called with i_lock, then drops it. 1046 * caller should hold snap_rwsem (read), s_mutex. 1047 */ 1048 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1049 int op, int used, int want, int retain, int flushing, 1050 unsigned *pflush_tid) 1051 __releases(cap->ci->vfs_inode->i_lock) 1052 { 1053 struct ceph_inode_info *ci = cap->ci; 1054 struct inode *inode = &ci->vfs_inode; 1055 u64 cap_id = cap->cap_id; 1056 int held, revoking, dropping, keep; 1057 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1058 u64 size, max_size; 1059 struct timespec mtime, atime; 1060 int wake = 0; 1061 mode_t mode; 1062 uid_t uid; 1063 gid_t gid; 1064 struct ceph_mds_session *session; 1065 u64 xattr_version = 0; 1066 int delayed = 0; 1067 u64 flush_tid = 0; 1068 int i; 1069 int ret; 1070 1071 held = cap->issued | cap->implemented; 1072 revoking = cap->implemented & ~cap->issued; 1073 retain &= ~revoking; 1074 dropping = cap->issued & ~retain; 1075 1076 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1077 inode, cap, cap->session, 1078 ceph_cap_string(held), ceph_cap_string(held & retain), 1079 ceph_cap_string(revoking)); 1080 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1081 1082 session = cap->session; 1083 1084 /* don't release wanted unless we've waited a bit. */ 1085 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1086 time_before(jiffies, ci->i_hold_caps_min)) { 1087 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1088 ceph_cap_string(cap->issued), 1089 ceph_cap_string(cap->issued & retain), 1090 ceph_cap_string(cap->mds_wanted), 1091 ceph_cap_string(want)); 1092 want |= cap->mds_wanted; 1093 retain |= cap->issued; 1094 delayed = 1; 1095 } 1096 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1097 1098 cap->issued &= retain; /* drop bits we don't want */ 1099 if (cap->implemented & ~cap->issued) { 1100 /* 1101 * Wake up any waiters on wanted -> needed transition. 1102 * This is due to the weird transition from buffered 1103 * to sync IO... we need to flush dirty pages _before_ 1104 * allowing sync writes to avoid reordering. 1105 */ 1106 wake = 1; 1107 } 1108 cap->implemented &= cap->issued | used; 1109 cap->mds_wanted = want; 1110 1111 if (flushing) { 1112 /* 1113 * assign a tid for flush operations so we can avoid 1114 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1115 * clean type races. track latest tid for every bit 1116 * so we can handle flush AxFw, flush Fw, and have the 1117 * first ack clean Ax. 1118 */ 1119 flush_tid = ++ci->i_cap_flush_last_tid; 1120 if (pflush_tid) 1121 *pflush_tid = flush_tid; 1122 dout(" cap_flush_tid %d\n", (int)flush_tid); 1123 for (i = 0; i < CEPH_CAP_BITS; i++) 1124 if (flushing & (1 << i)) 1125 ci->i_cap_flush_tid[i] = flush_tid; 1126 } 1127 1128 keep = cap->implemented; 1129 seq = cap->seq; 1130 issue_seq = cap->issue_seq; 1131 mseq = cap->mseq; 1132 size = inode->i_size; 1133 ci->i_reported_size = size; 1134 max_size = ci->i_wanted_max_size; 1135 ci->i_requested_max_size = max_size; 1136 mtime = inode->i_mtime; 1137 atime = inode->i_atime; 1138 time_warp_seq = ci->i_time_warp_seq; 1139 follows = ci->i_snap_realm->cached_context->seq; 1140 uid = inode->i_uid; 1141 gid = inode->i_gid; 1142 mode = inode->i_mode; 1143 1144 if (dropping & CEPH_CAP_XATTR_EXCL) { 1145 __ceph_build_xattrs_blob(ci); 1146 xattr_version = ci->i_xattrs.version + 1; 1147 } 1148 1149 spin_unlock(&inode->i_lock); 1150 1151 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1152 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1153 size, max_size, &mtime, &atime, time_warp_seq, 1154 uid, gid, mode, 1155 xattr_version, 1156 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL, 1157 follows); 1158 if (ret < 0) { 1159 dout("error sending cap msg, must requeue %p\n", inode); 1160 delayed = 1; 1161 } 1162 1163 if (wake) 1164 wake_up(&ci->i_cap_wq); 1165 1166 return delayed; 1167 } 1168 1169 /* 1170 * When a snapshot is taken, clients accumulate dirty metadata on 1171 * inodes with capabilities in ceph_cap_snaps to describe the file 1172 * state at the time the snapshot was taken. This must be flushed 1173 * asynchronously back to the MDS once sync writes complete and dirty 1174 * data is written out. 1175 * 1176 * Called under i_lock. Takes s_mutex as needed. 1177 */ 1178 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1179 struct ceph_mds_session **psession) 1180 { 1181 struct inode *inode = &ci->vfs_inode; 1182 int mds; 1183 struct ceph_cap_snap *capsnap; 1184 u32 mseq; 1185 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc; 1186 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1187 session->s_mutex */ 1188 u64 next_follows = 0; /* keep track of how far we've gotten through the 1189 i_cap_snaps list, and skip these entries next time 1190 around to avoid an infinite loop */ 1191 1192 if (psession) 1193 session = *psession; 1194 1195 dout("__flush_snaps %p\n", inode); 1196 retry: 1197 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1198 /* avoid an infiniute loop after retry */ 1199 if (capsnap->follows < next_follows) 1200 continue; 1201 /* 1202 * we need to wait for sync writes to complete and for dirty 1203 * pages to be written out. 1204 */ 1205 if (capsnap->dirty_pages || capsnap->writing) 1206 continue; 1207 1208 /* 1209 * if cap writeback already occurred, we should have dropped 1210 * the capsnap in ceph_put_wrbuffer_cap_refs. 1211 */ 1212 BUG_ON(capsnap->dirty == 0); 1213 1214 /* pick mds, take s_mutex */ 1215 mds = __ceph_get_cap_mds(ci, &mseq); 1216 if (session && session->s_mds != mds) { 1217 dout("oops, wrong session %p mutex\n", session); 1218 mutex_unlock(&session->s_mutex); 1219 ceph_put_mds_session(session); 1220 session = NULL; 1221 } 1222 if (!session) { 1223 spin_unlock(&inode->i_lock); 1224 mutex_lock(&mdsc->mutex); 1225 session = __ceph_lookup_mds_session(mdsc, mds); 1226 mutex_unlock(&mdsc->mutex); 1227 if (session) { 1228 dout("inverting session/ino locks on %p\n", 1229 session); 1230 mutex_lock(&session->s_mutex); 1231 } 1232 /* 1233 * if session == NULL, we raced against a cap 1234 * deletion. retry, and we'll get a better 1235 * @mds value next time. 1236 */ 1237 spin_lock(&inode->i_lock); 1238 goto retry; 1239 } 1240 1241 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1242 atomic_inc(&capsnap->nref); 1243 if (!list_empty(&capsnap->flushing_item)) 1244 list_del_init(&capsnap->flushing_item); 1245 list_add_tail(&capsnap->flushing_item, 1246 &session->s_cap_snaps_flushing); 1247 spin_unlock(&inode->i_lock); 1248 1249 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n", 1250 inode, capsnap, next_follows, capsnap->size); 1251 send_cap_msg(session, ceph_vino(inode).ino, 0, 1252 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1253 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1254 capsnap->size, 0, 1255 &capsnap->mtime, &capsnap->atime, 1256 capsnap->time_warp_seq, 1257 capsnap->uid, capsnap->gid, capsnap->mode, 1258 0, NULL, 1259 capsnap->follows); 1260 1261 next_follows = capsnap->follows + 1; 1262 ceph_put_cap_snap(capsnap); 1263 1264 spin_lock(&inode->i_lock); 1265 goto retry; 1266 } 1267 1268 /* we flushed them all; remove this inode from the queue */ 1269 spin_lock(&mdsc->snap_flush_lock); 1270 list_del_init(&ci->i_snap_flush_item); 1271 spin_unlock(&mdsc->snap_flush_lock); 1272 1273 if (psession) 1274 *psession = session; 1275 else if (session) { 1276 mutex_unlock(&session->s_mutex); 1277 ceph_put_mds_session(session); 1278 } 1279 } 1280 1281 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1282 { 1283 struct inode *inode = &ci->vfs_inode; 1284 1285 spin_lock(&inode->i_lock); 1286 __ceph_flush_snaps(ci, NULL); 1287 spin_unlock(&inode->i_lock); 1288 } 1289 1290 /* 1291 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1292 * list. 1293 */ 1294 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1295 { 1296 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc; 1297 struct inode *inode = &ci->vfs_inode; 1298 int was = ci->i_dirty_caps; 1299 int dirty = 0; 1300 1301 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1302 ceph_cap_string(mask), ceph_cap_string(was), 1303 ceph_cap_string(was | mask)); 1304 ci->i_dirty_caps |= mask; 1305 if (was == 0) { 1306 dout(" inode %p now dirty\n", &ci->vfs_inode); 1307 BUG_ON(!list_empty(&ci->i_dirty_item)); 1308 spin_lock(&mdsc->cap_dirty_lock); 1309 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1310 spin_unlock(&mdsc->cap_dirty_lock); 1311 if (ci->i_flushing_caps == 0) { 1312 igrab(inode); 1313 dirty |= I_DIRTY_SYNC; 1314 } 1315 } 1316 BUG_ON(list_empty(&ci->i_dirty_item)); 1317 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1318 (mask & CEPH_CAP_FILE_BUFFER)) 1319 dirty |= I_DIRTY_DATASYNC; 1320 if (dirty) 1321 __mark_inode_dirty(inode, dirty); 1322 __cap_delay_requeue(mdsc, ci); 1323 } 1324 1325 /* 1326 * Add dirty inode to the flushing list. Assigned a seq number so we 1327 * can wait for caps to flush without starving. 1328 * 1329 * Called under i_lock. 1330 */ 1331 static int __mark_caps_flushing(struct inode *inode, 1332 struct ceph_mds_session *session) 1333 { 1334 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1335 struct ceph_inode_info *ci = ceph_inode(inode); 1336 int flushing; 1337 1338 BUG_ON(ci->i_dirty_caps == 0); 1339 BUG_ON(list_empty(&ci->i_dirty_item)); 1340 1341 flushing = ci->i_dirty_caps; 1342 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1343 ceph_cap_string(flushing), 1344 ceph_cap_string(ci->i_flushing_caps), 1345 ceph_cap_string(ci->i_flushing_caps | flushing)); 1346 ci->i_flushing_caps |= flushing; 1347 ci->i_dirty_caps = 0; 1348 dout(" inode %p now !dirty\n", inode); 1349 1350 spin_lock(&mdsc->cap_dirty_lock); 1351 list_del_init(&ci->i_dirty_item); 1352 1353 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1354 if (list_empty(&ci->i_flushing_item)) { 1355 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1356 mdsc->num_cap_flushing++; 1357 dout(" inode %p now flushing seq %lld\n", inode, 1358 ci->i_cap_flush_seq); 1359 } else { 1360 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1361 dout(" inode %p now flushing (more) seq %lld\n", inode, 1362 ci->i_cap_flush_seq); 1363 } 1364 spin_unlock(&mdsc->cap_dirty_lock); 1365 1366 return flushing; 1367 } 1368 1369 /* 1370 * try to invalidate mapping pages without blocking. 1371 */ 1372 static int mapping_is_empty(struct address_space *mapping) 1373 { 1374 struct page *page = find_get_page(mapping, 0); 1375 1376 if (!page) 1377 return 1; 1378 1379 put_page(page); 1380 return 0; 1381 } 1382 1383 static int try_nonblocking_invalidate(struct inode *inode) 1384 { 1385 struct ceph_inode_info *ci = ceph_inode(inode); 1386 u32 invalidating_gen = ci->i_rdcache_gen; 1387 1388 spin_unlock(&inode->i_lock); 1389 invalidate_mapping_pages(&inode->i_data, 0, -1); 1390 spin_lock(&inode->i_lock); 1391 1392 if (mapping_is_empty(&inode->i_data) && 1393 invalidating_gen == ci->i_rdcache_gen) { 1394 /* success. */ 1395 dout("try_nonblocking_invalidate %p success\n", inode); 1396 ci->i_rdcache_gen = 0; 1397 ci->i_rdcache_revoking = 0; 1398 return 0; 1399 } 1400 dout("try_nonblocking_invalidate %p failed\n", inode); 1401 return -1; 1402 } 1403 1404 /* 1405 * Swiss army knife function to examine currently used and wanted 1406 * versus held caps. Release, flush, ack revoked caps to mds as 1407 * appropriate. 1408 * 1409 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1410 * cap release further. 1411 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1412 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1413 * further delay. 1414 */ 1415 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1416 struct ceph_mds_session *session) 1417 __releases(session->s_mutex) 1418 { 1419 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode); 1420 struct ceph_mds_client *mdsc = &client->mdsc; 1421 struct inode *inode = &ci->vfs_inode; 1422 struct ceph_cap *cap; 1423 int file_wanted, used; 1424 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1425 int issued, implemented, want, retain, revoking, flushing = 0; 1426 int mds = -1; /* keep track of how far we've gone through i_caps list 1427 to avoid an infinite loop on retry */ 1428 struct rb_node *p; 1429 int tried_invalidate = 0; 1430 int delayed = 0, sent = 0, force_requeue = 0, num; 1431 int queue_invalidate = 0; 1432 int is_delayed = flags & CHECK_CAPS_NODELAY; 1433 1434 /* if we are unmounting, flush any unused caps immediately. */ 1435 if (mdsc->stopping) 1436 is_delayed = 1; 1437 1438 spin_lock(&inode->i_lock); 1439 1440 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1441 flags |= CHECK_CAPS_FLUSH; 1442 1443 /* flush snaps first time around only */ 1444 if (!list_empty(&ci->i_cap_snaps)) 1445 __ceph_flush_snaps(ci, &session); 1446 goto retry_locked; 1447 retry: 1448 spin_lock(&inode->i_lock); 1449 retry_locked: 1450 file_wanted = __ceph_caps_file_wanted(ci); 1451 used = __ceph_caps_used(ci); 1452 want = file_wanted | used; 1453 issued = __ceph_caps_issued(ci, &implemented); 1454 revoking = implemented & ~issued; 1455 1456 retain = want | CEPH_CAP_PIN; 1457 if (!mdsc->stopping && inode->i_nlink > 0) { 1458 if (want) { 1459 retain |= CEPH_CAP_ANY; /* be greedy */ 1460 } else { 1461 retain |= CEPH_CAP_ANY_SHARED; 1462 /* 1463 * keep RD only if we didn't have the file open RW, 1464 * because then the mds would revoke it anyway to 1465 * journal max_size=0. 1466 */ 1467 if (ci->i_max_size == 0) 1468 retain |= CEPH_CAP_ANY_RD; 1469 } 1470 } 1471 1472 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1473 " issued %s revoking %s retain %s %s%s%s\n", inode, 1474 ceph_cap_string(file_wanted), 1475 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1476 ceph_cap_string(ci->i_flushing_caps), 1477 ceph_cap_string(issued), ceph_cap_string(revoking), 1478 ceph_cap_string(retain), 1479 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1480 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1481 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1482 1483 /* 1484 * If we no longer need to hold onto old our caps, and we may 1485 * have cached pages, but don't want them, then try to invalidate. 1486 * If we fail, it's because pages are locked.... try again later. 1487 */ 1488 if ((!is_delayed || mdsc->stopping) && 1489 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1490 ci->i_rdcache_gen && /* may have cached pages */ 1491 (file_wanted == 0 || /* no open files */ 1492 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */ 1493 !tried_invalidate) { 1494 dout("check_caps trying to invalidate on %p\n", inode); 1495 if (try_nonblocking_invalidate(inode) < 0) { 1496 if (revoking & CEPH_CAP_FILE_CACHE) { 1497 dout("check_caps queuing invalidate\n"); 1498 queue_invalidate = 1; 1499 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1500 } else { 1501 dout("check_caps failed to invalidate pages\n"); 1502 /* we failed to invalidate pages. check these 1503 caps again later. */ 1504 force_requeue = 1; 1505 __cap_set_timeouts(mdsc, ci); 1506 } 1507 } 1508 tried_invalidate = 1; 1509 goto retry_locked; 1510 } 1511 1512 num = 0; 1513 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1514 cap = rb_entry(p, struct ceph_cap, ci_node); 1515 num++; 1516 1517 /* avoid looping forever */ 1518 if (mds >= cap->mds || 1519 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1520 continue; 1521 1522 /* NOTE: no side-effects allowed, until we take s_mutex */ 1523 1524 revoking = cap->implemented & ~cap->issued; 1525 if (revoking) 1526 dout(" mds%d revoking %s\n", cap->mds, 1527 ceph_cap_string(revoking)); 1528 1529 if (cap == ci->i_auth_cap && 1530 (cap->issued & CEPH_CAP_FILE_WR)) { 1531 /* request larger max_size from MDS? */ 1532 if (ci->i_wanted_max_size > ci->i_max_size && 1533 ci->i_wanted_max_size > ci->i_requested_max_size) { 1534 dout("requesting new max_size\n"); 1535 goto ack; 1536 } 1537 1538 /* approaching file_max? */ 1539 if ((inode->i_size << 1) >= ci->i_max_size && 1540 (ci->i_reported_size << 1) < ci->i_max_size) { 1541 dout("i_size approaching max_size\n"); 1542 goto ack; 1543 } 1544 } 1545 /* flush anything dirty? */ 1546 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1547 ci->i_dirty_caps) { 1548 dout("flushing dirty caps\n"); 1549 goto ack; 1550 } 1551 1552 /* completed revocation? going down and there are no caps? */ 1553 if (revoking && (revoking & used) == 0) { 1554 dout("completed revocation of %s\n", 1555 ceph_cap_string(cap->implemented & ~cap->issued)); 1556 goto ack; 1557 } 1558 1559 /* want more caps from mds? */ 1560 if (want & ~(cap->mds_wanted | cap->issued)) 1561 goto ack; 1562 1563 /* things we might delay */ 1564 if ((cap->issued & ~retain) == 0 && 1565 cap->mds_wanted == want) 1566 continue; /* nope, all good */ 1567 1568 if (is_delayed) 1569 goto ack; 1570 1571 /* delay? */ 1572 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1573 time_before(jiffies, ci->i_hold_caps_max)) { 1574 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1575 ceph_cap_string(cap->issued), 1576 ceph_cap_string(cap->issued & retain), 1577 ceph_cap_string(cap->mds_wanted), 1578 ceph_cap_string(want)); 1579 delayed++; 1580 continue; 1581 } 1582 1583 ack: 1584 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1585 dout(" skipping %p I_NOFLUSH set\n", inode); 1586 continue; 1587 } 1588 1589 if (session && session != cap->session) { 1590 dout("oops, wrong session %p mutex\n", session); 1591 mutex_unlock(&session->s_mutex); 1592 session = NULL; 1593 } 1594 if (!session) { 1595 session = cap->session; 1596 if (mutex_trylock(&session->s_mutex) == 0) { 1597 dout("inverting session/ino locks on %p\n", 1598 session); 1599 spin_unlock(&inode->i_lock); 1600 if (took_snap_rwsem) { 1601 up_read(&mdsc->snap_rwsem); 1602 took_snap_rwsem = 0; 1603 } 1604 mutex_lock(&session->s_mutex); 1605 goto retry; 1606 } 1607 } 1608 /* take snap_rwsem after session mutex */ 1609 if (!took_snap_rwsem) { 1610 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1611 dout("inverting snap/in locks on %p\n", 1612 inode); 1613 spin_unlock(&inode->i_lock); 1614 down_read(&mdsc->snap_rwsem); 1615 took_snap_rwsem = 1; 1616 goto retry; 1617 } 1618 took_snap_rwsem = 1; 1619 } 1620 1621 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1622 flushing = __mark_caps_flushing(inode, session); 1623 1624 mds = cap->mds; /* remember mds, so we don't repeat */ 1625 sent++; 1626 1627 /* __send_cap drops i_lock */ 1628 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1629 retain, flushing, NULL); 1630 goto retry; /* retake i_lock and restart our cap scan. */ 1631 } 1632 1633 /* 1634 * Reschedule delayed caps release if we delayed anything, 1635 * otherwise cancel. 1636 */ 1637 if (delayed && is_delayed) 1638 force_requeue = 1; /* __send_cap delayed release; requeue */ 1639 if (!delayed && !is_delayed) 1640 __cap_delay_cancel(mdsc, ci); 1641 else if (!is_delayed || force_requeue) 1642 __cap_delay_requeue(mdsc, ci); 1643 1644 spin_unlock(&inode->i_lock); 1645 1646 if (queue_invalidate) 1647 ceph_queue_invalidate(inode); 1648 1649 if (session) 1650 mutex_unlock(&session->s_mutex); 1651 if (took_snap_rwsem) 1652 up_read(&mdsc->snap_rwsem); 1653 } 1654 1655 /* 1656 * Try to flush dirty caps back to the auth mds. 1657 */ 1658 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1659 unsigned *flush_tid) 1660 { 1661 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1662 struct ceph_inode_info *ci = ceph_inode(inode); 1663 int unlock_session = session ? 0 : 1; 1664 int flushing = 0; 1665 1666 retry: 1667 spin_lock(&inode->i_lock); 1668 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1669 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1670 goto out; 1671 } 1672 if (ci->i_dirty_caps && ci->i_auth_cap) { 1673 struct ceph_cap *cap = ci->i_auth_cap; 1674 int used = __ceph_caps_used(ci); 1675 int want = __ceph_caps_wanted(ci); 1676 int delayed; 1677 1678 if (!session) { 1679 spin_unlock(&inode->i_lock); 1680 session = cap->session; 1681 mutex_lock(&session->s_mutex); 1682 goto retry; 1683 } 1684 BUG_ON(session != cap->session); 1685 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1686 goto out; 1687 1688 flushing = __mark_caps_flushing(inode, session); 1689 1690 /* __send_cap drops i_lock */ 1691 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1692 cap->issued | cap->implemented, flushing, 1693 flush_tid); 1694 if (!delayed) 1695 goto out_unlocked; 1696 1697 spin_lock(&inode->i_lock); 1698 __cap_delay_requeue(mdsc, ci); 1699 } 1700 out: 1701 spin_unlock(&inode->i_lock); 1702 out_unlocked: 1703 if (session && unlock_session) 1704 mutex_unlock(&session->s_mutex); 1705 return flushing; 1706 } 1707 1708 /* 1709 * Return true if we've flushed caps through the given flush_tid. 1710 */ 1711 static int caps_are_flushed(struct inode *inode, unsigned tid) 1712 { 1713 struct ceph_inode_info *ci = ceph_inode(inode); 1714 int dirty, i, ret = 1; 1715 1716 spin_lock(&inode->i_lock); 1717 dirty = __ceph_caps_dirty(ci); 1718 for (i = 0; i < CEPH_CAP_BITS; i++) 1719 if ((ci->i_flushing_caps & (1 << i)) && 1720 ci->i_cap_flush_tid[i] <= tid) { 1721 /* still flushing this bit */ 1722 ret = 0; 1723 break; 1724 } 1725 spin_unlock(&inode->i_lock); 1726 return ret; 1727 } 1728 1729 /* 1730 * Wait on any unsafe replies for the given inode. First wait on the 1731 * newest request, and make that the upper bound. Then, if there are 1732 * more requests, keep waiting on the oldest as long as it is still older 1733 * than the original request. 1734 */ 1735 static void sync_write_wait(struct inode *inode) 1736 { 1737 struct ceph_inode_info *ci = ceph_inode(inode); 1738 struct list_head *head = &ci->i_unsafe_writes; 1739 struct ceph_osd_request *req; 1740 u64 last_tid; 1741 1742 spin_lock(&ci->i_unsafe_lock); 1743 if (list_empty(head)) 1744 goto out; 1745 1746 /* set upper bound as _last_ entry in chain */ 1747 req = list_entry(head->prev, struct ceph_osd_request, 1748 r_unsafe_item); 1749 last_tid = req->r_tid; 1750 1751 do { 1752 ceph_osdc_get_request(req); 1753 spin_unlock(&ci->i_unsafe_lock); 1754 dout("sync_write_wait on tid %llu (until %llu)\n", 1755 req->r_tid, last_tid); 1756 wait_for_completion(&req->r_safe_completion); 1757 spin_lock(&ci->i_unsafe_lock); 1758 ceph_osdc_put_request(req); 1759 1760 /* 1761 * from here on look at first entry in chain, since we 1762 * only want to wait for anything older than last_tid 1763 */ 1764 if (list_empty(head)) 1765 break; 1766 req = list_entry(head->next, struct ceph_osd_request, 1767 r_unsafe_item); 1768 } while (req->r_tid < last_tid); 1769 out: 1770 spin_unlock(&ci->i_unsafe_lock); 1771 } 1772 1773 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync) 1774 { 1775 struct inode *inode = dentry->d_inode; 1776 struct ceph_inode_info *ci = ceph_inode(inode); 1777 unsigned flush_tid; 1778 int ret; 1779 int dirty; 1780 1781 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1782 sync_write_wait(inode); 1783 1784 ret = filemap_write_and_wait(inode->i_mapping); 1785 if (ret < 0) 1786 return ret; 1787 1788 dirty = try_flush_caps(inode, NULL, &flush_tid); 1789 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1790 1791 /* 1792 * only wait on non-file metadata writeback (the mds 1793 * can recover size and mtime, so we don't need to 1794 * wait for that) 1795 */ 1796 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1797 dout("fsync waiting for flush_tid %u\n", flush_tid); 1798 ret = wait_event_interruptible(ci->i_cap_wq, 1799 caps_are_flushed(inode, flush_tid)); 1800 } 1801 1802 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1803 return ret; 1804 } 1805 1806 /* 1807 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1808 * queue inode for flush but don't do so immediately, because we can 1809 * get by with fewer MDS messages if we wait for data writeback to 1810 * complete first. 1811 */ 1812 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1813 { 1814 struct ceph_inode_info *ci = ceph_inode(inode); 1815 unsigned flush_tid; 1816 int err = 0; 1817 int dirty; 1818 int wait = wbc->sync_mode == WB_SYNC_ALL; 1819 1820 dout("write_inode %p wait=%d\n", inode, wait); 1821 if (wait) { 1822 dirty = try_flush_caps(inode, NULL, &flush_tid); 1823 if (dirty) 1824 err = wait_event_interruptible(ci->i_cap_wq, 1825 caps_are_flushed(inode, flush_tid)); 1826 } else { 1827 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 1828 1829 spin_lock(&inode->i_lock); 1830 if (__ceph_caps_dirty(ci)) 1831 __cap_delay_requeue_front(mdsc, ci); 1832 spin_unlock(&inode->i_lock); 1833 } 1834 return err; 1835 } 1836 1837 /* 1838 * After a recovering MDS goes active, we need to resend any caps 1839 * we were flushing. 1840 * 1841 * Caller holds session->s_mutex. 1842 */ 1843 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1844 struct ceph_mds_session *session) 1845 { 1846 struct ceph_cap_snap *capsnap; 1847 1848 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1849 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1850 flushing_item) { 1851 struct ceph_inode_info *ci = capsnap->ci; 1852 struct inode *inode = &ci->vfs_inode; 1853 struct ceph_cap *cap; 1854 1855 spin_lock(&inode->i_lock); 1856 cap = ci->i_auth_cap; 1857 if (cap && cap->session == session) { 1858 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1859 cap, capsnap); 1860 __ceph_flush_snaps(ci, &session); 1861 } else { 1862 pr_err("%p auth cap %p not mds%d ???\n", inode, 1863 cap, session->s_mds); 1864 } 1865 spin_unlock(&inode->i_lock); 1866 } 1867 } 1868 1869 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1870 struct ceph_mds_session *session) 1871 { 1872 struct ceph_inode_info *ci; 1873 1874 kick_flushing_capsnaps(mdsc, session); 1875 1876 dout("kick_flushing_caps mds%d\n", session->s_mds); 1877 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1878 struct inode *inode = &ci->vfs_inode; 1879 struct ceph_cap *cap; 1880 int delayed = 0; 1881 1882 spin_lock(&inode->i_lock); 1883 cap = ci->i_auth_cap; 1884 if (cap && cap->session == session) { 1885 dout("kick_flushing_caps %p cap %p %s\n", inode, 1886 cap, ceph_cap_string(ci->i_flushing_caps)); 1887 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1888 __ceph_caps_used(ci), 1889 __ceph_caps_wanted(ci), 1890 cap->issued | cap->implemented, 1891 ci->i_flushing_caps, NULL); 1892 if (delayed) { 1893 spin_lock(&inode->i_lock); 1894 __cap_delay_requeue(mdsc, ci); 1895 spin_unlock(&inode->i_lock); 1896 } 1897 } else { 1898 pr_err("%p auth cap %p not mds%d ???\n", inode, 1899 cap, session->s_mds); 1900 spin_unlock(&inode->i_lock); 1901 } 1902 } 1903 } 1904 1905 1906 /* 1907 * Take references to capabilities we hold, so that we don't release 1908 * them to the MDS prematurely. 1909 * 1910 * Protected by i_lock. 1911 */ 1912 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1913 { 1914 if (got & CEPH_CAP_PIN) 1915 ci->i_pin_ref++; 1916 if (got & CEPH_CAP_FILE_RD) 1917 ci->i_rd_ref++; 1918 if (got & CEPH_CAP_FILE_CACHE) 1919 ci->i_rdcache_ref++; 1920 if (got & CEPH_CAP_FILE_WR) 1921 ci->i_wr_ref++; 1922 if (got & CEPH_CAP_FILE_BUFFER) { 1923 if (ci->i_wrbuffer_ref == 0) 1924 igrab(&ci->vfs_inode); 1925 ci->i_wrbuffer_ref++; 1926 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1927 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1928 } 1929 } 1930 1931 /* 1932 * Try to grab cap references. Specify those refs we @want, and the 1933 * minimal set we @need. Also include the larger offset we are writing 1934 * to (when applicable), and check against max_size here as well. 1935 * Note that caller is responsible for ensuring max_size increases are 1936 * requested from the MDS. 1937 */ 1938 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1939 int *got, loff_t endoff, int *check_max, int *err) 1940 { 1941 struct inode *inode = &ci->vfs_inode; 1942 int ret = 0; 1943 int have, implemented; 1944 int file_wanted; 1945 1946 dout("get_cap_refs %p need %s want %s\n", inode, 1947 ceph_cap_string(need), ceph_cap_string(want)); 1948 spin_lock(&inode->i_lock); 1949 1950 /* make sure file is actually open */ 1951 file_wanted = __ceph_caps_file_wanted(ci); 1952 if ((file_wanted & need) == 0) { 1953 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1954 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1955 *err = -EBADF; 1956 ret = 1; 1957 goto out; 1958 } 1959 1960 if (need & CEPH_CAP_FILE_WR) { 1961 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 1962 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 1963 inode, endoff, ci->i_max_size); 1964 if (endoff > ci->i_wanted_max_size) { 1965 *check_max = 1; 1966 ret = 1; 1967 } 1968 goto out; 1969 } 1970 /* 1971 * If a sync write is in progress, we must wait, so that we 1972 * can get a final snapshot value for size+mtime. 1973 */ 1974 if (__ceph_have_pending_cap_snap(ci)) { 1975 dout("get_cap_refs %p cap_snap_pending\n", inode); 1976 goto out; 1977 } 1978 } 1979 have = __ceph_caps_issued(ci, &implemented); 1980 1981 /* 1982 * disallow writes while a truncate is pending 1983 */ 1984 if (ci->i_truncate_pending) 1985 have &= ~CEPH_CAP_FILE_WR; 1986 1987 if ((have & need) == need) { 1988 /* 1989 * Look at (implemented & ~have & not) so that we keep waiting 1990 * on transition from wanted -> needed caps. This is needed 1991 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 1992 * going before a prior buffered writeback happens. 1993 */ 1994 int not = want & ~(have & need); 1995 int revoking = implemented & ~have; 1996 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 1997 inode, ceph_cap_string(have), ceph_cap_string(not), 1998 ceph_cap_string(revoking)); 1999 if ((revoking & not) == 0) { 2000 *got = need | (have & want); 2001 __take_cap_refs(ci, *got); 2002 ret = 1; 2003 } 2004 } else { 2005 dout("get_cap_refs %p have %s needed %s\n", inode, 2006 ceph_cap_string(have), ceph_cap_string(need)); 2007 } 2008 out: 2009 spin_unlock(&inode->i_lock); 2010 dout("get_cap_refs %p ret %d got %s\n", inode, 2011 ret, ceph_cap_string(*got)); 2012 return ret; 2013 } 2014 2015 /* 2016 * Check the offset we are writing up to against our current 2017 * max_size. If necessary, tell the MDS we want to write to 2018 * a larger offset. 2019 */ 2020 static void check_max_size(struct inode *inode, loff_t endoff) 2021 { 2022 struct ceph_inode_info *ci = ceph_inode(inode); 2023 int check = 0; 2024 2025 /* do we need to explicitly request a larger max_size? */ 2026 spin_lock(&inode->i_lock); 2027 if ((endoff >= ci->i_max_size || 2028 endoff > (inode->i_size << 1)) && 2029 endoff > ci->i_wanted_max_size) { 2030 dout("write %p at large endoff %llu, req max_size\n", 2031 inode, endoff); 2032 ci->i_wanted_max_size = endoff; 2033 check = 1; 2034 } 2035 spin_unlock(&inode->i_lock); 2036 if (check) 2037 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2038 } 2039 2040 /* 2041 * Wait for caps, and take cap references. If we can't get a WR cap 2042 * due to a small max_size, make sure we check_max_size (and possibly 2043 * ask the mds) so we don't get hung up indefinitely. 2044 */ 2045 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2046 loff_t endoff) 2047 { 2048 int check_max, ret, err; 2049 2050 retry: 2051 if (endoff > 0) 2052 check_max_size(&ci->vfs_inode, endoff); 2053 check_max = 0; 2054 err = 0; 2055 ret = wait_event_interruptible(ci->i_cap_wq, 2056 try_get_cap_refs(ci, need, want, 2057 got, endoff, 2058 &check_max, &err)); 2059 if (err) 2060 ret = err; 2061 if (check_max) 2062 goto retry; 2063 return ret; 2064 } 2065 2066 /* 2067 * Take cap refs. Caller must already know we hold at least one ref 2068 * on the caps in question or we don't know this is safe. 2069 */ 2070 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2071 { 2072 spin_lock(&ci->vfs_inode.i_lock); 2073 __take_cap_refs(ci, caps); 2074 spin_unlock(&ci->vfs_inode.i_lock); 2075 } 2076 2077 /* 2078 * Release cap refs. 2079 * 2080 * If we released the last ref on any given cap, call ceph_check_caps 2081 * to release (or schedule a release). 2082 * 2083 * If we are releasing a WR cap (from a sync write), finalize any affected 2084 * cap_snap, and wake up any waiters. 2085 */ 2086 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2087 { 2088 struct inode *inode = &ci->vfs_inode; 2089 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2090 struct ceph_cap_snap *capsnap; 2091 2092 spin_lock(&inode->i_lock); 2093 if (had & CEPH_CAP_PIN) 2094 --ci->i_pin_ref; 2095 if (had & CEPH_CAP_FILE_RD) 2096 if (--ci->i_rd_ref == 0) 2097 last++; 2098 if (had & CEPH_CAP_FILE_CACHE) 2099 if (--ci->i_rdcache_ref == 0) 2100 last++; 2101 if (had & CEPH_CAP_FILE_BUFFER) { 2102 if (--ci->i_wrbuffer_ref == 0) { 2103 last++; 2104 put++; 2105 } 2106 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2107 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2108 } 2109 if (had & CEPH_CAP_FILE_WR) 2110 if (--ci->i_wr_ref == 0) { 2111 last++; 2112 if (!list_empty(&ci->i_cap_snaps)) { 2113 capsnap = list_first_entry(&ci->i_cap_snaps, 2114 struct ceph_cap_snap, 2115 ci_item); 2116 if (capsnap->writing) { 2117 capsnap->writing = 0; 2118 flushsnaps = 2119 __ceph_finish_cap_snap(ci, 2120 capsnap); 2121 wake = 1; 2122 } 2123 } 2124 } 2125 spin_unlock(&inode->i_lock); 2126 2127 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2128 last ? " last" : "", put ? " put" : ""); 2129 2130 if (last && !flushsnaps) 2131 ceph_check_caps(ci, 0, NULL); 2132 else if (flushsnaps) 2133 ceph_flush_snaps(ci); 2134 if (wake) 2135 wake_up(&ci->i_cap_wq); 2136 if (put) 2137 iput(inode); 2138 } 2139 2140 /* 2141 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2142 * context. Adjust per-snap dirty page accounting as appropriate. 2143 * Once all dirty data for a cap_snap is flushed, flush snapped file 2144 * metadata back to the MDS. If we dropped the last ref, call 2145 * ceph_check_caps. 2146 */ 2147 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2148 struct ceph_snap_context *snapc) 2149 { 2150 struct inode *inode = &ci->vfs_inode; 2151 int last = 0; 2152 int complete_capsnap = 0; 2153 int drop_capsnap = 0; 2154 int found = 0; 2155 struct ceph_cap_snap *capsnap = NULL; 2156 2157 spin_lock(&inode->i_lock); 2158 ci->i_wrbuffer_ref -= nr; 2159 last = !ci->i_wrbuffer_ref; 2160 2161 if (ci->i_head_snapc == snapc) { 2162 ci->i_wrbuffer_ref_head -= nr; 2163 if (!ci->i_wrbuffer_ref_head) { 2164 ceph_put_snap_context(ci->i_head_snapc); 2165 ci->i_head_snapc = NULL; 2166 } 2167 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2168 inode, 2169 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2170 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2171 last ? " LAST" : ""); 2172 } else { 2173 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2174 if (capsnap->context == snapc) { 2175 found = 1; 2176 break; 2177 } 2178 } 2179 BUG_ON(!found); 2180 capsnap->dirty_pages -= nr; 2181 if (capsnap->dirty_pages == 0) { 2182 complete_capsnap = 1; 2183 if (capsnap->dirty == 0) 2184 /* cap writeback completed before we created 2185 * the cap_snap; no FLUSHSNAP is needed */ 2186 drop_capsnap = 1; 2187 } 2188 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2189 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2190 inode, capsnap, capsnap->context->seq, 2191 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2192 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2193 last ? " (wrbuffer last)" : "", 2194 complete_capsnap ? " (complete capsnap)" : "", 2195 drop_capsnap ? " (drop capsnap)" : ""); 2196 if (drop_capsnap) { 2197 ceph_put_snap_context(capsnap->context); 2198 list_del(&capsnap->ci_item); 2199 list_del(&capsnap->flushing_item); 2200 ceph_put_cap_snap(capsnap); 2201 } 2202 } 2203 2204 spin_unlock(&inode->i_lock); 2205 2206 if (last) { 2207 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2208 iput(inode); 2209 } else if (complete_capsnap) { 2210 ceph_flush_snaps(ci); 2211 wake_up(&ci->i_cap_wq); 2212 } 2213 if (drop_capsnap) 2214 iput(inode); 2215 } 2216 2217 /* 2218 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2219 * actually be a revocation if it specifies a smaller cap set.) 2220 * 2221 * caller holds s_mutex and i_lock, we drop both. 2222 * 2223 * return value: 2224 * 0 - ok 2225 * 1 - check_caps on auth cap only (writeback) 2226 * 2 - check_caps (ack revoke) 2227 */ 2228 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2229 struct ceph_mds_session *session, 2230 struct ceph_cap *cap, 2231 struct ceph_buffer *xattr_buf) 2232 __releases(inode->i_lock) 2233 __releases(session->s_mutex) 2234 { 2235 struct ceph_inode_info *ci = ceph_inode(inode); 2236 int mds = session->s_mds; 2237 int seq = le32_to_cpu(grant->seq); 2238 int newcaps = le32_to_cpu(grant->caps); 2239 int issued, implemented, used, wanted, dirty; 2240 u64 size = le64_to_cpu(grant->size); 2241 u64 max_size = le64_to_cpu(grant->max_size); 2242 struct timespec mtime, atime, ctime; 2243 int check_caps = 0; 2244 int wake = 0; 2245 int writeback = 0; 2246 int revoked_rdcache = 0; 2247 int queue_invalidate = 0; 2248 2249 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2250 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2251 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2252 inode->i_size); 2253 2254 /* 2255 * If CACHE is being revoked, and we have no dirty buffers, 2256 * try to invalidate (once). (If there are dirty buffers, we 2257 * will invalidate _after_ writeback.) 2258 */ 2259 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2260 !ci->i_wrbuffer_ref) { 2261 if (try_nonblocking_invalidate(inode) == 0) { 2262 revoked_rdcache = 1; 2263 } else { 2264 /* there were locked pages.. invalidate later 2265 in a separate thread. */ 2266 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2267 queue_invalidate = 1; 2268 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2269 } 2270 } 2271 } 2272 2273 /* side effects now are allowed */ 2274 2275 issued = __ceph_caps_issued(ci, &implemented); 2276 issued |= implemented | __ceph_caps_dirty(ci); 2277 2278 cap->cap_gen = session->s_cap_gen; 2279 2280 __check_cap_issue(ci, cap, newcaps); 2281 2282 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2283 inode->i_mode = le32_to_cpu(grant->mode); 2284 inode->i_uid = le32_to_cpu(grant->uid); 2285 inode->i_gid = le32_to_cpu(grant->gid); 2286 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2287 inode->i_uid, inode->i_gid); 2288 } 2289 2290 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2291 inode->i_nlink = le32_to_cpu(grant->nlink); 2292 2293 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2294 int len = le32_to_cpu(grant->xattr_len); 2295 u64 version = le64_to_cpu(grant->xattr_version); 2296 2297 if (version > ci->i_xattrs.version) { 2298 dout(" got new xattrs v%llu on %p len %d\n", 2299 version, inode, len); 2300 if (ci->i_xattrs.blob) 2301 ceph_buffer_put(ci->i_xattrs.blob); 2302 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2303 ci->i_xattrs.version = version; 2304 } 2305 } 2306 2307 /* size/ctime/mtime/atime? */ 2308 ceph_fill_file_size(inode, issued, 2309 le32_to_cpu(grant->truncate_seq), 2310 le64_to_cpu(grant->truncate_size), size); 2311 ceph_decode_timespec(&mtime, &grant->mtime); 2312 ceph_decode_timespec(&atime, &grant->atime); 2313 ceph_decode_timespec(&ctime, &grant->ctime); 2314 ceph_fill_file_time(inode, issued, 2315 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2316 &atime); 2317 2318 /* max size increase? */ 2319 if (max_size != ci->i_max_size) { 2320 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2321 ci->i_max_size = max_size; 2322 if (max_size >= ci->i_wanted_max_size) { 2323 ci->i_wanted_max_size = 0; /* reset */ 2324 ci->i_requested_max_size = 0; 2325 } 2326 wake = 1; 2327 } 2328 2329 /* check cap bits */ 2330 wanted = __ceph_caps_wanted(ci); 2331 used = __ceph_caps_used(ci); 2332 dirty = __ceph_caps_dirty(ci); 2333 dout(" my wanted = %s, used = %s, dirty %s\n", 2334 ceph_cap_string(wanted), 2335 ceph_cap_string(used), 2336 ceph_cap_string(dirty)); 2337 if (wanted != le32_to_cpu(grant->wanted)) { 2338 dout("mds wanted %s -> %s\n", 2339 ceph_cap_string(le32_to_cpu(grant->wanted)), 2340 ceph_cap_string(wanted)); 2341 grant->wanted = cpu_to_le32(wanted); 2342 } 2343 2344 cap->seq = seq; 2345 2346 /* file layout may have changed */ 2347 ci->i_layout = grant->layout; 2348 2349 /* revocation, grant, or no-op? */ 2350 if (cap->issued & ~newcaps) { 2351 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued), 2352 ceph_cap_string(newcaps)); 2353 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER) 2354 writeback = 1; /* will delay ack */ 2355 else if (dirty & ~newcaps) 2356 check_caps = 1; /* initiate writeback in check_caps */ 2357 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 || 2358 revoked_rdcache) 2359 check_caps = 2; /* send revoke ack in check_caps */ 2360 cap->issued = newcaps; 2361 cap->implemented |= newcaps; 2362 } else if (cap->issued == newcaps) { 2363 dout("caps unchanged: %s -> %s\n", 2364 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2365 } else { 2366 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2367 ceph_cap_string(newcaps)); 2368 cap->issued = newcaps; 2369 cap->implemented |= newcaps; /* add bits only, to 2370 * avoid stepping on a 2371 * pending revocation */ 2372 wake = 1; 2373 } 2374 BUG_ON(cap->issued & ~cap->implemented); 2375 2376 spin_unlock(&inode->i_lock); 2377 if (writeback) 2378 /* 2379 * queue inode for writeback: we can't actually call 2380 * filemap_write_and_wait, etc. from message handler 2381 * context. 2382 */ 2383 ceph_queue_writeback(inode); 2384 if (queue_invalidate) 2385 ceph_queue_invalidate(inode); 2386 if (wake) 2387 wake_up(&ci->i_cap_wq); 2388 2389 if (check_caps == 1) 2390 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2391 session); 2392 else if (check_caps == 2) 2393 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2394 else 2395 mutex_unlock(&session->s_mutex); 2396 } 2397 2398 /* 2399 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2400 * MDS has been safely committed. 2401 */ 2402 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2403 struct ceph_mds_caps *m, 2404 struct ceph_mds_session *session, 2405 struct ceph_cap *cap) 2406 __releases(inode->i_lock) 2407 { 2408 struct ceph_inode_info *ci = ceph_inode(inode); 2409 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc; 2410 unsigned seq = le32_to_cpu(m->seq); 2411 int dirty = le32_to_cpu(m->dirty); 2412 int cleaned = 0; 2413 int drop = 0; 2414 int i; 2415 2416 for (i = 0; i < CEPH_CAP_BITS; i++) 2417 if ((dirty & (1 << i)) && 2418 flush_tid == ci->i_cap_flush_tid[i]) 2419 cleaned |= 1 << i; 2420 2421 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2422 " flushing %s -> %s\n", 2423 inode, session->s_mds, seq, ceph_cap_string(dirty), 2424 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2425 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2426 2427 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2428 goto out; 2429 2430 ci->i_flushing_caps &= ~cleaned; 2431 2432 spin_lock(&mdsc->cap_dirty_lock); 2433 if (ci->i_flushing_caps == 0) { 2434 list_del_init(&ci->i_flushing_item); 2435 if (!list_empty(&session->s_cap_flushing)) 2436 dout(" mds%d still flushing cap on %p\n", 2437 session->s_mds, 2438 &list_entry(session->s_cap_flushing.next, 2439 struct ceph_inode_info, 2440 i_flushing_item)->vfs_inode); 2441 mdsc->num_cap_flushing--; 2442 wake_up(&mdsc->cap_flushing_wq); 2443 dout(" inode %p now !flushing\n", inode); 2444 2445 if (ci->i_dirty_caps == 0) { 2446 dout(" inode %p now clean\n", inode); 2447 BUG_ON(!list_empty(&ci->i_dirty_item)); 2448 drop = 1; 2449 } else { 2450 BUG_ON(list_empty(&ci->i_dirty_item)); 2451 } 2452 } 2453 spin_unlock(&mdsc->cap_dirty_lock); 2454 wake_up(&ci->i_cap_wq); 2455 2456 out: 2457 spin_unlock(&inode->i_lock); 2458 if (drop) 2459 iput(inode); 2460 } 2461 2462 /* 2463 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2464 * throw away our cap_snap. 2465 * 2466 * Caller hold s_mutex. 2467 */ 2468 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2469 struct ceph_mds_caps *m, 2470 struct ceph_mds_session *session) 2471 { 2472 struct ceph_inode_info *ci = ceph_inode(inode); 2473 u64 follows = le64_to_cpu(m->snap_follows); 2474 struct ceph_cap_snap *capsnap; 2475 int drop = 0; 2476 2477 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2478 inode, ci, session->s_mds, follows); 2479 2480 spin_lock(&inode->i_lock); 2481 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2482 if (capsnap->follows == follows) { 2483 if (capsnap->flush_tid != flush_tid) { 2484 dout(" cap_snap %p follows %lld tid %lld !=" 2485 " %lld\n", capsnap, follows, 2486 flush_tid, capsnap->flush_tid); 2487 break; 2488 } 2489 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2490 dout(" removing %p cap_snap %p follows %lld\n", 2491 inode, capsnap, follows); 2492 ceph_put_snap_context(capsnap->context); 2493 list_del(&capsnap->ci_item); 2494 list_del(&capsnap->flushing_item); 2495 ceph_put_cap_snap(capsnap); 2496 drop = 1; 2497 break; 2498 } else { 2499 dout(" skipping cap_snap %p follows %lld\n", 2500 capsnap, capsnap->follows); 2501 } 2502 } 2503 spin_unlock(&inode->i_lock); 2504 if (drop) 2505 iput(inode); 2506 } 2507 2508 /* 2509 * Handle TRUNC from MDS, indicating file truncation. 2510 * 2511 * caller hold s_mutex. 2512 */ 2513 static void handle_cap_trunc(struct inode *inode, 2514 struct ceph_mds_caps *trunc, 2515 struct ceph_mds_session *session) 2516 __releases(inode->i_lock) 2517 { 2518 struct ceph_inode_info *ci = ceph_inode(inode); 2519 int mds = session->s_mds; 2520 int seq = le32_to_cpu(trunc->seq); 2521 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2522 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2523 u64 size = le64_to_cpu(trunc->size); 2524 int implemented = 0; 2525 int dirty = __ceph_caps_dirty(ci); 2526 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2527 int queue_trunc = 0; 2528 2529 issued |= implemented | dirty; 2530 2531 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2532 inode, mds, seq, truncate_size, truncate_seq); 2533 queue_trunc = ceph_fill_file_size(inode, issued, 2534 truncate_seq, truncate_size, size); 2535 spin_unlock(&inode->i_lock); 2536 2537 if (queue_trunc) 2538 ceph_queue_vmtruncate(inode); 2539 } 2540 2541 /* 2542 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2543 * different one. If we are the most recent migration we've seen (as 2544 * indicated by mseq), make note of the migrating cap bits for the 2545 * duration (until we see the corresponding IMPORT). 2546 * 2547 * caller holds s_mutex 2548 */ 2549 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2550 struct ceph_mds_session *session) 2551 { 2552 struct ceph_inode_info *ci = ceph_inode(inode); 2553 int mds = session->s_mds; 2554 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2555 struct ceph_cap *cap = NULL, *t; 2556 struct rb_node *p; 2557 int remember = 1; 2558 2559 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2560 inode, ci, mds, mseq); 2561 2562 spin_lock(&inode->i_lock); 2563 2564 /* make sure we haven't seen a higher mseq */ 2565 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2566 t = rb_entry(p, struct ceph_cap, ci_node); 2567 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2568 dout(" higher mseq on cap from mds%d\n", 2569 t->session->s_mds); 2570 remember = 0; 2571 } 2572 if (t->session->s_mds == mds) 2573 cap = t; 2574 } 2575 2576 if (cap) { 2577 if (remember) { 2578 /* make note */ 2579 ci->i_cap_exporting_mds = mds; 2580 ci->i_cap_exporting_mseq = mseq; 2581 ci->i_cap_exporting_issued = cap->issued; 2582 } 2583 __ceph_remove_cap(cap); 2584 } 2585 /* else, we already released it */ 2586 2587 spin_unlock(&inode->i_lock); 2588 } 2589 2590 /* 2591 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2592 * clean them up. 2593 * 2594 * caller holds s_mutex. 2595 */ 2596 static void handle_cap_import(struct ceph_mds_client *mdsc, 2597 struct inode *inode, struct ceph_mds_caps *im, 2598 struct ceph_mds_session *session, 2599 void *snaptrace, int snaptrace_len) 2600 { 2601 struct ceph_inode_info *ci = ceph_inode(inode); 2602 int mds = session->s_mds; 2603 unsigned issued = le32_to_cpu(im->caps); 2604 unsigned wanted = le32_to_cpu(im->wanted); 2605 unsigned seq = le32_to_cpu(im->seq); 2606 unsigned mseq = le32_to_cpu(im->migrate_seq); 2607 u64 realmino = le64_to_cpu(im->realm); 2608 u64 cap_id = le64_to_cpu(im->cap_id); 2609 2610 if (ci->i_cap_exporting_mds >= 0 && 2611 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2612 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2613 " - cleared exporting from mds%d\n", 2614 inode, ci, mds, mseq, 2615 ci->i_cap_exporting_mds); 2616 ci->i_cap_exporting_issued = 0; 2617 ci->i_cap_exporting_mseq = 0; 2618 ci->i_cap_exporting_mds = -1; 2619 } else { 2620 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2621 inode, ci, mds, mseq); 2622 } 2623 2624 down_write(&mdsc->snap_rwsem); 2625 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2626 false); 2627 downgrade_write(&mdsc->snap_rwsem); 2628 ceph_add_cap(inode, session, cap_id, -1, 2629 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2630 NULL /* no caps context */); 2631 try_flush_caps(inode, session, NULL); 2632 up_read(&mdsc->snap_rwsem); 2633 } 2634 2635 /* 2636 * Handle a caps message from the MDS. 2637 * 2638 * Identify the appropriate session, inode, and call the right handler 2639 * based on the cap op. 2640 */ 2641 void ceph_handle_caps(struct ceph_mds_session *session, 2642 struct ceph_msg *msg) 2643 { 2644 struct ceph_mds_client *mdsc = session->s_mdsc; 2645 struct super_block *sb = mdsc->client->sb; 2646 struct inode *inode; 2647 struct ceph_cap *cap; 2648 struct ceph_mds_caps *h; 2649 int mds = session->s_mds; 2650 int op; 2651 u32 seq; 2652 struct ceph_vino vino; 2653 u64 cap_id; 2654 u64 size, max_size; 2655 u64 tid; 2656 void *snaptrace; 2657 2658 dout("handle_caps from mds%d\n", mds); 2659 2660 /* decode */ 2661 tid = le64_to_cpu(msg->hdr.tid); 2662 if (msg->front.iov_len < sizeof(*h)) 2663 goto bad; 2664 h = msg->front.iov_base; 2665 snaptrace = h + 1; 2666 op = le32_to_cpu(h->op); 2667 vino.ino = le64_to_cpu(h->ino); 2668 vino.snap = CEPH_NOSNAP; 2669 cap_id = le64_to_cpu(h->cap_id); 2670 seq = le32_to_cpu(h->seq); 2671 size = le64_to_cpu(h->size); 2672 max_size = le64_to_cpu(h->max_size); 2673 2674 mutex_lock(&session->s_mutex); 2675 session->s_seq++; 2676 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2677 (unsigned)seq); 2678 2679 /* lookup ino */ 2680 inode = ceph_find_inode(sb, vino); 2681 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2682 vino.snap, inode); 2683 if (!inode) { 2684 dout(" i don't have ino %llx\n", vino.ino); 2685 goto done; 2686 } 2687 2688 /* these will work even if we don't have a cap yet */ 2689 switch (op) { 2690 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2691 handle_cap_flushsnap_ack(inode, tid, h, session); 2692 goto done; 2693 2694 case CEPH_CAP_OP_EXPORT: 2695 handle_cap_export(inode, h, session); 2696 goto done; 2697 2698 case CEPH_CAP_OP_IMPORT: 2699 handle_cap_import(mdsc, inode, h, session, 2700 snaptrace, le32_to_cpu(h->snap_trace_len)); 2701 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2702 session); 2703 goto done_unlocked; 2704 } 2705 2706 /* the rest require a cap */ 2707 spin_lock(&inode->i_lock); 2708 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2709 if (!cap) { 2710 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n", 2711 inode, ceph_ino(inode), ceph_snap(inode), mds); 2712 spin_unlock(&inode->i_lock); 2713 goto done; 2714 } 2715 2716 /* note that each of these drops i_lock for us */ 2717 switch (op) { 2718 case CEPH_CAP_OP_REVOKE: 2719 case CEPH_CAP_OP_GRANT: 2720 handle_cap_grant(inode, h, session, cap, msg->middle); 2721 goto done_unlocked; 2722 2723 case CEPH_CAP_OP_FLUSH_ACK: 2724 handle_cap_flush_ack(inode, tid, h, session, cap); 2725 break; 2726 2727 case CEPH_CAP_OP_TRUNC: 2728 handle_cap_trunc(inode, h, session); 2729 break; 2730 2731 default: 2732 spin_unlock(&inode->i_lock); 2733 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2734 ceph_cap_op_name(op)); 2735 } 2736 2737 done: 2738 mutex_unlock(&session->s_mutex); 2739 done_unlocked: 2740 if (inode) 2741 iput(inode); 2742 return; 2743 2744 bad: 2745 pr_err("ceph_handle_caps: corrupt message\n"); 2746 ceph_msg_dump(msg); 2747 return; 2748 } 2749 2750 /* 2751 * Delayed work handler to process end of delayed cap release LRU list. 2752 */ 2753 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2754 { 2755 struct ceph_inode_info *ci; 2756 int flags = CHECK_CAPS_NODELAY; 2757 2758 dout("check_delayed_caps\n"); 2759 while (1) { 2760 spin_lock(&mdsc->cap_delay_lock); 2761 if (list_empty(&mdsc->cap_delay_list)) 2762 break; 2763 ci = list_first_entry(&mdsc->cap_delay_list, 2764 struct ceph_inode_info, 2765 i_cap_delay_list); 2766 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2767 time_before(jiffies, ci->i_hold_caps_max)) 2768 break; 2769 list_del_init(&ci->i_cap_delay_list); 2770 spin_unlock(&mdsc->cap_delay_lock); 2771 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2772 ceph_check_caps(ci, flags, NULL); 2773 } 2774 spin_unlock(&mdsc->cap_delay_lock); 2775 } 2776 2777 /* 2778 * Flush all dirty caps to the mds 2779 */ 2780 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2781 { 2782 struct ceph_inode_info *ci, *nci = NULL; 2783 struct inode *inode, *ninode = NULL; 2784 struct list_head *p, *n; 2785 2786 dout("flush_dirty_caps\n"); 2787 spin_lock(&mdsc->cap_dirty_lock); 2788 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2789 if (nci) { 2790 ci = nci; 2791 inode = ninode; 2792 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2793 dout("flush_dirty_caps inode %p (was next inode)\n", 2794 inode); 2795 } else { 2796 ci = list_entry(p, struct ceph_inode_info, 2797 i_dirty_item); 2798 inode = igrab(&ci->vfs_inode); 2799 BUG_ON(!inode); 2800 dout("flush_dirty_caps inode %p\n", inode); 2801 } 2802 if (n != &mdsc->cap_dirty) { 2803 nci = list_entry(n, struct ceph_inode_info, 2804 i_dirty_item); 2805 ninode = igrab(&nci->vfs_inode); 2806 BUG_ON(!ninode); 2807 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2808 dout("flush_dirty_caps next inode %p, noflush\n", 2809 ninode); 2810 } else { 2811 nci = NULL; 2812 ninode = NULL; 2813 } 2814 spin_unlock(&mdsc->cap_dirty_lock); 2815 if (inode) { 2816 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2817 NULL); 2818 iput(inode); 2819 } 2820 spin_lock(&mdsc->cap_dirty_lock); 2821 } 2822 spin_unlock(&mdsc->cap_dirty_lock); 2823 } 2824 2825 /* 2826 * Drop open file reference. If we were the last open file, 2827 * we may need to release capabilities to the MDS (or schedule 2828 * their delayed release). 2829 */ 2830 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2831 { 2832 struct inode *inode = &ci->vfs_inode; 2833 int last = 0; 2834 2835 spin_lock(&inode->i_lock); 2836 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2837 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2838 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2839 if (--ci->i_nr_by_mode[fmode] == 0) 2840 last++; 2841 spin_unlock(&inode->i_lock); 2842 2843 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2844 ceph_check_caps(ci, 0, NULL); 2845 } 2846 2847 /* 2848 * Helpers for embedding cap and dentry lease releases into mds 2849 * requests. 2850 * 2851 * @force is used by dentry_release (below) to force inclusion of a 2852 * record for the directory inode, even when there aren't any caps to 2853 * drop. 2854 */ 2855 int ceph_encode_inode_release(void **p, struct inode *inode, 2856 int mds, int drop, int unless, int force) 2857 { 2858 struct ceph_inode_info *ci = ceph_inode(inode); 2859 struct ceph_cap *cap; 2860 struct ceph_mds_request_release *rel = *p; 2861 int ret = 0; 2862 int used = 0; 2863 2864 spin_lock(&inode->i_lock); 2865 used = __ceph_caps_used(ci); 2866 2867 dout("encode_inode_release %p mds%d used %s drop %s unless %s\n", inode, 2868 mds, ceph_cap_string(used), ceph_cap_string(drop), 2869 ceph_cap_string(unless)); 2870 2871 /* only drop unused caps */ 2872 drop &= ~used; 2873 2874 cap = __get_cap_for_mds(ci, mds); 2875 if (cap && __cap_is_valid(cap)) { 2876 if (force || 2877 ((cap->issued & drop) && 2878 (cap->issued & unless) == 0)) { 2879 if ((cap->issued & drop) && 2880 (cap->issued & unless) == 0) { 2881 dout("encode_inode_release %p cap %p %s -> " 2882 "%s\n", inode, cap, 2883 ceph_cap_string(cap->issued), 2884 ceph_cap_string(cap->issued & ~drop)); 2885 cap->issued &= ~drop; 2886 cap->implemented &= ~drop; 2887 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2888 int wanted = __ceph_caps_wanted(ci); 2889 dout(" wanted %s -> %s (act %s)\n", 2890 ceph_cap_string(cap->mds_wanted), 2891 ceph_cap_string(cap->mds_wanted & 2892 ~wanted), 2893 ceph_cap_string(wanted)); 2894 cap->mds_wanted &= wanted; 2895 } 2896 } else { 2897 dout("encode_inode_release %p cap %p %s" 2898 " (force)\n", inode, cap, 2899 ceph_cap_string(cap->issued)); 2900 } 2901 2902 rel->ino = cpu_to_le64(ceph_ino(inode)); 2903 rel->cap_id = cpu_to_le64(cap->cap_id); 2904 rel->seq = cpu_to_le32(cap->seq); 2905 rel->issue_seq = cpu_to_le32(cap->issue_seq), 2906 rel->mseq = cpu_to_le32(cap->mseq); 2907 rel->caps = cpu_to_le32(cap->issued); 2908 rel->wanted = cpu_to_le32(cap->mds_wanted); 2909 rel->dname_len = 0; 2910 rel->dname_seq = 0; 2911 *p += sizeof(*rel); 2912 ret = 1; 2913 } else { 2914 dout("encode_inode_release %p cap %p %s\n", 2915 inode, cap, ceph_cap_string(cap->issued)); 2916 } 2917 } 2918 spin_unlock(&inode->i_lock); 2919 return ret; 2920 } 2921 2922 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 2923 int mds, int drop, int unless) 2924 { 2925 struct inode *dir = dentry->d_parent->d_inode; 2926 struct ceph_mds_request_release *rel = *p; 2927 struct ceph_dentry_info *di = ceph_dentry(dentry); 2928 int force = 0; 2929 int ret; 2930 2931 /* 2932 * force an record for the directory caps if we have a dentry lease. 2933 * this is racy (can't take i_lock and d_lock together), but it 2934 * doesn't have to be perfect; the mds will revoke anything we don't 2935 * release. 2936 */ 2937 spin_lock(&dentry->d_lock); 2938 if (di->lease_session && di->lease_session->s_mds == mds) 2939 force = 1; 2940 spin_unlock(&dentry->d_lock); 2941 2942 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 2943 2944 spin_lock(&dentry->d_lock); 2945 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 2946 dout("encode_dentry_release %p mds%d seq %d\n", 2947 dentry, mds, (int)di->lease_seq); 2948 rel->dname_len = cpu_to_le32(dentry->d_name.len); 2949 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 2950 *p += dentry->d_name.len; 2951 rel->dname_seq = cpu_to_le32(di->lease_seq); 2952 } 2953 spin_unlock(&dentry->d_lock); 2954 return ret; 2955 } 2956