1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/backing-dev.h> 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/swap.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/pagevec.h> 11 #include <linux/task_io_accounting_ops.h> 12 #include <linux/signal.h> 13 #include <linux/iversion.h> 14 #include <linux/ktime.h> 15 #include <linux/netfs.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "cache.h" 20 #include "metric.h" 21 #include <linux/ceph/osd_client.h> 22 #include <linux/ceph/striper.h> 23 24 /* 25 * Ceph address space ops. 26 * 27 * There are a few funny things going on here. 28 * 29 * The page->private field is used to reference a struct 30 * ceph_snap_context for _every_ dirty page. This indicates which 31 * snapshot the page was logically dirtied in, and thus which snap 32 * context needs to be associated with the osd write during writeback. 33 * 34 * Similarly, struct ceph_inode_info maintains a set of counters to 35 * count dirty pages on the inode. In the absence of snapshots, 36 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. 37 * 38 * When a snapshot is taken (that is, when the client receives 39 * notification that a snapshot was taken), each inode with caps and 40 * with dirty pages (dirty pages implies there is a cap) gets a new 41 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending 42 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is 43 * moved to capsnap->dirty. (Unless a sync write is currently in 44 * progress. In that case, the capsnap is said to be "pending", new 45 * writes cannot start, and the capsnap isn't "finalized" until the 46 * write completes (or fails) and a final size/mtime for the inode for 47 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. 48 * 49 * On writeback, we must submit writes to the osd IN SNAP ORDER. So, 50 * we look for the first capsnap in i_cap_snaps and write out pages in 51 * that snap context _only_. Then we move on to the next capsnap, 52 * eventually reaching the "live" or "head" context (i.e., pages that 53 * are not yet snapped) and are writing the most recently dirtied 54 * pages. 55 * 56 * Invalidate and so forth must take care to ensure the dirty page 57 * accounting is preserved. 58 */ 59 60 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) 61 #define CONGESTION_OFF_THRESH(congestion_kb) \ 62 (CONGESTION_ON_THRESH(congestion_kb) - \ 63 (CONGESTION_ON_THRESH(congestion_kb) >> 2)) 64 65 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 66 struct folio **foliop, void **_fsdata); 67 68 static inline struct ceph_snap_context *page_snap_context(struct page *page) 69 { 70 if (PagePrivate(page)) 71 return (void *)page->private; 72 return NULL; 73 } 74 75 /* 76 * Dirty a page. Optimistically adjust accounting, on the assumption 77 * that we won't race with invalidate. If we do, readjust. 78 */ 79 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) 80 { 81 struct inode *inode; 82 struct ceph_inode_info *ci; 83 struct ceph_snap_context *snapc; 84 85 if (folio_test_dirty(folio)) { 86 dout("%p dirty_folio %p idx %lu -- already dirty\n", 87 mapping->host, folio, folio->index); 88 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio); 89 return false; 90 } 91 92 inode = mapping->host; 93 ci = ceph_inode(inode); 94 95 /* dirty the head */ 96 spin_lock(&ci->i_ceph_lock); 97 BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference 98 if (__ceph_have_pending_cap_snap(ci)) { 99 struct ceph_cap_snap *capsnap = 100 list_last_entry(&ci->i_cap_snaps, 101 struct ceph_cap_snap, 102 ci_item); 103 snapc = ceph_get_snap_context(capsnap->context); 104 capsnap->dirty_pages++; 105 } else { 106 BUG_ON(!ci->i_head_snapc); 107 snapc = ceph_get_snap_context(ci->i_head_snapc); 108 ++ci->i_wrbuffer_ref_head; 109 } 110 if (ci->i_wrbuffer_ref == 0) 111 ihold(inode); 112 ++ci->i_wrbuffer_ref; 113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " 114 "snapc %p seq %lld (%d snaps)\n", 115 mapping->host, folio, folio->index, 116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, 117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 118 snapc, snapc->seq, snapc->num_snaps); 119 spin_unlock(&ci->i_ceph_lock); 120 121 /* 122 * Reference snap context in folio->private. Also set 123 * PagePrivate so that we get invalidate_folio callback. 124 */ 125 VM_WARN_ON_FOLIO(folio->private, folio); 126 folio_attach_private(folio, snapc); 127 128 return ceph_fscache_dirty_folio(mapping, folio); 129 } 130 131 /* 132 * If we are truncating the full folio (i.e. offset == 0), adjust the 133 * dirty folio counters appropriately. Only called if there is private 134 * data on the folio. 135 */ 136 static void ceph_invalidate_folio(struct folio *folio, size_t offset, 137 size_t length) 138 { 139 struct inode *inode; 140 struct ceph_inode_info *ci; 141 struct ceph_snap_context *snapc; 142 143 inode = folio->mapping->host; 144 ci = ceph_inode(inode); 145 146 if (offset != 0 || length != folio_size(folio)) { 147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", 148 inode, folio->index, offset, length); 149 return; 150 } 151 152 WARN_ON(!folio_test_locked(folio)); 153 if (folio_test_private(folio)) { 154 dout("%p invalidate_folio idx %lu full dirty page\n", 155 inode, folio->index); 156 157 snapc = folio_detach_private(folio); 158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 159 ceph_put_snap_context(snapc); 160 } 161 162 folio_wait_fscache(folio); 163 } 164 165 static bool ceph_release_folio(struct folio *folio, gfp_t gfp) 166 { 167 struct inode *inode = folio->mapping->host; 168 169 dout("%llx:%llx release_folio idx %lu (%sdirty)\n", 170 ceph_vinop(inode), 171 folio->index, folio_test_dirty(folio) ? "" : "not "); 172 173 if (folio_test_private(folio)) 174 return false; 175 176 if (folio_test_fscache(folio)) { 177 if (current_is_kswapd() || !(gfp & __GFP_FS)) 178 return false; 179 folio_wait_fscache(folio); 180 } 181 ceph_fscache_note_page_release(inode); 182 return true; 183 } 184 185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) 186 { 187 struct inode *inode = rreq->inode; 188 struct ceph_inode_info *ci = ceph_inode(inode); 189 struct ceph_file_layout *lo = &ci->i_layout; 190 u32 blockoff; 191 u64 blockno; 192 193 /* Expand the start downward */ 194 blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); 195 rreq->start = blockno * lo->stripe_unit; 196 rreq->len += blockoff; 197 198 /* Now, round up the length to the next block */ 199 rreq->len = roundup(rreq->len, lo->stripe_unit); 200 } 201 202 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) 203 { 204 struct inode *inode = subreq->rreq->inode; 205 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 206 struct ceph_inode_info *ci = ceph_inode(inode); 207 u64 objno, objoff; 208 u32 xlen; 209 210 /* Truncate the extent at the end of the current block */ 211 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, 212 &objno, &objoff, &xlen); 213 subreq->len = min(xlen, fsc->mount_options->rsize); 214 return true; 215 } 216 217 static void finish_netfs_read(struct ceph_osd_request *req) 218 { 219 struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode); 220 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); 221 struct netfs_io_subrequest *subreq = req->r_priv; 222 int num_pages; 223 int err = req->r_result; 224 225 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, 226 req->r_end_latency, osd_data->length, err); 227 228 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, 229 subreq->len, i_size_read(req->r_inode)); 230 231 /* no object means success but no data */ 232 if (err == -ENOENT) 233 err = 0; 234 else if (err == -EBLOCKLISTED) 235 fsc->blocklisted = true; 236 237 if (err >= 0 && err < subreq->len) 238 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 239 240 netfs_subreq_terminated(subreq, err, false); 241 242 num_pages = calc_pages_for(osd_data->alignment, osd_data->length); 243 ceph_put_page_vector(osd_data->pages, num_pages, false); 244 iput(req->r_inode); 245 } 246 247 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) 248 { 249 struct netfs_io_request *rreq = subreq->rreq; 250 struct inode *inode = rreq->inode; 251 struct ceph_mds_reply_info_parsed *rinfo; 252 struct ceph_mds_reply_info_in *iinfo; 253 struct ceph_mds_request *req; 254 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 255 struct ceph_inode_info *ci = ceph_inode(inode); 256 struct iov_iter iter; 257 ssize_t err = 0; 258 size_t len; 259 int mode; 260 261 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 262 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); 263 264 if (subreq->start >= inode->i_size) 265 goto out; 266 267 /* We need to fetch the inline data. */ 268 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA); 269 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); 270 if (IS_ERR(req)) { 271 err = PTR_ERR(req); 272 goto out; 273 } 274 req->r_ino1 = ci->i_vino; 275 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); 276 req->r_num_caps = 2; 277 278 err = ceph_mdsc_do_request(mdsc, NULL, req); 279 if (err < 0) 280 goto out; 281 282 rinfo = &req->r_reply_info; 283 iinfo = &rinfo->targeti; 284 if (iinfo->inline_version == CEPH_INLINE_NONE) { 285 /* The data got uninlined */ 286 ceph_mdsc_put_request(req); 287 return false; 288 } 289 290 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); 291 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 292 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); 293 if (err == 0) 294 err = -EFAULT; 295 296 ceph_mdsc_put_request(req); 297 out: 298 netfs_subreq_terminated(subreq, err, false); 299 return true; 300 } 301 302 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) 303 { 304 struct netfs_io_request *rreq = subreq->rreq; 305 struct inode *inode = rreq->inode; 306 struct ceph_inode_info *ci = ceph_inode(inode); 307 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 308 struct ceph_osd_request *req; 309 struct ceph_vino vino = ceph_vino(inode); 310 struct iov_iter iter; 311 struct page **pages; 312 size_t page_off; 313 int err = 0; 314 u64 len = subreq->len; 315 316 if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq)) 317 return; 318 319 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len, 320 0, 1, CEPH_OSD_OP_READ, 321 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, 322 NULL, ci->i_truncate_seq, ci->i_truncate_size, false); 323 if (IS_ERR(req)) { 324 err = PTR_ERR(req); 325 req = NULL; 326 goto out; 327 } 328 329 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); 330 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 331 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off); 332 if (err < 0) { 333 dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err); 334 goto out; 335 } 336 337 /* should always give us a page-aligned read */ 338 WARN_ON_ONCE(page_off); 339 len = err; 340 err = 0; 341 342 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false); 343 req->r_callback = finish_netfs_read; 344 req->r_priv = subreq; 345 req->r_inode = inode; 346 ihold(inode); 347 348 ceph_osdc_start_request(req->r_osdc, req); 349 out: 350 ceph_osdc_put_request(req); 351 if (err) 352 netfs_subreq_terminated(subreq, err, false); 353 dout("%s: result %d\n", __func__, err); 354 } 355 356 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) 357 { 358 struct inode *inode = rreq->inode; 359 int got = 0, want = CEPH_CAP_FILE_CACHE; 360 int ret = 0; 361 362 if (rreq->origin != NETFS_READAHEAD) 363 return 0; 364 365 if (file) { 366 struct ceph_rw_context *rw_ctx; 367 struct ceph_file_info *fi = file->private_data; 368 369 rw_ctx = ceph_find_rw_context(fi); 370 if (rw_ctx) 371 return 0; 372 } 373 374 /* 375 * readahead callers do not necessarily hold Fcb caps 376 * (e.g. fadvise, madvise). 377 */ 378 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); 379 if (ret < 0) { 380 dout("start_read %p, error getting cap\n", inode); 381 return ret; 382 } 383 384 if (!(got & want)) { 385 dout("start_read %p, no cache cap\n", inode); 386 return -EACCES; 387 } 388 if (ret == 0) 389 return -EACCES; 390 391 rreq->netfs_priv = (void *)(uintptr_t)got; 392 return 0; 393 } 394 395 static void ceph_netfs_free_request(struct netfs_io_request *rreq) 396 { 397 struct ceph_inode_info *ci = ceph_inode(rreq->inode); 398 int got = (uintptr_t)rreq->netfs_priv; 399 400 if (got) 401 ceph_put_cap_refs(ci, got); 402 } 403 404 const struct netfs_request_ops ceph_netfs_ops = { 405 .init_request = ceph_init_request, 406 .free_request = ceph_netfs_free_request, 407 .begin_cache_operation = ceph_begin_cache_operation, 408 .issue_read = ceph_netfs_issue_read, 409 .expand_readahead = ceph_netfs_expand_readahead, 410 .clamp_length = ceph_netfs_clamp_length, 411 .check_write_begin = ceph_netfs_check_write_begin, 412 }; 413 414 #ifdef CONFIG_CEPH_FSCACHE 415 static void ceph_set_page_fscache(struct page *page) 416 { 417 set_page_fscache(page); 418 } 419 420 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) 421 { 422 struct inode *inode = priv; 423 424 if (IS_ERR_VALUE(error) && error != -ENOBUFS) 425 ceph_fscache_invalidate(inode, false); 426 } 427 428 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 429 { 430 struct ceph_inode_info *ci = ceph_inode(inode); 431 struct fscache_cookie *cookie = ceph_fscache_cookie(ci); 432 433 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), 434 ceph_fscache_write_terminated, inode, caching); 435 } 436 #else 437 static inline void ceph_set_page_fscache(struct page *page) 438 { 439 } 440 441 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 442 { 443 } 444 #endif /* CONFIG_CEPH_FSCACHE */ 445 446 struct ceph_writeback_ctl 447 { 448 loff_t i_size; 449 u64 truncate_size; 450 u32 truncate_seq; 451 bool size_stable; 452 bool head_snapc; 453 }; 454 455 /* 456 * Get ref for the oldest snapc for an inode with dirty data... that is, the 457 * only snap context we are allowed to write back. 458 */ 459 static struct ceph_snap_context * 460 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, 461 struct ceph_snap_context *page_snapc) 462 { 463 struct ceph_inode_info *ci = ceph_inode(inode); 464 struct ceph_snap_context *snapc = NULL; 465 struct ceph_cap_snap *capsnap = NULL; 466 467 spin_lock(&ci->i_ceph_lock); 468 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 469 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, 470 capsnap->context, capsnap->dirty_pages); 471 if (!capsnap->dirty_pages) 472 continue; 473 474 /* get i_size, truncate_{seq,size} for page_snapc? */ 475 if (snapc && capsnap->context != page_snapc) 476 continue; 477 478 if (ctl) { 479 if (capsnap->writing) { 480 ctl->i_size = i_size_read(inode); 481 ctl->size_stable = false; 482 } else { 483 ctl->i_size = capsnap->size; 484 ctl->size_stable = true; 485 } 486 ctl->truncate_size = capsnap->truncate_size; 487 ctl->truncate_seq = capsnap->truncate_seq; 488 ctl->head_snapc = false; 489 } 490 491 if (snapc) 492 break; 493 494 snapc = ceph_get_snap_context(capsnap->context); 495 if (!page_snapc || 496 page_snapc == snapc || 497 page_snapc->seq > snapc->seq) 498 break; 499 } 500 if (!snapc && ci->i_wrbuffer_ref_head) { 501 snapc = ceph_get_snap_context(ci->i_head_snapc); 502 dout(" head snapc %p has %d dirty pages\n", 503 snapc, ci->i_wrbuffer_ref_head); 504 if (ctl) { 505 ctl->i_size = i_size_read(inode); 506 ctl->truncate_size = ci->i_truncate_size; 507 ctl->truncate_seq = ci->i_truncate_seq; 508 ctl->size_stable = false; 509 ctl->head_snapc = true; 510 } 511 } 512 spin_unlock(&ci->i_ceph_lock); 513 return snapc; 514 } 515 516 static u64 get_writepages_data_length(struct inode *inode, 517 struct page *page, u64 start) 518 { 519 struct ceph_inode_info *ci = ceph_inode(inode); 520 struct ceph_snap_context *snapc = page_snap_context(page); 521 struct ceph_cap_snap *capsnap = NULL; 522 u64 end = i_size_read(inode); 523 524 if (snapc != ci->i_head_snapc) { 525 bool found = false; 526 spin_lock(&ci->i_ceph_lock); 527 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 528 if (capsnap->context == snapc) { 529 if (!capsnap->writing) 530 end = capsnap->size; 531 found = true; 532 break; 533 } 534 } 535 spin_unlock(&ci->i_ceph_lock); 536 WARN_ON(!found); 537 } 538 if (end > page_offset(page) + thp_size(page)) 539 end = page_offset(page) + thp_size(page); 540 return end > start ? end - start : 0; 541 } 542 543 /* 544 * Write a single page, but leave the page locked. 545 * 546 * If we get a write error, mark the mapping for error, but still adjust the 547 * dirty page accounting (i.e., page is no longer dirty). 548 */ 549 static int writepage_nounlock(struct page *page, struct writeback_control *wbc) 550 { 551 struct folio *folio = page_folio(page); 552 struct inode *inode = page->mapping->host; 553 struct ceph_inode_info *ci = ceph_inode(inode); 554 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 555 struct ceph_snap_context *snapc, *oldest; 556 loff_t page_off = page_offset(page); 557 int err; 558 loff_t len = thp_size(page); 559 struct ceph_writeback_ctl ceph_wbc; 560 struct ceph_osd_client *osdc = &fsc->client->osdc; 561 struct ceph_osd_request *req; 562 bool caching = ceph_is_cache_enabled(inode); 563 564 dout("writepage %p idx %lu\n", page, page->index); 565 566 /* verify this is a writeable snap context */ 567 snapc = page_snap_context(page); 568 if (!snapc) { 569 dout("writepage %p page %p not dirty?\n", inode, page); 570 return 0; 571 } 572 oldest = get_oldest_context(inode, &ceph_wbc, snapc); 573 if (snapc->seq > oldest->seq) { 574 dout("writepage %p page %p snapc %p not writeable - noop\n", 575 inode, page, snapc); 576 /* we should only noop if called by kswapd */ 577 WARN_ON(!(current->flags & PF_MEMALLOC)); 578 ceph_put_snap_context(oldest); 579 redirty_page_for_writepage(wbc, page); 580 return 0; 581 } 582 ceph_put_snap_context(oldest); 583 584 /* is this a partial page at end of file? */ 585 if (page_off >= ceph_wbc.i_size) { 586 dout("folio at %lu beyond eof %llu\n", folio->index, 587 ceph_wbc.i_size); 588 folio_invalidate(folio, 0, folio_size(folio)); 589 return 0; 590 } 591 592 if (ceph_wbc.i_size < page_off + len) 593 len = ceph_wbc.i_size - page_off; 594 595 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", 596 inode, page, page->index, page_off, len, snapc, snapc->seq); 597 598 if (atomic_long_inc_return(&fsc->writeback_count) > 599 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) 600 fsc->write_congested = true; 601 602 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1, 603 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, 604 ceph_wbc.truncate_seq, ceph_wbc.truncate_size, 605 true); 606 if (IS_ERR(req)) { 607 redirty_page_for_writepage(wbc, page); 608 return PTR_ERR(req); 609 } 610 611 set_page_writeback(page); 612 if (caching) 613 ceph_set_page_fscache(page); 614 ceph_fscache_write_to_cache(inode, page_off, len, caching); 615 616 /* it may be a short write due to an object boundary */ 617 WARN_ON_ONCE(len > thp_size(page)); 618 osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false); 619 dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len); 620 621 req->r_mtime = inode->i_mtime; 622 ceph_osdc_start_request(osdc, req); 623 err = ceph_osdc_wait_request(osdc, req); 624 625 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 626 req->r_end_latency, len, err); 627 628 ceph_osdc_put_request(req); 629 if (err == 0) 630 err = len; 631 632 if (err < 0) { 633 struct writeback_control tmp_wbc; 634 if (!wbc) 635 wbc = &tmp_wbc; 636 if (err == -ERESTARTSYS) { 637 /* killed by SIGKILL */ 638 dout("writepage interrupted page %p\n", page); 639 redirty_page_for_writepage(wbc, page); 640 end_page_writeback(page); 641 return err; 642 } 643 if (err == -EBLOCKLISTED) 644 fsc->blocklisted = true; 645 dout("writepage setting page/mapping error %d %p\n", 646 err, page); 647 mapping_set_error(&inode->i_data, err); 648 wbc->pages_skipped++; 649 } else { 650 dout("writepage cleaned page %p\n", page); 651 err = 0; /* vfs expects us to return 0 */ 652 } 653 oldest = detach_page_private(page); 654 WARN_ON_ONCE(oldest != snapc); 655 end_page_writeback(page); 656 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 657 ceph_put_snap_context(snapc); /* page's reference */ 658 659 if (atomic_long_dec_return(&fsc->writeback_count) < 660 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) 661 fsc->write_congested = false; 662 663 return err; 664 } 665 666 static int ceph_writepage(struct page *page, struct writeback_control *wbc) 667 { 668 int err; 669 struct inode *inode = page->mapping->host; 670 BUG_ON(!inode); 671 ihold(inode); 672 673 if (wbc->sync_mode == WB_SYNC_NONE && 674 ceph_inode_to_client(inode)->write_congested) 675 return AOP_WRITEPAGE_ACTIVATE; 676 677 wait_on_page_fscache(page); 678 679 err = writepage_nounlock(page, wbc); 680 if (err == -ERESTARTSYS) { 681 /* direct memory reclaimer was killed by SIGKILL. return 0 682 * to prevent caller from setting mapping/page error */ 683 err = 0; 684 } 685 unlock_page(page); 686 iput(inode); 687 return err; 688 } 689 690 /* 691 * async writeback completion handler. 692 * 693 * If we get an error, set the mapping error bit, but not the individual 694 * page error bits. 695 */ 696 static void writepages_finish(struct ceph_osd_request *req) 697 { 698 struct inode *inode = req->r_inode; 699 struct ceph_inode_info *ci = ceph_inode(inode); 700 struct ceph_osd_data *osd_data; 701 struct page *page; 702 int num_pages, total_pages = 0; 703 int i, j; 704 int rc = req->r_result; 705 struct ceph_snap_context *snapc = req->r_snapc; 706 struct address_space *mapping = inode->i_mapping; 707 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 708 unsigned int len = 0; 709 bool remove_page; 710 711 dout("writepages_finish %p rc %d\n", inode, rc); 712 if (rc < 0) { 713 mapping_set_error(mapping, rc); 714 ceph_set_error_write(ci); 715 if (rc == -EBLOCKLISTED) 716 fsc->blocklisted = true; 717 } else { 718 ceph_clear_error_write(ci); 719 } 720 721 /* 722 * We lost the cache cap, need to truncate the page before 723 * it is unlocked, otherwise we'd truncate it later in the 724 * page truncation thread, possibly losing some data that 725 * raced its way in 726 */ 727 remove_page = !(ceph_caps_issued(ci) & 728 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); 729 730 /* clean all pages */ 731 for (i = 0; i < req->r_num_ops; i++) { 732 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) { 733 pr_warn("%s incorrect op %d req %p index %d tid %llu\n", 734 __func__, req->r_ops[i].op, req, i, req->r_tid); 735 break; 736 } 737 738 osd_data = osd_req_op_extent_osd_data(req, i); 739 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); 740 len += osd_data->length; 741 num_pages = calc_pages_for((u64)osd_data->alignment, 742 (u64)osd_data->length); 743 total_pages += num_pages; 744 for (j = 0; j < num_pages; j++) { 745 page = osd_data->pages[j]; 746 BUG_ON(!page); 747 WARN_ON(!PageUptodate(page)); 748 749 if (atomic_long_dec_return(&fsc->writeback_count) < 750 CONGESTION_OFF_THRESH( 751 fsc->mount_options->congestion_kb)) 752 fsc->write_congested = false; 753 754 ceph_put_snap_context(detach_page_private(page)); 755 end_page_writeback(page); 756 dout("unlocking %p\n", page); 757 758 if (remove_page) 759 generic_error_remove_page(inode->i_mapping, 760 page); 761 762 unlock_page(page); 763 } 764 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", 765 inode, osd_data->length, rc >= 0 ? num_pages : 0); 766 767 release_pages(osd_data->pages, num_pages); 768 } 769 770 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 771 req->r_end_latency, len, rc); 772 773 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); 774 775 osd_data = osd_req_op_extent_osd_data(req, 0); 776 if (osd_data->pages_from_pool) 777 mempool_free(osd_data->pages, ceph_wb_pagevec_pool); 778 else 779 kfree(osd_data->pages); 780 ceph_osdc_put_request(req); 781 } 782 783 /* 784 * initiate async writeback 785 */ 786 static int ceph_writepages_start(struct address_space *mapping, 787 struct writeback_control *wbc) 788 { 789 struct inode *inode = mapping->host; 790 struct ceph_inode_info *ci = ceph_inode(inode); 791 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 792 struct ceph_vino vino = ceph_vino(inode); 793 pgoff_t index, start_index, end = -1; 794 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; 795 struct folio_batch fbatch; 796 int rc = 0; 797 unsigned int wsize = i_blocksize(inode); 798 struct ceph_osd_request *req = NULL; 799 struct ceph_writeback_ctl ceph_wbc; 800 bool should_loop, range_whole = false; 801 bool done = false; 802 bool caching = ceph_is_cache_enabled(inode); 803 804 if (wbc->sync_mode == WB_SYNC_NONE && 805 fsc->write_congested) 806 return 0; 807 808 dout("writepages_start %p (mode=%s)\n", inode, 809 wbc->sync_mode == WB_SYNC_NONE ? "NONE" : 810 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); 811 812 if (ceph_inode_is_shutdown(inode)) { 813 if (ci->i_wrbuffer_ref > 0) { 814 pr_warn_ratelimited( 815 "writepage_start %p %lld forced umount\n", 816 inode, ceph_ino(inode)); 817 } 818 mapping_set_error(mapping, -EIO); 819 return -EIO; /* we're in a forced umount, don't write! */ 820 } 821 if (fsc->mount_options->wsize < wsize) 822 wsize = fsc->mount_options->wsize; 823 824 folio_batch_init(&fbatch); 825 826 start_index = wbc->range_cyclic ? mapping->writeback_index : 0; 827 index = start_index; 828 829 retry: 830 /* find oldest snap context with dirty data */ 831 snapc = get_oldest_context(inode, &ceph_wbc, NULL); 832 if (!snapc) { 833 /* hmm, why does writepages get called when there 834 is no dirty data? */ 835 dout(" no snap context with dirty data?\n"); 836 goto out; 837 } 838 dout(" oldest snapc is %p seq %lld (%d snaps)\n", 839 snapc, snapc->seq, snapc->num_snaps); 840 841 should_loop = false; 842 if (ceph_wbc.head_snapc && snapc != last_snapc) { 843 /* where to start/end? */ 844 if (wbc->range_cyclic) { 845 index = start_index; 846 end = -1; 847 if (index > 0) 848 should_loop = true; 849 dout(" cyclic, start at %lu\n", index); 850 } else { 851 index = wbc->range_start >> PAGE_SHIFT; 852 end = wbc->range_end >> PAGE_SHIFT; 853 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 854 range_whole = true; 855 dout(" not cyclic, %lu to %lu\n", index, end); 856 } 857 } else if (!ceph_wbc.head_snapc) { 858 /* Do not respect wbc->range_{start,end}. Dirty pages 859 * in that range can be associated with newer snapc. 860 * They are not writeable until we write all dirty pages 861 * associated with 'snapc' get written */ 862 if (index > 0) 863 should_loop = true; 864 dout(" non-head snapc, range whole\n"); 865 } 866 867 ceph_put_snap_context(last_snapc); 868 last_snapc = snapc; 869 870 while (!done && index <= end) { 871 int num_ops = 0, op_idx; 872 unsigned i, nr_folios, max_pages, locked_pages = 0; 873 struct page **pages = NULL, **data_pages; 874 struct page *page; 875 pgoff_t strip_unit_end = 0; 876 u64 offset = 0, len = 0; 877 bool from_pool = false; 878 879 max_pages = wsize >> PAGE_SHIFT; 880 881 get_more_pages: 882 nr_folios = filemap_get_folios_tag(mapping, &index, 883 end, PAGECACHE_TAG_DIRTY, &fbatch); 884 dout("pagevec_lookup_range_tag got %d\n", nr_folios); 885 if (!nr_folios && !locked_pages) 886 break; 887 for (i = 0; i < nr_folios && locked_pages < max_pages; i++) { 888 page = &fbatch.folios[i]->page; 889 dout("? %p idx %lu\n", page, page->index); 890 if (locked_pages == 0) 891 lock_page(page); /* first page */ 892 else if (!trylock_page(page)) 893 break; 894 895 /* only dirty pages, or our accounting breaks */ 896 if (unlikely(!PageDirty(page)) || 897 unlikely(page->mapping != mapping)) { 898 dout("!dirty or !mapping %p\n", page); 899 unlock_page(page); 900 continue; 901 } 902 /* only if matching snap context */ 903 pgsnapc = page_snap_context(page); 904 if (pgsnapc != snapc) { 905 dout("page snapc %p %lld != oldest %p %lld\n", 906 pgsnapc, pgsnapc->seq, snapc, snapc->seq); 907 if (!should_loop && 908 !ceph_wbc.head_snapc && 909 wbc->sync_mode != WB_SYNC_NONE) 910 should_loop = true; 911 unlock_page(page); 912 continue; 913 } 914 if (page_offset(page) >= ceph_wbc.i_size) { 915 struct folio *folio = page_folio(page); 916 917 dout("folio at %lu beyond eof %llu\n", 918 folio->index, ceph_wbc.i_size); 919 if ((ceph_wbc.size_stable || 920 folio_pos(folio) >= i_size_read(inode)) && 921 folio_clear_dirty_for_io(folio)) 922 folio_invalidate(folio, 0, 923 folio_size(folio)); 924 folio_unlock(folio); 925 continue; 926 } 927 if (strip_unit_end && (page->index > strip_unit_end)) { 928 dout("end of strip unit %p\n", page); 929 unlock_page(page); 930 break; 931 } 932 if (PageWriteback(page) || PageFsCache(page)) { 933 if (wbc->sync_mode == WB_SYNC_NONE) { 934 dout("%p under writeback\n", page); 935 unlock_page(page); 936 continue; 937 } 938 dout("waiting on writeback %p\n", page); 939 wait_on_page_writeback(page); 940 wait_on_page_fscache(page); 941 } 942 943 if (!clear_page_dirty_for_io(page)) { 944 dout("%p !clear_page_dirty_for_io\n", page); 945 unlock_page(page); 946 continue; 947 } 948 949 /* 950 * We have something to write. If this is 951 * the first locked page this time through, 952 * calculate max possinle write size and 953 * allocate a page array 954 */ 955 if (locked_pages == 0) { 956 u64 objnum; 957 u64 objoff; 958 u32 xlen; 959 960 /* prepare async write request */ 961 offset = (u64)page_offset(page); 962 ceph_calc_file_object_mapping(&ci->i_layout, 963 offset, wsize, 964 &objnum, &objoff, 965 &xlen); 966 len = xlen; 967 968 num_ops = 1; 969 strip_unit_end = page->index + 970 ((len - 1) >> PAGE_SHIFT); 971 972 BUG_ON(pages); 973 max_pages = calc_pages_for(0, (u64)len); 974 pages = kmalloc_array(max_pages, 975 sizeof(*pages), 976 GFP_NOFS); 977 if (!pages) { 978 from_pool = true; 979 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 980 BUG_ON(!pages); 981 } 982 983 len = 0; 984 } else if (page->index != 985 (offset + len) >> PAGE_SHIFT) { 986 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : 987 CEPH_OSD_MAX_OPS)) { 988 redirty_page_for_writepage(wbc, page); 989 unlock_page(page); 990 break; 991 } 992 993 num_ops++; 994 offset = (u64)page_offset(page); 995 len = 0; 996 } 997 998 /* note position of first page in fbatch */ 999 dout("%p will write page %p idx %lu\n", 1000 inode, page, page->index); 1001 1002 if (atomic_long_inc_return(&fsc->writeback_count) > 1003 CONGESTION_ON_THRESH( 1004 fsc->mount_options->congestion_kb)) 1005 fsc->write_congested = true; 1006 1007 pages[locked_pages++] = page; 1008 fbatch.folios[i] = NULL; 1009 1010 len += thp_size(page); 1011 } 1012 1013 /* did we get anything? */ 1014 if (!locked_pages) 1015 goto release_folios; 1016 if (i) { 1017 unsigned j, n = 0; 1018 /* shift unused page to beginning of fbatch */ 1019 for (j = 0; j < nr_folios; j++) { 1020 if (!fbatch.folios[j]) 1021 continue; 1022 if (n < j) 1023 fbatch.folios[n] = fbatch.folios[j]; 1024 n++; 1025 } 1026 fbatch.nr = n; 1027 1028 if (nr_folios && i == nr_folios && 1029 locked_pages < max_pages) { 1030 dout("reached end fbatch, trying for more\n"); 1031 folio_batch_release(&fbatch); 1032 goto get_more_pages; 1033 } 1034 } 1035 1036 new_request: 1037 offset = page_offset(pages[0]); 1038 len = wsize; 1039 1040 req = ceph_osdc_new_request(&fsc->client->osdc, 1041 &ci->i_layout, vino, 1042 offset, &len, 0, num_ops, 1043 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1044 snapc, ceph_wbc.truncate_seq, 1045 ceph_wbc.truncate_size, false); 1046 if (IS_ERR(req)) { 1047 req = ceph_osdc_new_request(&fsc->client->osdc, 1048 &ci->i_layout, vino, 1049 offset, &len, 0, 1050 min(num_ops, 1051 CEPH_OSD_SLAB_OPS), 1052 CEPH_OSD_OP_WRITE, 1053 CEPH_OSD_FLAG_WRITE, 1054 snapc, ceph_wbc.truncate_seq, 1055 ceph_wbc.truncate_size, true); 1056 BUG_ON(IS_ERR(req)); 1057 } 1058 BUG_ON(len < page_offset(pages[locked_pages - 1]) + 1059 thp_size(page) - offset); 1060 1061 req->r_callback = writepages_finish; 1062 req->r_inode = inode; 1063 1064 /* Format the osd request message and submit the write */ 1065 len = 0; 1066 data_pages = pages; 1067 op_idx = 0; 1068 for (i = 0; i < locked_pages; i++) { 1069 u64 cur_offset = page_offset(pages[i]); 1070 /* 1071 * Discontinuity in page range? Ceph can handle that by just passing 1072 * multiple extents in the write op. 1073 */ 1074 if (offset + len != cur_offset) { 1075 /* If it's full, stop here */ 1076 if (op_idx + 1 == req->r_num_ops) 1077 break; 1078 1079 /* Kick off an fscache write with what we have so far. */ 1080 ceph_fscache_write_to_cache(inode, offset, len, caching); 1081 1082 /* Start a new extent */ 1083 osd_req_op_extent_dup_last(req, op_idx, 1084 cur_offset - offset); 1085 dout("writepages got pages at %llu~%llu\n", 1086 offset, len); 1087 osd_req_op_extent_osd_data_pages(req, op_idx, 1088 data_pages, len, 0, 1089 from_pool, false); 1090 osd_req_op_extent_update(req, op_idx, len); 1091 1092 len = 0; 1093 offset = cur_offset; 1094 data_pages = pages + i; 1095 op_idx++; 1096 } 1097 1098 set_page_writeback(pages[i]); 1099 if (caching) 1100 ceph_set_page_fscache(pages[i]); 1101 len += thp_size(page); 1102 } 1103 ceph_fscache_write_to_cache(inode, offset, len, caching); 1104 1105 if (ceph_wbc.size_stable) { 1106 len = min(len, ceph_wbc.i_size - offset); 1107 } else if (i == locked_pages) { 1108 /* writepages_finish() clears writeback pages 1109 * according to the data length, so make sure 1110 * data length covers all locked pages */ 1111 u64 min_len = len + 1 - thp_size(page); 1112 len = get_writepages_data_length(inode, pages[i - 1], 1113 offset); 1114 len = max(len, min_len); 1115 } 1116 dout("writepages got pages at %llu~%llu\n", offset, len); 1117 1118 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 1119 0, from_pool, false); 1120 osd_req_op_extent_update(req, op_idx, len); 1121 1122 BUG_ON(op_idx + 1 != req->r_num_ops); 1123 1124 from_pool = false; 1125 if (i < locked_pages) { 1126 BUG_ON(num_ops <= req->r_num_ops); 1127 num_ops -= req->r_num_ops; 1128 locked_pages -= i; 1129 1130 /* allocate new pages array for next request */ 1131 data_pages = pages; 1132 pages = kmalloc_array(locked_pages, sizeof(*pages), 1133 GFP_NOFS); 1134 if (!pages) { 1135 from_pool = true; 1136 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1137 BUG_ON(!pages); 1138 } 1139 memcpy(pages, data_pages + i, 1140 locked_pages * sizeof(*pages)); 1141 memset(data_pages + i, 0, 1142 locked_pages * sizeof(*pages)); 1143 } else { 1144 BUG_ON(num_ops != req->r_num_ops); 1145 index = pages[i - 1]->index + 1; 1146 /* request message now owns the pages array */ 1147 pages = NULL; 1148 } 1149 1150 req->r_mtime = inode->i_mtime; 1151 ceph_osdc_start_request(&fsc->client->osdc, req); 1152 req = NULL; 1153 1154 wbc->nr_to_write -= i; 1155 if (pages) 1156 goto new_request; 1157 1158 /* 1159 * We stop writing back only if we are not doing 1160 * integrity sync. In case of integrity sync we have to 1161 * keep going until we have written all the pages 1162 * we tagged for writeback prior to entering this loop. 1163 */ 1164 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) 1165 done = true; 1166 1167 release_folios: 1168 dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr, 1169 fbatch.nr ? fbatch.folios[0] : NULL); 1170 folio_batch_release(&fbatch); 1171 } 1172 1173 if (should_loop && !done) { 1174 /* more to do; loop back to beginning of file */ 1175 dout("writepages looping back to beginning of file\n"); 1176 end = start_index - 1; /* OK even when start_index == 0 */ 1177 1178 /* to write dirty pages associated with next snapc, 1179 * we need to wait until current writes complete */ 1180 if (wbc->sync_mode != WB_SYNC_NONE && 1181 start_index == 0 && /* all dirty pages were checked */ 1182 !ceph_wbc.head_snapc) { 1183 struct page *page; 1184 unsigned i, nr; 1185 index = 0; 1186 while ((index <= end) && 1187 (nr = filemap_get_folios_tag(mapping, &index, 1188 (pgoff_t)-1, 1189 PAGECACHE_TAG_WRITEBACK, 1190 &fbatch))) { 1191 for (i = 0; i < nr; i++) { 1192 page = &fbatch.folios[i]->page; 1193 if (page_snap_context(page) != snapc) 1194 continue; 1195 wait_on_page_writeback(page); 1196 } 1197 folio_batch_release(&fbatch); 1198 cond_resched(); 1199 } 1200 } 1201 1202 start_index = 0; 1203 index = 0; 1204 goto retry; 1205 } 1206 1207 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1208 mapping->writeback_index = index; 1209 1210 out: 1211 ceph_osdc_put_request(req); 1212 ceph_put_snap_context(last_snapc); 1213 dout("writepages dend - startone, rc = %d\n", rc); 1214 return rc; 1215 } 1216 1217 1218 1219 /* 1220 * See if a given @snapc is either writeable, or already written. 1221 */ 1222 static int context_is_writeable_or_written(struct inode *inode, 1223 struct ceph_snap_context *snapc) 1224 { 1225 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); 1226 int ret = !oldest || snapc->seq <= oldest->seq; 1227 1228 ceph_put_snap_context(oldest); 1229 return ret; 1230 } 1231 1232 /** 1233 * ceph_find_incompatible - find an incompatible context and return it 1234 * @page: page being dirtied 1235 * 1236 * We are only allowed to write into/dirty a page if the page is 1237 * clean, or already dirty within the same snap context. Returns a 1238 * conflicting context if there is one, NULL if there isn't, or a 1239 * negative error code on other errors. 1240 * 1241 * Must be called with page lock held. 1242 */ 1243 static struct ceph_snap_context * 1244 ceph_find_incompatible(struct page *page) 1245 { 1246 struct inode *inode = page->mapping->host; 1247 struct ceph_inode_info *ci = ceph_inode(inode); 1248 1249 if (ceph_inode_is_shutdown(inode)) { 1250 dout(" page %p %llx:%llx is shutdown\n", page, 1251 ceph_vinop(inode)); 1252 return ERR_PTR(-ESTALE); 1253 } 1254 1255 for (;;) { 1256 struct ceph_snap_context *snapc, *oldest; 1257 1258 wait_on_page_writeback(page); 1259 1260 snapc = page_snap_context(page); 1261 if (!snapc || snapc == ci->i_head_snapc) 1262 break; 1263 1264 /* 1265 * this page is already dirty in another (older) snap 1266 * context! is it writeable now? 1267 */ 1268 oldest = get_oldest_context(inode, NULL, NULL); 1269 if (snapc->seq > oldest->seq) { 1270 /* not writeable -- return it for the caller to deal with */ 1271 ceph_put_snap_context(oldest); 1272 dout(" page %p snapc %p not current or oldest\n", page, snapc); 1273 return ceph_get_snap_context(snapc); 1274 } 1275 ceph_put_snap_context(oldest); 1276 1277 /* yay, writeable, do it now (without dropping page lock) */ 1278 dout(" page %p snapc %p not current, but oldest\n", page, snapc); 1279 if (clear_page_dirty_for_io(page)) { 1280 int r = writepage_nounlock(page, NULL); 1281 if (r < 0) 1282 return ERR_PTR(r); 1283 } 1284 } 1285 return NULL; 1286 } 1287 1288 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 1289 struct folio **foliop, void **_fsdata) 1290 { 1291 struct inode *inode = file_inode(file); 1292 struct ceph_inode_info *ci = ceph_inode(inode); 1293 struct ceph_snap_context *snapc; 1294 1295 snapc = ceph_find_incompatible(folio_page(*foliop, 0)); 1296 if (snapc) { 1297 int r; 1298 1299 folio_unlock(*foliop); 1300 folio_put(*foliop); 1301 *foliop = NULL; 1302 if (IS_ERR(snapc)) 1303 return PTR_ERR(snapc); 1304 1305 ceph_queue_writeback(inode); 1306 r = wait_event_killable(ci->i_cap_wq, 1307 context_is_writeable_or_written(inode, snapc)); 1308 ceph_put_snap_context(snapc); 1309 return r == 0 ? -EAGAIN : r; 1310 } 1311 return 0; 1312 } 1313 1314 /* 1315 * We are only allowed to write into/dirty the page if the page is 1316 * clean, or already dirty within the same snap context. 1317 */ 1318 static int ceph_write_begin(struct file *file, struct address_space *mapping, 1319 loff_t pos, unsigned len, 1320 struct page **pagep, void **fsdata) 1321 { 1322 struct inode *inode = file_inode(file); 1323 struct ceph_inode_info *ci = ceph_inode(inode); 1324 struct folio *folio = NULL; 1325 int r; 1326 1327 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL); 1328 if (r < 0) 1329 return r; 1330 1331 folio_wait_fscache(folio); 1332 WARN_ON_ONCE(!folio_test_locked(folio)); 1333 *pagep = &folio->page; 1334 return 0; 1335 } 1336 1337 /* 1338 * we don't do anything in here that simple_write_end doesn't do 1339 * except adjust dirty page accounting 1340 */ 1341 static int ceph_write_end(struct file *file, struct address_space *mapping, 1342 loff_t pos, unsigned len, unsigned copied, 1343 struct page *subpage, void *fsdata) 1344 { 1345 struct folio *folio = page_folio(subpage); 1346 struct inode *inode = file_inode(file); 1347 bool check_cap = false; 1348 1349 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, 1350 inode, folio, (int)pos, (int)copied, (int)len); 1351 1352 if (!folio_test_uptodate(folio)) { 1353 /* just return that nothing was copied on a short copy */ 1354 if (copied < len) { 1355 copied = 0; 1356 goto out; 1357 } 1358 folio_mark_uptodate(folio); 1359 } 1360 1361 /* did file size increase? */ 1362 if (pos+copied > i_size_read(inode)) 1363 check_cap = ceph_inode_set_size(inode, pos+copied); 1364 1365 folio_mark_dirty(folio); 1366 1367 out: 1368 folio_unlock(folio); 1369 folio_put(folio); 1370 1371 if (check_cap) 1372 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY); 1373 1374 return copied; 1375 } 1376 1377 const struct address_space_operations ceph_aops = { 1378 .read_folio = netfs_read_folio, 1379 .readahead = netfs_readahead, 1380 .writepage = ceph_writepage, 1381 .writepages = ceph_writepages_start, 1382 .write_begin = ceph_write_begin, 1383 .write_end = ceph_write_end, 1384 .dirty_folio = ceph_dirty_folio, 1385 .invalidate_folio = ceph_invalidate_folio, 1386 .release_folio = ceph_release_folio, 1387 .direct_IO = noop_direct_IO, 1388 }; 1389 1390 static void ceph_block_sigs(sigset_t *oldset) 1391 { 1392 sigset_t mask; 1393 siginitsetinv(&mask, sigmask(SIGKILL)); 1394 sigprocmask(SIG_BLOCK, &mask, oldset); 1395 } 1396 1397 static void ceph_restore_sigs(sigset_t *oldset) 1398 { 1399 sigprocmask(SIG_SETMASK, oldset, NULL); 1400 } 1401 1402 /* 1403 * vm ops 1404 */ 1405 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) 1406 { 1407 struct vm_area_struct *vma = vmf->vma; 1408 struct inode *inode = file_inode(vma->vm_file); 1409 struct ceph_inode_info *ci = ceph_inode(inode); 1410 struct ceph_file_info *fi = vma->vm_file->private_data; 1411 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; 1412 int want, got, err; 1413 sigset_t oldset; 1414 vm_fault_t ret = VM_FAULT_SIGBUS; 1415 1416 if (ceph_inode_is_shutdown(inode)) 1417 return ret; 1418 1419 ceph_block_sigs(&oldset); 1420 1421 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", 1422 inode, ceph_vinop(inode), off); 1423 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1424 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; 1425 else 1426 want = CEPH_CAP_FILE_CACHE; 1427 1428 got = 0; 1429 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); 1430 if (err < 0) 1431 goto out_restore; 1432 1433 dout("filemap_fault %p %llu got cap refs on %s\n", 1434 inode, off, ceph_cap_string(got)); 1435 1436 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || 1437 !ceph_has_inline_data(ci)) { 1438 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); 1439 ceph_add_rw_context(fi, &rw_ctx); 1440 ret = filemap_fault(vmf); 1441 ceph_del_rw_context(fi, &rw_ctx); 1442 dout("filemap_fault %p %llu drop cap refs %s ret %x\n", 1443 inode, off, ceph_cap_string(got), ret); 1444 } else 1445 err = -EAGAIN; 1446 1447 ceph_put_cap_refs(ci, got); 1448 1449 if (err != -EAGAIN) 1450 goto out_restore; 1451 1452 /* read inline data */ 1453 if (off >= PAGE_SIZE) { 1454 /* does not support inline data > PAGE_SIZE */ 1455 ret = VM_FAULT_SIGBUS; 1456 } else { 1457 struct address_space *mapping = inode->i_mapping; 1458 struct page *page; 1459 1460 filemap_invalidate_lock_shared(mapping); 1461 page = find_or_create_page(mapping, 0, 1462 mapping_gfp_constraint(mapping, ~__GFP_FS)); 1463 if (!page) { 1464 ret = VM_FAULT_OOM; 1465 goto out_inline; 1466 } 1467 err = __ceph_do_getattr(inode, page, 1468 CEPH_STAT_CAP_INLINE_DATA, true); 1469 if (err < 0 || off >= i_size_read(inode)) { 1470 unlock_page(page); 1471 put_page(page); 1472 ret = vmf_error(err); 1473 goto out_inline; 1474 } 1475 if (err < PAGE_SIZE) 1476 zero_user_segment(page, err, PAGE_SIZE); 1477 else 1478 flush_dcache_page(page); 1479 SetPageUptodate(page); 1480 vmf->page = page; 1481 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; 1482 out_inline: 1483 filemap_invalidate_unlock_shared(mapping); 1484 dout("filemap_fault %p %llu read inline data ret %x\n", 1485 inode, off, ret); 1486 } 1487 out_restore: 1488 ceph_restore_sigs(&oldset); 1489 if (err < 0) 1490 ret = vmf_error(err); 1491 1492 return ret; 1493 } 1494 1495 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) 1496 { 1497 struct vm_area_struct *vma = vmf->vma; 1498 struct inode *inode = file_inode(vma->vm_file); 1499 struct ceph_inode_info *ci = ceph_inode(inode); 1500 struct ceph_file_info *fi = vma->vm_file->private_data; 1501 struct ceph_cap_flush *prealloc_cf; 1502 struct page *page = vmf->page; 1503 loff_t off = page_offset(page); 1504 loff_t size = i_size_read(inode); 1505 size_t len; 1506 int want, got, err; 1507 sigset_t oldset; 1508 vm_fault_t ret = VM_FAULT_SIGBUS; 1509 1510 if (ceph_inode_is_shutdown(inode)) 1511 return ret; 1512 1513 prealloc_cf = ceph_alloc_cap_flush(); 1514 if (!prealloc_cf) 1515 return VM_FAULT_OOM; 1516 1517 sb_start_pagefault(inode->i_sb); 1518 ceph_block_sigs(&oldset); 1519 1520 if (off + thp_size(page) <= size) 1521 len = thp_size(page); 1522 else 1523 len = offset_in_thp(page, size); 1524 1525 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", 1526 inode, ceph_vinop(inode), off, len, size); 1527 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1528 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; 1529 else 1530 want = CEPH_CAP_FILE_BUFFER; 1531 1532 got = 0; 1533 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); 1534 if (err < 0) 1535 goto out_free; 1536 1537 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", 1538 inode, off, len, ceph_cap_string(got)); 1539 1540 /* Update time before taking page lock */ 1541 file_update_time(vma->vm_file); 1542 inode_inc_iversion_raw(inode); 1543 1544 do { 1545 struct ceph_snap_context *snapc; 1546 1547 lock_page(page); 1548 1549 if (page_mkwrite_check_truncate(page, inode) < 0) { 1550 unlock_page(page); 1551 ret = VM_FAULT_NOPAGE; 1552 break; 1553 } 1554 1555 snapc = ceph_find_incompatible(page); 1556 if (!snapc) { 1557 /* success. we'll keep the page locked. */ 1558 set_page_dirty(page); 1559 ret = VM_FAULT_LOCKED; 1560 break; 1561 } 1562 1563 unlock_page(page); 1564 1565 if (IS_ERR(snapc)) { 1566 ret = VM_FAULT_SIGBUS; 1567 break; 1568 } 1569 1570 ceph_queue_writeback(inode); 1571 err = wait_event_killable(ci->i_cap_wq, 1572 context_is_writeable_or_written(inode, snapc)); 1573 ceph_put_snap_context(snapc); 1574 } while (err == 0); 1575 1576 if (ret == VM_FAULT_LOCKED) { 1577 int dirty; 1578 spin_lock(&ci->i_ceph_lock); 1579 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, 1580 &prealloc_cf); 1581 spin_unlock(&ci->i_ceph_lock); 1582 if (dirty) 1583 __mark_inode_dirty(inode, dirty); 1584 } 1585 1586 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", 1587 inode, off, len, ceph_cap_string(got), ret); 1588 ceph_put_cap_refs_async(ci, got); 1589 out_free: 1590 ceph_restore_sigs(&oldset); 1591 sb_end_pagefault(inode->i_sb); 1592 ceph_free_cap_flush(prealloc_cf); 1593 if (err < 0) 1594 ret = vmf_error(err); 1595 return ret; 1596 } 1597 1598 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1599 char *data, size_t len) 1600 { 1601 struct address_space *mapping = inode->i_mapping; 1602 struct page *page; 1603 1604 if (locked_page) { 1605 page = locked_page; 1606 } else { 1607 if (i_size_read(inode) == 0) 1608 return; 1609 page = find_or_create_page(mapping, 0, 1610 mapping_gfp_constraint(mapping, 1611 ~__GFP_FS)); 1612 if (!page) 1613 return; 1614 if (PageUptodate(page)) { 1615 unlock_page(page); 1616 put_page(page); 1617 return; 1618 } 1619 } 1620 1621 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", 1622 inode, ceph_vinop(inode), len, locked_page); 1623 1624 if (len > 0) { 1625 void *kaddr = kmap_atomic(page); 1626 memcpy(kaddr, data, len); 1627 kunmap_atomic(kaddr); 1628 } 1629 1630 if (page != locked_page) { 1631 if (len < PAGE_SIZE) 1632 zero_user_segment(page, len, PAGE_SIZE); 1633 else 1634 flush_dcache_page(page); 1635 1636 SetPageUptodate(page); 1637 unlock_page(page); 1638 put_page(page); 1639 } 1640 } 1641 1642 int ceph_uninline_data(struct file *file) 1643 { 1644 struct inode *inode = file_inode(file); 1645 struct ceph_inode_info *ci = ceph_inode(inode); 1646 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 1647 struct ceph_osd_request *req = NULL; 1648 struct ceph_cap_flush *prealloc_cf; 1649 struct folio *folio = NULL; 1650 u64 inline_version = CEPH_INLINE_NONE; 1651 struct page *pages[1]; 1652 int err = 0; 1653 u64 len; 1654 1655 spin_lock(&ci->i_ceph_lock); 1656 inline_version = ci->i_inline_version; 1657 spin_unlock(&ci->i_ceph_lock); 1658 1659 dout("uninline_data %p %llx.%llx inline_version %llu\n", 1660 inode, ceph_vinop(inode), inline_version); 1661 1662 if (inline_version == CEPH_INLINE_NONE) 1663 return 0; 1664 1665 prealloc_cf = ceph_alloc_cap_flush(); 1666 if (!prealloc_cf) 1667 return -ENOMEM; 1668 1669 if (inline_version == 1) /* initial version, no data */ 1670 goto out_uninline; 1671 1672 folio = read_mapping_folio(inode->i_mapping, 0, file); 1673 if (IS_ERR(folio)) { 1674 err = PTR_ERR(folio); 1675 goto out; 1676 } 1677 1678 folio_lock(folio); 1679 1680 len = i_size_read(inode); 1681 if (len > folio_size(folio)) 1682 len = folio_size(folio); 1683 1684 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1685 ceph_vino(inode), 0, &len, 0, 1, 1686 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, 1687 NULL, 0, 0, false); 1688 if (IS_ERR(req)) { 1689 err = PTR_ERR(req); 1690 goto out_unlock; 1691 } 1692 1693 req->r_mtime = inode->i_mtime; 1694 ceph_osdc_start_request(&fsc->client->osdc, req); 1695 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1696 ceph_osdc_put_request(req); 1697 if (err < 0) 1698 goto out_unlock; 1699 1700 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1701 ceph_vino(inode), 0, &len, 1, 3, 1702 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1703 NULL, ci->i_truncate_seq, 1704 ci->i_truncate_size, false); 1705 if (IS_ERR(req)) { 1706 err = PTR_ERR(req); 1707 goto out_unlock; 1708 } 1709 1710 pages[0] = folio_page(folio, 0); 1711 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); 1712 1713 { 1714 __le64 xattr_buf = cpu_to_le64(inline_version); 1715 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, 1716 "inline_version", &xattr_buf, 1717 sizeof(xattr_buf), 1718 CEPH_OSD_CMPXATTR_OP_GT, 1719 CEPH_OSD_CMPXATTR_MODE_U64); 1720 if (err) 1721 goto out_put_req; 1722 } 1723 1724 { 1725 char xattr_buf[32]; 1726 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), 1727 "%llu", inline_version); 1728 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, 1729 "inline_version", 1730 xattr_buf, xattr_len, 0, 0); 1731 if (err) 1732 goto out_put_req; 1733 } 1734 1735 req->r_mtime = inode->i_mtime; 1736 ceph_osdc_start_request(&fsc->client->osdc, req); 1737 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1738 1739 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 1740 req->r_end_latency, len, err); 1741 1742 out_uninline: 1743 if (!err) { 1744 int dirty; 1745 1746 /* Set to CAP_INLINE_NONE and dirty the caps */ 1747 down_read(&fsc->mdsc->snap_rwsem); 1748 spin_lock(&ci->i_ceph_lock); 1749 ci->i_inline_version = CEPH_INLINE_NONE; 1750 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); 1751 spin_unlock(&ci->i_ceph_lock); 1752 up_read(&fsc->mdsc->snap_rwsem); 1753 if (dirty) 1754 __mark_inode_dirty(inode, dirty); 1755 } 1756 out_put_req: 1757 ceph_osdc_put_request(req); 1758 if (err == -ECANCELED) 1759 err = 0; 1760 out_unlock: 1761 if (folio) { 1762 folio_unlock(folio); 1763 folio_put(folio); 1764 } 1765 out: 1766 ceph_free_cap_flush(prealloc_cf); 1767 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", 1768 inode, ceph_vinop(inode), inline_version, err); 1769 return err; 1770 } 1771 1772 static const struct vm_operations_struct ceph_vmops = { 1773 .fault = ceph_filemap_fault, 1774 .page_mkwrite = ceph_page_mkwrite, 1775 }; 1776 1777 int ceph_mmap(struct file *file, struct vm_area_struct *vma) 1778 { 1779 struct address_space *mapping = file->f_mapping; 1780 1781 if (!mapping->a_ops->read_folio) 1782 return -ENOEXEC; 1783 vma->vm_ops = &ceph_vmops; 1784 return 0; 1785 } 1786 1787 enum { 1788 POOL_READ = 1, 1789 POOL_WRITE = 2, 1790 }; 1791 1792 static int __ceph_pool_perm_get(struct ceph_inode_info *ci, 1793 s64 pool, struct ceph_string *pool_ns) 1794 { 1795 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode); 1796 struct ceph_mds_client *mdsc = fsc->mdsc; 1797 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; 1798 struct rb_node **p, *parent; 1799 struct ceph_pool_perm *perm; 1800 struct page **pages; 1801 size_t pool_ns_len; 1802 int err = 0, err2 = 0, have = 0; 1803 1804 down_read(&mdsc->pool_perm_rwsem); 1805 p = &mdsc->pool_perm_tree.rb_node; 1806 while (*p) { 1807 perm = rb_entry(*p, struct ceph_pool_perm, node); 1808 if (pool < perm->pool) 1809 p = &(*p)->rb_left; 1810 else if (pool > perm->pool) 1811 p = &(*p)->rb_right; 1812 else { 1813 int ret = ceph_compare_string(pool_ns, 1814 perm->pool_ns, 1815 perm->pool_ns_len); 1816 if (ret < 0) 1817 p = &(*p)->rb_left; 1818 else if (ret > 0) 1819 p = &(*p)->rb_right; 1820 else { 1821 have = perm->perm; 1822 break; 1823 } 1824 } 1825 } 1826 up_read(&mdsc->pool_perm_rwsem); 1827 if (*p) 1828 goto out; 1829 1830 if (pool_ns) 1831 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", 1832 pool, (int)pool_ns->len, pool_ns->str); 1833 else 1834 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); 1835 1836 down_write(&mdsc->pool_perm_rwsem); 1837 p = &mdsc->pool_perm_tree.rb_node; 1838 parent = NULL; 1839 while (*p) { 1840 parent = *p; 1841 perm = rb_entry(parent, struct ceph_pool_perm, node); 1842 if (pool < perm->pool) 1843 p = &(*p)->rb_left; 1844 else if (pool > perm->pool) 1845 p = &(*p)->rb_right; 1846 else { 1847 int ret = ceph_compare_string(pool_ns, 1848 perm->pool_ns, 1849 perm->pool_ns_len); 1850 if (ret < 0) 1851 p = &(*p)->rb_left; 1852 else if (ret > 0) 1853 p = &(*p)->rb_right; 1854 else { 1855 have = perm->perm; 1856 break; 1857 } 1858 } 1859 } 1860 if (*p) { 1861 up_write(&mdsc->pool_perm_rwsem); 1862 goto out; 1863 } 1864 1865 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1866 1, false, GFP_NOFS); 1867 if (!rd_req) { 1868 err = -ENOMEM; 1869 goto out_unlock; 1870 } 1871 1872 rd_req->r_flags = CEPH_OSD_FLAG_READ; 1873 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); 1874 rd_req->r_base_oloc.pool = pool; 1875 if (pool_ns) 1876 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); 1877 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); 1878 1879 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); 1880 if (err) 1881 goto out_unlock; 1882 1883 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1884 1, false, GFP_NOFS); 1885 if (!wr_req) { 1886 err = -ENOMEM; 1887 goto out_unlock; 1888 } 1889 1890 wr_req->r_flags = CEPH_OSD_FLAG_WRITE; 1891 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); 1892 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); 1893 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); 1894 1895 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); 1896 if (err) 1897 goto out_unlock; 1898 1899 /* one page should be large enough for STAT data */ 1900 pages = ceph_alloc_page_vector(1, GFP_KERNEL); 1901 if (IS_ERR(pages)) { 1902 err = PTR_ERR(pages); 1903 goto out_unlock; 1904 } 1905 1906 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 1907 0, false, true); 1908 ceph_osdc_start_request(&fsc->client->osdc, rd_req); 1909 1910 wr_req->r_mtime = ci->netfs.inode.i_mtime; 1911 ceph_osdc_start_request(&fsc->client->osdc, wr_req); 1912 1913 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); 1914 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); 1915 1916 if (err >= 0 || err == -ENOENT) 1917 have |= POOL_READ; 1918 else if (err != -EPERM) { 1919 if (err == -EBLOCKLISTED) 1920 fsc->blocklisted = true; 1921 goto out_unlock; 1922 } 1923 1924 if (err2 == 0 || err2 == -EEXIST) 1925 have |= POOL_WRITE; 1926 else if (err2 != -EPERM) { 1927 if (err2 == -EBLOCKLISTED) 1928 fsc->blocklisted = true; 1929 err = err2; 1930 goto out_unlock; 1931 } 1932 1933 pool_ns_len = pool_ns ? pool_ns->len : 0; 1934 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); 1935 if (!perm) { 1936 err = -ENOMEM; 1937 goto out_unlock; 1938 } 1939 1940 perm->pool = pool; 1941 perm->perm = have; 1942 perm->pool_ns_len = pool_ns_len; 1943 if (pool_ns_len > 0) 1944 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); 1945 perm->pool_ns[pool_ns_len] = 0; 1946 1947 rb_link_node(&perm->node, parent, p); 1948 rb_insert_color(&perm->node, &mdsc->pool_perm_tree); 1949 err = 0; 1950 out_unlock: 1951 up_write(&mdsc->pool_perm_rwsem); 1952 1953 ceph_osdc_put_request(rd_req); 1954 ceph_osdc_put_request(wr_req); 1955 out: 1956 if (!err) 1957 err = have; 1958 if (pool_ns) 1959 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", 1960 pool, (int)pool_ns->len, pool_ns->str, err); 1961 else 1962 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); 1963 return err; 1964 } 1965 1966 int ceph_pool_perm_check(struct inode *inode, int need) 1967 { 1968 struct ceph_inode_info *ci = ceph_inode(inode); 1969 struct ceph_string *pool_ns; 1970 s64 pool; 1971 int ret, flags; 1972 1973 /* Only need to do this for regular files */ 1974 if (!S_ISREG(inode->i_mode)) 1975 return 0; 1976 1977 if (ci->i_vino.snap != CEPH_NOSNAP) { 1978 /* 1979 * Pool permission check needs to write to the first object. 1980 * But for snapshot, head of the first object may have alread 1981 * been deleted. Skip check to avoid creating orphan object. 1982 */ 1983 return 0; 1984 } 1985 1986 if (ceph_test_mount_opt(ceph_inode_to_client(inode), 1987 NOPOOLPERM)) 1988 return 0; 1989 1990 spin_lock(&ci->i_ceph_lock); 1991 flags = ci->i_ceph_flags; 1992 pool = ci->i_layout.pool_id; 1993 spin_unlock(&ci->i_ceph_lock); 1994 check: 1995 if (flags & CEPH_I_POOL_PERM) { 1996 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { 1997 dout("ceph_pool_perm_check pool %lld no read perm\n", 1998 pool); 1999 return -EPERM; 2000 } 2001 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { 2002 dout("ceph_pool_perm_check pool %lld no write perm\n", 2003 pool); 2004 return -EPERM; 2005 } 2006 return 0; 2007 } 2008 2009 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); 2010 ret = __ceph_pool_perm_get(ci, pool, pool_ns); 2011 ceph_put_string(pool_ns); 2012 if (ret < 0) 2013 return ret; 2014 2015 flags = CEPH_I_POOL_PERM; 2016 if (ret & POOL_READ) 2017 flags |= CEPH_I_POOL_RD; 2018 if (ret & POOL_WRITE) 2019 flags |= CEPH_I_POOL_WR; 2020 2021 spin_lock(&ci->i_ceph_lock); 2022 if (pool == ci->i_layout.pool_id && 2023 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { 2024 ci->i_ceph_flags |= flags; 2025 } else { 2026 pool = ci->i_layout.pool_id; 2027 flags = ci->i_ceph_flags; 2028 } 2029 spin_unlock(&ci->i_ceph_lock); 2030 goto check; 2031 } 2032 2033 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) 2034 { 2035 struct ceph_pool_perm *perm; 2036 struct rb_node *n; 2037 2038 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { 2039 n = rb_first(&mdsc->pool_perm_tree); 2040 perm = rb_entry(n, struct ceph_pool_perm, node); 2041 rb_erase(n, &mdsc->pool_perm_tree); 2042 kfree(perm); 2043 } 2044 } 2045