1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 312 end_buffer_async_read(bh, valid); 313 kfree(ctx); 314 } 315 316 static bool need_fsverity(struct buffer_head *bh) 317 { 318 struct folio *folio = bh->b_folio; 319 struct inode *inode = folio->mapping->host; 320 321 return fsverity_active(inode) && 322 /* needed by ext4 */ 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 324 } 325 326 static void decrypt_bh(struct work_struct *work) 327 { 328 struct postprocess_bh_ctx *ctx = 329 container_of(work, struct postprocess_bh_ctx, work); 330 struct buffer_head *bh = ctx->bh; 331 int err; 332 333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 334 bh_offset(bh)); 335 if (err == 0 && need_fsverity(bh)) { 336 /* 337 * We use different work queues for decryption and for verity 338 * because verity may require reading metadata pages that need 339 * decryption, and we shouldn't recurse to the same workqueue. 340 */ 341 INIT_WORK(&ctx->work, verify_bh); 342 fsverity_enqueue_verify_work(&ctx->work); 343 return; 344 } 345 end_buffer_async_read(bh, err == 0); 346 kfree(ctx); 347 } 348 349 /* 350 * I/O completion handler for block_read_full_folio() - pages 351 * which come unlocked at the end of I/O. 352 */ 353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 354 { 355 struct inode *inode = bh->b_folio->mapping->host; 356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 357 bool verify = need_fsverity(bh); 358 359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 360 if (uptodate && (decrypt || verify)) { 361 struct postprocess_bh_ctx *ctx = 362 kmalloc(sizeof(*ctx), GFP_ATOMIC); 363 364 if (ctx) { 365 ctx->bh = bh; 366 if (decrypt) { 367 INIT_WORK(&ctx->work, decrypt_bh); 368 fscrypt_enqueue_decrypt_work(&ctx->work); 369 } else { 370 INIT_WORK(&ctx->work, verify_bh); 371 fsverity_enqueue_verify_work(&ctx->work); 372 } 373 return; 374 } 375 uptodate = 0; 376 } 377 end_buffer_async_read(bh, uptodate); 378 } 379 380 /* 381 * Completion handler for block_write_full_page() - pages which are unlocked 382 * during I/O, and which have PageWriteback cleared upon I/O completion. 383 */ 384 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 385 { 386 unsigned long flags; 387 struct buffer_head *first; 388 struct buffer_head *tmp; 389 struct folio *folio; 390 391 BUG_ON(!buffer_async_write(bh)); 392 393 folio = bh->b_folio; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 buffer_io_error(bh, ", lost async page write"); 398 mark_buffer_write_io_error(bh); 399 clear_buffer_uptodate(bh); 400 folio_set_error(folio); 401 } 402 403 first = folio_buffers(folio); 404 spin_lock_irqsave(&first->b_uptodate_lock, flags); 405 406 clear_buffer_async_write(bh); 407 unlock_buffer(bh); 408 tmp = bh->b_this_page; 409 while (tmp != bh) { 410 if (buffer_async_write(tmp)) { 411 BUG_ON(!buffer_locked(tmp)); 412 goto still_busy; 413 } 414 tmp = tmp->b_this_page; 415 } 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 417 folio_end_writeback(folio); 418 return; 419 420 still_busy: 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 422 return; 423 } 424 EXPORT_SYMBOL(end_buffer_async_write); 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for private_list is via the private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->private_lock does *not* protect mapping->private_list! In fact, 486 * mapping->private_list will always be protected by the backing blockdev's 487 * ->private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->private_list via these 493 * utility functions are free to use private_lock and private_list for 494 * whatever they want. The only requirement is that list_empty(private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 /** 567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 568 * @mapping: the mapping which wants those buffers written 569 * 570 * Starts I/O against the buffers at mapping->private_list, and waits upon 571 * that I/O. 572 * 573 * Basically, this is a convenience function for fsync(). 574 * @mapping is a file or directory which needs those buffers to be written for 575 * a successful fsync(). 576 */ 577 int sync_mapping_buffers(struct address_space *mapping) 578 { 579 struct address_space *buffer_mapping = mapping->private_data; 580 581 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 582 return 0; 583 584 return fsync_buffers_list(&buffer_mapping->private_lock, 585 &mapping->private_list); 586 } 587 EXPORT_SYMBOL(sync_mapping_buffers); 588 589 /** 590 * generic_buffers_fsync_noflush - generic buffer fsync implementation 591 * for simple filesystems with no inode lock 592 * 593 * @file: file to synchronize 594 * @start: start offset in bytes 595 * @end: end offset in bytes (inclusive) 596 * @datasync: only synchronize essential metadata if true 597 * 598 * This is a generic implementation of the fsync method for simple 599 * filesystems which track all non-inode metadata in the buffers list 600 * hanging off the address_space structure. 601 */ 602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 603 bool datasync) 604 { 605 struct inode *inode = file->f_mapping->host; 606 int err; 607 int ret; 608 609 err = file_write_and_wait_range(file, start, end); 610 if (err) 611 return err; 612 613 ret = sync_mapping_buffers(inode->i_mapping); 614 if (!(inode->i_state & I_DIRTY_ALL)) 615 goto out; 616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 617 goto out; 618 619 err = sync_inode_metadata(inode, 1); 620 if (ret == 0) 621 ret = err; 622 623 out: 624 /* check and advance again to catch errors after syncing out buffers */ 625 err = file_check_and_advance_wb_err(file); 626 if (ret == 0) 627 ret = err; 628 return ret; 629 } 630 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 631 632 /** 633 * generic_buffers_fsync - generic buffer fsync implementation 634 * for simple filesystems with no inode lock 635 * 636 * @file: file to synchronize 637 * @start: start offset in bytes 638 * @end: end offset in bytes (inclusive) 639 * @datasync: only synchronize essential metadata if true 640 * 641 * This is a generic implementation of the fsync method for simple 642 * filesystems which track all non-inode metadata in the buffers list 643 * hanging off the address_space structure. This also makes sure that 644 * a device cache flush operation is called at the end. 645 */ 646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 647 bool datasync) 648 { 649 struct inode *inode = file->f_mapping->host; 650 int ret; 651 652 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 653 if (!ret) 654 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 655 return ret; 656 } 657 EXPORT_SYMBOL(generic_buffers_fsync); 658 659 /* 660 * Called when we've recently written block `bblock', and it is known that 661 * `bblock' was for a buffer_boundary() buffer. This means that the block at 662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 663 * dirty, schedule it for IO. So that indirects merge nicely with their data. 664 */ 665 void write_boundary_block(struct block_device *bdev, 666 sector_t bblock, unsigned blocksize) 667 { 668 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 669 if (bh) { 670 if (buffer_dirty(bh)) 671 write_dirty_buffer(bh, 0); 672 put_bh(bh); 673 } 674 } 675 676 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 677 { 678 struct address_space *mapping = inode->i_mapping; 679 struct address_space *buffer_mapping = bh->b_folio->mapping; 680 681 mark_buffer_dirty(bh); 682 if (!mapping->private_data) { 683 mapping->private_data = buffer_mapping; 684 } else { 685 BUG_ON(mapping->private_data != buffer_mapping); 686 } 687 if (!bh->b_assoc_map) { 688 spin_lock(&buffer_mapping->private_lock); 689 list_move_tail(&bh->b_assoc_buffers, 690 &mapping->private_list); 691 bh->b_assoc_map = mapping; 692 spin_unlock(&buffer_mapping->private_lock); 693 } 694 } 695 EXPORT_SYMBOL(mark_buffer_dirty_inode); 696 697 /* 698 * Add a page to the dirty page list. 699 * 700 * It is a sad fact of life that this function is called from several places 701 * deeply under spinlocking. It may not sleep. 702 * 703 * If the page has buffers, the uptodate buffers are set dirty, to preserve 704 * dirty-state coherency between the page and the buffers. It the page does 705 * not have buffers then when they are later attached they will all be set 706 * dirty. 707 * 708 * The buffers are dirtied before the page is dirtied. There's a small race 709 * window in which a writepage caller may see the page cleanness but not the 710 * buffer dirtiness. That's fine. If this code were to set the page dirty 711 * before the buffers, a concurrent writepage caller could clear the page dirty 712 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 713 * page on the dirty page list. 714 * 715 * We use private_lock to lock against try_to_free_buffers while using the 716 * page's buffer list. Also use this to protect against clean buffers being 717 * added to the page after it was set dirty. 718 * 719 * FIXME: may need to call ->reservepage here as well. That's rather up to the 720 * address_space though. 721 */ 722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 723 { 724 struct buffer_head *head; 725 bool newly_dirty; 726 727 spin_lock(&mapping->private_lock); 728 head = folio_buffers(folio); 729 if (head) { 730 struct buffer_head *bh = head; 731 732 do { 733 set_buffer_dirty(bh); 734 bh = bh->b_this_page; 735 } while (bh != head); 736 } 737 /* 738 * Lock out page's memcg migration to keep PageDirty 739 * synchronized with per-memcg dirty page counters. 740 */ 741 folio_memcg_lock(folio); 742 newly_dirty = !folio_test_set_dirty(folio); 743 spin_unlock(&mapping->private_lock); 744 745 if (newly_dirty) 746 __folio_mark_dirty(folio, mapping, 1); 747 748 folio_memcg_unlock(folio); 749 750 if (newly_dirty) 751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 752 753 return newly_dirty; 754 } 755 EXPORT_SYMBOL(block_dirty_folio); 756 757 /* 758 * Write out and wait upon a list of buffers. 759 * 760 * We have conflicting pressures: we want to make sure that all 761 * initially dirty buffers get waited on, but that any subsequently 762 * dirtied buffers don't. After all, we don't want fsync to last 763 * forever if somebody is actively writing to the file. 764 * 765 * Do this in two main stages: first we copy dirty buffers to a 766 * temporary inode list, queueing the writes as we go. Then we clean 767 * up, waiting for those writes to complete. 768 * 769 * During this second stage, any subsequent updates to the file may end 770 * up refiling the buffer on the original inode's dirty list again, so 771 * there is a chance we will end up with a buffer queued for write but 772 * not yet completed on that list. So, as a final cleanup we go through 773 * the osync code to catch these locked, dirty buffers without requeuing 774 * any newly dirty buffers for write. 775 */ 776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 777 { 778 struct buffer_head *bh; 779 struct list_head tmp; 780 struct address_space *mapping; 781 int err = 0, err2; 782 struct blk_plug plug; 783 784 INIT_LIST_HEAD(&tmp); 785 blk_start_plug(&plug); 786 787 spin_lock(lock); 788 while (!list_empty(list)) { 789 bh = BH_ENTRY(list->next); 790 mapping = bh->b_assoc_map; 791 __remove_assoc_queue(bh); 792 /* Avoid race with mark_buffer_dirty_inode() which does 793 * a lockless check and we rely on seeing the dirty bit */ 794 smp_mb(); 795 if (buffer_dirty(bh) || buffer_locked(bh)) { 796 list_add(&bh->b_assoc_buffers, &tmp); 797 bh->b_assoc_map = mapping; 798 if (buffer_dirty(bh)) { 799 get_bh(bh); 800 spin_unlock(lock); 801 /* 802 * Ensure any pending I/O completes so that 803 * write_dirty_buffer() actually writes the 804 * current contents - it is a noop if I/O is 805 * still in flight on potentially older 806 * contents. 807 */ 808 write_dirty_buffer(bh, REQ_SYNC); 809 810 /* 811 * Kick off IO for the previous mapping. Note 812 * that we will not run the very last mapping, 813 * wait_on_buffer() will do that for us 814 * through sync_buffer(). 815 */ 816 brelse(bh); 817 spin_lock(lock); 818 } 819 } 820 } 821 822 spin_unlock(lock); 823 blk_finish_plug(&plug); 824 spin_lock(lock); 825 826 while (!list_empty(&tmp)) { 827 bh = BH_ENTRY(tmp.prev); 828 get_bh(bh); 829 mapping = bh->b_assoc_map; 830 __remove_assoc_queue(bh); 831 /* Avoid race with mark_buffer_dirty_inode() which does 832 * a lockless check and we rely on seeing the dirty bit */ 833 smp_mb(); 834 if (buffer_dirty(bh)) { 835 list_add(&bh->b_assoc_buffers, 836 &mapping->private_list); 837 bh->b_assoc_map = mapping; 838 } 839 spin_unlock(lock); 840 wait_on_buffer(bh); 841 if (!buffer_uptodate(bh)) 842 err = -EIO; 843 brelse(bh); 844 spin_lock(lock); 845 } 846 847 spin_unlock(lock); 848 err2 = osync_buffers_list(lock, list); 849 if (err) 850 return err; 851 else 852 return err2; 853 } 854 855 /* 856 * Invalidate any and all dirty buffers on a given inode. We are 857 * probably unmounting the fs, but that doesn't mean we have already 858 * done a sync(). Just drop the buffers from the inode list. 859 * 860 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 861 * assumes that all the buffers are against the blockdev. Not true 862 * for reiserfs. 863 */ 864 void invalidate_inode_buffers(struct inode *inode) 865 { 866 if (inode_has_buffers(inode)) { 867 struct address_space *mapping = &inode->i_data; 868 struct list_head *list = &mapping->private_list; 869 struct address_space *buffer_mapping = mapping->private_data; 870 871 spin_lock(&buffer_mapping->private_lock); 872 while (!list_empty(list)) 873 __remove_assoc_queue(BH_ENTRY(list->next)); 874 spin_unlock(&buffer_mapping->private_lock); 875 } 876 } 877 EXPORT_SYMBOL(invalidate_inode_buffers); 878 879 /* 880 * Remove any clean buffers from the inode's buffer list. This is called 881 * when we're trying to free the inode itself. Those buffers can pin it. 882 * 883 * Returns true if all buffers were removed. 884 */ 885 int remove_inode_buffers(struct inode *inode) 886 { 887 int ret = 1; 888 889 if (inode_has_buffers(inode)) { 890 struct address_space *mapping = &inode->i_data; 891 struct list_head *list = &mapping->private_list; 892 struct address_space *buffer_mapping = mapping->private_data; 893 894 spin_lock(&buffer_mapping->private_lock); 895 while (!list_empty(list)) { 896 struct buffer_head *bh = BH_ENTRY(list->next); 897 if (buffer_dirty(bh)) { 898 ret = 0; 899 break; 900 } 901 __remove_assoc_queue(bh); 902 } 903 spin_unlock(&buffer_mapping->private_lock); 904 } 905 return ret; 906 } 907 908 /* 909 * Create the appropriate buffers when given a folio for data area and 910 * the size of each buffer.. Use the bh->b_this_page linked list to 911 * follow the buffers created. Return NULL if unable to create more 912 * buffers. 913 * 914 * The retry flag is used to differentiate async IO (paging, swapping) 915 * which may not fail from ordinary buffer allocations. 916 */ 917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 918 bool retry) 919 { 920 struct buffer_head *bh, *head; 921 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 922 long offset; 923 struct mem_cgroup *memcg, *old_memcg; 924 925 if (retry) 926 gfp |= __GFP_NOFAIL; 927 928 /* The folio lock pins the memcg */ 929 memcg = folio_memcg(folio); 930 old_memcg = set_active_memcg(memcg); 931 932 head = NULL; 933 offset = folio_size(folio); 934 while ((offset -= size) >= 0) { 935 bh = alloc_buffer_head(gfp); 936 if (!bh) 937 goto no_grow; 938 939 bh->b_this_page = head; 940 bh->b_blocknr = -1; 941 head = bh; 942 943 bh->b_size = size; 944 945 /* Link the buffer to its folio */ 946 folio_set_bh(bh, folio, offset); 947 } 948 out: 949 set_active_memcg(old_memcg); 950 return head; 951 /* 952 * In case anything failed, we just free everything we got. 953 */ 954 no_grow: 955 if (head) { 956 do { 957 bh = head; 958 head = head->b_this_page; 959 free_buffer_head(bh); 960 } while (head); 961 } 962 963 goto out; 964 } 965 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 966 967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 968 bool retry) 969 { 970 return folio_alloc_buffers(page_folio(page), size, retry); 971 } 972 EXPORT_SYMBOL_GPL(alloc_page_buffers); 973 974 static inline void link_dev_buffers(struct folio *folio, 975 struct buffer_head *head) 976 { 977 struct buffer_head *bh, *tail; 978 979 bh = head; 980 do { 981 tail = bh; 982 bh = bh->b_this_page; 983 } while (bh); 984 tail->b_this_page = head; 985 folio_attach_private(folio, head); 986 } 987 988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 989 { 990 sector_t retval = ~((sector_t)0); 991 loff_t sz = bdev_nr_bytes(bdev); 992 993 if (sz) { 994 unsigned int sizebits = blksize_bits(size); 995 retval = (sz >> sizebits); 996 } 997 return retval; 998 } 999 1000 /* 1001 * Initialise the state of a blockdev folio's buffers. 1002 */ 1003 static sector_t folio_init_buffers(struct folio *folio, 1004 struct block_device *bdev, sector_t block, int size) 1005 { 1006 struct buffer_head *head = folio_buffers(folio); 1007 struct buffer_head *bh = head; 1008 bool uptodate = folio_test_uptodate(folio); 1009 sector_t end_block = blkdev_max_block(bdev, size); 1010 1011 do { 1012 if (!buffer_mapped(bh)) { 1013 bh->b_end_io = NULL; 1014 bh->b_private = NULL; 1015 bh->b_bdev = bdev; 1016 bh->b_blocknr = block; 1017 if (uptodate) 1018 set_buffer_uptodate(bh); 1019 if (block < end_block) 1020 set_buffer_mapped(bh); 1021 } 1022 block++; 1023 bh = bh->b_this_page; 1024 } while (bh != head); 1025 1026 /* 1027 * Caller needs to validate requested block against end of device. 1028 */ 1029 return end_block; 1030 } 1031 1032 /* 1033 * Create the page-cache page that contains the requested block. 1034 * 1035 * This is used purely for blockdev mappings. 1036 */ 1037 static int 1038 grow_dev_page(struct block_device *bdev, sector_t block, 1039 pgoff_t index, int size, int sizebits, gfp_t gfp) 1040 { 1041 struct inode *inode = bdev->bd_inode; 1042 struct folio *folio; 1043 struct buffer_head *bh; 1044 sector_t end_block; 1045 int ret = 0; 1046 gfp_t gfp_mask; 1047 1048 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 1049 1050 /* 1051 * XXX: __getblk_slow() can not really deal with failure and 1052 * will endlessly loop on improvised global reclaim. Prefer 1053 * looping in the allocator rather than here, at least that 1054 * code knows what it's doing. 1055 */ 1056 gfp_mask |= __GFP_NOFAIL; 1057 1058 folio = __filemap_get_folio(inode->i_mapping, index, 1059 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask); 1060 1061 bh = folio_buffers(folio); 1062 if (bh) { 1063 if (bh->b_size == size) { 1064 end_block = folio_init_buffers(folio, bdev, 1065 (sector_t)index << sizebits, size); 1066 goto done; 1067 } 1068 if (!try_to_free_buffers(folio)) 1069 goto failed; 1070 } 1071 1072 bh = folio_alloc_buffers(folio, size, true); 1073 1074 /* 1075 * Link the folio to the buffers and initialise them. Take the 1076 * lock to be atomic wrt __find_get_block(), which does not 1077 * run under the folio lock. 1078 */ 1079 spin_lock(&inode->i_mapping->private_lock); 1080 link_dev_buffers(folio, bh); 1081 end_block = folio_init_buffers(folio, bdev, 1082 (sector_t)index << sizebits, size); 1083 spin_unlock(&inode->i_mapping->private_lock); 1084 done: 1085 ret = (block < end_block) ? 1 : -ENXIO; 1086 failed: 1087 folio_unlock(folio); 1088 folio_put(folio); 1089 return ret; 1090 } 1091 1092 /* 1093 * Create buffers for the specified block device block's page. If 1094 * that page was dirty, the buffers are set dirty also. 1095 */ 1096 static int 1097 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1098 { 1099 pgoff_t index; 1100 int sizebits; 1101 1102 sizebits = PAGE_SHIFT - __ffs(size); 1103 index = block >> sizebits; 1104 1105 /* 1106 * Check for a block which wants to lie outside our maximum possible 1107 * pagecache index. (this comparison is done using sector_t types). 1108 */ 1109 if (unlikely(index != block >> sizebits)) { 1110 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1111 "device %pg\n", 1112 __func__, (unsigned long long)block, 1113 bdev); 1114 return -EIO; 1115 } 1116 1117 /* Create a page with the proper size buffers.. */ 1118 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1119 } 1120 1121 static struct buffer_head * 1122 __getblk_slow(struct block_device *bdev, sector_t block, 1123 unsigned size, gfp_t gfp) 1124 { 1125 /* Size must be multiple of hard sectorsize */ 1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1127 (size < 512 || size > PAGE_SIZE))) { 1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1129 size); 1130 printk(KERN_ERR "logical block size: %d\n", 1131 bdev_logical_block_size(bdev)); 1132 1133 dump_stack(); 1134 return NULL; 1135 } 1136 1137 for (;;) { 1138 struct buffer_head *bh; 1139 int ret; 1140 1141 bh = __find_get_block(bdev, block, size); 1142 if (bh) 1143 return bh; 1144 1145 ret = grow_buffers(bdev, block, size, gfp); 1146 if (ret < 0) 1147 return NULL; 1148 } 1149 } 1150 1151 /* 1152 * The relationship between dirty buffers and dirty pages: 1153 * 1154 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1155 * the page is tagged dirty in the page cache. 1156 * 1157 * At all times, the dirtiness of the buffers represents the dirtiness of 1158 * subsections of the page. If the page has buffers, the page dirty bit is 1159 * merely a hint about the true dirty state. 1160 * 1161 * When a page is set dirty in its entirety, all its buffers are marked dirty 1162 * (if the page has buffers). 1163 * 1164 * When a buffer is marked dirty, its page is dirtied, but the page's other 1165 * buffers are not. 1166 * 1167 * Also. When blockdev buffers are explicitly read with bread(), they 1168 * individually become uptodate. But their backing page remains not 1169 * uptodate - even if all of its buffers are uptodate. A subsequent 1170 * block_read_full_folio() against that folio will discover all the uptodate 1171 * buffers, will set the folio uptodate and will perform no I/O. 1172 */ 1173 1174 /** 1175 * mark_buffer_dirty - mark a buffer_head as needing writeout 1176 * @bh: the buffer_head to mark dirty 1177 * 1178 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1179 * its backing page dirty, then tag the page as dirty in the page cache 1180 * and then attach the address_space's inode to its superblock's dirty 1181 * inode list. 1182 * 1183 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1184 * i_pages lock and mapping->host->i_lock. 1185 */ 1186 void mark_buffer_dirty(struct buffer_head *bh) 1187 { 1188 WARN_ON_ONCE(!buffer_uptodate(bh)); 1189 1190 trace_block_dirty_buffer(bh); 1191 1192 /* 1193 * Very *carefully* optimize the it-is-already-dirty case. 1194 * 1195 * Don't let the final "is it dirty" escape to before we 1196 * perhaps modified the buffer. 1197 */ 1198 if (buffer_dirty(bh)) { 1199 smp_mb(); 1200 if (buffer_dirty(bh)) 1201 return; 1202 } 1203 1204 if (!test_set_buffer_dirty(bh)) { 1205 struct folio *folio = bh->b_folio; 1206 struct address_space *mapping = NULL; 1207 1208 folio_memcg_lock(folio); 1209 if (!folio_test_set_dirty(folio)) { 1210 mapping = folio->mapping; 1211 if (mapping) 1212 __folio_mark_dirty(folio, mapping, 0); 1213 } 1214 folio_memcg_unlock(folio); 1215 if (mapping) 1216 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1217 } 1218 } 1219 EXPORT_SYMBOL(mark_buffer_dirty); 1220 1221 void mark_buffer_write_io_error(struct buffer_head *bh) 1222 { 1223 set_buffer_write_io_error(bh); 1224 /* FIXME: do we need to set this in both places? */ 1225 if (bh->b_folio && bh->b_folio->mapping) 1226 mapping_set_error(bh->b_folio->mapping, -EIO); 1227 if (bh->b_assoc_map) { 1228 mapping_set_error(bh->b_assoc_map, -EIO); 1229 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1230 } 1231 } 1232 EXPORT_SYMBOL(mark_buffer_write_io_error); 1233 1234 /* 1235 * Decrement a buffer_head's reference count. If all buffers against a page 1236 * have zero reference count, are clean and unlocked, and if the page is clean 1237 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1238 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1239 * a page but it ends up not being freed, and buffers may later be reattached). 1240 */ 1241 void __brelse(struct buffer_head * buf) 1242 { 1243 if (atomic_read(&buf->b_count)) { 1244 put_bh(buf); 1245 return; 1246 } 1247 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1248 } 1249 EXPORT_SYMBOL(__brelse); 1250 1251 /* 1252 * bforget() is like brelse(), except it discards any 1253 * potentially dirty data. 1254 */ 1255 void __bforget(struct buffer_head *bh) 1256 { 1257 clear_buffer_dirty(bh); 1258 if (bh->b_assoc_map) { 1259 struct address_space *buffer_mapping = bh->b_folio->mapping; 1260 1261 spin_lock(&buffer_mapping->private_lock); 1262 list_del_init(&bh->b_assoc_buffers); 1263 bh->b_assoc_map = NULL; 1264 spin_unlock(&buffer_mapping->private_lock); 1265 } 1266 __brelse(bh); 1267 } 1268 EXPORT_SYMBOL(__bforget); 1269 1270 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1271 { 1272 lock_buffer(bh); 1273 if (buffer_uptodate(bh)) { 1274 unlock_buffer(bh); 1275 return bh; 1276 } else { 1277 get_bh(bh); 1278 bh->b_end_io = end_buffer_read_sync; 1279 submit_bh(REQ_OP_READ, bh); 1280 wait_on_buffer(bh); 1281 if (buffer_uptodate(bh)) 1282 return bh; 1283 } 1284 brelse(bh); 1285 return NULL; 1286 } 1287 1288 /* 1289 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1290 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1291 * refcount elevated by one when they're in an LRU. A buffer can only appear 1292 * once in a particular CPU's LRU. A single buffer can be present in multiple 1293 * CPU's LRUs at the same time. 1294 * 1295 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1296 * sb_find_get_block(). 1297 * 1298 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1299 * a local interrupt disable for that. 1300 */ 1301 1302 #define BH_LRU_SIZE 16 1303 1304 struct bh_lru { 1305 struct buffer_head *bhs[BH_LRU_SIZE]; 1306 }; 1307 1308 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1309 1310 #ifdef CONFIG_SMP 1311 #define bh_lru_lock() local_irq_disable() 1312 #define bh_lru_unlock() local_irq_enable() 1313 #else 1314 #define bh_lru_lock() preempt_disable() 1315 #define bh_lru_unlock() preempt_enable() 1316 #endif 1317 1318 static inline void check_irqs_on(void) 1319 { 1320 #ifdef irqs_disabled 1321 BUG_ON(irqs_disabled()); 1322 #endif 1323 } 1324 1325 /* 1326 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1327 * inserted at the front, and the buffer_head at the back if any is evicted. 1328 * Or, if already in the LRU it is moved to the front. 1329 */ 1330 static void bh_lru_install(struct buffer_head *bh) 1331 { 1332 struct buffer_head *evictee = bh; 1333 struct bh_lru *b; 1334 int i; 1335 1336 check_irqs_on(); 1337 bh_lru_lock(); 1338 1339 /* 1340 * the refcount of buffer_head in bh_lru prevents dropping the 1341 * attached page(i.e., try_to_free_buffers) so it could cause 1342 * failing page migration. 1343 * Skip putting upcoming bh into bh_lru until migration is done. 1344 */ 1345 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1346 bh_lru_unlock(); 1347 return; 1348 } 1349 1350 b = this_cpu_ptr(&bh_lrus); 1351 for (i = 0; i < BH_LRU_SIZE; i++) { 1352 swap(evictee, b->bhs[i]); 1353 if (evictee == bh) { 1354 bh_lru_unlock(); 1355 return; 1356 } 1357 } 1358 1359 get_bh(bh); 1360 bh_lru_unlock(); 1361 brelse(evictee); 1362 } 1363 1364 /* 1365 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1366 */ 1367 static struct buffer_head * 1368 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1369 { 1370 struct buffer_head *ret = NULL; 1371 unsigned int i; 1372 1373 check_irqs_on(); 1374 bh_lru_lock(); 1375 if (cpu_is_isolated(smp_processor_id())) { 1376 bh_lru_unlock(); 1377 return NULL; 1378 } 1379 for (i = 0; i < BH_LRU_SIZE; i++) { 1380 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1381 1382 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1383 bh->b_size == size) { 1384 if (i) { 1385 while (i) { 1386 __this_cpu_write(bh_lrus.bhs[i], 1387 __this_cpu_read(bh_lrus.bhs[i - 1])); 1388 i--; 1389 } 1390 __this_cpu_write(bh_lrus.bhs[0], bh); 1391 } 1392 get_bh(bh); 1393 ret = bh; 1394 break; 1395 } 1396 } 1397 bh_lru_unlock(); 1398 return ret; 1399 } 1400 1401 /* 1402 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1403 * it in the LRU and mark it as accessed. If it is not present then return 1404 * NULL 1405 */ 1406 struct buffer_head * 1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1408 { 1409 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1410 1411 if (bh == NULL) { 1412 /* __find_get_block_slow will mark the page accessed */ 1413 bh = __find_get_block_slow(bdev, block); 1414 if (bh) 1415 bh_lru_install(bh); 1416 } else 1417 touch_buffer(bh); 1418 1419 return bh; 1420 } 1421 EXPORT_SYMBOL(__find_get_block); 1422 1423 /* 1424 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1425 * which corresponds to the passed block_device, block and size. The 1426 * returned buffer has its reference count incremented. 1427 * 1428 * __getblk_gfp() will lock up the machine if grow_dev_page's 1429 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1430 */ 1431 struct buffer_head * 1432 __getblk_gfp(struct block_device *bdev, sector_t block, 1433 unsigned size, gfp_t gfp) 1434 { 1435 struct buffer_head *bh = __find_get_block(bdev, block, size); 1436 1437 might_sleep(); 1438 if (bh == NULL) 1439 bh = __getblk_slow(bdev, block, size, gfp); 1440 return bh; 1441 } 1442 EXPORT_SYMBOL(__getblk_gfp); 1443 1444 /* 1445 * Do async read-ahead on a buffer.. 1446 */ 1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1448 { 1449 struct buffer_head *bh = __getblk(bdev, block, size); 1450 if (likely(bh)) { 1451 bh_readahead(bh, REQ_RAHEAD); 1452 brelse(bh); 1453 } 1454 } 1455 EXPORT_SYMBOL(__breadahead); 1456 1457 /** 1458 * __bread_gfp() - reads a specified block and returns the bh 1459 * @bdev: the block_device to read from 1460 * @block: number of block 1461 * @size: size (in bytes) to read 1462 * @gfp: page allocation flag 1463 * 1464 * Reads a specified block, and returns buffer head that contains it. 1465 * The page cache can be allocated from non-movable area 1466 * not to prevent page migration if you set gfp to zero. 1467 * It returns NULL if the block was unreadable. 1468 */ 1469 struct buffer_head * 1470 __bread_gfp(struct block_device *bdev, sector_t block, 1471 unsigned size, gfp_t gfp) 1472 { 1473 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1474 1475 if (likely(bh) && !buffer_uptodate(bh)) 1476 bh = __bread_slow(bh); 1477 return bh; 1478 } 1479 EXPORT_SYMBOL(__bread_gfp); 1480 1481 static void __invalidate_bh_lrus(struct bh_lru *b) 1482 { 1483 int i; 1484 1485 for (i = 0; i < BH_LRU_SIZE; i++) { 1486 brelse(b->bhs[i]); 1487 b->bhs[i] = NULL; 1488 } 1489 } 1490 /* 1491 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1492 * This doesn't race because it runs in each cpu either in irq 1493 * or with preempt disabled. 1494 */ 1495 static void invalidate_bh_lru(void *arg) 1496 { 1497 struct bh_lru *b = &get_cpu_var(bh_lrus); 1498 1499 __invalidate_bh_lrus(b); 1500 put_cpu_var(bh_lrus); 1501 } 1502 1503 bool has_bh_in_lru(int cpu, void *dummy) 1504 { 1505 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1506 int i; 1507 1508 for (i = 0; i < BH_LRU_SIZE; i++) { 1509 if (b->bhs[i]) 1510 return true; 1511 } 1512 1513 return false; 1514 } 1515 1516 void invalidate_bh_lrus(void) 1517 { 1518 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1519 } 1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1521 1522 /* 1523 * It's called from workqueue context so we need a bh_lru_lock to close 1524 * the race with preemption/irq. 1525 */ 1526 void invalidate_bh_lrus_cpu(void) 1527 { 1528 struct bh_lru *b; 1529 1530 bh_lru_lock(); 1531 b = this_cpu_ptr(&bh_lrus); 1532 __invalidate_bh_lrus(b); 1533 bh_lru_unlock(); 1534 } 1535 1536 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1537 unsigned long offset) 1538 { 1539 bh->b_folio = folio; 1540 BUG_ON(offset >= folio_size(folio)); 1541 if (folio_test_highmem(folio)) 1542 /* 1543 * This catches illegal uses and preserves the offset: 1544 */ 1545 bh->b_data = (char *)(0 + offset); 1546 else 1547 bh->b_data = folio_address(folio) + offset; 1548 } 1549 EXPORT_SYMBOL(folio_set_bh); 1550 1551 /* 1552 * Called when truncating a buffer on a page completely. 1553 */ 1554 1555 /* Bits that are cleared during an invalidate */ 1556 #define BUFFER_FLAGS_DISCARD \ 1557 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1558 1 << BH_Delay | 1 << BH_Unwritten) 1559 1560 static void discard_buffer(struct buffer_head * bh) 1561 { 1562 unsigned long b_state; 1563 1564 lock_buffer(bh); 1565 clear_buffer_dirty(bh); 1566 bh->b_bdev = NULL; 1567 b_state = READ_ONCE(bh->b_state); 1568 do { 1569 } while (!try_cmpxchg(&bh->b_state, &b_state, 1570 b_state & ~BUFFER_FLAGS_DISCARD)); 1571 unlock_buffer(bh); 1572 } 1573 1574 /** 1575 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1576 * @folio: The folio which is affected. 1577 * @offset: start of the range to invalidate 1578 * @length: length of the range to invalidate 1579 * 1580 * block_invalidate_folio() is called when all or part of the folio has been 1581 * invalidated by a truncate operation. 1582 * 1583 * block_invalidate_folio() does not have to release all buffers, but it must 1584 * ensure that no dirty buffer is left outside @offset and that no I/O 1585 * is underway against any of the blocks which are outside the truncation 1586 * point. Because the caller is about to free (and possibly reuse) those 1587 * blocks on-disk. 1588 */ 1589 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1590 { 1591 struct buffer_head *head, *bh, *next; 1592 size_t curr_off = 0; 1593 size_t stop = length + offset; 1594 1595 BUG_ON(!folio_test_locked(folio)); 1596 1597 /* 1598 * Check for overflow 1599 */ 1600 BUG_ON(stop > folio_size(folio) || stop < length); 1601 1602 head = folio_buffers(folio); 1603 if (!head) 1604 return; 1605 1606 bh = head; 1607 do { 1608 size_t next_off = curr_off + bh->b_size; 1609 next = bh->b_this_page; 1610 1611 /* 1612 * Are we still fully in range ? 1613 */ 1614 if (next_off > stop) 1615 goto out; 1616 1617 /* 1618 * is this block fully invalidated? 1619 */ 1620 if (offset <= curr_off) 1621 discard_buffer(bh); 1622 curr_off = next_off; 1623 bh = next; 1624 } while (bh != head); 1625 1626 /* 1627 * We release buffers only if the entire folio is being invalidated. 1628 * The get_block cached value has been unconditionally invalidated, 1629 * so real IO is not possible anymore. 1630 */ 1631 if (length == folio_size(folio)) 1632 filemap_release_folio(folio, 0); 1633 out: 1634 return; 1635 } 1636 EXPORT_SYMBOL(block_invalidate_folio); 1637 1638 /* 1639 * We attach and possibly dirty the buffers atomically wrt 1640 * block_dirty_folio() via private_lock. try_to_free_buffers 1641 * is already excluded via the folio lock. 1642 */ 1643 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1644 unsigned long b_state) 1645 { 1646 struct buffer_head *bh, *head, *tail; 1647 1648 head = folio_alloc_buffers(folio, blocksize, true); 1649 bh = head; 1650 do { 1651 bh->b_state |= b_state; 1652 tail = bh; 1653 bh = bh->b_this_page; 1654 } while (bh); 1655 tail->b_this_page = head; 1656 1657 spin_lock(&folio->mapping->private_lock); 1658 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1659 bh = head; 1660 do { 1661 if (folio_test_dirty(folio)) 1662 set_buffer_dirty(bh); 1663 if (folio_test_uptodate(folio)) 1664 set_buffer_uptodate(bh); 1665 bh = bh->b_this_page; 1666 } while (bh != head); 1667 } 1668 folio_attach_private(folio, head); 1669 spin_unlock(&folio->mapping->private_lock); 1670 } 1671 EXPORT_SYMBOL(folio_create_empty_buffers); 1672 1673 void create_empty_buffers(struct page *page, 1674 unsigned long blocksize, unsigned long b_state) 1675 { 1676 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1677 } 1678 EXPORT_SYMBOL(create_empty_buffers); 1679 1680 /** 1681 * clean_bdev_aliases: clean a range of buffers in block device 1682 * @bdev: Block device to clean buffers in 1683 * @block: Start of a range of blocks to clean 1684 * @len: Number of blocks to clean 1685 * 1686 * We are taking a range of blocks for data and we don't want writeback of any 1687 * buffer-cache aliases starting from return from this function and until the 1688 * moment when something will explicitly mark the buffer dirty (hopefully that 1689 * will not happen until we will free that block ;-) We don't even need to mark 1690 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1691 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1692 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1693 * would confuse anyone who might pick it with bread() afterwards... 1694 * 1695 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1696 * writeout I/O going on against recently-freed buffers. We don't wait on that 1697 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1698 * need to. That happens here. 1699 */ 1700 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1701 { 1702 struct inode *bd_inode = bdev->bd_inode; 1703 struct address_space *bd_mapping = bd_inode->i_mapping; 1704 struct folio_batch fbatch; 1705 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1706 pgoff_t end; 1707 int i, count; 1708 struct buffer_head *bh; 1709 struct buffer_head *head; 1710 1711 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1712 folio_batch_init(&fbatch); 1713 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1714 count = folio_batch_count(&fbatch); 1715 for (i = 0; i < count; i++) { 1716 struct folio *folio = fbatch.folios[i]; 1717 1718 if (!folio_buffers(folio)) 1719 continue; 1720 /* 1721 * We use folio lock instead of bd_mapping->private_lock 1722 * to pin buffers here since we can afford to sleep and 1723 * it scales better than a global spinlock lock. 1724 */ 1725 folio_lock(folio); 1726 /* Recheck when the folio is locked which pins bhs */ 1727 head = folio_buffers(folio); 1728 if (!head) 1729 goto unlock_page; 1730 bh = head; 1731 do { 1732 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1733 goto next; 1734 if (bh->b_blocknr >= block + len) 1735 break; 1736 clear_buffer_dirty(bh); 1737 wait_on_buffer(bh); 1738 clear_buffer_req(bh); 1739 next: 1740 bh = bh->b_this_page; 1741 } while (bh != head); 1742 unlock_page: 1743 folio_unlock(folio); 1744 } 1745 folio_batch_release(&fbatch); 1746 cond_resched(); 1747 /* End of range already reached? */ 1748 if (index > end || !index) 1749 break; 1750 } 1751 } 1752 EXPORT_SYMBOL(clean_bdev_aliases); 1753 1754 /* 1755 * Size is a power-of-two in the range 512..PAGE_SIZE, 1756 * and the case we care about most is PAGE_SIZE. 1757 * 1758 * So this *could* possibly be written with those 1759 * constraints in mind (relevant mostly if some 1760 * architecture has a slow bit-scan instruction) 1761 */ 1762 static inline int block_size_bits(unsigned int blocksize) 1763 { 1764 return ilog2(blocksize); 1765 } 1766 1767 static struct buffer_head *folio_create_buffers(struct folio *folio, 1768 struct inode *inode, 1769 unsigned int b_state) 1770 { 1771 BUG_ON(!folio_test_locked(folio)); 1772 1773 if (!folio_buffers(folio)) 1774 folio_create_empty_buffers(folio, 1775 1 << READ_ONCE(inode->i_blkbits), 1776 b_state); 1777 return folio_buffers(folio); 1778 } 1779 1780 /* 1781 * NOTE! All mapped/uptodate combinations are valid: 1782 * 1783 * Mapped Uptodate Meaning 1784 * 1785 * No No "unknown" - must do get_block() 1786 * No Yes "hole" - zero-filled 1787 * Yes No "allocated" - allocated on disk, not read in 1788 * Yes Yes "valid" - allocated and up-to-date in memory. 1789 * 1790 * "Dirty" is valid only with the last case (mapped+uptodate). 1791 */ 1792 1793 /* 1794 * While block_write_full_page is writing back the dirty buffers under 1795 * the page lock, whoever dirtied the buffers may decide to clean them 1796 * again at any time. We handle that by only looking at the buffer 1797 * state inside lock_buffer(). 1798 * 1799 * If block_write_full_page() is called for regular writeback 1800 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1801 * locked buffer. This only can happen if someone has written the buffer 1802 * directly, with submit_bh(). At the address_space level PageWriteback 1803 * prevents this contention from occurring. 1804 * 1805 * If block_write_full_page() is called with wbc->sync_mode == 1806 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1807 * causes the writes to be flagged as synchronous writes. 1808 */ 1809 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1810 get_block_t *get_block, struct writeback_control *wbc, 1811 bh_end_io_t *handler) 1812 { 1813 int err; 1814 sector_t block; 1815 sector_t last_block; 1816 struct buffer_head *bh, *head; 1817 unsigned int blocksize, bbits; 1818 int nr_underway = 0; 1819 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1820 1821 head = folio_create_buffers(folio, inode, 1822 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1823 1824 /* 1825 * Be very careful. We have no exclusion from block_dirty_folio 1826 * here, and the (potentially unmapped) buffers may become dirty at 1827 * any time. If a buffer becomes dirty here after we've inspected it 1828 * then we just miss that fact, and the folio stays dirty. 1829 * 1830 * Buffers outside i_size may be dirtied by block_dirty_folio; 1831 * handle that here by just cleaning them. 1832 */ 1833 1834 bh = head; 1835 blocksize = bh->b_size; 1836 bbits = block_size_bits(blocksize); 1837 1838 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1839 last_block = (i_size_read(inode) - 1) >> bbits; 1840 1841 /* 1842 * Get all the dirty buffers mapped to disk addresses and 1843 * handle any aliases from the underlying blockdev's mapping. 1844 */ 1845 do { 1846 if (block > last_block) { 1847 /* 1848 * mapped buffers outside i_size will occur, because 1849 * this folio can be outside i_size when there is a 1850 * truncate in progress. 1851 */ 1852 /* 1853 * The buffer was zeroed by block_write_full_page() 1854 */ 1855 clear_buffer_dirty(bh); 1856 set_buffer_uptodate(bh); 1857 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1858 buffer_dirty(bh)) { 1859 WARN_ON(bh->b_size != blocksize); 1860 err = get_block(inode, block, bh, 1); 1861 if (err) 1862 goto recover; 1863 clear_buffer_delay(bh); 1864 if (buffer_new(bh)) { 1865 /* blockdev mappings never come here */ 1866 clear_buffer_new(bh); 1867 clean_bdev_bh_alias(bh); 1868 } 1869 } 1870 bh = bh->b_this_page; 1871 block++; 1872 } while (bh != head); 1873 1874 do { 1875 if (!buffer_mapped(bh)) 1876 continue; 1877 /* 1878 * If it's a fully non-blocking write attempt and we cannot 1879 * lock the buffer then redirty the folio. Note that this can 1880 * potentially cause a busy-wait loop from writeback threads 1881 * and kswapd activity, but those code paths have their own 1882 * higher-level throttling. 1883 */ 1884 if (wbc->sync_mode != WB_SYNC_NONE) { 1885 lock_buffer(bh); 1886 } else if (!trylock_buffer(bh)) { 1887 folio_redirty_for_writepage(wbc, folio); 1888 continue; 1889 } 1890 if (test_clear_buffer_dirty(bh)) { 1891 mark_buffer_async_write_endio(bh, handler); 1892 } else { 1893 unlock_buffer(bh); 1894 } 1895 } while ((bh = bh->b_this_page) != head); 1896 1897 /* 1898 * The folio and its buffers are protected by the writeback flag, 1899 * so we can drop the bh refcounts early. 1900 */ 1901 BUG_ON(folio_test_writeback(folio)); 1902 folio_start_writeback(folio); 1903 1904 do { 1905 struct buffer_head *next = bh->b_this_page; 1906 if (buffer_async_write(bh)) { 1907 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1908 nr_underway++; 1909 } 1910 bh = next; 1911 } while (bh != head); 1912 folio_unlock(folio); 1913 1914 err = 0; 1915 done: 1916 if (nr_underway == 0) { 1917 /* 1918 * The folio was marked dirty, but the buffers were 1919 * clean. Someone wrote them back by hand with 1920 * write_dirty_buffer/submit_bh. A rare case. 1921 */ 1922 folio_end_writeback(folio); 1923 1924 /* 1925 * The folio and buffer_heads can be released at any time from 1926 * here on. 1927 */ 1928 } 1929 return err; 1930 1931 recover: 1932 /* 1933 * ENOSPC, or some other error. We may already have added some 1934 * blocks to the file, so we need to write these out to avoid 1935 * exposing stale data. 1936 * The folio is currently locked and not marked for writeback 1937 */ 1938 bh = head; 1939 /* Recovery: lock and submit the mapped buffers */ 1940 do { 1941 if (buffer_mapped(bh) && buffer_dirty(bh) && 1942 !buffer_delay(bh)) { 1943 lock_buffer(bh); 1944 mark_buffer_async_write_endio(bh, handler); 1945 } else { 1946 /* 1947 * The buffer may have been set dirty during 1948 * attachment to a dirty folio. 1949 */ 1950 clear_buffer_dirty(bh); 1951 } 1952 } while ((bh = bh->b_this_page) != head); 1953 folio_set_error(folio); 1954 BUG_ON(folio_test_writeback(folio)); 1955 mapping_set_error(folio->mapping, err); 1956 folio_start_writeback(folio); 1957 do { 1958 struct buffer_head *next = bh->b_this_page; 1959 if (buffer_async_write(bh)) { 1960 clear_buffer_dirty(bh); 1961 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1962 nr_underway++; 1963 } 1964 bh = next; 1965 } while (bh != head); 1966 folio_unlock(folio); 1967 goto done; 1968 } 1969 EXPORT_SYMBOL(__block_write_full_folio); 1970 1971 /* 1972 * If a folio has any new buffers, zero them out here, and mark them uptodate 1973 * and dirty so they'll be written out (in order to prevent uninitialised 1974 * block data from leaking). And clear the new bit. 1975 */ 1976 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1977 { 1978 size_t block_start, block_end; 1979 struct buffer_head *head, *bh; 1980 1981 BUG_ON(!folio_test_locked(folio)); 1982 head = folio_buffers(folio); 1983 if (!head) 1984 return; 1985 1986 bh = head; 1987 block_start = 0; 1988 do { 1989 block_end = block_start + bh->b_size; 1990 1991 if (buffer_new(bh)) { 1992 if (block_end > from && block_start < to) { 1993 if (!folio_test_uptodate(folio)) { 1994 size_t start, xend; 1995 1996 start = max(from, block_start); 1997 xend = min(to, block_end); 1998 1999 folio_zero_segment(folio, start, xend); 2000 set_buffer_uptodate(bh); 2001 } 2002 2003 clear_buffer_new(bh); 2004 mark_buffer_dirty(bh); 2005 } 2006 } 2007 2008 block_start = block_end; 2009 bh = bh->b_this_page; 2010 } while (bh != head); 2011 } 2012 EXPORT_SYMBOL(folio_zero_new_buffers); 2013 2014 static int 2015 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2016 const struct iomap *iomap) 2017 { 2018 loff_t offset = block << inode->i_blkbits; 2019 2020 bh->b_bdev = iomap->bdev; 2021 2022 /* 2023 * Block points to offset in file we need to map, iomap contains 2024 * the offset at which the map starts. If the map ends before the 2025 * current block, then do not map the buffer and let the caller 2026 * handle it. 2027 */ 2028 if (offset >= iomap->offset + iomap->length) 2029 return -EIO; 2030 2031 switch (iomap->type) { 2032 case IOMAP_HOLE: 2033 /* 2034 * If the buffer is not up to date or beyond the current EOF, 2035 * we need to mark it as new to ensure sub-block zeroing is 2036 * executed if necessary. 2037 */ 2038 if (!buffer_uptodate(bh) || 2039 (offset >= i_size_read(inode))) 2040 set_buffer_new(bh); 2041 return 0; 2042 case IOMAP_DELALLOC: 2043 if (!buffer_uptodate(bh) || 2044 (offset >= i_size_read(inode))) 2045 set_buffer_new(bh); 2046 set_buffer_uptodate(bh); 2047 set_buffer_mapped(bh); 2048 set_buffer_delay(bh); 2049 return 0; 2050 case IOMAP_UNWRITTEN: 2051 /* 2052 * For unwritten regions, we always need to ensure that regions 2053 * in the block we are not writing to are zeroed. Mark the 2054 * buffer as new to ensure this. 2055 */ 2056 set_buffer_new(bh); 2057 set_buffer_unwritten(bh); 2058 fallthrough; 2059 case IOMAP_MAPPED: 2060 if ((iomap->flags & IOMAP_F_NEW) || 2061 offset >= i_size_read(inode)) { 2062 /* 2063 * This can happen if truncating the block device races 2064 * with the check in the caller as i_size updates on 2065 * block devices aren't synchronized by i_rwsem for 2066 * block devices. 2067 */ 2068 if (S_ISBLK(inode->i_mode)) 2069 return -EIO; 2070 set_buffer_new(bh); 2071 } 2072 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2073 inode->i_blkbits; 2074 set_buffer_mapped(bh); 2075 return 0; 2076 default: 2077 WARN_ON_ONCE(1); 2078 return -EIO; 2079 } 2080 } 2081 2082 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2083 get_block_t *get_block, const struct iomap *iomap) 2084 { 2085 unsigned from = pos & (PAGE_SIZE - 1); 2086 unsigned to = from + len; 2087 struct inode *inode = folio->mapping->host; 2088 unsigned block_start, block_end; 2089 sector_t block; 2090 int err = 0; 2091 unsigned blocksize, bbits; 2092 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2093 2094 BUG_ON(!folio_test_locked(folio)); 2095 BUG_ON(from > PAGE_SIZE); 2096 BUG_ON(to > PAGE_SIZE); 2097 BUG_ON(from > to); 2098 2099 head = folio_create_buffers(folio, inode, 0); 2100 blocksize = head->b_size; 2101 bbits = block_size_bits(blocksize); 2102 2103 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2104 2105 for(bh = head, block_start = 0; bh != head || !block_start; 2106 block++, block_start=block_end, bh = bh->b_this_page) { 2107 block_end = block_start + blocksize; 2108 if (block_end <= from || block_start >= to) { 2109 if (folio_test_uptodate(folio)) { 2110 if (!buffer_uptodate(bh)) 2111 set_buffer_uptodate(bh); 2112 } 2113 continue; 2114 } 2115 if (buffer_new(bh)) 2116 clear_buffer_new(bh); 2117 if (!buffer_mapped(bh)) { 2118 WARN_ON(bh->b_size != blocksize); 2119 if (get_block) 2120 err = get_block(inode, block, bh, 1); 2121 else 2122 err = iomap_to_bh(inode, block, bh, iomap); 2123 if (err) 2124 break; 2125 2126 if (buffer_new(bh)) { 2127 clean_bdev_bh_alias(bh); 2128 if (folio_test_uptodate(folio)) { 2129 clear_buffer_new(bh); 2130 set_buffer_uptodate(bh); 2131 mark_buffer_dirty(bh); 2132 continue; 2133 } 2134 if (block_end > to || block_start < from) 2135 folio_zero_segments(folio, 2136 to, block_end, 2137 block_start, from); 2138 continue; 2139 } 2140 } 2141 if (folio_test_uptodate(folio)) { 2142 if (!buffer_uptodate(bh)) 2143 set_buffer_uptodate(bh); 2144 continue; 2145 } 2146 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2147 !buffer_unwritten(bh) && 2148 (block_start < from || block_end > to)) { 2149 bh_read_nowait(bh, 0); 2150 *wait_bh++=bh; 2151 } 2152 } 2153 /* 2154 * If we issued read requests - let them complete. 2155 */ 2156 while(wait_bh > wait) { 2157 wait_on_buffer(*--wait_bh); 2158 if (!buffer_uptodate(*wait_bh)) 2159 err = -EIO; 2160 } 2161 if (unlikely(err)) 2162 folio_zero_new_buffers(folio, from, to); 2163 return err; 2164 } 2165 2166 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2167 get_block_t *get_block) 2168 { 2169 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2170 NULL); 2171 } 2172 EXPORT_SYMBOL(__block_write_begin); 2173 2174 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2175 { 2176 size_t block_start, block_end; 2177 bool partial = false; 2178 unsigned blocksize; 2179 struct buffer_head *bh, *head; 2180 2181 bh = head = folio_buffers(folio); 2182 if (!bh) 2183 return; 2184 blocksize = bh->b_size; 2185 2186 block_start = 0; 2187 do { 2188 block_end = block_start + blocksize; 2189 if (block_end <= from || block_start >= to) { 2190 if (!buffer_uptodate(bh)) 2191 partial = true; 2192 } else { 2193 set_buffer_uptodate(bh); 2194 mark_buffer_dirty(bh); 2195 } 2196 if (buffer_new(bh)) 2197 clear_buffer_new(bh); 2198 2199 block_start = block_end; 2200 bh = bh->b_this_page; 2201 } while (bh != head); 2202 2203 /* 2204 * If this is a partial write which happened to make all buffers 2205 * uptodate then we can optimize away a bogus read_folio() for 2206 * the next read(). Here we 'discover' whether the folio went 2207 * uptodate as a result of this (potentially partial) write. 2208 */ 2209 if (!partial) 2210 folio_mark_uptodate(folio); 2211 } 2212 2213 /* 2214 * block_write_begin takes care of the basic task of block allocation and 2215 * bringing partial write blocks uptodate first. 2216 * 2217 * The filesystem needs to handle block truncation upon failure. 2218 */ 2219 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2220 struct page **pagep, get_block_t *get_block) 2221 { 2222 pgoff_t index = pos >> PAGE_SHIFT; 2223 struct page *page; 2224 int status; 2225 2226 page = grab_cache_page_write_begin(mapping, index); 2227 if (!page) 2228 return -ENOMEM; 2229 2230 status = __block_write_begin(page, pos, len, get_block); 2231 if (unlikely(status)) { 2232 unlock_page(page); 2233 put_page(page); 2234 page = NULL; 2235 } 2236 2237 *pagep = page; 2238 return status; 2239 } 2240 EXPORT_SYMBOL(block_write_begin); 2241 2242 int block_write_end(struct file *file, struct address_space *mapping, 2243 loff_t pos, unsigned len, unsigned copied, 2244 struct page *page, void *fsdata) 2245 { 2246 struct folio *folio = page_folio(page); 2247 size_t start = pos - folio_pos(folio); 2248 2249 if (unlikely(copied < len)) { 2250 /* 2251 * The buffers that were written will now be uptodate, so 2252 * we don't have to worry about a read_folio reading them 2253 * and overwriting a partial write. However if we have 2254 * encountered a short write and only partially written 2255 * into a buffer, it will not be marked uptodate, so a 2256 * read_folio might come in and destroy our partial write. 2257 * 2258 * Do the simplest thing, and just treat any short write to a 2259 * non uptodate folio as a zero-length write, and force the 2260 * caller to redo the whole thing. 2261 */ 2262 if (!folio_test_uptodate(folio)) 2263 copied = 0; 2264 2265 folio_zero_new_buffers(folio, start+copied, start+len); 2266 } 2267 flush_dcache_folio(folio); 2268 2269 /* This could be a short (even 0-length) commit */ 2270 __block_commit_write(folio, start, start + copied); 2271 2272 return copied; 2273 } 2274 EXPORT_SYMBOL(block_write_end); 2275 2276 int generic_write_end(struct file *file, struct address_space *mapping, 2277 loff_t pos, unsigned len, unsigned copied, 2278 struct page *page, void *fsdata) 2279 { 2280 struct inode *inode = mapping->host; 2281 loff_t old_size = inode->i_size; 2282 bool i_size_changed = false; 2283 2284 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2285 2286 /* 2287 * No need to use i_size_read() here, the i_size cannot change under us 2288 * because we hold i_rwsem. 2289 * 2290 * But it's important to update i_size while still holding page lock: 2291 * page writeout could otherwise come in and zero beyond i_size. 2292 */ 2293 if (pos + copied > inode->i_size) { 2294 i_size_write(inode, pos + copied); 2295 i_size_changed = true; 2296 } 2297 2298 unlock_page(page); 2299 put_page(page); 2300 2301 if (old_size < pos) 2302 pagecache_isize_extended(inode, old_size, pos); 2303 /* 2304 * Don't mark the inode dirty under page lock. First, it unnecessarily 2305 * makes the holding time of page lock longer. Second, it forces lock 2306 * ordering of page lock and transaction start for journaling 2307 * filesystems. 2308 */ 2309 if (i_size_changed) 2310 mark_inode_dirty(inode); 2311 return copied; 2312 } 2313 EXPORT_SYMBOL(generic_write_end); 2314 2315 /* 2316 * block_is_partially_uptodate checks whether buffers within a folio are 2317 * uptodate or not. 2318 * 2319 * Returns true if all buffers which correspond to the specified part 2320 * of the folio are uptodate. 2321 */ 2322 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2323 { 2324 unsigned block_start, block_end, blocksize; 2325 unsigned to; 2326 struct buffer_head *bh, *head; 2327 bool ret = true; 2328 2329 head = folio_buffers(folio); 2330 if (!head) 2331 return false; 2332 blocksize = head->b_size; 2333 to = min_t(unsigned, folio_size(folio) - from, count); 2334 to = from + to; 2335 if (from < blocksize && to > folio_size(folio) - blocksize) 2336 return false; 2337 2338 bh = head; 2339 block_start = 0; 2340 do { 2341 block_end = block_start + blocksize; 2342 if (block_end > from && block_start < to) { 2343 if (!buffer_uptodate(bh)) { 2344 ret = false; 2345 break; 2346 } 2347 if (block_end >= to) 2348 break; 2349 } 2350 block_start = block_end; 2351 bh = bh->b_this_page; 2352 } while (bh != head); 2353 2354 return ret; 2355 } 2356 EXPORT_SYMBOL(block_is_partially_uptodate); 2357 2358 /* 2359 * Generic "read_folio" function for block devices that have the normal 2360 * get_block functionality. This is most of the block device filesystems. 2361 * Reads the folio asynchronously --- the unlock_buffer() and 2362 * set/clear_buffer_uptodate() functions propagate buffer state into the 2363 * folio once IO has completed. 2364 */ 2365 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2366 { 2367 struct inode *inode = folio->mapping->host; 2368 sector_t iblock, lblock; 2369 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2370 unsigned int blocksize, bbits; 2371 int nr, i; 2372 int fully_mapped = 1; 2373 bool page_error = false; 2374 loff_t limit = i_size_read(inode); 2375 2376 /* This is needed for ext4. */ 2377 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2378 limit = inode->i_sb->s_maxbytes; 2379 2380 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2381 2382 head = folio_create_buffers(folio, inode, 0); 2383 blocksize = head->b_size; 2384 bbits = block_size_bits(blocksize); 2385 2386 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2387 lblock = (limit+blocksize-1) >> bbits; 2388 bh = head; 2389 nr = 0; 2390 i = 0; 2391 2392 do { 2393 if (buffer_uptodate(bh)) 2394 continue; 2395 2396 if (!buffer_mapped(bh)) { 2397 int err = 0; 2398 2399 fully_mapped = 0; 2400 if (iblock < lblock) { 2401 WARN_ON(bh->b_size != blocksize); 2402 err = get_block(inode, iblock, bh, 0); 2403 if (err) { 2404 folio_set_error(folio); 2405 page_error = true; 2406 } 2407 } 2408 if (!buffer_mapped(bh)) { 2409 folio_zero_range(folio, i * blocksize, 2410 blocksize); 2411 if (!err) 2412 set_buffer_uptodate(bh); 2413 continue; 2414 } 2415 /* 2416 * get_block() might have updated the buffer 2417 * synchronously 2418 */ 2419 if (buffer_uptodate(bh)) 2420 continue; 2421 } 2422 arr[nr++] = bh; 2423 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2424 2425 if (fully_mapped) 2426 folio_set_mappedtodisk(folio); 2427 2428 if (!nr) { 2429 /* 2430 * All buffers are uptodate - we can set the folio uptodate 2431 * as well. But not if get_block() returned an error. 2432 */ 2433 if (!page_error) 2434 folio_mark_uptodate(folio); 2435 folio_unlock(folio); 2436 return 0; 2437 } 2438 2439 /* Stage two: lock the buffers */ 2440 for (i = 0; i < nr; i++) { 2441 bh = arr[i]; 2442 lock_buffer(bh); 2443 mark_buffer_async_read(bh); 2444 } 2445 2446 /* 2447 * Stage 3: start the IO. Check for uptodateness 2448 * inside the buffer lock in case another process reading 2449 * the underlying blockdev brought it uptodate (the sct fix). 2450 */ 2451 for (i = 0; i < nr; i++) { 2452 bh = arr[i]; 2453 if (buffer_uptodate(bh)) 2454 end_buffer_async_read(bh, 1); 2455 else 2456 submit_bh(REQ_OP_READ, bh); 2457 } 2458 return 0; 2459 } 2460 EXPORT_SYMBOL(block_read_full_folio); 2461 2462 /* utility function for filesystems that need to do work on expanding 2463 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2464 * deal with the hole. 2465 */ 2466 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2467 { 2468 struct address_space *mapping = inode->i_mapping; 2469 const struct address_space_operations *aops = mapping->a_ops; 2470 struct page *page; 2471 void *fsdata = NULL; 2472 int err; 2473 2474 err = inode_newsize_ok(inode, size); 2475 if (err) 2476 goto out; 2477 2478 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2479 if (err) 2480 goto out; 2481 2482 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2483 BUG_ON(err > 0); 2484 2485 out: 2486 return err; 2487 } 2488 EXPORT_SYMBOL(generic_cont_expand_simple); 2489 2490 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2491 loff_t pos, loff_t *bytes) 2492 { 2493 struct inode *inode = mapping->host; 2494 const struct address_space_operations *aops = mapping->a_ops; 2495 unsigned int blocksize = i_blocksize(inode); 2496 struct page *page; 2497 void *fsdata = NULL; 2498 pgoff_t index, curidx; 2499 loff_t curpos; 2500 unsigned zerofrom, offset, len; 2501 int err = 0; 2502 2503 index = pos >> PAGE_SHIFT; 2504 offset = pos & ~PAGE_MASK; 2505 2506 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2507 zerofrom = curpos & ~PAGE_MASK; 2508 if (zerofrom & (blocksize-1)) { 2509 *bytes |= (blocksize-1); 2510 (*bytes)++; 2511 } 2512 len = PAGE_SIZE - zerofrom; 2513 2514 err = aops->write_begin(file, mapping, curpos, len, 2515 &page, &fsdata); 2516 if (err) 2517 goto out; 2518 zero_user(page, zerofrom, len); 2519 err = aops->write_end(file, mapping, curpos, len, len, 2520 page, fsdata); 2521 if (err < 0) 2522 goto out; 2523 BUG_ON(err != len); 2524 err = 0; 2525 2526 balance_dirty_pages_ratelimited(mapping); 2527 2528 if (fatal_signal_pending(current)) { 2529 err = -EINTR; 2530 goto out; 2531 } 2532 } 2533 2534 /* page covers the boundary, find the boundary offset */ 2535 if (index == curidx) { 2536 zerofrom = curpos & ~PAGE_MASK; 2537 /* if we will expand the thing last block will be filled */ 2538 if (offset <= zerofrom) { 2539 goto out; 2540 } 2541 if (zerofrom & (blocksize-1)) { 2542 *bytes |= (blocksize-1); 2543 (*bytes)++; 2544 } 2545 len = offset - zerofrom; 2546 2547 err = aops->write_begin(file, mapping, curpos, len, 2548 &page, &fsdata); 2549 if (err) 2550 goto out; 2551 zero_user(page, zerofrom, len); 2552 err = aops->write_end(file, mapping, curpos, len, len, 2553 page, fsdata); 2554 if (err < 0) 2555 goto out; 2556 BUG_ON(err != len); 2557 err = 0; 2558 } 2559 out: 2560 return err; 2561 } 2562 2563 /* 2564 * For moronic filesystems that do not allow holes in file. 2565 * We may have to extend the file. 2566 */ 2567 int cont_write_begin(struct file *file, struct address_space *mapping, 2568 loff_t pos, unsigned len, 2569 struct page **pagep, void **fsdata, 2570 get_block_t *get_block, loff_t *bytes) 2571 { 2572 struct inode *inode = mapping->host; 2573 unsigned int blocksize = i_blocksize(inode); 2574 unsigned int zerofrom; 2575 int err; 2576 2577 err = cont_expand_zero(file, mapping, pos, bytes); 2578 if (err) 2579 return err; 2580 2581 zerofrom = *bytes & ~PAGE_MASK; 2582 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2583 *bytes |= (blocksize-1); 2584 (*bytes)++; 2585 } 2586 2587 return block_write_begin(mapping, pos, len, pagep, get_block); 2588 } 2589 EXPORT_SYMBOL(cont_write_begin); 2590 2591 void block_commit_write(struct page *page, unsigned from, unsigned to) 2592 { 2593 struct folio *folio = page_folio(page); 2594 __block_commit_write(folio, from, to); 2595 } 2596 EXPORT_SYMBOL(block_commit_write); 2597 2598 /* 2599 * block_page_mkwrite() is not allowed to change the file size as it gets 2600 * called from a page fault handler when a page is first dirtied. Hence we must 2601 * be careful to check for EOF conditions here. We set the page up correctly 2602 * for a written page which means we get ENOSPC checking when writing into 2603 * holes and correct delalloc and unwritten extent mapping on filesystems that 2604 * support these features. 2605 * 2606 * We are not allowed to take the i_mutex here so we have to play games to 2607 * protect against truncate races as the page could now be beyond EOF. Because 2608 * truncate writes the inode size before removing pages, once we have the 2609 * page lock we can determine safely if the page is beyond EOF. If it is not 2610 * beyond EOF, then the page is guaranteed safe against truncation until we 2611 * unlock the page. 2612 * 2613 * Direct callers of this function should protect against filesystem freezing 2614 * using sb_start_pagefault() - sb_end_pagefault() functions. 2615 */ 2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2617 get_block_t get_block) 2618 { 2619 struct folio *folio = page_folio(vmf->page); 2620 struct inode *inode = file_inode(vma->vm_file); 2621 unsigned long end; 2622 loff_t size; 2623 int ret; 2624 2625 folio_lock(folio); 2626 size = i_size_read(inode); 2627 if ((folio->mapping != inode->i_mapping) || 2628 (folio_pos(folio) >= size)) { 2629 /* We overload EFAULT to mean page got truncated */ 2630 ret = -EFAULT; 2631 goto out_unlock; 2632 } 2633 2634 end = folio_size(folio); 2635 /* folio is wholly or partially inside EOF */ 2636 if (folio_pos(folio) + end > size) 2637 end = size - folio_pos(folio); 2638 2639 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2640 if (unlikely(ret)) 2641 goto out_unlock; 2642 2643 __block_commit_write(folio, 0, end); 2644 2645 folio_mark_dirty(folio); 2646 folio_wait_stable(folio); 2647 return 0; 2648 out_unlock: 2649 folio_unlock(folio); 2650 return ret; 2651 } 2652 EXPORT_SYMBOL(block_page_mkwrite); 2653 2654 int block_truncate_page(struct address_space *mapping, 2655 loff_t from, get_block_t *get_block) 2656 { 2657 pgoff_t index = from >> PAGE_SHIFT; 2658 unsigned blocksize; 2659 sector_t iblock; 2660 size_t offset, length, pos; 2661 struct inode *inode = mapping->host; 2662 struct folio *folio; 2663 struct buffer_head *bh; 2664 int err = 0; 2665 2666 blocksize = i_blocksize(inode); 2667 length = from & (blocksize - 1); 2668 2669 /* Block boundary? Nothing to do */ 2670 if (!length) 2671 return 0; 2672 2673 length = blocksize - length; 2674 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2675 2676 folio = filemap_grab_folio(mapping, index); 2677 if (IS_ERR(folio)) 2678 return PTR_ERR(folio); 2679 2680 bh = folio_buffers(folio); 2681 if (!bh) { 2682 folio_create_empty_buffers(folio, blocksize, 0); 2683 bh = folio_buffers(folio); 2684 } 2685 2686 /* Find the buffer that contains "offset" */ 2687 offset = offset_in_folio(folio, from); 2688 pos = blocksize; 2689 while (offset >= pos) { 2690 bh = bh->b_this_page; 2691 iblock++; 2692 pos += blocksize; 2693 } 2694 2695 if (!buffer_mapped(bh)) { 2696 WARN_ON(bh->b_size != blocksize); 2697 err = get_block(inode, iblock, bh, 0); 2698 if (err) 2699 goto unlock; 2700 /* unmapped? It's a hole - nothing to do */ 2701 if (!buffer_mapped(bh)) 2702 goto unlock; 2703 } 2704 2705 /* Ok, it's mapped. Make sure it's up-to-date */ 2706 if (folio_test_uptodate(folio)) 2707 set_buffer_uptodate(bh); 2708 2709 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2710 err = bh_read(bh, 0); 2711 /* Uhhuh. Read error. Complain and punt. */ 2712 if (err < 0) 2713 goto unlock; 2714 } 2715 2716 folio_zero_range(folio, offset, length); 2717 mark_buffer_dirty(bh); 2718 2719 unlock: 2720 folio_unlock(folio); 2721 folio_put(folio); 2722 2723 return err; 2724 } 2725 EXPORT_SYMBOL(block_truncate_page); 2726 2727 /* 2728 * The generic ->writepage function for buffer-backed address_spaces 2729 */ 2730 int block_write_full_page(struct page *page, get_block_t *get_block, 2731 struct writeback_control *wbc) 2732 { 2733 struct folio *folio = page_folio(page); 2734 struct inode * const inode = folio->mapping->host; 2735 loff_t i_size = i_size_read(inode); 2736 2737 /* Is the folio fully inside i_size? */ 2738 if (folio_pos(folio) + folio_size(folio) <= i_size) 2739 return __block_write_full_folio(inode, folio, get_block, wbc, 2740 end_buffer_async_write); 2741 2742 /* Is the folio fully outside i_size? (truncate in progress) */ 2743 if (folio_pos(folio) >= i_size) { 2744 folio_unlock(folio); 2745 return 0; /* don't care */ 2746 } 2747 2748 /* 2749 * The folio straddles i_size. It must be zeroed out on each and every 2750 * writepage invocation because it may be mmapped. "A file is mapped 2751 * in multiples of the page size. For a file that is not a multiple of 2752 * the page size, the remaining memory is zeroed when mapped, and 2753 * writes to that region are not written out to the file." 2754 */ 2755 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2756 folio_size(folio)); 2757 return __block_write_full_folio(inode, folio, get_block, wbc, 2758 end_buffer_async_write); 2759 } 2760 EXPORT_SYMBOL(block_write_full_page); 2761 2762 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2763 get_block_t *get_block) 2764 { 2765 struct inode *inode = mapping->host; 2766 struct buffer_head tmp = { 2767 .b_size = i_blocksize(inode), 2768 }; 2769 2770 get_block(inode, block, &tmp, 0); 2771 return tmp.b_blocknr; 2772 } 2773 EXPORT_SYMBOL(generic_block_bmap); 2774 2775 static void end_bio_bh_io_sync(struct bio *bio) 2776 { 2777 struct buffer_head *bh = bio->bi_private; 2778 2779 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2780 set_bit(BH_Quiet, &bh->b_state); 2781 2782 bh->b_end_io(bh, !bio->bi_status); 2783 bio_put(bio); 2784 } 2785 2786 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2787 struct writeback_control *wbc) 2788 { 2789 const enum req_op op = opf & REQ_OP_MASK; 2790 struct bio *bio; 2791 2792 BUG_ON(!buffer_locked(bh)); 2793 BUG_ON(!buffer_mapped(bh)); 2794 BUG_ON(!bh->b_end_io); 2795 BUG_ON(buffer_delay(bh)); 2796 BUG_ON(buffer_unwritten(bh)); 2797 2798 /* 2799 * Only clear out a write error when rewriting 2800 */ 2801 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2802 clear_buffer_write_io_error(bh); 2803 2804 if (buffer_meta(bh)) 2805 opf |= REQ_META; 2806 if (buffer_prio(bh)) 2807 opf |= REQ_PRIO; 2808 2809 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2810 2811 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2812 2813 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2814 2815 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2816 2817 bio->bi_end_io = end_bio_bh_io_sync; 2818 bio->bi_private = bh; 2819 2820 /* Take care of bh's that straddle the end of the device */ 2821 guard_bio_eod(bio); 2822 2823 if (wbc) { 2824 wbc_init_bio(wbc, bio); 2825 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2826 } 2827 2828 submit_bio(bio); 2829 } 2830 2831 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2832 { 2833 submit_bh_wbc(opf, bh, NULL); 2834 } 2835 EXPORT_SYMBOL(submit_bh); 2836 2837 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2838 { 2839 lock_buffer(bh); 2840 if (!test_clear_buffer_dirty(bh)) { 2841 unlock_buffer(bh); 2842 return; 2843 } 2844 bh->b_end_io = end_buffer_write_sync; 2845 get_bh(bh); 2846 submit_bh(REQ_OP_WRITE | op_flags, bh); 2847 } 2848 EXPORT_SYMBOL(write_dirty_buffer); 2849 2850 /* 2851 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2852 * and then start new I/O and then wait upon it. The caller must have a ref on 2853 * the buffer_head. 2854 */ 2855 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2856 { 2857 WARN_ON(atomic_read(&bh->b_count) < 1); 2858 lock_buffer(bh); 2859 if (test_clear_buffer_dirty(bh)) { 2860 /* 2861 * The bh should be mapped, but it might not be if the 2862 * device was hot-removed. Not much we can do but fail the I/O. 2863 */ 2864 if (!buffer_mapped(bh)) { 2865 unlock_buffer(bh); 2866 return -EIO; 2867 } 2868 2869 get_bh(bh); 2870 bh->b_end_io = end_buffer_write_sync; 2871 submit_bh(REQ_OP_WRITE | op_flags, bh); 2872 wait_on_buffer(bh); 2873 if (!buffer_uptodate(bh)) 2874 return -EIO; 2875 } else { 2876 unlock_buffer(bh); 2877 } 2878 return 0; 2879 } 2880 EXPORT_SYMBOL(__sync_dirty_buffer); 2881 2882 int sync_dirty_buffer(struct buffer_head *bh) 2883 { 2884 return __sync_dirty_buffer(bh, REQ_SYNC); 2885 } 2886 EXPORT_SYMBOL(sync_dirty_buffer); 2887 2888 /* 2889 * try_to_free_buffers() checks if all the buffers on this particular folio 2890 * are unused, and releases them if so. 2891 * 2892 * Exclusion against try_to_free_buffers may be obtained by either 2893 * locking the folio or by holding its mapping's private_lock. 2894 * 2895 * If the folio is dirty but all the buffers are clean then we need to 2896 * be sure to mark the folio clean as well. This is because the folio 2897 * may be against a block device, and a later reattachment of buffers 2898 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2899 * filesystem data on the same device. 2900 * 2901 * The same applies to regular filesystem folios: if all the buffers are 2902 * clean then we set the folio clean and proceed. To do that, we require 2903 * total exclusion from block_dirty_folio(). That is obtained with 2904 * private_lock. 2905 * 2906 * try_to_free_buffers() is non-blocking. 2907 */ 2908 static inline int buffer_busy(struct buffer_head *bh) 2909 { 2910 return atomic_read(&bh->b_count) | 2911 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2912 } 2913 2914 static bool 2915 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2916 { 2917 struct buffer_head *head = folio_buffers(folio); 2918 struct buffer_head *bh; 2919 2920 bh = head; 2921 do { 2922 if (buffer_busy(bh)) 2923 goto failed; 2924 bh = bh->b_this_page; 2925 } while (bh != head); 2926 2927 do { 2928 struct buffer_head *next = bh->b_this_page; 2929 2930 if (bh->b_assoc_map) 2931 __remove_assoc_queue(bh); 2932 bh = next; 2933 } while (bh != head); 2934 *buffers_to_free = head; 2935 folio_detach_private(folio); 2936 return true; 2937 failed: 2938 return false; 2939 } 2940 2941 bool try_to_free_buffers(struct folio *folio) 2942 { 2943 struct address_space * const mapping = folio->mapping; 2944 struct buffer_head *buffers_to_free = NULL; 2945 bool ret = 0; 2946 2947 BUG_ON(!folio_test_locked(folio)); 2948 if (folio_test_writeback(folio)) 2949 return false; 2950 2951 if (mapping == NULL) { /* can this still happen? */ 2952 ret = drop_buffers(folio, &buffers_to_free); 2953 goto out; 2954 } 2955 2956 spin_lock(&mapping->private_lock); 2957 ret = drop_buffers(folio, &buffers_to_free); 2958 2959 /* 2960 * If the filesystem writes its buffers by hand (eg ext3) 2961 * then we can have clean buffers against a dirty folio. We 2962 * clean the folio here; otherwise the VM will never notice 2963 * that the filesystem did any IO at all. 2964 * 2965 * Also, during truncate, discard_buffer will have marked all 2966 * the folio's buffers clean. We discover that here and clean 2967 * the folio also. 2968 * 2969 * private_lock must be held over this entire operation in order 2970 * to synchronise against block_dirty_folio and prevent the 2971 * dirty bit from being lost. 2972 */ 2973 if (ret) 2974 folio_cancel_dirty(folio); 2975 spin_unlock(&mapping->private_lock); 2976 out: 2977 if (buffers_to_free) { 2978 struct buffer_head *bh = buffers_to_free; 2979 2980 do { 2981 struct buffer_head *next = bh->b_this_page; 2982 free_buffer_head(bh); 2983 bh = next; 2984 } while (bh != buffers_to_free); 2985 } 2986 return ret; 2987 } 2988 EXPORT_SYMBOL(try_to_free_buffers); 2989 2990 /* 2991 * Buffer-head allocation 2992 */ 2993 static struct kmem_cache *bh_cachep __read_mostly; 2994 2995 /* 2996 * Once the number of bh's in the machine exceeds this level, we start 2997 * stripping them in writeback. 2998 */ 2999 static unsigned long max_buffer_heads; 3000 3001 int buffer_heads_over_limit; 3002 3003 struct bh_accounting { 3004 int nr; /* Number of live bh's */ 3005 int ratelimit; /* Limit cacheline bouncing */ 3006 }; 3007 3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3009 3010 static void recalc_bh_state(void) 3011 { 3012 int i; 3013 int tot = 0; 3014 3015 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3016 return; 3017 __this_cpu_write(bh_accounting.ratelimit, 0); 3018 for_each_online_cpu(i) 3019 tot += per_cpu(bh_accounting, i).nr; 3020 buffer_heads_over_limit = (tot > max_buffer_heads); 3021 } 3022 3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3024 { 3025 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3026 if (ret) { 3027 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3028 spin_lock_init(&ret->b_uptodate_lock); 3029 preempt_disable(); 3030 __this_cpu_inc(bh_accounting.nr); 3031 recalc_bh_state(); 3032 preempt_enable(); 3033 } 3034 return ret; 3035 } 3036 EXPORT_SYMBOL(alloc_buffer_head); 3037 3038 void free_buffer_head(struct buffer_head *bh) 3039 { 3040 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3041 kmem_cache_free(bh_cachep, bh); 3042 preempt_disable(); 3043 __this_cpu_dec(bh_accounting.nr); 3044 recalc_bh_state(); 3045 preempt_enable(); 3046 } 3047 EXPORT_SYMBOL(free_buffer_head); 3048 3049 static int buffer_exit_cpu_dead(unsigned int cpu) 3050 { 3051 int i; 3052 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3053 3054 for (i = 0; i < BH_LRU_SIZE; i++) { 3055 brelse(b->bhs[i]); 3056 b->bhs[i] = NULL; 3057 } 3058 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3059 per_cpu(bh_accounting, cpu).nr = 0; 3060 return 0; 3061 } 3062 3063 /** 3064 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3065 * @bh: struct buffer_head 3066 * 3067 * Return true if the buffer is up-to-date and false, 3068 * with the buffer locked, if not. 3069 */ 3070 int bh_uptodate_or_lock(struct buffer_head *bh) 3071 { 3072 if (!buffer_uptodate(bh)) { 3073 lock_buffer(bh); 3074 if (!buffer_uptodate(bh)) 3075 return 0; 3076 unlock_buffer(bh); 3077 } 3078 return 1; 3079 } 3080 EXPORT_SYMBOL(bh_uptodate_or_lock); 3081 3082 /** 3083 * __bh_read - Submit read for a locked buffer 3084 * @bh: struct buffer_head 3085 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3086 * @wait: wait until reading finish 3087 * 3088 * Returns zero on success or don't wait, and -EIO on error. 3089 */ 3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3091 { 3092 int ret = 0; 3093 3094 BUG_ON(!buffer_locked(bh)); 3095 3096 get_bh(bh); 3097 bh->b_end_io = end_buffer_read_sync; 3098 submit_bh(REQ_OP_READ | op_flags, bh); 3099 if (wait) { 3100 wait_on_buffer(bh); 3101 if (!buffer_uptodate(bh)) 3102 ret = -EIO; 3103 } 3104 return ret; 3105 } 3106 EXPORT_SYMBOL(__bh_read); 3107 3108 /** 3109 * __bh_read_batch - Submit read for a batch of unlocked buffers 3110 * @nr: entry number of the buffer batch 3111 * @bhs: a batch of struct buffer_head 3112 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3113 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3114 * buffer that cannot lock. 3115 * 3116 * Returns zero on success or don't wait, and -EIO on error. 3117 */ 3118 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3119 blk_opf_t op_flags, bool force_lock) 3120 { 3121 int i; 3122 3123 for (i = 0; i < nr; i++) { 3124 struct buffer_head *bh = bhs[i]; 3125 3126 if (buffer_uptodate(bh)) 3127 continue; 3128 3129 if (force_lock) 3130 lock_buffer(bh); 3131 else 3132 if (!trylock_buffer(bh)) 3133 continue; 3134 3135 if (buffer_uptodate(bh)) { 3136 unlock_buffer(bh); 3137 continue; 3138 } 3139 3140 bh->b_end_io = end_buffer_read_sync; 3141 get_bh(bh); 3142 submit_bh(REQ_OP_READ | op_flags, bh); 3143 } 3144 } 3145 EXPORT_SYMBOL(__bh_read_batch); 3146 3147 void __init buffer_init(void) 3148 { 3149 unsigned long nrpages; 3150 int ret; 3151 3152 bh_cachep = kmem_cache_create("buffer_head", 3153 sizeof(struct buffer_head), 0, 3154 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3155 SLAB_MEM_SPREAD), 3156 NULL); 3157 3158 /* 3159 * Limit the bh occupancy to 10% of ZONE_NORMAL 3160 */ 3161 nrpages = (nr_free_buffer_pages() * 10) / 100; 3162 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3163 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3164 NULL, buffer_exit_cpu_dead); 3165 WARN_ON(ret < 0); 3166 } 3167