1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/backing-dev.h> 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/swap.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/pagevec.h> 11 #include <linux/task_io_accounting_ops.h> 12 #include <linux/signal.h> 13 #include <linux/iversion.h> 14 #include <linux/ktime.h> 15 #include <linux/netfs.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "cache.h" 20 #include "metric.h" 21 #include "crypto.h" 22 #include <linux/ceph/osd_client.h> 23 #include <linux/ceph/striper.h> 24 25 /* 26 * Ceph address space ops. 27 * 28 * There are a few funny things going on here. 29 * 30 * The page->private field is used to reference a struct 31 * ceph_snap_context for _every_ dirty page. This indicates which 32 * snapshot the page was logically dirtied in, and thus which snap 33 * context needs to be associated with the osd write during writeback. 34 * 35 * Similarly, struct ceph_inode_info maintains a set of counters to 36 * count dirty pages on the inode. In the absence of snapshots, 37 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. 38 * 39 * When a snapshot is taken (that is, when the client receives 40 * notification that a snapshot was taken), each inode with caps and 41 * with dirty pages (dirty pages implies there is a cap) gets a new 42 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending 43 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is 44 * moved to capsnap->dirty. (Unless a sync write is currently in 45 * progress. In that case, the capsnap is said to be "pending", new 46 * writes cannot start, and the capsnap isn't "finalized" until the 47 * write completes (or fails) and a final size/mtime for the inode for 48 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. 49 * 50 * On writeback, we must submit writes to the osd IN SNAP ORDER. So, 51 * we look for the first capsnap in i_cap_snaps and write out pages in 52 * that snap context _only_. Then we move on to the next capsnap, 53 * eventually reaching the "live" or "head" context (i.e., pages that 54 * are not yet snapped) and are writing the most recently dirtied 55 * pages. 56 * 57 * Invalidate and so forth must take care to ensure the dirty page 58 * accounting is preserved. 59 */ 60 61 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) 62 #define CONGESTION_OFF_THRESH(congestion_kb) \ 63 (CONGESTION_ON_THRESH(congestion_kb) - \ 64 (CONGESTION_ON_THRESH(congestion_kb) >> 2)) 65 66 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 67 struct folio **foliop, void **_fsdata); 68 69 static inline struct ceph_snap_context *page_snap_context(struct page *page) 70 { 71 if (PagePrivate(page)) 72 return (void *)page->private; 73 return NULL; 74 } 75 76 /* 77 * Dirty a page. Optimistically adjust accounting, on the assumption 78 * that we won't race with invalidate. If we do, readjust. 79 */ 80 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) 81 { 82 struct inode *inode; 83 struct ceph_inode_info *ci; 84 struct ceph_snap_context *snapc; 85 86 if (folio_test_dirty(folio)) { 87 dout("%p dirty_folio %p idx %lu -- already dirty\n", 88 mapping->host, folio, folio->index); 89 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio); 90 return false; 91 } 92 93 inode = mapping->host; 94 ci = ceph_inode(inode); 95 96 /* dirty the head */ 97 spin_lock(&ci->i_ceph_lock); 98 BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference 99 if (__ceph_have_pending_cap_snap(ci)) { 100 struct ceph_cap_snap *capsnap = 101 list_last_entry(&ci->i_cap_snaps, 102 struct ceph_cap_snap, 103 ci_item); 104 snapc = ceph_get_snap_context(capsnap->context); 105 capsnap->dirty_pages++; 106 } else { 107 BUG_ON(!ci->i_head_snapc); 108 snapc = ceph_get_snap_context(ci->i_head_snapc); 109 ++ci->i_wrbuffer_ref_head; 110 } 111 if (ci->i_wrbuffer_ref == 0) 112 ihold(inode); 113 ++ci->i_wrbuffer_ref; 114 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " 115 "snapc %p seq %lld (%d snaps)\n", 116 mapping->host, folio, folio->index, 117 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, 118 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 119 snapc, snapc->seq, snapc->num_snaps); 120 spin_unlock(&ci->i_ceph_lock); 121 122 /* 123 * Reference snap context in folio->private. Also set 124 * PagePrivate so that we get invalidate_folio callback. 125 */ 126 VM_WARN_ON_FOLIO(folio->private, folio); 127 folio_attach_private(folio, snapc); 128 129 return ceph_fscache_dirty_folio(mapping, folio); 130 } 131 132 /* 133 * If we are truncating the full folio (i.e. offset == 0), adjust the 134 * dirty folio counters appropriately. Only called if there is private 135 * data on the folio. 136 */ 137 static void ceph_invalidate_folio(struct folio *folio, size_t offset, 138 size_t length) 139 { 140 struct inode *inode; 141 struct ceph_inode_info *ci; 142 struct ceph_snap_context *snapc; 143 144 inode = folio->mapping->host; 145 ci = ceph_inode(inode); 146 147 if (offset != 0 || length != folio_size(folio)) { 148 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", 149 inode, folio->index, offset, length); 150 return; 151 } 152 153 WARN_ON(!folio_test_locked(folio)); 154 if (folio_test_private(folio)) { 155 dout("%p invalidate_folio idx %lu full dirty page\n", 156 inode, folio->index); 157 158 snapc = folio_detach_private(folio); 159 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 160 ceph_put_snap_context(snapc); 161 } 162 163 folio_wait_fscache(folio); 164 } 165 166 static bool ceph_release_folio(struct folio *folio, gfp_t gfp) 167 { 168 struct inode *inode = folio->mapping->host; 169 170 dout("%llx:%llx release_folio idx %lu (%sdirty)\n", 171 ceph_vinop(inode), 172 folio->index, folio_test_dirty(folio) ? "" : "not "); 173 174 if (folio_test_private(folio)) 175 return false; 176 177 if (folio_test_fscache(folio)) { 178 if (current_is_kswapd() || !(gfp & __GFP_FS)) 179 return false; 180 folio_wait_fscache(folio); 181 } 182 ceph_fscache_note_page_release(inode); 183 return true; 184 } 185 186 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) 187 { 188 struct inode *inode = rreq->inode; 189 struct ceph_inode_info *ci = ceph_inode(inode); 190 struct ceph_file_layout *lo = &ci->i_layout; 191 unsigned long max_pages = inode->i_sb->s_bdi->ra_pages; 192 loff_t end = rreq->start + rreq->len, new_end; 193 struct ceph_netfs_request_data *priv = rreq->netfs_priv; 194 unsigned long max_len; 195 u32 blockoff; 196 197 if (priv) { 198 /* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */ 199 if (priv->file_ra_disabled) 200 max_pages = 0; 201 else 202 max_pages = priv->file_ra_pages; 203 204 } 205 206 /* Readahead is disabled */ 207 if (!max_pages) 208 return; 209 210 max_len = max_pages << PAGE_SHIFT; 211 212 /* 213 * Try to expand the length forward by rounding up it to the next 214 * block, but do not exceed the file size, unless the original 215 * request already exceeds it. 216 */ 217 new_end = min(round_up(end, lo->stripe_unit), rreq->i_size); 218 if (new_end > end && new_end <= rreq->start + max_len) 219 rreq->len = new_end - rreq->start; 220 221 /* Try to expand the start downward */ 222 div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); 223 if (rreq->len + blockoff <= max_len) { 224 rreq->start -= blockoff; 225 rreq->len += blockoff; 226 } 227 } 228 229 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) 230 { 231 struct inode *inode = subreq->rreq->inode; 232 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 233 struct ceph_inode_info *ci = ceph_inode(inode); 234 u64 objno, objoff; 235 u32 xlen; 236 237 /* Truncate the extent at the end of the current block */ 238 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, 239 &objno, &objoff, &xlen); 240 subreq->len = min(xlen, fsc->mount_options->rsize); 241 return true; 242 } 243 244 static void finish_netfs_read(struct ceph_osd_request *req) 245 { 246 struct inode *inode = req->r_inode; 247 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 248 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); 249 struct netfs_io_subrequest *subreq = req->r_priv; 250 struct ceph_osd_req_op *op = &req->r_ops[0]; 251 int err = req->r_result; 252 bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ); 253 254 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, 255 req->r_end_latency, osd_data->length, err); 256 257 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, 258 subreq->len, i_size_read(req->r_inode)); 259 260 /* no object means success but no data */ 261 if (err == -ENOENT) 262 err = 0; 263 else if (err == -EBLOCKLISTED) 264 fsc->blocklisted = true; 265 266 if (err >= 0) { 267 if (sparse && err > 0) 268 err = ceph_sparse_ext_map_end(op); 269 if (err < subreq->len) 270 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 271 if (IS_ENCRYPTED(inode) && err > 0) { 272 err = ceph_fscrypt_decrypt_extents(inode, 273 osd_data->pages, subreq->start, 274 op->extent.sparse_ext, 275 op->extent.sparse_ext_cnt); 276 if (err > subreq->len) 277 err = subreq->len; 278 } 279 } 280 281 if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) { 282 ceph_put_page_vector(osd_data->pages, 283 calc_pages_for(osd_data->alignment, 284 osd_data->length), false); 285 } 286 netfs_subreq_terminated(subreq, err, false); 287 iput(req->r_inode); 288 ceph_dec_osd_stopping_blocker(fsc->mdsc); 289 } 290 291 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) 292 { 293 struct netfs_io_request *rreq = subreq->rreq; 294 struct inode *inode = rreq->inode; 295 struct ceph_mds_reply_info_parsed *rinfo; 296 struct ceph_mds_reply_info_in *iinfo; 297 struct ceph_mds_request *req; 298 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 299 struct ceph_inode_info *ci = ceph_inode(inode); 300 struct iov_iter iter; 301 ssize_t err = 0; 302 size_t len; 303 int mode; 304 305 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 306 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); 307 308 if (subreq->start >= inode->i_size) 309 goto out; 310 311 /* We need to fetch the inline data. */ 312 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA); 313 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); 314 if (IS_ERR(req)) { 315 err = PTR_ERR(req); 316 goto out; 317 } 318 req->r_ino1 = ci->i_vino; 319 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); 320 req->r_num_caps = 2; 321 322 err = ceph_mdsc_do_request(mdsc, NULL, req); 323 if (err < 0) 324 goto out; 325 326 rinfo = &req->r_reply_info; 327 iinfo = &rinfo->targeti; 328 if (iinfo->inline_version == CEPH_INLINE_NONE) { 329 /* The data got uninlined */ 330 ceph_mdsc_put_request(req); 331 return false; 332 } 333 334 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); 335 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 336 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); 337 if (err == 0) 338 err = -EFAULT; 339 340 ceph_mdsc_put_request(req); 341 out: 342 netfs_subreq_terminated(subreq, err, false); 343 return true; 344 } 345 346 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) 347 { 348 struct netfs_io_request *rreq = subreq->rreq; 349 struct inode *inode = rreq->inode; 350 struct ceph_inode_info *ci = ceph_inode(inode); 351 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 352 struct ceph_osd_request *req = NULL; 353 struct ceph_vino vino = ceph_vino(inode); 354 struct iov_iter iter; 355 int err = 0; 356 u64 len = subreq->len; 357 bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD); 358 u64 off = subreq->start; 359 360 if (ceph_inode_is_shutdown(inode)) { 361 err = -EIO; 362 goto out; 363 } 364 365 if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq)) 366 return; 367 368 ceph_fscrypt_adjust_off_and_len(inode, &off, &len); 369 370 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, 371 off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ, 372 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, 373 NULL, ci->i_truncate_seq, ci->i_truncate_size, false); 374 if (IS_ERR(req)) { 375 err = PTR_ERR(req); 376 req = NULL; 377 goto out; 378 } 379 380 if (sparse) { 381 err = ceph_alloc_sparse_ext_map(&req->r_ops[0]); 382 if (err) 383 goto out; 384 } 385 386 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); 387 388 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 389 390 /* 391 * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for 392 * encrypted inodes. We'd need infrastructure that handles an iov_iter 393 * instead of page arrays, and we don't have that as of yet. Once the 394 * dust settles on the write helpers and encrypt/decrypt routines for 395 * netfs, we should be able to rework this. 396 */ 397 if (IS_ENCRYPTED(inode)) { 398 struct page **pages; 399 size_t page_off; 400 401 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off); 402 if (err < 0) { 403 dout("%s: iov_ter_get_pages_alloc returned %d\n", 404 __func__, err); 405 goto out; 406 } 407 408 /* should always give us a page-aligned read */ 409 WARN_ON_ONCE(page_off); 410 len = err; 411 err = 0; 412 413 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, 414 false); 415 } else { 416 osd_req_op_extent_osd_iter(req, 0, &iter); 417 } 418 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { 419 err = -EIO; 420 goto out; 421 } 422 req->r_callback = finish_netfs_read; 423 req->r_priv = subreq; 424 req->r_inode = inode; 425 ihold(inode); 426 427 ceph_osdc_start_request(req->r_osdc, req); 428 out: 429 ceph_osdc_put_request(req); 430 if (err) 431 netfs_subreq_terminated(subreq, err, false); 432 dout("%s: result %d\n", __func__, err); 433 } 434 435 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) 436 { 437 struct inode *inode = rreq->inode; 438 int got = 0, want = CEPH_CAP_FILE_CACHE; 439 struct ceph_netfs_request_data *priv; 440 int ret = 0; 441 442 if (rreq->origin != NETFS_READAHEAD) 443 return 0; 444 445 priv = kzalloc(sizeof(*priv), GFP_NOFS); 446 if (!priv) 447 return -ENOMEM; 448 449 if (file) { 450 struct ceph_rw_context *rw_ctx; 451 struct ceph_file_info *fi = file->private_data; 452 453 priv->file_ra_pages = file->f_ra.ra_pages; 454 priv->file_ra_disabled = file->f_mode & FMODE_RANDOM; 455 456 rw_ctx = ceph_find_rw_context(fi); 457 if (rw_ctx) { 458 rreq->netfs_priv = priv; 459 return 0; 460 } 461 } 462 463 /* 464 * readahead callers do not necessarily hold Fcb caps 465 * (e.g. fadvise, madvise). 466 */ 467 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); 468 if (ret < 0) { 469 dout("start_read %p, error getting cap\n", inode); 470 goto out; 471 } 472 473 if (!(got & want)) { 474 dout("start_read %p, no cache cap\n", inode); 475 ret = -EACCES; 476 goto out; 477 } 478 if (ret == 0) { 479 ret = -EACCES; 480 goto out; 481 } 482 483 priv->caps = got; 484 rreq->netfs_priv = priv; 485 486 out: 487 if (ret < 0) 488 kfree(priv); 489 490 return ret; 491 } 492 493 static void ceph_netfs_free_request(struct netfs_io_request *rreq) 494 { 495 struct ceph_netfs_request_data *priv = rreq->netfs_priv; 496 497 if (!priv) 498 return; 499 500 if (priv->caps) 501 ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps); 502 kfree(priv); 503 rreq->netfs_priv = NULL; 504 } 505 506 const struct netfs_request_ops ceph_netfs_ops = { 507 .init_request = ceph_init_request, 508 .free_request = ceph_netfs_free_request, 509 .begin_cache_operation = ceph_begin_cache_operation, 510 .issue_read = ceph_netfs_issue_read, 511 .expand_readahead = ceph_netfs_expand_readahead, 512 .clamp_length = ceph_netfs_clamp_length, 513 .check_write_begin = ceph_netfs_check_write_begin, 514 }; 515 516 #ifdef CONFIG_CEPH_FSCACHE 517 static void ceph_set_page_fscache(struct page *page) 518 { 519 set_page_fscache(page); 520 } 521 522 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) 523 { 524 struct inode *inode = priv; 525 526 if (IS_ERR_VALUE(error) && error != -ENOBUFS) 527 ceph_fscache_invalidate(inode, false); 528 } 529 530 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 531 { 532 struct ceph_inode_info *ci = ceph_inode(inode); 533 struct fscache_cookie *cookie = ceph_fscache_cookie(ci); 534 535 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), 536 ceph_fscache_write_terminated, inode, caching); 537 } 538 #else 539 static inline void ceph_set_page_fscache(struct page *page) 540 { 541 } 542 543 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 544 { 545 } 546 #endif /* CONFIG_CEPH_FSCACHE */ 547 548 struct ceph_writeback_ctl 549 { 550 loff_t i_size; 551 u64 truncate_size; 552 u32 truncate_seq; 553 bool size_stable; 554 bool head_snapc; 555 }; 556 557 /* 558 * Get ref for the oldest snapc for an inode with dirty data... that is, the 559 * only snap context we are allowed to write back. 560 */ 561 static struct ceph_snap_context * 562 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, 563 struct ceph_snap_context *page_snapc) 564 { 565 struct ceph_inode_info *ci = ceph_inode(inode); 566 struct ceph_snap_context *snapc = NULL; 567 struct ceph_cap_snap *capsnap = NULL; 568 569 spin_lock(&ci->i_ceph_lock); 570 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 571 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, 572 capsnap->context, capsnap->dirty_pages); 573 if (!capsnap->dirty_pages) 574 continue; 575 576 /* get i_size, truncate_{seq,size} for page_snapc? */ 577 if (snapc && capsnap->context != page_snapc) 578 continue; 579 580 if (ctl) { 581 if (capsnap->writing) { 582 ctl->i_size = i_size_read(inode); 583 ctl->size_stable = false; 584 } else { 585 ctl->i_size = capsnap->size; 586 ctl->size_stable = true; 587 } 588 ctl->truncate_size = capsnap->truncate_size; 589 ctl->truncate_seq = capsnap->truncate_seq; 590 ctl->head_snapc = false; 591 } 592 593 if (snapc) 594 break; 595 596 snapc = ceph_get_snap_context(capsnap->context); 597 if (!page_snapc || 598 page_snapc == snapc || 599 page_snapc->seq > snapc->seq) 600 break; 601 } 602 if (!snapc && ci->i_wrbuffer_ref_head) { 603 snapc = ceph_get_snap_context(ci->i_head_snapc); 604 dout(" head snapc %p has %d dirty pages\n", 605 snapc, ci->i_wrbuffer_ref_head); 606 if (ctl) { 607 ctl->i_size = i_size_read(inode); 608 ctl->truncate_size = ci->i_truncate_size; 609 ctl->truncate_seq = ci->i_truncate_seq; 610 ctl->size_stable = false; 611 ctl->head_snapc = true; 612 } 613 } 614 spin_unlock(&ci->i_ceph_lock); 615 return snapc; 616 } 617 618 static u64 get_writepages_data_length(struct inode *inode, 619 struct page *page, u64 start) 620 { 621 struct ceph_inode_info *ci = ceph_inode(inode); 622 struct ceph_snap_context *snapc; 623 struct ceph_cap_snap *capsnap = NULL; 624 u64 end = i_size_read(inode); 625 u64 ret; 626 627 snapc = page_snap_context(ceph_fscrypt_pagecache_page(page)); 628 if (snapc != ci->i_head_snapc) { 629 bool found = false; 630 spin_lock(&ci->i_ceph_lock); 631 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 632 if (capsnap->context == snapc) { 633 if (!capsnap->writing) 634 end = capsnap->size; 635 found = true; 636 break; 637 } 638 } 639 spin_unlock(&ci->i_ceph_lock); 640 WARN_ON(!found); 641 } 642 if (end > ceph_fscrypt_page_offset(page) + thp_size(page)) 643 end = ceph_fscrypt_page_offset(page) + thp_size(page); 644 ret = end > start ? end - start : 0; 645 if (ret && fscrypt_is_bounce_page(page)) 646 ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE); 647 return ret; 648 } 649 650 /* 651 * Write a single page, but leave the page locked. 652 * 653 * If we get a write error, mark the mapping for error, but still adjust the 654 * dirty page accounting (i.e., page is no longer dirty). 655 */ 656 static int writepage_nounlock(struct page *page, struct writeback_control *wbc) 657 { 658 struct folio *folio = page_folio(page); 659 struct inode *inode = page->mapping->host; 660 struct ceph_inode_info *ci = ceph_inode(inode); 661 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 662 struct ceph_snap_context *snapc, *oldest; 663 loff_t page_off = page_offset(page); 664 int err; 665 loff_t len = thp_size(page); 666 loff_t wlen; 667 struct ceph_writeback_ctl ceph_wbc; 668 struct ceph_osd_client *osdc = &fsc->client->osdc; 669 struct ceph_osd_request *req; 670 bool caching = ceph_is_cache_enabled(inode); 671 struct page *bounce_page = NULL; 672 673 dout("writepage %p idx %lu\n", page, page->index); 674 675 if (ceph_inode_is_shutdown(inode)) 676 return -EIO; 677 678 /* verify this is a writeable snap context */ 679 snapc = page_snap_context(page); 680 if (!snapc) { 681 dout("writepage %p page %p not dirty?\n", inode, page); 682 return 0; 683 } 684 oldest = get_oldest_context(inode, &ceph_wbc, snapc); 685 if (snapc->seq > oldest->seq) { 686 dout("writepage %p page %p snapc %p not writeable - noop\n", 687 inode, page, snapc); 688 /* we should only noop if called by kswapd */ 689 WARN_ON(!(current->flags & PF_MEMALLOC)); 690 ceph_put_snap_context(oldest); 691 redirty_page_for_writepage(wbc, page); 692 return 0; 693 } 694 ceph_put_snap_context(oldest); 695 696 /* is this a partial page at end of file? */ 697 if (page_off >= ceph_wbc.i_size) { 698 dout("folio at %lu beyond eof %llu\n", folio->index, 699 ceph_wbc.i_size); 700 folio_invalidate(folio, 0, folio_size(folio)); 701 return 0; 702 } 703 704 if (ceph_wbc.i_size < page_off + len) 705 len = ceph_wbc.i_size - page_off; 706 707 wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len; 708 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", 709 inode, page, page->index, page_off, wlen, snapc, snapc->seq); 710 711 if (atomic_long_inc_return(&fsc->writeback_count) > 712 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) 713 fsc->write_congested = true; 714 715 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), 716 page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE, 717 CEPH_OSD_FLAG_WRITE, snapc, 718 ceph_wbc.truncate_seq, 719 ceph_wbc.truncate_size, true); 720 if (IS_ERR(req)) { 721 redirty_page_for_writepage(wbc, page); 722 return PTR_ERR(req); 723 } 724 725 if (wlen < len) 726 len = wlen; 727 728 set_page_writeback(page); 729 if (caching) 730 ceph_set_page_fscache(page); 731 ceph_fscache_write_to_cache(inode, page_off, len, caching); 732 733 if (IS_ENCRYPTED(inode)) { 734 bounce_page = fscrypt_encrypt_pagecache_blocks(page, 735 CEPH_FSCRYPT_BLOCK_SIZE, 0, 736 GFP_NOFS); 737 if (IS_ERR(bounce_page)) { 738 redirty_page_for_writepage(wbc, page); 739 end_page_writeback(page); 740 ceph_osdc_put_request(req); 741 return PTR_ERR(bounce_page); 742 } 743 } 744 745 /* it may be a short write due to an object boundary */ 746 WARN_ON_ONCE(len > thp_size(page)); 747 osd_req_op_extent_osd_data_pages(req, 0, 748 bounce_page ? &bounce_page : &page, wlen, 0, 749 false, false); 750 dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n", 751 page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not "); 752 753 req->r_mtime = inode->i_mtime; 754 ceph_osdc_start_request(osdc, req); 755 err = ceph_osdc_wait_request(osdc, req); 756 757 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 758 req->r_end_latency, len, err); 759 fscrypt_free_bounce_page(bounce_page); 760 ceph_osdc_put_request(req); 761 if (err == 0) 762 err = len; 763 764 if (err < 0) { 765 struct writeback_control tmp_wbc; 766 if (!wbc) 767 wbc = &tmp_wbc; 768 if (err == -ERESTARTSYS) { 769 /* killed by SIGKILL */ 770 dout("writepage interrupted page %p\n", page); 771 redirty_page_for_writepage(wbc, page); 772 end_page_writeback(page); 773 return err; 774 } 775 if (err == -EBLOCKLISTED) 776 fsc->blocklisted = true; 777 dout("writepage setting page/mapping error %d %p\n", 778 err, page); 779 mapping_set_error(&inode->i_data, err); 780 wbc->pages_skipped++; 781 } else { 782 dout("writepage cleaned page %p\n", page); 783 err = 0; /* vfs expects us to return 0 */ 784 } 785 oldest = detach_page_private(page); 786 WARN_ON_ONCE(oldest != snapc); 787 end_page_writeback(page); 788 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 789 ceph_put_snap_context(snapc); /* page's reference */ 790 791 if (atomic_long_dec_return(&fsc->writeback_count) < 792 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) 793 fsc->write_congested = false; 794 795 return err; 796 } 797 798 static int ceph_writepage(struct page *page, struct writeback_control *wbc) 799 { 800 int err; 801 struct inode *inode = page->mapping->host; 802 BUG_ON(!inode); 803 ihold(inode); 804 805 if (wbc->sync_mode == WB_SYNC_NONE && 806 ceph_inode_to_client(inode)->write_congested) 807 return AOP_WRITEPAGE_ACTIVATE; 808 809 wait_on_page_fscache(page); 810 811 err = writepage_nounlock(page, wbc); 812 if (err == -ERESTARTSYS) { 813 /* direct memory reclaimer was killed by SIGKILL. return 0 814 * to prevent caller from setting mapping/page error */ 815 err = 0; 816 } 817 unlock_page(page); 818 iput(inode); 819 return err; 820 } 821 822 /* 823 * async writeback completion handler. 824 * 825 * If we get an error, set the mapping error bit, but not the individual 826 * page error bits. 827 */ 828 static void writepages_finish(struct ceph_osd_request *req) 829 { 830 struct inode *inode = req->r_inode; 831 struct ceph_inode_info *ci = ceph_inode(inode); 832 struct ceph_osd_data *osd_data; 833 struct page *page; 834 int num_pages, total_pages = 0; 835 int i, j; 836 int rc = req->r_result; 837 struct ceph_snap_context *snapc = req->r_snapc; 838 struct address_space *mapping = inode->i_mapping; 839 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 840 unsigned int len = 0; 841 bool remove_page; 842 843 dout("writepages_finish %p rc %d\n", inode, rc); 844 if (rc < 0) { 845 mapping_set_error(mapping, rc); 846 ceph_set_error_write(ci); 847 if (rc == -EBLOCKLISTED) 848 fsc->blocklisted = true; 849 } else { 850 ceph_clear_error_write(ci); 851 } 852 853 /* 854 * We lost the cache cap, need to truncate the page before 855 * it is unlocked, otherwise we'd truncate it later in the 856 * page truncation thread, possibly losing some data that 857 * raced its way in 858 */ 859 remove_page = !(ceph_caps_issued(ci) & 860 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); 861 862 /* clean all pages */ 863 for (i = 0; i < req->r_num_ops; i++) { 864 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) { 865 pr_warn("%s incorrect op %d req %p index %d tid %llu\n", 866 __func__, req->r_ops[i].op, req, i, req->r_tid); 867 break; 868 } 869 870 osd_data = osd_req_op_extent_osd_data(req, i); 871 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); 872 len += osd_data->length; 873 num_pages = calc_pages_for((u64)osd_data->alignment, 874 (u64)osd_data->length); 875 total_pages += num_pages; 876 for (j = 0; j < num_pages; j++) { 877 page = osd_data->pages[j]; 878 if (fscrypt_is_bounce_page(page)) { 879 page = fscrypt_pagecache_page(page); 880 fscrypt_free_bounce_page(osd_data->pages[j]); 881 osd_data->pages[j] = page; 882 } 883 BUG_ON(!page); 884 WARN_ON(!PageUptodate(page)); 885 886 if (atomic_long_dec_return(&fsc->writeback_count) < 887 CONGESTION_OFF_THRESH( 888 fsc->mount_options->congestion_kb)) 889 fsc->write_congested = false; 890 891 ceph_put_snap_context(detach_page_private(page)); 892 end_page_writeback(page); 893 dout("unlocking %p\n", page); 894 895 if (remove_page) 896 generic_error_remove_page(inode->i_mapping, 897 page); 898 899 unlock_page(page); 900 } 901 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", 902 inode, osd_data->length, rc >= 0 ? num_pages : 0); 903 904 release_pages(osd_data->pages, num_pages); 905 } 906 907 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 908 req->r_end_latency, len, rc); 909 910 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); 911 912 osd_data = osd_req_op_extent_osd_data(req, 0); 913 if (osd_data->pages_from_pool) 914 mempool_free(osd_data->pages, ceph_wb_pagevec_pool); 915 else 916 kfree(osd_data->pages); 917 ceph_osdc_put_request(req); 918 ceph_dec_osd_stopping_blocker(fsc->mdsc); 919 } 920 921 /* 922 * initiate async writeback 923 */ 924 static int ceph_writepages_start(struct address_space *mapping, 925 struct writeback_control *wbc) 926 { 927 struct inode *inode = mapping->host; 928 struct ceph_inode_info *ci = ceph_inode(inode); 929 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 930 struct ceph_vino vino = ceph_vino(inode); 931 pgoff_t index, start_index, end = -1; 932 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; 933 struct folio_batch fbatch; 934 int rc = 0; 935 unsigned int wsize = i_blocksize(inode); 936 struct ceph_osd_request *req = NULL; 937 struct ceph_writeback_ctl ceph_wbc; 938 bool should_loop, range_whole = false; 939 bool done = false; 940 bool caching = ceph_is_cache_enabled(inode); 941 xa_mark_t tag; 942 943 if (wbc->sync_mode == WB_SYNC_NONE && 944 fsc->write_congested) 945 return 0; 946 947 dout("writepages_start %p (mode=%s)\n", inode, 948 wbc->sync_mode == WB_SYNC_NONE ? "NONE" : 949 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); 950 951 if (ceph_inode_is_shutdown(inode)) { 952 if (ci->i_wrbuffer_ref > 0) { 953 pr_warn_ratelimited( 954 "writepage_start %p %lld forced umount\n", 955 inode, ceph_ino(inode)); 956 } 957 mapping_set_error(mapping, -EIO); 958 return -EIO; /* we're in a forced umount, don't write! */ 959 } 960 if (fsc->mount_options->wsize < wsize) 961 wsize = fsc->mount_options->wsize; 962 963 folio_batch_init(&fbatch); 964 965 start_index = wbc->range_cyclic ? mapping->writeback_index : 0; 966 index = start_index; 967 968 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 969 tag = PAGECACHE_TAG_TOWRITE; 970 } else { 971 tag = PAGECACHE_TAG_DIRTY; 972 } 973 retry: 974 /* find oldest snap context with dirty data */ 975 snapc = get_oldest_context(inode, &ceph_wbc, NULL); 976 if (!snapc) { 977 /* hmm, why does writepages get called when there 978 is no dirty data? */ 979 dout(" no snap context with dirty data?\n"); 980 goto out; 981 } 982 dout(" oldest snapc is %p seq %lld (%d snaps)\n", 983 snapc, snapc->seq, snapc->num_snaps); 984 985 should_loop = false; 986 if (ceph_wbc.head_snapc && snapc != last_snapc) { 987 /* where to start/end? */ 988 if (wbc->range_cyclic) { 989 index = start_index; 990 end = -1; 991 if (index > 0) 992 should_loop = true; 993 dout(" cyclic, start at %lu\n", index); 994 } else { 995 index = wbc->range_start >> PAGE_SHIFT; 996 end = wbc->range_end >> PAGE_SHIFT; 997 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 998 range_whole = true; 999 dout(" not cyclic, %lu to %lu\n", index, end); 1000 } 1001 } else if (!ceph_wbc.head_snapc) { 1002 /* Do not respect wbc->range_{start,end}. Dirty pages 1003 * in that range can be associated with newer snapc. 1004 * They are not writeable until we write all dirty pages 1005 * associated with 'snapc' get written */ 1006 if (index > 0) 1007 should_loop = true; 1008 dout(" non-head snapc, range whole\n"); 1009 } 1010 1011 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1012 tag_pages_for_writeback(mapping, index, end); 1013 1014 ceph_put_snap_context(last_snapc); 1015 last_snapc = snapc; 1016 1017 while (!done && index <= end) { 1018 int num_ops = 0, op_idx; 1019 unsigned i, nr_folios, max_pages, locked_pages = 0; 1020 struct page **pages = NULL, **data_pages; 1021 struct page *page; 1022 pgoff_t strip_unit_end = 0; 1023 u64 offset = 0, len = 0; 1024 bool from_pool = false; 1025 1026 max_pages = wsize >> PAGE_SHIFT; 1027 1028 get_more_pages: 1029 nr_folios = filemap_get_folios_tag(mapping, &index, 1030 end, tag, &fbatch); 1031 dout("pagevec_lookup_range_tag got %d\n", nr_folios); 1032 if (!nr_folios && !locked_pages) 1033 break; 1034 for (i = 0; i < nr_folios && locked_pages < max_pages; i++) { 1035 page = &fbatch.folios[i]->page; 1036 dout("? %p idx %lu\n", page, page->index); 1037 if (locked_pages == 0) 1038 lock_page(page); /* first page */ 1039 else if (!trylock_page(page)) 1040 break; 1041 1042 /* only dirty pages, or our accounting breaks */ 1043 if (unlikely(!PageDirty(page)) || 1044 unlikely(page->mapping != mapping)) { 1045 dout("!dirty or !mapping %p\n", page); 1046 unlock_page(page); 1047 continue; 1048 } 1049 /* only if matching snap context */ 1050 pgsnapc = page_snap_context(page); 1051 if (pgsnapc != snapc) { 1052 dout("page snapc %p %lld != oldest %p %lld\n", 1053 pgsnapc, pgsnapc->seq, snapc, snapc->seq); 1054 if (!should_loop && 1055 !ceph_wbc.head_snapc && 1056 wbc->sync_mode != WB_SYNC_NONE) 1057 should_loop = true; 1058 unlock_page(page); 1059 continue; 1060 } 1061 if (page_offset(page) >= ceph_wbc.i_size) { 1062 struct folio *folio = page_folio(page); 1063 1064 dout("folio at %lu beyond eof %llu\n", 1065 folio->index, ceph_wbc.i_size); 1066 if ((ceph_wbc.size_stable || 1067 folio_pos(folio) >= i_size_read(inode)) && 1068 folio_clear_dirty_for_io(folio)) 1069 folio_invalidate(folio, 0, 1070 folio_size(folio)); 1071 folio_unlock(folio); 1072 continue; 1073 } 1074 if (strip_unit_end && (page->index > strip_unit_end)) { 1075 dout("end of strip unit %p\n", page); 1076 unlock_page(page); 1077 break; 1078 } 1079 if (PageWriteback(page) || PageFsCache(page)) { 1080 if (wbc->sync_mode == WB_SYNC_NONE) { 1081 dout("%p under writeback\n", page); 1082 unlock_page(page); 1083 continue; 1084 } 1085 dout("waiting on writeback %p\n", page); 1086 wait_on_page_writeback(page); 1087 wait_on_page_fscache(page); 1088 } 1089 1090 if (!clear_page_dirty_for_io(page)) { 1091 dout("%p !clear_page_dirty_for_io\n", page); 1092 unlock_page(page); 1093 continue; 1094 } 1095 1096 /* 1097 * We have something to write. If this is 1098 * the first locked page this time through, 1099 * calculate max possinle write size and 1100 * allocate a page array 1101 */ 1102 if (locked_pages == 0) { 1103 u64 objnum; 1104 u64 objoff; 1105 u32 xlen; 1106 1107 /* prepare async write request */ 1108 offset = (u64)page_offset(page); 1109 ceph_calc_file_object_mapping(&ci->i_layout, 1110 offset, wsize, 1111 &objnum, &objoff, 1112 &xlen); 1113 len = xlen; 1114 1115 num_ops = 1; 1116 strip_unit_end = page->index + 1117 ((len - 1) >> PAGE_SHIFT); 1118 1119 BUG_ON(pages); 1120 max_pages = calc_pages_for(0, (u64)len); 1121 pages = kmalloc_array(max_pages, 1122 sizeof(*pages), 1123 GFP_NOFS); 1124 if (!pages) { 1125 from_pool = true; 1126 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1127 BUG_ON(!pages); 1128 } 1129 1130 len = 0; 1131 } else if (page->index != 1132 (offset + len) >> PAGE_SHIFT) { 1133 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : 1134 CEPH_OSD_MAX_OPS)) { 1135 redirty_page_for_writepage(wbc, page); 1136 unlock_page(page); 1137 break; 1138 } 1139 1140 num_ops++; 1141 offset = (u64)page_offset(page); 1142 len = 0; 1143 } 1144 1145 /* note position of first page in fbatch */ 1146 dout("%p will write page %p idx %lu\n", 1147 inode, page, page->index); 1148 1149 if (atomic_long_inc_return(&fsc->writeback_count) > 1150 CONGESTION_ON_THRESH( 1151 fsc->mount_options->congestion_kb)) 1152 fsc->write_congested = true; 1153 1154 if (IS_ENCRYPTED(inode)) { 1155 pages[locked_pages] = 1156 fscrypt_encrypt_pagecache_blocks(page, 1157 PAGE_SIZE, 0, 1158 locked_pages ? GFP_NOWAIT : GFP_NOFS); 1159 if (IS_ERR(pages[locked_pages])) { 1160 if (PTR_ERR(pages[locked_pages]) == -EINVAL) 1161 pr_err("%s: inode->i_blkbits=%hhu\n", 1162 __func__, inode->i_blkbits); 1163 /* better not fail on first page! */ 1164 BUG_ON(locked_pages == 0); 1165 pages[locked_pages] = NULL; 1166 redirty_page_for_writepage(wbc, page); 1167 unlock_page(page); 1168 break; 1169 } 1170 ++locked_pages; 1171 } else { 1172 pages[locked_pages++] = page; 1173 } 1174 1175 fbatch.folios[i] = NULL; 1176 len += thp_size(page); 1177 } 1178 1179 /* did we get anything? */ 1180 if (!locked_pages) 1181 goto release_folios; 1182 if (i) { 1183 unsigned j, n = 0; 1184 /* shift unused page to beginning of fbatch */ 1185 for (j = 0; j < nr_folios; j++) { 1186 if (!fbatch.folios[j]) 1187 continue; 1188 if (n < j) 1189 fbatch.folios[n] = fbatch.folios[j]; 1190 n++; 1191 } 1192 fbatch.nr = n; 1193 1194 if (nr_folios && i == nr_folios && 1195 locked_pages < max_pages) { 1196 dout("reached end fbatch, trying for more\n"); 1197 folio_batch_release(&fbatch); 1198 goto get_more_pages; 1199 } 1200 } 1201 1202 new_request: 1203 offset = ceph_fscrypt_page_offset(pages[0]); 1204 len = wsize; 1205 1206 req = ceph_osdc_new_request(&fsc->client->osdc, 1207 &ci->i_layout, vino, 1208 offset, &len, 0, num_ops, 1209 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1210 snapc, ceph_wbc.truncate_seq, 1211 ceph_wbc.truncate_size, false); 1212 if (IS_ERR(req)) { 1213 req = ceph_osdc_new_request(&fsc->client->osdc, 1214 &ci->i_layout, vino, 1215 offset, &len, 0, 1216 min(num_ops, 1217 CEPH_OSD_SLAB_OPS), 1218 CEPH_OSD_OP_WRITE, 1219 CEPH_OSD_FLAG_WRITE, 1220 snapc, ceph_wbc.truncate_seq, 1221 ceph_wbc.truncate_size, true); 1222 BUG_ON(IS_ERR(req)); 1223 } 1224 BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) + 1225 thp_size(pages[locked_pages - 1]) - offset); 1226 1227 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { 1228 rc = -EIO; 1229 goto release_folios; 1230 } 1231 req->r_callback = writepages_finish; 1232 req->r_inode = inode; 1233 1234 /* Format the osd request message and submit the write */ 1235 len = 0; 1236 data_pages = pages; 1237 op_idx = 0; 1238 for (i = 0; i < locked_pages; i++) { 1239 struct page *page = ceph_fscrypt_pagecache_page(pages[i]); 1240 1241 u64 cur_offset = page_offset(page); 1242 /* 1243 * Discontinuity in page range? Ceph can handle that by just passing 1244 * multiple extents in the write op. 1245 */ 1246 if (offset + len != cur_offset) { 1247 /* If it's full, stop here */ 1248 if (op_idx + 1 == req->r_num_ops) 1249 break; 1250 1251 /* Kick off an fscache write with what we have so far. */ 1252 ceph_fscache_write_to_cache(inode, offset, len, caching); 1253 1254 /* Start a new extent */ 1255 osd_req_op_extent_dup_last(req, op_idx, 1256 cur_offset - offset); 1257 dout("writepages got pages at %llu~%llu\n", 1258 offset, len); 1259 osd_req_op_extent_osd_data_pages(req, op_idx, 1260 data_pages, len, 0, 1261 from_pool, false); 1262 osd_req_op_extent_update(req, op_idx, len); 1263 1264 len = 0; 1265 offset = cur_offset; 1266 data_pages = pages + i; 1267 op_idx++; 1268 } 1269 1270 set_page_writeback(page); 1271 if (caching) 1272 ceph_set_page_fscache(page); 1273 len += thp_size(page); 1274 } 1275 ceph_fscache_write_to_cache(inode, offset, len, caching); 1276 1277 if (ceph_wbc.size_stable) { 1278 len = min(len, ceph_wbc.i_size - offset); 1279 } else if (i == locked_pages) { 1280 /* writepages_finish() clears writeback pages 1281 * according to the data length, so make sure 1282 * data length covers all locked pages */ 1283 u64 min_len = len + 1 - thp_size(page); 1284 len = get_writepages_data_length(inode, pages[i - 1], 1285 offset); 1286 len = max(len, min_len); 1287 } 1288 if (IS_ENCRYPTED(inode)) 1289 len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE); 1290 1291 dout("writepages got pages at %llu~%llu\n", offset, len); 1292 1293 if (IS_ENCRYPTED(inode) && 1294 ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK)) 1295 pr_warn("%s: bad encrypted write offset=%lld len=%llu\n", 1296 __func__, offset, len); 1297 1298 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 1299 0, from_pool, false); 1300 osd_req_op_extent_update(req, op_idx, len); 1301 1302 BUG_ON(op_idx + 1 != req->r_num_ops); 1303 1304 from_pool = false; 1305 if (i < locked_pages) { 1306 BUG_ON(num_ops <= req->r_num_ops); 1307 num_ops -= req->r_num_ops; 1308 locked_pages -= i; 1309 1310 /* allocate new pages array for next request */ 1311 data_pages = pages; 1312 pages = kmalloc_array(locked_pages, sizeof(*pages), 1313 GFP_NOFS); 1314 if (!pages) { 1315 from_pool = true; 1316 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1317 BUG_ON(!pages); 1318 } 1319 memcpy(pages, data_pages + i, 1320 locked_pages * sizeof(*pages)); 1321 memset(data_pages + i, 0, 1322 locked_pages * sizeof(*pages)); 1323 } else { 1324 BUG_ON(num_ops != req->r_num_ops); 1325 index = pages[i - 1]->index + 1; 1326 /* request message now owns the pages array */ 1327 pages = NULL; 1328 } 1329 1330 req->r_mtime = inode->i_mtime; 1331 ceph_osdc_start_request(&fsc->client->osdc, req); 1332 req = NULL; 1333 1334 wbc->nr_to_write -= i; 1335 if (pages) 1336 goto new_request; 1337 1338 /* 1339 * We stop writing back only if we are not doing 1340 * integrity sync. In case of integrity sync we have to 1341 * keep going until we have written all the pages 1342 * we tagged for writeback prior to entering this loop. 1343 */ 1344 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) 1345 done = true; 1346 1347 release_folios: 1348 dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr, 1349 fbatch.nr ? fbatch.folios[0] : NULL); 1350 folio_batch_release(&fbatch); 1351 } 1352 1353 if (should_loop && !done) { 1354 /* more to do; loop back to beginning of file */ 1355 dout("writepages looping back to beginning of file\n"); 1356 end = start_index - 1; /* OK even when start_index == 0 */ 1357 1358 /* to write dirty pages associated with next snapc, 1359 * we need to wait until current writes complete */ 1360 if (wbc->sync_mode != WB_SYNC_NONE && 1361 start_index == 0 && /* all dirty pages were checked */ 1362 !ceph_wbc.head_snapc) { 1363 struct page *page; 1364 unsigned i, nr; 1365 index = 0; 1366 while ((index <= end) && 1367 (nr = filemap_get_folios_tag(mapping, &index, 1368 (pgoff_t)-1, 1369 PAGECACHE_TAG_WRITEBACK, 1370 &fbatch))) { 1371 for (i = 0; i < nr; i++) { 1372 page = &fbatch.folios[i]->page; 1373 if (page_snap_context(page) != snapc) 1374 continue; 1375 wait_on_page_writeback(page); 1376 } 1377 folio_batch_release(&fbatch); 1378 cond_resched(); 1379 } 1380 } 1381 1382 start_index = 0; 1383 index = 0; 1384 goto retry; 1385 } 1386 1387 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1388 mapping->writeback_index = index; 1389 1390 out: 1391 ceph_osdc_put_request(req); 1392 ceph_put_snap_context(last_snapc); 1393 dout("writepages dend - startone, rc = %d\n", rc); 1394 return rc; 1395 } 1396 1397 1398 1399 /* 1400 * See if a given @snapc is either writeable, or already written. 1401 */ 1402 static int context_is_writeable_or_written(struct inode *inode, 1403 struct ceph_snap_context *snapc) 1404 { 1405 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); 1406 int ret = !oldest || snapc->seq <= oldest->seq; 1407 1408 ceph_put_snap_context(oldest); 1409 return ret; 1410 } 1411 1412 /** 1413 * ceph_find_incompatible - find an incompatible context and return it 1414 * @page: page being dirtied 1415 * 1416 * We are only allowed to write into/dirty a page if the page is 1417 * clean, or already dirty within the same snap context. Returns a 1418 * conflicting context if there is one, NULL if there isn't, or a 1419 * negative error code on other errors. 1420 * 1421 * Must be called with page lock held. 1422 */ 1423 static struct ceph_snap_context * 1424 ceph_find_incompatible(struct page *page) 1425 { 1426 struct inode *inode = page->mapping->host; 1427 struct ceph_inode_info *ci = ceph_inode(inode); 1428 1429 if (ceph_inode_is_shutdown(inode)) { 1430 dout(" page %p %llx:%llx is shutdown\n", page, 1431 ceph_vinop(inode)); 1432 return ERR_PTR(-ESTALE); 1433 } 1434 1435 for (;;) { 1436 struct ceph_snap_context *snapc, *oldest; 1437 1438 wait_on_page_writeback(page); 1439 1440 snapc = page_snap_context(page); 1441 if (!snapc || snapc == ci->i_head_snapc) 1442 break; 1443 1444 /* 1445 * this page is already dirty in another (older) snap 1446 * context! is it writeable now? 1447 */ 1448 oldest = get_oldest_context(inode, NULL, NULL); 1449 if (snapc->seq > oldest->seq) { 1450 /* not writeable -- return it for the caller to deal with */ 1451 ceph_put_snap_context(oldest); 1452 dout(" page %p snapc %p not current or oldest\n", page, snapc); 1453 return ceph_get_snap_context(snapc); 1454 } 1455 ceph_put_snap_context(oldest); 1456 1457 /* yay, writeable, do it now (without dropping page lock) */ 1458 dout(" page %p snapc %p not current, but oldest\n", page, snapc); 1459 if (clear_page_dirty_for_io(page)) { 1460 int r = writepage_nounlock(page, NULL); 1461 if (r < 0) 1462 return ERR_PTR(r); 1463 } 1464 } 1465 return NULL; 1466 } 1467 1468 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 1469 struct folio **foliop, void **_fsdata) 1470 { 1471 struct inode *inode = file_inode(file); 1472 struct ceph_inode_info *ci = ceph_inode(inode); 1473 struct ceph_snap_context *snapc; 1474 1475 snapc = ceph_find_incompatible(folio_page(*foliop, 0)); 1476 if (snapc) { 1477 int r; 1478 1479 folio_unlock(*foliop); 1480 folio_put(*foliop); 1481 *foliop = NULL; 1482 if (IS_ERR(snapc)) 1483 return PTR_ERR(snapc); 1484 1485 ceph_queue_writeback(inode); 1486 r = wait_event_killable(ci->i_cap_wq, 1487 context_is_writeable_or_written(inode, snapc)); 1488 ceph_put_snap_context(snapc); 1489 return r == 0 ? -EAGAIN : r; 1490 } 1491 return 0; 1492 } 1493 1494 /* 1495 * We are only allowed to write into/dirty the page if the page is 1496 * clean, or already dirty within the same snap context. 1497 */ 1498 static int ceph_write_begin(struct file *file, struct address_space *mapping, 1499 loff_t pos, unsigned len, 1500 struct page **pagep, void **fsdata) 1501 { 1502 struct inode *inode = file_inode(file); 1503 struct ceph_inode_info *ci = ceph_inode(inode); 1504 struct folio *folio = NULL; 1505 int r; 1506 1507 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL); 1508 if (r < 0) 1509 return r; 1510 1511 folio_wait_fscache(folio); 1512 WARN_ON_ONCE(!folio_test_locked(folio)); 1513 *pagep = &folio->page; 1514 return 0; 1515 } 1516 1517 /* 1518 * we don't do anything in here that simple_write_end doesn't do 1519 * except adjust dirty page accounting 1520 */ 1521 static int ceph_write_end(struct file *file, struct address_space *mapping, 1522 loff_t pos, unsigned len, unsigned copied, 1523 struct page *subpage, void *fsdata) 1524 { 1525 struct folio *folio = page_folio(subpage); 1526 struct inode *inode = file_inode(file); 1527 bool check_cap = false; 1528 1529 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, 1530 inode, folio, (int)pos, (int)copied, (int)len); 1531 1532 if (!folio_test_uptodate(folio)) { 1533 /* just return that nothing was copied on a short copy */ 1534 if (copied < len) { 1535 copied = 0; 1536 goto out; 1537 } 1538 folio_mark_uptodate(folio); 1539 } 1540 1541 /* did file size increase? */ 1542 if (pos+copied > i_size_read(inode)) 1543 check_cap = ceph_inode_set_size(inode, pos+copied); 1544 1545 folio_mark_dirty(folio); 1546 1547 out: 1548 folio_unlock(folio); 1549 folio_put(folio); 1550 1551 if (check_cap) 1552 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY); 1553 1554 return copied; 1555 } 1556 1557 const struct address_space_operations ceph_aops = { 1558 .read_folio = netfs_read_folio, 1559 .readahead = netfs_readahead, 1560 .writepage = ceph_writepage, 1561 .writepages = ceph_writepages_start, 1562 .write_begin = ceph_write_begin, 1563 .write_end = ceph_write_end, 1564 .dirty_folio = ceph_dirty_folio, 1565 .invalidate_folio = ceph_invalidate_folio, 1566 .release_folio = ceph_release_folio, 1567 .direct_IO = noop_direct_IO, 1568 }; 1569 1570 static void ceph_block_sigs(sigset_t *oldset) 1571 { 1572 sigset_t mask; 1573 siginitsetinv(&mask, sigmask(SIGKILL)); 1574 sigprocmask(SIG_BLOCK, &mask, oldset); 1575 } 1576 1577 static void ceph_restore_sigs(sigset_t *oldset) 1578 { 1579 sigprocmask(SIG_SETMASK, oldset, NULL); 1580 } 1581 1582 /* 1583 * vm ops 1584 */ 1585 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) 1586 { 1587 struct vm_area_struct *vma = vmf->vma; 1588 struct inode *inode = file_inode(vma->vm_file); 1589 struct ceph_inode_info *ci = ceph_inode(inode); 1590 struct ceph_file_info *fi = vma->vm_file->private_data; 1591 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; 1592 int want, got, err; 1593 sigset_t oldset; 1594 vm_fault_t ret = VM_FAULT_SIGBUS; 1595 1596 if (ceph_inode_is_shutdown(inode)) 1597 return ret; 1598 1599 ceph_block_sigs(&oldset); 1600 1601 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", 1602 inode, ceph_vinop(inode), off); 1603 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1604 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; 1605 else 1606 want = CEPH_CAP_FILE_CACHE; 1607 1608 got = 0; 1609 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); 1610 if (err < 0) 1611 goto out_restore; 1612 1613 dout("filemap_fault %p %llu got cap refs on %s\n", 1614 inode, off, ceph_cap_string(got)); 1615 1616 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || 1617 !ceph_has_inline_data(ci)) { 1618 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); 1619 ceph_add_rw_context(fi, &rw_ctx); 1620 ret = filemap_fault(vmf); 1621 ceph_del_rw_context(fi, &rw_ctx); 1622 dout("filemap_fault %p %llu drop cap refs %s ret %x\n", 1623 inode, off, ceph_cap_string(got), ret); 1624 } else 1625 err = -EAGAIN; 1626 1627 ceph_put_cap_refs(ci, got); 1628 1629 if (err != -EAGAIN) 1630 goto out_restore; 1631 1632 /* read inline data */ 1633 if (off >= PAGE_SIZE) { 1634 /* does not support inline data > PAGE_SIZE */ 1635 ret = VM_FAULT_SIGBUS; 1636 } else { 1637 struct address_space *mapping = inode->i_mapping; 1638 struct page *page; 1639 1640 filemap_invalidate_lock_shared(mapping); 1641 page = find_or_create_page(mapping, 0, 1642 mapping_gfp_constraint(mapping, ~__GFP_FS)); 1643 if (!page) { 1644 ret = VM_FAULT_OOM; 1645 goto out_inline; 1646 } 1647 err = __ceph_do_getattr(inode, page, 1648 CEPH_STAT_CAP_INLINE_DATA, true); 1649 if (err < 0 || off >= i_size_read(inode)) { 1650 unlock_page(page); 1651 put_page(page); 1652 ret = vmf_error(err); 1653 goto out_inline; 1654 } 1655 if (err < PAGE_SIZE) 1656 zero_user_segment(page, err, PAGE_SIZE); 1657 else 1658 flush_dcache_page(page); 1659 SetPageUptodate(page); 1660 vmf->page = page; 1661 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; 1662 out_inline: 1663 filemap_invalidate_unlock_shared(mapping); 1664 dout("filemap_fault %p %llu read inline data ret %x\n", 1665 inode, off, ret); 1666 } 1667 out_restore: 1668 ceph_restore_sigs(&oldset); 1669 if (err < 0) 1670 ret = vmf_error(err); 1671 1672 return ret; 1673 } 1674 1675 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) 1676 { 1677 struct vm_area_struct *vma = vmf->vma; 1678 struct inode *inode = file_inode(vma->vm_file); 1679 struct ceph_inode_info *ci = ceph_inode(inode); 1680 struct ceph_file_info *fi = vma->vm_file->private_data; 1681 struct ceph_cap_flush *prealloc_cf; 1682 struct page *page = vmf->page; 1683 loff_t off = page_offset(page); 1684 loff_t size = i_size_read(inode); 1685 size_t len; 1686 int want, got, err; 1687 sigset_t oldset; 1688 vm_fault_t ret = VM_FAULT_SIGBUS; 1689 1690 if (ceph_inode_is_shutdown(inode)) 1691 return ret; 1692 1693 prealloc_cf = ceph_alloc_cap_flush(); 1694 if (!prealloc_cf) 1695 return VM_FAULT_OOM; 1696 1697 sb_start_pagefault(inode->i_sb); 1698 ceph_block_sigs(&oldset); 1699 1700 if (off + thp_size(page) <= size) 1701 len = thp_size(page); 1702 else 1703 len = offset_in_thp(page, size); 1704 1705 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", 1706 inode, ceph_vinop(inode), off, len, size); 1707 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1708 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; 1709 else 1710 want = CEPH_CAP_FILE_BUFFER; 1711 1712 got = 0; 1713 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); 1714 if (err < 0) 1715 goto out_free; 1716 1717 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", 1718 inode, off, len, ceph_cap_string(got)); 1719 1720 /* Update time before taking page lock */ 1721 file_update_time(vma->vm_file); 1722 inode_inc_iversion_raw(inode); 1723 1724 do { 1725 struct ceph_snap_context *snapc; 1726 1727 lock_page(page); 1728 1729 if (page_mkwrite_check_truncate(page, inode) < 0) { 1730 unlock_page(page); 1731 ret = VM_FAULT_NOPAGE; 1732 break; 1733 } 1734 1735 snapc = ceph_find_incompatible(page); 1736 if (!snapc) { 1737 /* success. we'll keep the page locked. */ 1738 set_page_dirty(page); 1739 ret = VM_FAULT_LOCKED; 1740 break; 1741 } 1742 1743 unlock_page(page); 1744 1745 if (IS_ERR(snapc)) { 1746 ret = VM_FAULT_SIGBUS; 1747 break; 1748 } 1749 1750 ceph_queue_writeback(inode); 1751 err = wait_event_killable(ci->i_cap_wq, 1752 context_is_writeable_or_written(inode, snapc)); 1753 ceph_put_snap_context(snapc); 1754 } while (err == 0); 1755 1756 if (ret == VM_FAULT_LOCKED) { 1757 int dirty; 1758 spin_lock(&ci->i_ceph_lock); 1759 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, 1760 &prealloc_cf); 1761 spin_unlock(&ci->i_ceph_lock); 1762 if (dirty) 1763 __mark_inode_dirty(inode, dirty); 1764 } 1765 1766 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", 1767 inode, off, len, ceph_cap_string(got), ret); 1768 ceph_put_cap_refs_async(ci, got); 1769 out_free: 1770 ceph_restore_sigs(&oldset); 1771 sb_end_pagefault(inode->i_sb); 1772 ceph_free_cap_flush(prealloc_cf); 1773 if (err < 0) 1774 ret = vmf_error(err); 1775 return ret; 1776 } 1777 1778 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1779 char *data, size_t len) 1780 { 1781 struct address_space *mapping = inode->i_mapping; 1782 struct page *page; 1783 1784 if (locked_page) { 1785 page = locked_page; 1786 } else { 1787 if (i_size_read(inode) == 0) 1788 return; 1789 page = find_or_create_page(mapping, 0, 1790 mapping_gfp_constraint(mapping, 1791 ~__GFP_FS)); 1792 if (!page) 1793 return; 1794 if (PageUptodate(page)) { 1795 unlock_page(page); 1796 put_page(page); 1797 return; 1798 } 1799 } 1800 1801 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", 1802 inode, ceph_vinop(inode), len, locked_page); 1803 1804 if (len > 0) { 1805 void *kaddr = kmap_atomic(page); 1806 memcpy(kaddr, data, len); 1807 kunmap_atomic(kaddr); 1808 } 1809 1810 if (page != locked_page) { 1811 if (len < PAGE_SIZE) 1812 zero_user_segment(page, len, PAGE_SIZE); 1813 else 1814 flush_dcache_page(page); 1815 1816 SetPageUptodate(page); 1817 unlock_page(page); 1818 put_page(page); 1819 } 1820 } 1821 1822 int ceph_uninline_data(struct file *file) 1823 { 1824 struct inode *inode = file_inode(file); 1825 struct ceph_inode_info *ci = ceph_inode(inode); 1826 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 1827 struct ceph_osd_request *req = NULL; 1828 struct ceph_cap_flush *prealloc_cf = NULL; 1829 struct folio *folio = NULL; 1830 u64 inline_version = CEPH_INLINE_NONE; 1831 struct page *pages[1]; 1832 int err = 0; 1833 u64 len; 1834 1835 spin_lock(&ci->i_ceph_lock); 1836 inline_version = ci->i_inline_version; 1837 spin_unlock(&ci->i_ceph_lock); 1838 1839 dout("uninline_data %p %llx.%llx inline_version %llu\n", 1840 inode, ceph_vinop(inode), inline_version); 1841 1842 if (ceph_inode_is_shutdown(inode)) { 1843 err = -EIO; 1844 goto out; 1845 } 1846 1847 if (inline_version == CEPH_INLINE_NONE) 1848 return 0; 1849 1850 prealloc_cf = ceph_alloc_cap_flush(); 1851 if (!prealloc_cf) 1852 return -ENOMEM; 1853 1854 if (inline_version == 1) /* initial version, no data */ 1855 goto out_uninline; 1856 1857 folio = read_mapping_folio(inode->i_mapping, 0, file); 1858 if (IS_ERR(folio)) { 1859 err = PTR_ERR(folio); 1860 goto out; 1861 } 1862 1863 folio_lock(folio); 1864 1865 len = i_size_read(inode); 1866 if (len > folio_size(folio)) 1867 len = folio_size(folio); 1868 1869 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1870 ceph_vino(inode), 0, &len, 0, 1, 1871 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, 1872 NULL, 0, 0, false); 1873 if (IS_ERR(req)) { 1874 err = PTR_ERR(req); 1875 goto out_unlock; 1876 } 1877 1878 req->r_mtime = inode->i_mtime; 1879 ceph_osdc_start_request(&fsc->client->osdc, req); 1880 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1881 ceph_osdc_put_request(req); 1882 if (err < 0) 1883 goto out_unlock; 1884 1885 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1886 ceph_vino(inode), 0, &len, 1, 3, 1887 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1888 NULL, ci->i_truncate_seq, 1889 ci->i_truncate_size, false); 1890 if (IS_ERR(req)) { 1891 err = PTR_ERR(req); 1892 goto out_unlock; 1893 } 1894 1895 pages[0] = folio_page(folio, 0); 1896 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); 1897 1898 { 1899 __le64 xattr_buf = cpu_to_le64(inline_version); 1900 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, 1901 "inline_version", &xattr_buf, 1902 sizeof(xattr_buf), 1903 CEPH_OSD_CMPXATTR_OP_GT, 1904 CEPH_OSD_CMPXATTR_MODE_U64); 1905 if (err) 1906 goto out_put_req; 1907 } 1908 1909 { 1910 char xattr_buf[32]; 1911 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), 1912 "%llu", inline_version); 1913 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, 1914 "inline_version", 1915 xattr_buf, xattr_len, 0, 0); 1916 if (err) 1917 goto out_put_req; 1918 } 1919 1920 req->r_mtime = inode->i_mtime; 1921 ceph_osdc_start_request(&fsc->client->osdc, req); 1922 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1923 1924 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 1925 req->r_end_latency, len, err); 1926 1927 out_uninline: 1928 if (!err) { 1929 int dirty; 1930 1931 /* Set to CAP_INLINE_NONE and dirty the caps */ 1932 down_read(&fsc->mdsc->snap_rwsem); 1933 spin_lock(&ci->i_ceph_lock); 1934 ci->i_inline_version = CEPH_INLINE_NONE; 1935 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); 1936 spin_unlock(&ci->i_ceph_lock); 1937 up_read(&fsc->mdsc->snap_rwsem); 1938 if (dirty) 1939 __mark_inode_dirty(inode, dirty); 1940 } 1941 out_put_req: 1942 ceph_osdc_put_request(req); 1943 if (err == -ECANCELED) 1944 err = 0; 1945 out_unlock: 1946 if (folio) { 1947 folio_unlock(folio); 1948 folio_put(folio); 1949 } 1950 out: 1951 ceph_free_cap_flush(prealloc_cf); 1952 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", 1953 inode, ceph_vinop(inode), inline_version, err); 1954 return err; 1955 } 1956 1957 static const struct vm_operations_struct ceph_vmops = { 1958 .fault = ceph_filemap_fault, 1959 .page_mkwrite = ceph_page_mkwrite, 1960 }; 1961 1962 int ceph_mmap(struct file *file, struct vm_area_struct *vma) 1963 { 1964 struct address_space *mapping = file->f_mapping; 1965 1966 if (!mapping->a_ops->read_folio) 1967 return -ENOEXEC; 1968 vma->vm_ops = &ceph_vmops; 1969 return 0; 1970 } 1971 1972 enum { 1973 POOL_READ = 1, 1974 POOL_WRITE = 2, 1975 }; 1976 1977 static int __ceph_pool_perm_get(struct ceph_inode_info *ci, 1978 s64 pool, struct ceph_string *pool_ns) 1979 { 1980 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode); 1981 struct ceph_mds_client *mdsc = fsc->mdsc; 1982 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; 1983 struct rb_node **p, *parent; 1984 struct ceph_pool_perm *perm; 1985 struct page **pages; 1986 size_t pool_ns_len; 1987 int err = 0, err2 = 0, have = 0; 1988 1989 down_read(&mdsc->pool_perm_rwsem); 1990 p = &mdsc->pool_perm_tree.rb_node; 1991 while (*p) { 1992 perm = rb_entry(*p, struct ceph_pool_perm, node); 1993 if (pool < perm->pool) 1994 p = &(*p)->rb_left; 1995 else if (pool > perm->pool) 1996 p = &(*p)->rb_right; 1997 else { 1998 int ret = ceph_compare_string(pool_ns, 1999 perm->pool_ns, 2000 perm->pool_ns_len); 2001 if (ret < 0) 2002 p = &(*p)->rb_left; 2003 else if (ret > 0) 2004 p = &(*p)->rb_right; 2005 else { 2006 have = perm->perm; 2007 break; 2008 } 2009 } 2010 } 2011 up_read(&mdsc->pool_perm_rwsem); 2012 if (*p) 2013 goto out; 2014 2015 if (pool_ns) 2016 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", 2017 pool, (int)pool_ns->len, pool_ns->str); 2018 else 2019 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); 2020 2021 down_write(&mdsc->pool_perm_rwsem); 2022 p = &mdsc->pool_perm_tree.rb_node; 2023 parent = NULL; 2024 while (*p) { 2025 parent = *p; 2026 perm = rb_entry(parent, struct ceph_pool_perm, node); 2027 if (pool < perm->pool) 2028 p = &(*p)->rb_left; 2029 else if (pool > perm->pool) 2030 p = &(*p)->rb_right; 2031 else { 2032 int ret = ceph_compare_string(pool_ns, 2033 perm->pool_ns, 2034 perm->pool_ns_len); 2035 if (ret < 0) 2036 p = &(*p)->rb_left; 2037 else if (ret > 0) 2038 p = &(*p)->rb_right; 2039 else { 2040 have = perm->perm; 2041 break; 2042 } 2043 } 2044 } 2045 if (*p) { 2046 up_write(&mdsc->pool_perm_rwsem); 2047 goto out; 2048 } 2049 2050 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 2051 1, false, GFP_NOFS); 2052 if (!rd_req) { 2053 err = -ENOMEM; 2054 goto out_unlock; 2055 } 2056 2057 rd_req->r_flags = CEPH_OSD_FLAG_READ; 2058 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); 2059 rd_req->r_base_oloc.pool = pool; 2060 if (pool_ns) 2061 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); 2062 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); 2063 2064 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); 2065 if (err) 2066 goto out_unlock; 2067 2068 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 2069 1, false, GFP_NOFS); 2070 if (!wr_req) { 2071 err = -ENOMEM; 2072 goto out_unlock; 2073 } 2074 2075 wr_req->r_flags = CEPH_OSD_FLAG_WRITE; 2076 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); 2077 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); 2078 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); 2079 2080 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); 2081 if (err) 2082 goto out_unlock; 2083 2084 /* one page should be large enough for STAT data */ 2085 pages = ceph_alloc_page_vector(1, GFP_KERNEL); 2086 if (IS_ERR(pages)) { 2087 err = PTR_ERR(pages); 2088 goto out_unlock; 2089 } 2090 2091 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 2092 0, false, true); 2093 ceph_osdc_start_request(&fsc->client->osdc, rd_req); 2094 2095 wr_req->r_mtime = ci->netfs.inode.i_mtime; 2096 ceph_osdc_start_request(&fsc->client->osdc, wr_req); 2097 2098 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); 2099 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); 2100 2101 if (err >= 0 || err == -ENOENT) 2102 have |= POOL_READ; 2103 else if (err != -EPERM) { 2104 if (err == -EBLOCKLISTED) 2105 fsc->blocklisted = true; 2106 goto out_unlock; 2107 } 2108 2109 if (err2 == 0 || err2 == -EEXIST) 2110 have |= POOL_WRITE; 2111 else if (err2 != -EPERM) { 2112 if (err2 == -EBLOCKLISTED) 2113 fsc->blocklisted = true; 2114 err = err2; 2115 goto out_unlock; 2116 } 2117 2118 pool_ns_len = pool_ns ? pool_ns->len : 0; 2119 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); 2120 if (!perm) { 2121 err = -ENOMEM; 2122 goto out_unlock; 2123 } 2124 2125 perm->pool = pool; 2126 perm->perm = have; 2127 perm->pool_ns_len = pool_ns_len; 2128 if (pool_ns_len > 0) 2129 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); 2130 perm->pool_ns[pool_ns_len] = 0; 2131 2132 rb_link_node(&perm->node, parent, p); 2133 rb_insert_color(&perm->node, &mdsc->pool_perm_tree); 2134 err = 0; 2135 out_unlock: 2136 up_write(&mdsc->pool_perm_rwsem); 2137 2138 ceph_osdc_put_request(rd_req); 2139 ceph_osdc_put_request(wr_req); 2140 out: 2141 if (!err) 2142 err = have; 2143 if (pool_ns) 2144 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", 2145 pool, (int)pool_ns->len, pool_ns->str, err); 2146 else 2147 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); 2148 return err; 2149 } 2150 2151 int ceph_pool_perm_check(struct inode *inode, int need) 2152 { 2153 struct ceph_inode_info *ci = ceph_inode(inode); 2154 struct ceph_string *pool_ns; 2155 s64 pool; 2156 int ret, flags; 2157 2158 /* Only need to do this for regular files */ 2159 if (!S_ISREG(inode->i_mode)) 2160 return 0; 2161 2162 if (ci->i_vino.snap != CEPH_NOSNAP) { 2163 /* 2164 * Pool permission check needs to write to the first object. 2165 * But for snapshot, head of the first object may have alread 2166 * been deleted. Skip check to avoid creating orphan object. 2167 */ 2168 return 0; 2169 } 2170 2171 if (ceph_test_mount_opt(ceph_inode_to_client(inode), 2172 NOPOOLPERM)) 2173 return 0; 2174 2175 spin_lock(&ci->i_ceph_lock); 2176 flags = ci->i_ceph_flags; 2177 pool = ci->i_layout.pool_id; 2178 spin_unlock(&ci->i_ceph_lock); 2179 check: 2180 if (flags & CEPH_I_POOL_PERM) { 2181 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { 2182 dout("ceph_pool_perm_check pool %lld no read perm\n", 2183 pool); 2184 return -EPERM; 2185 } 2186 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { 2187 dout("ceph_pool_perm_check pool %lld no write perm\n", 2188 pool); 2189 return -EPERM; 2190 } 2191 return 0; 2192 } 2193 2194 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); 2195 ret = __ceph_pool_perm_get(ci, pool, pool_ns); 2196 ceph_put_string(pool_ns); 2197 if (ret < 0) 2198 return ret; 2199 2200 flags = CEPH_I_POOL_PERM; 2201 if (ret & POOL_READ) 2202 flags |= CEPH_I_POOL_RD; 2203 if (ret & POOL_WRITE) 2204 flags |= CEPH_I_POOL_WR; 2205 2206 spin_lock(&ci->i_ceph_lock); 2207 if (pool == ci->i_layout.pool_id && 2208 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { 2209 ci->i_ceph_flags |= flags; 2210 } else { 2211 pool = ci->i_layout.pool_id; 2212 flags = ci->i_ceph_flags; 2213 } 2214 spin_unlock(&ci->i_ceph_lock); 2215 goto check; 2216 } 2217 2218 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) 2219 { 2220 struct ceph_pool_perm *perm; 2221 struct rb_node *n; 2222 2223 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { 2224 n = rb_first(&mdsc->pool_perm_tree); 2225 perm = rb_entry(n, struct ceph_pool_perm, node); 2226 rb_erase(n, &mdsc->pool_perm_tree); 2227 kfree(perm); 2228 } 2229 } 2230