1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 void ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap **new_cap) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *cap; 520 int mds = session->s_mds; 521 int actual_wanted; 522 523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 524 session->s_mds, cap_id, ceph_cap_string(issued), seq); 525 526 /* 527 * If we are opening the file, include file mode wanted bits 528 * in wanted. 529 */ 530 if (fmode >= 0) 531 wanted |= ceph_caps_for_mode(fmode); 532 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 cap = *new_cap; 536 *new_cap = NULL; 537 538 cap->issued = 0; 539 cap->implemented = 0; 540 cap->mds = mds; 541 cap->mds_wanted = 0; 542 cap->mseq = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* add to session cap list */ 548 cap->session = session; 549 spin_lock(&session->s_cap_lock); 550 list_add_tail(&cap->session_caps, &session->s_caps); 551 session->s_nr_caps++; 552 spin_unlock(&session->s_cap_lock); 553 } else { 554 /* 555 * auth mds of the inode changed. we received the cap export 556 * message, but still haven't received the cap import message. 557 * handle_cap_export() updated the new auth MDS' cap. 558 * 559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 560 * a message that was send before the cap import message. So 561 * don't remove caps. 562 */ 563 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 564 WARN_ON(cap != ci->i_auth_cap); 565 WARN_ON(cap->cap_id != cap_id); 566 seq = cap->seq; 567 mseq = cap->mseq; 568 issued |= cap->issued; 569 flags |= CEPH_CAP_FLAG_AUTH; 570 } 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 spin_lock(&realm->inodes_with_caps_lock); 581 ci->i_snap_realm = realm; 582 list_add(&ci->i_snap_realm_item, 583 &realm->inodes_with_caps); 584 spin_unlock(&realm->inodes_with_caps_lock); 585 } else { 586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 587 realmino); 588 WARN_ON(!realm); 589 } 590 } 591 592 __check_cap_issue(ci, cap, issued); 593 594 /* 595 * If we are issued caps we don't want, or the mds' wanted 596 * value appears to be off, queue a check so we'll release 597 * later and/or update the mds wanted value. 598 */ 599 actual_wanted = __ceph_caps_wanted(ci); 600 if ((wanted & ~actual_wanted) || 601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 602 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 603 ceph_cap_string(issued), ceph_cap_string(wanted), 604 ceph_cap_string(actual_wanted)); 605 __cap_delay_requeue(mdsc, ci); 606 } 607 608 if (flags & CEPH_CAP_FLAG_AUTH) { 609 if (ci->i_auth_cap == NULL || 610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 611 ci->i_auth_cap = cap; 612 cap->mds_wanted = wanted; 613 } 614 } else { 615 WARN_ON(ci->i_auth_cap == cap); 616 } 617 618 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 619 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 620 ceph_cap_string(issued|cap->issued), seq, mds); 621 cap->cap_id = cap_id; 622 cap->issued = issued; 623 cap->implemented |= issued; 624 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 625 cap->mds_wanted = wanted; 626 else 627 cap->mds_wanted |= wanted; 628 cap->seq = seq; 629 cap->issue_seq = seq; 630 cap->mseq = mseq; 631 cap->cap_gen = session->s_cap_gen; 632 633 if (fmode >= 0) 634 __ceph_get_fmode(ci, fmode); 635 } 636 637 /* 638 * Return true if cap has not timed out and belongs to the current 639 * generation of the MDS session (i.e. has not gone 'stale' due to 640 * us losing touch with the mds). 641 */ 642 static int __cap_is_valid(struct ceph_cap *cap) 643 { 644 unsigned long ttl; 645 u32 gen; 646 647 spin_lock(&cap->session->s_gen_ttl_lock); 648 gen = cap->session->s_cap_gen; 649 ttl = cap->session->s_cap_ttl; 650 spin_unlock(&cap->session->s_gen_ttl_lock); 651 652 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 653 dout("__cap_is_valid %p cap %p issued %s " 654 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 655 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 656 return 0; 657 } 658 659 return 1; 660 } 661 662 /* 663 * Return set of valid cap bits issued to us. Note that caps time 664 * out, and may be invalidated in bulk if the client session times out 665 * and session->s_cap_gen is bumped. 666 */ 667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 668 { 669 int have = ci->i_snap_caps; 670 struct ceph_cap *cap; 671 struct rb_node *p; 672 673 if (implemented) 674 *implemented = 0; 675 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 676 cap = rb_entry(p, struct ceph_cap, ci_node); 677 if (!__cap_is_valid(cap)) 678 continue; 679 dout("__ceph_caps_issued %p cap %p issued %s\n", 680 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 681 have |= cap->issued; 682 if (implemented) 683 *implemented |= cap->implemented; 684 } 685 /* 686 * exclude caps issued by non-auth MDS, but are been revoking 687 * by the auth MDS. The non-auth MDS should be revoking/exporting 688 * these caps, but the message is delayed. 689 */ 690 if (ci->i_auth_cap) { 691 cap = ci->i_auth_cap; 692 have &= ~cap->implemented | cap->issued; 693 } 694 return have; 695 } 696 697 /* 698 * Get cap bits issued by caps other than @ocap 699 */ 700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 701 { 702 int have = ci->i_snap_caps; 703 struct ceph_cap *cap; 704 struct rb_node *p; 705 706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 707 cap = rb_entry(p, struct ceph_cap, ci_node); 708 if (cap == ocap) 709 continue; 710 if (!__cap_is_valid(cap)) 711 continue; 712 have |= cap->issued; 713 } 714 return have; 715 } 716 717 /* 718 * Move a cap to the end of the LRU (oldest caps at list head, newest 719 * at list tail). 720 */ 721 static void __touch_cap(struct ceph_cap *cap) 722 { 723 struct ceph_mds_session *s = cap->session; 724 725 spin_lock(&s->s_cap_lock); 726 if (s->s_cap_iterator == NULL) { 727 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 728 s->s_mds); 729 list_move_tail(&cap->session_caps, &s->s_caps); 730 } else { 731 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 732 &cap->ci->vfs_inode, cap, s->s_mds); 733 } 734 spin_unlock(&s->s_cap_lock); 735 } 736 737 /* 738 * Check if we hold the given mask. If so, move the cap(s) to the 739 * front of their respective LRUs. (This is the preferred way for 740 * callers to check for caps they want.) 741 */ 742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 743 { 744 struct ceph_cap *cap; 745 struct rb_node *p; 746 int have = ci->i_snap_caps; 747 748 if ((have & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p snap issued %s" 750 " (mask %s)\n", &ci->vfs_inode, 751 ceph_cap_string(have), 752 ceph_cap_string(mask)); 753 return 1; 754 } 755 756 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 757 cap = rb_entry(p, struct ceph_cap, ci_node); 758 if (!__cap_is_valid(cap)) 759 continue; 760 if ((cap->issued & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p cap %p issued %s" 762 " (mask %s)\n", &ci->vfs_inode, cap, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) 766 __touch_cap(cap); 767 return 1; 768 } 769 770 /* does a combination of caps satisfy mask? */ 771 have |= cap->issued; 772 if ((have & mask) == mask) { 773 dout("__ceph_caps_issued_mask %p combo issued %s" 774 " (mask %s)\n", &ci->vfs_inode, 775 ceph_cap_string(cap->issued), 776 ceph_cap_string(mask)); 777 if (touch) { 778 struct rb_node *q; 779 780 /* touch this + preceding caps */ 781 __touch_cap(cap); 782 for (q = rb_first(&ci->i_caps); q != p; 783 q = rb_next(q)) { 784 cap = rb_entry(q, struct ceph_cap, 785 ci_node); 786 if (!__cap_is_valid(cap)) 787 continue; 788 __touch_cap(cap); 789 } 790 } 791 return 1; 792 } 793 } 794 795 return 0; 796 } 797 798 /* 799 * Return true if mask caps are currently being revoked by an MDS. 800 */ 801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 802 struct ceph_cap *ocap, int mask) 803 { 804 struct ceph_cap *cap; 805 struct rb_node *p; 806 807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 808 cap = rb_entry(p, struct ceph_cap, ci_node); 809 if (cap != ocap && 810 (cap->implemented & ~cap->issued & mask)) 811 return 1; 812 } 813 return 0; 814 } 815 816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 817 { 818 struct inode *inode = &ci->vfs_inode; 819 int ret; 820 821 spin_lock(&ci->i_ceph_lock); 822 ret = __ceph_caps_revoking_other(ci, NULL, mask); 823 spin_unlock(&ci->i_ceph_lock); 824 dout("ceph_caps_revoking %p %s = %d\n", inode, 825 ceph_cap_string(mask), ret); 826 return ret; 827 } 828 829 int __ceph_caps_used(struct ceph_inode_info *ci) 830 { 831 int used = 0; 832 if (ci->i_pin_ref) 833 used |= CEPH_CAP_PIN; 834 if (ci->i_rd_ref) 835 used |= CEPH_CAP_FILE_RD; 836 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 837 used |= CEPH_CAP_FILE_CACHE; 838 if (ci->i_wr_ref) 839 used |= CEPH_CAP_FILE_WR; 840 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 841 used |= CEPH_CAP_FILE_BUFFER; 842 return used; 843 } 844 845 /* 846 * wanted, by virtue of open file modes 847 */ 848 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 849 { 850 int want = 0; 851 int mode; 852 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 853 if (ci->i_nr_by_mode[mode]) 854 want |= ceph_caps_for_mode(mode); 855 return want; 856 } 857 858 /* 859 * Return caps we have registered with the MDS(s) as 'wanted'. 860 */ 861 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 862 { 863 struct ceph_cap *cap; 864 struct rb_node *p; 865 int mds_wanted = 0; 866 867 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 868 cap = rb_entry(p, struct ceph_cap, ci_node); 869 if (!__cap_is_valid(cap)) 870 continue; 871 if (cap == ci->i_auth_cap) 872 mds_wanted |= cap->mds_wanted; 873 else 874 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 875 } 876 return mds_wanted; 877 } 878 879 /* 880 * called under i_ceph_lock 881 */ 882 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 883 { 884 return !RB_EMPTY_ROOT(&ci->i_caps); 885 } 886 887 int ceph_is_any_caps(struct inode *inode) 888 { 889 struct ceph_inode_info *ci = ceph_inode(inode); 890 int ret; 891 892 spin_lock(&ci->i_ceph_lock); 893 ret = __ceph_is_any_caps(ci); 894 spin_unlock(&ci->i_ceph_lock); 895 896 return ret; 897 } 898 899 /* 900 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 901 * 902 * caller should hold i_ceph_lock. 903 * caller will not hold session s_mutex if called from destroy_inode. 904 */ 905 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 906 { 907 struct ceph_mds_session *session = cap->session; 908 struct ceph_inode_info *ci = cap->ci; 909 struct ceph_mds_client *mdsc = 910 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 911 int removed = 0; 912 913 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 914 915 /* remove from session list */ 916 spin_lock(&session->s_cap_lock); 917 /* 918 * s_cap_reconnect is protected by s_cap_lock. no one changes 919 * s_cap_gen while session is in the reconnect state. 920 */ 921 if (queue_release && 922 (!session->s_cap_reconnect || 923 cap->cap_gen == session->s_cap_gen)) 924 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id, 925 cap->mseq, cap->issue_seq); 926 927 if (session->s_cap_iterator == cap) { 928 /* not yet, we are iterating over this very cap */ 929 dout("__ceph_remove_cap delaying %p removal from session %p\n", 930 cap, cap->session); 931 } else { 932 list_del_init(&cap->session_caps); 933 session->s_nr_caps--; 934 cap->session = NULL; 935 removed = 1; 936 } 937 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 938 cap->ci = NULL; 939 spin_unlock(&session->s_cap_lock); 940 941 /* remove from inode list */ 942 rb_erase(&cap->ci_node, &ci->i_caps); 943 if (ci->i_auth_cap == cap) 944 ci->i_auth_cap = NULL; 945 946 if (removed) 947 ceph_put_cap(mdsc, cap); 948 949 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 950 struct ceph_snap_realm *realm = ci->i_snap_realm; 951 spin_lock(&realm->inodes_with_caps_lock); 952 list_del_init(&ci->i_snap_realm_item); 953 ci->i_snap_realm_counter++; 954 ci->i_snap_realm = NULL; 955 spin_unlock(&realm->inodes_with_caps_lock); 956 ceph_put_snap_realm(mdsc, realm); 957 } 958 if (!__ceph_is_any_real_caps(ci)) 959 __cap_delay_cancel(mdsc, ci); 960 } 961 962 /* 963 * Build and send a cap message to the given MDS. 964 * 965 * Caller should be holding s_mutex. 966 */ 967 static int send_cap_msg(struct ceph_mds_session *session, 968 u64 ino, u64 cid, int op, 969 int caps, int wanted, int dirty, 970 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 971 u64 size, u64 max_size, 972 struct timespec *mtime, struct timespec *atime, 973 u64 time_warp_seq, 974 kuid_t uid, kgid_t gid, umode_t mode, 975 u64 xattr_version, 976 struct ceph_buffer *xattrs_buf, 977 u64 follows, bool inline_data) 978 { 979 struct ceph_mds_caps *fc; 980 struct ceph_msg *msg; 981 void *p; 982 size_t extra_len; 983 984 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 985 " seq %u/%u mseq %u follows %lld size %llu/%llu" 986 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 987 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 988 ceph_cap_string(dirty), 989 seq, issue_seq, mseq, follows, size, max_size, 990 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 991 992 /* flock buffer size + inline version + inline data size */ 993 extra_len = 4 + 8 + 4; 994 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len, 995 GFP_NOFS, false); 996 if (!msg) 997 return -ENOMEM; 998 999 msg->hdr.tid = cpu_to_le64(flush_tid); 1000 1001 fc = msg->front.iov_base; 1002 memset(fc, 0, sizeof(*fc)); 1003 1004 fc->cap_id = cpu_to_le64(cid); 1005 fc->op = cpu_to_le32(op); 1006 fc->seq = cpu_to_le32(seq); 1007 fc->issue_seq = cpu_to_le32(issue_seq); 1008 fc->migrate_seq = cpu_to_le32(mseq); 1009 fc->caps = cpu_to_le32(caps); 1010 fc->wanted = cpu_to_le32(wanted); 1011 fc->dirty = cpu_to_le32(dirty); 1012 fc->ino = cpu_to_le64(ino); 1013 fc->snap_follows = cpu_to_le64(follows); 1014 1015 fc->size = cpu_to_le64(size); 1016 fc->max_size = cpu_to_le64(max_size); 1017 if (mtime) 1018 ceph_encode_timespec(&fc->mtime, mtime); 1019 if (atime) 1020 ceph_encode_timespec(&fc->atime, atime); 1021 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1022 1023 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1024 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1025 fc->mode = cpu_to_le32(mode); 1026 1027 p = fc + 1; 1028 /* flock buffer size */ 1029 ceph_encode_32(&p, 0); 1030 /* inline version */ 1031 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE); 1032 /* inline data size */ 1033 ceph_encode_32(&p, 0); 1034 1035 fc->xattr_version = cpu_to_le64(xattr_version); 1036 if (xattrs_buf) { 1037 msg->middle = ceph_buffer_get(xattrs_buf); 1038 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1039 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1040 } 1041 1042 ceph_con_send(&session->s_con, msg); 1043 return 0; 1044 } 1045 1046 void __queue_cap_release(struct ceph_mds_session *session, 1047 u64 ino, u64 cap_id, u32 migrate_seq, 1048 u32 issue_seq) 1049 { 1050 struct ceph_msg *msg; 1051 struct ceph_mds_cap_release *head; 1052 struct ceph_mds_cap_item *item; 1053 1054 BUG_ON(!session->s_num_cap_releases); 1055 msg = list_first_entry(&session->s_cap_releases, 1056 struct ceph_msg, list_head); 1057 1058 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1059 ino, session->s_mds, msg, session->s_num_cap_releases); 1060 1061 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1062 head = msg->front.iov_base; 1063 le32_add_cpu(&head->num, 1); 1064 item = msg->front.iov_base + msg->front.iov_len; 1065 item->ino = cpu_to_le64(ino); 1066 item->cap_id = cpu_to_le64(cap_id); 1067 item->migrate_seq = cpu_to_le32(migrate_seq); 1068 item->seq = cpu_to_le32(issue_seq); 1069 1070 session->s_num_cap_releases--; 1071 1072 msg->front.iov_len += sizeof(*item); 1073 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1074 dout(" release msg %p full\n", msg); 1075 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1076 } else { 1077 dout(" release msg %p at %d/%d (%d)\n", msg, 1078 (int)le32_to_cpu(head->num), 1079 (int)CEPH_CAPS_PER_RELEASE, 1080 (int)msg->front.iov_len); 1081 } 1082 } 1083 1084 /* 1085 * Queue cap releases when an inode is dropped from our cache. Since 1086 * inode is about to be destroyed, there is no need for i_ceph_lock. 1087 */ 1088 void ceph_queue_caps_release(struct inode *inode) 1089 { 1090 struct ceph_inode_info *ci = ceph_inode(inode); 1091 struct rb_node *p; 1092 1093 p = rb_first(&ci->i_caps); 1094 while (p) { 1095 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1096 p = rb_next(p); 1097 __ceph_remove_cap(cap, true); 1098 } 1099 } 1100 1101 /* 1102 * Send a cap msg on the given inode. Update our caps state, then 1103 * drop i_ceph_lock and send the message. 1104 * 1105 * Make note of max_size reported/requested from mds, revoked caps 1106 * that have now been implemented. 1107 * 1108 * Make half-hearted attempt ot to invalidate page cache if we are 1109 * dropping RDCACHE. Note that this will leave behind locked pages 1110 * that we'll then need to deal with elsewhere. 1111 * 1112 * Return non-zero if delayed release, or we experienced an error 1113 * such that the caller should requeue + retry later. 1114 * 1115 * called with i_ceph_lock, then drops it. 1116 * caller should hold snap_rwsem (read), s_mutex. 1117 */ 1118 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1119 int op, int used, int want, int retain, int flushing, 1120 unsigned *pflush_tid) 1121 __releases(cap->ci->i_ceph_lock) 1122 { 1123 struct ceph_inode_info *ci = cap->ci; 1124 struct inode *inode = &ci->vfs_inode; 1125 u64 cap_id = cap->cap_id; 1126 int held, revoking, dropping, keep; 1127 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1128 u64 size, max_size; 1129 struct timespec mtime, atime; 1130 int wake = 0; 1131 umode_t mode; 1132 kuid_t uid; 1133 kgid_t gid; 1134 struct ceph_mds_session *session; 1135 u64 xattr_version = 0; 1136 struct ceph_buffer *xattr_blob = NULL; 1137 int delayed = 0; 1138 u64 flush_tid = 0; 1139 int i; 1140 int ret; 1141 bool inline_data; 1142 1143 held = cap->issued | cap->implemented; 1144 revoking = cap->implemented & ~cap->issued; 1145 retain &= ~revoking; 1146 dropping = cap->issued & ~retain; 1147 1148 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1149 inode, cap, cap->session, 1150 ceph_cap_string(held), ceph_cap_string(held & retain), 1151 ceph_cap_string(revoking)); 1152 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1153 1154 session = cap->session; 1155 1156 /* don't release wanted unless we've waited a bit. */ 1157 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1158 time_before(jiffies, ci->i_hold_caps_min)) { 1159 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1160 ceph_cap_string(cap->issued), 1161 ceph_cap_string(cap->issued & retain), 1162 ceph_cap_string(cap->mds_wanted), 1163 ceph_cap_string(want)); 1164 want |= cap->mds_wanted; 1165 retain |= cap->issued; 1166 delayed = 1; 1167 } 1168 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1169 1170 cap->issued &= retain; /* drop bits we don't want */ 1171 if (cap->implemented & ~cap->issued) { 1172 /* 1173 * Wake up any waiters on wanted -> needed transition. 1174 * This is due to the weird transition from buffered 1175 * to sync IO... we need to flush dirty pages _before_ 1176 * allowing sync writes to avoid reordering. 1177 */ 1178 wake = 1; 1179 } 1180 cap->implemented &= cap->issued | used; 1181 cap->mds_wanted = want; 1182 1183 if (flushing) { 1184 /* 1185 * assign a tid for flush operations so we can avoid 1186 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1187 * clean type races. track latest tid for every bit 1188 * so we can handle flush AxFw, flush Fw, and have the 1189 * first ack clean Ax. 1190 */ 1191 flush_tid = ++ci->i_cap_flush_last_tid; 1192 if (pflush_tid) 1193 *pflush_tid = flush_tid; 1194 dout(" cap_flush_tid %d\n", (int)flush_tid); 1195 for (i = 0; i < CEPH_CAP_BITS; i++) 1196 if (flushing & (1 << i)) 1197 ci->i_cap_flush_tid[i] = flush_tid; 1198 1199 follows = ci->i_head_snapc->seq; 1200 } else { 1201 follows = 0; 1202 } 1203 1204 keep = cap->implemented; 1205 seq = cap->seq; 1206 issue_seq = cap->issue_seq; 1207 mseq = cap->mseq; 1208 size = inode->i_size; 1209 ci->i_reported_size = size; 1210 max_size = ci->i_wanted_max_size; 1211 ci->i_requested_max_size = max_size; 1212 mtime = inode->i_mtime; 1213 atime = inode->i_atime; 1214 time_warp_seq = ci->i_time_warp_seq; 1215 uid = inode->i_uid; 1216 gid = inode->i_gid; 1217 mode = inode->i_mode; 1218 1219 if (flushing & CEPH_CAP_XATTR_EXCL) { 1220 __ceph_build_xattrs_blob(ci); 1221 xattr_blob = ci->i_xattrs.blob; 1222 xattr_version = ci->i_xattrs.version; 1223 } 1224 1225 inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 1226 1227 spin_unlock(&ci->i_ceph_lock); 1228 1229 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1230 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1231 size, max_size, &mtime, &atime, time_warp_seq, 1232 uid, gid, mode, xattr_version, xattr_blob, 1233 follows, inline_data); 1234 if (ret < 0) { 1235 dout("error sending cap msg, must requeue %p\n", inode); 1236 delayed = 1; 1237 } 1238 1239 if (wake) 1240 wake_up_all(&ci->i_cap_wq); 1241 1242 return delayed; 1243 } 1244 1245 /* 1246 * When a snapshot is taken, clients accumulate dirty metadata on 1247 * inodes with capabilities in ceph_cap_snaps to describe the file 1248 * state at the time the snapshot was taken. This must be flushed 1249 * asynchronously back to the MDS once sync writes complete and dirty 1250 * data is written out. 1251 * 1252 * Unless @again is true, skip cap_snaps that were already sent to 1253 * the MDS (i.e., during this session). 1254 * 1255 * Called under i_ceph_lock. Takes s_mutex as needed. 1256 */ 1257 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1258 struct ceph_mds_session **psession, 1259 int again) 1260 __releases(ci->i_ceph_lock) 1261 __acquires(ci->i_ceph_lock) 1262 { 1263 struct inode *inode = &ci->vfs_inode; 1264 int mds; 1265 struct ceph_cap_snap *capsnap; 1266 u32 mseq; 1267 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1268 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1269 session->s_mutex */ 1270 u64 next_follows = 0; /* keep track of how far we've gotten through the 1271 i_cap_snaps list, and skip these entries next time 1272 around to avoid an infinite loop */ 1273 1274 if (psession) 1275 session = *psession; 1276 1277 dout("__flush_snaps %p\n", inode); 1278 retry: 1279 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1280 /* avoid an infiniute loop after retry */ 1281 if (capsnap->follows < next_follows) 1282 continue; 1283 /* 1284 * we need to wait for sync writes to complete and for dirty 1285 * pages to be written out. 1286 */ 1287 if (capsnap->dirty_pages || capsnap->writing) 1288 break; 1289 1290 /* 1291 * if cap writeback already occurred, we should have dropped 1292 * the capsnap in ceph_put_wrbuffer_cap_refs. 1293 */ 1294 BUG_ON(capsnap->dirty == 0); 1295 1296 /* pick mds, take s_mutex */ 1297 if (ci->i_auth_cap == NULL) { 1298 dout("no auth cap (migrating?), doing nothing\n"); 1299 goto out; 1300 } 1301 1302 /* only flush each capsnap once */ 1303 if (!again && !list_empty(&capsnap->flushing_item)) { 1304 dout("already flushed %p, skipping\n", capsnap); 1305 continue; 1306 } 1307 1308 mds = ci->i_auth_cap->session->s_mds; 1309 mseq = ci->i_auth_cap->mseq; 1310 1311 if (session && session->s_mds != mds) { 1312 dout("oops, wrong session %p mutex\n", session); 1313 mutex_unlock(&session->s_mutex); 1314 ceph_put_mds_session(session); 1315 session = NULL; 1316 } 1317 if (!session) { 1318 spin_unlock(&ci->i_ceph_lock); 1319 mutex_lock(&mdsc->mutex); 1320 session = __ceph_lookup_mds_session(mdsc, mds); 1321 mutex_unlock(&mdsc->mutex); 1322 if (session) { 1323 dout("inverting session/ino locks on %p\n", 1324 session); 1325 mutex_lock(&session->s_mutex); 1326 } 1327 /* 1328 * if session == NULL, we raced against a cap 1329 * deletion or migration. retry, and we'll 1330 * get a better @mds value next time. 1331 */ 1332 spin_lock(&ci->i_ceph_lock); 1333 goto retry; 1334 } 1335 1336 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1337 atomic_inc(&capsnap->nref); 1338 if (!list_empty(&capsnap->flushing_item)) 1339 list_del_init(&capsnap->flushing_item); 1340 list_add_tail(&capsnap->flushing_item, 1341 &session->s_cap_snaps_flushing); 1342 spin_unlock(&ci->i_ceph_lock); 1343 1344 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1345 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1346 send_cap_msg(session, ceph_vino(inode).ino, 0, 1347 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1348 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1349 capsnap->size, 0, 1350 &capsnap->mtime, &capsnap->atime, 1351 capsnap->time_warp_seq, 1352 capsnap->uid, capsnap->gid, capsnap->mode, 1353 capsnap->xattr_version, capsnap->xattr_blob, 1354 capsnap->follows, capsnap->inline_data); 1355 1356 next_follows = capsnap->follows + 1; 1357 ceph_put_cap_snap(capsnap); 1358 1359 spin_lock(&ci->i_ceph_lock); 1360 goto retry; 1361 } 1362 1363 /* we flushed them all; remove this inode from the queue */ 1364 spin_lock(&mdsc->snap_flush_lock); 1365 list_del_init(&ci->i_snap_flush_item); 1366 spin_unlock(&mdsc->snap_flush_lock); 1367 1368 out: 1369 if (psession) 1370 *psession = session; 1371 else if (session) { 1372 mutex_unlock(&session->s_mutex); 1373 ceph_put_mds_session(session); 1374 } 1375 } 1376 1377 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1378 { 1379 spin_lock(&ci->i_ceph_lock); 1380 __ceph_flush_snaps(ci, NULL, 0); 1381 spin_unlock(&ci->i_ceph_lock); 1382 } 1383 1384 /* 1385 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1386 * Caller is then responsible for calling __mark_inode_dirty with the 1387 * returned flags value. 1388 */ 1389 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1390 { 1391 struct ceph_mds_client *mdsc = 1392 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1393 struct inode *inode = &ci->vfs_inode; 1394 int was = ci->i_dirty_caps; 1395 int dirty = 0; 1396 1397 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1398 ceph_cap_string(mask), ceph_cap_string(was), 1399 ceph_cap_string(was | mask)); 1400 ci->i_dirty_caps |= mask; 1401 if (was == 0) { 1402 if (!ci->i_head_snapc) 1403 ci->i_head_snapc = ceph_get_snap_context( 1404 ci->i_snap_realm->cached_context); 1405 dout(" inode %p now dirty snapc %p auth cap %p\n", 1406 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1407 WARN_ON(!ci->i_auth_cap); 1408 BUG_ON(!list_empty(&ci->i_dirty_item)); 1409 spin_lock(&mdsc->cap_dirty_lock); 1410 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1411 spin_unlock(&mdsc->cap_dirty_lock); 1412 if (ci->i_flushing_caps == 0) { 1413 ihold(inode); 1414 dirty |= I_DIRTY_SYNC; 1415 } 1416 } 1417 BUG_ON(list_empty(&ci->i_dirty_item)); 1418 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1419 (mask & CEPH_CAP_FILE_BUFFER)) 1420 dirty |= I_DIRTY_DATASYNC; 1421 __cap_delay_requeue(mdsc, ci); 1422 return dirty; 1423 } 1424 1425 /* 1426 * Add dirty inode to the flushing list. Assigned a seq number so we 1427 * can wait for caps to flush without starving. 1428 * 1429 * Called under i_ceph_lock. 1430 */ 1431 static int __mark_caps_flushing(struct inode *inode, 1432 struct ceph_mds_session *session) 1433 { 1434 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1435 struct ceph_inode_info *ci = ceph_inode(inode); 1436 int flushing; 1437 1438 BUG_ON(ci->i_dirty_caps == 0); 1439 BUG_ON(list_empty(&ci->i_dirty_item)); 1440 1441 flushing = ci->i_dirty_caps; 1442 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1443 ceph_cap_string(flushing), 1444 ceph_cap_string(ci->i_flushing_caps), 1445 ceph_cap_string(ci->i_flushing_caps | flushing)); 1446 ci->i_flushing_caps |= flushing; 1447 ci->i_dirty_caps = 0; 1448 dout(" inode %p now !dirty\n", inode); 1449 1450 spin_lock(&mdsc->cap_dirty_lock); 1451 list_del_init(&ci->i_dirty_item); 1452 1453 if (list_empty(&ci->i_flushing_item)) { 1454 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1455 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1456 mdsc->num_cap_flushing++; 1457 dout(" inode %p now flushing seq %lld\n", inode, 1458 ci->i_cap_flush_seq); 1459 } else { 1460 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1461 dout(" inode %p now flushing (more) seq %lld\n", inode, 1462 ci->i_cap_flush_seq); 1463 } 1464 spin_unlock(&mdsc->cap_dirty_lock); 1465 1466 return flushing; 1467 } 1468 1469 /* 1470 * try to invalidate mapping pages without blocking. 1471 */ 1472 static int try_nonblocking_invalidate(struct inode *inode) 1473 { 1474 struct ceph_inode_info *ci = ceph_inode(inode); 1475 u32 invalidating_gen = ci->i_rdcache_gen; 1476 1477 spin_unlock(&ci->i_ceph_lock); 1478 invalidate_mapping_pages(&inode->i_data, 0, -1); 1479 spin_lock(&ci->i_ceph_lock); 1480 1481 if (inode->i_data.nrpages == 0 && 1482 invalidating_gen == ci->i_rdcache_gen) { 1483 /* success. */ 1484 dout("try_nonblocking_invalidate %p success\n", inode); 1485 /* save any racing async invalidate some trouble */ 1486 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1487 return 0; 1488 } 1489 dout("try_nonblocking_invalidate %p failed\n", inode); 1490 return -1; 1491 } 1492 1493 /* 1494 * Swiss army knife function to examine currently used and wanted 1495 * versus held caps. Release, flush, ack revoked caps to mds as 1496 * appropriate. 1497 * 1498 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1499 * cap release further. 1500 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1501 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1502 * further delay. 1503 */ 1504 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1505 struct ceph_mds_session *session) 1506 { 1507 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1508 struct ceph_mds_client *mdsc = fsc->mdsc; 1509 struct inode *inode = &ci->vfs_inode; 1510 struct ceph_cap *cap; 1511 int file_wanted, used, cap_used; 1512 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1513 int issued, implemented, want, retain, revoking, flushing = 0; 1514 int mds = -1; /* keep track of how far we've gone through i_caps list 1515 to avoid an infinite loop on retry */ 1516 struct rb_node *p; 1517 int tried_invalidate = 0; 1518 int delayed = 0, sent = 0, force_requeue = 0, num; 1519 int queue_invalidate = 0; 1520 int is_delayed = flags & CHECK_CAPS_NODELAY; 1521 1522 /* if we are unmounting, flush any unused caps immediately. */ 1523 if (mdsc->stopping) 1524 is_delayed = 1; 1525 1526 spin_lock(&ci->i_ceph_lock); 1527 1528 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1529 flags |= CHECK_CAPS_FLUSH; 1530 1531 /* flush snaps first time around only */ 1532 if (!list_empty(&ci->i_cap_snaps)) 1533 __ceph_flush_snaps(ci, &session, 0); 1534 goto retry_locked; 1535 retry: 1536 spin_lock(&ci->i_ceph_lock); 1537 retry_locked: 1538 file_wanted = __ceph_caps_file_wanted(ci); 1539 used = __ceph_caps_used(ci); 1540 want = file_wanted | used; 1541 issued = __ceph_caps_issued(ci, &implemented); 1542 revoking = implemented & ~issued; 1543 1544 retain = want | CEPH_CAP_PIN; 1545 if (!mdsc->stopping && inode->i_nlink > 0) { 1546 if (want) { 1547 retain |= CEPH_CAP_ANY; /* be greedy */ 1548 } else { 1549 retain |= CEPH_CAP_ANY_SHARED; 1550 /* 1551 * keep RD only if we didn't have the file open RW, 1552 * because then the mds would revoke it anyway to 1553 * journal max_size=0. 1554 */ 1555 if (ci->i_max_size == 0) 1556 retain |= CEPH_CAP_ANY_RD; 1557 } 1558 } 1559 1560 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1561 " issued %s revoking %s retain %s %s%s%s\n", inode, 1562 ceph_cap_string(file_wanted), 1563 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1564 ceph_cap_string(ci->i_flushing_caps), 1565 ceph_cap_string(issued), ceph_cap_string(revoking), 1566 ceph_cap_string(retain), 1567 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1568 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1569 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1570 1571 /* 1572 * If we no longer need to hold onto old our caps, and we may 1573 * have cached pages, but don't want them, then try to invalidate. 1574 * If we fail, it's because pages are locked.... try again later. 1575 */ 1576 if ((!is_delayed || mdsc->stopping) && 1577 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1578 inode->i_data.nrpages && /* have cached pages */ 1579 (file_wanted == 0 || /* no open files */ 1580 (revoking & (CEPH_CAP_FILE_CACHE| 1581 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1582 !tried_invalidate) { 1583 dout("check_caps trying to invalidate on %p\n", inode); 1584 if (try_nonblocking_invalidate(inode) < 0) { 1585 if (revoking & (CEPH_CAP_FILE_CACHE| 1586 CEPH_CAP_FILE_LAZYIO)) { 1587 dout("check_caps queuing invalidate\n"); 1588 queue_invalidate = 1; 1589 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1590 } else { 1591 dout("check_caps failed to invalidate pages\n"); 1592 /* we failed to invalidate pages. check these 1593 caps again later. */ 1594 force_requeue = 1; 1595 __cap_set_timeouts(mdsc, ci); 1596 } 1597 } 1598 tried_invalidate = 1; 1599 goto retry_locked; 1600 } 1601 1602 num = 0; 1603 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1604 cap = rb_entry(p, struct ceph_cap, ci_node); 1605 num++; 1606 1607 /* avoid looping forever */ 1608 if (mds >= cap->mds || 1609 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1610 continue; 1611 1612 /* NOTE: no side-effects allowed, until we take s_mutex */ 1613 1614 cap_used = used; 1615 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1616 cap_used &= ~ci->i_auth_cap->issued; 1617 1618 revoking = cap->implemented & ~cap->issued; 1619 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1620 cap->mds, cap, ceph_cap_string(cap->issued), 1621 ceph_cap_string(cap_used), 1622 ceph_cap_string(cap->implemented), 1623 ceph_cap_string(revoking)); 1624 1625 if (cap == ci->i_auth_cap && 1626 (cap->issued & CEPH_CAP_FILE_WR)) { 1627 /* request larger max_size from MDS? */ 1628 if (ci->i_wanted_max_size > ci->i_max_size && 1629 ci->i_wanted_max_size > ci->i_requested_max_size) { 1630 dout("requesting new max_size\n"); 1631 goto ack; 1632 } 1633 1634 /* approaching file_max? */ 1635 if ((inode->i_size << 1) >= ci->i_max_size && 1636 (ci->i_reported_size << 1) < ci->i_max_size) { 1637 dout("i_size approaching max_size\n"); 1638 goto ack; 1639 } 1640 } 1641 /* flush anything dirty? */ 1642 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1643 ci->i_dirty_caps) { 1644 dout("flushing dirty caps\n"); 1645 goto ack; 1646 } 1647 1648 /* completed revocation? going down and there are no caps? */ 1649 if (revoking && (revoking & cap_used) == 0) { 1650 dout("completed revocation of %s\n", 1651 ceph_cap_string(cap->implemented & ~cap->issued)); 1652 goto ack; 1653 } 1654 1655 /* want more caps from mds? */ 1656 if (want & ~(cap->mds_wanted | cap->issued)) 1657 goto ack; 1658 1659 /* things we might delay */ 1660 if ((cap->issued & ~retain) == 0 && 1661 cap->mds_wanted == want) 1662 continue; /* nope, all good */ 1663 1664 if (is_delayed) 1665 goto ack; 1666 1667 /* delay? */ 1668 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1669 time_before(jiffies, ci->i_hold_caps_max)) { 1670 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1671 ceph_cap_string(cap->issued), 1672 ceph_cap_string(cap->issued & retain), 1673 ceph_cap_string(cap->mds_wanted), 1674 ceph_cap_string(want)); 1675 delayed++; 1676 continue; 1677 } 1678 1679 ack: 1680 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1681 dout(" skipping %p I_NOFLUSH set\n", inode); 1682 continue; 1683 } 1684 1685 if (session && session != cap->session) { 1686 dout("oops, wrong session %p mutex\n", session); 1687 mutex_unlock(&session->s_mutex); 1688 session = NULL; 1689 } 1690 if (!session) { 1691 session = cap->session; 1692 if (mutex_trylock(&session->s_mutex) == 0) { 1693 dout("inverting session/ino locks on %p\n", 1694 session); 1695 spin_unlock(&ci->i_ceph_lock); 1696 if (took_snap_rwsem) { 1697 up_read(&mdsc->snap_rwsem); 1698 took_snap_rwsem = 0; 1699 } 1700 mutex_lock(&session->s_mutex); 1701 goto retry; 1702 } 1703 } 1704 /* take snap_rwsem after session mutex */ 1705 if (!took_snap_rwsem) { 1706 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1707 dout("inverting snap/in locks on %p\n", 1708 inode); 1709 spin_unlock(&ci->i_ceph_lock); 1710 down_read(&mdsc->snap_rwsem); 1711 took_snap_rwsem = 1; 1712 goto retry; 1713 } 1714 took_snap_rwsem = 1; 1715 } 1716 1717 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1718 flushing = __mark_caps_flushing(inode, session); 1719 else 1720 flushing = 0; 1721 1722 mds = cap->mds; /* remember mds, so we don't repeat */ 1723 sent++; 1724 1725 /* __send_cap drops i_ceph_lock */ 1726 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1727 want, retain, flushing, NULL); 1728 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1729 } 1730 1731 /* 1732 * Reschedule delayed caps release if we delayed anything, 1733 * otherwise cancel. 1734 */ 1735 if (delayed && is_delayed) 1736 force_requeue = 1; /* __send_cap delayed release; requeue */ 1737 if (!delayed && !is_delayed) 1738 __cap_delay_cancel(mdsc, ci); 1739 else if (!is_delayed || force_requeue) 1740 __cap_delay_requeue(mdsc, ci); 1741 1742 spin_unlock(&ci->i_ceph_lock); 1743 1744 if (queue_invalidate) 1745 ceph_queue_invalidate(inode); 1746 1747 if (session) 1748 mutex_unlock(&session->s_mutex); 1749 if (took_snap_rwsem) 1750 up_read(&mdsc->snap_rwsem); 1751 } 1752 1753 /* 1754 * Try to flush dirty caps back to the auth mds. 1755 */ 1756 static int try_flush_caps(struct inode *inode, unsigned *flush_tid) 1757 { 1758 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1759 struct ceph_inode_info *ci = ceph_inode(inode); 1760 int flushing = 0; 1761 struct ceph_mds_session *session = NULL; 1762 1763 retry: 1764 spin_lock(&ci->i_ceph_lock); 1765 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1766 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1767 goto out; 1768 } 1769 if (ci->i_dirty_caps && ci->i_auth_cap) { 1770 struct ceph_cap *cap = ci->i_auth_cap; 1771 int used = __ceph_caps_used(ci); 1772 int want = __ceph_caps_wanted(ci); 1773 int delayed; 1774 1775 if (!session || session != cap->session) { 1776 spin_unlock(&ci->i_ceph_lock); 1777 if (session) 1778 mutex_unlock(&session->s_mutex); 1779 session = cap->session; 1780 mutex_lock(&session->s_mutex); 1781 goto retry; 1782 } 1783 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1784 goto out; 1785 1786 flushing = __mark_caps_flushing(inode, session); 1787 1788 /* __send_cap drops i_ceph_lock */ 1789 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1790 cap->issued | cap->implemented, flushing, 1791 flush_tid); 1792 if (!delayed) 1793 goto out_unlocked; 1794 1795 spin_lock(&ci->i_ceph_lock); 1796 __cap_delay_requeue(mdsc, ci); 1797 } 1798 out: 1799 spin_unlock(&ci->i_ceph_lock); 1800 out_unlocked: 1801 if (session) 1802 mutex_unlock(&session->s_mutex); 1803 return flushing; 1804 } 1805 1806 /* 1807 * Return true if we've flushed caps through the given flush_tid. 1808 */ 1809 static int caps_are_flushed(struct inode *inode, unsigned tid) 1810 { 1811 struct ceph_inode_info *ci = ceph_inode(inode); 1812 int i, ret = 1; 1813 1814 spin_lock(&ci->i_ceph_lock); 1815 for (i = 0; i < CEPH_CAP_BITS; i++) 1816 if ((ci->i_flushing_caps & (1 << i)) && 1817 ci->i_cap_flush_tid[i] <= tid) { 1818 /* still flushing this bit */ 1819 ret = 0; 1820 break; 1821 } 1822 spin_unlock(&ci->i_ceph_lock); 1823 return ret; 1824 } 1825 1826 /* 1827 * Wait on any unsafe replies for the given inode. First wait on the 1828 * newest request, and make that the upper bound. Then, if there are 1829 * more requests, keep waiting on the oldest as long as it is still older 1830 * than the original request. 1831 */ 1832 static void sync_write_wait(struct inode *inode) 1833 { 1834 struct ceph_inode_info *ci = ceph_inode(inode); 1835 struct list_head *head = &ci->i_unsafe_writes; 1836 struct ceph_osd_request *req; 1837 u64 last_tid; 1838 1839 spin_lock(&ci->i_unsafe_lock); 1840 if (list_empty(head)) 1841 goto out; 1842 1843 /* set upper bound as _last_ entry in chain */ 1844 req = list_entry(head->prev, struct ceph_osd_request, 1845 r_unsafe_item); 1846 last_tid = req->r_tid; 1847 1848 do { 1849 ceph_osdc_get_request(req); 1850 spin_unlock(&ci->i_unsafe_lock); 1851 dout("sync_write_wait on tid %llu (until %llu)\n", 1852 req->r_tid, last_tid); 1853 wait_for_completion(&req->r_safe_completion); 1854 spin_lock(&ci->i_unsafe_lock); 1855 ceph_osdc_put_request(req); 1856 1857 /* 1858 * from here on look at first entry in chain, since we 1859 * only want to wait for anything older than last_tid 1860 */ 1861 if (list_empty(head)) 1862 break; 1863 req = list_entry(head->next, struct ceph_osd_request, 1864 r_unsafe_item); 1865 } while (req->r_tid < last_tid); 1866 out: 1867 spin_unlock(&ci->i_unsafe_lock); 1868 } 1869 1870 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1871 { 1872 struct inode *inode = file->f_mapping->host; 1873 struct ceph_inode_info *ci = ceph_inode(inode); 1874 unsigned flush_tid; 1875 int ret; 1876 int dirty; 1877 1878 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1879 sync_write_wait(inode); 1880 1881 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1882 if (ret < 0) 1883 return ret; 1884 mutex_lock(&inode->i_mutex); 1885 1886 dirty = try_flush_caps(inode, &flush_tid); 1887 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1888 1889 /* 1890 * only wait on non-file metadata writeback (the mds 1891 * can recover size and mtime, so we don't need to 1892 * wait for that) 1893 */ 1894 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1895 dout("fsync waiting for flush_tid %u\n", flush_tid); 1896 ret = wait_event_interruptible(ci->i_cap_wq, 1897 caps_are_flushed(inode, flush_tid)); 1898 } 1899 1900 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1901 mutex_unlock(&inode->i_mutex); 1902 return ret; 1903 } 1904 1905 /* 1906 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1907 * queue inode for flush but don't do so immediately, because we can 1908 * get by with fewer MDS messages if we wait for data writeback to 1909 * complete first. 1910 */ 1911 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1912 { 1913 struct ceph_inode_info *ci = ceph_inode(inode); 1914 unsigned flush_tid; 1915 int err = 0; 1916 int dirty; 1917 int wait = wbc->sync_mode == WB_SYNC_ALL; 1918 1919 dout("write_inode %p wait=%d\n", inode, wait); 1920 if (wait) { 1921 dirty = try_flush_caps(inode, &flush_tid); 1922 if (dirty) 1923 err = wait_event_interruptible(ci->i_cap_wq, 1924 caps_are_flushed(inode, flush_tid)); 1925 } else { 1926 struct ceph_mds_client *mdsc = 1927 ceph_sb_to_client(inode->i_sb)->mdsc; 1928 1929 spin_lock(&ci->i_ceph_lock); 1930 if (__ceph_caps_dirty(ci)) 1931 __cap_delay_requeue_front(mdsc, ci); 1932 spin_unlock(&ci->i_ceph_lock); 1933 } 1934 return err; 1935 } 1936 1937 /* 1938 * After a recovering MDS goes active, we need to resend any caps 1939 * we were flushing. 1940 * 1941 * Caller holds session->s_mutex. 1942 */ 1943 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1944 struct ceph_mds_session *session) 1945 { 1946 struct ceph_cap_snap *capsnap; 1947 1948 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1949 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1950 flushing_item) { 1951 struct ceph_inode_info *ci = capsnap->ci; 1952 struct inode *inode = &ci->vfs_inode; 1953 struct ceph_cap *cap; 1954 1955 spin_lock(&ci->i_ceph_lock); 1956 cap = ci->i_auth_cap; 1957 if (cap && cap->session == session) { 1958 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1959 cap, capsnap); 1960 __ceph_flush_snaps(ci, &session, 1); 1961 } else { 1962 pr_err("%p auth cap %p not mds%d ???\n", inode, 1963 cap, session->s_mds); 1964 } 1965 spin_unlock(&ci->i_ceph_lock); 1966 } 1967 } 1968 1969 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1970 struct ceph_mds_session *session) 1971 { 1972 struct ceph_inode_info *ci; 1973 1974 kick_flushing_capsnaps(mdsc, session); 1975 1976 dout("kick_flushing_caps mds%d\n", session->s_mds); 1977 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1978 struct inode *inode = &ci->vfs_inode; 1979 struct ceph_cap *cap; 1980 int delayed = 0; 1981 1982 spin_lock(&ci->i_ceph_lock); 1983 cap = ci->i_auth_cap; 1984 if (cap && cap->session == session) { 1985 dout("kick_flushing_caps %p cap %p %s\n", inode, 1986 cap, ceph_cap_string(ci->i_flushing_caps)); 1987 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1988 __ceph_caps_used(ci), 1989 __ceph_caps_wanted(ci), 1990 cap->issued | cap->implemented, 1991 ci->i_flushing_caps, NULL); 1992 if (delayed) { 1993 spin_lock(&ci->i_ceph_lock); 1994 __cap_delay_requeue(mdsc, ci); 1995 spin_unlock(&ci->i_ceph_lock); 1996 } 1997 } else { 1998 pr_err("%p auth cap %p not mds%d ???\n", inode, 1999 cap, session->s_mds); 2000 spin_unlock(&ci->i_ceph_lock); 2001 } 2002 } 2003 } 2004 2005 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2006 struct ceph_mds_session *session, 2007 struct inode *inode) 2008 { 2009 struct ceph_inode_info *ci = ceph_inode(inode); 2010 struct ceph_cap *cap; 2011 int delayed = 0; 2012 2013 spin_lock(&ci->i_ceph_lock); 2014 cap = ci->i_auth_cap; 2015 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 2016 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 2017 2018 __ceph_flush_snaps(ci, &session, 1); 2019 2020 if (ci->i_flushing_caps) { 2021 spin_lock(&mdsc->cap_dirty_lock); 2022 list_move_tail(&ci->i_flushing_item, 2023 &cap->session->s_cap_flushing); 2024 spin_unlock(&mdsc->cap_dirty_lock); 2025 2026 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2027 __ceph_caps_used(ci), 2028 __ceph_caps_wanted(ci), 2029 cap->issued | cap->implemented, 2030 ci->i_flushing_caps, NULL); 2031 if (delayed) { 2032 spin_lock(&ci->i_ceph_lock); 2033 __cap_delay_requeue(mdsc, ci); 2034 spin_unlock(&ci->i_ceph_lock); 2035 } 2036 } else { 2037 spin_unlock(&ci->i_ceph_lock); 2038 } 2039 } 2040 2041 2042 /* 2043 * Take references to capabilities we hold, so that we don't release 2044 * them to the MDS prematurely. 2045 * 2046 * Protected by i_ceph_lock. 2047 */ 2048 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 2049 { 2050 if (got & CEPH_CAP_PIN) 2051 ci->i_pin_ref++; 2052 if (got & CEPH_CAP_FILE_RD) 2053 ci->i_rd_ref++; 2054 if (got & CEPH_CAP_FILE_CACHE) 2055 ci->i_rdcache_ref++; 2056 if (got & CEPH_CAP_FILE_WR) 2057 ci->i_wr_ref++; 2058 if (got & CEPH_CAP_FILE_BUFFER) { 2059 if (ci->i_wb_ref == 0) 2060 ihold(&ci->vfs_inode); 2061 ci->i_wb_ref++; 2062 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2063 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2064 } 2065 } 2066 2067 /* 2068 * Try to grab cap references. Specify those refs we @want, and the 2069 * minimal set we @need. Also include the larger offset we are writing 2070 * to (when applicable), and check against max_size here as well. 2071 * Note that caller is responsible for ensuring max_size increases are 2072 * requested from the MDS. 2073 */ 2074 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2075 loff_t endoff, int *got, int *check_max, int *err) 2076 { 2077 struct inode *inode = &ci->vfs_inode; 2078 int ret = 0; 2079 int have, implemented; 2080 int file_wanted; 2081 2082 dout("get_cap_refs %p need %s want %s\n", inode, 2083 ceph_cap_string(need), ceph_cap_string(want)); 2084 2085 spin_lock(&ci->i_ceph_lock); 2086 2087 /* make sure file is actually open */ 2088 file_wanted = __ceph_caps_file_wanted(ci); 2089 if ((file_wanted & need) == 0) { 2090 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2091 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2092 *err = -EBADF; 2093 ret = 1; 2094 goto out_unlock; 2095 } 2096 2097 /* finish pending truncate */ 2098 while (ci->i_truncate_pending) { 2099 spin_unlock(&ci->i_ceph_lock); 2100 __ceph_do_pending_vmtruncate(inode); 2101 spin_lock(&ci->i_ceph_lock); 2102 } 2103 2104 have = __ceph_caps_issued(ci, &implemented); 2105 2106 if (have & need & CEPH_CAP_FILE_WR) { 2107 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2108 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2109 inode, endoff, ci->i_max_size); 2110 if (endoff > ci->i_requested_max_size) { 2111 *check_max = 1; 2112 ret = 1; 2113 } 2114 goto out_unlock; 2115 } 2116 /* 2117 * If a sync write is in progress, we must wait, so that we 2118 * can get a final snapshot value for size+mtime. 2119 */ 2120 if (__ceph_have_pending_cap_snap(ci)) { 2121 dout("get_cap_refs %p cap_snap_pending\n", inode); 2122 goto out_unlock; 2123 } 2124 } 2125 2126 if ((have & need) == need) { 2127 /* 2128 * Look at (implemented & ~have & not) so that we keep waiting 2129 * on transition from wanted -> needed caps. This is needed 2130 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2131 * going before a prior buffered writeback happens. 2132 */ 2133 int not = want & ~(have & need); 2134 int revoking = implemented & ~have; 2135 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2136 inode, ceph_cap_string(have), ceph_cap_string(not), 2137 ceph_cap_string(revoking)); 2138 if ((revoking & not) == 0) { 2139 *got = need | (have & want); 2140 __take_cap_refs(ci, *got); 2141 ret = 1; 2142 } 2143 } else { 2144 int session_readonly = false; 2145 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) { 2146 struct ceph_mds_session *s = ci->i_auth_cap->session; 2147 spin_lock(&s->s_cap_lock); 2148 session_readonly = s->s_readonly; 2149 spin_unlock(&s->s_cap_lock); 2150 } 2151 if (session_readonly) { 2152 dout("get_cap_refs %p needed %s but mds%d readonly\n", 2153 inode, ceph_cap_string(need), ci->i_auth_cap->mds); 2154 *err = -EROFS; 2155 ret = 1; 2156 goto out_unlock; 2157 } 2158 2159 dout("get_cap_refs %p have %s needed %s\n", inode, 2160 ceph_cap_string(have), ceph_cap_string(need)); 2161 } 2162 out_unlock: 2163 spin_unlock(&ci->i_ceph_lock); 2164 2165 dout("get_cap_refs %p ret %d got %s\n", inode, 2166 ret, ceph_cap_string(*got)); 2167 return ret; 2168 } 2169 2170 /* 2171 * Check the offset we are writing up to against our current 2172 * max_size. If necessary, tell the MDS we want to write to 2173 * a larger offset. 2174 */ 2175 static void check_max_size(struct inode *inode, loff_t endoff) 2176 { 2177 struct ceph_inode_info *ci = ceph_inode(inode); 2178 int check = 0; 2179 2180 /* do we need to explicitly request a larger max_size? */ 2181 spin_lock(&ci->i_ceph_lock); 2182 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2183 dout("write %p at large endoff %llu, req max_size\n", 2184 inode, endoff); 2185 ci->i_wanted_max_size = endoff; 2186 } 2187 /* duplicate ceph_check_caps()'s logic */ 2188 if (ci->i_auth_cap && 2189 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2190 ci->i_wanted_max_size > ci->i_max_size && 2191 ci->i_wanted_max_size > ci->i_requested_max_size) 2192 check = 1; 2193 spin_unlock(&ci->i_ceph_lock); 2194 if (check) 2195 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2196 } 2197 2198 /* 2199 * Wait for caps, and take cap references. If we can't get a WR cap 2200 * due to a small max_size, make sure we check_max_size (and possibly 2201 * ask the mds) so we don't get hung up indefinitely. 2202 */ 2203 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 2204 loff_t endoff, int *got, struct page **pinned_page) 2205 { 2206 int _got, check_max, ret, err = 0; 2207 2208 retry: 2209 if (endoff > 0) 2210 check_max_size(&ci->vfs_inode, endoff); 2211 _got = 0; 2212 check_max = 0; 2213 ret = wait_event_interruptible(ci->i_cap_wq, 2214 try_get_cap_refs(ci, need, want, endoff, 2215 &_got, &check_max, &err)); 2216 if (err) 2217 ret = err; 2218 if (ret < 0) 2219 return ret; 2220 2221 if (check_max) 2222 goto retry; 2223 2224 if (ci->i_inline_version != CEPH_INLINE_NONE && 2225 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 2226 i_size_read(&ci->vfs_inode) > 0) { 2227 struct page *page = find_get_page(ci->vfs_inode.i_mapping, 0); 2228 if (page) { 2229 if (PageUptodate(page)) { 2230 *pinned_page = page; 2231 goto out; 2232 } 2233 page_cache_release(page); 2234 } 2235 /* 2236 * drop cap refs first because getattr while holding 2237 * caps refs can cause deadlock. 2238 */ 2239 ceph_put_cap_refs(ci, _got); 2240 _got = 0; 2241 2242 /* getattr request will bring inline data into page cache */ 2243 ret = __ceph_do_getattr(&ci->vfs_inode, NULL, 2244 CEPH_STAT_CAP_INLINE_DATA, true); 2245 if (ret < 0) 2246 return ret; 2247 goto retry; 2248 } 2249 out: 2250 *got = _got; 2251 return 0; 2252 } 2253 2254 /* 2255 * Take cap refs. Caller must already know we hold at least one ref 2256 * on the caps in question or we don't know this is safe. 2257 */ 2258 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2259 { 2260 spin_lock(&ci->i_ceph_lock); 2261 __take_cap_refs(ci, caps); 2262 spin_unlock(&ci->i_ceph_lock); 2263 } 2264 2265 /* 2266 * Release cap refs. 2267 * 2268 * If we released the last ref on any given cap, call ceph_check_caps 2269 * to release (or schedule a release). 2270 * 2271 * If we are releasing a WR cap (from a sync write), finalize any affected 2272 * cap_snap, and wake up any waiters. 2273 */ 2274 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2275 { 2276 struct inode *inode = &ci->vfs_inode; 2277 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2278 struct ceph_cap_snap *capsnap; 2279 2280 spin_lock(&ci->i_ceph_lock); 2281 if (had & CEPH_CAP_PIN) 2282 --ci->i_pin_ref; 2283 if (had & CEPH_CAP_FILE_RD) 2284 if (--ci->i_rd_ref == 0) 2285 last++; 2286 if (had & CEPH_CAP_FILE_CACHE) 2287 if (--ci->i_rdcache_ref == 0) 2288 last++; 2289 if (had & CEPH_CAP_FILE_BUFFER) { 2290 if (--ci->i_wb_ref == 0) { 2291 last++; 2292 put++; 2293 } 2294 dout("put_cap_refs %p wb %d -> %d (?)\n", 2295 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2296 } 2297 if (had & CEPH_CAP_FILE_WR) 2298 if (--ci->i_wr_ref == 0) { 2299 last++; 2300 if (!list_empty(&ci->i_cap_snaps)) { 2301 capsnap = list_first_entry(&ci->i_cap_snaps, 2302 struct ceph_cap_snap, 2303 ci_item); 2304 if (capsnap->writing) { 2305 capsnap->writing = 0; 2306 flushsnaps = 2307 __ceph_finish_cap_snap(ci, 2308 capsnap); 2309 wake = 1; 2310 } 2311 } 2312 } 2313 spin_unlock(&ci->i_ceph_lock); 2314 2315 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2316 last ? " last" : "", put ? " put" : ""); 2317 2318 if (last && !flushsnaps) 2319 ceph_check_caps(ci, 0, NULL); 2320 else if (flushsnaps) 2321 ceph_flush_snaps(ci); 2322 if (wake) 2323 wake_up_all(&ci->i_cap_wq); 2324 if (put) 2325 iput(inode); 2326 } 2327 2328 /* 2329 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2330 * context. Adjust per-snap dirty page accounting as appropriate. 2331 * Once all dirty data for a cap_snap is flushed, flush snapped file 2332 * metadata back to the MDS. If we dropped the last ref, call 2333 * ceph_check_caps. 2334 */ 2335 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2336 struct ceph_snap_context *snapc) 2337 { 2338 struct inode *inode = &ci->vfs_inode; 2339 int last = 0; 2340 int complete_capsnap = 0; 2341 int drop_capsnap = 0; 2342 int found = 0; 2343 struct ceph_cap_snap *capsnap = NULL; 2344 2345 spin_lock(&ci->i_ceph_lock); 2346 ci->i_wrbuffer_ref -= nr; 2347 last = !ci->i_wrbuffer_ref; 2348 2349 if (ci->i_head_snapc == snapc) { 2350 ci->i_wrbuffer_ref_head -= nr; 2351 if (ci->i_wrbuffer_ref_head == 0 && 2352 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2353 BUG_ON(!ci->i_head_snapc); 2354 ceph_put_snap_context(ci->i_head_snapc); 2355 ci->i_head_snapc = NULL; 2356 } 2357 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2358 inode, 2359 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2360 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2361 last ? " LAST" : ""); 2362 } else { 2363 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2364 if (capsnap->context == snapc) { 2365 found = 1; 2366 break; 2367 } 2368 } 2369 BUG_ON(!found); 2370 capsnap->dirty_pages -= nr; 2371 if (capsnap->dirty_pages == 0) { 2372 complete_capsnap = 1; 2373 if (capsnap->dirty == 0) 2374 /* cap writeback completed before we created 2375 * the cap_snap; no FLUSHSNAP is needed */ 2376 drop_capsnap = 1; 2377 } 2378 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2379 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2380 inode, capsnap, capsnap->context->seq, 2381 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2382 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2383 last ? " (wrbuffer last)" : "", 2384 complete_capsnap ? " (complete capsnap)" : "", 2385 drop_capsnap ? " (drop capsnap)" : ""); 2386 if (drop_capsnap) { 2387 ceph_put_snap_context(capsnap->context); 2388 list_del(&capsnap->ci_item); 2389 list_del(&capsnap->flushing_item); 2390 ceph_put_cap_snap(capsnap); 2391 } 2392 } 2393 2394 spin_unlock(&ci->i_ceph_lock); 2395 2396 if (last) { 2397 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2398 iput(inode); 2399 } else if (complete_capsnap) { 2400 ceph_flush_snaps(ci); 2401 wake_up_all(&ci->i_cap_wq); 2402 } 2403 if (drop_capsnap) 2404 iput(inode); 2405 } 2406 2407 /* 2408 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2409 */ 2410 static void invalidate_aliases(struct inode *inode) 2411 { 2412 struct dentry *dn, *prev = NULL; 2413 2414 dout("invalidate_aliases inode %p\n", inode); 2415 d_prune_aliases(inode); 2416 /* 2417 * For non-directory inode, d_find_alias() only returns 2418 * hashed dentry. After calling d_invalidate(), the 2419 * dentry becomes unhashed. 2420 * 2421 * For directory inode, d_find_alias() can return 2422 * unhashed dentry. But directory inode should have 2423 * one alias at most. 2424 */ 2425 while ((dn = d_find_alias(inode))) { 2426 if (dn == prev) { 2427 dput(dn); 2428 break; 2429 } 2430 d_invalidate(dn); 2431 if (prev) 2432 dput(prev); 2433 prev = dn; 2434 } 2435 if (prev) 2436 dput(prev); 2437 } 2438 2439 /* 2440 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2441 * actually be a revocation if it specifies a smaller cap set.) 2442 * 2443 * caller holds s_mutex and i_ceph_lock, we drop both. 2444 */ 2445 static void handle_cap_grant(struct ceph_mds_client *mdsc, 2446 struct inode *inode, struct ceph_mds_caps *grant, 2447 u64 inline_version, 2448 void *inline_data, int inline_len, 2449 struct ceph_buffer *xattr_buf, 2450 struct ceph_mds_session *session, 2451 struct ceph_cap *cap, int issued) 2452 __releases(ci->i_ceph_lock) 2453 __releases(mdsc->snap_rwsem) 2454 { 2455 struct ceph_inode_info *ci = ceph_inode(inode); 2456 int mds = session->s_mds; 2457 int seq = le32_to_cpu(grant->seq); 2458 int newcaps = le32_to_cpu(grant->caps); 2459 int used, wanted, dirty; 2460 u64 size = le64_to_cpu(grant->size); 2461 u64 max_size = le64_to_cpu(grant->max_size); 2462 struct timespec mtime, atime, ctime; 2463 int check_caps = 0; 2464 bool wake = false; 2465 bool writeback = false; 2466 bool queue_trunc = false; 2467 bool queue_invalidate = false; 2468 bool queue_revalidate = false; 2469 bool deleted_inode = false; 2470 bool fill_inline = false; 2471 2472 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2473 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2474 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2475 inode->i_size); 2476 2477 2478 /* 2479 * auth mds of the inode changed. we received the cap export message, 2480 * but still haven't received the cap import message. handle_cap_export 2481 * updated the new auth MDS' cap. 2482 * 2483 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2484 * that was sent before the cap import message. So don't remove caps. 2485 */ 2486 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2487 WARN_ON(cap != ci->i_auth_cap); 2488 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2489 seq = cap->seq; 2490 newcaps |= cap->issued; 2491 } 2492 2493 /* 2494 * If CACHE is being revoked, and we have no dirty buffers, 2495 * try to invalidate (once). (If there are dirty buffers, we 2496 * will invalidate _after_ writeback.) 2497 */ 2498 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2499 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2500 !ci->i_wrbuffer_ref) { 2501 if (try_nonblocking_invalidate(inode)) { 2502 /* there were locked pages.. invalidate later 2503 in a separate thread. */ 2504 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2505 queue_invalidate = true; 2506 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2507 } 2508 } 2509 2510 ceph_fscache_invalidate(inode); 2511 } 2512 2513 /* side effects now are allowed */ 2514 cap->cap_gen = session->s_cap_gen; 2515 cap->seq = seq; 2516 2517 __check_cap_issue(ci, cap, newcaps); 2518 2519 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2520 (issued & CEPH_CAP_AUTH_EXCL) == 0) { 2521 inode->i_mode = le32_to_cpu(grant->mode); 2522 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2523 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2524 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2525 from_kuid(&init_user_ns, inode->i_uid), 2526 from_kgid(&init_user_ns, inode->i_gid)); 2527 } 2528 2529 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2530 (issued & CEPH_CAP_LINK_EXCL) == 0) { 2531 set_nlink(inode, le32_to_cpu(grant->nlink)); 2532 if (inode->i_nlink == 0 && 2533 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2534 deleted_inode = true; 2535 } 2536 2537 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2538 int len = le32_to_cpu(grant->xattr_len); 2539 u64 version = le64_to_cpu(grant->xattr_version); 2540 2541 if (version > ci->i_xattrs.version) { 2542 dout(" got new xattrs v%llu on %p len %d\n", 2543 version, inode, len); 2544 if (ci->i_xattrs.blob) 2545 ceph_buffer_put(ci->i_xattrs.blob); 2546 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2547 ci->i_xattrs.version = version; 2548 ceph_forget_all_cached_acls(inode); 2549 } 2550 } 2551 2552 /* Do we need to revalidate our fscache cookie. Don't bother on the 2553 * first cache cap as we already validate at cookie creation time. */ 2554 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2555 queue_revalidate = true; 2556 2557 if (newcaps & CEPH_CAP_ANY_RD) { 2558 /* ctime/mtime/atime? */ 2559 ceph_decode_timespec(&mtime, &grant->mtime); 2560 ceph_decode_timespec(&atime, &grant->atime); 2561 ceph_decode_timespec(&ctime, &grant->ctime); 2562 ceph_fill_file_time(inode, issued, 2563 le32_to_cpu(grant->time_warp_seq), 2564 &ctime, &mtime, &atime); 2565 } 2566 2567 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { 2568 /* file layout may have changed */ 2569 ci->i_layout = grant->layout; 2570 /* size/truncate_seq? */ 2571 queue_trunc = ceph_fill_file_size(inode, issued, 2572 le32_to_cpu(grant->truncate_seq), 2573 le64_to_cpu(grant->truncate_size), 2574 size); 2575 /* max size increase? */ 2576 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2577 dout("max_size %lld -> %llu\n", 2578 ci->i_max_size, max_size); 2579 ci->i_max_size = max_size; 2580 if (max_size >= ci->i_wanted_max_size) { 2581 ci->i_wanted_max_size = 0; /* reset */ 2582 ci->i_requested_max_size = 0; 2583 } 2584 wake = true; 2585 } 2586 } 2587 2588 /* check cap bits */ 2589 wanted = __ceph_caps_wanted(ci); 2590 used = __ceph_caps_used(ci); 2591 dirty = __ceph_caps_dirty(ci); 2592 dout(" my wanted = %s, used = %s, dirty %s\n", 2593 ceph_cap_string(wanted), 2594 ceph_cap_string(used), 2595 ceph_cap_string(dirty)); 2596 if (wanted != le32_to_cpu(grant->wanted)) { 2597 dout("mds wanted %s -> %s\n", 2598 ceph_cap_string(le32_to_cpu(grant->wanted)), 2599 ceph_cap_string(wanted)); 2600 /* imported cap may not have correct mds_wanted */ 2601 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2602 check_caps = 1; 2603 } 2604 2605 /* revocation, grant, or no-op? */ 2606 if (cap->issued & ~newcaps) { 2607 int revoking = cap->issued & ~newcaps; 2608 2609 dout("revocation: %s -> %s (revoking %s)\n", 2610 ceph_cap_string(cap->issued), 2611 ceph_cap_string(newcaps), 2612 ceph_cap_string(revoking)); 2613 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2614 writeback = true; /* initiate writeback; will delay ack */ 2615 else if (revoking == CEPH_CAP_FILE_CACHE && 2616 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2617 queue_invalidate) 2618 ; /* do nothing yet, invalidation will be queued */ 2619 else if (cap == ci->i_auth_cap) 2620 check_caps = 1; /* check auth cap only */ 2621 else 2622 check_caps = 2; /* check all caps */ 2623 cap->issued = newcaps; 2624 cap->implemented |= newcaps; 2625 } else if (cap->issued == newcaps) { 2626 dout("caps unchanged: %s -> %s\n", 2627 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2628 } else { 2629 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2630 ceph_cap_string(newcaps)); 2631 /* non-auth MDS is revoking the newly grant caps ? */ 2632 if (cap == ci->i_auth_cap && 2633 __ceph_caps_revoking_other(ci, cap, newcaps)) 2634 check_caps = 2; 2635 2636 cap->issued = newcaps; 2637 cap->implemented |= newcaps; /* add bits only, to 2638 * avoid stepping on a 2639 * pending revocation */ 2640 wake = true; 2641 } 2642 BUG_ON(cap->issued & ~cap->implemented); 2643 2644 if (inline_version > 0 && inline_version >= ci->i_inline_version) { 2645 ci->i_inline_version = inline_version; 2646 if (ci->i_inline_version != CEPH_INLINE_NONE && 2647 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) 2648 fill_inline = true; 2649 } 2650 2651 spin_unlock(&ci->i_ceph_lock); 2652 2653 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { 2654 kick_flushing_inode_caps(mdsc, session, inode); 2655 up_read(&mdsc->snap_rwsem); 2656 if (newcaps & ~issued) 2657 wake = true; 2658 } 2659 2660 if (fill_inline) 2661 ceph_fill_inline_data(inode, NULL, inline_data, inline_len); 2662 2663 if (queue_trunc) { 2664 ceph_queue_vmtruncate(inode); 2665 ceph_queue_revalidate(inode); 2666 } else if (queue_revalidate) 2667 ceph_queue_revalidate(inode); 2668 2669 if (writeback) 2670 /* 2671 * queue inode for writeback: we can't actually call 2672 * filemap_write_and_wait, etc. from message handler 2673 * context. 2674 */ 2675 ceph_queue_writeback(inode); 2676 if (queue_invalidate) 2677 ceph_queue_invalidate(inode); 2678 if (deleted_inode) 2679 invalidate_aliases(inode); 2680 if (wake) 2681 wake_up_all(&ci->i_cap_wq); 2682 2683 if (check_caps == 1) 2684 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2685 session); 2686 else if (check_caps == 2) 2687 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2688 else 2689 mutex_unlock(&session->s_mutex); 2690 } 2691 2692 /* 2693 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2694 * MDS has been safely committed. 2695 */ 2696 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2697 struct ceph_mds_caps *m, 2698 struct ceph_mds_session *session, 2699 struct ceph_cap *cap) 2700 __releases(ci->i_ceph_lock) 2701 { 2702 struct ceph_inode_info *ci = ceph_inode(inode); 2703 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2704 unsigned seq = le32_to_cpu(m->seq); 2705 int dirty = le32_to_cpu(m->dirty); 2706 int cleaned = 0; 2707 int drop = 0; 2708 int i; 2709 2710 for (i = 0; i < CEPH_CAP_BITS; i++) 2711 if ((dirty & (1 << i)) && 2712 (u16)flush_tid == ci->i_cap_flush_tid[i]) 2713 cleaned |= 1 << i; 2714 2715 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2716 " flushing %s -> %s\n", 2717 inode, session->s_mds, seq, ceph_cap_string(dirty), 2718 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2719 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2720 2721 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2722 goto out; 2723 2724 ci->i_flushing_caps &= ~cleaned; 2725 2726 spin_lock(&mdsc->cap_dirty_lock); 2727 if (ci->i_flushing_caps == 0) { 2728 list_del_init(&ci->i_flushing_item); 2729 if (!list_empty(&session->s_cap_flushing)) 2730 dout(" mds%d still flushing cap on %p\n", 2731 session->s_mds, 2732 &list_entry(session->s_cap_flushing.next, 2733 struct ceph_inode_info, 2734 i_flushing_item)->vfs_inode); 2735 mdsc->num_cap_flushing--; 2736 wake_up_all(&mdsc->cap_flushing_wq); 2737 dout(" inode %p now !flushing\n", inode); 2738 2739 if (ci->i_dirty_caps == 0) { 2740 dout(" inode %p now clean\n", inode); 2741 BUG_ON(!list_empty(&ci->i_dirty_item)); 2742 drop = 1; 2743 if (ci->i_wrbuffer_ref_head == 0) { 2744 BUG_ON(!ci->i_head_snapc); 2745 ceph_put_snap_context(ci->i_head_snapc); 2746 ci->i_head_snapc = NULL; 2747 } 2748 } else { 2749 BUG_ON(list_empty(&ci->i_dirty_item)); 2750 } 2751 } 2752 spin_unlock(&mdsc->cap_dirty_lock); 2753 wake_up_all(&ci->i_cap_wq); 2754 2755 out: 2756 spin_unlock(&ci->i_ceph_lock); 2757 if (drop) 2758 iput(inode); 2759 } 2760 2761 /* 2762 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2763 * throw away our cap_snap. 2764 * 2765 * Caller hold s_mutex. 2766 */ 2767 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2768 struct ceph_mds_caps *m, 2769 struct ceph_mds_session *session) 2770 { 2771 struct ceph_inode_info *ci = ceph_inode(inode); 2772 u64 follows = le64_to_cpu(m->snap_follows); 2773 struct ceph_cap_snap *capsnap; 2774 int drop = 0; 2775 2776 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2777 inode, ci, session->s_mds, follows); 2778 2779 spin_lock(&ci->i_ceph_lock); 2780 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2781 if (capsnap->follows == follows) { 2782 if (capsnap->flush_tid != flush_tid) { 2783 dout(" cap_snap %p follows %lld tid %lld !=" 2784 " %lld\n", capsnap, follows, 2785 flush_tid, capsnap->flush_tid); 2786 break; 2787 } 2788 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2789 dout(" removing %p cap_snap %p follows %lld\n", 2790 inode, capsnap, follows); 2791 ceph_put_snap_context(capsnap->context); 2792 list_del(&capsnap->ci_item); 2793 list_del(&capsnap->flushing_item); 2794 ceph_put_cap_snap(capsnap); 2795 drop = 1; 2796 break; 2797 } else { 2798 dout(" skipping cap_snap %p follows %lld\n", 2799 capsnap, capsnap->follows); 2800 } 2801 } 2802 spin_unlock(&ci->i_ceph_lock); 2803 if (drop) 2804 iput(inode); 2805 } 2806 2807 /* 2808 * Handle TRUNC from MDS, indicating file truncation. 2809 * 2810 * caller hold s_mutex. 2811 */ 2812 static void handle_cap_trunc(struct inode *inode, 2813 struct ceph_mds_caps *trunc, 2814 struct ceph_mds_session *session) 2815 __releases(ci->i_ceph_lock) 2816 { 2817 struct ceph_inode_info *ci = ceph_inode(inode); 2818 int mds = session->s_mds; 2819 int seq = le32_to_cpu(trunc->seq); 2820 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2821 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2822 u64 size = le64_to_cpu(trunc->size); 2823 int implemented = 0; 2824 int dirty = __ceph_caps_dirty(ci); 2825 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2826 int queue_trunc = 0; 2827 2828 issued |= implemented | dirty; 2829 2830 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2831 inode, mds, seq, truncate_size, truncate_seq); 2832 queue_trunc = ceph_fill_file_size(inode, issued, 2833 truncate_seq, truncate_size, size); 2834 spin_unlock(&ci->i_ceph_lock); 2835 2836 if (queue_trunc) { 2837 ceph_queue_vmtruncate(inode); 2838 ceph_fscache_invalidate(inode); 2839 } 2840 } 2841 2842 /* 2843 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2844 * different one. If we are the most recent migration we've seen (as 2845 * indicated by mseq), make note of the migrating cap bits for the 2846 * duration (until we see the corresponding IMPORT). 2847 * 2848 * caller holds s_mutex 2849 */ 2850 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2851 struct ceph_mds_cap_peer *ph, 2852 struct ceph_mds_session *session) 2853 { 2854 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2855 struct ceph_mds_session *tsession = NULL; 2856 struct ceph_cap *cap, *tcap, *new_cap = NULL; 2857 struct ceph_inode_info *ci = ceph_inode(inode); 2858 u64 t_cap_id; 2859 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2860 unsigned t_seq, t_mseq; 2861 int target, issued; 2862 int mds = session->s_mds; 2863 2864 if (ph) { 2865 t_cap_id = le64_to_cpu(ph->cap_id); 2866 t_seq = le32_to_cpu(ph->seq); 2867 t_mseq = le32_to_cpu(ph->mseq); 2868 target = le32_to_cpu(ph->mds); 2869 } else { 2870 t_cap_id = t_seq = t_mseq = 0; 2871 target = -1; 2872 } 2873 2874 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 2875 inode, ci, mds, mseq, target); 2876 retry: 2877 spin_lock(&ci->i_ceph_lock); 2878 cap = __get_cap_for_mds(ci, mds); 2879 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) 2880 goto out_unlock; 2881 2882 if (target < 0) { 2883 __ceph_remove_cap(cap, false); 2884 goto out_unlock; 2885 } 2886 2887 /* 2888 * now we know we haven't received the cap import message yet 2889 * because the exported cap still exist. 2890 */ 2891 2892 issued = cap->issued; 2893 WARN_ON(issued != cap->implemented); 2894 2895 tcap = __get_cap_for_mds(ci, target); 2896 if (tcap) { 2897 /* already have caps from the target */ 2898 if (tcap->cap_id != t_cap_id || 2899 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 2900 dout(" updating import cap %p mds%d\n", tcap, target); 2901 tcap->cap_id = t_cap_id; 2902 tcap->seq = t_seq - 1; 2903 tcap->issue_seq = t_seq - 1; 2904 tcap->mseq = t_mseq; 2905 tcap->issued |= issued; 2906 tcap->implemented |= issued; 2907 if (cap == ci->i_auth_cap) 2908 ci->i_auth_cap = tcap; 2909 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 2910 spin_lock(&mdsc->cap_dirty_lock); 2911 list_move_tail(&ci->i_flushing_item, 2912 &tcap->session->s_cap_flushing); 2913 spin_unlock(&mdsc->cap_dirty_lock); 2914 } 2915 } 2916 __ceph_remove_cap(cap, false); 2917 goto out_unlock; 2918 } else if (tsession) { 2919 /* add placeholder for the export tagert */ 2920 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 2921 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 2922 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); 2923 2924 __ceph_remove_cap(cap, false); 2925 goto out_unlock; 2926 } 2927 2928 spin_unlock(&ci->i_ceph_lock); 2929 mutex_unlock(&session->s_mutex); 2930 2931 /* open target session */ 2932 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 2933 if (!IS_ERR(tsession)) { 2934 if (mds > target) { 2935 mutex_lock(&session->s_mutex); 2936 mutex_lock_nested(&tsession->s_mutex, 2937 SINGLE_DEPTH_NESTING); 2938 } else { 2939 mutex_lock(&tsession->s_mutex); 2940 mutex_lock_nested(&session->s_mutex, 2941 SINGLE_DEPTH_NESTING); 2942 } 2943 ceph_add_cap_releases(mdsc, tsession); 2944 new_cap = ceph_get_cap(mdsc, NULL); 2945 } else { 2946 WARN_ON(1); 2947 tsession = NULL; 2948 target = -1; 2949 } 2950 goto retry; 2951 2952 out_unlock: 2953 spin_unlock(&ci->i_ceph_lock); 2954 mutex_unlock(&session->s_mutex); 2955 if (tsession) { 2956 mutex_unlock(&tsession->s_mutex); 2957 ceph_put_mds_session(tsession); 2958 } 2959 if (new_cap) 2960 ceph_put_cap(mdsc, new_cap); 2961 } 2962 2963 /* 2964 * Handle cap IMPORT. 2965 * 2966 * caller holds s_mutex. acquires i_ceph_lock 2967 */ 2968 static void handle_cap_import(struct ceph_mds_client *mdsc, 2969 struct inode *inode, struct ceph_mds_caps *im, 2970 struct ceph_mds_cap_peer *ph, 2971 struct ceph_mds_session *session, 2972 struct ceph_cap **target_cap, int *old_issued) 2973 __acquires(ci->i_ceph_lock) 2974 { 2975 struct ceph_inode_info *ci = ceph_inode(inode); 2976 struct ceph_cap *cap, *ocap, *new_cap = NULL; 2977 int mds = session->s_mds; 2978 int issued; 2979 unsigned caps = le32_to_cpu(im->caps); 2980 unsigned wanted = le32_to_cpu(im->wanted); 2981 unsigned seq = le32_to_cpu(im->seq); 2982 unsigned mseq = le32_to_cpu(im->migrate_seq); 2983 u64 realmino = le64_to_cpu(im->realm); 2984 u64 cap_id = le64_to_cpu(im->cap_id); 2985 u64 p_cap_id; 2986 int peer; 2987 2988 if (ph) { 2989 p_cap_id = le64_to_cpu(ph->cap_id); 2990 peer = le32_to_cpu(ph->mds); 2991 } else { 2992 p_cap_id = 0; 2993 peer = -1; 2994 } 2995 2996 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 2997 inode, ci, mds, mseq, peer); 2998 2999 retry: 3000 spin_lock(&ci->i_ceph_lock); 3001 cap = __get_cap_for_mds(ci, mds); 3002 if (!cap) { 3003 if (!new_cap) { 3004 spin_unlock(&ci->i_ceph_lock); 3005 new_cap = ceph_get_cap(mdsc, NULL); 3006 goto retry; 3007 } 3008 cap = new_cap; 3009 } else { 3010 if (new_cap) { 3011 ceph_put_cap(mdsc, new_cap); 3012 new_cap = NULL; 3013 } 3014 } 3015 3016 __ceph_caps_issued(ci, &issued); 3017 issued |= __ceph_caps_dirty(ci); 3018 3019 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq, 3020 realmino, CEPH_CAP_FLAG_AUTH, &new_cap); 3021 3022 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 3023 if (ocap && ocap->cap_id == p_cap_id) { 3024 dout(" remove export cap %p mds%d flags %d\n", 3025 ocap, peer, ph->flags); 3026 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 3027 (ocap->seq != le32_to_cpu(ph->seq) || 3028 ocap->mseq != le32_to_cpu(ph->mseq))) { 3029 pr_err("handle_cap_import: mismatched seq/mseq: " 3030 "ino (%llx.%llx) mds%d seq %d mseq %d " 3031 "importer mds%d has peer seq %d mseq %d\n", 3032 ceph_vinop(inode), peer, ocap->seq, 3033 ocap->mseq, mds, le32_to_cpu(ph->seq), 3034 le32_to_cpu(ph->mseq)); 3035 } 3036 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 3037 } 3038 3039 /* make sure we re-request max_size, if necessary */ 3040 ci->i_wanted_max_size = 0; 3041 ci->i_requested_max_size = 0; 3042 3043 *old_issued = issued; 3044 *target_cap = cap; 3045 } 3046 3047 /* 3048 * Handle a caps message from the MDS. 3049 * 3050 * Identify the appropriate session, inode, and call the right handler 3051 * based on the cap op. 3052 */ 3053 void ceph_handle_caps(struct ceph_mds_session *session, 3054 struct ceph_msg *msg) 3055 { 3056 struct ceph_mds_client *mdsc = session->s_mdsc; 3057 struct super_block *sb = mdsc->fsc->sb; 3058 struct inode *inode; 3059 struct ceph_inode_info *ci; 3060 struct ceph_cap *cap; 3061 struct ceph_mds_caps *h; 3062 struct ceph_mds_cap_peer *peer = NULL; 3063 struct ceph_snap_realm *realm; 3064 int mds = session->s_mds; 3065 int op, issued; 3066 u32 seq, mseq; 3067 struct ceph_vino vino; 3068 u64 cap_id; 3069 u64 size, max_size; 3070 u64 tid; 3071 u64 inline_version = 0; 3072 void *inline_data = NULL; 3073 u32 inline_len = 0; 3074 void *snaptrace; 3075 size_t snaptrace_len; 3076 void *p, *end; 3077 3078 dout("handle_caps from mds%d\n", mds); 3079 3080 /* decode */ 3081 end = msg->front.iov_base + msg->front.iov_len; 3082 tid = le64_to_cpu(msg->hdr.tid); 3083 if (msg->front.iov_len < sizeof(*h)) 3084 goto bad; 3085 h = msg->front.iov_base; 3086 op = le32_to_cpu(h->op); 3087 vino.ino = le64_to_cpu(h->ino); 3088 vino.snap = CEPH_NOSNAP; 3089 cap_id = le64_to_cpu(h->cap_id); 3090 seq = le32_to_cpu(h->seq); 3091 mseq = le32_to_cpu(h->migrate_seq); 3092 size = le64_to_cpu(h->size); 3093 max_size = le64_to_cpu(h->max_size); 3094 3095 snaptrace = h + 1; 3096 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3097 p = snaptrace + snaptrace_len; 3098 3099 if (le16_to_cpu(msg->hdr.version) >= 2) { 3100 u32 flock_len; 3101 ceph_decode_32_safe(&p, end, flock_len, bad); 3102 if (p + flock_len > end) 3103 goto bad; 3104 p += flock_len; 3105 } 3106 3107 if (le16_to_cpu(msg->hdr.version) >= 3) { 3108 if (op == CEPH_CAP_OP_IMPORT) { 3109 if (p + sizeof(*peer) > end) 3110 goto bad; 3111 peer = p; 3112 p += sizeof(*peer); 3113 } else if (op == CEPH_CAP_OP_EXPORT) { 3114 /* recorded in unused fields */ 3115 peer = (void *)&h->size; 3116 } 3117 } 3118 3119 if (le16_to_cpu(msg->hdr.version) >= 4) { 3120 ceph_decode_64_safe(&p, end, inline_version, bad); 3121 ceph_decode_32_safe(&p, end, inline_len, bad); 3122 if (p + inline_len > end) 3123 goto bad; 3124 inline_data = p; 3125 p += inline_len; 3126 } 3127 3128 /* lookup ino */ 3129 inode = ceph_find_inode(sb, vino); 3130 ci = ceph_inode(inode); 3131 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3132 vino.snap, inode); 3133 3134 mutex_lock(&session->s_mutex); 3135 session->s_seq++; 3136 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3137 (unsigned)seq); 3138 3139 if (op == CEPH_CAP_OP_IMPORT) 3140 ceph_add_cap_releases(mdsc, session); 3141 3142 if (!inode) { 3143 dout(" i don't have ino %llx\n", vino.ino); 3144 3145 if (op == CEPH_CAP_OP_IMPORT) { 3146 spin_lock(&session->s_cap_lock); 3147 __queue_cap_release(session, vino.ino, cap_id, 3148 mseq, seq); 3149 spin_unlock(&session->s_cap_lock); 3150 } 3151 goto flush_cap_releases; 3152 } 3153 3154 /* these will work even if we don't have a cap yet */ 3155 switch (op) { 3156 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3157 handle_cap_flushsnap_ack(inode, tid, h, session); 3158 goto done; 3159 3160 case CEPH_CAP_OP_EXPORT: 3161 handle_cap_export(inode, h, peer, session); 3162 goto done_unlocked; 3163 3164 case CEPH_CAP_OP_IMPORT: 3165 realm = NULL; 3166 if (snaptrace_len) { 3167 down_write(&mdsc->snap_rwsem); 3168 ceph_update_snap_trace(mdsc, snaptrace, 3169 snaptrace + snaptrace_len, 3170 false, &realm); 3171 downgrade_write(&mdsc->snap_rwsem); 3172 } else { 3173 down_read(&mdsc->snap_rwsem); 3174 } 3175 handle_cap_import(mdsc, inode, h, peer, session, 3176 &cap, &issued); 3177 handle_cap_grant(mdsc, inode, h, 3178 inline_version, inline_data, inline_len, 3179 msg->middle, session, cap, issued); 3180 if (realm) 3181 ceph_put_snap_realm(mdsc, realm); 3182 goto done_unlocked; 3183 } 3184 3185 /* the rest require a cap */ 3186 spin_lock(&ci->i_ceph_lock); 3187 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3188 if (!cap) { 3189 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3190 inode, ceph_ino(inode), ceph_snap(inode), mds); 3191 spin_unlock(&ci->i_ceph_lock); 3192 goto flush_cap_releases; 3193 } 3194 3195 /* note that each of these drops i_ceph_lock for us */ 3196 switch (op) { 3197 case CEPH_CAP_OP_REVOKE: 3198 case CEPH_CAP_OP_GRANT: 3199 __ceph_caps_issued(ci, &issued); 3200 issued |= __ceph_caps_dirty(ci); 3201 handle_cap_grant(mdsc, inode, h, 3202 inline_version, inline_data, inline_len, 3203 msg->middle, session, cap, issued); 3204 goto done_unlocked; 3205 3206 case CEPH_CAP_OP_FLUSH_ACK: 3207 handle_cap_flush_ack(inode, tid, h, session, cap); 3208 break; 3209 3210 case CEPH_CAP_OP_TRUNC: 3211 handle_cap_trunc(inode, h, session); 3212 break; 3213 3214 default: 3215 spin_unlock(&ci->i_ceph_lock); 3216 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3217 ceph_cap_op_name(op)); 3218 } 3219 3220 goto done; 3221 3222 flush_cap_releases: 3223 /* 3224 * send any full release message to try to move things 3225 * along for the mds (who clearly thinks we still have this 3226 * cap). 3227 */ 3228 ceph_add_cap_releases(mdsc, session); 3229 ceph_send_cap_releases(mdsc, session); 3230 3231 done: 3232 mutex_unlock(&session->s_mutex); 3233 done_unlocked: 3234 iput(inode); 3235 return; 3236 3237 bad: 3238 pr_err("ceph_handle_caps: corrupt message\n"); 3239 ceph_msg_dump(msg); 3240 return; 3241 } 3242 3243 /* 3244 * Delayed work handler to process end of delayed cap release LRU list. 3245 */ 3246 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3247 { 3248 struct ceph_inode_info *ci; 3249 int flags = CHECK_CAPS_NODELAY; 3250 3251 dout("check_delayed_caps\n"); 3252 while (1) { 3253 spin_lock(&mdsc->cap_delay_lock); 3254 if (list_empty(&mdsc->cap_delay_list)) 3255 break; 3256 ci = list_first_entry(&mdsc->cap_delay_list, 3257 struct ceph_inode_info, 3258 i_cap_delay_list); 3259 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3260 time_before(jiffies, ci->i_hold_caps_max)) 3261 break; 3262 list_del_init(&ci->i_cap_delay_list); 3263 spin_unlock(&mdsc->cap_delay_lock); 3264 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3265 ceph_check_caps(ci, flags, NULL); 3266 } 3267 spin_unlock(&mdsc->cap_delay_lock); 3268 } 3269 3270 /* 3271 * Flush all dirty caps to the mds 3272 */ 3273 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3274 { 3275 struct ceph_inode_info *ci; 3276 struct inode *inode; 3277 3278 dout("flush_dirty_caps\n"); 3279 spin_lock(&mdsc->cap_dirty_lock); 3280 while (!list_empty(&mdsc->cap_dirty)) { 3281 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3282 i_dirty_item); 3283 inode = &ci->vfs_inode; 3284 ihold(inode); 3285 dout("flush_dirty_caps %p\n", inode); 3286 spin_unlock(&mdsc->cap_dirty_lock); 3287 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3288 iput(inode); 3289 spin_lock(&mdsc->cap_dirty_lock); 3290 } 3291 spin_unlock(&mdsc->cap_dirty_lock); 3292 dout("flush_dirty_caps done\n"); 3293 } 3294 3295 /* 3296 * Drop open file reference. If we were the last open file, 3297 * we may need to release capabilities to the MDS (or schedule 3298 * their delayed release). 3299 */ 3300 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3301 { 3302 struct inode *inode = &ci->vfs_inode; 3303 int last = 0; 3304 3305 spin_lock(&ci->i_ceph_lock); 3306 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3307 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3308 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3309 if (--ci->i_nr_by_mode[fmode] == 0) 3310 last++; 3311 spin_unlock(&ci->i_ceph_lock); 3312 3313 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3314 ceph_check_caps(ci, 0, NULL); 3315 } 3316 3317 /* 3318 * Helpers for embedding cap and dentry lease releases into mds 3319 * requests. 3320 * 3321 * @force is used by dentry_release (below) to force inclusion of a 3322 * record for the directory inode, even when there aren't any caps to 3323 * drop. 3324 */ 3325 int ceph_encode_inode_release(void **p, struct inode *inode, 3326 int mds, int drop, int unless, int force) 3327 { 3328 struct ceph_inode_info *ci = ceph_inode(inode); 3329 struct ceph_cap *cap; 3330 struct ceph_mds_request_release *rel = *p; 3331 int used, dirty; 3332 int ret = 0; 3333 3334 spin_lock(&ci->i_ceph_lock); 3335 used = __ceph_caps_used(ci); 3336 dirty = __ceph_caps_dirty(ci); 3337 3338 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3339 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3340 ceph_cap_string(unless)); 3341 3342 /* only drop unused, clean caps */ 3343 drop &= ~(used | dirty); 3344 3345 cap = __get_cap_for_mds(ci, mds); 3346 if (cap && __cap_is_valid(cap)) { 3347 if (force || 3348 ((cap->issued & drop) && 3349 (cap->issued & unless) == 0)) { 3350 if ((cap->issued & drop) && 3351 (cap->issued & unless) == 0) { 3352 int wanted = __ceph_caps_wanted(ci); 3353 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3354 wanted |= cap->mds_wanted; 3355 dout("encode_inode_release %p cap %p " 3356 "%s -> %s, wanted %s -> %s\n", inode, cap, 3357 ceph_cap_string(cap->issued), 3358 ceph_cap_string(cap->issued & ~drop), 3359 ceph_cap_string(cap->mds_wanted), 3360 ceph_cap_string(wanted)); 3361 3362 cap->issued &= ~drop; 3363 cap->implemented &= ~drop; 3364 cap->mds_wanted = wanted; 3365 } else { 3366 dout("encode_inode_release %p cap %p %s" 3367 " (force)\n", inode, cap, 3368 ceph_cap_string(cap->issued)); 3369 } 3370 3371 rel->ino = cpu_to_le64(ceph_ino(inode)); 3372 rel->cap_id = cpu_to_le64(cap->cap_id); 3373 rel->seq = cpu_to_le32(cap->seq); 3374 rel->issue_seq = cpu_to_le32(cap->issue_seq); 3375 rel->mseq = cpu_to_le32(cap->mseq); 3376 rel->caps = cpu_to_le32(cap->implemented); 3377 rel->wanted = cpu_to_le32(cap->mds_wanted); 3378 rel->dname_len = 0; 3379 rel->dname_seq = 0; 3380 *p += sizeof(*rel); 3381 ret = 1; 3382 } else { 3383 dout("encode_inode_release %p cap %p %s\n", 3384 inode, cap, ceph_cap_string(cap->issued)); 3385 } 3386 } 3387 spin_unlock(&ci->i_ceph_lock); 3388 return ret; 3389 } 3390 3391 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3392 int mds, int drop, int unless) 3393 { 3394 struct inode *dir = dentry->d_parent->d_inode; 3395 struct ceph_mds_request_release *rel = *p; 3396 struct ceph_dentry_info *di = ceph_dentry(dentry); 3397 int force = 0; 3398 int ret; 3399 3400 /* 3401 * force an record for the directory caps if we have a dentry lease. 3402 * this is racy (can't take i_ceph_lock and d_lock together), but it 3403 * doesn't have to be perfect; the mds will revoke anything we don't 3404 * release. 3405 */ 3406 spin_lock(&dentry->d_lock); 3407 if (di->lease_session && di->lease_session->s_mds == mds) 3408 force = 1; 3409 spin_unlock(&dentry->d_lock); 3410 3411 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3412 3413 spin_lock(&dentry->d_lock); 3414 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3415 dout("encode_dentry_release %p mds%d seq %d\n", 3416 dentry, mds, (int)di->lease_seq); 3417 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3418 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3419 *p += dentry->d_name.len; 3420 rel->dname_seq = cpu_to_le32(di->lease_seq); 3421 __ceph_mdsc_drop_dentry_lease(dentry); 3422 } 3423 spin_unlock(&dentry->d_lock); 3424 return ret; 3425 } 3426