1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/backing-dev.h> 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/swap.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/pagevec.h> 11 #include <linux/task_io_accounting_ops.h> 12 #include <linux/signal.h> 13 #include <linux/iversion.h> 14 #include <linux/ktime.h> 15 #include <linux/netfs.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "cache.h" 20 #include "metric.h" 21 #include "crypto.h" 22 #include <linux/ceph/osd_client.h> 23 #include <linux/ceph/striper.h> 24 25 /* 26 * Ceph address space ops. 27 * 28 * There are a few funny things going on here. 29 * 30 * The page->private field is used to reference a struct 31 * ceph_snap_context for _every_ dirty page. This indicates which 32 * snapshot the page was logically dirtied in, and thus which snap 33 * context needs to be associated with the osd write during writeback. 34 * 35 * Similarly, struct ceph_inode_info maintains a set of counters to 36 * count dirty pages on the inode. In the absence of snapshots, 37 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. 38 * 39 * When a snapshot is taken (that is, when the client receives 40 * notification that a snapshot was taken), each inode with caps and 41 * with dirty pages (dirty pages implies there is a cap) gets a new 42 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending 43 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is 44 * moved to capsnap->dirty. (Unless a sync write is currently in 45 * progress. In that case, the capsnap is said to be "pending", new 46 * writes cannot start, and the capsnap isn't "finalized" until the 47 * write completes (or fails) and a final size/mtime for the inode for 48 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. 49 * 50 * On writeback, we must submit writes to the osd IN SNAP ORDER. So, 51 * we look for the first capsnap in i_cap_snaps and write out pages in 52 * that snap context _only_. Then we move on to the next capsnap, 53 * eventually reaching the "live" or "head" context (i.e., pages that 54 * are not yet snapped) and are writing the most recently dirtied 55 * pages. 56 * 57 * Invalidate and so forth must take care to ensure the dirty page 58 * accounting is preserved. 59 */ 60 61 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) 62 #define CONGESTION_OFF_THRESH(congestion_kb) \ 63 (CONGESTION_ON_THRESH(congestion_kb) - \ 64 (CONGESTION_ON_THRESH(congestion_kb) >> 2)) 65 66 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 67 struct folio **foliop, void **_fsdata); 68 69 static inline struct ceph_snap_context *page_snap_context(struct page *page) 70 { 71 if (PagePrivate(page)) 72 return (void *)page->private; 73 return NULL; 74 } 75 76 /* 77 * Dirty a page. Optimistically adjust accounting, on the assumption 78 * that we won't race with invalidate. If we do, readjust. 79 */ 80 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) 81 { 82 struct inode *inode; 83 struct ceph_inode_info *ci; 84 struct ceph_snap_context *snapc; 85 86 if (folio_test_dirty(folio)) { 87 dout("%p dirty_folio %p idx %lu -- already dirty\n", 88 mapping->host, folio, folio->index); 89 VM_BUG_ON_FOLIO(!folio_test_private(folio), folio); 90 return false; 91 } 92 93 inode = mapping->host; 94 ci = ceph_inode(inode); 95 96 /* dirty the head */ 97 spin_lock(&ci->i_ceph_lock); 98 if (__ceph_have_pending_cap_snap(ci)) { 99 struct ceph_cap_snap *capsnap = 100 list_last_entry(&ci->i_cap_snaps, 101 struct ceph_cap_snap, 102 ci_item); 103 snapc = ceph_get_snap_context(capsnap->context); 104 capsnap->dirty_pages++; 105 } else { 106 BUG_ON(!ci->i_head_snapc); 107 snapc = ceph_get_snap_context(ci->i_head_snapc); 108 ++ci->i_wrbuffer_ref_head; 109 } 110 if (ci->i_wrbuffer_ref == 0) 111 ihold(inode); 112 ++ci->i_wrbuffer_ref; 113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " 114 "snapc %p seq %lld (%d snaps)\n", 115 mapping->host, folio, folio->index, 116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, 117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 118 snapc, snapc->seq, snapc->num_snaps); 119 spin_unlock(&ci->i_ceph_lock); 120 121 /* 122 * Reference snap context in folio->private. Also set 123 * PagePrivate so that we get invalidate_folio callback. 124 */ 125 VM_WARN_ON_FOLIO(folio->private, folio); 126 folio_attach_private(folio, snapc); 127 128 return ceph_fscache_dirty_folio(mapping, folio); 129 } 130 131 /* 132 * If we are truncating the full folio (i.e. offset == 0), adjust the 133 * dirty folio counters appropriately. Only called if there is private 134 * data on the folio. 135 */ 136 static void ceph_invalidate_folio(struct folio *folio, size_t offset, 137 size_t length) 138 { 139 struct inode *inode; 140 struct ceph_inode_info *ci; 141 struct ceph_snap_context *snapc; 142 143 inode = folio->mapping->host; 144 ci = ceph_inode(inode); 145 146 if (offset != 0 || length != folio_size(folio)) { 147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", 148 inode, folio->index, offset, length); 149 return; 150 } 151 152 WARN_ON(!folio_test_locked(folio)); 153 if (folio_test_private(folio)) { 154 dout("%p invalidate_folio idx %lu full dirty page\n", 155 inode, folio->index); 156 157 snapc = folio_detach_private(folio); 158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 159 ceph_put_snap_context(snapc); 160 } 161 162 folio_wait_fscache(folio); 163 } 164 165 static bool ceph_release_folio(struct folio *folio, gfp_t gfp) 166 { 167 struct inode *inode = folio->mapping->host; 168 169 dout("%llx:%llx release_folio idx %lu (%sdirty)\n", 170 ceph_vinop(inode), 171 folio->index, folio_test_dirty(folio) ? "" : "not "); 172 173 if (folio_test_private(folio)) 174 return false; 175 176 if (folio_test_fscache(folio)) { 177 if (current_is_kswapd() || !(gfp & __GFP_FS)) 178 return false; 179 folio_wait_fscache(folio); 180 } 181 ceph_fscache_note_page_release(inode); 182 return true; 183 } 184 185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) 186 { 187 struct inode *inode = rreq->inode; 188 struct ceph_inode_info *ci = ceph_inode(inode); 189 struct ceph_file_layout *lo = &ci->i_layout; 190 unsigned long max_pages = inode->i_sb->s_bdi->ra_pages; 191 loff_t end = rreq->start + rreq->len, new_end; 192 struct ceph_netfs_request_data *priv = rreq->netfs_priv; 193 unsigned long max_len; 194 u32 blockoff; 195 196 if (priv) { 197 /* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */ 198 if (priv->file_ra_disabled) 199 max_pages = 0; 200 else 201 max_pages = priv->file_ra_pages; 202 203 } 204 205 /* Readahead is disabled */ 206 if (!max_pages) 207 return; 208 209 max_len = max_pages << PAGE_SHIFT; 210 211 /* 212 * Try to expand the length forward by rounding up it to the next 213 * block, but do not exceed the file size, unless the original 214 * request already exceeds it. 215 */ 216 new_end = min(round_up(end, lo->stripe_unit), rreq->i_size); 217 if (new_end > end && new_end <= rreq->start + max_len) 218 rreq->len = new_end - rreq->start; 219 220 /* Try to expand the start downward */ 221 div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); 222 if (rreq->len + blockoff <= max_len) { 223 rreq->start -= blockoff; 224 rreq->len += blockoff; 225 } 226 } 227 228 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) 229 { 230 struct inode *inode = subreq->rreq->inode; 231 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 232 struct ceph_inode_info *ci = ceph_inode(inode); 233 u64 objno, objoff; 234 u32 xlen; 235 236 /* Truncate the extent at the end of the current block */ 237 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, 238 &objno, &objoff, &xlen); 239 subreq->len = min(xlen, fsc->mount_options->rsize); 240 return true; 241 } 242 243 static void finish_netfs_read(struct ceph_osd_request *req) 244 { 245 struct inode *inode = req->r_inode; 246 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 247 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); 248 struct netfs_io_subrequest *subreq = req->r_priv; 249 struct ceph_osd_req_op *op = &req->r_ops[0]; 250 int err = req->r_result; 251 bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ); 252 253 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, 254 req->r_end_latency, osd_data->length, err); 255 256 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, 257 subreq->len, i_size_read(req->r_inode)); 258 259 /* no object means success but no data */ 260 if (err == -ENOENT) 261 err = 0; 262 else if (err == -EBLOCKLISTED) 263 fsc->blocklisted = true; 264 265 if (err >= 0) { 266 if (sparse && err > 0) 267 err = ceph_sparse_ext_map_end(op); 268 if (err < subreq->len) 269 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 270 if (IS_ENCRYPTED(inode) && err > 0) { 271 err = ceph_fscrypt_decrypt_extents(inode, 272 osd_data->pages, subreq->start, 273 op->extent.sparse_ext, 274 op->extent.sparse_ext_cnt); 275 if (err > subreq->len) 276 err = subreq->len; 277 } 278 } 279 280 if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) { 281 ceph_put_page_vector(osd_data->pages, 282 calc_pages_for(osd_data->alignment, 283 osd_data->length), false); 284 } 285 netfs_subreq_terminated(subreq, err, false); 286 iput(req->r_inode); 287 ceph_dec_osd_stopping_blocker(fsc->mdsc); 288 } 289 290 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) 291 { 292 struct netfs_io_request *rreq = subreq->rreq; 293 struct inode *inode = rreq->inode; 294 struct ceph_mds_reply_info_parsed *rinfo; 295 struct ceph_mds_reply_info_in *iinfo; 296 struct ceph_mds_request *req; 297 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 298 struct ceph_inode_info *ci = ceph_inode(inode); 299 struct iov_iter iter; 300 ssize_t err = 0; 301 size_t len; 302 int mode; 303 304 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 305 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); 306 307 if (subreq->start >= inode->i_size) 308 goto out; 309 310 /* We need to fetch the inline data. */ 311 mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA); 312 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); 313 if (IS_ERR(req)) { 314 err = PTR_ERR(req); 315 goto out; 316 } 317 req->r_ino1 = ci->i_vino; 318 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); 319 req->r_num_caps = 2; 320 321 err = ceph_mdsc_do_request(mdsc, NULL, req); 322 if (err < 0) 323 goto out; 324 325 rinfo = &req->r_reply_info; 326 iinfo = &rinfo->targeti; 327 if (iinfo->inline_version == CEPH_INLINE_NONE) { 328 /* The data got uninlined */ 329 ceph_mdsc_put_request(req); 330 return false; 331 } 332 333 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); 334 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 335 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); 336 if (err == 0) 337 err = -EFAULT; 338 339 ceph_mdsc_put_request(req); 340 out: 341 netfs_subreq_terminated(subreq, err, false); 342 return true; 343 } 344 345 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) 346 { 347 struct netfs_io_request *rreq = subreq->rreq; 348 struct inode *inode = rreq->inode; 349 struct ceph_inode_info *ci = ceph_inode(inode); 350 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 351 struct ceph_osd_request *req = NULL; 352 struct ceph_vino vino = ceph_vino(inode); 353 struct iov_iter iter; 354 int err = 0; 355 u64 len = subreq->len; 356 bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD); 357 u64 off = subreq->start; 358 359 if (ceph_inode_is_shutdown(inode)) { 360 err = -EIO; 361 goto out; 362 } 363 364 if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq)) 365 return; 366 367 ceph_fscrypt_adjust_off_and_len(inode, &off, &len); 368 369 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, 370 off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ, 371 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, 372 NULL, ci->i_truncate_seq, ci->i_truncate_size, false); 373 if (IS_ERR(req)) { 374 err = PTR_ERR(req); 375 req = NULL; 376 goto out; 377 } 378 379 if (sparse) { 380 err = ceph_alloc_sparse_ext_map(&req->r_ops[0]); 381 if (err) 382 goto out; 383 } 384 385 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); 386 387 iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); 388 389 /* 390 * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for 391 * encrypted inodes. We'd need infrastructure that handles an iov_iter 392 * instead of page arrays, and we don't have that as of yet. Once the 393 * dust settles on the write helpers and encrypt/decrypt routines for 394 * netfs, we should be able to rework this. 395 */ 396 if (IS_ENCRYPTED(inode)) { 397 struct page **pages; 398 size_t page_off; 399 400 err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off); 401 if (err < 0) { 402 dout("%s: iov_ter_get_pages_alloc returned %d\n", 403 __func__, err); 404 goto out; 405 } 406 407 /* should always give us a page-aligned read */ 408 WARN_ON_ONCE(page_off); 409 len = err; 410 err = 0; 411 412 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, 413 false); 414 } else { 415 osd_req_op_extent_osd_iter(req, 0, &iter); 416 } 417 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { 418 err = -EIO; 419 goto out; 420 } 421 req->r_callback = finish_netfs_read; 422 req->r_priv = subreq; 423 req->r_inode = inode; 424 ihold(inode); 425 426 ceph_osdc_start_request(req->r_osdc, req); 427 out: 428 ceph_osdc_put_request(req); 429 if (err) 430 netfs_subreq_terminated(subreq, err, false); 431 dout("%s: result %d\n", __func__, err); 432 } 433 434 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) 435 { 436 struct inode *inode = rreq->inode; 437 int got = 0, want = CEPH_CAP_FILE_CACHE; 438 struct ceph_netfs_request_data *priv; 439 int ret = 0; 440 441 if (rreq->origin != NETFS_READAHEAD) 442 return 0; 443 444 priv = kzalloc(sizeof(*priv), GFP_NOFS); 445 if (!priv) 446 return -ENOMEM; 447 448 if (file) { 449 struct ceph_rw_context *rw_ctx; 450 struct ceph_file_info *fi = file->private_data; 451 452 priv->file_ra_pages = file->f_ra.ra_pages; 453 priv->file_ra_disabled = file->f_mode & FMODE_RANDOM; 454 455 rw_ctx = ceph_find_rw_context(fi); 456 if (rw_ctx) { 457 rreq->netfs_priv = priv; 458 return 0; 459 } 460 } 461 462 /* 463 * readahead callers do not necessarily hold Fcb caps 464 * (e.g. fadvise, madvise). 465 */ 466 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); 467 if (ret < 0) { 468 dout("start_read %p, error getting cap\n", inode); 469 goto out; 470 } 471 472 if (!(got & want)) { 473 dout("start_read %p, no cache cap\n", inode); 474 ret = -EACCES; 475 goto out; 476 } 477 if (ret == 0) { 478 ret = -EACCES; 479 goto out; 480 } 481 482 priv->caps = got; 483 rreq->netfs_priv = priv; 484 485 out: 486 if (ret < 0) 487 kfree(priv); 488 489 return ret; 490 } 491 492 static void ceph_netfs_free_request(struct netfs_io_request *rreq) 493 { 494 struct ceph_netfs_request_data *priv = rreq->netfs_priv; 495 496 if (!priv) 497 return; 498 499 if (priv->caps) 500 ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps); 501 kfree(priv); 502 rreq->netfs_priv = NULL; 503 } 504 505 const struct netfs_request_ops ceph_netfs_ops = { 506 .init_request = ceph_init_request, 507 .free_request = ceph_netfs_free_request, 508 .begin_cache_operation = ceph_begin_cache_operation, 509 .issue_read = ceph_netfs_issue_read, 510 .expand_readahead = ceph_netfs_expand_readahead, 511 .clamp_length = ceph_netfs_clamp_length, 512 .check_write_begin = ceph_netfs_check_write_begin, 513 }; 514 515 #ifdef CONFIG_CEPH_FSCACHE 516 static void ceph_set_page_fscache(struct page *page) 517 { 518 set_page_fscache(page); 519 } 520 521 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) 522 { 523 struct inode *inode = priv; 524 525 if (IS_ERR_VALUE(error) && error != -ENOBUFS) 526 ceph_fscache_invalidate(inode, false); 527 } 528 529 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 530 { 531 struct ceph_inode_info *ci = ceph_inode(inode); 532 struct fscache_cookie *cookie = ceph_fscache_cookie(ci); 533 534 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), 535 ceph_fscache_write_terminated, inode, caching); 536 } 537 #else 538 static inline void ceph_set_page_fscache(struct page *page) 539 { 540 } 541 542 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 543 { 544 } 545 #endif /* CONFIG_CEPH_FSCACHE */ 546 547 struct ceph_writeback_ctl 548 { 549 loff_t i_size; 550 u64 truncate_size; 551 u32 truncate_seq; 552 bool size_stable; 553 bool head_snapc; 554 }; 555 556 /* 557 * Get ref for the oldest snapc for an inode with dirty data... that is, the 558 * only snap context we are allowed to write back. 559 */ 560 static struct ceph_snap_context * 561 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, 562 struct ceph_snap_context *page_snapc) 563 { 564 struct ceph_inode_info *ci = ceph_inode(inode); 565 struct ceph_snap_context *snapc = NULL; 566 struct ceph_cap_snap *capsnap = NULL; 567 568 spin_lock(&ci->i_ceph_lock); 569 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 570 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, 571 capsnap->context, capsnap->dirty_pages); 572 if (!capsnap->dirty_pages) 573 continue; 574 575 /* get i_size, truncate_{seq,size} for page_snapc? */ 576 if (snapc && capsnap->context != page_snapc) 577 continue; 578 579 if (ctl) { 580 if (capsnap->writing) { 581 ctl->i_size = i_size_read(inode); 582 ctl->size_stable = false; 583 } else { 584 ctl->i_size = capsnap->size; 585 ctl->size_stable = true; 586 } 587 ctl->truncate_size = capsnap->truncate_size; 588 ctl->truncate_seq = capsnap->truncate_seq; 589 ctl->head_snapc = false; 590 } 591 592 if (snapc) 593 break; 594 595 snapc = ceph_get_snap_context(capsnap->context); 596 if (!page_snapc || 597 page_snapc == snapc || 598 page_snapc->seq > snapc->seq) 599 break; 600 } 601 if (!snapc && ci->i_wrbuffer_ref_head) { 602 snapc = ceph_get_snap_context(ci->i_head_snapc); 603 dout(" head snapc %p has %d dirty pages\n", 604 snapc, ci->i_wrbuffer_ref_head); 605 if (ctl) { 606 ctl->i_size = i_size_read(inode); 607 ctl->truncate_size = ci->i_truncate_size; 608 ctl->truncate_seq = ci->i_truncate_seq; 609 ctl->size_stable = false; 610 ctl->head_snapc = true; 611 } 612 } 613 spin_unlock(&ci->i_ceph_lock); 614 return snapc; 615 } 616 617 static u64 get_writepages_data_length(struct inode *inode, 618 struct page *page, u64 start) 619 { 620 struct ceph_inode_info *ci = ceph_inode(inode); 621 struct ceph_snap_context *snapc; 622 struct ceph_cap_snap *capsnap = NULL; 623 u64 end = i_size_read(inode); 624 u64 ret; 625 626 snapc = page_snap_context(ceph_fscrypt_pagecache_page(page)); 627 if (snapc != ci->i_head_snapc) { 628 bool found = false; 629 spin_lock(&ci->i_ceph_lock); 630 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 631 if (capsnap->context == snapc) { 632 if (!capsnap->writing) 633 end = capsnap->size; 634 found = true; 635 break; 636 } 637 } 638 spin_unlock(&ci->i_ceph_lock); 639 WARN_ON(!found); 640 } 641 if (end > ceph_fscrypt_page_offset(page) + thp_size(page)) 642 end = ceph_fscrypt_page_offset(page) + thp_size(page); 643 ret = end > start ? end - start : 0; 644 if (ret && fscrypt_is_bounce_page(page)) 645 ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE); 646 return ret; 647 } 648 649 /* 650 * Write a single page, but leave the page locked. 651 * 652 * If we get a write error, mark the mapping for error, but still adjust the 653 * dirty page accounting (i.e., page is no longer dirty). 654 */ 655 static int writepage_nounlock(struct page *page, struct writeback_control *wbc) 656 { 657 struct folio *folio = page_folio(page); 658 struct inode *inode = page->mapping->host; 659 struct ceph_inode_info *ci = ceph_inode(inode); 660 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 661 struct ceph_snap_context *snapc, *oldest; 662 loff_t page_off = page_offset(page); 663 int err; 664 loff_t len = thp_size(page); 665 loff_t wlen; 666 struct ceph_writeback_ctl ceph_wbc; 667 struct ceph_osd_client *osdc = &fsc->client->osdc; 668 struct ceph_osd_request *req; 669 bool caching = ceph_is_cache_enabled(inode); 670 struct page *bounce_page = NULL; 671 672 dout("writepage %p idx %lu\n", page, page->index); 673 674 if (ceph_inode_is_shutdown(inode)) 675 return -EIO; 676 677 /* verify this is a writeable snap context */ 678 snapc = page_snap_context(page); 679 if (!snapc) { 680 dout("writepage %p page %p not dirty?\n", inode, page); 681 return 0; 682 } 683 oldest = get_oldest_context(inode, &ceph_wbc, snapc); 684 if (snapc->seq > oldest->seq) { 685 dout("writepage %p page %p snapc %p not writeable - noop\n", 686 inode, page, snapc); 687 /* we should only noop if called by kswapd */ 688 WARN_ON(!(current->flags & PF_MEMALLOC)); 689 ceph_put_snap_context(oldest); 690 redirty_page_for_writepage(wbc, page); 691 return 0; 692 } 693 ceph_put_snap_context(oldest); 694 695 /* is this a partial page at end of file? */ 696 if (page_off >= ceph_wbc.i_size) { 697 dout("folio at %lu beyond eof %llu\n", folio->index, 698 ceph_wbc.i_size); 699 folio_invalidate(folio, 0, folio_size(folio)); 700 return 0; 701 } 702 703 if (ceph_wbc.i_size < page_off + len) 704 len = ceph_wbc.i_size - page_off; 705 706 wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len; 707 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", 708 inode, page, page->index, page_off, wlen, snapc, snapc->seq); 709 710 if (atomic_long_inc_return(&fsc->writeback_count) > 711 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) 712 fsc->write_congested = true; 713 714 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), 715 page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE, 716 CEPH_OSD_FLAG_WRITE, snapc, 717 ceph_wbc.truncate_seq, 718 ceph_wbc.truncate_size, true); 719 if (IS_ERR(req)) { 720 redirty_page_for_writepage(wbc, page); 721 return PTR_ERR(req); 722 } 723 724 if (wlen < len) 725 len = wlen; 726 727 set_page_writeback(page); 728 if (caching) 729 ceph_set_page_fscache(page); 730 ceph_fscache_write_to_cache(inode, page_off, len, caching); 731 732 if (IS_ENCRYPTED(inode)) { 733 bounce_page = fscrypt_encrypt_pagecache_blocks(page, 734 CEPH_FSCRYPT_BLOCK_SIZE, 0, 735 GFP_NOFS); 736 if (IS_ERR(bounce_page)) { 737 redirty_page_for_writepage(wbc, page); 738 end_page_writeback(page); 739 ceph_osdc_put_request(req); 740 return PTR_ERR(bounce_page); 741 } 742 } 743 744 /* it may be a short write due to an object boundary */ 745 WARN_ON_ONCE(len > thp_size(page)); 746 osd_req_op_extent_osd_data_pages(req, 0, 747 bounce_page ? &bounce_page : &page, wlen, 0, 748 false, false); 749 dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n", 750 page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not "); 751 752 req->r_mtime = inode->i_mtime; 753 ceph_osdc_start_request(osdc, req); 754 err = ceph_osdc_wait_request(osdc, req); 755 756 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 757 req->r_end_latency, len, err); 758 fscrypt_free_bounce_page(bounce_page); 759 ceph_osdc_put_request(req); 760 if (err == 0) 761 err = len; 762 763 if (err < 0) { 764 struct writeback_control tmp_wbc; 765 if (!wbc) 766 wbc = &tmp_wbc; 767 if (err == -ERESTARTSYS) { 768 /* killed by SIGKILL */ 769 dout("writepage interrupted page %p\n", page); 770 redirty_page_for_writepage(wbc, page); 771 end_page_writeback(page); 772 return err; 773 } 774 if (err == -EBLOCKLISTED) 775 fsc->blocklisted = true; 776 dout("writepage setting page/mapping error %d %p\n", 777 err, page); 778 mapping_set_error(&inode->i_data, err); 779 wbc->pages_skipped++; 780 } else { 781 dout("writepage cleaned page %p\n", page); 782 err = 0; /* vfs expects us to return 0 */ 783 } 784 oldest = detach_page_private(page); 785 WARN_ON_ONCE(oldest != snapc); 786 end_page_writeback(page); 787 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 788 ceph_put_snap_context(snapc); /* page's reference */ 789 790 if (atomic_long_dec_return(&fsc->writeback_count) < 791 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) 792 fsc->write_congested = false; 793 794 return err; 795 } 796 797 static int ceph_writepage(struct page *page, struct writeback_control *wbc) 798 { 799 int err; 800 struct inode *inode = page->mapping->host; 801 BUG_ON(!inode); 802 ihold(inode); 803 804 if (wbc->sync_mode == WB_SYNC_NONE && 805 ceph_inode_to_fs_client(inode)->write_congested) { 806 redirty_page_for_writepage(wbc, page); 807 return AOP_WRITEPAGE_ACTIVATE; 808 } 809 810 wait_on_page_fscache(page); 811 812 err = writepage_nounlock(page, wbc); 813 if (err == -ERESTARTSYS) { 814 /* direct memory reclaimer was killed by SIGKILL. return 0 815 * to prevent caller from setting mapping/page error */ 816 err = 0; 817 } 818 unlock_page(page); 819 iput(inode); 820 return err; 821 } 822 823 /* 824 * async writeback completion handler. 825 * 826 * If we get an error, set the mapping error bit, but not the individual 827 * page error bits. 828 */ 829 static void writepages_finish(struct ceph_osd_request *req) 830 { 831 struct inode *inode = req->r_inode; 832 struct ceph_inode_info *ci = ceph_inode(inode); 833 struct ceph_osd_data *osd_data; 834 struct page *page; 835 int num_pages, total_pages = 0; 836 int i, j; 837 int rc = req->r_result; 838 struct ceph_snap_context *snapc = req->r_snapc; 839 struct address_space *mapping = inode->i_mapping; 840 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 841 unsigned int len = 0; 842 bool remove_page; 843 844 dout("writepages_finish %p rc %d\n", inode, rc); 845 if (rc < 0) { 846 mapping_set_error(mapping, rc); 847 ceph_set_error_write(ci); 848 if (rc == -EBLOCKLISTED) 849 fsc->blocklisted = true; 850 } else { 851 ceph_clear_error_write(ci); 852 } 853 854 /* 855 * We lost the cache cap, need to truncate the page before 856 * it is unlocked, otherwise we'd truncate it later in the 857 * page truncation thread, possibly losing some data that 858 * raced its way in 859 */ 860 remove_page = !(ceph_caps_issued(ci) & 861 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); 862 863 /* clean all pages */ 864 for (i = 0; i < req->r_num_ops; i++) { 865 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) { 866 pr_warn("%s incorrect op %d req %p index %d tid %llu\n", 867 __func__, req->r_ops[i].op, req, i, req->r_tid); 868 break; 869 } 870 871 osd_data = osd_req_op_extent_osd_data(req, i); 872 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); 873 len += osd_data->length; 874 num_pages = calc_pages_for((u64)osd_data->alignment, 875 (u64)osd_data->length); 876 total_pages += num_pages; 877 for (j = 0; j < num_pages; j++) { 878 page = osd_data->pages[j]; 879 if (fscrypt_is_bounce_page(page)) { 880 page = fscrypt_pagecache_page(page); 881 fscrypt_free_bounce_page(osd_data->pages[j]); 882 osd_data->pages[j] = page; 883 } 884 BUG_ON(!page); 885 WARN_ON(!PageUptodate(page)); 886 887 if (atomic_long_dec_return(&fsc->writeback_count) < 888 CONGESTION_OFF_THRESH( 889 fsc->mount_options->congestion_kb)) 890 fsc->write_congested = false; 891 892 ceph_put_snap_context(detach_page_private(page)); 893 end_page_writeback(page); 894 dout("unlocking %p\n", page); 895 896 if (remove_page) 897 generic_error_remove_page(inode->i_mapping, 898 page); 899 900 unlock_page(page); 901 } 902 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", 903 inode, osd_data->length, rc >= 0 ? num_pages : 0); 904 905 release_pages(osd_data->pages, num_pages); 906 } 907 908 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 909 req->r_end_latency, len, rc); 910 911 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); 912 913 osd_data = osd_req_op_extent_osd_data(req, 0); 914 if (osd_data->pages_from_pool) 915 mempool_free(osd_data->pages, ceph_wb_pagevec_pool); 916 else 917 kfree(osd_data->pages); 918 ceph_osdc_put_request(req); 919 ceph_dec_osd_stopping_blocker(fsc->mdsc); 920 } 921 922 /* 923 * initiate async writeback 924 */ 925 static int ceph_writepages_start(struct address_space *mapping, 926 struct writeback_control *wbc) 927 { 928 struct inode *inode = mapping->host; 929 struct ceph_inode_info *ci = ceph_inode(inode); 930 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 931 struct ceph_vino vino = ceph_vino(inode); 932 pgoff_t index, start_index, end = -1; 933 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; 934 struct folio_batch fbatch; 935 int rc = 0; 936 unsigned int wsize = i_blocksize(inode); 937 struct ceph_osd_request *req = NULL; 938 struct ceph_writeback_ctl ceph_wbc; 939 bool should_loop, range_whole = false; 940 bool done = false; 941 bool caching = ceph_is_cache_enabled(inode); 942 xa_mark_t tag; 943 944 if (wbc->sync_mode == WB_SYNC_NONE && 945 fsc->write_congested) 946 return 0; 947 948 dout("writepages_start %p (mode=%s)\n", inode, 949 wbc->sync_mode == WB_SYNC_NONE ? "NONE" : 950 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); 951 952 if (ceph_inode_is_shutdown(inode)) { 953 if (ci->i_wrbuffer_ref > 0) { 954 pr_warn_ratelimited( 955 "writepage_start %p %lld forced umount\n", 956 inode, ceph_ino(inode)); 957 } 958 mapping_set_error(mapping, -EIO); 959 return -EIO; /* we're in a forced umount, don't write! */ 960 } 961 if (fsc->mount_options->wsize < wsize) 962 wsize = fsc->mount_options->wsize; 963 964 folio_batch_init(&fbatch); 965 966 start_index = wbc->range_cyclic ? mapping->writeback_index : 0; 967 index = start_index; 968 969 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 970 tag = PAGECACHE_TAG_TOWRITE; 971 } else { 972 tag = PAGECACHE_TAG_DIRTY; 973 } 974 retry: 975 /* find oldest snap context with dirty data */ 976 snapc = get_oldest_context(inode, &ceph_wbc, NULL); 977 if (!snapc) { 978 /* hmm, why does writepages get called when there 979 is no dirty data? */ 980 dout(" no snap context with dirty data?\n"); 981 goto out; 982 } 983 dout(" oldest snapc is %p seq %lld (%d snaps)\n", 984 snapc, snapc->seq, snapc->num_snaps); 985 986 should_loop = false; 987 if (ceph_wbc.head_snapc && snapc != last_snapc) { 988 /* where to start/end? */ 989 if (wbc->range_cyclic) { 990 index = start_index; 991 end = -1; 992 if (index > 0) 993 should_loop = true; 994 dout(" cyclic, start at %lu\n", index); 995 } else { 996 index = wbc->range_start >> PAGE_SHIFT; 997 end = wbc->range_end >> PAGE_SHIFT; 998 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 999 range_whole = true; 1000 dout(" not cyclic, %lu to %lu\n", index, end); 1001 } 1002 } else if (!ceph_wbc.head_snapc) { 1003 /* Do not respect wbc->range_{start,end}. Dirty pages 1004 * in that range can be associated with newer snapc. 1005 * They are not writeable until we write all dirty pages 1006 * associated with 'snapc' get written */ 1007 if (index > 0) 1008 should_loop = true; 1009 dout(" non-head snapc, range whole\n"); 1010 } 1011 1012 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1013 tag_pages_for_writeback(mapping, index, end); 1014 1015 ceph_put_snap_context(last_snapc); 1016 last_snapc = snapc; 1017 1018 while (!done && index <= end) { 1019 int num_ops = 0, op_idx; 1020 unsigned i, nr_folios, max_pages, locked_pages = 0; 1021 struct page **pages = NULL, **data_pages; 1022 struct page *page; 1023 pgoff_t strip_unit_end = 0; 1024 u64 offset = 0, len = 0; 1025 bool from_pool = false; 1026 1027 max_pages = wsize >> PAGE_SHIFT; 1028 1029 get_more_pages: 1030 nr_folios = filemap_get_folios_tag(mapping, &index, 1031 end, tag, &fbatch); 1032 dout("pagevec_lookup_range_tag got %d\n", nr_folios); 1033 if (!nr_folios && !locked_pages) 1034 break; 1035 for (i = 0; i < nr_folios && locked_pages < max_pages; i++) { 1036 page = &fbatch.folios[i]->page; 1037 dout("? %p idx %lu\n", page, page->index); 1038 if (locked_pages == 0) 1039 lock_page(page); /* first page */ 1040 else if (!trylock_page(page)) 1041 break; 1042 1043 /* only dirty pages, or our accounting breaks */ 1044 if (unlikely(!PageDirty(page)) || 1045 unlikely(page->mapping != mapping)) { 1046 dout("!dirty or !mapping %p\n", page); 1047 unlock_page(page); 1048 continue; 1049 } 1050 /* only if matching snap context */ 1051 pgsnapc = page_snap_context(page); 1052 if (pgsnapc != snapc) { 1053 dout("page snapc %p %lld != oldest %p %lld\n", 1054 pgsnapc, pgsnapc->seq, snapc, snapc->seq); 1055 if (!should_loop && 1056 !ceph_wbc.head_snapc && 1057 wbc->sync_mode != WB_SYNC_NONE) 1058 should_loop = true; 1059 unlock_page(page); 1060 continue; 1061 } 1062 if (page_offset(page) >= ceph_wbc.i_size) { 1063 struct folio *folio = page_folio(page); 1064 1065 dout("folio at %lu beyond eof %llu\n", 1066 folio->index, ceph_wbc.i_size); 1067 if ((ceph_wbc.size_stable || 1068 folio_pos(folio) >= i_size_read(inode)) && 1069 folio_clear_dirty_for_io(folio)) 1070 folio_invalidate(folio, 0, 1071 folio_size(folio)); 1072 folio_unlock(folio); 1073 continue; 1074 } 1075 if (strip_unit_end && (page->index > strip_unit_end)) { 1076 dout("end of strip unit %p\n", page); 1077 unlock_page(page); 1078 break; 1079 } 1080 if (PageWriteback(page) || PageFsCache(page)) { 1081 if (wbc->sync_mode == WB_SYNC_NONE) { 1082 dout("%p under writeback\n", page); 1083 unlock_page(page); 1084 continue; 1085 } 1086 dout("waiting on writeback %p\n", page); 1087 wait_on_page_writeback(page); 1088 wait_on_page_fscache(page); 1089 } 1090 1091 if (!clear_page_dirty_for_io(page)) { 1092 dout("%p !clear_page_dirty_for_io\n", page); 1093 unlock_page(page); 1094 continue; 1095 } 1096 1097 /* 1098 * We have something to write. If this is 1099 * the first locked page this time through, 1100 * calculate max possinle write size and 1101 * allocate a page array 1102 */ 1103 if (locked_pages == 0) { 1104 u64 objnum; 1105 u64 objoff; 1106 u32 xlen; 1107 1108 /* prepare async write request */ 1109 offset = (u64)page_offset(page); 1110 ceph_calc_file_object_mapping(&ci->i_layout, 1111 offset, wsize, 1112 &objnum, &objoff, 1113 &xlen); 1114 len = xlen; 1115 1116 num_ops = 1; 1117 strip_unit_end = page->index + 1118 ((len - 1) >> PAGE_SHIFT); 1119 1120 BUG_ON(pages); 1121 max_pages = calc_pages_for(0, (u64)len); 1122 pages = kmalloc_array(max_pages, 1123 sizeof(*pages), 1124 GFP_NOFS); 1125 if (!pages) { 1126 from_pool = true; 1127 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1128 BUG_ON(!pages); 1129 } 1130 1131 len = 0; 1132 } else if (page->index != 1133 (offset + len) >> PAGE_SHIFT) { 1134 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : 1135 CEPH_OSD_MAX_OPS)) { 1136 redirty_page_for_writepage(wbc, page); 1137 unlock_page(page); 1138 break; 1139 } 1140 1141 num_ops++; 1142 offset = (u64)page_offset(page); 1143 len = 0; 1144 } 1145 1146 /* note position of first page in fbatch */ 1147 dout("%p will write page %p idx %lu\n", 1148 inode, page, page->index); 1149 1150 if (atomic_long_inc_return(&fsc->writeback_count) > 1151 CONGESTION_ON_THRESH( 1152 fsc->mount_options->congestion_kb)) 1153 fsc->write_congested = true; 1154 1155 if (IS_ENCRYPTED(inode)) { 1156 pages[locked_pages] = 1157 fscrypt_encrypt_pagecache_blocks(page, 1158 PAGE_SIZE, 0, 1159 locked_pages ? GFP_NOWAIT : GFP_NOFS); 1160 if (IS_ERR(pages[locked_pages])) { 1161 if (PTR_ERR(pages[locked_pages]) == -EINVAL) 1162 pr_err("%s: inode->i_blkbits=%hhu\n", 1163 __func__, inode->i_blkbits); 1164 /* better not fail on first page! */ 1165 BUG_ON(locked_pages == 0); 1166 pages[locked_pages] = NULL; 1167 redirty_page_for_writepage(wbc, page); 1168 unlock_page(page); 1169 break; 1170 } 1171 ++locked_pages; 1172 } else { 1173 pages[locked_pages++] = page; 1174 } 1175 1176 fbatch.folios[i] = NULL; 1177 len += thp_size(page); 1178 } 1179 1180 /* did we get anything? */ 1181 if (!locked_pages) 1182 goto release_folios; 1183 if (i) { 1184 unsigned j, n = 0; 1185 /* shift unused page to beginning of fbatch */ 1186 for (j = 0; j < nr_folios; j++) { 1187 if (!fbatch.folios[j]) 1188 continue; 1189 if (n < j) 1190 fbatch.folios[n] = fbatch.folios[j]; 1191 n++; 1192 } 1193 fbatch.nr = n; 1194 1195 if (nr_folios && i == nr_folios && 1196 locked_pages < max_pages) { 1197 dout("reached end fbatch, trying for more\n"); 1198 folio_batch_release(&fbatch); 1199 goto get_more_pages; 1200 } 1201 } 1202 1203 new_request: 1204 offset = ceph_fscrypt_page_offset(pages[0]); 1205 len = wsize; 1206 1207 req = ceph_osdc_new_request(&fsc->client->osdc, 1208 &ci->i_layout, vino, 1209 offset, &len, 0, num_ops, 1210 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1211 snapc, ceph_wbc.truncate_seq, 1212 ceph_wbc.truncate_size, false); 1213 if (IS_ERR(req)) { 1214 req = ceph_osdc_new_request(&fsc->client->osdc, 1215 &ci->i_layout, vino, 1216 offset, &len, 0, 1217 min(num_ops, 1218 CEPH_OSD_SLAB_OPS), 1219 CEPH_OSD_OP_WRITE, 1220 CEPH_OSD_FLAG_WRITE, 1221 snapc, ceph_wbc.truncate_seq, 1222 ceph_wbc.truncate_size, true); 1223 BUG_ON(IS_ERR(req)); 1224 } 1225 BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) + 1226 thp_size(pages[locked_pages - 1]) - offset); 1227 1228 if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { 1229 rc = -EIO; 1230 goto release_folios; 1231 } 1232 req->r_callback = writepages_finish; 1233 req->r_inode = inode; 1234 1235 /* Format the osd request message and submit the write */ 1236 len = 0; 1237 data_pages = pages; 1238 op_idx = 0; 1239 for (i = 0; i < locked_pages; i++) { 1240 struct page *page = ceph_fscrypt_pagecache_page(pages[i]); 1241 1242 u64 cur_offset = page_offset(page); 1243 /* 1244 * Discontinuity in page range? Ceph can handle that by just passing 1245 * multiple extents in the write op. 1246 */ 1247 if (offset + len != cur_offset) { 1248 /* If it's full, stop here */ 1249 if (op_idx + 1 == req->r_num_ops) 1250 break; 1251 1252 /* Kick off an fscache write with what we have so far. */ 1253 ceph_fscache_write_to_cache(inode, offset, len, caching); 1254 1255 /* Start a new extent */ 1256 osd_req_op_extent_dup_last(req, op_idx, 1257 cur_offset - offset); 1258 dout("writepages got pages at %llu~%llu\n", 1259 offset, len); 1260 osd_req_op_extent_osd_data_pages(req, op_idx, 1261 data_pages, len, 0, 1262 from_pool, false); 1263 osd_req_op_extent_update(req, op_idx, len); 1264 1265 len = 0; 1266 offset = cur_offset; 1267 data_pages = pages + i; 1268 op_idx++; 1269 } 1270 1271 set_page_writeback(page); 1272 if (caching) 1273 ceph_set_page_fscache(page); 1274 len += thp_size(page); 1275 } 1276 ceph_fscache_write_to_cache(inode, offset, len, caching); 1277 1278 if (ceph_wbc.size_stable) { 1279 len = min(len, ceph_wbc.i_size - offset); 1280 } else if (i == locked_pages) { 1281 /* writepages_finish() clears writeback pages 1282 * according to the data length, so make sure 1283 * data length covers all locked pages */ 1284 u64 min_len = len + 1 - thp_size(page); 1285 len = get_writepages_data_length(inode, pages[i - 1], 1286 offset); 1287 len = max(len, min_len); 1288 } 1289 if (IS_ENCRYPTED(inode)) 1290 len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE); 1291 1292 dout("writepages got pages at %llu~%llu\n", offset, len); 1293 1294 if (IS_ENCRYPTED(inode) && 1295 ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK)) 1296 pr_warn("%s: bad encrypted write offset=%lld len=%llu\n", 1297 __func__, offset, len); 1298 1299 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 1300 0, from_pool, false); 1301 osd_req_op_extent_update(req, op_idx, len); 1302 1303 BUG_ON(op_idx + 1 != req->r_num_ops); 1304 1305 from_pool = false; 1306 if (i < locked_pages) { 1307 BUG_ON(num_ops <= req->r_num_ops); 1308 num_ops -= req->r_num_ops; 1309 locked_pages -= i; 1310 1311 /* allocate new pages array for next request */ 1312 data_pages = pages; 1313 pages = kmalloc_array(locked_pages, sizeof(*pages), 1314 GFP_NOFS); 1315 if (!pages) { 1316 from_pool = true; 1317 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1318 BUG_ON(!pages); 1319 } 1320 memcpy(pages, data_pages + i, 1321 locked_pages * sizeof(*pages)); 1322 memset(data_pages + i, 0, 1323 locked_pages * sizeof(*pages)); 1324 } else { 1325 BUG_ON(num_ops != req->r_num_ops); 1326 index = pages[i - 1]->index + 1; 1327 /* request message now owns the pages array */ 1328 pages = NULL; 1329 } 1330 1331 req->r_mtime = inode->i_mtime; 1332 ceph_osdc_start_request(&fsc->client->osdc, req); 1333 req = NULL; 1334 1335 wbc->nr_to_write -= i; 1336 if (pages) 1337 goto new_request; 1338 1339 /* 1340 * We stop writing back only if we are not doing 1341 * integrity sync. In case of integrity sync we have to 1342 * keep going until we have written all the pages 1343 * we tagged for writeback prior to entering this loop. 1344 */ 1345 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) 1346 done = true; 1347 1348 release_folios: 1349 dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr, 1350 fbatch.nr ? fbatch.folios[0] : NULL); 1351 folio_batch_release(&fbatch); 1352 } 1353 1354 if (should_loop && !done) { 1355 /* more to do; loop back to beginning of file */ 1356 dout("writepages looping back to beginning of file\n"); 1357 end = start_index - 1; /* OK even when start_index == 0 */ 1358 1359 /* to write dirty pages associated with next snapc, 1360 * we need to wait until current writes complete */ 1361 if (wbc->sync_mode != WB_SYNC_NONE && 1362 start_index == 0 && /* all dirty pages were checked */ 1363 !ceph_wbc.head_snapc) { 1364 struct page *page; 1365 unsigned i, nr; 1366 index = 0; 1367 while ((index <= end) && 1368 (nr = filemap_get_folios_tag(mapping, &index, 1369 (pgoff_t)-1, 1370 PAGECACHE_TAG_WRITEBACK, 1371 &fbatch))) { 1372 for (i = 0; i < nr; i++) { 1373 page = &fbatch.folios[i]->page; 1374 if (page_snap_context(page) != snapc) 1375 continue; 1376 wait_on_page_writeback(page); 1377 } 1378 folio_batch_release(&fbatch); 1379 cond_resched(); 1380 } 1381 } 1382 1383 start_index = 0; 1384 index = 0; 1385 goto retry; 1386 } 1387 1388 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1389 mapping->writeback_index = index; 1390 1391 out: 1392 ceph_osdc_put_request(req); 1393 ceph_put_snap_context(last_snapc); 1394 dout("writepages dend - startone, rc = %d\n", rc); 1395 return rc; 1396 } 1397 1398 1399 1400 /* 1401 * See if a given @snapc is either writeable, or already written. 1402 */ 1403 static int context_is_writeable_or_written(struct inode *inode, 1404 struct ceph_snap_context *snapc) 1405 { 1406 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); 1407 int ret = !oldest || snapc->seq <= oldest->seq; 1408 1409 ceph_put_snap_context(oldest); 1410 return ret; 1411 } 1412 1413 /** 1414 * ceph_find_incompatible - find an incompatible context and return it 1415 * @page: page being dirtied 1416 * 1417 * We are only allowed to write into/dirty a page if the page is 1418 * clean, or already dirty within the same snap context. Returns a 1419 * conflicting context if there is one, NULL if there isn't, or a 1420 * negative error code on other errors. 1421 * 1422 * Must be called with page lock held. 1423 */ 1424 static struct ceph_snap_context * 1425 ceph_find_incompatible(struct page *page) 1426 { 1427 struct inode *inode = page->mapping->host; 1428 struct ceph_inode_info *ci = ceph_inode(inode); 1429 1430 if (ceph_inode_is_shutdown(inode)) { 1431 dout(" page %p %llx:%llx is shutdown\n", page, 1432 ceph_vinop(inode)); 1433 return ERR_PTR(-ESTALE); 1434 } 1435 1436 for (;;) { 1437 struct ceph_snap_context *snapc, *oldest; 1438 1439 wait_on_page_writeback(page); 1440 1441 snapc = page_snap_context(page); 1442 if (!snapc || snapc == ci->i_head_snapc) 1443 break; 1444 1445 /* 1446 * this page is already dirty in another (older) snap 1447 * context! is it writeable now? 1448 */ 1449 oldest = get_oldest_context(inode, NULL, NULL); 1450 if (snapc->seq > oldest->seq) { 1451 /* not writeable -- return it for the caller to deal with */ 1452 ceph_put_snap_context(oldest); 1453 dout(" page %p snapc %p not current or oldest\n", page, snapc); 1454 return ceph_get_snap_context(snapc); 1455 } 1456 ceph_put_snap_context(oldest); 1457 1458 /* yay, writeable, do it now (without dropping page lock) */ 1459 dout(" page %p snapc %p not current, but oldest\n", page, snapc); 1460 if (clear_page_dirty_for_io(page)) { 1461 int r = writepage_nounlock(page, NULL); 1462 if (r < 0) 1463 return ERR_PTR(r); 1464 } 1465 } 1466 return NULL; 1467 } 1468 1469 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 1470 struct folio **foliop, void **_fsdata) 1471 { 1472 struct inode *inode = file_inode(file); 1473 struct ceph_inode_info *ci = ceph_inode(inode); 1474 struct ceph_snap_context *snapc; 1475 1476 snapc = ceph_find_incompatible(folio_page(*foliop, 0)); 1477 if (snapc) { 1478 int r; 1479 1480 folio_unlock(*foliop); 1481 folio_put(*foliop); 1482 *foliop = NULL; 1483 if (IS_ERR(snapc)) 1484 return PTR_ERR(snapc); 1485 1486 ceph_queue_writeback(inode); 1487 r = wait_event_killable(ci->i_cap_wq, 1488 context_is_writeable_or_written(inode, snapc)); 1489 ceph_put_snap_context(snapc); 1490 return r == 0 ? -EAGAIN : r; 1491 } 1492 return 0; 1493 } 1494 1495 /* 1496 * We are only allowed to write into/dirty the page if the page is 1497 * clean, or already dirty within the same snap context. 1498 */ 1499 static int ceph_write_begin(struct file *file, struct address_space *mapping, 1500 loff_t pos, unsigned len, 1501 struct page **pagep, void **fsdata) 1502 { 1503 struct inode *inode = file_inode(file); 1504 struct ceph_inode_info *ci = ceph_inode(inode); 1505 struct folio *folio = NULL; 1506 int r; 1507 1508 r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL); 1509 if (r < 0) 1510 return r; 1511 1512 folio_wait_fscache(folio); 1513 WARN_ON_ONCE(!folio_test_locked(folio)); 1514 *pagep = &folio->page; 1515 return 0; 1516 } 1517 1518 /* 1519 * we don't do anything in here that simple_write_end doesn't do 1520 * except adjust dirty page accounting 1521 */ 1522 static int ceph_write_end(struct file *file, struct address_space *mapping, 1523 loff_t pos, unsigned len, unsigned copied, 1524 struct page *subpage, void *fsdata) 1525 { 1526 struct folio *folio = page_folio(subpage); 1527 struct inode *inode = file_inode(file); 1528 bool check_cap = false; 1529 1530 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, 1531 inode, folio, (int)pos, (int)copied, (int)len); 1532 1533 if (!folio_test_uptodate(folio)) { 1534 /* just return that nothing was copied on a short copy */ 1535 if (copied < len) { 1536 copied = 0; 1537 goto out; 1538 } 1539 folio_mark_uptodate(folio); 1540 } 1541 1542 /* did file size increase? */ 1543 if (pos+copied > i_size_read(inode)) 1544 check_cap = ceph_inode_set_size(inode, pos+copied); 1545 1546 folio_mark_dirty(folio); 1547 1548 out: 1549 folio_unlock(folio); 1550 folio_put(folio); 1551 1552 if (check_cap) 1553 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY); 1554 1555 return copied; 1556 } 1557 1558 const struct address_space_operations ceph_aops = { 1559 .read_folio = netfs_read_folio, 1560 .readahead = netfs_readahead, 1561 .writepage = ceph_writepage, 1562 .writepages = ceph_writepages_start, 1563 .write_begin = ceph_write_begin, 1564 .write_end = ceph_write_end, 1565 .dirty_folio = ceph_dirty_folio, 1566 .invalidate_folio = ceph_invalidate_folio, 1567 .release_folio = ceph_release_folio, 1568 .direct_IO = noop_direct_IO, 1569 }; 1570 1571 static void ceph_block_sigs(sigset_t *oldset) 1572 { 1573 sigset_t mask; 1574 siginitsetinv(&mask, sigmask(SIGKILL)); 1575 sigprocmask(SIG_BLOCK, &mask, oldset); 1576 } 1577 1578 static void ceph_restore_sigs(sigset_t *oldset) 1579 { 1580 sigprocmask(SIG_SETMASK, oldset, NULL); 1581 } 1582 1583 /* 1584 * vm ops 1585 */ 1586 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) 1587 { 1588 struct vm_area_struct *vma = vmf->vma; 1589 struct inode *inode = file_inode(vma->vm_file); 1590 struct ceph_inode_info *ci = ceph_inode(inode); 1591 struct ceph_file_info *fi = vma->vm_file->private_data; 1592 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; 1593 int want, got, err; 1594 sigset_t oldset; 1595 vm_fault_t ret = VM_FAULT_SIGBUS; 1596 1597 if (ceph_inode_is_shutdown(inode)) 1598 return ret; 1599 1600 ceph_block_sigs(&oldset); 1601 1602 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", 1603 inode, ceph_vinop(inode), off); 1604 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1605 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; 1606 else 1607 want = CEPH_CAP_FILE_CACHE; 1608 1609 got = 0; 1610 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); 1611 if (err < 0) 1612 goto out_restore; 1613 1614 dout("filemap_fault %p %llu got cap refs on %s\n", 1615 inode, off, ceph_cap_string(got)); 1616 1617 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || 1618 !ceph_has_inline_data(ci)) { 1619 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); 1620 ceph_add_rw_context(fi, &rw_ctx); 1621 ret = filemap_fault(vmf); 1622 ceph_del_rw_context(fi, &rw_ctx); 1623 dout("filemap_fault %p %llu drop cap refs %s ret %x\n", 1624 inode, off, ceph_cap_string(got), ret); 1625 } else 1626 err = -EAGAIN; 1627 1628 ceph_put_cap_refs(ci, got); 1629 1630 if (err != -EAGAIN) 1631 goto out_restore; 1632 1633 /* read inline data */ 1634 if (off >= PAGE_SIZE) { 1635 /* does not support inline data > PAGE_SIZE */ 1636 ret = VM_FAULT_SIGBUS; 1637 } else { 1638 struct address_space *mapping = inode->i_mapping; 1639 struct page *page; 1640 1641 filemap_invalidate_lock_shared(mapping); 1642 page = find_or_create_page(mapping, 0, 1643 mapping_gfp_constraint(mapping, ~__GFP_FS)); 1644 if (!page) { 1645 ret = VM_FAULT_OOM; 1646 goto out_inline; 1647 } 1648 err = __ceph_do_getattr(inode, page, 1649 CEPH_STAT_CAP_INLINE_DATA, true); 1650 if (err < 0 || off >= i_size_read(inode)) { 1651 unlock_page(page); 1652 put_page(page); 1653 ret = vmf_error(err); 1654 goto out_inline; 1655 } 1656 if (err < PAGE_SIZE) 1657 zero_user_segment(page, err, PAGE_SIZE); 1658 else 1659 flush_dcache_page(page); 1660 SetPageUptodate(page); 1661 vmf->page = page; 1662 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; 1663 out_inline: 1664 filemap_invalidate_unlock_shared(mapping); 1665 dout("filemap_fault %p %llu read inline data ret %x\n", 1666 inode, off, ret); 1667 } 1668 out_restore: 1669 ceph_restore_sigs(&oldset); 1670 if (err < 0) 1671 ret = vmf_error(err); 1672 1673 return ret; 1674 } 1675 1676 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) 1677 { 1678 struct vm_area_struct *vma = vmf->vma; 1679 struct inode *inode = file_inode(vma->vm_file); 1680 struct ceph_inode_info *ci = ceph_inode(inode); 1681 struct ceph_file_info *fi = vma->vm_file->private_data; 1682 struct ceph_cap_flush *prealloc_cf; 1683 struct page *page = vmf->page; 1684 loff_t off = page_offset(page); 1685 loff_t size = i_size_read(inode); 1686 size_t len; 1687 int want, got, err; 1688 sigset_t oldset; 1689 vm_fault_t ret = VM_FAULT_SIGBUS; 1690 1691 if (ceph_inode_is_shutdown(inode)) 1692 return ret; 1693 1694 prealloc_cf = ceph_alloc_cap_flush(); 1695 if (!prealloc_cf) 1696 return VM_FAULT_OOM; 1697 1698 sb_start_pagefault(inode->i_sb); 1699 ceph_block_sigs(&oldset); 1700 1701 if (off + thp_size(page) <= size) 1702 len = thp_size(page); 1703 else 1704 len = offset_in_thp(page, size); 1705 1706 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", 1707 inode, ceph_vinop(inode), off, len, size); 1708 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1709 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; 1710 else 1711 want = CEPH_CAP_FILE_BUFFER; 1712 1713 got = 0; 1714 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); 1715 if (err < 0) 1716 goto out_free; 1717 1718 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", 1719 inode, off, len, ceph_cap_string(got)); 1720 1721 /* Update time before taking page lock */ 1722 file_update_time(vma->vm_file); 1723 inode_inc_iversion_raw(inode); 1724 1725 do { 1726 struct ceph_snap_context *snapc; 1727 1728 lock_page(page); 1729 1730 if (page_mkwrite_check_truncate(page, inode) < 0) { 1731 unlock_page(page); 1732 ret = VM_FAULT_NOPAGE; 1733 break; 1734 } 1735 1736 snapc = ceph_find_incompatible(page); 1737 if (!snapc) { 1738 /* success. we'll keep the page locked. */ 1739 set_page_dirty(page); 1740 ret = VM_FAULT_LOCKED; 1741 break; 1742 } 1743 1744 unlock_page(page); 1745 1746 if (IS_ERR(snapc)) { 1747 ret = VM_FAULT_SIGBUS; 1748 break; 1749 } 1750 1751 ceph_queue_writeback(inode); 1752 err = wait_event_killable(ci->i_cap_wq, 1753 context_is_writeable_or_written(inode, snapc)); 1754 ceph_put_snap_context(snapc); 1755 } while (err == 0); 1756 1757 if (ret == VM_FAULT_LOCKED) { 1758 int dirty; 1759 spin_lock(&ci->i_ceph_lock); 1760 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, 1761 &prealloc_cf); 1762 spin_unlock(&ci->i_ceph_lock); 1763 if (dirty) 1764 __mark_inode_dirty(inode, dirty); 1765 } 1766 1767 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", 1768 inode, off, len, ceph_cap_string(got), ret); 1769 ceph_put_cap_refs_async(ci, got); 1770 out_free: 1771 ceph_restore_sigs(&oldset); 1772 sb_end_pagefault(inode->i_sb); 1773 ceph_free_cap_flush(prealloc_cf); 1774 if (err < 0) 1775 ret = vmf_error(err); 1776 return ret; 1777 } 1778 1779 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1780 char *data, size_t len) 1781 { 1782 struct address_space *mapping = inode->i_mapping; 1783 struct page *page; 1784 1785 if (locked_page) { 1786 page = locked_page; 1787 } else { 1788 if (i_size_read(inode) == 0) 1789 return; 1790 page = find_or_create_page(mapping, 0, 1791 mapping_gfp_constraint(mapping, 1792 ~__GFP_FS)); 1793 if (!page) 1794 return; 1795 if (PageUptodate(page)) { 1796 unlock_page(page); 1797 put_page(page); 1798 return; 1799 } 1800 } 1801 1802 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", 1803 inode, ceph_vinop(inode), len, locked_page); 1804 1805 if (len > 0) { 1806 void *kaddr = kmap_atomic(page); 1807 memcpy(kaddr, data, len); 1808 kunmap_atomic(kaddr); 1809 } 1810 1811 if (page != locked_page) { 1812 if (len < PAGE_SIZE) 1813 zero_user_segment(page, len, PAGE_SIZE); 1814 else 1815 flush_dcache_page(page); 1816 1817 SetPageUptodate(page); 1818 unlock_page(page); 1819 put_page(page); 1820 } 1821 } 1822 1823 int ceph_uninline_data(struct file *file) 1824 { 1825 struct inode *inode = file_inode(file); 1826 struct ceph_inode_info *ci = ceph_inode(inode); 1827 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); 1828 struct ceph_osd_request *req = NULL; 1829 struct ceph_cap_flush *prealloc_cf = NULL; 1830 struct folio *folio = NULL; 1831 u64 inline_version = CEPH_INLINE_NONE; 1832 struct page *pages[1]; 1833 int err = 0; 1834 u64 len; 1835 1836 spin_lock(&ci->i_ceph_lock); 1837 inline_version = ci->i_inline_version; 1838 spin_unlock(&ci->i_ceph_lock); 1839 1840 dout("uninline_data %p %llx.%llx inline_version %llu\n", 1841 inode, ceph_vinop(inode), inline_version); 1842 1843 if (ceph_inode_is_shutdown(inode)) { 1844 err = -EIO; 1845 goto out; 1846 } 1847 1848 if (inline_version == CEPH_INLINE_NONE) 1849 return 0; 1850 1851 prealloc_cf = ceph_alloc_cap_flush(); 1852 if (!prealloc_cf) 1853 return -ENOMEM; 1854 1855 if (inline_version == 1) /* initial version, no data */ 1856 goto out_uninline; 1857 1858 folio = read_mapping_folio(inode->i_mapping, 0, file); 1859 if (IS_ERR(folio)) { 1860 err = PTR_ERR(folio); 1861 goto out; 1862 } 1863 1864 folio_lock(folio); 1865 1866 len = i_size_read(inode); 1867 if (len > folio_size(folio)) 1868 len = folio_size(folio); 1869 1870 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1871 ceph_vino(inode), 0, &len, 0, 1, 1872 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, 1873 NULL, 0, 0, false); 1874 if (IS_ERR(req)) { 1875 err = PTR_ERR(req); 1876 goto out_unlock; 1877 } 1878 1879 req->r_mtime = inode->i_mtime; 1880 ceph_osdc_start_request(&fsc->client->osdc, req); 1881 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1882 ceph_osdc_put_request(req); 1883 if (err < 0) 1884 goto out_unlock; 1885 1886 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1887 ceph_vino(inode), 0, &len, 1, 3, 1888 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1889 NULL, ci->i_truncate_seq, 1890 ci->i_truncate_size, false); 1891 if (IS_ERR(req)) { 1892 err = PTR_ERR(req); 1893 goto out_unlock; 1894 } 1895 1896 pages[0] = folio_page(folio, 0); 1897 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); 1898 1899 { 1900 __le64 xattr_buf = cpu_to_le64(inline_version); 1901 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, 1902 "inline_version", &xattr_buf, 1903 sizeof(xattr_buf), 1904 CEPH_OSD_CMPXATTR_OP_GT, 1905 CEPH_OSD_CMPXATTR_MODE_U64); 1906 if (err) 1907 goto out_put_req; 1908 } 1909 1910 { 1911 char xattr_buf[32]; 1912 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), 1913 "%llu", inline_version); 1914 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, 1915 "inline_version", 1916 xattr_buf, xattr_len, 0, 0); 1917 if (err) 1918 goto out_put_req; 1919 } 1920 1921 req->r_mtime = inode->i_mtime; 1922 ceph_osdc_start_request(&fsc->client->osdc, req); 1923 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1924 1925 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 1926 req->r_end_latency, len, err); 1927 1928 out_uninline: 1929 if (!err) { 1930 int dirty; 1931 1932 /* Set to CAP_INLINE_NONE and dirty the caps */ 1933 down_read(&fsc->mdsc->snap_rwsem); 1934 spin_lock(&ci->i_ceph_lock); 1935 ci->i_inline_version = CEPH_INLINE_NONE; 1936 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); 1937 spin_unlock(&ci->i_ceph_lock); 1938 up_read(&fsc->mdsc->snap_rwsem); 1939 if (dirty) 1940 __mark_inode_dirty(inode, dirty); 1941 } 1942 out_put_req: 1943 ceph_osdc_put_request(req); 1944 if (err == -ECANCELED) 1945 err = 0; 1946 out_unlock: 1947 if (folio) { 1948 folio_unlock(folio); 1949 folio_put(folio); 1950 } 1951 out: 1952 ceph_free_cap_flush(prealloc_cf); 1953 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", 1954 inode, ceph_vinop(inode), inline_version, err); 1955 return err; 1956 } 1957 1958 static const struct vm_operations_struct ceph_vmops = { 1959 .fault = ceph_filemap_fault, 1960 .page_mkwrite = ceph_page_mkwrite, 1961 }; 1962 1963 int ceph_mmap(struct file *file, struct vm_area_struct *vma) 1964 { 1965 struct address_space *mapping = file->f_mapping; 1966 1967 if (!mapping->a_ops->read_folio) 1968 return -ENOEXEC; 1969 vma->vm_ops = &ceph_vmops; 1970 return 0; 1971 } 1972 1973 enum { 1974 POOL_READ = 1, 1975 POOL_WRITE = 2, 1976 }; 1977 1978 static int __ceph_pool_perm_get(struct ceph_inode_info *ci, 1979 s64 pool, struct ceph_string *pool_ns) 1980 { 1981 struct ceph_fs_client *fsc = ceph_inode_to_fs_client(&ci->netfs.inode); 1982 struct ceph_mds_client *mdsc = fsc->mdsc; 1983 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; 1984 struct rb_node **p, *parent; 1985 struct ceph_pool_perm *perm; 1986 struct page **pages; 1987 size_t pool_ns_len; 1988 int err = 0, err2 = 0, have = 0; 1989 1990 down_read(&mdsc->pool_perm_rwsem); 1991 p = &mdsc->pool_perm_tree.rb_node; 1992 while (*p) { 1993 perm = rb_entry(*p, struct ceph_pool_perm, node); 1994 if (pool < perm->pool) 1995 p = &(*p)->rb_left; 1996 else if (pool > perm->pool) 1997 p = &(*p)->rb_right; 1998 else { 1999 int ret = ceph_compare_string(pool_ns, 2000 perm->pool_ns, 2001 perm->pool_ns_len); 2002 if (ret < 0) 2003 p = &(*p)->rb_left; 2004 else if (ret > 0) 2005 p = &(*p)->rb_right; 2006 else { 2007 have = perm->perm; 2008 break; 2009 } 2010 } 2011 } 2012 up_read(&mdsc->pool_perm_rwsem); 2013 if (*p) 2014 goto out; 2015 2016 if (pool_ns) 2017 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", 2018 pool, (int)pool_ns->len, pool_ns->str); 2019 else 2020 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); 2021 2022 down_write(&mdsc->pool_perm_rwsem); 2023 p = &mdsc->pool_perm_tree.rb_node; 2024 parent = NULL; 2025 while (*p) { 2026 parent = *p; 2027 perm = rb_entry(parent, struct ceph_pool_perm, node); 2028 if (pool < perm->pool) 2029 p = &(*p)->rb_left; 2030 else if (pool > perm->pool) 2031 p = &(*p)->rb_right; 2032 else { 2033 int ret = ceph_compare_string(pool_ns, 2034 perm->pool_ns, 2035 perm->pool_ns_len); 2036 if (ret < 0) 2037 p = &(*p)->rb_left; 2038 else if (ret > 0) 2039 p = &(*p)->rb_right; 2040 else { 2041 have = perm->perm; 2042 break; 2043 } 2044 } 2045 } 2046 if (*p) { 2047 up_write(&mdsc->pool_perm_rwsem); 2048 goto out; 2049 } 2050 2051 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 2052 1, false, GFP_NOFS); 2053 if (!rd_req) { 2054 err = -ENOMEM; 2055 goto out_unlock; 2056 } 2057 2058 rd_req->r_flags = CEPH_OSD_FLAG_READ; 2059 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); 2060 rd_req->r_base_oloc.pool = pool; 2061 if (pool_ns) 2062 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); 2063 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); 2064 2065 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); 2066 if (err) 2067 goto out_unlock; 2068 2069 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 2070 1, false, GFP_NOFS); 2071 if (!wr_req) { 2072 err = -ENOMEM; 2073 goto out_unlock; 2074 } 2075 2076 wr_req->r_flags = CEPH_OSD_FLAG_WRITE; 2077 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); 2078 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); 2079 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); 2080 2081 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); 2082 if (err) 2083 goto out_unlock; 2084 2085 /* one page should be large enough for STAT data */ 2086 pages = ceph_alloc_page_vector(1, GFP_KERNEL); 2087 if (IS_ERR(pages)) { 2088 err = PTR_ERR(pages); 2089 goto out_unlock; 2090 } 2091 2092 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 2093 0, false, true); 2094 ceph_osdc_start_request(&fsc->client->osdc, rd_req); 2095 2096 wr_req->r_mtime = ci->netfs.inode.i_mtime; 2097 ceph_osdc_start_request(&fsc->client->osdc, wr_req); 2098 2099 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); 2100 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); 2101 2102 if (err >= 0 || err == -ENOENT) 2103 have |= POOL_READ; 2104 else if (err != -EPERM) { 2105 if (err == -EBLOCKLISTED) 2106 fsc->blocklisted = true; 2107 goto out_unlock; 2108 } 2109 2110 if (err2 == 0 || err2 == -EEXIST) 2111 have |= POOL_WRITE; 2112 else if (err2 != -EPERM) { 2113 if (err2 == -EBLOCKLISTED) 2114 fsc->blocklisted = true; 2115 err = err2; 2116 goto out_unlock; 2117 } 2118 2119 pool_ns_len = pool_ns ? pool_ns->len : 0; 2120 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); 2121 if (!perm) { 2122 err = -ENOMEM; 2123 goto out_unlock; 2124 } 2125 2126 perm->pool = pool; 2127 perm->perm = have; 2128 perm->pool_ns_len = pool_ns_len; 2129 if (pool_ns_len > 0) 2130 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); 2131 perm->pool_ns[pool_ns_len] = 0; 2132 2133 rb_link_node(&perm->node, parent, p); 2134 rb_insert_color(&perm->node, &mdsc->pool_perm_tree); 2135 err = 0; 2136 out_unlock: 2137 up_write(&mdsc->pool_perm_rwsem); 2138 2139 ceph_osdc_put_request(rd_req); 2140 ceph_osdc_put_request(wr_req); 2141 out: 2142 if (!err) 2143 err = have; 2144 if (pool_ns) 2145 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", 2146 pool, (int)pool_ns->len, pool_ns->str, err); 2147 else 2148 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); 2149 return err; 2150 } 2151 2152 int ceph_pool_perm_check(struct inode *inode, int need) 2153 { 2154 struct ceph_inode_info *ci = ceph_inode(inode); 2155 struct ceph_string *pool_ns; 2156 s64 pool; 2157 int ret, flags; 2158 2159 /* Only need to do this for regular files */ 2160 if (!S_ISREG(inode->i_mode)) 2161 return 0; 2162 2163 if (ci->i_vino.snap != CEPH_NOSNAP) { 2164 /* 2165 * Pool permission check needs to write to the first object. 2166 * But for snapshot, head of the first object may have alread 2167 * been deleted. Skip check to avoid creating orphan object. 2168 */ 2169 return 0; 2170 } 2171 2172 if (ceph_test_mount_opt(ceph_inode_to_fs_client(inode), 2173 NOPOOLPERM)) 2174 return 0; 2175 2176 spin_lock(&ci->i_ceph_lock); 2177 flags = ci->i_ceph_flags; 2178 pool = ci->i_layout.pool_id; 2179 spin_unlock(&ci->i_ceph_lock); 2180 check: 2181 if (flags & CEPH_I_POOL_PERM) { 2182 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { 2183 dout("ceph_pool_perm_check pool %lld no read perm\n", 2184 pool); 2185 return -EPERM; 2186 } 2187 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { 2188 dout("ceph_pool_perm_check pool %lld no write perm\n", 2189 pool); 2190 return -EPERM; 2191 } 2192 return 0; 2193 } 2194 2195 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); 2196 ret = __ceph_pool_perm_get(ci, pool, pool_ns); 2197 ceph_put_string(pool_ns); 2198 if (ret < 0) 2199 return ret; 2200 2201 flags = CEPH_I_POOL_PERM; 2202 if (ret & POOL_READ) 2203 flags |= CEPH_I_POOL_RD; 2204 if (ret & POOL_WRITE) 2205 flags |= CEPH_I_POOL_WR; 2206 2207 spin_lock(&ci->i_ceph_lock); 2208 if (pool == ci->i_layout.pool_id && 2209 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { 2210 ci->i_ceph_flags |= flags; 2211 } else { 2212 pool = ci->i_layout.pool_id; 2213 flags = ci->i_ceph_flags; 2214 } 2215 spin_unlock(&ci->i_ceph_lock); 2216 goto check; 2217 } 2218 2219 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) 2220 { 2221 struct ceph_pool_perm *perm; 2222 struct rb_node *n; 2223 2224 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { 2225 n = rb_first(&mdsc->pool_perm_tree); 2226 perm = rb_entry(n, struct ceph_pool_perm, node); 2227 rb_erase(n, &mdsc->pool_perm_tree); 2228 kfree(perm); 2229 } 2230 } 2231