1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/backing-dev.h> 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/swap.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/pagevec.h> 11 #include <linux/task_io_accounting_ops.h> 12 #include <linux/signal.h> 13 #include <linux/iversion.h> 14 #include <linux/ktime.h> 15 #include <linux/netfs.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "cache.h" 20 #include "metric.h" 21 #include <linux/ceph/osd_client.h> 22 #include <linux/ceph/striper.h> 23 24 /* 25 * Ceph address space ops. 26 * 27 * There are a few funny things going on here. 28 * 29 * The page->private field is used to reference a struct 30 * ceph_snap_context for _every_ dirty page. This indicates which 31 * snapshot the page was logically dirtied in, and thus which snap 32 * context needs to be associated with the osd write during writeback. 33 * 34 * Similarly, struct ceph_inode_info maintains a set of counters to 35 * count dirty pages on the inode. In the absence of snapshots, 36 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. 37 * 38 * When a snapshot is taken (that is, when the client receives 39 * notification that a snapshot was taken), each inode with caps and 40 * with dirty pages (dirty pages implies there is a cap) gets a new 41 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending 42 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is 43 * moved to capsnap->dirty. (Unless a sync write is currently in 44 * progress. In that case, the capsnap is said to be "pending", new 45 * writes cannot start, and the capsnap isn't "finalized" until the 46 * write completes (or fails) and a final size/mtime for the inode for 47 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. 48 * 49 * On writeback, we must submit writes to the osd IN SNAP ORDER. So, 50 * we look for the first capsnap in i_cap_snaps and write out pages in 51 * that snap context _only_. Then we move on to the next capsnap, 52 * eventually reaching the "live" or "head" context (i.e., pages that 53 * are not yet snapped) and are writing the most recently dirtied 54 * pages. 55 * 56 * Invalidate and so forth must take care to ensure the dirty page 57 * accounting is preserved. 58 */ 59 60 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) 61 #define CONGESTION_OFF_THRESH(congestion_kb) \ 62 (CONGESTION_ON_THRESH(congestion_kb) - \ 63 (CONGESTION_ON_THRESH(congestion_kb) >> 2)) 64 65 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 66 struct folio **foliop, void **_fsdata); 67 68 static inline struct ceph_snap_context *page_snap_context(struct page *page) 69 { 70 if (PagePrivate(page)) 71 return (void *)page->private; 72 return NULL; 73 } 74 75 /* 76 * Dirty a page. Optimistically adjust accounting, on the assumption 77 * that we won't race with invalidate. If we do, readjust. 78 */ 79 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) 80 { 81 struct inode *inode; 82 struct ceph_inode_info *ci; 83 struct ceph_snap_context *snapc; 84 85 if (folio_test_dirty(folio)) { 86 dout("%p dirty_folio %p idx %lu -- already dirty\n", 87 mapping->host, folio, folio->index); 88 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio); 89 return false; 90 } 91 92 inode = mapping->host; 93 ci = ceph_inode(inode); 94 95 /* dirty the head */ 96 spin_lock(&ci->i_ceph_lock); 97 BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference 98 if (__ceph_have_pending_cap_snap(ci)) { 99 struct ceph_cap_snap *capsnap = 100 list_last_entry(&ci->i_cap_snaps, 101 struct ceph_cap_snap, 102 ci_item); 103 snapc = ceph_get_snap_context(capsnap->context); 104 capsnap->dirty_pages++; 105 } else { 106 BUG_ON(!ci->i_head_snapc); 107 snapc = ceph_get_snap_context(ci->i_head_snapc); 108 ++ci->i_wrbuffer_ref_head; 109 } 110 if (ci->i_wrbuffer_ref == 0) 111 ihold(inode); 112 ++ci->i_wrbuffer_ref; 113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " 114 "snapc %p seq %lld (%d snaps)\n", 115 mapping->host, folio, folio->index, 116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, 117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 118 snapc, snapc->seq, snapc->num_snaps); 119 spin_unlock(&ci->i_ceph_lock); 120 121 /* 122 * Reference snap context in folio->private. Also set 123 * PagePrivate so that we get invalidate_folio callback. 124 */ 125 VM_BUG_ON_FOLIO(folio_test_private(folio), folio); 126 folio_attach_private(folio, snapc); 127 128 return ceph_fscache_dirty_folio(mapping, folio); 129 } 130 131 /* 132 * If we are truncating the full folio (i.e. offset == 0), adjust the 133 * dirty folio counters appropriately. Only called if there is private 134 * data on the folio. 135 */ 136 static void ceph_invalidate_folio(struct folio *folio, size_t offset, 137 size_t length) 138 { 139 struct inode *inode; 140 struct ceph_inode_info *ci; 141 struct ceph_snap_context *snapc; 142 143 inode = folio->mapping->host; 144 ci = ceph_inode(inode); 145 146 if (offset != 0 || length != folio_size(folio)) { 147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", 148 inode, folio->index, offset, length); 149 return; 150 } 151 152 WARN_ON(!folio_test_locked(folio)); 153 if (folio_test_private(folio)) { 154 dout("%p invalidate_folio idx %lu full dirty page\n", 155 inode, folio->index); 156 157 snapc = folio_detach_private(folio); 158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 159 ceph_put_snap_context(snapc); 160 } 161 162 folio_wait_fscache(folio); 163 } 164 165 static bool ceph_release_folio(struct folio *folio, gfp_t gfp) 166 { 167 struct inode *inode = folio->mapping->host; 168 169 dout("%llx:%llx release_folio idx %lu (%sdirty)\n", 170 ceph_vinop(inode), 171 folio->index, folio_test_dirty(folio) ? "" : "not "); 172 173 if (folio_test_private(folio)) 174 return false; 175 176 if (folio_test_fscache(folio)) { 177 if (current_is_kswapd() || !(gfp & __GFP_FS)) 178 return false; 179 folio_wait_fscache(folio); 180 } 181 ceph_fscache_note_page_release(inode); 182 return true; 183 } 184 185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) 186 { 187 struct inode *inode = rreq->inode; 188 struct ceph_inode_info *ci = ceph_inode(inode); 189 struct ceph_file_layout *lo = &ci->i_layout; 190 u32 blockoff; 191 u64 blockno; 192 193 /* Expand the start downward */ 194 blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); 195 rreq->start = blockno * lo->stripe_unit; 196 rreq->len += blockoff; 197 198 /* Now, round up the length to the next block */ 199 rreq->len = roundup(rreq->len, lo->stripe_unit); 200 } 201 202 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) 203 { 204 struct inode *inode = subreq->rreq->inode; 205 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 206 struct ceph_inode_info *ci = ceph_inode(inode); 207 u64 objno, objoff; 208 u32 xlen; 209 210 /* Truncate the extent at the end of the current block */ 211 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, 212 &objno, &objoff, &xlen); 213 subreq->len = min(xlen, fsc->mount_options->rsize); 214 return true; 215 } 216 217 static void finish_netfs_read(struct ceph_osd_request *req) 218 { 219 struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode); 220 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); 221 struct netfs_io_subrequest *subreq = req->r_priv; 222 int num_pages; 223 int err = req->r_result; 224 225 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, 226 req->r_end_latency, osd_data->length, err); 227 228 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, 229 subreq->len, i_size_read(req->r_inode)); 230 231 /* no object means success but no data */ 232 if (err == -ENOENT) 233 err = 0; 234 else if (err == -EBLOCKLISTED) 235 fsc->blocklisted = true; 236 237 if (err >= 0 && err < subreq->len) 238 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 239 240 netfs_subreq_terminated(subreq, err, true); 241 242 num_pages = calc_pages_for(osd_data->alignment, osd_data->length); 243 ceph_put_page_vector(osd_data->pages, num_pages, false); 244 iput(req->r_inode); 245 } 246 247 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) 248 { 249 struct netfs_io_request *rreq = subreq->rreq; 250 struct inode *inode = rreq->inode; 251 struct ceph_mds_reply_info_parsed *rinfo; 252 struct ceph_mds_reply_info_in *iinfo; 253 struct ceph_mds_request *req; 254 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 255 struct ceph_inode_info *ci = ceph_inode(inode); 256 struct iov_iter iter; 257 ssize_t err = 0; 258 size_t len; 259 int mode; 260 261 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 262 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); 263 264 if (subreq->start >= inode->i_size) 265 goto out; 266 267 /* We need to fetch the inline data. */ 268 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA); 269 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); 270 if (IS_ERR(req)) { 271 err = PTR_ERR(req); 272 goto out; 273 } 274 req->r_ino1 = ci->i_vino; 275 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); 276 req->r_num_caps = 2; 277 278 err = ceph_mdsc_do_request(mdsc, NULL, req); 279 if (err < 0) 280 goto out; 281 282 rinfo = &req->r_reply_info; 283 iinfo = &rinfo->targeti; 284 if (iinfo->inline_version == CEPH_INLINE_NONE) { 285 /* The data got uninlined */ 286 ceph_mdsc_put_request(req); 287 return false; 288 } 289 290 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); 291 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len); 292 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); 293 if (err == 0) 294 err = -EFAULT; 295 296 ceph_mdsc_put_request(req); 297 out: 298 netfs_subreq_terminated(subreq, err, false); 299 return true; 300 } 301 302 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) 303 { 304 struct netfs_io_request *rreq = subreq->rreq; 305 struct inode *inode = rreq->inode; 306 struct ceph_inode_info *ci = ceph_inode(inode); 307 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 308 struct ceph_osd_request *req; 309 struct ceph_vino vino = ceph_vino(inode); 310 struct iov_iter iter; 311 struct page **pages; 312 size_t page_off; 313 int err = 0; 314 u64 len = subreq->len; 315 316 if (ci->i_inline_version != CEPH_INLINE_NONE && 317 ceph_netfs_issue_op_inline(subreq)) 318 return; 319 320 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len, 321 0, 1, CEPH_OSD_OP_READ, 322 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, 323 NULL, ci->i_truncate_seq, ci->i_truncate_size, false); 324 if (IS_ERR(req)) { 325 err = PTR_ERR(req); 326 req = NULL; 327 goto out; 328 } 329 330 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); 331 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len); 332 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off); 333 if (err < 0) { 334 dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err); 335 goto out; 336 } 337 338 /* should always give us a page-aligned read */ 339 WARN_ON_ONCE(page_off); 340 len = err; 341 342 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false); 343 req->r_callback = finish_netfs_read; 344 req->r_priv = subreq; 345 req->r_inode = inode; 346 ihold(inode); 347 348 err = ceph_osdc_start_request(req->r_osdc, req, false); 349 if (err) 350 iput(inode); 351 out: 352 ceph_osdc_put_request(req); 353 if (err) 354 netfs_subreq_terminated(subreq, err, false); 355 dout("%s: result %d\n", __func__, err); 356 } 357 358 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) 359 { 360 struct inode *inode = rreq->inode; 361 int got = 0, want = CEPH_CAP_FILE_CACHE; 362 int ret = 0; 363 364 if (rreq->origin != NETFS_READAHEAD) 365 return 0; 366 367 if (file) { 368 struct ceph_rw_context *rw_ctx; 369 struct ceph_file_info *fi = file->private_data; 370 371 rw_ctx = ceph_find_rw_context(fi); 372 if (rw_ctx) 373 return 0; 374 } 375 376 /* 377 * readahead callers do not necessarily hold Fcb caps 378 * (e.g. fadvise, madvise). 379 */ 380 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); 381 if (ret < 0) { 382 dout("start_read %p, error getting cap\n", inode); 383 return ret; 384 } 385 386 if (!(got & want)) { 387 dout("start_read %p, no cache cap\n", inode); 388 return -EACCES; 389 } 390 if (ret == 0) 391 return -EACCES; 392 393 rreq->netfs_priv = (void *)(uintptr_t)got; 394 return 0; 395 } 396 397 static void ceph_netfs_free_request(struct netfs_io_request *rreq) 398 { 399 struct ceph_inode_info *ci = ceph_inode(rreq->inode); 400 int got = (uintptr_t)rreq->netfs_priv; 401 402 if (got) 403 ceph_put_cap_refs(ci, got); 404 } 405 406 const struct netfs_request_ops ceph_netfs_ops = { 407 .init_request = ceph_init_request, 408 .free_request = ceph_netfs_free_request, 409 .begin_cache_operation = ceph_begin_cache_operation, 410 .issue_read = ceph_netfs_issue_read, 411 .expand_readahead = ceph_netfs_expand_readahead, 412 .clamp_length = ceph_netfs_clamp_length, 413 .check_write_begin = ceph_netfs_check_write_begin, 414 }; 415 416 #ifdef CONFIG_CEPH_FSCACHE 417 static void ceph_set_page_fscache(struct page *page) 418 { 419 set_page_fscache(page); 420 } 421 422 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) 423 { 424 struct inode *inode = priv; 425 426 if (IS_ERR_VALUE(error) && error != -ENOBUFS) 427 ceph_fscache_invalidate(inode, false); 428 } 429 430 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 431 { 432 struct ceph_inode_info *ci = ceph_inode(inode); 433 struct fscache_cookie *cookie = ceph_fscache_cookie(ci); 434 435 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), 436 ceph_fscache_write_terminated, inode, caching); 437 } 438 #else 439 static inline void ceph_set_page_fscache(struct page *page) 440 { 441 } 442 443 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 444 { 445 } 446 #endif /* CONFIG_CEPH_FSCACHE */ 447 448 struct ceph_writeback_ctl 449 { 450 loff_t i_size; 451 u64 truncate_size; 452 u32 truncate_seq; 453 bool size_stable; 454 bool head_snapc; 455 }; 456 457 /* 458 * Get ref for the oldest snapc for an inode with dirty data... that is, the 459 * only snap context we are allowed to write back. 460 */ 461 static struct ceph_snap_context * 462 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, 463 struct ceph_snap_context *page_snapc) 464 { 465 struct ceph_inode_info *ci = ceph_inode(inode); 466 struct ceph_snap_context *snapc = NULL; 467 struct ceph_cap_snap *capsnap = NULL; 468 469 spin_lock(&ci->i_ceph_lock); 470 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 471 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, 472 capsnap->context, capsnap->dirty_pages); 473 if (!capsnap->dirty_pages) 474 continue; 475 476 /* get i_size, truncate_{seq,size} for page_snapc? */ 477 if (snapc && capsnap->context != page_snapc) 478 continue; 479 480 if (ctl) { 481 if (capsnap->writing) { 482 ctl->i_size = i_size_read(inode); 483 ctl->size_stable = false; 484 } else { 485 ctl->i_size = capsnap->size; 486 ctl->size_stable = true; 487 } 488 ctl->truncate_size = capsnap->truncate_size; 489 ctl->truncate_seq = capsnap->truncate_seq; 490 ctl->head_snapc = false; 491 } 492 493 if (snapc) 494 break; 495 496 snapc = ceph_get_snap_context(capsnap->context); 497 if (!page_snapc || 498 page_snapc == snapc || 499 page_snapc->seq > snapc->seq) 500 break; 501 } 502 if (!snapc && ci->i_wrbuffer_ref_head) { 503 snapc = ceph_get_snap_context(ci->i_head_snapc); 504 dout(" head snapc %p has %d dirty pages\n", 505 snapc, ci->i_wrbuffer_ref_head); 506 if (ctl) { 507 ctl->i_size = i_size_read(inode); 508 ctl->truncate_size = ci->i_truncate_size; 509 ctl->truncate_seq = ci->i_truncate_seq; 510 ctl->size_stable = false; 511 ctl->head_snapc = true; 512 } 513 } 514 spin_unlock(&ci->i_ceph_lock); 515 return snapc; 516 } 517 518 static u64 get_writepages_data_length(struct inode *inode, 519 struct page *page, u64 start) 520 { 521 struct ceph_inode_info *ci = ceph_inode(inode); 522 struct ceph_snap_context *snapc = page_snap_context(page); 523 struct ceph_cap_snap *capsnap = NULL; 524 u64 end = i_size_read(inode); 525 526 if (snapc != ci->i_head_snapc) { 527 bool found = false; 528 spin_lock(&ci->i_ceph_lock); 529 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 530 if (capsnap->context == snapc) { 531 if (!capsnap->writing) 532 end = capsnap->size; 533 found = true; 534 break; 535 } 536 } 537 spin_unlock(&ci->i_ceph_lock); 538 WARN_ON(!found); 539 } 540 if (end > page_offset(page) + thp_size(page)) 541 end = page_offset(page) + thp_size(page); 542 return end > start ? end - start : 0; 543 } 544 545 /* 546 * Write a single page, but leave the page locked. 547 * 548 * If we get a write error, mark the mapping for error, but still adjust the 549 * dirty page accounting (i.e., page is no longer dirty). 550 */ 551 static int writepage_nounlock(struct page *page, struct writeback_control *wbc) 552 { 553 struct folio *folio = page_folio(page); 554 struct inode *inode = page->mapping->host; 555 struct ceph_inode_info *ci = ceph_inode(inode); 556 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 557 struct ceph_snap_context *snapc, *oldest; 558 loff_t page_off = page_offset(page); 559 int err; 560 loff_t len = thp_size(page); 561 struct ceph_writeback_ctl ceph_wbc; 562 struct ceph_osd_client *osdc = &fsc->client->osdc; 563 struct ceph_osd_request *req; 564 bool caching = ceph_is_cache_enabled(inode); 565 566 dout("writepage %p idx %lu\n", page, page->index); 567 568 /* verify this is a writeable snap context */ 569 snapc = page_snap_context(page); 570 if (!snapc) { 571 dout("writepage %p page %p not dirty?\n", inode, page); 572 return 0; 573 } 574 oldest = get_oldest_context(inode, &ceph_wbc, snapc); 575 if (snapc->seq > oldest->seq) { 576 dout("writepage %p page %p snapc %p not writeable - noop\n", 577 inode, page, snapc); 578 /* we should only noop if called by kswapd */ 579 WARN_ON(!(current->flags & PF_MEMALLOC)); 580 ceph_put_snap_context(oldest); 581 redirty_page_for_writepage(wbc, page); 582 return 0; 583 } 584 ceph_put_snap_context(oldest); 585 586 /* is this a partial page at end of file? */ 587 if (page_off >= ceph_wbc.i_size) { 588 dout("folio at %lu beyond eof %llu\n", folio->index, 589 ceph_wbc.i_size); 590 folio_invalidate(folio, 0, folio_size(folio)); 591 return 0; 592 } 593 594 if (ceph_wbc.i_size < page_off + len) 595 len = ceph_wbc.i_size - page_off; 596 597 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", 598 inode, page, page->index, page_off, len, snapc, snapc->seq); 599 600 if (atomic_long_inc_return(&fsc->writeback_count) > 601 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) 602 fsc->write_congested = true; 603 604 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1, 605 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, 606 ceph_wbc.truncate_seq, ceph_wbc.truncate_size, 607 true); 608 if (IS_ERR(req)) { 609 redirty_page_for_writepage(wbc, page); 610 return PTR_ERR(req); 611 } 612 613 set_page_writeback(page); 614 if (caching) 615 ceph_set_page_fscache(page); 616 ceph_fscache_write_to_cache(inode, page_off, len, caching); 617 618 /* it may be a short write due to an object boundary */ 619 WARN_ON_ONCE(len > thp_size(page)); 620 osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false); 621 dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len); 622 623 req->r_mtime = inode->i_mtime; 624 err = ceph_osdc_start_request(osdc, req, true); 625 if (!err) 626 err = ceph_osdc_wait_request(osdc, req); 627 628 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 629 req->r_end_latency, len, err); 630 631 ceph_osdc_put_request(req); 632 if (err == 0) 633 err = len; 634 635 if (err < 0) { 636 struct writeback_control tmp_wbc; 637 if (!wbc) 638 wbc = &tmp_wbc; 639 if (err == -ERESTARTSYS) { 640 /* killed by SIGKILL */ 641 dout("writepage interrupted page %p\n", page); 642 redirty_page_for_writepage(wbc, page); 643 end_page_writeback(page); 644 return err; 645 } 646 if (err == -EBLOCKLISTED) 647 fsc->blocklisted = true; 648 dout("writepage setting page/mapping error %d %p\n", 649 err, page); 650 mapping_set_error(&inode->i_data, err); 651 wbc->pages_skipped++; 652 } else { 653 dout("writepage cleaned page %p\n", page); 654 err = 0; /* vfs expects us to return 0 */ 655 } 656 oldest = detach_page_private(page); 657 WARN_ON_ONCE(oldest != snapc); 658 end_page_writeback(page); 659 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 660 ceph_put_snap_context(snapc); /* page's reference */ 661 662 if (atomic_long_dec_return(&fsc->writeback_count) < 663 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) 664 fsc->write_congested = false; 665 666 return err; 667 } 668 669 static int ceph_writepage(struct page *page, struct writeback_control *wbc) 670 { 671 int err; 672 struct inode *inode = page->mapping->host; 673 BUG_ON(!inode); 674 ihold(inode); 675 676 if (wbc->sync_mode == WB_SYNC_NONE && 677 ceph_inode_to_client(inode)->write_congested) 678 return AOP_WRITEPAGE_ACTIVATE; 679 680 wait_on_page_fscache(page); 681 682 err = writepage_nounlock(page, wbc); 683 if (err == -ERESTARTSYS) { 684 /* direct memory reclaimer was killed by SIGKILL. return 0 685 * to prevent caller from setting mapping/page error */ 686 err = 0; 687 } 688 unlock_page(page); 689 iput(inode); 690 return err; 691 } 692 693 /* 694 * async writeback completion handler. 695 * 696 * If we get an error, set the mapping error bit, but not the individual 697 * page error bits. 698 */ 699 static void writepages_finish(struct ceph_osd_request *req) 700 { 701 struct inode *inode = req->r_inode; 702 struct ceph_inode_info *ci = ceph_inode(inode); 703 struct ceph_osd_data *osd_data; 704 struct page *page; 705 int num_pages, total_pages = 0; 706 int i, j; 707 int rc = req->r_result; 708 struct ceph_snap_context *snapc = req->r_snapc; 709 struct address_space *mapping = inode->i_mapping; 710 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 711 unsigned int len = 0; 712 bool remove_page; 713 714 dout("writepages_finish %p rc %d\n", inode, rc); 715 if (rc < 0) { 716 mapping_set_error(mapping, rc); 717 ceph_set_error_write(ci); 718 if (rc == -EBLOCKLISTED) 719 fsc->blocklisted = true; 720 } else { 721 ceph_clear_error_write(ci); 722 } 723 724 /* 725 * We lost the cache cap, need to truncate the page before 726 * it is unlocked, otherwise we'd truncate it later in the 727 * page truncation thread, possibly losing some data that 728 * raced its way in 729 */ 730 remove_page = !(ceph_caps_issued(ci) & 731 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); 732 733 /* clean all pages */ 734 for (i = 0; i < req->r_num_ops; i++) { 735 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) { 736 pr_warn("%s incorrect op %d req %p index %d tid %llu\n", 737 __func__, req->r_ops[i].op, req, i, req->r_tid); 738 break; 739 } 740 741 osd_data = osd_req_op_extent_osd_data(req, i); 742 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); 743 len += osd_data->length; 744 num_pages = calc_pages_for((u64)osd_data->alignment, 745 (u64)osd_data->length); 746 total_pages += num_pages; 747 for (j = 0; j < num_pages; j++) { 748 page = osd_data->pages[j]; 749 BUG_ON(!page); 750 WARN_ON(!PageUptodate(page)); 751 752 if (atomic_long_dec_return(&fsc->writeback_count) < 753 CONGESTION_OFF_THRESH( 754 fsc->mount_options->congestion_kb)) 755 fsc->write_congested = false; 756 757 ceph_put_snap_context(detach_page_private(page)); 758 end_page_writeback(page); 759 dout("unlocking %p\n", page); 760 761 if (remove_page) 762 generic_error_remove_page(inode->i_mapping, 763 page); 764 765 unlock_page(page); 766 } 767 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", 768 inode, osd_data->length, rc >= 0 ? num_pages : 0); 769 770 release_pages(osd_data->pages, num_pages); 771 } 772 773 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 774 req->r_end_latency, len, rc); 775 776 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); 777 778 osd_data = osd_req_op_extent_osd_data(req, 0); 779 if (osd_data->pages_from_pool) 780 mempool_free(osd_data->pages, ceph_wb_pagevec_pool); 781 else 782 kfree(osd_data->pages); 783 ceph_osdc_put_request(req); 784 } 785 786 /* 787 * initiate async writeback 788 */ 789 static int ceph_writepages_start(struct address_space *mapping, 790 struct writeback_control *wbc) 791 { 792 struct inode *inode = mapping->host; 793 struct ceph_inode_info *ci = ceph_inode(inode); 794 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 795 struct ceph_vino vino = ceph_vino(inode); 796 pgoff_t index, start_index, end = -1; 797 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; 798 struct pagevec pvec; 799 int rc = 0; 800 unsigned int wsize = i_blocksize(inode); 801 struct ceph_osd_request *req = NULL; 802 struct ceph_writeback_ctl ceph_wbc; 803 bool should_loop, range_whole = false; 804 bool done = false; 805 bool caching = ceph_is_cache_enabled(inode); 806 807 if (wbc->sync_mode == WB_SYNC_NONE && 808 fsc->write_congested) 809 return 0; 810 811 dout("writepages_start %p (mode=%s)\n", inode, 812 wbc->sync_mode == WB_SYNC_NONE ? "NONE" : 813 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); 814 815 if (ceph_inode_is_shutdown(inode)) { 816 if (ci->i_wrbuffer_ref > 0) { 817 pr_warn_ratelimited( 818 "writepage_start %p %lld forced umount\n", 819 inode, ceph_ino(inode)); 820 } 821 mapping_set_error(mapping, -EIO); 822 return -EIO; /* we're in a forced umount, don't write! */ 823 } 824 if (fsc->mount_options->wsize < wsize) 825 wsize = fsc->mount_options->wsize; 826 827 pagevec_init(&pvec); 828 829 start_index = wbc->range_cyclic ? mapping->writeback_index : 0; 830 index = start_index; 831 832 retry: 833 /* find oldest snap context with dirty data */ 834 snapc = get_oldest_context(inode, &ceph_wbc, NULL); 835 if (!snapc) { 836 /* hmm, why does writepages get called when there 837 is no dirty data? */ 838 dout(" no snap context with dirty data?\n"); 839 goto out; 840 } 841 dout(" oldest snapc is %p seq %lld (%d snaps)\n", 842 snapc, snapc->seq, snapc->num_snaps); 843 844 should_loop = false; 845 if (ceph_wbc.head_snapc && snapc != last_snapc) { 846 /* where to start/end? */ 847 if (wbc->range_cyclic) { 848 index = start_index; 849 end = -1; 850 if (index > 0) 851 should_loop = true; 852 dout(" cyclic, start at %lu\n", index); 853 } else { 854 index = wbc->range_start >> PAGE_SHIFT; 855 end = wbc->range_end >> PAGE_SHIFT; 856 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 857 range_whole = true; 858 dout(" not cyclic, %lu to %lu\n", index, end); 859 } 860 } else if (!ceph_wbc.head_snapc) { 861 /* Do not respect wbc->range_{start,end}. Dirty pages 862 * in that range can be associated with newer snapc. 863 * They are not writeable until we write all dirty pages 864 * associated with 'snapc' get written */ 865 if (index > 0) 866 should_loop = true; 867 dout(" non-head snapc, range whole\n"); 868 } 869 870 ceph_put_snap_context(last_snapc); 871 last_snapc = snapc; 872 873 while (!done && index <= end) { 874 int num_ops = 0, op_idx; 875 unsigned i, pvec_pages, max_pages, locked_pages = 0; 876 struct page **pages = NULL, **data_pages; 877 struct page *page; 878 pgoff_t strip_unit_end = 0; 879 u64 offset = 0, len = 0; 880 bool from_pool = false; 881 882 max_pages = wsize >> PAGE_SHIFT; 883 884 get_more_pages: 885 pvec_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 886 end, PAGECACHE_TAG_DIRTY); 887 dout("pagevec_lookup_range_tag got %d\n", pvec_pages); 888 if (!pvec_pages && !locked_pages) 889 break; 890 for (i = 0; i < pvec_pages && locked_pages < max_pages; i++) { 891 page = pvec.pages[i]; 892 dout("? %p idx %lu\n", page, page->index); 893 if (locked_pages == 0) 894 lock_page(page); /* first page */ 895 else if (!trylock_page(page)) 896 break; 897 898 /* only dirty pages, or our accounting breaks */ 899 if (unlikely(!PageDirty(page)) || 900 unlikely(page->mapping != mapping)) { 901 dout("!dirty or !mapping %p\n", page); 902 unlock_page(page); 903 continue; 904 } 905 /* only if matching snap context */ 906 pgsnapc = page_snap_context(page); 907 if (pgsnapc != snapc) { 908 dout("page snapc %p %lld != oldest %p %lld\n", 909 pgsnapc, pgsnapc->seq, snapc, snapc->seq); 910 if (!should_loop && 911 !ceph_wbc.head_snapc && 912 wbc->sync_mode != WB_SYNC_NONE) 913 should_loop = true; 914 unlock_page(page); 915 continue; 916 } 917 if (page_offset(page) >= ceph_wbc.i_size) { 918 struct folio *folio = page_folio(page); 919 920 dout("folio at %lu beyond eof %llu\n", 921 folio->index, ceph_wbc.i_size); 922 if ((ceph_wbc.size_stable || 923 folio_pos(folio) >= i_size_read(inode)) && 924 folio_clear_dirty_for_io(folio)) 925 folio_invalidate(folio, 0, 926 folio_size(folio)); 927 folio_unlock(folio); 928 continue; 929 } 930 if (strip_unit_end && (page->index > strip_unit_end)) { 931 dout("end of strip unit %p\n", page); 932 unlock_page(page); 933 break; 934 } 935 if (PageWriteback(page) || PageFsCache(page)) { 936 if (wbc->sync_mode == WB_SYNC_NONE) { 937 dout("%p under writeback\n", page); 938 unlock_page(page); 939 continue; 940 } 941 dout("waiting on writeback %p\n", page); 942 wait_on_page_writeback(page); 943 wait_on_page_fscache(page); 944 } 945 946 if (!clear_page_dirty_for_io(page)) { 947 dout("%p !clear_page_dirty_for_io\n", page); 948 unlock_page(page); 949 continue; 950 } 951 952 /* 953 * We have something to write. If this is 954 * the first locked page this time through, 955 * calculate max possinle write size and 956 * allocate a page array 957 */ 958 if (locked_pages == 0) { 959 u64 objnum; 960 u64 objoff; 961 u32 xlen; 962 963 /* prepare async write request */ 964 offset = (u64)page_offset(page); 965 ceph_calc_file_object_mapping(&ci->i_layout, 966 offset, wsize, 967 &objnum, &objoff, 968 &xlen); 969 len = xlen; 970 971 num_ops = 1; 972 strip_unit_end = page->index + 973 ((len - 1) >> PAGE_SHIFT); 974 975 BUG_ON(pages); 976 max_pages = calc_pages_for(0, (u64)len); 977 pages = kmalloc_array(max_pages, 978 sizeof(*pages), 979 GFP_NOFS); 980 if (!pages) { 981 from_pool = true; 982 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 983 BUG_ON(!pages); 984 } 985 986 len = 0; 987 } else if (page->index != 988 (offset + len) >> PAGE_SHIFT) { 989 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : 990 CEPH_OSD_MAX_OPS)) { 991 redirty_page_for_writepage(wbc, page); 992 unlock_page(page); 993 break; 994 } 995 996 num_ops++; 997 offset = (u64)page_offset(page); 998 len = 0; 999 } 1000 1001 /* note position of first page in pvec */ 1002 dout("%p will write page %p idx %lu\n", 1003 inode, page, page->index); 1004 1005 if (atomic_long_inc_return(&fsc->writeback_count) > 1006 CONGESTION_ON_THRESH( 1007 fsc->mount_options->congestion_kb)) 1008 fsc->write_congested = true; 1009 1010 pages[locked_pages++] = page; 1011 pvec.pages[i] = NULL; 1012 1013 len += thp_size(page); 1014 } 1015 1016 /* did we get anything? */ 1017 if (!locked_pages) 1018 goto release_pvec_pages; 1019 if (i) { 1020 unsigned j, n = 0; 1021 /* shift unused page to beginning of pvec */ 1022 for (j = 0; j < pvec_pages; j++) { 1023 if (!pvec.pages[j]) 1024 continue; 1025 if (n < j) 1026 pvec.pages[n] = pvec.pages[j]; 1027 n++; 1028 } 1029 pvec.nr = n; 1030 1031 if (pvec_pages && i == pvec_pages && 1032 locked_pages < max_pages) { 1033 dout("reached end pvec, trying for more\n"); 1034 pagevec_release(&pvec); 1035 goto get_more_pages; 1036 } 1037 } 1038 1039 new_request: 1040 offset = page_offset(pages[0]); 1041 len = wsize; 1042 1043 req = ceph_osdc_new_request(&fsc->client->osdc, 1044 &ci->i_layout, vino, 1045 offset, &len, 0, num_ops, 1046 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1047 snapc, ceph_wbc.truncate_seq, 1048 ceph_wbc.truncate_size, false); 1049 if (IS_ERR(req)) { 1050 req = ceph_osdc_new_request(&fsc->client->osdc, 1051 &ci->i_layout, vino, 1052 offset, &len, 0, 1053 min(num_ops, 1054 CEPH_OSD_SLAB_OPS), 1055 CEPH_OSD_OP_WRITE, 1056 CEPH_OSD_FLAG_WRITE, 1057 snapc, ceph_wbc.truncate_seq, 1058 ceph_wbc.truncate_size, true); 1059 BUG_ON(IS_ERR(req)); 1060 } 1061 BUG_ON(len < page_offset(pages[locked_pages - 1]) + 1062 thp_size(page) - offset); 1063 1064 req->r_callback = writepages_finish; 1065 req->r_inode = inode; 1066 1067 /* Format the osd request message and submit the write */ 1068 len = 0; 1069 data_pages = pages; 1070 op_idx = 0; 1071 for (i = 0; i < locked_pages; i++) { 1072 u64 cur_offset = page_offset(pages[i]); 1073 /* 1074 * Discontinuity in page range? Ceph can handle that by just passing 1075 * multiple extents in the write op. 1076 */ 1077 if (offset + len != cur_offset) { 1078 /* If it's full, stop here */ 1079 if (op_idx + 1 == req->r_num_ops) 1080 break; 1081 1082 /* Kick off an fscache write with what we have so far. */ 1083 ceph_fscache_write_to_cache(inode, offset, len, caching); 1084 1085 /* Start a new extent */ 1086 osd_req_op_extent_dup_last(req, op_idx, 1087 cur_offset - offset); 1088 dout("writepages got pages at %llu~%llu\n", 1089 offset, len); 1090 osd_req_op_extent_osd_data_pages(req, op_idx, 1091 data_pages, len, 0, 1092 from_pool, false); 1093 osd_req_op_extent_update(req, op_idx, len); 1094 1095 len = 0; 1096 offset = cur_offset; 1097 data_pages = pages + i; 1098 op_idx++; 1099 } 1100 1101 set_page_writeback(pages[i]); 1102 if (caching) 1103 ceph_set_page_fscache(pages[i]); 1104 len += thp_size(page); 1105 } 1106 ceph_fscache_write_to_cache(inode, offset, len, caching); 1107 1108 if (ceph_wbc.size_stable) { 1109 len = min(len, ceph_wbc.i_size - offset); 1110 } else if (i == locked_pages) { 1111 /* writepages_finish() clears writeback pages 1112 * according to the data length, so make sure 1113 * data length covers all locked pages */ 1114 u64 min_len = len + 1 - thp_size(page); 1115 len = get_writepages_data_length(inode, pages[i - 1], 1116 offset); 1117 len = max(len, min_len); 1118 } 1119 dout("writepages got pages at %llu~%llu\n", offset, len); 1120 1121 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 1122 0, from_pool, false); 1123 osd_req_op_extent_update(req, op_idx, len); 1124 1125 BUG_ON(op_idx + 1 != req->r_num_ops); 1126 1127 from_pool = false; 1128 if (i < locked_pages) { 1129 BUG_ON(num_ops <= req->r_num_ops); 1130 num_ops -= req->r_num_ops; 1131 locked_pages -= i; 1132 1133 /* allocate new pages array for next request */ 1134 data_pages = pages; 1135 pages = kmalloc_array(locked_pages, sizeof(*pages), 1136 GFP_NOFS); 1137 if (!pages) { 1138 from_pool = true; 1139 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1140 BUG_ON(!pages); 1141 } 1142 memcpy(pages, data_pages + i, 1143 locked_pages * sizeof(*pages)); 1144 memset(data_pages + i, 0, 1145 locked_pages * sizeof(*pages)); 1146 } else { 1147 BUG_ON(num_ops != req->r_num_ops); 1148 index = pages[i - 1]->index + 1; 1149 /* request message now owns the pages array */ 1150 pages = NULL; 1151 } 1152 1153 req->r_mtime = inode->i_mtime; 1154 rc = ceph_osdc_start_request(&fsc->client->osdc, req, true); 1155 BUG_ON(rc); 1156 req = NULL; 1157 1158 wbc->nr_to_write -= i; 1159 if (pages) 1160 goto new_request; 1161 1162 /* 1163 * We stop writing back only if we are not doing 1164 * integrity sync. In case of integrity sync we have to 1165 * keep going until we have written all the pages 1166 * we tagged for writeback prior to entering this loop. 1167 */ 1168 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) 1169 done = true; 1170 1171 release_pvec_pages: 1172 dout("pagevec_release on %d pages (%p)\n", (int)pvec.nr, 1173 pvec.nr ? pvec.pages[0] : NULL); 1174 pagevec_release(&pvec); 1175 } 1176 1177 if (should_loop && !done) { 1178 /* more to do; loop back to beginning of file */ 1179 dout("writepages looping back to beginning of file\n"); 1180 end = start_index - 1; /* OK even when start_index == 0 */ 1181 1182 /* to write dirty pages associated with next snapc, 1183 * we need to wait until current writes complete */ 1184 if (wbc->sync_mode != WB_SYNC_NONE && 1185 start_index == 0 && /* all dirty pages were checked */ 1186 !ceph_wbc.head_snapc) { 1187 struct page *page; 1188 unsigned i, nr; 1189 index = 0; 1190 while ((index <= end) && 1191 (nr = pagevec_lookup_tag(&pvec, mapping, &index, 1192 PAGECACHE_TAG_WRITEBACK))) { 1193 for (i = 0; i < nr; i++) { 1194 page = pvec.pages[i]; 1195 if (page_snap_context(page) != snapc) 1196 continue; 1197 wait_on_page_writeback(page); 1198 } 1199 pagevec_release(&pvec); 1200 cond_resched(); 1201 } 1202 } 1203 1204 start_index = 0; 1205 index = 0; 1206 goto retry; 1207 } 1208 1209 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1210 mapping->writeback_index = index; 1211 1212 out: 1213 ceph_osdc_put_request(req); 1214 ceph_put_snap_context(last_snapc); 1215 dout("writepages dend - startone, rc = %d\n", rc); 1216 return rc; 1217 } 1218 1219 1220 1221 /* 1222 * See if a given @snapc is either writeable, or already written. 1223 */ 1224 static int context_is_writeable_or_written(struct inode *inode, 1225 struct ceph_snap_context *snapc) 1226 { 1227 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); 1228 int ret = !oldest || snapc->seq <= oldest->seq; 1229 1230 ceph_put_snap_context(oldest); 1231 return ret; 1232 } 1233 1234 /** 1235 * ceph_find_incompatible - find an incompatible context and return it 1236 * @page: page being dirtied 1237 * 1238 * We are only allowed to write into/dirty a page if the page is 1239 * clean, or already dirty within the same snap context. Returns a 1240 * conflicting context if there is one, NULL if there isn't, or a 1241 * negative error code on other errors. 1242 * 1243 * Must be called with page lock held. 1244 */ 1245 static struct ceph_snap_context * 1246 ceph_find_incompatible(struct page *page) 1247 { 1248 struct inode *inode = page->mapping->host; 1249 struct ceph_inode_info *ci = ceph_inode(inode); 1250 1251 if (ceph_inode_is_shutdown(inode)) { 1252 dout(" page %p %llx:%llx is shutdown\n", page, 1253 ceph_vinop(inode)); 1254 return ERR_PTR(-ESTALE); 1255 } 1256 1257 for (;;) { 1258 struct ceph_snap_context *snapc, *oldest; 1259 1260 wait_on_page_writeback(page); 1261 1262 snapc = page_snap_context(page); 1263 if (!snapc || snapc == ci->i_head_snapc) 1264 break; 1265 1266 /* 1267 * this page is already dirty in another (older) snap 1268 * context! is it writeable now? 1269 */ 1270 oldest = get_oldest_context(inode, NULL, NULL); 1271 if (snapc->seq > oldest->seq) { 1272 /* not writeable -- return it for the caller to deal with */ 1273 ceph_put_snap_context(oldest); 1274 dout(" page %p snapc %p not current or oldest\n", page, snapc); 1275 return ceph_get_snap_context(snapc); 1276 } 1277 ceph_put_snap_context(oldest); 1278 1279 /* yay, writeable, do it now (without dropping page lock) */ 1280 dout(" page %p snapc %p not current, but oldest\n", page, snapc); 1281 if (clear_page_dirty_for_io(page)) { 1282 int r = writepage_nounlock(page, NULL); 1283 if (r < 0) 1284 return ERR_PTR(r); 1285 } 1286 } 1287 return NULL; 1288 } 1289 1290 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 1291 struct folio **foliop, void **_fsdata) 1292 { 1293 struct inode *inode = file_inode(file); 1294 struct ceph_inode_info *ci = ceph_inode(inode); 1295 struct ceph_snap_context *snapc; 1296 1297 snapc = ceph_find_incompatible(folio_page(*foliop, 0)); 1298 if (snapc) { 1299 int r; 1300 1301 folio_unlock(*foliop); 1302 folio_put(*foliop); 1303 *foliop = NULL; 1304 if (IS_ERR(snapc)) 1305 return PTR_ERR(snapc); 1306 1307 ceph_queue_writeback(inode); 1308 r = wait_event_killable(ci->i_cap_wq, 1309 context_is_writeable_or_written(inode, snapc)); 1310 ceph_put_snap_context(snapc); 1311 return r == 0 ? -EAGAIN : r; 1312 } 1313 return 0; 1314 } 1315 1316 /* 1317 * We are only allowed to write into/dirty the page if the page is 1318 * clean, or already dirty within the same snap context. 1319 */ 1320 static int ceph_write_begin(struct file *file, struct address_space *mapping, 1321 loff_t pos, unsigned len, 1322 struct page **pagep, void **fsdata) 1323 { 1324 struct inode *inode = file_inode(file); 1325 struct ceph_inode_info *ci = ceph_inode(inode); 1326 struct folio *folio = NULL; 1327 int r; 1328 1329 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL); 1330 if (r == 0) 1331 folio_wait_fscache(folio); 1332 if (r < 0) { 1333 if (folio) 1334 folio_put(folio); 1335 } else { 1336 WARN_ON_ONCE(!folio_test_locked(folio)); 1337 *pagep = &folio->page; 1338 } 1339 return r; 1340 } 1341 1342 /* 1343 * we don't do anything in here that simple_write_end doesn't do 1344 * except adjust dirty page accounting 1345 */ 1346 static int ceph_write_end(struct file *file, struct address_space *mapping, 1347 loff_t pos, unsigned len, unsigned copied, 1348 struct page *subpage, void *fsdata) 1349 { 1350 struct folio *folio = page_folio(subpage); 1351 struct inode *inode = file_inode(file); 1352 bool check_cap = false; 1353 1354 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, 1355 inode, folio, (int)pos, (int)copied, (int)len); 1356 1357 if (!folio_test_uptodate(folio)) { 1358 /* just return that nothing was copied on a short copy */ 1359 if (copied < len) { 1360 copied = 0; 1361 goto out; 1362 } 1363 folio_mark_uptodate(folio); 1364 } 1365 1366 /* did file size increase? */ 1367 if (pos+copied > i_size_read(inode)) 1368 check_cap = ceph_inode_set_size(inode, pos+copied); 1369 1370 folio_mark_dirty(folio); 1371 1372 out: 1373 folio_unlock(folio); 1374 folio_put(folio); 1375 1376 if (check_cap) 1377 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY, NULL); 1378 1379 return copied; 1380 } 1381 1382 const struct address_space_operations ceph_aops = { 1383 .read_folio = netfs_read_folio, 1384 .readahead = netfs_readahead, 1385 .writepage = ceph_writepage, 1386 .writepages = ceph_writepages_start, 1387 .write_begin = ceph_write_begin, 1388 .write_end = ceph_write_end, 1389 .dirty_folio = ceph_dirty_folio, 1390 .invalidate_folio = ceph_invalidate_folio, 1391 .release_folio = ceph_release_folio, 1392 .direct_IO = noop_direct_IO, 1393 }; 1394 1395 static void ceph_block_sigs(sigset_t *oldset) 1396 { 1397 sigset_t mask; 1398 siginitsetinv(&mask, sigmask(SIGKILL)); 1399 sigprocmask(SIG_BLOCK, &mask, oldset); 1400 } 1401 1402 static void ceph_restore_sigs(sigset_t *oldset) 1403 { 1404 sigprocmask(SIG_SETMASK, oldset, NULL); 1405 } 1406 1407 /* 1408 * vm ops 1409 */ 1410 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) 1411 { 1412 struct vm_area_struct *vma = vmf->vma; 1413 struct inode *inode = file_inode(vma->vm_file); 1414 struct ceph_inode_info *ci = ceph_inode(inode); 1415 struct ceph_file_info *fi = vma->vm_file->private_data; 1416 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; 1417 int want, got, err; 1418 sigset_t oldset; 1419 vm_fault_t ret = VM_FAULT_SIGBUS; 1420 1421 if (ceph_inode_is_shutdown(inode)) 1422 return ret; 1423 1424 ceph_block_sigs(&oldset); 1425 1426 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", 1427 inode, ceph_vinop(inode), off); 1428 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1429 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; 1430 else 1431 want = CEPH_CAP_FILE_CACHE; 1432 1433 got = 0; 1434 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); 1435 if (err < 0) 1436 goto out_restore; 1437 1438 dout("filemap_fault %p %llu got cap refs on %s\n", 1439 inode, off, ceph_cap_string(got)); 1440 1441 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || 1442 ci->i_inline_version == CEPH_INLINE_NONE) { 1443 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); 1444 ceph_add_rw_context(fi, &rw_ctx); 1445 ret = filemap_fault(vmf); 1446 ceph_del_rw_context(fi, &rw_ctx); 1447 dout("filemap_fault %p %llu drop cap refs %s ret %x\n", 1448 inode, off, ceph_cap_string(got), ret); 1449 } else 1450 err = -EAGAIN; 1451 1452 ceph_put_cap_refs(ci, got); 1453 1454 if (err != -EAGAIN) 1455 goto out_restore; 1456 1457 /* read inline data */ 1458 if (off >= PAGE_SIZE) { 1459 /* does not support inline data > PAGE_SIZE */ 1460 ret = VM_FAULT_SIGBUS; 1461 } else { 1462 struct address_space *mapping = inode->i_mapping; 1463 struct page *page; 1464 1465 filemap_invalidate_lock_shared(mapping); 1466 page = find_or_create_page(mapping, 0, 1467 mapping_gfp_constraint(mapping, ~__GFP_FS)); 1468 if (!page) { 1469 ret = VM_FAULT_OOM; 1470 goto out_inline; 1471 } 1472 err = __ceph_do_getattr(inode, page, 1473 CEPH_STAT_CAP_INLINE_DATA, true); 1474 if (err < 0 || off >= i_size_read(inode)) { 1475 unlock_page(page); 1476 put_page(page); 1477 ret = vmf_error(err); 1478 goto out_inline; 1479 } 1480 if (err < PAGE_SIZE) 1481 zero_user_segment(page, err, PAGE_SIZE); 1482 else 1483 flush_dcache_page(page); 1484 SetPageUptodate(page); 1485 vmf->page = page; 1486 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; 1487 out_inline: 1488 filemap_invalidate_unlock_shared(mapping); 1489 dout("filemap_fault %p %llu read inline data ret %x\n", 1490 inode, off, ret); 1491 } 1492 out_restore: 1493 ceph_restore_sigs(&oldset); 1494 if (err < 0) 1495 ret = vmf_error(err); 1496 1497 return ret; 1498 } 1499 1500 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) 1501 { 1502 struct vm_area_struct *vma = vmf->vma; 1503 struct inode *inode = file_inode(vma->vm_file); 1504 struct ceph_inode_info *ci = ceph_inode(inode); 1505 struct ceph_file_info *fi = vma->vm_file->private_data; 1506 struct ceph_cap_flush *prealloc_cf; 1507 struct page *page = vmf->page; 1508 loff_t off = page_offset(page); 1509 loff_t size = i_size_read(inode); 1510 size_t len; 1511 int want, got, err; 1512 sigset_t oldset; 1513 vm_fault_t ret = VM_FAULT_SIGBUS; 1514 1515 if (ceph_inode_is_shutdown(inode)) 1516 return ret; 1517 1518 prealloc_cf = ceph_alloc_cap_flush(); 1519 if (!prealloc_cf) 1520 return VM_FAULT_OOM; 1521 1522 sb_start_pagefault(inode->i_sb); 1523 ceph_block_sigs(&oldset); 1524 1525 if (off + thp_size(page) <= size) 1526 len = thp_size(page); 1527 else 1528 len = offset_in_thp(page, size); 1529 1530 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", 1531 inode, ceph_vinop(inode), off, len, size); 1532 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1533 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; 1534 else 1535 want = CEPH_CAP_FILE_BUFFER; 1536 1537 got = 0; 1538 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); 1539 if (err < 0) 1540 goto out_free; 1541 1542 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", 1543 inode, off, len, ceph_cap_string(got)); 1544 1545 /* Update time before taking page lock */ 1546 file_update_time(vma->vm_file); 1547 inode_inc_iversion_raw(inode); 1548 1549 do { 1550 struct ceph_snap_context *snapc; 1551 1552 lock_page(page); 1553 1554 if (page_mkwrite_check_truncate(page, inode) < 0) { 1555 unlock_page(page); 1556 ret = VM_FAULT_NOPAGE; 1557 break; 1558 } 1559 1560 snapc = ceph_find_incompatible(page); 1561 if (!snapc) { 1562 /* success. we'll keep the page locked. */ 1563 set_page_dirty(page); 1564 ret = VM_FAULT_LOCKED; 1565 break; 1566 } 1567 1568 unlock_page(page); 1569 1570 if (IS_ERR(snapc)) { 1571 ret = VM_FAULT_SIGBUS; 1572 break; 1573 } 1574 1575 ceph_queue_writeback(inode); 1576 err = wait_event_killable(ci->i_cap_wq, 1577 context_is_writeable_or_written(inode, snapc)); 1578 ceph_put_snap_context(snapc); 1579 } while (err == 0); 1580 1581 if (ret == VM_FAULT_LOCKED) { 1582 int dirty; 1583 spin_lock(&ci->i_ceph_lock); 1584 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, 1585 &prealloc_cf); 1586 spin_unlock(&ci->i_ceph_lock); 1587 if (dirty) 1588 __mark_inode_dirty(inode, dirty); 1589 } 1590 1591 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", 1592 inode, off, len, ceph_cap_string(got), ret); 1593 ceph_put_cap_refs_async(ci, got); 1594 out_free: 1595 ceph_restore_sigs(&oldset); 1596 sb_end_pagefault(inode->i_sb); 1597 ceph_free_cap_flush(prealloc_cf); 1598 if (err < 0) 1599 ret = vmf_error(err); 1600 return ret; 1601 } 1602 1603 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1604 char *data, size_t len) 1605 { 1606 struct address_space *mapping = inode->i_mapping; 1607 struct page *page; 1608 1609 if (locked_page) { 1610 page = locked_page; 1611 } else { 1612 if (i_size_read(inode) == 0) 1613 return; 1614 page = find_or_create_page(mapping, 0, 1615 mapping_gfp_constraint(mapping, 1616 ~__GFP_FS)); 1617 if (!page) 1618 return; 1619 if (PageUptodate(page)) { 1620 unlock_page(page); 1621 put_page(page); 1622 return; 1623 } 1624 } 1625 1626 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", 1627 inode, ceph_vinop(inode), len, locked_page); 1628 1629 if (len > 0) { 1630 void *kaddr = kmap_atomic(page); 1631 memcpy(kaddr, data, len); 1632 kunmap_atomic(kaddr); 1633 } 1634 1635 if (page != locked_page) { 1636 if (len < PAGE_SIZE) 1637 zero_user_segment(page, len, PAGE_SIZE); 1638 else 1639 flush_dcache_page(page); 1640 1641 SetPageUptodate(page); 1642 unlock_page(page); 1643 put_page(page); 1644 } 1645 } 1646 1647 int ceph_uninline_data(struct file *file) 1648 { 1649 struct inode *inode = file_inode(file); 1650 struct ceph_inode_info *ci = ceph_inode(inode); 1651 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 1652 struct ceph_osd_request *req = NULL; 1653 struct ceph_cap_flush *prealloc_cf; 1654 struct folio *folio = NULL; 1655 u64 inline_version = CEPH_INLINE_NONE; 1656 struct page *pages[1]; 1657 int err = 0; 1658 u64 len; 1659 1660 spin_lock(&ci->i_ceph_lock); 1661 inline_version = ci->i_inline_version; 1662 spin_unlock(&ci->i_ceph_lock); 1663 1664 dout("uninline_data %p %llx.%llx inline_version %llu\n", 1665 inode, ceph_vinop(inode), inline_version); 1666 1667 if (inline_version == CEPH_INLINE_NONE) 1668 return 0; 1669 1670 prealloc_cf = ceph_alloc_cap_flush(); 1671 if (!prealloc_cf) 1672 return -ENOMEM; 1673 1674 if (inline_version == 1) /* initial version, no data */ 1675 goto out_uninline; 1676 1677 folio = read_mapping_folio(inode->i_mapping, 0, file); 1678 if (IS_ERR(folio)) { 1679 err = PTR_ERR(folio); 1680 goto out; 1681 } 1682 1683 folio_lock(folio); 1684 1685 len = i_size_read(inode); 1686 if (len > folio_size(folio)) 1687 len = folio_size(folio); 1688 1689 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1690 ceph_vino(inode), 0, &len, 0, 1, 1691 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, 1692 NULL, 0, 0, false); 1693 if (IS_ERR(req)) { 1694 err = PTR_ERR(req); 1695 goto out_unlock; 1696 } 1697 1698 req->r_mtime = inode->i_mtime; 1699 err = ceph_osdc_start_request(&fsc->client->osdc, req, false); 1700 if (!err) 1701 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1702 ceph_osdc_put_request(req); 1703 if (err < 0) 1704 goto out_unlock; 1705 1706 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1707 ceph_vino(inode), 0, &len, 1, 3, 1708 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1709 NULL, ci->i_truncate_seq, 1710 ci->i_truncate_size, false); 1711 if (IS_ERR(req)) { 1712 err = PTR_ERR(req); 1713 goto out_unlock; 1714 } 1715 1716 pages[0] = folio_page(folio, 0); 1717 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); 1718 1719 { 1720 __le64 xattr_buf = cpu_to_le64(inline_version); 1721 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, 1722 "inline_version", &xattr_buf, 1723 sizeof(xattr_buf), 1724 CEPH_OSD_CMPXATTR_OP_GT, 1725 CEPH_OSD_CMPXATTR_MODE_U64); 1726 if (err) 1727 goto out_put_req; 1728 } 1729 1730 { 1731 char xattr_buf[32]; 1732 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), 1733 "%llu", inline_version); 1734 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, 1735 "inline_version", 1736 xattr_buf, xattr_len, 0, 0); 1737 if (err) 1738 goto out_put_req; 1739 } 1740 1741 req->r_mtime = inode->i_mtime; 1742 err = ceph_osdc_start_request(&fsc->client->osdc, req, false); 1743 if (!err) 1744 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1745 1746 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 1747 req->r_end_latency, len, err); 1748 1749 out_uninline: 1750 if (!err) { 1751 int dirty; 1752 1753 /* Set to CAP_INLINE_NONE and dirty the caps */ 1754 down_read(&fsc->mdsc->snap_rwsem); 1755 spin_lock(&ci->i_ceph_lock); 1756 ci->i_inline_version = CEPH_INLINE_NONE; 1757 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); 1758 spin_unlock(&ci->i_ceph_lock); 1759 up_read(&fsc->mdsc->snap_rwsem); 1760 if (dirty) 1761 __mark_inode_dirty(inode, dirty); 1762 } 1763 out_put_req: 1764 ceph_osdc_put_request(req); 1765 if (err == -ECANCELED) 1766 err = 0; 1767 out_unlock: 1768 if (folio) { 1769 folio_unlock(folio); 1770 folio_put(folio); 1771 } 1772 out: 1773 ceph_free_cap_flush(prealloc_cf); 1774 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", 1775 inode, ceph_vinop(inode), inline_version, err); 1776 return err; 1777 } 1778 1779 static const struct vm_operations_struct ceph_vmops = { 1780 .fault = ceph_filemap_fault, 1781 .page_mkwrite = ceph_page_mkwrite, 1782 }; 1783 1784 int ceph_mmap(struct file *file, struct vm_area_struct *vma) 1785 { 1786 struct address_space *mapping = file->f_mapping; 1787 1788 if (!mapping->a_ops->read_folio) 1789 return -ENOEXEC; 1790 vma->vm_ops = &ceph_vmops; 1791 return 0; 1792 } 1793 1794 enum { 1795 POOL_READ = 1, 1796 POOL_WRITE = 2, 1797 }; 1798 1799 static int __ceph_pool_perm_get(struct ceph_inode_info *ci, 1800 s64 pool, struct ceph_string *pool_ns) 1801 { 1802 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode); 1803 struct ceph_mds_client *mdsc = fsc->mdsc; 1804 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; 1805 struct rb_node **p, *parent; 1806 struct ceph_pool_perm *perm; 1807 struct page **pages; 1808 size_t pool_ns_len; 1809 int err = 0, err2 = 0, have = 0; 1810 1811 down_read(&mdsc->pool_perm_rwsem); 1812 p = &mdsc->pool_perm_tree.rb_node; 1813 while (*p) { 1814 perm = rb_entry(*p, struct ceph_pool_perm, node); 1815 if (pool < perm->pool) 1816 p = &(*p)->rb_left; 1817 else if (pool > perm->pool) 1818 p = &(*p)->rb_right; 1819 else { 1820 int ret = ceph_compare_string(pool_ns, 1821 perm->pool_ns, 1822 perm->pool_ns_len); 1823 if (ret < 0) 1824 p = &(*p)->rb_left; 1825 else if (ret > 0) 1826 p = &(*p)->rb_right; 1827 else { 1828 have = perm->perm; 1829 break; 1830 } 1831 } 1832 } 1833 up_read(&mdsc->pool_perm_rwsem); 1834 if (*p) 1835 goto out; 1836 1837 if (pool_ns) 1838 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", 1839 pool, (int)pool_ns->len, pool_ns->str); 1840 else 1841 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); 1842 1843 down_write(&mdsc->pool_perm_rwsem); 1844 p = &mdsc->pool_perm_tree.rb_node; 1845 parent = NULL; 1846 while (*p) { 1847 parent = *p; 1848 perm = rb_entry(parent, struct ceph_pool_perm, node); 1849 if (pool < perm->pool) 1850 p = &(*p)->rb_left; 1851 else if (pool > perm->pool) 1852 p = &(*p)->rb_right; 1853 else { 1854 int ret = ceph_compare_string(pool_ns, 1855 perm->pool_ns, 1856 perm->pool_ns_len); 1857 if (ret < 0) 1858 p = &(*p)->rb_left; 1859 else if (ret > 0) 1860 p = &(*p)->rb_right; 1861 else { 1862 have = perm->perm; 1863 break; 1864 } 1865 } 1866 } 1867 if (*p) { 1868 up_write(&mdsc->pool_perm_rwsem); 1869 goto out; 1870 } 1871 1872 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1873 1, false, GFP_NOFS); 1874 if (!rd_req) { 1875 err = -ENOMEM; 1876 goto out_unlock; 1877 } 1878 1879 rd_req->r_flags = CEPH_OSD_FLAG_READ; 1880 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); 1881 rd_req->r_base_oloc.pool = pool; 1882 if (pool_ns) 1883 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); 1884 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); 1885 1886 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); 1887 if (err) 1888 goto out_unlock; 1889 1890 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1891 1, false, GFP_NOFS); 1892 if (!wr_req) { 1893 err = -ENOMEM; 1894 goto out_unlock; 1895 } 1896 1897 wr_req->r_flags = CEPH_OSD_FLAG_WRITE; 1898 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); 1899 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); 1900 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); 1901 1902 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); 1903 if (err) 1904 goto out_unlock; 1905 1906 /* one page should be large enough for STAT data */ 1907 pages = ceph_alloc_page_vector(1, GFP_KERNEL); 1908 if (IS_ERR(pages)) { 1909 err = PTR_ERR(pages); 1910 goto out_unlock; 1911 } 1912 1913 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 1914 0, false, true); 1915 err = ceph_osdc_start_request(&fsc->client->osdc, rd_req, false); 1916 1917 wr_req->r_mtime = ci->netfs.inode.i_mtime; 1918 err2 = ceph_osdc_start_request(&fsc->client->osdc, wr_req, false); 1919 1920 if (!err) 1921 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); 1922 if (!err2) 1923 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); 1924 1925 if (err >= 0 || err == -ENOENT) 1926 have |= POOL_READ; 1927 else if (err != -EPERM) { 1928 if (err == -EBLOCKLISTED) 1929 fsc->blocklisted = true; 1930 goto out_unlock; 1931 } 1932 1933 if (err2 == 0 || err2 == -EEXIST) 1934 have |= POOL_WRITE; 1935 else if (err2 != -EPERM) { 1936 if (err2 == -EBLOCKLISTED) 1937 fsc->blocklisted = true; 1938 err = err2; 1939 goto out_unlock; 1940 } 1941 1942 pool_ns_len = pool_ns ? pool_ns->len : 0; 1943 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); 1944 if (!perm) { 1945 err = -ENOMEM; 1946 goto out_unlock; 1947 } 1948 1949 perm->pool = pool; 1950 perm->perm = have; 1951 perm->pool_ns_len = pool_ns_len; 1952 if (pool_ns_len > 0) 1953 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); 1954 perm->pool_ns[pool_ns_len] = 0; 1955 1956 rb_link_node(&perm->node, parent, p); 1957 rb_insert_color(&perm->node, &mdsc->pool_perm_tree); 1958 err = 0; 1959 out_unlock: 1960 up_write(&mdsc->pool_perm_rwsem); 1961 1962 ceph_osdc_put_request(rd_req); 1963 ceph_osdc_put_request(wr_req); 1964 out: 1965 if (!err) 1966 err = have; 1967 if (pool_ns) 1968 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", 1969 pool, (int)pool_ns->len, pool_ns->str, err); 1970 else 1971 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); 1972 return err; 1973 } 1974 1975 int ceph_pool_perm_check(struct inode *inode, int need) 1976 { 1977 struct ceph_inode_info *ci = ceph_inode(inode); 1978 struct ceph_string *pool_ns; 1979 s64 pool; 1980 int ret, flags; 1981 1982 /* Only need to do this for regular files */ 1983 if (!S_ISREG(inode->i_mode)) 1984 return 0; 1985 1986 if (ci->i_vino.snap != CEPH_NOSNAP) { 1987 /* 1988 * Pool permission check needs to write to the first object. 1989 * But for snapshot, head of the first object may have alread 1990 * been deleted. Skip check to avoid creating orphan object. 1991 */ 1992 return 0; 1993 } 1994 1995 if (ceph_test_mount_opt(ceph_inode_to_client(inode), 1996 NOPOOLPERM)) 1997 return 0; 1998 1999 spin_lock(&ci->i_ceph_lock); 2000 flags = ci->i_ceph_flags; 2001 pool = ci->i_layout.pool_id; 2002 spin_unlock(&ci->i_ceph_lock); 2003 check: 2004 if (flags & CEPH_I_POOL_PERM) { 2005 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { 2006 dout("ceph_pool_perm_check pool %lld no read perm\n", 2007 pool); 2008 return -EPERM; 2009 } 2010 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { 2011 dout("ceph_pool_perm_check pool %lld no write perm\n", 2012 pool); 2013 return -EPERM; 2014 } 2015 return 0; 2016 } 2017 2018 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); 2019 ret = __ceph_pool_perm_get(ci, pool, pool_ns); 2020 ceph_put_string(pool_ns); 2021 if (ret < 0) 2022 return ret; 2023 2024 flags = CEPH_I_POOL_PERM; 2025 if (ret & POOL_READ) 2026 flags |= CEPH_I_POOL_RD; 2027 if (ret & POOL_WRITE) 2028 flags |= CEPH_I_POOL_WR; 2029 2030 spin_lock(&ci->i_ceph_lock); 2031 if (pool == ci->i_layout.pool_id && 2032 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { 2033 ci->i_ceph_flags |= flags; 2034 } else { 2035 pool = ci->i_layout.pool_id; 2036 flags = ci->i_ceph_flags; 2037 } 2038 spin_unlock(&ci->i_ceph_lock); 2039 goto check; 2040 } 2041 2042 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) 2043 { 2044 struct ceph_pool_perm *perm; 2045 struct rb_node *n; 2046 2047 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { 2048 n = rb_first(&mdsc->pool_perm_tree); 2049 perm = rb_entry(n, struct ceph_pool_perm, node); 2050 rb_erase(n, &mdsc->pool_perm_tree); 2051 kfree(perm); 2052 } 2053 } 2054