xref: /openbmc/linux/fs/ceph/addr.c (revision 08b7cf13)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/backing-dev.h>
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/swap.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/pagevec.h>
11 #include <linux/task_io_accounting_ops.h>
12 #include <linux/signal.h>
13 #include <linux/iversion.h>
14 #include <linux/ktime.h>
15 #include <linux/netfs.h>
16 
17 #include "super.h"
18 #include "mds_client.h"
19 #include "cache.h"
20 #include "metric.h"
21 #include <linux/ceph/osd_client.h>
22 #include <linux/ceph/striper.h>
23 
24 /*
25  * Ceph address space ops.
26  *
27  * There are a few funny things going on here.
28  *
29  * The page->private field is used to reference a struct
30  * ceph_snap_context for _every_ dirty page.  This indicates which
31  * snapshot the page was logically dirtied in, and thus which snap
32  * context needs to be associated with the osd write during writeback.
33  *
34  * Similarly, struct ceph_inode_info maintains a set of counters to
35  * count dirty pages on the inode.  In the absence of snapshots,
36  * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
37  *
38  * When a snapshot is taken (that is, when the client receives
39  * notification that a snapshot was taken), each inode with caps and
40  * with dirty pages (dirty pages implies there is a cap) gets a new
41  * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
42  * order, new snaps go to the tail).  The i_wrbuffer_ref_head count is
43  * moved to capsnap->dirty. (Unless a sync write is currently in
44  * progress.  In that case, the capsnap is said to be "pending", new
45  * writes cannot start, and the capsnap isn't "finalized" until the
46  * write completes (or fails) and a final size/mtime for the inode for
47  * that snap can be settled upon.)  i_wrbuffer_ref_head is reset to 0.
48  *
49  * On writeback, we must submit writes to the osd IN SNAP ORDER.  So,
50  * we look for the first capsnap in i_cap_snaps and write out pages in
51  * that snap context _only_.  Then we move on to the next capsnap,
52  * eventually reaching the "live" or "head" context (i.e., pages that
53  * are not yet snapped) and are writing the most recently dirtied
54  * pages.
55  *
56  * Invalidate and so forth must take care to ensure the dirty page
57  * accounting is preserved.
58  */
59 
60 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
61 #define CONGESTION_OFF_THRESH(congestion_kb)				\
62 	(CONGESTION_ON_THRESH(congestion_kb) -				\
63 	 (CONGESTION_ON_THRESH(congestion_kb) >> 2))
64 
65 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
66 					struct folio *folio, void **_fsdata);
67 
68 static inline struct ceph_snap_context *page_snap_context(struct page *page)
69 {
70 	if (PagePrivate(page))
71 		return (void *)page->private;
72 	return NULL;
73 }
74 
75 /*
76  * Dirty a page.  Optimistically adjust accounting, on the assumption
77  * that we won't race with invalidate.  If we do, readjust.
78  */
79 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
80 {
81 	struct inode *inode;
82 	struct ceph_inode_info *ci;
83 	struct ceph_snap_context *snapc;
84 
85 	if (folio_test_dirty(folio)) {
86 		dout("%p dirty_folio %p idx %lu -- already dirty\n",
87 		     mapping->host, folio, folio->index);
88 		BUG_ON(!folio_get_private(folio));
89 		return false;
90 	}
91 
92 	inode = mapping->host;
93 	ci = ceph_inode(inode);
94 
95 	/* dirty the head */
96 	spin_lock(&ci->i_ceph_lock);
97 	BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference
98 	if (__ceph_have_pending_cap_snap(ci)) {
99 		struct ceph_cap_snap *capsnap =
100 				list_last_entry(&ci->i_cap_snaps,
101 						struct ceph_cap_snap,
102 						ci_item);
103 		snapc = ceph_get_snap_context(capsnap->context);
104 		capsnap->dirty_pages++;
105 	} else {
106 		BUG_ON(!ci->i_head_snapc);
107 		snapc = ceph_get_snap_context(ci->i_head_snapc);
108 		++ci->i_wrbuffer_ref_head;
109 	}
110 	if (ci->i_wrbuffer_ref == 0)
111 		ihold(inode);
112 	++ci->i_wrbuffer_ref;
113 	dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
114 	     "snapc %p seq %lld (%d snaps)\n",
115 	     mapping->host, folio, folio->index,
116 	     ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
117 	     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
118 	     snapc, snapc->seq, snapc->num_snaps);
119 	spin_unlock(&ci->i_ceph_lock);
120 
121 	/*
122 	 * Reference snap context in folio->private.  Also set
123 	 * PagePrivate so that we get invalidate_folio callback.
124 	 */
125 	BUG_ON(folio_get_private(folio));
126 	folio_attach_private(folio, snapc);
127 
128 	return ceph_fscache_dirty_folio(mapping, folio);
129 }
130 
131 /*
132  * If we are truncating the full folio (i.e. offset == 0), adjust the
133  * dirty folio counters appropriately.  Only called if there is private
134  * data on the folio.
135  */
136 static void ceph_invalidate_folio(struct folio *folio, size_t offset,
137 				size_t length)
138 {
139 	struct inode *inode;
140 	struct ceph_inode_info *ci;
141 	struct ceph_snap_context *snapc;
142 
143 	inode = folio->mapping->host;
144 	ci = ceph_inode(inode);
145 
146 	if (offset != 0 || length != folio_size(folio)) {
147 		dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
148 		     inode, folio->index, offset, length);
149 		return;
150 	}
151 
152 	WARN_ON(!folio_test_locked(folio));
153 	if (folio_get_private(folio)) {
154 		dout("%p invalidate_folio idx %lu full dirty page\n",
155 		     inode, folio->index);
156 
157 		snapc = folio_detach_private(folio);
158 		ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
159 		ceph_put_snap_context(snapc);
160 	}
161 
162 	folio_wait_fscache(folio);
163 }
164 
165 static int ceph_releasepage(struct page *page, gfp_t gfp)
166 {
167 	struct inode *inode = page->mapping->host;
168 
169 	dout("%llx:%llx releasepage %p idx %lu (%sdirty)\n",
170 	     ceph_vinop(inode), page,
171 	     page->index, PageDirty(page) ? "" : "not ");
172 
173 	if (PagePrivate(page))
174 		return 0;
175 
176 	if (PageFsCache(page)) {
177 		if (current_is_kswapd() || !(gfp & __GFP_FS))
178 			return 0;
179 		wait_on_page_fscache(page);
180 	}
181 	ceph_fscache_note_page_release(inode);
182 	return 1;
183 }
184 
185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
186 {
187 	struct inode *inode = rreq->inode;
188 	struct ceph_inode_info *ci = ceph_inode(inode);
189 	struct ceph_file_layout *lo = &ci->i_layout;
190 	u32 blockoff;
191 	u64 blockno;
192 
193 	/* Expand the start downward */
194 	blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
195 	rreq->start = blockno * lo->stripe_unit;
196 	rreq->len += blockoff;
197 
198 	/* Now, round up the length to the next block */
199 	rreq->len = roundup(rreq->len, lo->stripe_unit);
200 }
201 
202 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
203 {
204 	struct inode *inode = subreq->rreq->inode;
205 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
206 	struct ceph_inode_info *ci = ceph_inode(inode);
207 	u64 objno, objoff;
208 	u32 xlen;
209 
210 	/* Truncate the extent at the end of the current block */
211 	ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
212 				      &objno, &objoff, &xlen);
213 	subreq->len = min(xlen, fsc->mount_options->rsize);
214 	return true;
215 }
216 
217 static void finish_netfs_read(struct ceph_osd_request *req)
218 {
219 	struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode);
220 	struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
221 	struct netfs_io_subrequest *subreq = req->r_priv;
222 	int num_pages;
223 	int err = req->r_result;
224 
225 	ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
226 				 req->r_end_latency, osd_data->length, err);
227 
228 	dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
229 	     subreq->len, i_size_read(req->r_inode));
230 
231 	/* no object means success but no data */
232 	if (err == -ENOENT)
233 		err = 0;
234 	else if (err == -EBLOCKLISTED)
235 		fsc->blocklisted = true;
236 
237 	if (err >= 0 && err < subreq->len)
238 		__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
239 
240 	netfs_subreq_terminated(subreq, err, true);
241 
242 	num_pages = calc_pages_for(osd_data->alignment, osd_data->length);
243 	ceph_put_page_vector(osd_data->pages, num_pages, false);
244 	iput(req->r_inode);
245 }
246 
247 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
248 {
249 	struct netfs_io_request *rreq = subreq->rreq;
250 	struct inode *inode = rreq->inode;
251 	struct ceph_mds_reply_info_parsed *rinfo;
252 	struct ceph_mds_reply_info_in *iinfo;
253 	struct ceph_mds_request *req;
254 	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
255 	struct ceph_inode_info *ci = ceph_inode(inode);
256 	struct iov_iter iter;
257 	ssize_t err = 0;
258 	size_t len;
259 
260 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
261 	__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
262 
263 	if (subreq->start >= inode->i_size)
264 		goto out;
265 
266 	/* We need to fetch the inline data. */
267 	req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, USE_ANY_MDS);
268 	if (IS_ERR(req)) {
269 		err = PTR_ERR(req);
270 		goto out;
271 	}
272 	req->r_ino1 = ci->i_vino;
273 	req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
274 	req->r_num_caps = 2;
275 
276 	err = ceph_mdsc_do_request(mdsc, NULL, req);
277 	if (err < 0)
278 		goto out;
279 
280 	rinfo = &req->r_reply_info;
281 	iinfo = &rinfo->targeti;
282 	if (iinfo->inline_version == CEPH_INLINE_NONE) {
283 		/* The data got uninlined */
284 		ceph_mdsc_put_request(req);
285 		return false;
286 	}
287 
288 	len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
289 	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
290 	err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
291 	if (err == 0)
292 		err = -EFAULT;
293 
294 	ceph_mdsc_put_request(req);
295 out:
296 	netfs_subreq_terminated(subreq, err, false);
297 	return true;
298 }
299 
300 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
301 {
302 	struct netfs_io_request *rreq = subreq->rreq;
303 	struct inode *inode = rreq->inode;
304 	struct ceph_inode_info *ci = ceph_inode(inode);
305 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
306 	struct ceph_osd_request *req;
307 	struct ceph_vino vino = ceph_vino(inode);
308 	struct iov_iter iter;
309 	struct page **pages;
310 	size_t page_off;
311 	int err = 0;
312 	u64 len = subreq->len;
313 
314 	if (ci->i_inline_version != CEPH_INLINE_NONE &&
315 	    ceph_netfs_issue_op_inline(subreq))
316 		return;
317 
318 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len,
319 			0, 1, CEPH_OSD_OP_READ,
320 			CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
321 			NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
322 	if (IS_ERR(req)) {
323 		err = PTR_ERR(req);
324 		req = NULL;
325 		goto out;
326 	}
327 
328 	dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
329 	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len);
330 	err = iov_iter_get_pages_alloc(&iter, &pages, len, &page_off);
331 	if (err < 0) {
332 		dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err);
333 		goto out;
334 	}
335 
336 	/* should always give us a page-aligned read */
337 	WARN_ON_ONCE(page_off);
338 	len = err;
339 
340 	osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false);
341 	req->r_callback = finish_netfs_read;
342 	req->r_priv = subreq;
343 	req->r_inode = inode;
344 	ihold(inode);
345 
346 	err = ceph_osdc_start_request(req->r_osdc, req, false);
347 	if (err)
348 		iput(inode);
349 out:
350 	ceph_osdc_put_request(req);
351 	if (err)
352 		netfs_subreq_terminated(subreq, err, false);
353 	dout("%s: result %d\n", __func__, err);
354 }
355 
356 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
357 {
358 	struct inode *inode = rreq->inode;
359 	int got = 0, want = CEPH_CAP_FILE_CACHE;
360 	int ret = 0;
361 
362 	if (rreq->origin != NETFS_READAHEAD)
363 		return 0;
364 
365 	if (file) {
366 		struct ceph_rw_context *rw_ctx;
367 		struct ceph_file_info *fi = file->private_data;
368 
369 		rw_ctx = ceph_find_rw_context(fi);
370 		if (rw_ctx)
371 			return 0;
372 	}
373 
374 	/*
375 	 * readahead callers do not necessarily hold Fcb caps
376 	 * (e.g. fadvise, madvise).
377 	 */
378 	ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
379 	if (ret < 0) {
380 		dout("start_read %p, error getting cap\n", inode);
381 		return ret;
382 	}
383 
384 	if (!(got & want)) {
385 		dout("start_read %p, no cache cap\n", inode);
386 		return -EACCES;
387 	}
388 	if (ret == 0)
389 		return -EACCES;
390 
391 	rreq->netfs_priv = (void *)(uintptr_t)got;
392 	return 0;
393 }
394 
395 static void ceph_readahead_cleanup(struct address_space *mapping, void *priv)
396 {
397 	struct inode *inode = mapping->host;
398 	struct ceph_inode_info *ci = ceph_inode(inode);
399 	int got = (uintptr_t)priv;
400 
401 	if (got)
402 		ceph_put_cap_refs(ci, got);
403 }
404 
405 const struct netfs_request_ops ceph_netfs_ops = {
406 	.init_request		= ceph_init_request,
407 	.begin_cache_operation	= ceph_begin_cache_operation,
408 	.issue_read		= ceph_netfs_issue_read,
409 	.expand_readahead	= ceph_netfs_expand_readahead,
410 	.clamp_length		= ceph_netfs_clamp_length,
411 	.check_write_begin	= ceph_netfs_check_write_begin,
412 	.cleanup		= ceph_readahead_cleanup,
413 };
414 
415 #ifdef CONFIG_CEPH_FSCACHE
416 static void ceph_set_page_fscache(struct page *page)
417 {
418 	set_page_fscache(page);
419 }
420 
421 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
422 {
423 	struct inode *inode = priv;
424 
425 	if (IS_ERR_VALUE(error) && error != -ENOBUFS)
426 		ceph_fscache_invalidate(inode, false);
427 }
428 
429 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
430 {
431 	struct ceph_inode_info *ci = ceph_inode(inode);
432 	struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
433 
434 	fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
435 			       ceph_fscache_write_terminated, inode, caching);
436 }
437 #else
438 static inline void ceph_set_page_fscache(struct page *page)
439 {
440 }
441 
442 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
443 {
444 }
445 #endif /* CONFIG_CEPH_FSCACHE */
446 
447 struct ceph_writeback_ctl
448 {
449 	loff_t i_size;
450 	u64 truncate_size;
451 	u32 truncate_seq;
452 	bool size_stable;
453 	bool head_snapc;
454 };
455 
456 /*
457  * Get ref for the oldest snapc for an inode with dirty data... that is, the
458  * only snap context we are allowed to write back.
459  */
460 static struct ceph_snap_context *
461 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
462 		   struct ceph_snap_context *page_snapc)
463 {
464 	struct ceph_inode_info *ci = ceph_inode(inode);
465 	struct ceph_snap_context *snapc = NULL;
466 	struct ceph_cap_snap *capsnap = NULL;
467 
468 	spin_lock(&ci->i_ceph_lock);
469 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
470 		dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
471 		     capsnap->context, capsnap->dirty_pages);
472 		if (!capsnap->dirty_pages)
473 			continue;
474 
475 		/* get i_size, truncate_{seq,size} for page_snapc? */
476 		if (snapc && capsnap->context != page_snapc)
477 			continue;
478 
479 		if (ctl) {
480 			if (capsnap->writing) {
481 				ctl->i_size = i_size_read(inode);
482 				ctl->size_stable = false;
483 			} else {
484 				ctl->i_size = capsnap->size;
485 				ctl->size_stable = true;
486 			}
487 			ctl->truncate_size = capsnap->truncate_size;
488 			ctl->truncate_seq = capsnap->truncate_seq;
489 			ctl->head_snapc = false;
490 		}
491 
492 		if (snapc)
493 			break;
494 
495 		snapc = ceph_get_snap_context(capsnap->context);
496 		if (!page_snapc ||
497 		    page_snapc == snapc ||
498 		    page_snapc->seq > snapc->seq)
499 			break;
500 	}
501 	if (!snapc && ci->i_wrbuffer_ref_head) {
502 		snapc = ceph_get_snap_context(ci->i_head_snapc);
503 		dout(" head snapc %p has %d dirty pages\n",
504 		     snapc, ci->i_wrbuffer_ref_head);
505 		if (ctl) {
506 			ctl->i_size = i_size_read(inode);
507 			ctl->truncate_size = ci->i_truncate_size;
508 			ctl->truncate_seq = ci->i_truncate_seq;
509 			ctl->size_stable = false;
510 			ctl->head_snapc = true;
511 		}
512 	}
513 	spin_unlock(&ci->i_ceph_lock);
514 	return snapc;
515 }
516 
517 static u64 get_writepages_data_length(struct inode *inode,
518 				      struct page *page, u64 start)
519 {
520 	struct ceph_inode_info *ci = ceph_inode(inode);
521 	struct ceph_snap_context *snapc = page_snap_context(page);
522 	struct ceph_cap_snap *capsnap = NULL;
523 	u64 end = i_size_read(inode);
524 
525 	if (snapc != ci->i_head_snapc) {
526 		bool found = false;
527 		spin_lock(&ci->i_ceph_lock);
528 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
529 			if (capsnap->context == snapc) {
530 				if (!capsnap->writing)
531 					end = capsnap->size;
532 				found = true;
533 				break;
534 			}
535 		}
536 		spin_unlock(&ci->i_ceph_lock);
537 		WARN_ON(!found);
538 	}
539 	if (end > page_offset(page) + thp_size(page))
540 		end = page_offset(page) + thp_size(page);
541 	return end > start ? end - start : 0;
542 }
543 
544 /*
545  * Write a single page, but leave the page locked.
546  *
547  * If we get a write error, mark the mapping for error, but still adjust the
548  * dirty page accounting (i.e., page is no longer dirty).
549  */
550 static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
551 {
552 	struct folio *folio = page_folio(page);
553 	struct inode *inode = page->mapping->host;
554 	struct ceph_inode_info *ci = ceph_inode(inode);
555 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
556 	struct ceph_snap_context *snapc, *oldest;
557 	loff_t page_off = page_offset(page);
558 	int err;
559 	loff_t len = thp_size(page);
560 	struct ceph_writeback_ctl ceph_wbc;
561 	struct ceph_osd_client *osdc = &fsc->client->osdc;
562 	struct ceph_osd_request *req;
563 	bool caching = ceph_is_cache_enabled(inode);
564 
565 	dout("writepage %p idx %lu\n", page, page->index);
566 
567 	/* verify this is a writeable snap context */
568 	snapc = page_snap_context(page);
569 	if (!snapc) {
570 		dout("writepage %p page %p not dirty?\n", inode, page);
571 		return 0;
572 	}
573 	oldest = get_oldest_context(inode, &ceph_wbc, snapc);
574 	if (snapc->seq > oldest->seq) {
575 		dout("writepage %p page %p snapc %p not writeable - noop\n",
576 		     inode, page, snapc);
577 		/* we should only noop if called by kswapd */
578 		WARN_ON(!(current->flags & PF_MEMALLOC));
579 		ceph_put_snap_context(oldest);
580 		redirty_page_for_writepage(wbc, page);
581 		return 0;
582 	}
583 	ceph_put_snap_context(oldest);
584 
585 	/* is this a partial page at end of file? */
586 	if (page_off >= ceph_wbc.i_size) {
587 		dout("folio at %lu beyond eof %llu\n", folio->index,
588 				ceph_wbc.i_size);
589 		folio_invalidate(folio, 0, folio_size(folio));
590 		return 0;
591 	}
592 
593 	if (ceph_wbc.i_size < page_off + len)
594 		len = ceph_wbc.i_size - page_off;
595 
596 	dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
597 	     inode, page, page->index, page_off, len, snapc, snapc->seq);
598 
599 	if (atomic_long_inc_return(&fsc->writeback_count) >
600 	    CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
601 		fsc->write_congested = true;
602 
603 	req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1,
604 				    CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc,
605 				    ceph_wbc.truncate_seq, ceph_wbc.truncate_size,
606 				    true);
607 	if (IS_ERR(req))
608 		return PTR_ERR(req);
609 
610 	set_page_writeback(page);
611 	if (caching)
612 		ceph_set_page_fscache(page);
613 	ceph_fscache_write_to_cache(inode, page_off, len, caching);
614 
615 	/* it may be a short write due to an object boundary */
616 	WARN_ON_ONCE(len > thp_size(page));
617 	osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false);
618 	dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len);
619 
620 	req->r_mtime = inode->i_mtime;
621 	err = ceph_osdc_start_request(osdc, req, true);
622 	if (!err)
623 		err = ceph_osdc_wait_request(osdc, req);
624 
625 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
626 				  req->r_end_latency, len, err);
627 
628 	ceph_osdc_put_request(req);
629 	if (err == 0)
630 		err = len;
631 
632 	if (err < 0) {
633 		struct writeback_control tmp_wbc;
634 		if (!wbc)
635 			wbc = &tmp_wbc;
636 		if (err == -ERESTARTSYS) {
637 			/* killed by SIGKILL */
638 			dout("writepage interrupted page %p\n", page);
639 			redirty_page_for_writepage(wbc, page);
640 			end_page_writeback(page);
641 			return err;
642 		}
643 		if (err == -EBLOCKLISTED)
644 			fsc->blocklisted = true;
645 		dout("writepage setting page/mapping error %d %p\n",
646 		     err, page);
647 		mapping_set_error(&inode->i_data, err);
648 		wbc->pages_skipped++;
649 	} else {
650 		dout("writepage cleaned page %p\n", page);
651 		err = 0;  /* vfs expects us to return 0 */
652 	}
653 	oldest = detach_page_private(page);
654 	WARN_ON_ONCE(oldest != snapc);
655 	end_page_writeback(page);
656 	ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
657 	ceph_put_snap_context(snapc);  /* page's reference */
658 
659 	if (atomic_long_dec_return(&fsc->writeback_count) <
660 	    CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
661 		fsc->write_congested = false;
662 
663 	return err;
664 }
665 
666 static int ceph_writepage(struct page *page, struct writeback_control *wbc)
667 {
668 	int err;
669 	struct inode *inode = page->mapping->host;
670 	BUG_ON(!inode);
671 	ihold(inode);
672 
673 	if (wbc->sync_mode == WB_SYNC_NONE &&
674 	    ceph_inode_to_client(inode)->write_congested)
675 		return AOP_WRITEPAGE_ACTIVATE;
676 
677 	wait_on_page_fscache(page);
678 
679 	err = writepage_nounlock(page, wbc);
680 	if (err == -ERESTARTSYS) {
681 		/* direct memory reclaimer was killed by SIGKILL. return 0
682 		 * to prevent caller from setting mapping/page error */
683 		err = 0;
684 	}
685 	unlock_page(page);
686 	iput(inode);
687 	return err;
688 }
689 
690 /*
691  * async writeback completion handler.
692  *
693  * If we get an error, set the mapping error bit, but not the individual
694  * page error bits.
695  */
696 static void writepages_finish(struct ceph_osd_request *req)
697 {
698 	struct inode *inode = req->r_inode;
699 	struct ceph_inode_info *ci = ceph_inode(inode);
700 	struct ceph_osd_data *osd_data;
701 	struct page *page;
702 	int num_pages, total_pages = 0;
703 	int i, j;
704 	int rc = req->r_result;
705 	struct ceph_snap_context *snapc = req->r_snapc;
706 	struct address_space *mapping = inode->i_mapping;
707 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
708 	unsigned int len = 0;
709 	bool remove_page;
710 
711 	dout("writepages_finish %p rc %d\n", inode, rc);
712 	if (rc < 0) {
713 		mapping_set_error(mapping, rc);
714 		ceph_set_error_write(ci);
715 		if (rc == -EBLOCKLISTED)
716 			fsc->blocklisted = true;
717 	} else {
718 		ceph_clear_error_write(ci);
719 	}
720 
721 	/*
722 	 * We lost the cache cap, need to truncate the page before
723 	 * it is unlocked, otherwise we'd truncate it later in the
724 	 * page truncation thread, possibly losing some data that
725 	 * raced its way in
726 	 */
727 	remove_page = !(ceph_caps_issued(ci) &
728 			(CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
729 
730 	/* clean all pages */
731 	for (i = 0; i < req->r_num_ops; i++) {
732 		if (req->r_ops[i].op != CEPH_OSD_OP_WRITE)
733 			break;
734 
735 		osd_data = osd_req_op_extent_osd_data(req, i);
736 		BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
737 		len += osd_data->length;
738 		num_pages = calc_pages_for((u64)osd_data->alignment,
739 					   (u64)osd_data->length);
740 		total_pages += num_pages;
741 		for (j = 0; j < num_pages; j++) {
742 			page = osd_data->pages[j];
743 			BUG_ON(!page);
744 			WARN_ON(!PageUptodate(page));
745 
746 			if (atomic_long_dec_return(&fsc->writeback_count) <
747 			     CONGESTION_OFF_THRESH(
748 					fsc->mount_options->congestion_kb))
749 				fsc->write_congested = false;
750 
751 			ceph_put_snap_context(detach_page_private(page));
752 			end_page_writeback(page);
753 			dout("unlocking %p\n", page);
754 
755 			if (remove_page)
756 				generic_error_remove_page(inode->i_mapping,
757 							  page);
758 
759 			unlock_page(page);
760 		}
761 		dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
762 		     inode, osd_data->length, rc >= 0 ? num_pages : 0);
763 
764 		release_pages(osd_data->pages, num_pages);
765 	}
766 
767 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
768 				  req->r_end_latency, len, rc);
769 
770 	ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
771 
772 	osd_data = osd_req_op_extent_osd_data(req, 0);
773 	if (osd_data->pages_from_pool)
774 		mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
775 	else
776 		kfree(osd_data->pages);
777 	ceph_osdc_put_request(req);
778 }
779 
780 /*
781  * initiate async writeback
782  */
783 static int ceph_writepages_start(struct address_space *mapping,
784 				 struct writeback_control *wbc)
785 {
786 	struct inode *inode = mapping->host;
787 	struct ceph_inode_info *ci = ceph_inode(inode);
788 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
789 	struct ceph_vino vino = ceph_vino(inode);
790 	pgoff_t index, start_index, end = -1;
791 	struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
792 	struct pagevec pvec;
793 	int rc = 0;
794 	unsigned int wsize = i_blocksize(inode);
795 	struct ceph_osd_request *req = NULL;
796 	struct ceph_writeback_ctl ceph_wbc;
797 	bool should_loop, range_whole = false;
798 	bool done = false;
799 	bool caching = ceph_is_cache_enabled(inode);
800 
801 	if (wbc->sync_mode == WB_SYNC_NONE &&
802 	    fsc->write_congested)
803 		return 0;
804 
805 	dout("writepages_start %p (mode=%s)\n", inode,
806 	     wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
807 	     (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
808 
809 	if (ceph_inode_is_shutdown(inode)) {
810 		if (ci->i_wrbuffer_ref > 0) {
811 			pr_warn_ratelimited(
812 				"writepage_start %p %lld forced umount\n",
813 				inode, ceph_ino(inode));
814 		}
815 		mapping_set_error(mapping, -EIO);
816 		return -EIO; /* we're in a forced umount, don't write! */
817 	}
818 	if (fsc->mount_options->wsize < wsize)
819 		wsize = fsc->mount_options->wsize;
820 
821 	pagevec_init(&pvec);
822 
823 	start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
824 	index = start_index;
825 
826 retry:
827 	/* find oldest snap context with dirty data */
828 	snapc = get_oldest_context(inode, &ceph_wbc, NULL);
829 	if (!snapc) {
830 		/* hmm, why does writepages get called when there
831 		   is no dirty data? */
832 		dout(" no snap context with dirty data?\n");
833 		goto out;
834 	}
835 	dout(" oldest snapc is %p seq %lld (%d snaps)\n",
836 	     snapc, snapc->seq, snapc->num_snaps);
837 
838 	should_loop = false;
839 	if (ceph_wbc.head_snapc && snapc != last_snapc) {
840 		/* where to start/end? */
841 		if (wbc->range_cyclic) {
842 			index = start_index;
843 			end = -1;
844 			if (index > 0)
845 				should_loop = true;
846 			dout(" cyclic, start at %lu\n", index);
847 		} else {
848 			index = wbc->range_start >> PAGE_SHIFT;
849 			end = wbc->range_end >> PAGE_SHIFT;
850 			if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
851 				range_whole = true;
852 			dout(" not cyclic, %lu to %lu\n", index, end);
853 		}
854 	} else if (!ceph_wbc.head_snapc) {
855 		/* Do not respect wbc->range_{start,end}. Dirty pages
856 		 * in that range can be associated with newer snapc.
857 		 * They are not writeable until we write all dirty pages
858 		 * associated with 'snapc' get written */
859 		if (index > 0)
860 			should_loop = true;
861 		dout(" non-head snapc, range whole\n");
862 	}
863 
864 	ceph_put_snap_context(last_snapc);
865 	last_snapc = snapc;
866 
867 	while (!done && index <= end) {
868 		int num_ops = 0, op_idx;
869 		unsigned i, pvec_pages, max_pages, locked_pages = 0;
870 		struct page **pages = NULL, **data_pages;
871 		struct page *page;
872 		pgoff_t strip_unit_end = 0;
873 		u64 offset = 0, len = 0;
874 		bool from_pool = false;
875 
876 		max_pages = wsize >> PAGE_SHIFT;
877 
878 get_more_pages:
879 		pvec_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
880 						end, PAGECACHE_TAG_DIRTY);
881 		dout("pagevec_lookup_range_tag got %d\n", pvec_pages);
882 		if (!pvec_pages && !locked_pages)
883 			break;
884 		for (i = 0; i < pvec_pages && locked_pages < max_pages; i++) {
885 			page = pvec.pages[i];
886 			dout("? %p idx %lu\n", page, page->index);
887 			if (locked_pages == 0)
888 				lock_page(page);  /* first page */
889 			else if (!trylock_page(page))
890 				break;
891 
892 			/* only dirty pages, or our accounting breaks */
893 			if (unlikely(!PageDirty(page)) ||
894 			    unlikely(page->mapping != mapping)) {
895 				dout("!dirty or !mapping %p\n", page);
896 				unlock_page(page);
897 				continue;
898 			}
899 			/* only if matching snap context */
900 			pgsnapc = page_snap_context(page);
901 			if (pgsnapc != snapc) {
902 				dout("page snapc %p %lld != oldest %p %lld\n",
903 				     pgsnapc, pgsnapc->seq, snapc, snapc->seq);
904 				if (!should_loop &&
905 				    !ceph_wbc.head_snapc &&
906 				    wbc->sync_mode != WB_SYNC_NONE)
907 					should_loop = true;
908 				unlock_page(page);
909 				continue;
910 			}
911 			if (page_offset(page) >= ceph_wbc.i_size) {
912 				struct folio *folio = page_folio(page);
913 
914 				dout("folio at %lu beyond eof %llu\n",
915 				     folio->index, ceph_wbc.i_size);
916 				if ((ceph_wbc.size_stable ||
917 				    folio_pos(folio) >= i_size_read(inode)) &&
918 				    folio_clear_dirty_for_io(folio))
919 					folio_invalidate(folio, 0,
920 							folio_size(folio));
921 				folio_unlock(folio);
922 				continue;
923 			}
924 			if (strip_unit_end && (page->index > strip_unit_end)) {
925 				dout("end of strip unit %p\n", page);
926 				unlock_page(page);
927 				break;
928 			}
929 			if (PageWriteback(page) || PageFsCache(page)) {
930 				if (wbc->sync_mode == WB_SYNC_NONE) {
931 					dout("%p under writeback\n", page);
932 					unlock_page(page);
933 					continue;
934 				}
935 				dout("waiting on writeback %p\n", page);
936 				wait_on_page_writeback(page);
937 				wait_on_page_fscache(page);
938 			}
939 
940 			if (!clear_page_dirty_for_io(page)) {
941 				dout("%p !clear_page_dirty_for_io\n", page);
942 				unlock_page(page);
943 				continue;
944 			}
945 
946 			/*
947 			 * We have something to write.  If this is
948 			 * the first locked page this time through,
949 			 * calculate max possinle write size and
950 			 * allocate a page array
951 			 */
952 			if (locked_pages == 0) {
953 				u64 objnum;
954 				u64 objoff;
955 				u32 xlen;
956 
957 				/* prepare async write request */
958 				offset = (u64)page_offset(page);
959 				ceph_calc_file_object_mapping(&ci->i_layout,
960 							      offset, wsize,
961 							      &objnum, &objoff,
962 							      &xlen);
963 				len = xlen;
964 
965 				num_ops = 1;
966 				strip_unit_end = page->index +
967 					((len - 1) >> PAGE_SHIFT);
968 
969 				BUG_ON(pages);
970 				max_pages = calc_pages_for(0, (u64)len);
971 				pages = kmalloc_array(max_pages,
972 						      sizeof(*pages),
973 						      GFP_NOFS);
974 				if (!pages) {
975 					from_pool = true;
976 					pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
977 					BUG_ON(!pages);
978 				}
979 
980 				len = 0;
981 			} else if (page->index !=
982 				   (offset + len) >> PAGE_SHIFT) {
983 				if (num_ops >= (from_pool ?  CEPH_OSD_SLAB_OPS :
984 							     CEPH_OSD_MAX_OPS)) {
985 					redirty_page_for_writepage(wbc, page);
986 					unlock_page(page);
987 					break;
988 				}
989 
990 				num_ops++;
991 				offset = (u64)page_offset(page);
992 				len = 0;
993 			}
994 
995 			/* note position of first page in pvec */
996 			dout("%p will write page %p idx %lu\n",
997 			     inode, page, page->index);
998 
999 			if (atomic_long_inc_return(&fsc->writeback_count) >
1000 			    CONGESTION_ON_THRESH(
1001 				    fsc->mount_options->congestion_kb))
1002 				fsc->write_congested = true;
1003 
1004 			pages[locked_pages++] = page;
1005 			pvec.pages[i] = NULL;
1006 
1007 			len += thp_size(page);
1008 		}
1009 
1010 		/* did we get anything? */
1011 		if (!locked_pages)
1012 			goto release_pvec_pages;
1013 		if (i) {
1014 			unsigned j, n = 0;
1015 			/* shift unused page to beginning of pvec */
1016 			for (j = 0; j < pvec_pages; j++) {
1017 				if (!pvec.pages[j])
1018 					continue;
1019 				if (n < j)
1020 					pvec.pages[n] = pvec.pages[j];
1021 				n++;
1022 			}
1023 			pvec.nr = n;
1024 
1025 			if (pvec_pages && i == pvec_pages &&
1026 			    locked_pages < max_pages) {
1027 				dout("reached end pvec, trying for more\n");
1028 				pagevec_release(&pvec);
1029 				goto get_more_pages;
1030 			}
1031 		}
1032 
1033 new_request:
1034 		offset = page_offset(pages[0]);
1035 		len = wsize;
1036 
1037 		req = ceph_osdc_new_request(&fsc->client->osdc,
1038 					&ci->i_layout, vino,
1039 					offset, &len, 0, num_ops,
1040 					CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1041 					snapc, ceph_wbc.truncate_seq,
1042 					ceph_wbc.truncate_size, false);
1043 		if (IS_ERR(req)) {
1044 			req = ceph_osdc_new_request(&fsc->client->osdc,
1045 						&ci->i_layout, vino,
1046 						offset, &len, 0,
1047 						min(num_ops,
1048 						    CEPH_OSD_SLAB_OPS),
1049 						CEPH_OSD_OP_WRITE,
1050 						CEPH_OSD_FLAG_WRITE,
1051 						snapc, ceph_wbc.truncate_seq,
1052 						ceph_wbc.truncate_size, true);
1053 			BUG_ON(IS_ERR(req));
1054 		}
1055 		BUG_ON(len < page_offset(pages[locked_pages - 1]) +
1056 			     thp_size(page) - offset);
1057 
1058 		req->r_callback = writepages_finish;
1059 		req->r_inode = inode;
1060 
1061 		/* Format the osd request message and submit the write */
1062 		len = 0;
1063 		data_pages = pages;
1064 		op_idx = 0;
1065 		for (i = 0; i < locked_pages; i++) {
1066 			u64 cur_offset = page_offset(pages[i]);
1067 			/*
1068 			 * Discontinuity in page range? Ceph can handle that by just passing
1069 			 * multiple extents in the write op.
1070 			 */
1071 			if (offset + len != cur_offset) {
1072 				/* If it's full, stop here */
1073 				if (op_idx + 1 == req->r_num_ops)
1074 					break;
1075 
1076 				/* Kick off an fscache write with what we have so far. */
1077 				ceph_fscache_write_to_cache(inode, offset, len, caching);
1078 
1079 				/* Start a new extent */
1080 				osd_req_op_extent_dup_last(req, op_idx,
1081 							   cur_offset - offset);
1082 				dout("writepages got pages at %llu~%llu\n",
1083 				     offset, len);
1084 				osd_req_op_extent_osd_data_pages(req, op_idx,
1085 							data_pages, len, 0,
1086 							from_pool, false);
1087 				osd_req_op_extent_update(req, op_idx, len);
1088 
1089 				len = 0;
1090 				offset = cur_offset;
1091 				data_pages = pages + i;
1092 				op_idx++;
1093 			}
1094 
1095 			set_page_writeback(pages[i]);
1096 			if (caching)
1097 				ceph_set_page_fscache(pages[i]);
1098 			len += thp_size(page);
1099 		}
1100 		ceph_fscache_write_to_cache(inode, offset, len, caching);
1101 
1102 		if (ceph_wbc.size_stable) {
1103 			len = min(len, ceph_wbc.i_size - offset);
1104 		} else if (i == locked_pages) {
1105 			/* writepages_finish() clears writeback pages
1106 			 * according to the data length, so make sure
1107 			 * data length covers all locked pages */
1108 			u64 min_len = len + 1 - thp_size(page);
1109 			len = get_writepages_data_length(inode, pages[i - 1],
1110 							 offset);
1111 			len = max(len, min_len);
1112 		}
1113 		dout("writepages got pages at %llu~%llu\n", offset, len);
1114 
1115 		osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
1116 						 0, from_pool, false);
1117 		osd_req_op_extent_update(req, op_idx, len);
1118 
1119 		BUG_ON(op_idx + 1 != req->r_num_ops);
1120 
1121 		from_pool = false;
1122 		if (i < locked_pages) {
1123 			BUG_ON(num_ops <= req->r_num_ops);
1124 			num_ops -= req->r_num_ops;
1125 			locked_pages -= i;
1126 
1127 			/* allocate new pages array for next request */
1128 			data_pages = pages;
1129 			pages = kmalloc_array(locked_pages, sizeof(*pages),
1130 					      GFP_NOFS);
1131 			if (!pages) {
1132 				from_pool = true;
1133 				pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1134 				BUG_ON(!pages);
1135 			}
1136 			memcpy(pages, data_pages + i,
1137 			       locked_pages * sizeof(*pages));
1138 			memset(data_pages + i, 0,
1139 			       locked_pages * sizeof(*pages));
1140 		} else {
1141 			BUG_ON(num_ops != req->r_num_ops);
1142 			index = pages[i - 1]->index + 1;
1143 			/* request message now owns the pages array */
1144 			pages = NULL;
1145 		}
1146 
1147 		req->r_mtime = inode->i_mtime;
1148 		rc = ceph_osdc_start_request(&fsc->client->osdc, req, true);
1149 		BUG_ON(rc);
1150 		req = NULL;
1151 
1152 		wbc->nr_to_write -= i;
1153 		if (pages)
1154 			goto new_request;
1155 
1156 		/*
1157 		 * We stop writing back only if we are not doing
1158 		 * integrity sync. In case of integrity sync we have to
1159 		 * keep going until we have written all the pages
1160 		 * we tagged for writeback prior to entering this loop.
1161 		 */
1162 		if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
1163 			done = true;
1164 
1165 release_pvec_pages:
1166 		dout("pagevec_release on %d pages (%p)\n", (int)pvec.nr,
1167 		     pvec.nr ? pvec.pages[0] : NULL);
1168 		pagevec_release(&pvec);
1169 	}
1170 
1171 	if (should_loop && !done) {
1172 		/* more to do; loop back to beginning of file */
1173 		dout("writepages looping back to beginning of file\n");
1174 		end = start_index - 1; /* OK even when start_index == 0 */
1175 
1176 		/* to write dirty pages associated with next snapc,
1177 		 * we need to wait until current writes complete */
1178 		if (wbc->sync_mode != WB_SYNC_NONE &&
1179 		    start_index == 0 && /* all dirty pages were checked */
1180 		    !ceph_wbc.head_snapc) {
1181 			struct page *page;
1182 			unsigned i, nr;
1183 			index = 0;
1184 			while ((index <= end) &&
1185 			       (nr = pagevec_lookup_tag(&pvec, mapping, &index,
1186 						PAGECACHE_TAG_WRITEBACK))) {
1187 				for (i = 0; i < nr; i++) {
1188 					page = pvec.pages[i];
1189 					if (page_snap_context(page) != snapc)
1190 						continue;
1191 					wait_on_page_writeback(page);
1192 				}
1193 				pagevec_release(&pvec);
1194 				cond_resched();
1195 			}
1196 		}
1197 
1198 		start_index = 0;
1199 		index = 0;
1200 		goto retry;
1201 	}
1202 
1203 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1204 		mapping->writeback_index = index;
1205 
1206 out:
1207 	ceph_osdc_put_request(req);
1208 	ceph_put_snap_context(last_snapc);
1209 	dout("writepages dend - startone, rc = %d\n", rc);
1210 	return rc;
1211 }
1212 
1213 
1214 
1215 /*
1216  * See if a given @snapc is either writeable, or already written.
1217  */
1218 static int context_is_writeable_or_written(struct inode *inode,
1219 					   struct ceph_snap_context *snapc)
1220 {
1221 	struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
1222 	int ret = !oldest || snapc->seq <= oldest->seq;
1223 
1224 	ceph_put_snap_context(oldest);
1225 	return ret;
1226 }
1227 
1228 /**
1229  * ceph_find_incompatible - find an incompatible context and return it
1230  * @page: page being dirtied
1231  *
1232  * We are only allowed to write into/dirty a page if the page is
1233  * clean, or already dirty within the same snap context. Returns a
1234  * conflicting context if there is one, NULL if there isn't, or a
1235  * negative error code on other errors.
1236  *
1237  * Must be called with page lock held.
1238  */
1239 static struct ceph_snap_context *
1240 ceph_find_incompatible(struct page *page)
1241 {
1242 	struct inode *inode = page->mapping->host;
1243 	struct ceph_inode_info *ci = ceph_inode(inode);
1244 
1245 	if (ceph_inode_is_shutdown(inode)) {
1246 		dout(" page %p %llx:%llx is shutdown\n", page,
1247 		     ceph_vinop(inode));
1248 		return ERR_PTR(-ESTALE);
1249 	}
1250 
1251 	for (;;) {
1252 		struct ceph_snap_context *snapc, *oldest;
1253 
1254 		wait_on_page_writeback(page);
1255 
1256 		snapc = page_snap_context(page);
1257 		if (!snapc || snapc == ci->i_head_snapc)
1258 			break;
1259 
1260 		/*
1261 		 * this page is already dirty in another (older) snap
1262 		 * context!  is it writeable now?
1263 		 */
1264 		oldest = get_oldest_context(inode, NULL, NULL);
1265 		if (snapc->seq > oldest->seq) {
1266 			/* not writeable -- return it for the caller to deal with */
1267 			ceph_put_snap_context(oldest);
1268 			dout(" page %p snapc %p not current or oldest\n", page, snapc);
1269 			return ceph_get_snap_context(snapc);
1270 		}
1271 		ceph_put_snap_context(oldest);
1272 
1273 		/* yay, writeable, do it now (without dropping page lock) */
1274 		dout(" page %p snapc %p not current, but oldest\n", page, snapc);
1275 		if (clear_page_dirty_for_io(page)) {
1276 			int r = writepage_nounlock(page, NULL);
1277 			if (r < 0)
1278 				return ERR_PTR(r);
1279 		}
1280 	}
1281 	return NULL;
1282 }
1283 
1284 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
1285 					struct folio *folio, void **_fsdata)
1286 {
1287 	struct inode *inode = file_inode(file);
1288 	struct ceph_inode_info *ci = ceph_inode(inode);
1289 	struct ceph_snap_context *snapc;
1290 
1291 	snapc = ceph_find_incompatible(folio_page(folio, 0));
1292 	if (snapc) {
1293 		int r;
1294 
1295 		folio_unlock(folio);
1296 		folio_put(folio);
1297 		if (IS_ERR(snapc))
1298 			return PTR_ERR(snapc);
1299 
1300 		ceph_queue_writeback(inode);
1301 		r = wait_event_killable(ci->i_cap_wq,
1302 					context_is_writeable_or_written(inode, snapc));
1303 		ceph_put_snap_context(snapc);
1304 		return r == 0 ? -EAGAIN : r;
1305 	}
1306 	return 0;
1307 }
1308 
1309 /*
1310  * We are only allowed to write into/dirty the page if the page is
1311  * clean, or already dirty within the same snap context.
1312  */
1313 static int ceph_write_begin(struct file *file, struct address_space *mapping,
1314 			    loff_t pos, unsigned len, unsigned aop_flags,
1315 			    struct page **pagep, void **fsdata)
1316 {
1317 	struct inode *inode = file_inode(file);
1318 	struct folio *folio = NULL;
1319 	int r;
1320 
1321 	r = netfs_write_begin(file, inode->i_mapping, pos, len, 0, &folio, NULL);
1322 	if (r == 0)
1323 		folio_wait_fscache(folio);
1324 	if (r < 0) {
1325 		if (folio)
1326 			folio_put(folio);
1327 	} else {
1328 		WARN_ON_ONCE(!folio_test_locked(folio));
1329 		*pagep = &folio->page;
1330 	}
1331 	return r;
1332 }
1333 
1334 /*
1335  * we don't do anything in here that simple_write_end doesn't do
1336  * except adjust dirty page accounting
1337  */
1338 static int ceph_write_end(struct file *file, struct address_space *mapping,
1339 			  loff_t pos, unsigned len, unsigned copied,
1340 			  struct page *subpage, void *fsdata)
1341 {
1342 	struct folio *folio = page_folio(subpage);
1343 	struct inode *inode = file_inode(file);
1344 	bool check_cap = false;
1345 
1346 	dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
1347 	     inode, folio, (int)pos, (int)copied, (int)len);
1348 
1349 	if (!folio_test_uptodate(folio)) {
1350 		/* just return that nothing was copied on a short copy */
1351 		if (copied < len) {
1352 			copied = 0;
1353 			goto out;
1354 		}
1355 		folio_mark_uptodate(folio);
1356 	}
1357 
1358 	/* did file size increase? */
1359 	if (pos+copied > i_size_read(inode))
1360 		check_cap = ceph_inode_set_size(inode, pos+copied);
1361 
1362 	folio_mark_dirty(folio);
1363 
1364 out:
1365 	folio_unlock(folio);
1366 	folio_put(folio);
1367 
1368 	if (check_cap)
1369 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY, NULL);
1370 
1371 	return copied;
1372 }
1373 
1374 const struct address_space_operations ceph_aops = {
1375 	.readpage = netfs_readpage,
1376 	.readahead = netfs_readahead,
1377 	.writepage = ceph_writepage,
1378 	.writepages = ceph_writepages_start,
1379 	.write_begin = ceph_write_begin,
1380 	.write_end = ceph_write_end,
1381 	.dirty_folio = ceph_dirty_folio,
1382 	.invalidate_folio = ceph_invalidate_folio,
1383 	.releasepage = ceph_releasepage,
1384 	.direct_IO = noop_direct_IO,
1385 };
1386 
1387 static void ceph_block_sigs(sigset_t *oldset)
1388 {
1389 	sigset_t mask;
1390 	siginitsetinv(&mask, sigmask(SIGKILL));
1391 	sigprocmask(SIG_BLOCK, &mask, oldset);
1392 }
1393 
1394 static void ceph_restore_sigs(sigset_t *oldset)
1395 {
1396 	sigprocmask(SIG_SETMASK, oldset, NULL);
1397 }
1398 
1399 /*
1400  * vm ops
1401  */
1402 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
1403 {
1404 	struct vm_area_struct *vma = vmf->vma;
1405 	struct inode *inode = file_inode(vma->vm_file);
1406 	struct ceph_inode_info *ci = ceph_inode(inode);
1407 	struct ceph_file_info *fi = vma->vm_file->private_data;
1408 	loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
1409 	int want, got, err;
1410 	sigset_t oldset;
1411 	vm_fault_t ret = VM_FAULT_SIGBUS;
1412 
1413 	if (ceph_inode_is_shutdown(inode))
1414 		return ret;
1415 
1416 	ceph_block_sigs(&oldset);
1417 
1418 	dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
1419 	     inode, ceph_vinop(inode), off);
1420 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1421 		want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
1422 	else
1423 		want = CEPH_CAP_FILE_CACHE;
1424 
1425 	got = 0;
1426 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
1427 	if (err < 0)
1428 		goto out_restore;
1429 
1430 	dout("filemap_fault %p %llu got cap refs on %s\n",
1431 	     inode, off, ceph_cap_string(got));
1432 
1433 	if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
1434 	    ci->i_inline_version == CEPH_INLINE_NONE) {
1435 		CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
1436 		ceph_add_rw_context(fi, &rw_ctx);
1437 		ret = filemap_fault(vmf);
1438 		ceph_del_rw_context(fi, &rw_ctx);
1439 		dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
1440 		     inode, off, ceph_cap_string(got), ret);
1441 	} else
1442 		err = -EAGAIN;
1443 
1444 	ceph_put_cap_refs(ci, got);
1445 
1446 	if (err != -EAGAIN)
1447 		goto out_restore;
1448 
1449 	/* read inline data */
1450 	if (off >= PAGE_SIZE) {
1451 		/* does not support inline data > PAGE_SIZE */
1452 		ret = VM_FAULT_SIGBUS;
1453 	} else {
1454 		struct address_space *mapping = inode->i_mapping;
1455 		struct page *page;
1456 
1457 		filemap_invalidate_lock_shared(mapping);
1458 		page = find_or_create_page(mapping, 0,
1459 				mapping_gfp_constraint(mapping, ~__GFP_FS));
1460 		if (!page) {
1461 			ret = VM_FAULT_OOM;
1462 			goto out_inline;
1463 		}
1464 		err = __ceph_do_getattr(inode, page,
1465 					 CEPH_STAT_CAP_INLINE_DATA, true);
1466 		if (err < 0 || off >= i_size_read(inode)) {
1467 			unlock_page(page);
1468 			put_page(page);
1469 			ret = vmf_error(err);
1470 			goto out_inline;
1471 		}
1472 		if (err < PAGE_SIZE)
1473 			zero_user_segment(page, err, PAGE_SIZE);
1474 		else
1475 			flush_dcache_page(page);
1476 		SetPageUptodate(page);
1477 		vmf->page = page;
1478 		ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
1479 out_inline:
1480 		filemap_invalidate_unlock_shared(mapping);
1481 		dout("filemap_fault %p %llu read inline data ret %x\n",
1482 		     inode, off, ret);
1483 	}
1484 out_restore:
1485 	ceph_restore_sigs(&oldset);
1486 	if (err < 0)
1487 		ret = vmf_error(err);
1488 
1489 	return ret;
1490 }
1491 
1492 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
1493 {
1494 	struct vm_area_struct *vma = vmf->vma;
1495 	struct inode *inode = file_inode(vma->vm_file);
1496 	struct ceph_inode_info *ci = ceph_inode(inode);
1497 	struct ceph_file_info *fi = vma->vm_file->private_data;
1498 	struct ceph_cap_flush *prealloc_cf;
1499 	struct page *page = vmf->page;
1500 	loff_t off = page_offset(page);
1501 	loff_t size = i_size_read(inode);
1502 	size_t len;
1503 	int want, got, err;
1504 	sigset_t oldset;
1505 	vm_fault_t ret = VM_FAULT_SIGBUS;
1506 
1507 	if (ceph_inode_is_shutdown(inode))
1508 		return ret;
1509 
1510 	prealloc_cf = ceph_alloc_cap_flush();
1511 	if (!prealloc_cf)
1512 		return VM_FAULT_OOM;
1513 
1514 	sb_start_pagefault(inode->i_sb);
1515 	ceph_block_sigs(&oldset);
1516 
1517 	if (off + thp_size(page) <= size)
1518 		len = thp_size(page);
1519 	else
1520 		len = offset_in_thp(page, size);
1521 
1522 	dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
1523 	     inode, ceph_vinop(inode), off, len, size);
1524 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1525 		want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
1526 	else
1527 		want = CEPH_CAP_FILE_BUFFER;
1528 
1529 	got = 0;
1530 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
1531 	if (err < 0)
1532 		goto out_free;
1533 
1534 	dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
1535 	     inode, off, len, ceph_cap_string(got));
1536 
1537 	/* Update time before taking page lock */
1538 	file_update_time(vma->vm_file);
1539 	inode_inc_iversion_raw(inode);
1540 
1541 	do {
1542 		struct ceph_snap_context *snapc;
1543 
1544 		lock_page(page);
1545 
1546 		if (page_mkwrite_check_truncate(page, inode) < 0) {
1547 			unlock_page(page);
1548 			ret = VM_FAULT_NOPAGE;
1549 			break;
1550 		}
1551 
1552 		snapc = ceph_find_incompatible(page);
1553 		if (!snapc) {
1554 			/* success.  we'll keep the page locked. */
1555 			set_page_dirty(page);
1556 			ret = VM_FAULT_LOCKED;
1557 			break;
1558 		}
1559 
1560 		unlock_page(page);
1561 
1562 		if (IS_ERR(snapc)) {
1563 			ret = VM_FAULT_SIGBUS;
1564 			break;
1565 		}
1566 
1567 		ceph_queue_writeback(inode);
1568 		err = wait_event_killable(ci->i_cap_wq,
1569 				context_is_writeable_or_written(inode, snapc));
1570 		ceph_put_snap_context(snapc);
1571 	} while (err == 0);
1572 
1573 	if (ret == VM_FAULT_LOCKED) {
1574 		int dirty;
1575 		spin_lock(&ci->i_ceph_lock);
1576 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
1577 					       &prealloc_cf);
1578 		spin_unlock(&ci->i_ceph_lock);
1579 		if (dirty)
1580 			__mark_inode_dirty(inode, dirty);
1581 	}
1582 
1583 	dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
1584 	     inode, off, len, ceph_cap_string(got), ret);
1585 	ceph_put_cap_refs_async(ci, got);
1586 out_free:
1587 	ceph_restore_sigs(&oldset);
1588 	sb_end_pagefault(inode->i_sb);
1589 	ceph_free_cap_flush(prealloc_cf);
1590 	if (err < 0)
1591 		ret = vmf_error(err);
1592 	return ret;
1593 }
1594 
1595 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1596 			   char	*data, size_t len)
1597 {
1598 	struct address_space *mapping = inode->i_mapping;
1599 	struct page *page;
1600 
1601 	if (locked_page) {
1602 		page = locked_page;
1603 	} else {
1604 		if (i_size_read(inode) == 0)
1605 			return;
1606 		page = find_or_create_page(mapping, 0,
1607 					   mapping_gfp_constraint(mapping,
1608 					   ~__GFP_FS));
1609 		if (!page)
1610 			return;
1611 		if (PageUptodate(page)) {
1612 			unlock_page(page);
1613 			put_page(page);
1614 			return;
1615 		}
1616 	}
1617 
1618 	dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
1619 	     inode, ceph_vinop(inode), len, locked_page);
1620 
1621 	if (len > 0) {
1622 		void *kaddr = kmap_atomic(page);
1623 		memcpy(kaddr, data, len);
1624 		kunmap_atomic(kaddr);
1625 	}
1626 
1627 	if (page != locked_page) {
1628 		if (len < PAGE_SIZE)
1629 			zero_user_segment(page, len, PAGE_SIZE);
1630 		else
1631 			flush_dcache_page(page);
1632 
1633 		SetPageUptodate(page);
1634 		unlock_page(page);
1635 		put_page(page);
1636 	}
1637 }
1638 
1639 int ceph_uninline_data(struct file *file)
1640 {
1641 	struct inode *inode = file_inode(file);
1642 	struct ceph_inode_info *ci = ceph_inode(inode);
1643 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
1644 	struct ceph_osd_request *req;
1645 	struct ceph_cap_flush *prealloc_cf;
1646 	struct folio *folio = NULL;
1647 	u64 inline_version = CEPH_INLINE_NONE;
1648 	struct page *pages[1];
1649 	int err = 0;
1650 	u64 len;
1651 
1652 	prealloc_cf = ceph_alloc_cap_flush();
1653 	if (!prealloc_cf)
1654 		return -ENOMEM;
1655 
1656 	folio = read_mapping_folio(inode->i_mapping, 0, file);
1657 	if (IS_ERR(folio)) {
1658 		err = PTR_ERR(folio);
1659 		goto out;
1660 	}
1661 
1662 	folio_lock(folio);
1663 
1664 	spin_lock(&ci->i_ceph_lock);
1665 	inline_version = ci->i_inline_version;
1666 	spin_unlock(&ci->i_ceph_lock);
1667 
1668 	dout("uninline_data %p %llx.%llx inline_version %llu\n",
1669 	     inode, ceph_vinop(inode), inline_version);
1670 
1671 	if (inline_version == 1 || /* initial version, no data */
1672 	    inline_version == CEPH_INLINE_NONE)
1673 		goto out_unlock;
1674 
1675 	len = i_size_read(inode);
1676 	if (len > folio_size(folio))
1677 		len = folio_size(folio);
1678 
1679 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1680 				    ceph_vino(inode), 0, &len, 0, 1,
1681 				    CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
1682 				    NULL, 0, 0, false);
1683 	if (IS_ERR(req)) {
1684 		err = PTR_ERR(req);
1685 		goto out_unlock;
1686 	}
1687 
1688 	req->r_mtime = inode->i_mtime;
1689 	err = ceph_osdc_start_request(&fsc->client->osdc, req, false);
1690 	if (!err)
1691 		err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1692 	ceph_osdc_put_request(req);
1693 	if (err < 0)
1694 		goto out_unlock;
1695 
1696 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1697 				    ceph_vino(inode), 0, &len, 1, 3,
1698 				    CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1699 				    NULL, ci->i_truncate_seq,
1700 				    ci->i_truncate_size, false);
1701 	if (IS_ERR(req)) {
1702 		err = PTR_ERR(req);
1703 		goto out_unlock;
1704 	}
1705 
1706 	pages[0] = folio_page(folio, 0);
1707 	osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
1708 
1709 	{
1710 		__le64 xattr_buf = cpu_to_le64(inline_version);
1711 		err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
1712 					    "inline_version", &xattr_buf,
1713 					    sizeof(xattr_buf),
1714 					    CEPH_OSD_CMPXATTR_OP_GT,
1715 					    CEPH_OSD_CMPXATTR_MODE_U64);
1716 		if (err)
1717 			goto out_put_req;
1718 	}
1719 
1720 	{
1721 		char xattr_buf[32];
1722 		int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
1723 					 "%llu", inline_version);
1724 		err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
1725 					    "inline_version",
1726 					    xattr_buf, xattr_len, 0, 0);
1727 		if (err)
1728 			goto out_put_req;
1729 	}
1730 
1731 	req->r_mtime = inode->i_mtime;
1732 	err = ceph_osdc_start_request(&fsc->client->osdc, req, false);
1733 	if (!err)
1734 		err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1735 
1736 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
1737 				  req->r_end_latency, len, err);
1738 
1739 	if (!err) {
1740 		int dirty;
1741 
1742 		/* Set to CAP_INLINE_NONE and dirty the caps */
1743 		down_read(&fsc->mdsc->snap_rwsem);
1744 		spin_lock(&ci->i_ceph_lock);
1745 		ci->i_inline_version = CEPH_INLINE_NONE;
1746 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
1747 		spin_unlock(&ci->i_ceph_lock);
1748 		up_read(&fsc->mdsc->snap_rwsem);
1749 		if (dirty)
1750 			__mark_inode_dirty(inode, dirty);
1751 	}
1752 out_put_req:
1753 	ceph_osdc_put_request(req);
1754 	if (err == -ECANCELED)
1755 		err = 0;
1756 out_unlock:
1757 	folio_unlock(folio);
1758 	folio_put(folio);
1759 out:
1760 	ceph_free_cap_flush(prealloc_cf);
1761 	dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
1762 	     inode, ceph_vinop(inode), inline_version, err);
1763 	return err;
1764 }
1765 
1766 static const struct vm_operations_struct ceph_vmops = {
1767 	.fault		= ceph_filemap_fault,
1768 	.page_mkwrite	= ceph_page_mkwrite,
1769 };
1770 
1771 int ceph_mmap(struct file *file, struct vm_area_struct *vma)
1772 {
1773 	struct address_space *mapping = file->f_mapping;
1774 
1775 	if (!mapping->a_ops->readpage)
1776 		return -ENOEXEC;
1777 	file_accessed(file);
1778 	vma->vm_ops = &ceph_vmops;
1779 	return 0;
1780 }
1781 
1782 enum {
1783 	POOL_READ	= 1,
1784 	POOL_WRITE	= 2,
1785 };
1786 
1787 static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
1788 				s64 pool, struct ceph_string *pool_ns)
1789 {
1790 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1791 	struct ceph_mds_client *mdsc = fsc->mdsc;
1792 	struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
1793 	struct rb_node **p, *parent;
1794 	struct ceph_pool_perm *perm;
1795 	struct page **pages;
1796 	size_t pool_ns_len;
1797 	int err = 0, err2 = 0, have = 0;
1798 
1799 	down_read(&mdsc->pool_perm_rwsem);
1800 	p = &mdsc->pool_perm_tree.rb_node;
1801 	while (*p) {
1802 		perm = rb_entry(*p, struct ceph_pool_perm, node);
1803 		if (pool < perm->pool)
1804 			p = &(*p)->rb_left;
1805 		else if (pool > perm->pool)
1806 			p = &(*p)->rb_right;
1807 		else {
1808 			int ret = ceph_compare_string(pool_ns,
1809 						perm->pool_ns,
1810 						perm->pool_ns_len);
1811 			if (ret < 0)
1812 				p = &(*p)->rb_left;
1813 			else if (ret > 0)
1814 				p = &(*p)->rb_right;
1815 			else {
1816 				have = perm->perm;
1817 				break;
1818 			}
1819 		}
1820 	}
1821 	up_read(&mdsc->pool_perm_rwsem);
1822 	if (*p)
1823 		goto out;
1824 
1825 	if (pool_ns)
1826 		dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
1827 		     pool, (int)pool_ns->len, pool_ns->str);
1828 	else
1829 		dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
1830 
1831 	down_write(&mdsc->pool_perm_rwsem);
1832 	p = &mdsc->pool_perm_tree.rb_node;
1833 	parent = NULL;
1834 	while (*p) {
1835 		parent = *p;
1836 		perm = rb_entry(parent, struct ceph_pool_perm, node);
1837 		if (pool < perm->pool)
1838 			p = &(*p)->rb_left;
1839 		else if (pool > perm->pool)
1840 			p = &(*p)->rb_right;
1841 		else {
1842 			int ret = ceph_compare_string(pool_ns,
1843 						perm->pool_ns,
1844 						perm->pool_ns_len);
1845 			if (ret < 0)
1846 				p = &(*p)->rb_left;
1847 			else if (ret > 0)
1848 				p = &(*p)->rb_right;
1849 			else {
1850 				have = perm->perm;
1851 				break;
1852 			}
1853 		}
1854 	}
1855 	if (*p) {
1856 		up_write(&mdsc->pool_perm_rwsem);
1857 		goto out;
1858 	}
1859 
1860 	rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1861 					 1, false, GFP_NOFS);
1862 	if (!rd_req) {
1863 		err = -ENOMEM;
1864 		goto out_unlock;
1865 	}
1866 
1867 	rd_req->r_flags = CEPH_OSD_FLAG_READ;
1868 	osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
1869 	rd_req->r_base_oloc.pool = pool;
1870 	if (pool_ns)
1871 		rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
1872 	ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
1873 
1874 	err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
1875 	if (err)
1876 		goto out_unlock;
1877 
1878 	wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
1879 					 1, false, GFP_NOFS);
1880 	if (!wr_req) {
1881 		err = -ENOMEM;
1882 		goto out_unlock;
1883 	}
1884 
1885 	wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
1886 	osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
1887 	ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
1888 	ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
1889 
1890 	err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
1891 	if (err)
1892 		goto out_unlock;
1893 
1894 	/* one page should be large enough for STAT data */
1895 	pages = ceph_alloc_page_vector(1, GFP_KERNEL);
1896 	if (IS_ERR(pages)) {
1897 		err = PTR_ERR(pages);
1898 		goto out_unlock;
1899 	}
1900 
1901 	osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
1902 				     0, false, true);
1903 	err = ceph_osdc_start_request(&fsc->client->osdc, rd_req, false);
1904 
1905 	wr_req->r_mtime = ci->vfs_inode.i_mtime;
1906 	err2 = ceph_osdc_start_request(&fsc->client->osdc, wr_req, false);
1907 
1908 	if (!err)
1909 		err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
1910 	if (!err2)
1911 		err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
1912 
1913 	if (err >= 0 || err == -ENOENT)
1914 		have |= POOL_READ;
1915 	else if (err != -EPERM) {
1916 		if (err == -EBLOCKLISTED)
1917 			fsc->blocklisted = true;
1918 		goto out_unlock;
1919 	}
1920 
1921 	if (err2 == 0 || err2 == -EEXIST)
1922 		have |= POOL_WRITE;
1923 	else if (err2 != -EPERM) {
1924 		if (err2 == -EBLOCKLISTED)
1925 			fsc->blocklisted = true;
1926 		err = err2;
1927 		goto out_unlock;
1928 	}
1929 
1930 	pool_ns_len = pool_ns ? pool_ns->len : 0;
1931 	perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
1932 	if (!perm) {
1933 		err = -ENOMEM;
1934 		goto out_unlock;
1935 	}
1936 
1937 	perm->pool = pool;
1938 	perm->perm = have;
1939 	perm->pool_ns_len = pool_ns_len;
1940 	if (pool_ns_len > 0)
1941 		memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
1942 	perm->pool_ns[pool_ns_len] = 0;
1943 
1944 	rb_link_node(&perm->node, parent, p);
1945 	rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
1946 	err = 0;
1947 out_unlock:
1948 	up_write(&mdsc->pool_perm_rwsem);
1949 
1950 	ceph_osdc_put_request(rd_req);
1951 	ceph_osdc_put_request(wr_req);
1952 out:
1953 	if (!err)
1954 		err = have;
1955 	if (pool_ns)
1956 		dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
1957 		     pool, (int)pool_ns->len, pool_ns->str, err);
1958 	else
1959 		dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
1960 	return err;
1961 }
1962 
1963 int ceph_pool_perm_check(struct inode *inode, int need)
1964 {
1965 	struct ceph_inode_info *ci = ceph_inode(inode);
1966 	struct ceph_string *pool_ns;
1967 	s64 pool;
1968 	int ret, flags;
1969 
1970 	/* Only need to do this for regular files */
1971 	if (!S_ISREG(inode->i_mode))
1972 		return 0;
1973 
1974 	if (ci->i_vino.snap != CEPH_NOSNAP) {
1975 		/*
1976 		 * Pool permission check needs to write to the first object.
1977 		 * But for snapshot, head of the first object may have alread
1978 		 * been deleted. Skip check to avoid creating orphan object.
1979 		 */
1980 		return 0;
1981 	}
1982 
1983 	if (ceph_test_mount_opt(ceph_inode_to_client(inode),
1984 				NOPOOLPERM))
1985 		return 0;
1986 
1987 	spin_lock(&ci->i_ceph_lock);
1988 	flags = ci->i_ceph_flags;
1989 	pool = ci->i_layout.pool_id;
1990 	spin_unlock(&ci->i_ceph_lock);
1991 check:
1992 	if (flags & CEPH_I_POOL_PERM) {
1993 		if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
1994 			dout("ceph_pool_perm_check pool %lld no read perm\n",
1995 			     pool);
1996 			return -EPERM;
1997 		}
1998 		if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
1999 			dout("ceph_pool_perm_check pool %lld no write perm\n",
2000 			     pool);
2001 			return -EPERM;
2002 		}
2003 		return 0;
2004 	}
2005 
2006 	pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
2007 	ret = __ceph_pool_perm_get(ci, pool, pool_ns);
2008 	ceph_put_string(pool_ns);
2009 	if (ret < 0)
2010 		return ret;
2011 
2012 	flags = CEPH_I_POOL_PERM;
2013 	if (ret & POOL_READ)
2014 		flags |= CEPH_I_POOL_RD;
2015 	if (ret & POOL_WRITE)
2016 		flags |= CEPH_I_POOL_WR;
2017 
2018 	spin_lock(&ci->i_ceph_lock);
2019 	if (pool == ci->i_layout.pool_id &&
2020 	    pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
2021 		ci->i_ceph_flags |= flags;
2022         } else {
2023 		pool = ci->i_layout.pool_id;
2024 		flags = ci->i_ceph_flags;
2025 	}
2026 	spin_unlock(&ci->i_ceph_lock);
2027 	goto check;
2028 }
2029 
2030 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
2031 {
2032 	struct ceph_pool_perm *perm;
2033 	struct rb_node *n;
2034 
2035 	while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
2036 		n = rb_first(&mdsc->pool_perm_tree);
2037 		perm = rb_entry(n, struct ceph_pool_perm, node);
2038 		rb_erase(n, &mdsc->pool_perm_tree);
2039 		kfree(perm);
2040 	}
2041 }
2042