xref: /openbmc/linux/fs/ceph/addr.c (revision f0fe1e54)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/backing-dev.h>
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/swap.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/pagevec.h>
11 #include <linux/task_io_accounting_ops.h>
12 #include <linux/signal.h>
13 #include <linux/iversion.h>
14 #include <linux/ktime.h>
15 #include <linux/netfs.h>
16 
17 #include "super.h"
18 #include "mds_client.h"
19 #include "cache.h"
20 #include "metric.h"
21 #include "crypto.h"
22 #include <linux/ceph/osd_client.h>
23 #include <linux/ceph/striper.h>
24 
25 /*
26  * Ceph address space ops.
27  *
28  * There are a few funny things going on here.
29  *
30  * The page->private field is used to reference a struct
31  * ceph_snap_context for _every_ dirty page.  This indicates which
32  * snapshot the page was logically dirtied in, and thus which snap
33  * context needs to be associated with the osd write during writeback.
34  *
35  * Similarly, struct ceph_inode_info maintains a set of counters to
36  * count dirty pages on the inode.  In the absence of snapshots,
37  * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
38  *
39  * When a snapshot is taken (that is, when the client receives
40  * notification that a snapshot was taken), each inode with caps and
41  * with dirty pages (dirty pages implies there is a cap) gets a new
42  * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
43  * order, new snaps go to the tail).  The i_wrbuffer_ref_head count is
44  * moved to capsnap->dirty. (Unless a sync write is currently in
45  * progress.  In that case, the capsnap is said to be "pending", new
46  * writes cannot start, and the capsnap isn't "finalized" until the
47  * write completes (or fails) and a final size/mtime for the inode for
48  * that snap can be settled upon.)  i_wrbuffer_ref_head is reset to 0.
49  *
50  * On writeback, we must submit writes to the osd IN SNAP ORDER.  So,
51  * we look for the first capsnap in i_cap_snaps and write out pages in
52  * that snap context _only_.  Then we move on to the next capsnap,
53  * eventually reaching the "live" or "head" context (i.e., pages that
54  * are not yet snapped) and are writing the most recently dirtied
55  * pages.
56  *
57  * Invalidate and so forth must take care to ensure the dirty page
58  * accounting is preserved.
59  */
60 
61 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
62 #define CONGESTION_OFF_THRESH(congestion_kb)				\
63 	(CONGESTION_ON_THRESH(congestion_kb) -				\
64 	 (CONGESTION_ON_THRESH(congestion_kb) >> 2))
65 
66 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
67 					struct folio **foliop, void **_fsdata);
68 
69 static inline struct ceph_snap_context *page_snap_context(struct page *page)
70 {
71 	if (PagePrivate(page))
72 		return (void *)page->private;
73 	return NULL;
74 }
75 
76 /*
77  * Dirty a page.  Optimistically adjust accounting, on the assumption
78  * that we won't race with invalidate.  If we do, readjust.
79  */
80 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
81 {
82 	struct inode *inode;
83 	struct ceph_inode_info *ci;
84 	struct ceph_snap_context *snapc;
85 
86 	if (folio_test_dirty(folio)) {
87 		dout("%p dirty_folio %p idx %lu -- already dirty\n",
88 		     mapping->host, folio, folio->index);
89 		VM_BUG_ON_FOLIO(!folio_test_private(folio), folio);
90 		return false;
91 	}
92 
93 	inode = mapping->host;
94 	ci = ceph_inode(inode);
95 
96 	/* dirty the head */
97 	spin_lock(&ci->i_ceph_lock);
98 	BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference
99 	if (__ceph_have_pending_cap_snap(ci)) {
100 		struct ceph_cap_snap *capsnap =
101 				list_last_entry(&ci->i_cap_snaps,
102 						struct ceph_cap_snap,
103 						ci_item);
104 		snapc = ceph_get_snap_context(capsnap->context);
105 		capsnap->dirty_pages++;
106 	} else {
107 		BUG_ON(!ci->i_head_snapc);
108 		snapc = ceph_get_snap_context(ci->i_head_snapc);
109 		++ci->i_wrbuffer_ref_head;
110 	}
111 	if (ci->i_wrbuffer_ref == 0)
112 		ihold(inode);
113 	++ci->i_wrbuffer_ref;
114 	dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
115 	     "snapc %p seq %lld (%d snaps)\n",
116 	     mapping->host, folio, folio->index,
117 	     ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
118 	     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
119 	     snapc, snapc->seq, snapc->num_snaps);
120 	spin_unlock(&ci->i_ceph_lock);
121 
122 	/*
123 	 * Reference snap context in folio->private.  Also set
124 	 * PagePrivate so that we get invalidate_folio callback.
125 	 */
126 	VM_WARN_ON_FOLIO(folio->private, folio);
127 	folio_attach_private(folio, snapc);
128 
129 	return ceph_fscache_dirty_folio(mapping, folio);
130 }
131 
132 /*
133  * If we are truncating the full folio (i.e. offset == 0), adjust the
134  * dirty folio counters appropriately.  Only called if there is private
135  * data on the folio.
136  */
137 static void ceph_invalidate_folio(struct folio *folio, size_t offset,
138 				size_t length)
139 {
140 	struct inode *inode;
141 	struct ceph_inode_info *ci;
142 	struct ceph_snap_context *snapc;
143 
144 	inode = folio->mapping->host;
145 	ci = ceph_inode(inode);
146 
147 	if (offset != 0 || length != folio_size(folio)) {
148 		dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
149 		     inode, folio->index, offset, length);
150 		return;
151 	}
152 
153 	WARN_ON(!folio_test_locked(folio));
154 	if (folio_test_private(folio)) {
155 		dout("%p invalidate_folio idx %lu full dirty page\n",
156 		     inode, folio->index);
157 
158 		snapc = folio_detach_private(folio);
159 		ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
160 		ceph_put_snap_context(snapc);
161 	}
162 
163 	folio_wait_fscache(folio);
164 }
165 
166 static bool ceph_release_folio(struct folio *folio, gfp_t gfp)
167 {
168 	struct inode *inode = folio->mapping->host;
169 
170 	dout("%llx:%llx release_folio idx %lu (%sdirty)\n",
171 	     ceph_vinop(inode),
172 	     folio->index, folio_test_dirty(folio) ? "" : "not ");
173 
174 	if (folio_test_private(folio))
175 		return false;
176 
177 	if (folio_test_fscache(folio)) {
178 		if (current_is_kswapd() || !(gfp & __GFP_FS))
179 			return false;
180 		folio_wait_fscache(folio);
181 	}
182 	ceph_fscache_note_page_release(inode);
183 	return true;
184 }
185 
186 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
187 {
188 	struct inode *inode = rreq->inode;
189 	struct ceph_inode_info *ci = ceph_inode(inode);
190 	struct ceph_file_layout *lo = &ci->i_layout;
191 	unsigned long max_pages = inode->i_sb->s_bdi->ra_pages;
192 	loff_t end = rreq->start + rreq->len, new_end;
193 	struct ceph_netfs_request_data *priv = rreq->netfs_priv;
194 	unsigned long max_len;
195 	u32 blockoff;
196 
197 	if (priv) {
198 		/* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */
199 		if (priv->file_ra_disabled)
200 			max_pages = 0;
201 		else
202 			max_pages = priv->file_ra_pages;
203 
204 	}
205 
206 	/* Readahead is disabled */
207 	if (!max_pages)
208 		return;
209 
210 	max_len = max_pages << PAGE_SHIFT;
211 
212 	/*
213 	 * Try to expand the length forward by rounding up it to the next
214 	 * block, but do not exceed the file size, unless the original
215 	 * request already exceeds it.
216 	 */
217 	new_end = min(round_up(end, lo->stripe_unit), rreq->i_size);
218 	if (new_end > end && new_end <= rreq->start + max_len)
219 		rreq->len = new_end - rreq->start;
220 
221 	/* Try to expand the start downward */
222 	div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
223 	if (rreq->len + blockoff <= max_len) {
224 		rreq->start -= blockoff;
225 		rreq->len += blockoff;
226 	}
227 }
228 
229 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
230 {
231 	struct inode *inode = subreq->rreq->inode;
232 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
233 	struct ceph_inode_info *ci = ceph_inode(inode);
234 	u64 objno, objoff;
235 	u32 xlen;
236 
237 	/* Truncate the extent at the end of the current block */
238 	ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
239 				      &objno, &objoff, &xlen);
240 	subreq->len = min(xlen, fsc->mount_options->rsize);
241 	return true;
242 }
243 
244 static void finish_netfs_read(struct ceph_osd_request *req)
245 {
246 	struct inode *inode = req->r_inode;
247 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
248 	struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
249 	struct netfs_io_subrequest *subreq = req->r_priv;
250 	struct ceph_osd_req_op *op = &req->r_ops[0];
251 	int err = req->r_result;
252 	bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ);
253 
254 	ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
255 				 req->r_end_latency, osd_data->length, err);
256 
257 	dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
258 	     subreq->len, i_size_read(req->r_inode));
259 
260 	/* no object means success but no data */
261 	if (err == -ENOENT)
262 		err = 0;
263 	else if (err == -EBLOCKLISTED)
264 		fsc->blocklisted = true;
265 
266 	if (err >= 0) {
267 		if (sparse && err > 0)
268 			err = ceph_sparse_ext_map_end(op);
269 		if (err < subreq->len)
270 			__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
271 		if (IS_ENCRYPTED(inode) && err > 0) {
272 			err = ceph_fscrypt_decrypt_extents(inode,
273 					osd_data->pages, subreq->start,
274 					op->extent.sparse_ext,
275 					op->extent.sparse_ext_cnt);
276 			if (err > subreq->len)
277 				err = subreq->len;
278 		}
279 	}
280 
281 	if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) {
282 		ceph_put_page_vector(osd_data->pages,
283 				     calc_pages_for(osd_data->alignment,
284 					osd_data->length), false);
285 	}
286 	netfs_subreq_terminated(subreq, err, false);
287 	iput(req->r_inode);
288 }
289 
290 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
291 {
292 	struct netfs_io_request *rreq = subreq->rreq;
293 	struct inode *inode = rreq->inode;
294 	struct ceph_mds_reply_info_parsed *rinfo;
295 	struct ceph_mds_reply_info_in *iinfo;
296 	struct ceph_mds_request *req;
297 	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
298 	struct ceph_inode_info *ci = ceph_inode(inode);
299 	struct iov_iter iter;
300 	ssize_t err = 0;
301 	size_t len;
302 	int mode;
303 
304 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
305 	__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
306 
307 	if (subreq->start >= inode->i_size)
308 		goto out;
309 
310 	/* We need to fetch the inline data. */
311 	mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA);
312 	req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode);
313 	if (IS_ERR(req)) {
314 		err = PTR_ERR(req);
315 		goto out;
316 	}
317 	req->r_ino1 = ci->i_vino;
318 	req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
319 	req->r_num_caps = 2;
320 
321 	err = ceph_mdsc_do_request(mdsc, NULL, req);
322 	if (err < 0)
323 		goto out;
324 
325 	rinfo = &req->r_reply_info;
326 	iinfo = &rinfo->targeti;
327 	if (iinfo->inline_version == CEPH_INLINE_NONE) {
328 		/* The data got uninlined */
329 		ceph_mdsc_put_request(req);
330 		return false;
331 	}
332 
333 	len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
334 	iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
335 	err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
336 	if (err == 0)
337 		err = -EFAULT;
338 
339 	ceph_mdsc_put_request(req);
340 out:
341 	netfs_subreq_terminated(subreq, err, false);
342 	return true;
343 }
344 
345 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
346 {
347 	struct netfs_io_request *rreq = subreq->rreq;
348 	struct inode *inode = rreq->inode;
349 	struct ceph_inode_info *ci = ceph_inode(inode);
350 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
351 	struct ceph_osd_request *req = NULL;
352 	struct ceph_vino vino = ceph_vino(inode);
353 	struct iov_iter iter;
354 	int err = 0;
355 	u64 len = subreq->len;
356 	bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD);
357 	u64 off = subreq->start;
358 
359 	if (ceph_inode_is_shutdown(inode)) {
360 		err = -EIO;
361 		goto out;
362 	}
363 
364 	if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq))
365 		return;
366 
367 	ceph_fscrypt_adjust_off_and_len(inode, &off, &len);
368 
369 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino,
370 			off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ,
371 			CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
372 			NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
373 	if (IS_ERR(req)) {
374 		err = PTR_ERR(req);
375 		req = NULL;
376 		goto out;
377 	}
378 
379 	if (sparse) {
380 		err = ceph_alloc_sparse_ext_map(&req->r_ops[0]);
381 		if (err)
382 			goto out;
383 	}
384 
385 	dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
386 
387 	iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
388 
389 	/*
390 	 * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for
391 	 * encrypted inodes. We'd need infrastructure that handles an iov_iter
392 	 * instead of page arrays, and we don't have that as of yet. Once the
393 	 * dust settles on the write helpers and encrypt/decrypt routines for
394 	 * netfs, we should be able to rework this.
395 	 */
396 	if (IS_ENCRYPTED(inode)) {
397 		struct page **pages;
398 		size_t page_off;
399 
400 		err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off);
401 		if (err < 0) {
402 			dout("%s: iov_ter_get_pages_alloc returned %d\n",
403 			     __func__, err);
404 			goto out;
405 		}
406 
407 		/* should always give us a page-aligned read */
408 		WARN_ON_ONCE(page_off);
409 		len = err;
410 		err = 0;
411 
412 		osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false,
413 						 false);
414 	} else {
415 		osd_req_op_extent_osd_iter(req, 0, &iter);
416 	}
417 	req->r_callback = finish_netfs_read;
418 	req->r_priv = subreq;
419 	req->r_inode = inode;
420 	ihold(inode);
421 
422 	ceph_osdc_start_request(req->r_osdc, req);
423 out:
424 	ceph_osdc_put_request(req);
425 	if (err)
426 		netfs_subreq_terminated(subreq, err, false);
427 	dout("%s: result %d\n", __func__, err);
428 }
429 
430 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
431 {
432 	struct inode *inode = rreq->inode;
433 	int got = 0, want = CEPH_CAP_FILE_CACHE;
434 	struct ceph_netfs_request_data *priv;
435 	int ret = 0;
436 
437 	if (rreq->origin != NETFS_READAHEAD)
438 		return 0;
439 
440 	priv = kzalloc(sizeof(*priv), GFP_NOFS);
441 	if (!priv)
442 		return -ENOMEM;
443 
444 	if (file) {
445 		struct ceph_rw_context *rw_ctx;
446 		struct ceph_file_info *fi = file->private_data;
447 
448 		priv->file_ra_pages = file->f_ra.ra_pages;
449 		priv->file_ra_disabled = file->f_mode & FMODE_RANDOM;
450 
451 		rw_ctx = ceph_find_rw_context(fi);
452 		if (rw_ctx) {
453 			rreq->netfs_priv = priv;
454 			return 0;
455 		}
456 	}
457 
458 	/*
459 	 * readahead callers do not necessarily hold Fcb caps
460 	 * (e.g. fadvise, madvise).
461 	 */
462 	ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
463 	if (ret < 0) {
464 		dout("start_read %p, error getting cap\n", inode);
465 		goto out;
466 	}
467 
468 	if (!(got & want)) {
469 		dout("start_read %p, no cache cap\n", inode);
470 		ret = -EACCES;
471 		goto out;
472 	}
473 	if (ret == 0) {
474 		ret = -EACCES;
475 		goto out;
476 	}
477 
478 	priv->caps = got;
479 	rreq->netfs_priv = priv;
480 
481 out:
482 	if (ret < 0)
483 		kfree(priv);
484 
485 	return ret;
486 }
487 
488 static void ceph_netfs_free_request(struct netfs_io_request *rreq)
489 {
490 	struct ceph_netfs_request_data *priv = rreq->netfs_priv;
491 
492 	if (!priv)
493 		return;
494 
495 	if (priv->caps)
496 		ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps);
497 	kfree(priv);
498 	rreq->netfs_priv = NULL;
499 }
500 
501 const struct netfs_request_ops ceph_netfs_ops = {
502 	.init_request		= ceph_init_request,
503 	.free_request		= ceph_netfs_free_request,
504 	.begin_cache_operation	= ceph_begin_cache_operation,
505 	.issue_read		= ceph_netfs_issue_read,
506 	.expand_readahead	= ceph_netfs_expand_readahead,
507 	.clamp_length		= ceph_netfs_clamp_length,
508 	.check_write_begin	= ceph_netfs_check_write_begin,
509 };
510 
511 #ifdef CONFIG_CEPH_FSCACHE
512 static void ceph_set_page_fscache(struct page *page)
513 {
514 	set_page_fscache(page);
515 }
516 
517 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
518 {
519 	struct inode *inode = priv;
520 
521 	if (IS_ERR_VALUE(error) && error != -ENOBUFS)
522 		ceph_fscache_invalidate(inode, false);
523 }
524 
525 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
526 {
527 	struct ceph_inode_info *ci = ceph_inode(inode);
528 	struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
529 
530 	fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
531 			       ceph_fscache_write_terminated, inode, caching);
532 }
533 #else
534 static inline void ceph_set_page_fscache(struct page *page)
535 {
536 }
537 
538 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
539 {
540 }
541 #endif /* CONFIG_CEPH_FSCACHE */
542 
543 struct ceph_writeback_ctl
544 {
545 	loff_t i_size;
546 	u64 truncate_size;
547 	u32 truncate_seq;
548 	bool size_stable;
549 	bool head_snapc;
550 };
551 
552 /*
553  * Get ref for the oldest snapc for an inode with dirty data... that is, the
554  * only snap context we are allowed to write back.
555  */
556 static struct ceph_snap_context *
557 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
558 		   struct ceph_snap_context *page_snapc)
559 {
560 	struct ceph_inode_info *ci = ceph_inode(inode);
561 	struct ceph_snap_context *snapc = NULL;
562 	struct ceph_cap_snap *capsnap = NULL;
563 
564 	spin_lock(&ci->i_ceph_lock);
565 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
566 		dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
567 		     capsnap->context, capsnap->dirty_pages);
568 		if (!capsnap->dirty_pages)
569 			continue;
570 
571 		/* get i_size, truncate_{seq,size} for page_snapc? */
572 		if (snapc && capsnap->context != page_snapc)
573 			continue;
574 
575 		if (ctl) {
576 			if (capsnap->writing) {
577 				ctl->i_size = i_size_read(inode);
578 				ctl->size_stable = false;
579 			} else {
580 				ctl->i_size = capsnap->size;
581 				ctl->size_stable = true;
582 			}
583 			ctl->truncate_size = capsnap->truncate_size;
584 			ctl->truncate_seq = capsnap->truncate_seq;
585 			ctl->head_snapc = false;
586 		}
587 
588 		if (snapc)
589 			break;
590 
591 		snapc = ceph_get_snap_context(capsnap->context);
592 		if (!page_snapc ||
593 		    page_snapc == snapc ||
594 		    page_snapc->seq > snapc->seq)
595 			break;
596 	}
597 	if (!snapc && ci->i_wrbuffer_ref_head) {
598 		snapc = ceph_get_snap_context(ci->i_head_snapc);
599 		dout(" head snapc %p has %d dirty pages\n",
600 		     snapc, ci->i_wrbuffer_ref_head);
601 		if (ctl) {
602 			ctl->i_size = i_size_read(inode);
603 			ctl->truncate_size = ci->i_truncate_size;
604 			ctl->truncate_seq = ci->i_truncate_seq;
605 			ctl->size_stable = false;
606 			ctl->head_snapc = true;
607 		}
608 	}
609 	spin_unlock(&ci->i_ceph_lock);
610 	return snapc;
611 }
612 
613 static u64 get_writepages_data_length(struct inode *inode,
614 				      struct page *page, u64 start)
615 {
616 	struct ceph_inode_info *ci = ceph_inode(inode);
617 	struct ceph_snap_context *snapc;
618 	struct ceph_cap_snap *capsnap = NULL;
619 	u64 end = i_size_read(inode);
620 	u64 ret;
621 
622 	snapc = page_snap_context(ceph_fscrypt_pagecache_page(page));
623 	if (snapc != ci->i_head_snapc) {
624 		bool found = false;
625 		spin_lock(&ci->i_ceph_lock);
626 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
627 			if (capsnap->context == snapc) {
628 				if (!capsnap->writing)
629 					end = capsnap->size;
630 				found = true;
631 				break;
632 			}
633 		}
634 		spin_unlock(&ci->i_ceph_lock);
635 		WARN_ON(!found);
636 	}
637 	if (end > ceph_fscrypt_page_offset(page) + thp_size(page))
638 		end = ceph_fscrypt_page_offset(page) + thp_size(page);
639 	ret = end > start ? end - start : 0;
640 	if (ret && fscrypt_is_bounce_page(page))
641 		ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE);
642 	return ret;
643 }
644 
645 /*
646  * Write a single page, but leave the page locked.
647  *
648  * If we get a write error, mark the mapping for error, but still adjust the
649  * dirty page accounting (i.e., page is no longer dirty).
650  */
651 static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
652 {
653 	struct folio *folio = page_folio(page);
654 	struct inode *inode = page->mapping->host;
655 	struct ceph_inode_info *ci = ceph_inode(inode);
656 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
657 	struct ceph_snap_context *snapc, *oldest;
658 	loff_t page_off = page_offset(page);
659 	int err;
660 	loff_t len = thp_size(page);
661 	loff_t wlen;
662 	struct ceph_writeback_ctl ceph_wbc;
663 	struct ceph_osd_client *osdc = &fsc->client->osdc;
664 	struct ceph_osd_request *req;
665 	bool caching = ceph_is_cache_enabled(inode);
666 	struct page *bounce_page = NULL;
667 
668 	dout("writepage %p idx %lu\n", page, page->index);
669 
670 	if (ceph_inode_is_shutdown(inode))
671 		return -EIO;
672 
673 	/* verify this is a writeable snap context */
674 	snapc = page_snap_context(page);
675 	if (!snapc) {
676 		dout("writepage %p page %p not dirty?\n", inode, page);
677 		return 0;
678 	}
679 	oldest = get_oldest_context(inode, &ceph_wbc, snapc);
680 	if (snapc->seq > oldest->seq) {
681 		dout("writepage %p page %p snapc %p not writeable - noop\n",
682 		     inode, page, snapc);
683 		/* we should only noop if called by kswapd */
684 		WARN_ON(!(current->flags & PF_MEMALLOC));
685 		ceph_put_snap_context(oldest);
686 		redirty_page_for_writepage(wbc, page);
687 		return 0;
688 	}
689 	ceph_put_snap_context(oldest);
690 
691 	/* is this a partial page at end of file? */
692 	if (page_off >= ceph_wbc.i_size) {
693 		dout("folio at %lu beyond eof %llu\n", folio->index,
694 				ceph_wbc.i_size);
695 		folio_invalidate(folio, 0, folio_size(folio));
696 		return 0;
697 	}
698 
699 	if (ceph_wbc.i_size < page_off + len)
700 		len = ceph_wbc.i_size - page_off;
701 
702 	wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len;
703 	dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
704 	     inode, page, page->index, page_off, wlen, snapc, snapc->seq);
705 
706 	if (atomic_long_inc_return(&fsc->writeback_count) >
707 	    CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
708 		fsc->write_congested = true;
709 
710 	req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode),
711 				    page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE,
712 				    CEPH_OSD_FLAG_WRITE, snapc,
713 				    ceph_wbc.truncate_seq,
714 				    ceph_wbc.truncate_size, true);
715 	if (IS_ERR(req)) {
716 		redirty_page_for_writepage(wbc, page);
717 		return PTR_ERR(req);
718 	}
719 
720 	if (wlen < len)
721 		len = wlen;
722 
723 	set_page_writeback(page);
724 	if (caching)
725 		ceph_set_page_fscache(page);
726 	ceph_fscache_write_to_cache(inode, page_off, len, caching);
727 
728 	if (IS_ENCRYPTED(inode)) {
729 		bounce_page = fscrypt_encrypt_pagecache_blocks(page,
730 						    CEPH_FSCRYPT_BLOCK_SIZE, 0,
731 						    GFP_NOFS);
732 		if (IS_ERR(bounce_page)) {
733 			redirty_page_for_writepage(wbc, page);
734 			end_page_writeback(page);
735 			ceph_osdc_put_request(req);
736 			return PTR_ERR(bounce_page);
737 		}
738 	}
739 
740 	/* it may be a short write due to an object boundary */
741 	WARN_ON_ONCE(len > thp_size(page));
742 	osd_req_op_extent_osd_data_pages(req, 0,
743 			bounce_page ? &bounce_page : &page, wlen, 0,
744 			false, false);
745 	dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n",
746 	     page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not ");
747 
748 	req->r_mtime = inode->i_mtime;
749 	ceph_osdc_start_request(osdc, req);
750 	err = ceph_osdc_wait_request(osdc, req);
751 
752 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
753 				  req->r_end_latency, len, err);
754 	fscrypt_free_bounce_page(bounce_page);
755 	ceph_osdc_put_request(req);
756 	if (err == 0)
757 		err = len;
758 
759 	if (err < 0) {
760 		struct writeback_control tmp_wbc;
761 		if (!wbc)
762 			wbc = &tmp_wbc;
763 		if (err == -ERESTARTSYS) {
764 			/* killed by SIGKILL */
765 			dout("writepage interrupted page %p\n", page);
766 			redirty_page_for_writepage(wbc, page);
767 			end_page_writeback(page);
768 			return err;
769 		}
770 		if (err == -EBLOCKLISTED)
771 			fsc->blocklisted = true;
772 		dout("writepage setting page/mapping error %d %p\n",
773 		     err, page);
774 		mapping_set_error(&inode->i_data, err);
775 		wbc->pages_skipped++;
776 	} else {
777 		dout("writepage cleaned page %p\n", page);
778 		err = 0;  /* vfs expects us to return 0 */
779 	}
780 	oldest = detach_page_private(page);
781 	WARN_ON_ONCE(oldest != snapc);
782 	end_page_writeback(page);
783 	ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
784 	ceph_put_snap_context(snapc);  /* page's reference */
785 
786 	if (atomic_long_dec_return(&fsc->writeback_count) <
787 	    CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
788 		fsc->write_congested = false;
789 
790 	return err;
791 }
792 
793 static int ceph_writepage(struct page *page, struct writeback_control *wbc)
794 {
795 	int err;
796 	struct inode *inode = page->mapping->host;
797 	BUG_ON(!inode);
798 	ihold(inode);
799 
800 	if (wbc->sync_mode == WB_SYNC_NONE &&
801 	    ceph_inode_to_client(inode)->write_congested)
802 		return AOP_WRITEPAGE_ACTIVATE;
803 
804 	wait_on_page_fscache(page);
805 
806 	err = writepage_nounlock(page, wbc);
807 	if (err == -ERESTARTSYS) {
808 		/* direct memory reclaimer was killed by SIGKILL. return 0
809 		 * to prevent caller from setting mapping/page error */
810 		err = 0;
811 	}
812 	unlock_page(page);
813 	iput(inode);
814 	return err;
815 }
816 
817 /*
818  * async writeback completion handler.
819  *
820  * If we get an error, set the mapping error bit, but not the individual
821  * page error bits.
822  */
823 static void writepages_finish(struct ceph_osd_request *req)
824 {
825 	struct inode *inode = req->r_inode;
826 	struct ceph_inode_info *ci = ceph_inode(inode);
827 	struct ceph_osd_data *osd_data;
828 	struct page *page;
829 	int num_pages, total_pages = 0;
830 	int i, j;
831 	int rc = req->r_result;
832 	struct ceph_snap_context *snapc = req->r_snapc;
833 	struct address_space *mapping = inode->i_mapping;
834 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
835 	unsigned int len = 0;
836 	bool remove_page;
837 
838 	dout("writepages_finish %p rc %d\n", inode, rc);
839 	if (rc < 0) {
840 		mapping_set_error(mapping, rc);
841 		ceph_set_error_write(ci);
842 		if (rc == -EBLOCKLISTED)
843 			fsc->blocklisted = true;
844 	} else {
845 		ceph_clear_error_write(ci);
846 	}
847 
848 	/*
849 	 * We lost the cache cap, need to truncate the page before
850 	 * it is unlocked, otherwise we'd truncate it later in the
851 	 * page truncation thread, possibly losing some data that
852 	 * raced its way in
853 	 */
854 	remove_page = !(ceph_caps_issued(ci) &
855 			(CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
856 
857 	/* clean all pages */
858 	for (i = 0; i < req->r_num_ops; i++) {
859 		if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) {
860 			pr_warn("%s incorrect op %d req %p index %d tid %llu\n",
861 				__func__, req->r_ops[i].op, req, i, req->r_tid);
862 			break;
863 		}
864 
865 		osd_data = osd_req_op_extent_osd_data(req, i);
866 		BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
867 		len += osd_data->length;
868 		num_pages = calc_pages_for((u64)osd_data->alignment,
869 					   (u64)osd_data->length);
870 		total_pages += num_pages;
871 		for (j = 0; j < num_pages; j++) {
872 			page = osd_data->pages[j];
873 			if (fscrypt_is_bounce_page(page)) {
874 				page = fscrypt_pagecache_page(page);
875 				fscrypt_free_bounce_page(osd_data->pages[j]);
876 				osd_data->pages[j] = page;
877 			}
878 			BUG_ON(!page);
879 			WARN_ON(!PageUptodate(page));
880 
881 			if (atomic_long_dec_return(&fsc->writeback_count) <
882 			     CONGESTION_OFF_THRESH(
883 					fsc->mount_options->congestion_kb))
884 				fsc->write_congested = false;
885 
886 			ceph_put_snap_context(detach_page_private(page));
887 			end_page_writeback(page);
888 			dout("unlocking %p\n", page);
889 
890 			if (remove_page)
891 				generic_error_remove_page(inode->i_mapping,
892 							  page);
893 
894 			unlock_page(page);
895 		}
896 		dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
897 		     inode, osd_data->length, rc >= 0 ? num_pages : 0);
898 
899 		release_pages(osd_data->pages, num_pages);
900 	}
901 
902 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
903 				  req->r_end_latency, len, rc);
904 
905 	ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
906 
907 	osd_data = osd_req_op_extent_osd_data(req, 0);
908 	if (osd_data->pages_from_pool)
909 		mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
910 	else
911 		kfree(osd_data->pages);
912 	ceph_osdc_put_request(req);
913 }
914 
915 /*
916  * initiate async writeback
917  */
918 static int ceph_writepages_start(struct address_space *mapping,
919 				 struct writeback_control *wbc)
920 {
921 	struct inode *inode = mapping->host;
922 	struct ceph_inode_info *ci = ceph_inode(inode);
923 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
924 	struct ceph_vino vino = ceph_vino(inode);
925 	pgoff_t index, start_index, end = -1;
926 	struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
927 	struct folio_batch fbatch;
928 	int rc = 0;
929 	unsigned int wsize = i_blocksize(inode);
930 	struct ceph_osd_request *req = NULL;
931 	struct ceph_writeback_ctl ceph_wbc;
932 	bool should_loop, range_whole = false;
933 	bool done = false;
934 	bool caching = ceph_is_cache_enabled(inode);
935 	xa_mark_t tag;
936 
937 	if (wbc->sync_mode == WB_SYNC_NONE &&
938 	    fsc->write_congested)
939 		return 0;
940 
941 	dout("writepages_start %p (mode=%s)\n", inode,
942 	     wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
943 	     (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
944 
945 	if (ceph_inode_is_shutdown(inode)) {
946 		if (ci->i_wrbuffer_ref > 0) {
947 			pr_warn_ratelimited(
948 				"writepage_start %p %lld forced umount\n",
949 				inode, ceph_ino(inode));
950 		}
951 		mapping_set_error(mapping, -EIO);
952 		return -EIO; /* we're in a forced umount, don't write! */
953 	}
954 	if (fsc->mount_options->wsize < wsize)
955 		wsize = fsc->mount_options->wsize;
956 
957 	folio_batch_init(&fbatch);
958 
959 	start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
960 	index = start_index;
961 
962 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
963 		tag = PAGECACHE_TAG_TOWRITE;
964 	} else {
965 		tag = PAGECACHE_TAG_DIRTY;
966 	}
967 retry:
968 	/* find oldest snap context with dirty data */
969 	snapc = get_oldest_context(inode, &ceph_wbc, NULL);
970 	if (!snapc) {
971 		/* hmm, why does writepages get called when there
972 		   is no dirty data? */
973 		dout(" no snap context with dirty data?\n");
974 		goto out;
975 	}
976 	dout(" oldest snapc is %p seq %lld (%d snaps)\n",
977 	     snapc, snapc->seq, snapc->num_snaps);
978 
979 	should_loop = false;
980 	if (ceph_wbc.head_snapc && snapc != last_snapc) {
981 		/* where to start/end? */
982 		if (wbc->range_cyclic) {
983 			index = start_index;
984 			end = -1;
985 			if (index > 0)
986 				should_loop = true;
987 			dout(" cyclic, start at %lu\n", index);
988 		} else {
989 			index = wbc->range_start >> PAGE_SHIFT;
990 			end = wbc->range_end >> PAGE_SHIFT;
991 			if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
992 				range_whole = true;
993 			dout(" not cyclic, %lu to %lu\n", index, end);
994 		}
995 	} else if (!ceph_wbc.head_snapc) {
996 		/* Do not respect wbc->range_{start,end}. Dirty pages
997 		 * in that range can be associated with newer snapc.
998 		 * They are not writeable until we write all dirty pages
999 		 * associated with 'snapc' get written */
1000 		if (index > 0)
1001 			should_loop = true;
1002 		dout(" non-head snapc, range whole\n");
1003 	}
1004 
1005 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1006 		tag_pages_for_writeback(mapping, index, end);
1007 
1008 	ceph_put_snap_context(last_snapc);
1009 	last_snapc = snapc;
1010 
1011 	while (!done && index <= end) {
1012 		int num_ops = 0, op_idx;
1013 		unsigned i, nr_folios, max_pages, locked_pages = 0;
1014 		struct page **pages = NULL, **data_pages;
1015 		struct page *page;
1016 		pgoff_t strip_unit_end = 0;
1017 		u64 offset = 0, len = 0;
1018 		bool from_pool = false;
1019 
1020 		max_pages = wsize >> PAGE_SHIFT;
1021 
1022 get_more_pages:
1023 		nr_folios = filemap_get_folios_tag(mapping, &index,
1024 						   end, tag, &fbatch);
1025 		dout("pagevec_lookup_range_tag got %d\n", nr_folios);
1026 		if (!nr_folios && !locked_pages)
1027 			break;
1028 		for (i = 0; i < nr_folios && locked_pages < max_pages; i++) {
1029 			page = &fbatch.folios[i]->page;
1030 			dout("? %p idx %lu\n", page, page->index);
1031 			if (locked_pages == 0)
1032 				lock_page(page);  /* first page */
1033 			else if (!trylock_page(page))
1034 				break;
1035 
1036 			/* only dirty pages, or our accounting breaks */
1037 			if (unlikely(!PageDirty(page)) ||
1038 			    unlikely(page->mapping != mapping)) {
1039 				dout("!dirty or !mapping %p\n", page);
1040 				unlock_page(page);
1041 				continue;
1042 			}
1043 			/* only if matching snap context */
1044 			pgsnapc = page_snap_context(page);
1045 			if (pgsnapc != snapc) {
1046 				dout("page snapc %p %lld != oldest %p %lld\n",
1047 				     pgsnapc, pgsnapc->seq, snapc, snapc->seq);
1048 				if (!should_loop &&
1049 				    !ceph_wbc.head_snapc &&
1050 				    wbc->sync_mode != WB_SYNC_NONE)
1051 					should_loop = true;
1052 				unlock_page(page);
1053 				continue;
1054 			}
1055 			if (page_offset(page) >= ceph_wbc.i_size) {
1056 				struct folio *folio = page_folio(page);
1057 
1058 				dout("folio at %lu beyond eof %llu\n",
1059 				     folio->index, ceph_wbc.i_size);
1060 				if ((ceph_wbc.size_stable ||
1061 				    folio_pos(folio) >= i_size_read(inode)) &&
1062 				    folio_clear_dirty_for_io(folio))
1063 					folio_invalidate(folio, 0,
1064 							folio_size(folio));
1065 				folio_unlock(folio);
1066 				continue;
1067 			}
1068 			if (strip_unit_end && (page->index > strip_unit_end)) {
1069 				dout("end of strip unit %p\n", page);
1070 				unlock_page(page);
1071 				break;
1072 			}
1073 			if (PageWriteback(page) || PageFsCache(page)) {
1074 				if (wbc->sync_mode == WB_SYNC_NONE) {
1075 					dout("%p under writeback\n", page);
1076 					unlock_page(page);
1077 					continue;
1078 				}
1079 				dout("waiting on writeback %p\n", page);
1080 				wait_on_page_writeback(page);
1081 				wait_on_page_fscache(page);
1082 			}
1083 
1084 			if (!clear_page_dirty_for_io(page)) {
1085 				dout("%p !clear_page_dirty_for_io\n", page);
1086 				unlock_page(page);
1087 				continue;
1088 			}
1089 
1090 			/*
1091 			 * We have something to write.  If this is
1092 			 * the first locked page this time through,
1093 			 * calculate max possinle write size and
1094 			 * allocate a page array
1095 			 */
1096 			if (locked_pages == 0) {
1097 				u64 objnum;
1098 				u64 objoff;
1099 				u32 xlen;
1100 
1101 				/* prepare async write request */
1102 				offset = (u64)page_offset(page);
1103 				ceph_calc_file_object_mapping(&ci->i_layout,
1104 							      offset, wsize,
1105 							      &objnum, &objoff,
1106 							      &xlen);
1107 				len = xlen;
1108 
1109 				num_ops = 1;
1110 				strip_unit_end = page->index +
1111 					((len - 1) >> PAGE_SHIFT);
1112 
1113 				BUG_ON(pages);
1114 				max_pages = calc_pages_for(0, (u64)len);
1115 				pages = kmalloc_array(max_pages,
1116 						      sizeof(*pages),
1117 						      GFP_NOFS);
1118 				if (!pages) {
1119 					from_pool = true;
1120 					pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1121 					BUG_ON(!pages);
1122 				}
1123 
1124 				len = 0;
1125 			} else if (page->index !=
1126 				   (offset + len) >> PAGE_SHIFT) {
1127 				if (num_ops >= (from_pool ?  CEPH_OSD_SLAB_OPS :
1128 							     CEPH_OSD_MAX_OPS)) {
1129 					redirty_page_for_writepage(wbc, page);
1130 					unlock_page(page);
1131 					break;
1132 				}
1133 
1134 				num_ops++;
1135 				offset = (u64)page_offset(page);
1136 				len = 0;
1137 			}
1138 
1139 			/* note position of first page in fbatch */
1140 			dout("%p will write page %p idx %lu\n",
1141 			     inode, page, page->index);
1142 
1143 			if (atomic_long_inc_return(&fsc->writeback_count) >
1144 			    CONGESTION_ON_THRESH(
1145 				    fsc->mount_options->congestion_kb))
1146 				fsc->write_congested = true;
1147 
1148 			if (IS_ENCRYPTED(inode)) {
1149 				pages[locked_pages] =
1150 					fscrypt_encrypt_pagecache_blocks(page,
1151 						PAGE_SIZE, 0,
1152 						locked_pages ? GFP_NOWAIT : GFP_NOFS);
1153 				if (IS_ERR(pages[locked_pages])) {
1154 					if (PTR_ERR(pages[locked_pages]) == -EINVAL)
1155 						pr_err("%s: inode->i_blkbits=%hhu\n",
1156 							__func__, inode->i_blkbits);
1157 					/* better not fail on first page! */
1158 					BUG_ON(locked_pages == 0);
1159 					pages[locked_pages] = NULL;
1160 					redirty_page_for_writepage(wbc, page);
1161 					unlock_page(page);
1162 					break;
1163 				}
1164 				++locked_pages;
1165 			} else {
1166 				pages[locked_pages++] = page;
1167 			}
1168 
1169 			fbatch.folios[i] = NULL;
1170 			len += thp_size(page);
1171 		}
1172 
1173 		/* did we get anything? */
1174 		if (!locked_pages)
1175 			goto release_folios;
1176 		if (i) {
1177 			unsigned j, n = 0;
1178 			/* shift unused page to beginning of fbatch */
1179 			for (j = 0; j < nr_folios; j++) {
1180 				if (!fbatch.folios[j])
1181 					continue;
1182 				if (n < j)
1183 					fbatch.folios[n] = fbatch.folios[j];
1184 				n++;
1185 			}
1186 			fbatch.nr = n;
1187 
1188 			if (nr_folios && i == nr_folios &&
1189 			    locked_pages < max_pages) {
1190 				dout("reached end fbatch, trying for more\n");
1191 				folio_batch_release(&fbatch);
1192 				goto get_more_pages;
1193 			}
1194 		}
1195 
1196 new_request:
1197 		offset = ceph_fscrypt_page_offset(pages[0]);
1198 		len = wsize;
1199 
1200 		req = ceph_osdc_new_request(&fsc->client->osdc,
1201 					&ci->i_layout, vino,
1202 					offset, &len, 0, num_ops,
1203 					CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1204 					snapc, ceph_wbc.truncate_seq,
1205 					ceph_wbc.truncate_size, false);
1206 		if (IS_ERR(req)) {
1207 			req = ceph_osdc_new_request(&fsc->client->osdc,
1208 						&ci->i_layout, vino,
1209 						offset, &len, 0,
1210 						min(num_ops,
1211 						    CEPH_OSD_SLAB_OPS),
1212 						CEPH_OSD_OP_WRITE,
1213 						CEPH_OSD_FLAG_WRITE,
1214 						snapc, ceph_wbc.truncate_seq,
1215 						ceph_wbc.truncate_size, true);
1216 			BUG_ON(IS_ERR(req));
1217 		}
1218 		BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) +
1219 			     thp_size(pages[locked_pages - 1]) - offset);
1220 
1221 		req->r_callback = writepages_finish;
1222 		req->r_inode = inode;
1223 
1224 		/* Format the osd request message and submit the write */
1225 		len = 0;
1226 		data_pages = pages;
1227 		op_idx = 0;
1228 		for (i = 0; i < locked_pages; i++) {
1229 			struct page *page = ceph_fscrypt_pagecache_page(pages[i]);
1230 
1231 			u64 cur_offset = page_offset(page);
1232 			/*
1233 			 * Discontinuity in page range? Ceph can handle that by just passing
1234 			 * multiple extents in the write op.
1235 			 */
1236 			if (offset + len != cur_offset) {
1237 				/* If it's full, stop here */
1238 				if (op_idx + 1 == req->r_num_ops)
1239 					break;
1240 
1241 				/* Kick off an fscache write with what we have so far. */
1242 				ceph_fscache_write_to_cache(inode, offset, len, caching);
1243 
1244 				/* Start a new extent */
1245 				osd_req_op_extent_dup_last(req, op_idx,
1246 							   cur_offset - offset);
1247 				dout("writepages got pages at %llu~%llu\n",
1248 				     offset, len);
1249 				osd_req_op_extent_osd_data_pages(req, op_idx,
1250 							data_pages, len, 0,
1251 							from_pool, false);
1252 				osd_req_op_extent_update(req, op_idx, len);
1253 
1254 				len = 0;
1255 				offset = cur_offset;
1256 				data_pages = pages + i;
1257 				op_idx++;
1258 			}
1259 
1260 			set_page_writeback(page);
1261 			if (caching)
1262 				ceph_set_page_fscache(page);
1263 			len += thp_size(page);
1264 		}
1265 		ceph_fscache_write_to_cache(inode, offset, len, caching);
1266 
1267 		if (ceph_wbc.size_stable) {
1268 			len = min(len, ceph_wbc.i_size - offset);
1269 		} else if (i == locked_pages) {
1270 			/* writepages_finish() clears writeback pages
1271 			 * according to the data length, so make sure
1272 			 * data length covers all locked pages */
1273 			u64 min_len = len + 1 - thp_size(page);
1274 			len = get_writepages_data_length(inode, pages[i - 1],
1275 							 offset);
1276 			len = max(len, min_len);
1277 		}
1278 		if (IS_ENCRYPTED(inode))
1279 			len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE);
1280 
1281 		dout("writepages got pages at %llu~%llu\n", offset, len);
1282 
1283 		if (IS_ENCRYPTED(inode) &&
1284 		    ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK))
1285 			pr_warn("%s: bad encrypted write offset=%lld len=%llu\n",
1286 				__func__, offset, len);
1287 
1288 		osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
1289 						 0, from_pool, false);
1290 		osd_req_op_extent_update(req, op_idx, len);
1291 
1292 		BUG_ON(op_idx + 1 != req->r_num_ops);
1293 
1294 		from_pool = false;
1295 		if (i < locked_pages) {
1296 			BUG_ON(num_ops <= req->r_num_ops);
1297 			num_ops -= req->r_num_ops;
1298 			locked_pages -= i;
1299 
1300 			/* allocate new pages array for next request */
1301 			data_pages = pages;
1302 			pages = kmalloc_array(locked_pages, sizeof(*pages),
1303 					      GFP_NOFS);
1304 			if (!pages) {
1305 				from_pool = true;
1306 				pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1307 				BUG_ON(!pages);
1308 			}
1309 			memcpy(pages, data_pages + i,
1310 			       locked_pages * sizeof(*pages));
1311 			memset(data_pages + i, 0,
1312 			       locked_pages * sizeof(*pages));
1313 		} else {
1314 			BUG_ON(num_ops != req->r_num_ops);
1315 			index = pages[i - 1]->index + 1;
1316 			/* request message now owns the pages array */
1317 			pages = NULL;
1318 		}
1319 
1320 		req->r_mtime = inode->i_mtime;
1321 		ceph_osdc_start_request(&fsc->client->osdc, req);
1322 		req = NULL;
1323 
1324 		wbc->nr_to_write -= i;
1325 		if (pages)
1326 			goto new_request;
1327 
1328 		/*
1329 		 * We stop writing back only if we are not doing
1330 		 * integrity sync. In case of integrity sync we have to
1331 		 * keep going until we have written all the pages
1332 		 * we tagged for writeback prior to entering this loop.
1333 		 */
1334 		if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
1335 			done = true;
1336 
1337 release_folios:
1338 		dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr,
1339 		     fbatch.nr ? fbatch.folios[0] : NULL);
1340 		folio_batch_release(&fbatch);
1341 	}
1342 
1343 	if (should_loop && !done) {
1344 		/* more to do; loop back to beginning of file */
1345 		dout("writepages looping back to beginning of file\n");
1346 		end = start_index - 1; /* OK even when start_index == 0 */
1347 
1348 		/* to write dirty pages associated with next snapc,
1349 		 * we need to wait until current writes complete */
1350 		if (wbc->sync_mode != WB_SYNC_NONE &&
1351 		    start_index == 0 && /* all dirty pages were checked */
1352 		    !ceph_wbc.head_snapc) {
1353 			struct page *page;
1354 			unsigned i, nr;
1355 			index = 0;
1356 			while ((index <= end) &&
1357 			       (nr = filemap_get_folios_tag(mapping, &index,
1358 						(pgoff_t)-1,
1359 						PAGECACHE_TAG_WRITEBACK,
1360 						&fbatch))) {
1361 				for (i = 0; i < nr; i++) {
1362 					page = &fbatch.folios[i]->page;
1363 					if (page_snap_context(page) != snapc)
1364 						continue;
1365 					wait_on_page_writeback(page);
1366 				}
1367 				folio_batch_release(&fbatch);
1368 				cond_resched();
1369 			}
1370 		}
1371 
1372 		start_index = 0;
1373 		index = 0;
1374 		goto retry;
1375 	}
1376 
1377 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1378 		mapping->writeback_index = index;
1379 
1380 out:
1381 	ceph_osdc_put_request(req);
1382 	ceph_put_snap_context(last_snapc);
1383 	dout("writepages dend - startone, rc = %d\n", rc);
1384 	return rc;
1385 }
1386 
1387 
1388 
1389 /*
1390  * See if a given @snapc is either writeable, or already written.
1391  */
1392 static int context_is_writeable_or_written(struct inode *inode,
1393 					   struct ceph_snap_context *snapc)
1394 {
1395 	struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
1396 	int ret = !oldest || snapc->seq <= oldest->seq;
1397 
1398 	ceph_put_snap_context(oldest);
1399 	return ret;
1400 }
1401 
1402 /**
1403  * ceph_find_incompatible - find an incompatible context and return it
1404  * @page: page being dirtied
1405  *
1406  * We are only allowed to write into/dirty a page if the page is
1407  * clean, or already dirty within the same snap context. Returns a
1408  * conflicting context if there is one, NULL if there isn't, or a
1409  * negative error code on other errors.
1410  *
1411  * Must be called with page lock held.
1412  */
1413 static struct ceph_snap_context *
1414 ceph_find_incompatible(struct page *page)
1415 {
1416 	struct inode *inode = page->mapping->host;
1417 	struct ceph_inode_info *ci = ceph_inode(inode);
1418 
1419 	if (ceph_inode_is_shutdown(inode)) {
1420 		dout(" page %p %llx:%llx is shutdown\n", page,
1421 		     ceph_vinop(inode));
1422 		return ERR_PTR(-ESTALE);
1423 	}
1424 
1425 	for (;;) {
1426 		struct ceph_snap_context *snapc, *oldest;
1427 
1428 		wait_on_page_writeback(page);
1429 
1430 		snapc = page_snap_context(page);
1431 		if (!snapc || snapc == ci->i_head_snapc)
1432 			break;
1433 
1434 		/*
1435 		 * this page is already dirty in another (older) snap
1436 		 * context!  is it writeable now?
1437 		 */
1438 		oldest = get_oldest_context(inode, NULL, NULL);
1439 		if (snapc->seq > oldest->seq) {
1440 			/* not writeable -- return it for the caller to deal with */
1441 			ceph_put_snap_context(oldest);
1442 			dout(" page %p snapc %p not current or oldest\n", page, snapc);
1443 			return ceph_get_snap_context(snapc);
1444 		}
1445 		ceph_put_snap_context(oldest);
1446 
1447 		/* yay, writeable, do it now (without dropping page lock) */
1448 		dout(" page %p snapc %p not current, but oldest\n", page, snapc);
1449 		if (clear_page_dirty_for_io(page)) {
1450 			int r = writepage_nounlock(page, NULL);
1451 			if (r < 0)
1452 				return ERR_PTR(r);
1453 		}
1454 	}
1455 	return NULL;
1456 }
1457 
1458 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
1459 					struct folio **foliop, void **_fsdata)
1460 {
1461 	struct inode *inode = file_inode(file);
1462 	struct ceph_inode_info *ci = ceph_inode(inode);
1463 	struct ceph_snap_context *snapc;
1464 
1465 	snapc = ceph_find_incompatible(folio_page(*foliop, 0));
1466 	if (snapc) {
1467 		int r;
1468 
1469 		folio_unlock(*foliop);
1470 		folio_put(*foliop);
1471 		*foliop = NULL;
1472 		if (IS_ERR(snapc))
1473 			return PTR_ERR(snapc);
1474 
1475 		ceph_queue_writeback(inode);
1476 		r = wait_event_killable(ci->i_cap_wq,
1477 					context_is_writeable_or_written(inode, snapc));
1478 		ceph_put_snap_context(snapc);
1479 		return r == 0 ? -EAGAIN : r;
1480 	}
1481 	return 0;
1482 }
1483 
1484 /*
1485  * We are only allowed to write into/dirty the page if the page is
1486  * clean, or already dirty within the same snap context.
1487  */
1488 static int ceph_write_begin(struct file *file, struct address_space *mapping,
1489 			    loff_t pos, unsigned len,
1490 			    struct page **pagep, void **fsdata)
1491 {
1492 	struct inode *inode = file_inode(file);
1493 	struct ceph_inode_info *ci = ceph_inode(inode);
1494 	struct folio *folio = NULL;
1495 	int r;
1496 
1497 	r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL);
1498 	if (r < 0)
1499 		return r;
1500 
1501 	folio_wait_fscache(folio);
1502 	WARN_ON_ONCE(!folio_test_locked(folio));
1503 	*pagep = &folio->page;
1504 	return 0;
1505 }
1506 
1507 /*
1508  * we don't do anything in here that simple_write_end doesn't do
1509  * except adjust dirty page accounting
1510  */
1511 static int ceph_write_end(struct file *file, struct address_space *mapping,
1512 			  loff_t pos, unsigned len, unsigned copied,
1513 			  struct page *subpage, void *fsdata)
1514 {
1515 	struct folio *folio = page_folio(subpage);
1516 	struct inode *inode = file_inode(file);
1517 	bool check_cap = false;
1518 
1519 	dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
1520 	     inode, folio, (int)pos, (int)copied, (int)len);
1521 
1522 	if (!folio_test_uptodate(folio)) {
1523 		/* just return that nothing was copied on a short copy */
1524 		if (copied < len) {
1525 			copied = 0;
1526 			goto out;
1527 		}
1528 		folio_mark_uptodate(folio);
1529 	}
1530 
1531 	/* did file size increase? */
1532 	if (pos+copied > i_size_read(inode))
1533 		check_cap = ceph_inode_set_size(inode, pos+copied);
1534 
1535 	folio_mark_dirty(folio);
1536 
1537 out:
1538 	folio_unlock(folio);
1539 	folio_put(folio);
1540 
1541 	if (check_cap)
1542 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY);
1543 
1544 	return copied;
1545 }
1546 
1547 const struct address_space_operations ceph_aops = {
1548 	.read_folio = netfs_read_folio,
1549 	.readahead = netfs_readahead,
1550 	.writepage = ceph_writepage,
1551 	.writepages = ceph_writepages_start,
1552 	.write_begin = ceph_write_begin,
1553 	.write_end = ceph_write_end,
1554 	.dirty_folio = ceph_dirty_folio,
1555 	.invalidate_folio = ceph_invalidate_folio,
1556 	.release_folio = ceph_release_folio,
1557 	.direct_IO = noop_direct_IO,
1558 };
1559 
1560 static void ceph_block_sigs(sigset_t *oldset)
1561 {
1562 	sigset_t mask;
1563 	siginitsetinv(&mask, sigmask(SIGKILL));
1564 	sigprocmask(SIG_BLOCK, &mask, oldset);
1565 }
1566 
1567 static void ceph_restore_sigs(sigset_t *oldset)
1568 {
1569 	sigprocmask(SIG_SETMASK, oldset, NULL);
1570 }
1571 
1572 /*
1573  * vm ops
1574  */
1575 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
1576 {
1577 	struct vm_area_struct *vma = vmf->vma;
1578 	struct inode *inode = file_inode(vma->vm_file);
1579 	struct ceph_inode_info *ci = ceph_inode(inode);
1580 	struct ceph_file_info *fi = vma->vm_file->private_data;
1581 	loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
1582 	int want, got, err;
1583 	sigset_t oldset;
1584 	vm_fault_t ret = VM_FAULT_SIGBUS;
1585 
1586 	if (ceph_inode_is_shutdown(inode))
1587 		return ret;
1588 
1589 	ceph_block_sigs(&oldset);
1590 
1591 	dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
1592 	     inode, ceph_vinop(inode), off);
1593 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1594 		want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
1595 	else
1596 		want = CEPH_CAP_FILE_CACHE;
1597 
1598 	got = 0;
1599 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
1600 	if (err < 0)
1601 		goto out_restore;
1602 
1603 	dout("filemap_fault %p %llu got cap refs on %s\n",
1604 	     inode, off, ceph_cap_string(got));
1605 
1606 	if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
1607 	    !ceph_has_inline_data(ci)) {
1608 		CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
1609 		ceph_add_rw_context(fi, &rw_ctx);
1610 		ret = filemap_fault(vmf);
1611 		ceph_del_rw_context(fi, &rw_ctx);
1612 		dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
1613 		     inode, off, ceph_cap_string(got), ret);
1614 	} else
1615 		err = -EAGAIN;
1616 
1617 	ceph_put_cap_refs(ci, got);
1618 
1619 	if (err != -EAGAIN)
1620 		goto out_restore;
1621 
1622 	/* read inline data */
1623 	if (off >= PAGE_SIZE) {
1624 		/* does not support inline data > PAGE_SIZE */
1625 		ret = VM_FAULT_SIGBUS;
1626 	} else {
1627 		struct address_space *mapping = inode->i_mapping;
1628 		struct page *page;
1629 
1630 		filemap_invalidate_lock_shared(mapping);
1631 		page = find_or_create_page(mapping, 0,
1632 				mapping_gfp_constraint(mapping, ~__GFP_FS));
1633 		if (!page) {
1634 			ret = VM_FAULT_OOM;
1635 			goto out_inline;
1636 		}
1637 		err = __ceph_do_getattr(inode, page,
1638 					 CEPH_STAT_CAP_INLINE_DATA, true);
1639 		if (err < 0 || off >= i_size_read(inode)) {
1640 			unlock_page(page);
1641 			put_page(page);
1642 			ret = vmf_error(err);
1643 			goto out_inline;
1644 		}
1645 		if (err < PAGE_SIZE)
1646 			zero_user_segment(page, err, PAGE_SIZE);
1647 		else
1648 			flush_dcache_page(page);
1649 		SetPageUptodate(page);
1650 		vmf->page = page;
1651 		ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
1652 out_inline:
1653 		filemap_invalidate_unlock_shared(mapping);
1654 		dout("filemap_fault %p %llu read inline data ret %x\n",
1655 		     inode, off, ret);
1656 	}
1657 out_restore:
1658 	ceph_restore_sigs(&oldset);
1659 	if (err < 0)
1660 		ret = vmf_error(err);
1661 
1662 	return ret;
1663 }
1664 
1665 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
1666 {
1667 	struct vm_area_struct *vma = vmf->vma;
1668 	struct inode *inode = file_inode(vma->vm_file);
1669 	struct ceph_inode_info *ci = ceph_inode(inode);
1670 	struct ceph_file_info *fi = vma->vm_file->private_data;
1671 	struct ceph_cap_flush *prealloc_cf;
1672 	struct page *page = vmf->page;
1673 	loff_t off = page_offset(page);
1674 	loff_t size = i_size_read(inode);
1675 	size_t len;
1676 	int want, got, err;
1677 	sigset_t oldset;
1678 	vm_fault_t ret = VM_FAULT_SIGBUS;
1679 
1680 	if (ceph_inode_is_shutdown(inode))
1681 		return ret;
1682 
1683 	prealloc_cf = ceph_alloc_cap_flush();
1684 	if (!prealloc_cf)
1685 		return VM_FAULT_OOM;
1686 
1687 	sb_start_pagefault(inode->i_sb);
1688 	ceph_block_sigs(&oldset);
1689 
1690 	if (off + thp_size(page) <= size)
1691 		len = thp_size(page);
1692 	else
1693 		len = offset_in_thp(page, size);
1694 
1695 	dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
1696 	     inode, ceph_vinop(inode), off, len, size);
1697 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1698 		want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
1699 	else
1700 		want = CEPH_CAP_FILE_BUFFER;
1701 
1702 	got = 0;
1703 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
1704 	if (err < 0)
1705 		goto out_free;
1706 
1707 	dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
1708 	     inode, off, len, ceph_cap_string(got));
1709 
1710 	/* Update time before taking page lock */
1711 	file_update_time(vma->vm_file);
1712 	inode_inc_iversion_raw(inode);
1713 
1714 	do {
1715 		struct ceph_snap_context *snapc;
1716 
1717 		lock_page(page);
1718 
1719 		if (page_mkwrite_check_truncate(page, inode) < 0) {
1720 			unlock_page(page);
1721 			ret = VM_FAULT_NOPAGE;
1722 			break;
1723 		}
1724 
1725 		snapc = ceph_find_incompatible(page);
1726 		if (!snapc) {
1727 			/* success.  we'll keep the page locked. */
1728 			set_page_dirty(page);
1729 			ret = VM_FAULT_LOCKED;
1730 			break;
1731 		}
1732 
1733 		unlock_page(page);
1734 
1735 		if (IS_ERR(snapc)) {
1736 			ret = VM_FAULT_SIGBUS;
1737 			break;
1738 		}
1739 
1740 		ceph_queue_writeback(inode);
1741 		err = wait_event_killable(ci->i_cap_wq,
1742 				context_is_writeable_or_written(inode, snapc));
1743 		ceph_put_snap_context(snapc);
1744 	} while (err == 0);
1745 
1746 	if (ret == VM_FAULT_LOCKED) {
1747 		int dirty;
1748 		spin_lock(&ci->i_ceph_lock);
1749 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
1750 					       &prealloc_cf);
1751 		spin_unlock(&ci->i_ceph_lock);
1752 		if (dirty)
1753 			__mark_inode_dirty(inode, dirty);
1754 	}
1755 
1756 	dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
1757 	     inode, off, len, ceph_cap_string(got), ret);
1758 	ceph_put_cap_refs_async(ci, got);
1759 out_free:
1760 	ceph_restore_sigs(&oldset);
1761 	sb_end_pagefault(inode->i_sb);
1762 	ceph_free_cap_flush(prealloc_cf);
1763 	if (err < 0)
1764 		ret = vmf_error(err);
1765 	return ret;
1766 }
1767 
1768 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1769 			   char	*data, size_t len)
1770 {
1771 	struct address_space *mapping = inode->i_mapping;
1772 	struct page *page;
1773 
1774 	if (locked_page) {
1775 		page = locked_page;
1776 	} else {
1777 		if (i_size_read(inode) == 0)
1778 			return;
1779 		page = find_or_create_page(mapping, 0,
1780 					   mapping_gfp_constraint(mapping,
1781 					   ~__GFP_FS));
1782 		if (!page)
1783 			return;
1784 		if (PageUptodate(page)) {
1785 			unlock_page(page);
1786 			put_page(page);
1787 			return;
1788 		}
1789 	}
1790 
1791 	dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
1792 	     inode, ceph_vinop(inode), len, locked_page);
1793 
1794 	if (len > 0) {
1795 		void *kaddr = kmap_atomic(page);
1796 		memcpy(kaddr, data, len);
1797 		kunmap_atomic(kaddr);
1798 	}
1799 
1800 	if (page != locked_page) {
1801 		if (len < PAGE_SIZE)
1802 			zero_user_segment(page, len, PAGE_SIZE);
1803 		else
1804 			flush_dcache_page(page);
1805 
1806 		SetPageUptodate(page);
1807 		unlock_page(page);
1808 		put_page(page);
1809 	}
1810 }
1811 
1812 int ceph_uninline_data(struct file *file)
1813 {
1814 	struct inode *inode = file_inode(file);
1815 	struct ceph_inode_info *ci = ceph_inode(inode);
1816 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
1817 	struct ceph_osd_request *req = NULL;
1818 	struct ceph_cap_flush *prealloc_cf = NULL;
1819 	struct folio *folio = NULL;
1820 	u64 inline_version = CEPH_INLINE_NONE;
1821 	struct page *pages[1];
1822 	int err = 0;
1823 	u64 len;
1824 
1825 	spin_lock(&ci->i_ceph_lock);
1826 	inline_version = ci->i_inline_version;
1827 	spin_unlock(&ci->i_ceph_lock);
1828 
1829 	dout("uninline_data %p %llx.%llx inline_version %llu\n",
1830 	     inode, ceph_vinop(inode), inline_version);
1831 
1832 	if (ceph_inode_is_shutdown(inode)) {
1833 		err = -EIO;
1834 		goto out;
1835 	}
1836 
1837 	if (inline_version == CEPH_INLINE_NONE)
1838 		return 0;
1839 
1840 	prealloc_cf = ceph_alloc_cap_flush();
1841 	if (!prealloc_cf)
1842 		return -ENOMEM;
1843 
1844 	if (inline_version == 1) /* initial version, no data */
1845 		goto out_uninline;
1846 
1847 	folio = read_mapping_folio(inode->i_mapping, 0, file);
1848 	if (IS_ERR(folio)) {
1849 		err = PTR_ERR(folio);
1850 		goto out;
1851 	}
1852 
1853 	folio_lock(folio);
1854 
1855 	len = i_size_read(inode);
1856 	if (len > folio_size(folio))
1857 		len = folio_size(folio);
1858 
1859 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1860 				    ceph_vino(inode), 0, &len, 0, 1,
1861 				    CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
1862 				    NULL, 0, 0, false);
1863 	if (IS_ERR(req)) {
1864 		err = PTR_ERR(req);
1865 		goto out_unlock;
1866 	}
1867 
1868 	req->r_mtime = inode->i_mtime;
1869 	ceph_osdc_start_request(&fsc->client->osdc, req);
1870 	err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1871 	ceph_osdc_put_request(req);
1872 	if (err < 0)
1873 		goto out_unlock;
1874 
1875 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1876 				    ceph_vino(inode), 0, &len, 1, 3,
1877 				    CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1878 				    NULL, ci->i_truncate_seq,
1879 				    ci->i_truncate_size, false);
1880 	if (IS_ERR(req)) {
1881 		err = PTR_ERR(req);
1882 		goto out_unlock;
1883 	}
1884 
1885 	pages[0] = folio_page(folio, 0);
1886 	osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
1887 
1888 	{
1889 		__le64 xattr_buf = cpu_to_le64(inline_version);
1890 		err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
1891 					    "inline_version", &xattr_buf,
1892 					    sizeof(xattr_buf),
1893 					    CEPH_OSD_CMPXATTR_OP_GT,
1894 					    CEPH_OSD_CMPXATTR_MODE_U64);
1895 		if (err)
1896 			goto out_put_req;
1897 	}
1898 
1899 	{
1900 		char xattr_buf[32];
1901 		int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
1902 					 "%llu", inline_version);
1903 		err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
1904 					    "inline_version",
1905 					    xattr_buf, xattr_len, 0, 0);
1906 		if (err)
1907 			goto out_put_req;
1908 	}
1909 
1910 	req->r_mtime = inode->i_mtime;
1911 	ceph_osdc_start_request(&fsc->client->osdc, req);
1912 	err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1913 
1914 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
1915 				  req->r_end_latency, len, err);
1916 
1917 out_uninline:
1918 	if (!err) {
1919 		int dirty;
1920 
1921 		/* Set to CAP_INLINE_NONE and dirty the caps */
1922 		down_read(&fsc->mdsc->snap_rwsem);
1923 		spin_lock(&ci->i_ceph_lock);
1924 		ci->i_inline_version = CEPH_INLINE_NONE;
1925 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
1926 		spin_unlock(&ci->i_ceph_lock);
1927 		up_read(&fsc->mdsc->snap_rwsem);
1928 		if (dirty)
1929 			__mark_inode_dirty(inode, dirty);
1930 	}
1931 out_put_req:
1932 	ceph_osdc_put_request(req);
1933 	if (err == -ECANCELED)
1934 		err = 0;
1935 out_unlock:
1936 	if (folio) {
1937 		folio_unlock(folio);
1938 		folio_put(folio);
1939 	}
1940 out:
1941 	ceph_free_cap_flush(prealloc_cf);
1942 	dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
1943 	     inode, ceph_vinop(inode), inline_version, err);
1944 	return err;
1945 }
1946 
1947 static const struct vm_operations_struct ceph_vmops = {
1948 	.fault		= ceph_filemap_fault,
1949 	.page_mkwrite	= ceph_page_mkwrite,
1950 };
1951 
1952 int ceph_mmap(struct file *file, struct vm_area_struct *vma)
1953 {
1954 	struct address_space *mapping = file->f_mapping;
1955 
1956 	if (!mapping->a_ops->read_folio)
1957 		return -ENOEXEC;
1958 	vma->vm_ops = &ceph_vmops;
1959 	return 0;
1960 }
1961 
1962 enum {
1963 	POOL_READ	= 1,
1964 	POOL_WRITE	= 2,
1965 };
1966 
1967 static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
1968 				s64 pool, struct ceph_string *pool_ns)
1969 {
1970 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode);
1971 	struct ceph_mds_client *mdsc = fsc->mdsc;
1972 	struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
1973 	struct rb_node **p, *parent;
1974 	struct ceph_pool_perm *perm;
1975 	struct page **pages;
1976 	size_t pool_ns_len;
1977 	int err = 0, err2 = 0, have = 0;
1978 
1979 	down_read(&mdsc->pool_perm_rwsem);
1980 	p = &mdsc->pool_perm_tree.rb_node;
1981 	while (*p) {
1982 		perm = rb_entry(*p, struct ceph_pool_perm, node);
1983 		if (pool < perm->pool)
1984 			p = &(*p)->rb_left;
1985 		else if (pool > perm->pool)
1986 			p = &(*p)->rb_right;
1987 		else {
1988 			int ret = ceph_compare_string(pool_ns,
1989 						perm->pool_ns,
1990 						perm->pool_ns_len);
1991 			if (ret < 0)
1992 				p = &(*p)->rb_left;
1993 			else if (ret > 0)
1994 				p = &(*p)->rb_right;
1995 			else {
1996 				have = perm->perm;
1997 				break;
1998 			}
1999 		}
2000 	}
2001 	up_read(&mdsc->pool_perm_rwsem);
2002 	if (*p)
2003 		goto out;
2004 
2005 	if (pool_ns)
2006 		dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
2007 		     pool, (int)pool_ns->len, pool_ns->str);
2008 	else
2009 		dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
2010 
2011 	down_write(&mdsc->pool_perm_rwsem);
2012 	p = &mdsc->pool_perm_tree.rb_node;
2013 	parent = NULL;
2014 	while (*p) {
2015 		parent = *p;
2016 		perm = rb_entry(parent, struct ceph_pool_perm, node);
2017 		if (pool < perm->pool)
2018 			p = &(*p)->rb_left;
2019 		else if (pool > perm->pool)
2020 			p = &(*p)->rb_right;
2021 		else {
2022 			int ret = ceph_compare_string(pool_ns,
2023 						perm->pool_ns,
2024 						perm->pool_ns_len);
2025 			if (ret < 0)
2026 				p = &(*p)->rb_left;
2027 			else if (ret > 0)
2028 				p = &(*p)->rb_right;
2029 			else {
2030 				have = perm->perm;
2031 				break;
2032 			}
2033 		}
2034 	}
2035 	if (*p) {
2036 		up_write(&mdsc->pool_perm_rwsem);
2037 		goto out;
2038 	}
2039 
2040 	rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2041 					 1, false, GFP_NOFS);
2042 	if (!rd_req) {
2043 		err = -ENOMEM;
2044 		goto out_unlock;
2045 	}
2046 
2047 	rd_req->r_flags = CEPH_OSD_FLAG_READ;
2048 	osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
2049 	rd_req->r_base_oloc.pool = pool;
2050 	if (pool_ns)
2051 		rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
2052 	ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
2053 
2054 	err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
2055 	if (err)
2056 		goto out_unlock;
2057 
2058 	wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2059 					 1, false, GFP_NOFS);
2060 	if (!wr_req) {
2061 		err = -ENOMEM;
2062 		goto out_unlock;
2063 	}
2064 
2065 	wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
2066 	osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
2067 	ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
2068 	ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
2069 
2070 	err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
2071 	if (err)
2072 		goto out_unlock;
2073 
2074 	/* one page should be large enough for STAT data */
2075 	pages = ceph_alloc_page_vector(1, GFP_KERNEL);
2076 	if (IS_ERR(pages)) {
2077 		err = PTR_ERR(pages);
2078 		goto out_unlock;
2079 	}
2080 
2081 	osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
2082 				     0, false, true);
2083 	ceph_osdc_start_request(&fsc->client->osdc, rd_req);
2084 
2085 	wr_req->r_mtime = ci->netfs.inode.i_mtime;
2086 	ceph_osdc_start_request(&fsc->client->osdc, wr_req);
2087 
2088 	err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
2089 	err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
2090 
2091 	if (err >= 0 || err == -ENOENT)
2092 		have |= POOL_READ;
2093 	else if (err != -EPERM) {
2094 		if (err == -EBLOCKLISTED)
2095 			fsc->blocklisted = true;
2096 		goto out_unlock;
2097 	}
2098 
2099 	if (err2 == 0 || err2 == -EEXIST)
2100 		have |= POOL_WRITE;
2101 	else if (err2 != -EPERM) {
2102 		if (err2 == -EBLOCKLISTED)
2103 			fsc->blocklisted = true;
2104 		err = err2;
2105 		goto out_unlock;
2106 	}
2107 
2108 	pool_ns_len = pool_ns ? pool_ns->len : 0;
2109 	perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
2110 	if (!perm) {
2111 		err = -ENOMEM;
2112 		goto out_unlock;
2113 	}
2114 
2115 	perm->pool = pool;
2116 	perm->perm = have;
2117 	perm->pool_ns_len = pool_ns_len;
2118 	if (pool_ns_len > 0)
2119 		memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
2120 	perm->pool_ns[pool_ns_len] = 0;
2121 
2122 	rb_link_node(&perm->node, parent, p);
2123 	rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
2124 	err = 0;
2125 out_unlock:
2126 	up_write(&mdsc->pool_perm_rwsem);
2127 
2128 	ceph_osdc_put_request(rd_req);
2129 	ceph_osdc_put_request(wr_req);
2130 out:
2131 	if (!err)
2132 		err = have;
2133 	if (pool_ns)
2134 		dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
2135 		     pool, (int)pool_ns->len, pool_ns->str, err);
2136 	else
2137 		dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
2138 	return err;
2139 }
2140 
2141 int ceph_pool_perm_check(struct inode *inode, int need)
2142 {
2143 	struct ceph_inode_info *ci = ceph_inode(inode);
2144 	struct ceph_string *pool_ns;
2145 	s64 pool;
2146 	int ret, flags;
2147 
2148 	/* Only need to do this for regular files */
2149 	if (!S_ISREG(inode->i_mode))
2150 		return 0;
2151 
2152 	if (ci->i_vino.snap != CEPH_NOSNAP) {
2153 		/*
2154 		 * Pool permission check needs to write to the first object.
2155 		 * But for snapshot, head of the first object may have alread
2156 		 * been deleted. Skip check to avoid creating orphan object.
2157 		 */
2158 		return 0;
2159 	}
2160 
2161 	if (ceph_test_mount_opt(ceph_inode_to_client(inode),
2162 				NOPOOLPERM))
2163 		return 0;
2164 
2165 	spin_lock(&ci->i_ceph_lock);
2166 	flags = ci->i_ceph_flags;
2167 	pool = ci->i_layout.pool_id;
2168 	spin_unlock(&ci->i_ceph_lock);
2169 check:
2170 	if (flags & CEPH_I_POOL_PERM) {
2171 		if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
2172 			dout("ceph_pool_perm_check pool %lld no read perm\n",
2173 			     pool);
2174 			return -EPERM;
2175 		}
2176 		if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
2177 			dout("ceph_pool_perm_check pool %lld no write perm\n",
2178 			     pool);
2179 			return -EPERM;
2180 		}
2181 		return 0;
2182 	}
2183 
2184 	pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
2185 	ret = __ceph_pool_perm_get(ci, pool, pool_ns);
2186 	ceph_put_string(pool_ns);
2187 	if (ret < 0)
2188 		return ret;
2189 
2190 	flags = CEPH_I_POOL_PERM;
2191 	if (ret & POOL_READ)
2192 		flags |= CEPH_I_POOL_RD;
2193 	if (ret & POOL_WRITE)
2194 		flags |= CEPH_I_POOL_WR;
2195 
2196 	spin_lock(&ci->i_ceph_lock);
2197 	if (pool == ci->i_layout.pool_id &&
2198 	    pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
2199 		ci->i_ceph_flags |= flags;
2200         } else {
2201 		pool = ci->i_layout.pool_id;
2202 		flags = ci->i_ceph_flags;
2203 	}
2204 	spin_unlock(&ci->i_ceph_lock);
2205 	goto check;
2206 }
2207 
2208 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
2209 {
2210 	struct ceph_pool_perm *perm;
2211 	struct rb_node *n;
2212 
2213 	while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
2214 		n = rb_first(&mdsc->pool_perm_tree);
2215 		perm = rb_entry(n, struct ceph_pool_perm, node);
2216 		rb_erase(n, &mdsc->pool_perm_tree);
2217 		kfree(perm);
2218 	}
2219 }
2220