xref: /openbmc/linux/fs/buffer.c (revision f3a8b664)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
47 
48 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
49 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
50 			 unsigned long bio_flags,
51 			 struct writeback_control *wbc);
52 
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54 
55 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56 {
57 	bh->b_end_io = handler;
58 	bh->b_private = private;
59 }
60 EXPORT_SYMBOL(init_buffer);
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	mark_page_accessed(bh->b_page);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the page has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the PageDirty information is stale. If
86  * any of the pages are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct page *page,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!PageLocked(page));
96 
97 	if (!page_has_buffers(page))
98 		return;
99 
100 	if (PageWriteback(page))
101 		*writeback = true;
102 
103 	head = page_buffers(page);
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 
117 /*
118  * Block until a buffer comes unlocked.  This doesn't stop it
119  * from becoming locked again - you have to lock it yourself
120  * if you want to preserve its state.
121  */
122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127 
128 static void
129 __clear_page_buffers(struct page *page)
130 {
131 	ClearPagePrivate(page);
132 	set_page_private(page, 0);
133 	put_page(page);
134 }
135 
136 static void buffer_io_error(struct buffer_head *bh, char *msg)
137 {
138 	if (!test_bit(BH_Quiet, &bh->b_state))
139 		printk_ratelimited(KERN_ERR
140 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
141 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
142 }
143 
144 /*
145  * End-of-IO handler helper function which does not touch the bh after
146  * unlocking it.
147  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148  * a race there is benign: unlock_buffer() only use the bh's address for
149  * hashing after unlocking the buffer, so it doesn't actually touch the bh
150  * itself.
151  */
152 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153 {
154 	if (uptodate) {
155 		set_buffer_uptodate(bh);
156 	} else {
157 		/* This happens, due to failed read-ahead attempts. */
158 		clear_buffer_uptodate(bh);
159 	}
160 	unlock_buffer(bh);
161 }
162 
163 /*
164  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
165  * unlock the buffer. This is what ll_rw_block uses too.
166  */
167 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168 {
169 	__end_buffer_read_notouch(bh, uptodate);
170 	put_bh(bh);
171 }
172 EXPORT_SYMBOL(end_buffer_read_sync);
173 
174 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175 {
176 	if (uptodate) {
177 		set_buffer_uptodate(bh);
178 	} else {
179 		buffer_io_error(bh, ", lost sync page write");
180 		set_buffer_write_io_error(bh);
181 		clear_buffer_uptodate(bh);
182 	}
183 	unlock_buffer(bh);
184 	put_bh(bh);
185 }
186 EXPORT_SYMBOL(end_buffer_write_sync);
187 
188 /*
189  * Various filesystems appear to want __find_get_block to be non-blocking.
190  * But it's the page lock which protects the buffers.  To get around this,
191  * we get exclusion from try_to_free_buffers with the blockdev mapping's
192  * private_lock.
193  *
194  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195  * may be quite high.  This code could TryLock the page, and if that
196  * succeeds, there is no need to take private_lock. (But if
197  * private_lock is contended then so is mapping->tree_lock).
198  */
199 static struct buffer_head *
200 __find_get_block_slow(struct block_device *bdev, sector_t block)
201 {
202 	struct inode *bd_inode = bdev->bd_inode;
203 	struct address_space *bd_mapping = bd_inode->i_mapping;
204 	struct buffer_head *ret = NULL;
205 	pgoff_t index;
206 	struct buffer_head *bh;
207 	struct buffer_head *head;
208 	struct page *page;
209 	int all_mapped = 1;
210 
211 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
212 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
213 	if (!page)
214 		goto out;
215 
216 	spin_lock(&bd_mapping->private_lock);
217 	if (!page_has_buffers(page))
218 		goto out_unlock;
219 	head = page_buffers(page);
220 	bh = head;
221 	do {
222 		if (!buffer_mapped(bh))
223 			all_mapped = 0;
224 		else if (bh->b_blocknr == block) {
225 			ret = bh;
226 			get_bh(bh);
227 			goto out_unlock;
228 		}
229 		bh = bh->b_this_page;
230 	} while (bh != head);
231 
232 	/* we might be here because some of the buffers on this page are
233 	 * not mapped.  This is due to various races between
234 	 * file io on the block device and getblk.  It gets dealt with
235 	 * elsewhere, don't buffer_error if we had some unmapped buffers
236 	 */
237 	if (all_mapped) {
238 		printk("__find_get_block_slow() failed. "
239 			"block=%llu, b_blocknr=%llu\n",
240 			(unsigned long long)block,
241 			(unsigned long long)bh->b_blocknr);
242 		printk("b_state=0x%08lx, b_size=%zu\n",
243 			bh->b_state, bh->b_size);
244 		printk("device %pg blocksize: %d\n", bdev,
245 			1 << bd_inode->i_blkbits);
246 	}
247 out_unlock:
248 	spin_unlock(&bd_mapping->private_lock);
249 	put_page(page);
250 out:
251 	return ret;
252 }
253 
254 /*
255  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256  */
257 static void free_more_memory(void)
258 {
259 	struct zoneref *z;
260 	int nid;
261 
262 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 	yield();
264 
265 	for_each_online_node(nid) {
266 
267 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
268 						gfp_zone(GFP_NOFS), NULL);
269 		if (z->zone)
270 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 						GFP_NOFS, NULL);
272 	}
273 }
274 
275 /*
276  * I/O completion handler for block_read_full_page() - pages
277  * which come unlocked at the end of I/O.
278  */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281 	unsigned long flags;
282 	struct buffer_head *first;
283 	struct buffer_head *tmp;
284 	struct page *page;
285 	int page_uptodate = 1;
286 
287 	BUG_ON(!buffer_async_read(bh));
288 
289 	page = bh->b_page;
290 	if (uptodate) {
291 		set_buffer_uptodate(bh);
292 	} else {
293 		clear_buffer_uptodate(bh);
294 		buffer_io_error(bh, ", async page read");
295 		SetPageError(page);
296 	}
297 
298 	/*
299 	 * Be _very_ careful from here on. Bad things can happen if
300 	 * two buffer heads end IO at almost the same time and both
301 	 * decide that the page is now completely done.
302 	 */
303 	first = page_buffers(page);
304 	local_irq_save(flags);
305 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 	clear_buffer_async_read(bh);
307 	unlock_buffer(bh);
308 	tmp = bh;
309 	do {
310 		if (!buffer_uptodate(tmp))
311 			page_uptodate = 0;
312 		if (buffer_async_read(tmp)) {
313 			BUG_ON(!buffer_locked(tmp));
314 			goto still_busy;
315 		}
316 		tmp = tmp->b_this_page;
317 	} while (tmp != bh);
318 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 	local_irq_restore(flags);
320 
321 	/*
322 	 * If none of the buffers had errors and they are all
323 	 * uptodate then we can set the page uptodate.
324 	 */
325 	if (page_uptodate && !PageError(page))
326 		SetPageUptodate(page);
327 	unlock_page(page);
328 	return;
329 
330 still_busy:
331 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 	local_irq_restore(flags);
333 	return;
334 }
335 
336 /*
337  * Completion handler for block_write_full_page() - pages which are unlocked
338  * during I/O, and which have PageWriteback cleared upon I/O completion.
339  */
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 {
342 	unsigned long flags;
343 	struct buffer_head *first;
344 	struct buffer_head *tmp;
345 	struct page *page;
346 
347 	BUG_ON(!buffer_async_write(bh));
348 
349 	page = bh->b_page;
350 	if (uptodate) {
351 		set_buffer_uptodate(bh);
352 	} else {
353 		buffer_io_error(bh, ", lost async page write");
354 		mapping_set_error(page->mapping, -EIO);
355 		set_buffer_write_io_error(bh);
356 		clear_buffer_uptodate(bh);
357 		SetPageError(page);
358 	}
359 
360 	first = page_buffers(page);
361 	local_irq_save(flags);
362 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 	local_irq_restore(flags);
376 	end_page_writeback(page);
377 	return;
378 
379 still_busy:
380 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 	local_irq_restore(flags);
382 	return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385 
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 	bh->b_end_io = end_buffer_async_read;
410 	set_buffer_async_read(bh);
411 }
412 
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 					  bh_end_io_t *handler)
415 {
416 	bh->b_end_io = handler;
417 	set_buffer_async_write(bh);
418 }
419 
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425 
426 
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475 
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 	list_del_init(&bh->b_assoc_buffers);
482 	WARN_ON(!bh->b_assoc_map);
483 	if (buffer_write_io_error(bh))
484 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 	bh->b_assoc_map = NULL;
486 }
487 
488 int inode_has_buffers(struct inode *inode)
489 {
490 	return !list_empty(&inode->i_data.private_list);
491 }
492 
493 /*
494  * osync is designed to support O_SYNC io.  It waits synchronously for
495  * all already-submitted IO to complete, but does not queue any new
496  * writes to the disk.
497  *
498  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499  * you dirty the buffers, and then use osync_inode_buffers to wait for
500  * completion.  Any other dirty buffers which are not yet queued for
501  * write will not be flushed to disk by the osync.
502  */
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 {
505 	struct buffer_head *bh;
506 	struct list_head *p;
507 	int err = 0;
508 
509 	spin_lock(lock);
510 repeat:
511 	list_for_each_prev(p, list) {
512 		bh = BH_ENTRY(p);
513 		if (buffer_locked(bh)) {
514 			get_bh(bh);
515 			spin_unlock(lock);
516 			wait_on_buffer(bh);
517 			if (!buffer_uptodate(bh))
518 				err = -EIO;
519 			brelse(bh);
520 			spin_lock(lock);
521 			goto repeat;
522 		}
523 	}
524 	spin_unlock(lock);
525 	return err;
526 }
527 
528 static void do_thaw_one(struct super_block *sb, void *unused)
529 {
530 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
531 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
532 }
533 
534 static void do_thaw_all(struct work_struct *work)
535 {
536 	iterate_supers(do_thaw_one, NULL);
537 	kfree(work);
538 	printk(KERN_WARNING "Emergency Thaw complete\n");
539 }
540 
541 /**
542  * emergency_thaw_all -- forcibly thaw every frozen filesystem
543  *
544  * Used for emergency unfreeze of all filesystems via SysRq
545  */
546 void emergency_thaw_all(void)
547 {
548 	struct work_struct *work;
549 
550 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
551 	if (work) {
552 		INIT_WORK(work, do_thaw_all);
553 		schedule_work(work);
554 	}
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 	struct address_space *buffer_mapping = mapping->private_data;
571 
572 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
573 		return 0;
574 
575 	return fsync_buffers_list(&buffer_mapping->private_lock,
576 					&mapping->private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /*
581  * Called when we've recently written block `bblock', and it is known that
582  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
583  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
584  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
585  */
586 void write_boundary_block(struct block_device *bdev,
587 			sector_t bblock, unsigned blocksize)
588 {
589 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
590 	if (bh) {
591 		if (buffer_dirty(bh))
592 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
593 		put_bh(bh);
594 	}
595 }
596 
597 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
598 {
599 	struct address_space *mapping = inode->i_mapping;
600 	struct address_space *buffer_mapping = bh->b_page->mapping;
601 
602 	mark_buffer_dirty(bh);
603 	if (!mapping->private_data) {
604 		mapping->private_data = buffer_mapping;
605 	} else {
606 		BUG_ON(mapping->private_data != buffer_mapping);
607 	}
608 	if (!bh->b_assoc_map) {
609 		spin_lock(&buffer_mapping->private_lock);
610 		list_move_tail(&bh->b_assoc_buffers,
611 				&mapping->private_list);
612 		bh->b_assoc_map = mapping;
613 		spin_unlock(&buffer_mapping->private_lock);
614 	}
615 }
616 EXPORT_SYMBOL(mark_buffer_dirty_inode);
617 
618 /*
619  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
620  * dirty.
621  *
622  * If warn is true, then emit a warning if the page is not uptodate and has
623  * not been truncated.
624  *
625  * The caller must hold lock_page_memcg().
626  */
627 static void __set_page_dirty(struct page *page, struct address_space *mapping,
628 			     int warn)
629 {
630 	unsigned long flags;
631 
632 	spin_lock_irqsave(&mapping->tree_lock, flags);
633 	if (page->mapping) {	/* Race with truncate? */
634 		WARN_ON_ONCE(warn && !PageUptodate(page));
635 		account_page_dirtied(page, mapping);
636 		radix_tree_tag_set(&mapping->page_tree,
637 				page_index(page), PAGECACHE_TAG_DIRTY);
638 	}
639 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
640 }
641 
642 /*
643  * Add a page to the dirty page list.
644  *
645  * It is a sad fact of life that this function is called from several places
646  * deeply under spinlocking.  It may not sleep.
647  *
648  * If the page has buffers, the uptodate buffers are set dirty, to preserve
649  * dirty-state coherency between the page and the buffers.  It the page does
650  * not have buffers then when they are later attached they will all be set
651  * dirty.
652  *
653  * The buffers are dirtied before the page is dirtied.  There's a small race
654  * window in which a writepage caller may see the page cleanness but not the
655  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
656  * before the buffers, a concurrent writepage caller could clear the page dirty
657  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
658  * page on the dirty page list.
659  *
660  * We use private_lock to lock against try_to_free_buffers while using the
661  * page's buffer list.  Also use this to protect against clean buffers being
662  * added to the page after it was set dirty.
663  *
664  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
665  * address_space though.
666  */
667 int __set_page_dirty_buffers(struct page *page)
668 {
669 	int newly_dirty;
670 	struct address_space *mapping = page_mapping(page);
671 
672 	if (unlikely(!mapping))
673 		return !TestSetPageDirty(page);
674 
675 	spin_lock(&mapping->private_lock);
676 	if (page_has_buffers(page)) {
677 		struct buffer_head *head = page_buffers(page);
678 		struct buffer_head *bh = head;
679 
680 		do {
681 			set_buffer_dirty(bh);
682 			bh = bh->b_this_page;
683 		} while (bh != head);
684 	}
685 	/*
686 	 * Lock out page->mem_cgroup migration to keep PageDirty
687 	 * synchronized with per-memcg dirty page counters.
688 	 */
689 	lock_page_memcg(page);
690 	newly_dirty = !TestSetPageDirty(page);
691 	spin_unlock(&mapping->private_lock);
692 
693 	if (newly_dirty)
694 		__set_page_dirty(page, mapping, 1);
695 
696 	unlock_page_memcg(page);
697 
698 	if (newly_dirty)
699 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700 
701 	return newly_dirty;
702 }
703 EXPORT_SYMBOL(__set_page_dirty_buffers);
704 
705 /*
706  * Write out and wait upon a list of buffers.
707  *
708  * We have conflicting pressures: we want to make sure that all
709  * initially dirty buffers get waited on, but that any subsequently
710  * dirtied buffers don't.  After all, we don't want fsync to last
711  * forever if somebody is actively writing to the file.
712  *
713  * Do this in two main stages: first we copy dirty buffers to a
714  * temporary inode list, queueing the writes as we go.  Then we clean
715  * up, waiting for those writes to complete.
716  *
717  * During this second stage, any subsequent updates to the file may end
718  * up refiling the buffer on the original inode's dirty list again, so
719  * there is a chance we will end up with a buffer queued for write but
720  * not yet completed on that list.  So, as a final cleanup we go through
721  * the osync code to catch these locked, dirty buffers without requeuing
722  * any newly dirty buffers for write.
723  */
724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726 	struct buffer_head *bh;
727 	struct list_head tmp;
728 	struct address_space *mapping;
729 	int err = 0, err2;
730 	struct blk_plug plug;
731 
732 	INIT_LIST_HEAD(&tmp);
733 	blk_start_plug(&plug);
734 
735 	spin_lock(lock);
736 	while (!list_empty(list)) {
737 		bh = BH_ENTRY(list->next);
738 		mapping = bh->b_assoc_map;
739 		__remove_assoc_queue(bh);
740 		/* Avoid race with mark_buffer_dirty_inode() which does
741 		 * a lockless check and we rely on seeing the dirty bit */
742 		smp_mb();
743 		if (buffer_dirty(bh) || buffer_locked(bh)) {
744 			list_add(&bh->b_assoc_buffers, &tmp);
745 			bh->b_assoc_map = mapping;
746 			if (buffer_dirty(bh)) {
747 				get_bh(bh);
748 				spin_unlock(lock);
749 				/*
750 				 * Ensure any pending I/O completes so that
751 				 * write_dirty_buffer() actually writes the
752 				 * current contents - it is a noop if I/O is
753 				 * still in flight on potentially older
754 				 * contents.
755 				 */
756 				write_dirty_buffer(bh, WRITE_SYNC);
757 
758 				/*
759 				 * Kick off IO for the previous mapping. Note
760 				 * that we will not run the very last mapping,
761 				 * wait_on_buffer() will do that for us
762 				 * through sync_buffer().
763 				 */
764 				brelse(bh);
765 				spin_lock(lock);
766 			}
767 		}
768 	}
769 
770 	spin_unlock(lock);
771 	blk_finish_plug(&plug);
772 	spin_lock(lock);
773 
774 	while (!list_empty(&tmp)) {
775 		bh = BH_ENTRY(tmp.prev);
776 		get_bh(bh);
777 		mapping = bh->b_assoc_map;
778 		__remove_assoc_queue(bh);
779 		/* Avoid race with mark_buffer_dirty_inode() which does
780 		 * a lockless check and we rely on seeing the dirty bit */
781 		smp_mb();
782 		if (buffer_dirty(bh)) {
783 			list_add(&bh->b_assoc_buffers,
784 				 &mapping->private_list);
785 			bh->b_assoc_map = mapping;
786 		}
787 		spin_unlock(lock);
788 		wait_on_buffer(bh);
789 		if (!buffer_uptodate(bh))
790 			err = -EIO;
791 		brelse(bh);
792 		spin_lock(lock);
793 	}
794 
795 	spin_unlock(lock);
796 	err2 = osync_buffers_list(lock, list);
797 	if (err)
798 		return err;
799 	else
800 		return err2;
801 }
802 
803 /*
804  * Invalidate any and all dirty buffers on a given inode.  We are
805  * probably unmounting the fs, but that doesn't mean we have already
806  * done a sync().  Just drop the buffers from the inode list.
807  *
808  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
809  * assumes that all the buffers are against the blockdev.  Not true
810  * for reiserfs.
811  */
812 void invalidate_inode_buffers(struct inode *inode)
813 {
814 	if (inode_has_buffers(inode)) {
815 		struct address_space *mapping = &inode->i_data;
816 		struct list_head *list = &mapping->private_list;
817 		struct address_space *buffer_mapping = mapping->private_data;
818 
819 		spin_lock(&buffer_mapping->private_lock);
820 		while (!list_empty(list))
821 			__remove_assoc_queue(BH_ENTRY(list->next));
822 		spin_unlock(&buffer_mapping->private_lock);
823 	}
824 }
825 EXPORT_SYMBOL(invalidate_inode_buffers);
826 
827 /*
828  * Remove any clean buffers from the inode's buffer list.  This is called
829  * when we're trying to free the inode itself.  Those buffers can pin it.
830  *
831  * Returns true if all buffers were removed.
832  */
833 int remove_inode_buffers(struct inode *inode)
834 {
835 	int ret = 1;
836 
837 	if (inode_has_buffers(inode)) {
838 		struct address_space *mapping = &inode->i_data;
839 		struct list_head *list = &mapping->private_list;
840 		struct address_space *buffer_mapping = mapping->private_data;
841 
842 		spin_lock(&buffer_mapping->private_lock);
843 		while (!list_empty(list)) {
844 			struct buffer_head *bh = BH_ENTRY(list->next);
845 			if (buffer_dirty(bh)) {
846 				ret = 0;
847 				break;
848 			}
849 			__remove_assoc_queue(bh);
850 		}
851 		spin_unlock(&buffer_mapping->private_lock);
852 	}
853 	return ret;
854 }
855 
856 /*
857  * Create the appropriate buffers when given a page for data area and
858  * the size of each buffer.. Use the bh->b_this_page linked list to
859  * follow the buffers created.  Return NULL if unable to create more
860  * buffers.
861  *
862  * The retry flag is used to differentiate async IO (paging, swapping)
863  * which may not fail from ordinary buffer allocations.
864  */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 		int retry)
867 {
868 	struct buffer_head *bh, *head;
869 	long offset;
870 
871 try_again:
872 	head = NULL;
873 	offset = PAGE_SIZE;
874 	while ((offset -= size) >= 0) {
875 		bh = alloc_buffer_head(GFP_NOFS);
876 		if (!bh)
877 			goto no_grow;
878 
879 		bh->b_this_page = head;
880 		bh->b_blocknr = -1;
881 		head = bh;
882 
883 		bh->b_size = size;
884 
885 		/* Link the buffer to its page */
886 		set_bh_page(bh, page, offset);
887 	}
888 	return head;
889 /*
890  * In case anything failed, we just free everything we got.
891  */
892 no_grow:
893 	if (head) {
894 		do {
895 			bh = head;
896 			head = head->b_this_page;
897 			free_buffer_head(bh);
898 		} while (head);
899 	}
900 
901 	/*
902 	 * Return failure for non-async IO requests.  Async IO requests
903 	 * are not allowed to fail, so we have to wait until buffer heads
904 	 * become available.  But we don't want tasks sleeping with
905 	 * partially complete buffers, so all were released above.
906 	 */
907 	if (!retry)
908 		return NULL;
909 
910 	/* We're _really_ low on memory. Now we just
911 	 * wait for old buffer heads to become free due to
912 	 * finishing IO.  Since this is an async request and
913 	 * the reserve list is empty, we're sure there are
914 	 * async buffer heads in use.
915 	 */
916 	free_more_memory();
917 	goto try_again;
918 }
919 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920 
921 static inline void
922 link_dev_buffers(struct page *page, struct buffer_head *head)
923 {
924 	struct buffer_head *bh, *tail;
925 
926 	bh = head;
927 	do {
928 		tail = bh;
929 		bh = bh->b_this_page;
930 	} while (bh);
931 	tail->b_this_page = head;
932 	attach_page_buffers(page, head);
933 }
934 
935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 {
937 	sector_t retval = ~((sector_t)0);
938 	loff_t sz = i_size_read(bdev->bd_inode);
939 
940 	if (sz) {
941 		unsigned int sizebits = blksize_bits(size);
942 		retval = (sz >> sizebits);
943 	}
944 	return retval;
945 }
946 
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */
950 static sector_t
951 init_page_buffers(struct page *page, struct block_device *bdev,
952 			sector_t block, int size)
953 {
954 	struct buffer_head *head = page_buffers(page);
955 	struct buffer_head *bh = head;
956 	int uptodate = PageUptodate(page);
957 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958 
959 	do {
960 		if (!buffer_mapped(bh)) {
961 			init_buffer(bh, NULL, NULL);
962 			bh->b_bdev = bdev;
963 			bh->b_blocknr = block;
964 			if (uptodate)
965 				set_buffer_uptodate(bh);
966 			if (block < end_block)
967 				set_buffer_mapped(bh);
968 		}
969 		block++;
970 		bh = bh->b_this_page;
971 	} while (bh != head);
972 
973 	/*
974 	 * Caller needs to validate requested block against end of device.
975 	 */
976 	return end_block;
977 }
978 
979 /*
980  * Create the page-cache page that contains the requested block.
981  *
982  * This is used purely for blockdev mappings.
983  */
984 static int
985 grow_dev_page(struct block_device *bdev, sector_t block,
986 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
987 {
988 	struct inode *inode = bdev->bd_inode;
989 	struct page *page;
990 	struct buffer_head *bh;
991 	sector_t end_block;
992 	int ret = 0;		/* Will call free_more_memory() */
993 	gfp_t gfp_mask;
994 
995 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996 
997 	/*
998 	 * XXX: __getblk_slow() can not really deal with failure and
999 	 * will endlessly loop on improvised global reclaim.  Prefer
1000 	 * looping in the allocator rather than here, at least that
1001 	 * code knows what it's doing.
1002 	 */
1003 	gfp_mask |= __GFP_NOFAIL;
1004 
1005 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006 	if (!page)
1007 		return ret;
1008 
1009 	BUG_ON(!PageLocked(page));
1010 
1011 	if (page_has_buffers(page)) {
1012 		bh = page_buffers(page);
1013 		if (bh->b_size == size) {
1014 			end_block = init_page_buffers(page, bdev,
1015 						(sector_t)index << sizebits,
1016 						size);
1017 			goto done;
1018 		}
1019 		if (!try_to_free_buffers(page))
1020 			goto failed;
1021 	}
1022 
1023 	/*
1024 	 * Allocate some buffers for this page
1025 	 */
1026 	bh = alloc_page_buffers(page, size, 0);
1027 	if (!bh)
1028 		goto failed;
1029 
1030 	/*
1031 	 * Link the page to the buffers and initialise them.  Take the
1032 	 * lock to be atomic wrt __find_get_block(), which does not
1033 	 * run under the page lock.
1034 	 */
1035 	spin_lock(&inode->i_mapping->private_lock);
1036 	link_dev_buffers(page, bh);
1037 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038 			size);
1039 	spin_unlock(&inode->i_mapping->private_lock);
1040 done:
1041 	ret = (block < end_block) ? 1 : -ENXIO;
1042 failed:
1043 	unlock_page(page);
1044 	put_page(page);
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Create buffers for the specified block device block's page.  If
1050  * that page was dirty, the buffers are set dirty also.
1051  */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 {
1055 	pgoff_t index;
1056 	int sizebits;
1057 
1058 	sizebits = -1;
1059 	do {
1060 		sizebits++;
1061 	} while ((size << sizebits) < PAGE_SIZE);
1062 
1063 	index = block >> sizebits;
1064 
1065 	/*
1066 	 * Check for a block which wants to lie outside our maximum possible
1067 	 * pagecache index.  (this comparison is done using sector_t types).
1068 	 */
1069 	if (unlikely(index != block >> sizebits)) {
1070 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 			"device %pg\n",
1072 			__func__, (unsigned long long)block,
1073 			bdev);
1074 		return -EIO;
1075 	}
1076 
1077 	/* Create a page with the proper size buffers.. */
1078 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 }
1080 
1081 static struct buffer_head *
1082 __getblk_slow(struct block_device *bdev, sector_t block,
1083 	     unsigned size, gfp_t gfp)
1084 {
1085 	/* Size must be multiple of hard sectorsize */
1086 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 			(size < 512 || size > PAGE_SIZE))) {
1088 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 					size);
1090 		printk(KERN_ERR "logical block size: %d\n",
1091 					bdev_logical_block_size(bdev));
1092 
1093 		dump_stack();
1094 		return NULL;
1095 	}
1096 
1097 	for (;;) {
1098 		struct buffer_head *bh;
1099 		int ret;
1100 
1101 		bh = __find_get_block(bdev, block, size);
1102 		if (bh)
1103 			return bh;
1104 
1105 		ret = grow_buffers(bdev, block, size, gfp);
1106 		if (ret < 0)
1107 			return NULL;
1108 		if (ret == 0)
1109 			free_more_memory();
1110 	}
1111 }
1112 
1113 /*
1114  * The relationship between dirty buffers and dirty pages:
1115  *
1116  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117  * the page is tagged dirty in its radix tree.
1118  *
1119  * At all times, the dirtiness of the buffers represents the dirtiness of
1120  * subsections of the page.  If the page has buffers, the page dirty bit is
1121  * merely a hint about the true dirty state.
1122  *
1123  * When a page is set dirty in its entirety, all its buffers are marked dirty
1124  * (if the page has buffers).
1125  *
1126  * When a buffer is marked dirty, its page is dirtied, but the page's other
1127  * buffers are not.
1128  *
1129  * Also.  When blockdev buffers are explicitly read with bread(), they
1130  * individually become uptodate.  But their backing page remains not
1131  * uptodate - even if all of its buffers are uptodate.  A subsequent
1132  * block_read_full_page() against that page will discover all the uptodate
1133  * buffers, will set the page uptodate and will perform no I/O.
1134  */
1135 
1136 /**
1137  * mark_buffer_dirty - mark a buffer_head as needing writeout
1138  * @bh: the buffer_head to mark dirty
1139  *
1140  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141  * backing page dirty, then tag the page as dirty in its address_space's radix
1142  * tree and then attach the address_space's inode to its superblock's dirty
1143  * inode list.
1144  *
1145  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1146  * mapping->tree_lock and mapping->host->i_lock.
1147  */
1148 void mark_buffer_dirty(struct buffer_head *bh)
1149 {
1150 	WARN_ON_ONCE(!buffer_uptodate(bh));
1151 
1152 	trace_block_dirty_buffer(bh);
1153 
1154 	/*
1155 	 * Very *carefully* optimize the it-is-already-dirty case.
1156 	 *
1157 	 * Don't let the final "is it dirty" escape to before we
1158 	 * perhaps modified the buffer.
1159 	 */
1160 	if (buffer_dirty(bh)) {
1161 		smp_mb();
1162 		if (buffer_dirty(bh))
1163 			return;
1164 	}
1165 
1166 	if (!test_set_buffer_dirty(bh)) {
1167 		struct page *page = bh->b_page;
1168 		struct address_space *mapping = NULL;
1169 
1170 		lock_page_memcg(page);
1171 		if (!TestSetPageDirty(page)) {
1172 			mapping = page_mapping(page);
1173 			if (mapping)
1174 				__set_page_dirty(page, mapping, 0);
1175 		}
1176 		unlock_page_memcg(page);
1177 		if (mapping)
1178 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 	}
1180 }
1181 EXPORT_SYMBOL(mark_buffer_dirty);
1182 
1183 /*
1184  * Decrement a buffer_head's reference count.  If all buffers against a page
1185  * have zero reference count, are clean and unlocked, and if the page is clean
1186  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188  * a page but it ends up not being freed, and buffers may later be reattached).
1189  */
1190 void __brelse(struct buffer_head * buf)
1191 {
1192 	if (atomic_read(&buf->b_count)) {
1193 		put_bh(buf);
1194 		return;
1195 	}
1196 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197 }
1198 EXPORT_SYMBOL(__brelse);
1199 
1200 /*
1201  * bforget() is like brelse(), except it discards any
1202  * potentially dirty data.
1203  */
1204 void __bforget(struct buffer_head *bh)
1205 {
1206 	clear_buffer_dirty(bh);
1207 	if (bh->b_assoc_map) {
1208 		struct address_space *buffer_mapping = bh->b_page->mapping;
1209 
1210 		spin_lock(&buffer_mapping->private_lock);
1211 		list_del_init(&bh->b_assoc_buffers);
1212 		bh->b_assoc_map = NULL;
1213 		spin_unlock(&buffer_mapping->private_lock);
1214 	}
1215 	__brelse(bh);
1216 }
1217 EXPORT_SYMBOL(__bforget);
1218 
1219 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220 {
1221 	lock_buffer(bh);
1222 	if (buffer_uptodate(bh)) {
1223 		unlock_buffer(bh);
1224 		return bh;
1225 	} else {
1226 		get_bh(bh);
1227 		bh->b_end_io = end_buffer_read_sync;
1228 		submit_bh(REQ_OP_READ, 0, bh);
1229 		wait_on_buffer(bh);
1230 		if (buffer_uptodate(bh))
1231 			return bh;
1232 	}
1233 	brelse(bh);
1234 	return NULL;
1235 }
1236 
1237 /*
1238  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1239  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1240  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1241  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1242  * CPU's LRUs at the same time.
1243  *
1244  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245  * sb_find_get_block().
1246  *
1247  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1248  * a local interrupt disable for that.
1249  */
1250 
1251 #define BH_LRU_SIZE	16
1252 
1253 struct bh_lru {
1254 	struct buffer_head *bhs[BH_LRU_SIZE];
1255 };
1256 
1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258 
1259 #ifdef CONFIG_SMP
1260 #define bh_lru_lock()	local_irq_disable()
1261 #define bh_lru_unlock()	local_irq_enable()
1262 #else
1263 #define bh_lru_lock()	preempt_disable()
1264 #define bh_lru_unlock()	preempt_enable()
1265 #endif
1266 
1267 static inline void check_irqs_on(void)
1268 {
1269 #ifdef irqs_disabled
1270 	BUG_ON(irqs_disabled());
1271 #endif
1272 }
1273 
1274 /*
1275  * The LRU management algorithm is dopey-but-simple.  Sorry.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279 	struct buffer_head *evictee = NULL;
1280 
1281 	check_irqs_on();
1282 	bh_lru_lock();
1283 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284 		struct buffer_head *bhs[BH_LRU_SIZE];
1285 		int in;
1286 		int out = 0;
1287 
1288 		get_bh(bh);
1289 		bhs[out++] = bh;
1290 		for (in = 0; in < BH_LRU_SIZE; in++) {
1291 			struct buffer_head *bh2 =
1292 				__this_cpu_read(bh_lrus.bhs[in]);
1293 
1294 			if (bh2 == bh) {
1295 				__brelse(bh2);
1296 			} else {
1297 				if (out >= BH_LRU_SIZE) {
1298 					BUG_ON(evictee != NULL);
1299 					evictee = bh2;
1300 				} else {
1301 					bhs[out++] = bh2;
1302 				}
1303 			}
1304 		}
1305 		while (out < BH_LRU_SIZE)
1306 			bhs[out++] = NULL;
1307 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308 	}
1309 	bh_lru_unlock();
1310 
1311 	if (evictee)
1312 		__brelse(evictee);
1313 }
1314 
1315 /*
1316  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317  */
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320 {
1321 	struct buffer_head *ret = NULL;
1322 	unsigned int i;
1323 
1324 	check_irqs_on();
1325 	bh_lru_lock();
1326 	for (i = 0; i < BH_LRU_SIZE; i++) {
1327 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328 
1329 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330 		    bh->b_size == size) {
1331 			if (i) {
1332 				while (i) {
1333 					__this_cpu_write(bh_lrus.bhs[i],
1334 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1335 					i--;
1336 				}
1337 				__this_cpu_write(bh_lrus.bhs[0], bh);
1338 			}
1339 			get_bh(bh);
1340 			ret = bh;
1341 			break;
1342 		}
1343 	}
1344 	bh_lru_unlock();
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1350  * it in the LRU and mark it as accessed.  If it is not present then return
1351  * NULL
1352  */
1353 struct buffer_head *
1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355 {
1356 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357 
1358 	if (bh == NULL) {
1359 		/* __find_get_block_slow will mark the page accessed */
1360 		bh = __find_get_block_slow(bdev, block);
1361 		if (bh)
1362 			bh_lru_install(bh);
1363 	} else
1364 		touch_buffer(bh);
1365 
1366 	return bh;
1367 }
1368 EXPORT_SYMBOL(__find_get_block);
1369 
1370 /*
1371  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372  * which corresponds to the passed block_device, block and size. The
1373  * returned buffer has its reference count incremented.
1374  *
1375  * __getblk_gfp() will lock up the machine if grow_dev_page's
1376  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1377  */
1378 struct buffer_head *
1379 __getblk_gfp(struct block_device *bdev, sector_t block,
1380 	     unsigned size, gfp_t gfp)
1381 {
1382 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1383 
1384 	might_sleep();
1385 	if (bh == NULL)
1386 		bh = __getblk_slow(bdev, block, size, gfp);
1387 	return bh;
1388 }
1389 EXPORT_SYMBOL(__getblk_gfp);
1390 
1391 /*
1392  * Do async read-ahead on a buffer..
1393  */
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395 {
1396 	struct buffer_head *bh = __getblk(bdev, block, size);
1397 	if (likely(bh)) {
1398 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1399 		brelse(bh);
1400 	}
1401 }
1402 EXPORT_SYMBOL(__breadahead);
1403 
1404 /**
1405  *  __bread_gfp() - reads a specified block and returns the bh
1406  *  @bdev: the block_device to read from
1407  *  @block: number of block
1408  *  @size: size (in bytes) to read
1409  *  @gfp: page allocation flag
1410  *
1411  *  Reads a specified block, and returns buffer head that contains it.
1412  *  The page cache can be allocated from non-movable area
1413  *  not to prevent page migration if you set gfp to zero.
1414  *  It returns NULL if the block was unreadable.
1415  */
1416 struct buffer_head *
1417 __bread_gfp(struct block_device *bdev, sector_t block,
1418 		   unsigned size, gfp_t gfp)
1419 {
1420 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421 
1422 	if (likely(bh) && !buffer_uptodate(bh))
1423 		bh = __bread_slow(bh);
1424 	return bh;
1425 }
1426 EXPORT_SYMBOL(__bread_gfp);
1427 
1428 /*
1429  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430  * This doesn't race because it runs in each cpu either in irq
1431  * or with preempt disabled.
1432  */
1433 static void invalidate_bh_lru(void *arg)
1434 {
1435 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 	int i;
1437 
1438 	for (i = 0; i < BH_LRU_SIZE; i++) {
1439 		brelse(b->bhs[i]);
1440 		b->bhs[i] = NULL;
1441 	}
1442 	put_cpu_var(bh_lrus);
1443 }
1444 
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 	int i;
1449 
1450 	for (i = 0; i < BH_LRU_SIZE; i++) {
1451 		if (b->bhs[i])
1452 			return 1;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 void invalidate_bh_lrus(void)
1459 {
1460 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463 
1464 void set_bh_page(struct buffer_head *bh,
1465 		struct page *page, unsigned long offset)
1466 {
1467 	bh->b_page = page;
1468 	BUG_ON(offset >= PAGE_SIZE);
1469 	if (PageHighMem(page))
1470 		/*
1471 		 * This catches illegal uses and preserves the offset:
1472 		 */
1473 		bh->b_data = (char *)(0 + offset);
1474 	else
1475 		bh->b_data = page_address(page) + offset;
1476 }
1477 EXPORT_SYMBOL(set_bh_page);
1478 
1479 /*
1480  * Called when truncating a buffer on a page completely.
1481  */
1482 
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 	 1 << BH_Delay | 1 << BH_Unwritten)
1487 
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 	unsigned long b_state, b_state_old;
1491 
1492 	lock_buffer(bh);
1493 	clear_buffer_dirty(bh);
1494 	bh->b_bdev = NULL;
1495 	b_state = bh->b_state;
1496 	for (;;) {
1497 		b_state_old = cmpxchg(&bh->b_state, b_state,
1498 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1499 		if (b_state_old == b_state)
1500 			break;
1501 		b_state = b_state_old;
1502 	}
1503 	unlock_buffer(bh);
1504 }
1505 
1506 /**
1507  * block_invalidatepage - invalidate part or all of a buffer-backed page
1508  *
1509  * @page: the page which is affected
1510  * @offset: start of the range to invalidate
1511  * @length: length of the range to invalidate
1512  *
1513  * block_invalidatepage() is called when all or part of the page has become
1514  * invalidated by a truncate operation.
1515  *
1516  * block_invalidatepage() does not have to release all buffers, but it must
1517  * ensure that no dirty buffer is left outside @offset and that no I/O
1518  * is underway against any of the blocks which are outside the truncation
1519  * point.  Because the caller is about to free (and possibly reuse) those
1520  * blocks on-disk.
1521  */
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 			  unsigned int length)
1524 {
1525 	struct buffer_head *head, *bh, *next;
1526 	unsigned int curr_off = 0;
1527 	unsigned int stop = length + offset;
1528 
1529 	BUG_ON(!PageLocked(page));
1530 	if (!page_has_buffers(page))
1531 		goto out;
1532 
1533 	/*
1534 	 * Check for overflow
1535 	 */
1536 	BUG_ON(stop > PAGE_SIZE || stop < length);
1537 
1538 	head = page_buffers(page);
1539 	bh = head;
1540 	do {
1541 		unsigned int next_off = curr_off + bh->b_size;
1542 		next = bh->b_this_page;
1543 
1544 		/*
1545 		 * Are we still fully in range ?
1546 		 */
1547 		if (next_off > stop)
1548 			goto out;
1549 
1550 		/*
1551 		 * is this block fully invalidated?
1552 		 */
1553 		if (offset <= curr_off)
1554 			discard_buffer(bh);
1555 		curr_off = next_off;
1556 		bh = next;
1557 	} while (bh != head);
1558 
1559 	/*
1560 	 * We release buffers only if the entire page is being invalidated.
1561 	 * The get_block cached value has been unconditionally invalidated,
1562 	 * so real IO is not possible anymore.
1563 	 */
1564 	if (offset == 0)
1565 		try_to_release_page(page, 0);
1566 out:
1567 	return;
1568 }
1569 EXPORT_SYMBOL(block_invalidatepage);
1570 
1571 
1572 /*
1573  * We attach and possibly dirty the buffers atomically wrt
1574  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575  * is already excluded via the page lock.
1576  */
1577 void create_empty_buffers(struct page *page,
1578 			unsigned long blocksize, unsigned long b_state)
1579 {
1580 	struct buffer_head *bh, *head, *tail;
1581 
1582 	head = alloc_page_buffers(page, blocksize, 1);
1583 	bh = head;
1584 	do {
1585 		bh->b_state |= b_state;
1586 		tail = bh;
1587 		bh = bh->b_this_page;
1588 	} while (bh);
1589 	tail->b_this_page = head;
1590 
1591 	spin_lock(&page->mapping->private_lock);
1592 	if (PageUptodate(page) || PageDirty(page)) {
1593 		bh = head;
1594 		do {
1595 			if (PageDirty(page))
1596 				set_buffer_dirty(bh);
1597 			if (PageUptodate(page))
1598 				set_buffer_uptodate(bh);
1599 			bh = bh->b_this_page;
1600 		} while (bh != head);
1601 	}
1602 	attach_page_buffers(page, head);
1603 	spin_unlock(&page->mapping->private_lock);
1604 }
1605 EXPORT_SYMBOL(create_empty_buffers);
1606 
1607 /*
1608  * We are taking a block for data and we don't want any output from any
1609  * buffer-cache aliases starting from return from that function and
1610  * until the moment when something will explicitly mark the buffer
1611  * dirty (hopefully that will not happen until we will free that block ;-)
1612  * We don't even need to mark it not-uptodate - nobody can expect
1613  * anything from a newly allocated buffer anyway. We used to used
1614  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615  * don't want to mark the alias unmapped, for example - it would confuse
1616  * anyone who might pick it with bread() afterwards...
1617  *
1618  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619  * be writeout I/O going on against recently-freed buffers.  We don't
1620  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621  * only if we really need to.  That happens here.
1622  */
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624 {
1625 	struct buffer_head *old_bh;
1626 
1627 	might_sleep();
1628 
1629 	old_bh = __find_get_block_slow(bdev, block);
1630 	if (old_bh) {
1631 		clear_buffer_dirty(old_bh);
1632 		wait_on_buffer(old_bh);
1633 		clear_buffer_req(old_bh);
1634 		__brelse(old_bh);
1635 	}
1636 }
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1638 
1639 /*
1640  * Size is a power-of-two in the range 512..PAGE_SIZE,
1641  * and the case we care about most is PAGE_SIZE.
1642  *
1643  * So this *could* possibly be written with those
1644  * constraints in mind (relevant mostly if some
1645  * architecture has a slow bit-scan instruction)
1646  */
1647 static inline int block_size_bits(unsigned int blocksize)
1648 {
1649 	return ilog2(blocksize);
1650 }
1651 
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653 {
1654 	BUG_ON(!PageLocked(page));
1655 
1656 	if (!page_has_buffers(page))
1657 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 	return page_buffers(page);
1659 }
1660 
1661 /*
1662  * NOTE! All mapped/uptodate combinations are valid:
1663  *
1664  *	Mapped	Uptodate	Meaning
1665  *
1666  *	No	No		"unknown" - must do get_block()
1667  *	No	Yes		"hole" - zero-filled
1668  *	Yes	No		"allocated" - allocated on disk, not read in
1669  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1670  *
1671  * "Dirty" is valid only with the last case (mapped+uptodate).
1672  */
1673 
1674 /*
1675  * While block_write_full_page is writing back the dirty buffers under
1676  * the page lock, whoever dirtied the buffers may decide to clean them
1677  * again at any time.  We handle that by only looking at the buffer
1678  * state inside lock_buffer().
1679  *
1680  * If block_write_full_page() is called for regular writeback
1681  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682  * locked buffer.   This only can happen if someone has written the buffer
1683  * directly, with submit_bh().  At the address_space level PageWriteback
1684  * prevents this contention from occurring.
1685  *
1686  * If block_write_full_page() is called with wbc->sync_mode ==
1687  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688  * causes the writes to be flagged as synchronous writes.
1689  */
1690 int __block_write_full_page(struct inode *inode, struct page *page,
1691 			get_block_t *get_block, struct writeback_control *wbc,
1692 			bh_end_io_t *handler)
1693 {
1694 	int err;
1695 	sector_t block;
1696 	sector_t last_block;
1697 	struct buffer_head *bh, *head;
1698 	unsigned int blocksize, bbits;
1699 	int nr_underway = 0;
1700 	int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
1701 
1702 	head = create_page_buffers(page, inode,
1703 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1704 
1705 	/*
1706 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1707 	 * here, and the (potentially unmapped) buffers may become dirty at
1708 	 * any time.  If a buffer becomes dirty here after we've inspected it
1709 	 * then we just miss that fact, and the page stays dirty.
1710 	 *
1711 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 	 * handle that here by just cleaning them.
1713 	 */
1714 
1715 	bh = head;
1716 	blocksize = bh->b_size;
1717 	bbits = block_size_bits(blocksize);
1718 
1719 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720 	last_block = (i_size_read(inode) - 1) >> bbits;
1721 
1722 	/*
1723 	 * Get all the dirty buffers mapped to disk addresses and
1724 	 * handle any aliases from the underlying blockdev's mapping.
1725 	 */
1726 	do {
1727 		if (block > last_block) {
1728 			/*
1729 			 * mapped buffers outside i_size will occur, because
1730 			 * this page can be outside i_size when there is a
1731 			 * truncate in progress.
1732 			 */
1733 			/*
1734 			 * The buffer was zeroed by block_write_full_page()
1735 			 */
1736 			clear_buffer_dirty(bh);
1737 			set_buffer_uptodate(bh);
1738 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 			   buffer_dirty(bh)) {
1740 			WARN_ON(bh->b_size != blocksize);
1741 			err = get_block(inode, block, bh, 1);
1742 			if (err)
1743 				goto recover;
1744 			clear_buffer_delay(bh);
1745 			if (buffer_new(bh)) {
1746 				/* blockdev mappings never come here */
1747 				clear_buffer_new(bh);
1748 				unmap_underlying_metadata(bh->b_bdev,
1749 							bh->b_blocknr);
1750 			}
1751 		}
1752 		bh = bh->b_this_page;
1753 		block++;
1754 	} while (bh != head);
1755 
1756 	do {
1757 		if (!buffer_mapped(bh))
1758 			continue;
1759 		/*
1760 		 * If it's a fully non-blocking write attempt and we cannot
1761 		 * lock the buffer then redirty the page.  Note that this can
1762 		 * potentially cause a busy-wait loop from writeback threads
1763 		 * and kswapd activity, but those code paths have their own
1764 		 * higher-level throttling.
1765 		 */
1766 		if (wbc->sync_mode != WB_SYNC_NONE) {
1767 			lock_buffer(bh);
1768 		} else if (!trylock_buffer(bh)) {
1769 			redirty_page_for_writepage(wbc, page);
1770 			continue;
1771 		}
1772 		if (test_clear_buffer_dirty(bh)) {
1773 			mark_buffer_async_write_endio(bh, handler);
1774 		} else {
1775 			unlock_buffer(bh);
1776 		}
1777 	} while ((bh = bh->b_this_page) != head);
1778 
1779 	/*
1780 	 * The page and its buffers are protected by PageWriteback(), so we can
1781 	 * drop the bh refcounts early.
1782 	 */
1783 	BUG_ON(PageWriteback(page));
1784 	set_page_writeback(page);
1785 
1786 	do {
1787 		struct buffer_head *next = bh->b_this_page;
1788 		if (buffer_async_write(bh)) {
1789 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1790 			nr_underway++;
1791 		}
1792 		bh = next;
1793 	} while (bh != head);
1794 	unlock_page(page);
1795 
1796 	err = 0;
1797 done:
1798 	if (nr_underway == 0) {
1799 		/*
1800 		 * The page was marked dirty, but the buffers were
1801 		 * clean.  Someone wrote them back by hand with
1802 		 * ll_rw_block/submit_bh.  A rare case.
1803 		 */
1804 		end_page_writeback(page);
1805 
1806 		/*
1807 		 * The page and buffer_heads can be released at any time from
1808 		 * here on.
1809 		 */
1810 	}
1811 	return err;
1812 
1813 recover:
1814 	/*
1815 	 * ENOSPC, or some other error.  We may already have added some
1816 	 * blocks to the file, so we need to write these out to avoid
1817 	 * exposing stale data.
1818 	 * The page is currently locked and not marked for writeback
1819 	 */
1820 	bh = head;
1821 	/* Recovery: lock and submit the mapped buffers */
1822 	do {
1823 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 		    !buffer_delay(bh)) {
1825 			lock_buffer(bh);
1826 			mark_buffer_async_write_endio(bh, handler);
1827 		} else {
1828 			/*
1829 			 * The buffer may have been set dirty during
1830 			 * attachment to a dirty page.
1831 			 */
1832 			clear_buffer_dirty(bh);
1833 		}
1834 	} while ((bh = bh->b_this_page) != head);
1835 	SetPageError(page);
1836 	BUG_ON(PageWriteback(page));
1837 	mapping_set_error(page->mapping, err);
1838 	set_page_writeback(page);
1839 	do {
1840 		struct buffer_head *next = bh->b_this_page;
1841 		if (buffer_async_write(bh)) {
1842 			clear_buffer_dirty(bh);
1843 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1844 			nr_underway++;
1845 		}
1846 		bh = next;
1847 	} while (bh != head);
1848 	unlock_page(page);
1849 	goto done;
1850 }
1851 EXPORT_SYMBOL(__block_write_full_page);
1852 
1853 /*
1854  * If a page has any new buffers, zero them out here, and mark them uptodate
1855  * and dirty so they'll be written out (in order to prevent uninitialised
1856  * block data from leaking). And clear the new bit.
1857  */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 	unsigned int block_start, block_end;
1861 	struct buffer_head *head, *bh;
1862 
1863 	BUG_ON(!PageLocked(page));
1864 	if (!page_has_buffers(page))
1865 		return;
1866 
1867 	bh = head = page_buffers(page);
1868 	block_start = 0;
1869 	do {
1870 		block_end = block_start + bh->b_size;
1871 
1872 		if (buffer_new(bh)) {
1873 			if (block_end > from && block_start < to) {
1874 				if (!PageUptodate(page)) {
1875 					unsigned start, size;
1876 
1877 					start = max(from, block_start);
1878 					size = min(to, block_end) - start;
1879 
1880 					zero_user(page, start, size);
1881 					set_buffer_uptodate(bh);
1882 				}
1883 
1884 				clear_buffer_new(bh);
1885 				mark_buffer_dirty(bh);
1886 			}
1887 		}
1888 
1889 		block_start = block_end;
1890 		bh = bh->b_this_page;
1891 	} while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894 
1895 static void
1896 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1897 		struct iomap *iomap)
1898 {
1899 	loff_t offset = block << inode->i_blkbits;
1900 
1901 	bh->b_bdev = iomap->bdev;
1902 
1903 	/*
1904 	 * Block points to offset in file we need to map, iomap contains
1905 	 * the offset at which the map starts. If the map ends before the
1906 	 * current block, then do not map the buffer and let the caller
1907 	 * handle it.
1908 	 */
1909 	BUG_ON(offset >= iomap->offset + iomap->length);
1910 
1911 	switch (iomap->type) {
1912 	case IOMAP_HOLE:
1913 		/*
1914 		 * If the buffer is not up to date or beyond the current EOF,
1915 		 * we need to mark it as new to ensure sub-block zeroing is
1916 		 * executed if necessary.
1917 		 */
1918 		if (!buffer_uptodate(bh) ||
1919 		    (offset >= i_size_read(inode)))
1920 			set_buffer_new(bh);
1921 		break;
1922 	case IOMAP_DELALLOC:
1923 		if (!buffer_uptodate(bh) ||
1924 		    (offset >= i_size_read(inode)))
1925 			set_buffer_new(bh);
1926 		set_buffer_uptodate(bh);
1927 		set_buffer_mapped(bh);
1928 		set_buffer_delay(bh);
1929 		break;
1930 	case IOMAP_UNWRITTEN:
1931 		/*
1932 		 * For unwritten regions, we always need to ensure that
1933 		 * sub-block writes cause the regions in the block we are not
1934 		 * writing to are zeroed. Set the buffer as new to ensure this.
1935 		 */
1936 		set_buffer_new(bh);
1937 		set_buffer_unwritten(bh);
1938 		/* FALLTHRU */
1939 	case IOMAP_MAPPED:
1940 		if (offset >= i_size_read(inode))
1941 			set_buffer_new(bh);
1942 		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1943 				((offset - iomap->offset) >> inode->i_blkbits);
1944 		set_buffer_mapped(bh);
1945 		break;
1946 	}
1947 }
1948 
1949 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1950 		get_block_t *get_block, struct iomap *iomap)
1951 {
1952 	unsigned from = pos & (PAGE_SIZE - 1);
1953 	unsigned to = from + len;
1954 	struct inode *inode = page->mapping->host;
1955 	unsigned block_start, block_end;
1956 	sector_t block;
1957 	int err = 0;
1958 	unsigned blocksize, bbits;
1959 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1960 
1961 	BUG_ON(!PageLocked(page));
1962 	BUG_ON(from > PAGE_SIZE);
1963 	BUG_ON(to > PAGE_SIZE);
1964 	BUG_ON(from > to);
1965 
1966 	head = create_page_buffers(page, inode, 0);
1967 	blocksize = head->b_size;
1968 	bbits = block_size_bits(blocksize);
1969 
1970 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1971 
1972 	for(bh = head, block_start = 0; bh != head || !block_start;
1973 	    block++, block_start=block_end, bh = bh->b_this_page) {
1974 		block_end = block_start + blocksize;
1975 		if (block_end <= from || block_start >= to) {
1976 			if (PageUptodate(page)) {
1977 				if (!buffer_uptodate(bh))
1978 					set_buffer_uptodate(bh);
1979 			}
1980 			continue;
1981 		}
1982 		if (buffer_new(bh))
1983 			clear_buffer_new(bh);
1984 		if (!buffer_mapped(bh)) {
1985 			WARN_ON(bh->b_size != blocksize);
1986 			if (get_block) {
1987 				err = get_block(inode, block, bh, 1);
1988 				if (err)
1989 					break;
1990 			} else {
1991 				iomap_to_bh(inode, block, bh, iomap);
1992 			}
1993 
1994 			if (buffer_new(bh)) {
1995 				unmap_underlying_metadata(bh->b_bdev,
1996 							bh->b_blocknr);
1997 				if (PageUptodate(page)) {
1998 					clear_buffer_new(bh);
1999 					set_buffer_uptodate(bh);
2000 					mark_buffer_dirty(bh);
2001 					continue;
2002 				}
2003 				if (block_end > to || block_start < from)
2004 					zero_user_segments(page,
2005 						to, block_end,
2006 						block_start, from);
2007 				continue;
2008 			}
2009 		}
2010 		if (PageUptodate(page)) {
2011 			if (!buffer_uptodate(bh))
2012 				set_buffer_uptodate(bh);
2013 			continue;
2014 		}
2015 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2016 		    !buffer_unwritten(bh) &&
2017 		     (block_start < from || block_end > to)) {
2018 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2019 			*wait_bh++=bh;
2020 		}
2021 	}
2022 	/*
2023 	 * If we issued read requests - let them complete.
2024 	 */
2025 	while(wait_bh > wait) {
2026 		wait_on_buffer(*--wait_bh);
2027 		if (!buffer_uptodate(*wait_bh))
2028 			err = -EIO;
2029 	}
2030 	if (unlikely(err))
2031 		page_zero_new_buffers(page, from, to);
2032 	return err;
2033 }
2034 
2035 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2036 		get_block_t *get_block)
2037 {
2038 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2039 }
2040 EXPORT_SYMBOL(__block_write_begin);
2041 
2042 static int __block_commit_write(struct inode *inode, struct page *page,
2043 		unsigned from, unsigned to)
2044 {
2045 	unsigned block_start, block_end;
2046 	int partial = 0;
2047 	unsigned blocksize;
2048 	struct buffer_head *bh, *head;
2049 
2050 	bh = head = page_buffers(page);
2051 	blocksize = bh->b_size;
2052 
2053 	block_start = 0;
2054 	do {
2055 		block_end = block_start + blocksize;
2056 		if (block_end <= from || block_start >= to) {
2057 			if (!buffer_uptodate(bh))
2058 				partial = 1;
2059 		} else {
2060 			set_buffer_uptodate(bh);
2061 			mark_buffer_dirty(bh);
2062 		}
2063 		clear_buffer_new(bh);
2064 
2065 		block_start = block_end;
2066 		bh = bh->b_this_page;
2067 	} while (bh != head);
2068 
2069 	/*
2070 	 * If this is a partial write which happened to make all buffers
2071 	 * uptodate then we can optimize away a bogus readpage() for
2072 	 * the next read(). Here we 'discover' whether the page went
2073 	 * uptodate as a result of this (potentially partial) write.
2074 	 */
2075 	if (!partial)
2076 		SetPageUptodate(page);
2077 	return 0;
2078 }
2079 
2080 /*
2081  * block_write_begin takes care of the basic task of block allocation and
2082  * bringing partial write blocks uptodate first.
2083  *
2084  * The filesystem needs to handle block truncation upon failure.
2085  */
2086 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2087 		unsigned flags, struct page **pagep, get_block_t *get_block)
2088 {
2089 	pgoff_t index = pos >> PAGE_SHIFT;
2090 	struct page *page;
2091 	int status;
2092 
2093 	page = grab_cache_page_write_begin(mapping, index, flags);
2094 	if (!page)
2095 		return -ENOMEM;
2096 
2097 	status = __block_write_begin(page, pos, len, get_block);
2098 	if (unlikely(status)) {
2099 		unlock_page(page);
2100 		put_page(page);
2101 		page = NULL;
2102 	}
2103 
2104 	*pagep = page;
2105 	return status;
2106 }
2107 EXPORT_SYMBOL(block_write_begin);
2108 
2109 int block_write_end(struct file *file, struct address_space *mapping,
2110 			loff_t pos, unsigned len, unsigned copied,
2111 			struct page *page, void *fsdata)
2112 {
2113 	struct inode *inode = mapping->host;
2114 	unsigned start;
2115 
2116 	start = pos & (PAGE_SIZE - 1);
2117 
2118 	if (unlikely(copied < len)) {
2119 		/*
2120 		 * The buffers that were written will now be uptodate, so we
2121 		 * don't have to worry about a readpage reading them and
2122 		 * overwriting a partial write. However if we have encountered
2123 		 * a short write and only partially written into a buffer, it
2124 		 * will not be marked uptodate, so a readpage might come in and
2125 		 * destroy our partial write.
2126 		 *
2127 		 * Do the simplest thing, and just treat any short write to a
2128 		 * non uptodate page as a zero-length write, and force the
2129 		 * caller to redo the whole thing.
2130 		 */
2131 		if (!PageUptodate(page))
2132 			copied = 0;
2133 
2134 		page_zero_new_buffers(page, start+copied, start+len);
2135 	}
2136 	flush_dcache_page(page);
2137 
2138 	/* This could be a short (even 0-length) commit */
2139 	__block_commit_write(inode, page, start, start+copied);
2140 
2141 	return copied;
2142 }
2143 EXPORT_SYMBOL(block_write_end);
2144 
2145 int generic_write_end(struct file *file, struct address_space *mapping,
2146 			loff_t pos, unsigned len, unsigned copied,
2147 			struct page *page, void *fsdata)
2148 {
2149 	struct inode *inode = mapping->host;
2150 	loff_t old_size = inode->i_size;
2151 	int i_size_changed = 0;
2152 
2153 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2154 
2155 	/*
2156 	 * No need to use i_size_read() here, the i_size
2157 	 * cannot change under us because we hold i_mutex.
2158 	 *
2159 	 * But it's important to update i_size while still holding page lock:
2160 	 * page writeout could otherwise come in and zero beyond i_size.
2161 	 */
2162 	if (pos+copied > inode->i_size) {
2163 		i_size_write(inode, pos+copied);
2164 		i_size_changed = 1;
2165 	}
2166 
2167 	unlock_page(page);
2168 	put_page(page);
2169 
2170 	if (old_size < pos)
2171 		pagecache_isize_extended(inode, old_size, pos);
2172 	/*
2173 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2174 	 * makes the holding time of page lock longer. Second, it forces lock
2175 	 * ordering of page lock and transaction start for journaling
2176 	 * filesystems.
2177 	 */
2178 	if (i_size_changed)
2179 		mark_inode_dirty(inode);
2180 
2181 	return copied;
2182 }
2183 EXPORT_SYMBOL(generic_write_end);
2184 
2185 /*
2186  * block_is_partially_uptodate checks whether buffers within a page are
2187  * uptodate or not.
2188  *
2189  * Returns true if all buffers which correspond to a file portion
2190  * we want to read are uptodate.
2191  */
2192 int block_is_partially_uptodate(struct page *page, unsigned long from,
2193 					unsigned long count)
2194 {
2195 	unsigned block_start, block_end, blocksize;
2196 	unsigned to;
2197 	struct buffer_head *bh, *head;
2198 	int ret = 1;
2199 
2200 	if (!page_has_buffers(page))
2201 		return 0;
2202 
2203 	head = page_buffers(page);
2204 	blocksize = head->b_size;
2205 	to = min_t(unsigned, PAGE_SIZE - from, count);
2206 	to = from + to;
2207 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2208 		return 0;
2209 
2210 	bh = head;
2211 	block_start = 0;
2212 	do {
2213 		block_end = block_start + blocksize;
2214 		if (block_end > from && block_start < to) {
2215 			if (!buffer_uptodate(bh)) {
2216 				ret = 0;
2217 				break;
2218 			}
2219 			if (block_end >= to)
2220 				break;
2221 		}
2222 		block_start = block_end;
2223 		bh = bh->b_this_page;
2224 	} while (bh != head);
2225 
2226 	return ret;
2227 }
2228 EXPORT_SYMBOL(block_is_partially_uptodate);
2229 
2230 /*
2231  * Generic "read page" function for block devices that have the normal
2232  * get_block functionality. This is most of the block device filesystems.
2233  * Reads the page asynchronously --- the unlock_buffer() and
2234  * set/clear_buffer_uptodate() functions propagate buffer state into the
2235  * page struct once IO has completed.
2236  */
2237 int block_read_full_page(struct page *page, get_block_t *get_block)
2238 {
2239 	struct inode *inode = page->mapping->host;
2240 	sector_t iblock, lblock;
2241 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2242 	unsigned int blocksize, bbits;
2243 	int nr, i;
2244 	int fully_mapped = 1;
2245 
2246 	head = create_page_buffers(page, inode, 0);
2247 	blocksize = head->b_size;
2248 	bbits = block_size_bits(blocksize);
2249 
2250 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2251 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2252 	bh = head;
2253 	nr = 0;
2254 	i = 0;
2255 
2256 	do {
2257 		if (buffer_uptodate(bh))
2258 			continue;
2259 
2260 		if (!buffer_mapped(bh)) {
2261 			int err = 0;
2262 
2263 			fully_mapped = 0;
2264 			if (iblock < lblock) {
2265 				WARN_ON(bh->b_size != blocksize);
2266 				err = get_block(inode, iblock, bh, 0);
2267 				if (err)
2268 					SetPageError(page);
2269 			}
2270 			if (!buffer_mapped(bh)) {
2271 				zero_user(page, i * blocksize, blocksize);
2272 				if (!err)
2273 					set_buffer_uptodate(bh);
2274 				continue;
2275 			}
2276 			/*
2277 			 * get_block() might have updated the buffer
2278 			 * synchronously
2279 			 */
2280 			if (buffer_uptodate(bh))
2281 				continue;
2282 		}
2283 		arr[nr++] = bh;
2284 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2285 
2286 	if (fully_mapped)
2287 		SetPageMappedToDisk(page);
2288 
2289 	if (!nr) {
2290 		/*
2291 		 * All buffers are uptodate - we can set the page uptodate
2292 		 * as well. But not if get_block() returned an error.
2293 		 */
2294 		if (!PageError(page))
2295 			SetPageUptodate(page);
2296 		unlock_page(page);
2297 		return 0;
2298 	}
2299 
2300 	/* Stage two: lock the buffers */
2301 	for (i = 0; i < nr; i++) {
2302 		bh = arr[i];
2303 		lock_buffer(bh);
2304 		mark_buffer_async_read(bh);
2305 	}
2306 
2307 	/*
2308 	 * Stage 3: start the IO.  Check for uptodateness
2309 	 * inside the buffer lock in case another process reading
2310 	 * the underlying blockdev brought it uptodate (the sct fix).
2311 	 */
2312 	for (i = 0; i < nr; i++) {
2313 		bh = arr[i];
2314 		if (buffer_uptodate(bh))
2315 			end_buffer_async_read(bh, 1);
2316 		else
2317 			submit_bh(REQ_OP_READ, 0, bh);
2318 	}
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(block_read_full_page);
2322 
2323 /* utility function for filesystems that need to do work on expanding
2324  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2325  * deal with the hole.
2326  */
2327 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2328 {
2329 	struct address_space *mapping = inode->i_mapping;
2330 	struct page *page;
2331 	void *fsdata;
2332 	int err;
2333 
2334 	err = inode_newsize_ok(inode, size);
2335 	if (err)
2336 		goto out;
2337 
2338 	err = pagecache_write_begin(NULL, mapping, size, 0,
2339 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2340 				&page, &fsdata);
2341 	if (err)
2342 		goto out;
2343 
2344 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2345 	BUG_ON(err > 0);
2346 
2347 out:
2348 	return err;
2349 }
2350 EXPORT_SYMBOL(generic_cont_expand_simple);
2351 
2352 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2353 			    loff_t pos, loff_t *bytes)
2354 {
2355 	struct inode *inode = mapping->host;
2356 	unsigned blocksize = 1 << inode->i_blkbits;
2357 	struct page *page;
2358 	void *fsdata;
2359 	pgoff_t index, curidx;
2360 	loff_t curpos;
2361 	unsigned zerofrom, offset, len;
2362 	int err = 0;
2363 
2364 	index = pos >> PAGE_SHIFT;
2365 	offset = pos & ~PAGE_MASK;
2366 
2367 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2368 		zerofrom = curpos & ~PAGE_MASK;
2369 		if (zerofrom & (blocksize-1)) {
2370 			*bytes |= (blocksize-1);
2371 			(*bytes)++;
2372 		}
2373 		len = PAGE_SIZE - zerofrom;
2374 
2375 		err = pagecache_write_begin(file, mapping, curpos, len,
2376 						AOP_FLAG_UNINTERRUPTIBLE,
2377 						&page, &fsdata);
2378 		if (err)
2379 			goto out;
2380 		zero_user(page, zerofrom, len);
2381 		err = pagecache_write_end(file, mapping, curpos, len, len,
2382 						page, fsdata);
2383 		if (err < 0)
2384 			goto out;
2385 		BUG_ON(err != len);
2386 		err = 0;
2387 
2388 		balance_dirty_pages_ratelimited(mapping);
2389 
2390 		if (unlikely(fatal_signal_pending(current))) {
2391 			err = -EINTR;
2392 			goto out;
2393 		}
2394 	}
2395 
2396 	/* page covers the boundary, find the boundary offset */
2397 	if (index == curidx) {
2398 		zerofrom = curpos & ~PAGE_MASK;
2399 		/* if we will expand the thing last block will be filled */
2400 		if (offset <= zerofrom) {
2401 			goto out;
2402 		}
2403 		if (zerofrom & (blocksize-1)) {
2404 			*bytes |= (blocksize-1);
2405 			(*bytes)++;
2406 		}
2407 		len = offset - zerofrom;
2408 
2409 		err = pagecache_write_begin(file, mapping, curpos, len,
2410 						AOP_FLAG_UNINTERRUPTIBLE,
2411 						&page, &fsdata);
2412 		if (err)
2413 			goto out;
2414 		zero_user(page, zerofrom, len);
2415 		err = pagecache_write_end(file, mapping, curpos, len, len,
2416 						page, fsdata);
2417 		if (err < 0)
2418 			goto out;
2419 		BUG_ON(err != len);
2420 		err = 0;
2421 	}
2422 out:
2423 	return err;
2424 }
2425 
2426 /*
2427  * For moronic filesystems that do not allow holes in file.
2428  * We may have to extend the file.
2429  */
2430 int cont_write_begin(struct file *file, struct address_space *mapping,
2431 			loff_t pos, unsigned len, unsigned flags,
2432 			struct page **pagep, void **fsdata,
2433 			get_block_t *get_block, loff_t *bytes)
2434 {
2435 	struct inode *inode = mapping->host;
2436 	unsigned blocksize = 1 << inode->i_blkbits;
2437 	unsigned zerofrom;
2438 	int err;
2439 
2440 	err = cont_expand_zero(file, mapping, pos, bytes);
2441 	if (err)
2442 		return err;
2443 
2444 	zerofrom = *bytes & ~PAGE_MASK;
2445 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2446 		*bytes |= (blocksize-1);
2447 		(*bytes)++;
2448 	}
2449 
2450 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2451 }
2452 EXPORT_SYMBOL(cont_write_begin);
2453 
2454 int block_commit_write(struct page *page, unsigned from, unsigned to)
2455 {
2456 	struct inode *inode = page->mapping->host;
2457 	__block_commit_write(inode,page,from,to);
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL(block_commit_write);
2461 
2462 /*
2463  * block_page_mkwrite() is not allowed to change the file size as it gets
2464  * called from a page fault handler when a page is first dirtied. Hence we must
2465  * be careful to check for EOF conditions here. We set the page up correctly
2466  * for a written page which means we get ENOSPC checking when writing into
2467  * holes and correct delalloc and unwritten extent mapping on filesystems that
2468  * support these features.
2469  *
2470  * We are not allowed to take the i_mutex here so we have to play games to
2471  * protect against truncate races as the page could now be beyond EOF.  Because
2472  * truncate writes the inode size before removing pages, once we have the
2473  * page lock we can determine safely if the page is beyond EOF. If it is not
2474  * beyond EOF, then the page is guaranteed safe against truncation until we
2475  * unlock the page.
2476  *
2477  * Direct callers of this function should protect against filesystem freezing
2478  * using sb_start_pagefault() - sb_end_pagefault() functions.
2479  */
2480 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2481 			 get_block_t get_block)
2482 {
2483 	struct page *page = vmf->page;
2484 	struct inode *inode = file_inode(vma->vm_file);
2485 	unsigned long end;
2486 	loff_t size;
2487 	int ret;
2488 
2489 	lock_page(page);
2490 	size = i_size_read(inode);
2491 	if ((page->mapping != inode->i_mapping) ||
2492 	    (page_offset(page) > size)) {
2493 		/* We overload EFAULT to mean page got truncated */
2494 		ret = -EFAULT;
2495 		goto out_unlock;
2496 	}
2497 
2498 	/* page is wholly or partially inside EOF */
2499 	if (((page->index + 1) << PAGE_SHIFT) > size)
2500 		end = size & ~PAGE_MASK;
2501 	else
2502 		end = PAGE_SIZE;
2503 
2504 	ret = __block_write_begin(page, 0, end, get_block);
2505 	if (!ret)
2506 		ret = block_commit_write(page, 0, end);
2507 
2508 	if (unlikely(ret < 0))
2509 		goto out_unlock;
2510 	set_page_dirty(page);
2511 	wait_for_stable_page(page);
2512 	return 0;
2513 out_unlock:
2514 	unlock_page(page);
2515 	return ret;
2516 }
2517 EXPORT_SYMBOL(block_page_mkwrite);
2518 
2519 /*
2520  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2521  * immediately, while under the page lock.  So it needs a special end_io
2522  * handler which does not touch the bh after unlocking it.
2523  */
2524 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2525 {
2526 	__end_buffer_read_notouch(bh, uptodate);
2527 }
2528 
2529 /*
2530  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2531  * the page (converting it to circular linked list and taking care of page
2532  * dirty races).
2533  */
2534 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2535 {
2536 	struct buffer_head *bh;
2537 
2538 	BUG_ON(!PageLocked(page));
2539 
2540 	spin_lock(&page->mapping->private_lock);
2541 	bh = head;
2542 	do {
2543 		if (PageDirty(page))
2544 			set_buffer_dirty(bh);
2545 		if (!bh->b_this_page)
2546 			bh->b_this_page = head;
2547 		bh = bh->b_this_page;
2548 	} while (bh != head);
2549 	attach_page_buffers(page, head);
2550 	spin_unlock(&page->mapping->private_lock);
2551 }
2552 
2553 /*
2554  * On entry, the page is fully not uptodate.
2555  * On exit the page is fully uptodate in the areas outside (from,to)
2556  * The filesystem needs to handle block truncation upon failure.
2557  */
2558 int nobh_write_begin(struct address_space *mapping,
2559 			loff_t pos, unsigned len, unsigned flags,
2560 			struct page **pagep, void **fsdata,
2561 			get_block_t *get_block)
2562 {
2563 	struct inode *inode = mapping->host;
2564 	const unsigned blkbits = inode->i_blkbits;
2565 	const unsigned blocksize = 1 << blkbits;
2566 	struct buffer_head *head, *bh;
2567 	struct page *page;
2568 	pgoff_t index;
2569 	unsigned from, to;
2570 	unsigned block_in_page;
2571 	unsigned block_start, block_end;
2572 	sector_t block_in_file;
2573 	int nr_reads = 0;
2574 	int ret = 0;
2575 	int is_mapped_to_disk = 1;
2576 
2577 	index = pos >> PAGE_SHIFT;
2578 	from = pos & (PAGE_SIZE - 1);
2579 	to = from + len;
2580 
2581 	page = grab_cache_page_write_begin(mapping, index, flags);
2582 	if (!page)
2583 		return -ENOMEM;
2584 	*pagep = page;
2585 	*fsdata = NULL;
2586 
2587 	if (page_has_buffers(page)) {
2588 		ret = __block_write_begin(page, pos, len, get_block);
2589 		if (unlikely(ret))
2590 			goto out_release;
2591 		return ret;
2592 	}
2593 
2594 	if (PageMappedToDisk(page))
2595 		return 0;
2596 
2597 	/*
2598 	 * Allocate buffers so that we can keep track of state, and potentially
2599 	 * attach them to the page if an error occurs. In the common case of
2600 	 * no error, they will just be freed again without ever being attached
2601 	 * to the page (which is all OK, because we're under the page lock).
2602 	 *
2603 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2604 	 * than the circular one we're used to.
2605 	 */
2606 	head = alloc_page_buffers(page, blocksize, 0);
2607 	if (!head) {
2608 		ret = -ENOMEM;
2609 		goto out_release;
2610 	}
2611 
2612 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2613 
2614 	/*
2615 	 * We loop across all blocks in the page, whether or not they are
2616 	 * part of the affected region.  This is so we can discover if the
2617 	 * page is fully mapped-to-disk.
2618 	 */
2619 	for (block_start = 0, block_in_page = 0, bh = head;
2620 		  block_start < PAGE_SIZE;
2621 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2622 		int create;
2623 
2624 		block_end = block_start + blocksize;
2625 		bh->b_state = 0;
2626 		create = 1;
2627 		if (block_start >= to)
2628 			create = 0;
2629 		ret = get_block(inode, block_in_file + block_in_page,
2630 					bh, create);
2631 		if (ret)
2632 			goto failed;
2633 		if (!buffer_mapped(bh))
2634 			is_mapped_to_disk = 0;
2635 		if (buffer_new(bh))
2636 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2637 		if (PageUptodate(page)) {
2638 			set_buffer_uptodate(bh);
2639 			continue;
2640 		}
2641 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2642 			zero_user_segments(page, block_start, from,
2643 							to, block_end);
2644 			continue;
2645 		}
2646 		if (buffer_uptodate(bh))
2647 			continue;	/* reiserfs does this */
2648 		if (block_start < from || block_end > to) {
2649 			lock_buffer(bh);
2650 			bh->b_end_io = end_buffer_read_nobh;
2651 			submit_bh(REQ_OP_READ, 0, bh);
2652 			nr_reads++;
2653 		}
2654 	}
2655 
2656 	if (nr_reads) {
2657 		/*
2658 		 * The page is locked, so these buffers are protected from
2659 		 * any VM or truncate activity.  Hence we don't need to care
2660 		 * for the buffer_head refcounts.
2661 		 */
2662 		for (bh = head; bh; bh = bh->b_this_page) {
2663 			wait_on_buffer(bh);
2664 			if (!buffer_uptodate(bh))
2665 				ret = -EIO;
2666 		}
2667 		if (ret)
2668 			goto failed;
2669 	}
2670 
2671 	if (is_mapped_to_disk)
2672 		SetPageMappedToDisk(page);
2673 
2674 	*fsdata = head; /* to be released by nobh_write_end */
2675 
2676 	return 0;
2677 
2678 failed:
2679 	BUG_ON(!ret);
2680 	/*
2681 	 * Error recovery is a bit difficult. We need to zero out blocks that
2682 	 * were newly allocated, and dirty them to ensure they get written out.
2683 	 * Buffers need to be attached to the page at this point, otherwise
2684 	 * the handling of potential IO errors during writeout would be hard
2685 	 * (could try doing synchronous writeout, but what if that fails too?)
2686 	 */
2687 	attach_nobh_buffers(page, head);
2688 	page_zero_new_buffers(page, from, to);
2689 
2690 out_release:
2691 	unlock_page(page);
2692 	put_page(page);
2693 	*pagep = NULL;
2694 
2695 	return ret;
2696 }
2697 EXPORT_SYMBOL(nobh_write_begin);
2698 
2699 int nobh_write_end(struct file *file, struct address_space *mapping,
2700 			loff_t pos, unsigned len, unsigned copied,
2701 			struct page *page, void *fsdata)
2702 {
2703 	struct inode *inode = page->mapping->host;
2704 	struct buffer_head *head = fsdata;
2705 	struct buffer_head *bh;
2706 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2707 
2708 	if (unlikely(copied < len) && head)
2709 		attach_nobh_buffers(page, head);
2710 	if (page_has_buffers(page))
2711 		return generic_write_end(file, mapping, pos, len,
2712 					copied, page, fsdata);
2713 
2714 	SetPageUptodate(page);
2715 	set_page_dirty(page);
2716 	if (pos+copied > inode->i_size) {
2717 		i_size_write(inode, pos+copied);
2718 		mark_inode_dirty(inode);
2719 	}
2720 
2721 	unlock_page(page);
2722 	put_page(page);
2723 
2724 	while (head) {
2725 		bh = head;
2726 		head = head->b_this_page;
2727 		free_buffer_head(bh);
2728 	}
2729 
2730 	return copied;
2731 }
2732 EXPORT_SYMBOL(nobh_write_end);
2733 
2734 /*
2735  * nobh_writepage() - based on block_full_write_page() except
2736  * that it tries to operate without attaching bufferheads to
2737  * the page.
2738  */
2739 int nobh_writepage(struct page *page, get_block_t *get_block,
2740 			struct writeback_control *wbc)
2741 {
2742 	struct inode * const inode = page->mapping->host;
2743 	loff_t i_size = i_size_read(inode);
2744 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2745 	unsigned offset;
2746 	int ret;
2747 
2748 	/* Is the page fully inside i_size? */
2749 	if (page->index < end_index)
2750 		goto out;
2751 
2752 	/* Is the page fully outside i_size? (truncate in progress) */
2753 	offset = i_size & (PAGE_SIZE-1);
2754 	if (page->index >= end_index+1 || !offset) {
2755 		/*
2756 		 * The page may have dirty, unmapped buffers.  For example,
2757 		 * they may have been added in ext3_writepage().  Make them
2758 		 * freeable here, so the page does not leak.
2759 		 */
2760 #if 0
2761 		/* Not really sure about this  - do we need this ? */
2762 		if (page->mapping->a_ops->invalidatepage)
2763 			page->mapping->a_ops->invalidatepage(page, offset);
2764 #endif
2765 		unlock_page(page);
2766 		return 0; /* don't care */
2767 	}
2768 
2769 	/*
2770 	 * The page straddles i_size.  It must be zeroed out on each and every
2771 	 * writepage invocation because it may be mmapped.  "A file is mapped
2772 	 * in multiples of the page size.  For a file that is not a multiple of
2773 	 * the  page size, the remaining memory is zeroed when mapped, and
2774 	 * writes to that region are not written out to the file."
2775 	 */
2776 	zero_user_segment(page, offset, PAGE_SIZE);
2777 out:
2778 	ret = mpage_writepage(page, get_block, wbc);
2779 	if (ret == -EAGAIN)
2780 		ret = __block_write_full_page(inode, page, get_block, wbc,
2781 					      end_buffer_async_write);
2782 	return ret;
2783 }
2784 EXPORT_SYMBOL(nobh_writepage);
2785 
2786 int nobh_truncate_page(struct address_space *mapping,
2787 			loff_t from, get_block_t *get_block)
2788 {
2789 	pgoff_t index = from >> PAGE_SHIFT;
2790 	unsigned offset = from & (PAGE_SIZE-1);
2791 	unsigned blocksize;
2792 	sector_t iblock;
2793 	unsigned length, pos;
2794 	struct inode *inode = mapping->host;
2795 	struct page *page;
2796 	struct buffer_head map_bh;
2797 	int err;
2798 
2799 	blocksize = 1 << inode->i_blkbits;
2800 	length = offset & (blocksize - 1);
2801 
2802 	/* Block boundary? Nothing to do */
2803 	if (!length)
2804 		return 0;
2805 
2806 	length = blocksize - length;
2807 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2808 
2809 	page = grab_cache_page(mapping, index);
2810 	err = -ENOMEM;
2811 	if (!page)
2812 		goto out;
2813 
2814 	if (page_has_buffers(page)) {
2815 has_buffers:
2816 		unlock_page(page);
2817 		put_page(page);
2818 		return block_truncate_page(mapping, from, get_block);
2819 	}
2820 
2821 	/* Find the buffer that contains "offset" */
2822 	pos = blocksize;
2823 	while (offset >= pos) {
2824 		iblock++;
2825 		pos += blocksize;
2826 	}
2827 
2828 	map_bh.b_size = blocksize;
2829 	map_bh.b_state = 0;
2830 	err = get_block(inode, iblock, &map_bh, 0);
2831 	if (err)
2832 		goto unlock;
2833 	/* unmapped? It's a hole - nothing to do */
2834 	if (!buffer_mapped(&map_bh))
2835 		goto unlock;
2836 
2837 	/* Ok, it's mapped. Make sure it's up-to-date */
2838 	if (!PageUptodate(page)) {
2839 		err = mapping->a_ops->readpage(NULL, page);
2840 		if (err) {
2841 			put_page(page);
2842 			goto out;
2843 		}
2844 		lock_page(page);
2845 		if (!PageUptodate(page)) {
2846 			err = -EIO;
2847 			goto unlock;
2848 		}
2849 		if (page_has_buffers(page))
2850 			goto has_buffers;
2851 	}
2852 	zero_user(page, offset, length);
2853 	set_page_dirty(page);
2854 	err = 0;
2855 
2856 unlock:
2857 	unlock_page(page);
2858 	put_page(page);
2859 out:
2860 	return err;
2861 }
2862 EXPORT_SYMBOL(nobh_truncate_page);
2863 
2864 int block_truncate_page(struct address_space *mapping,
2865 			loff_t from, get_block_t *get_block)
2866 {
2867 	pgoff_t index = from >> PAGE_SHIFT;
2868 	unsigned offset = from & (PAGE_SIZE-1);
2869 	unsigned blocksize;
2870 	sector_t iblock;
2871 	unsigned length, pos;
2872 	struct inode *inode = mapping->host;
2873 	struct page *page;
2874 	struct buffer_head *bh;
2875 	int err;
2876 
2877 	blocksize = 1 << inode->i_blkbits;
2878 	length = offset & (blocksize - 1);
2879 
2880 	/* Block boundary? Nothing to do */
2881 	if (!length)
2882 		return 0;
2883 
2884 	length = blocksize - length;
2885 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2886 
2887 	page = grab_cache_page(mapping, index);
2888 	err = -ENOMEM;
2889 	if (!page)
2890 		goto out;
2891 
2892 	if (!page_has_buffers(page))
2893 		create_empty_buffers(page, blocksize, 0);
2894 
2895 	/* Find the buffer that contains "offset" */
2896 	bh = page_buffers(page);
2897 	pos = blocksize;
2898 	while (offset >= pos) {
2899 		bh = bh->b_this_page;
2900 		iblock++;
2901 		pos += blocksize;
2902 	}
2903 
2904 	err = 0;
2905 	if (!buffer_mapped(bh)) {
2906 		WARN_ON(bh->b_size != blocksize);
2907 		err = get_block(inode, iblock, bh, 0);
2908 		if (err)
2909 			goto unlock;
2910 		/* unmapped? It's a hole - nothing to do */
2911 		if (!buffer_mapped(bh))
2912 			goto unlock;
2913 	}
2914 
2915 	/* Ok, it's mapped. Make sure it's up-to-date */
2916 	if (PageUptodate(page))
2917 		set_buffer_uptodate(bh);
2918 
2919 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2920 		err = -EIO;
2921 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2922 		wait_on_buffer(bh);
2923 		/* Uhhuh. Read error. Complain and punt. */
2924 		if (!buffer_uptodate(bh))
2925 			goto unlock;
2926 	}
2927 
2928 	zero_user(page, offset, length);
2929 	mark_buffer_dirty(bh);
2930 	err = 0;
2931 
2932 unlock:
2933 	unlock_page(page);
2934 	put_page(page);
2935 out:
2936 	return err;
2937 }
2938 EXPORT_SYMBOL(block_truncate_page);
2939 
2940 /*
2941  * The generic ->writepage function for buffer-backed address_spaces
2942  */
2943 int block_write_full_page(struct page *page, get_block_t *get_block,
2944 			struct writeback_control *wbc)
2945 {
2946 	struct inode * const inode = page->mapping->host;
2947 	loff_t i_size = i_size_read(inode);
2948 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2949 	unsigned offset;
2950 
2951 	/* Is the page fully inside i_size? */
2952 	if (page->index < end_index)
2953 		return __block_write_full_page(inode, page, get_block, wbc,
2954 					       end_buffer_async_write);
2955 
2956 	/* Is the page fully outside i_size? (truncate in progress) */
2957 	offset = i_size & (PAGE_SIZE-1);
2958 	if (page->index >= end_index+1 || !offset) {
2959 		/*
2960 		 * The page may have dirty, unmapped buffers.  For example,
2961 		 * they may have been added in ext3_writepage().  Make them
2962 		 * freeable here, so the page does not leak.
2963 		 */
2964 		do_invalidatepage(page, 0, PAGE_SIZE);
2965 		unlock_page(page);
2966 		return 0; /* don't care */
2967 	}
2968 
2969 	/*
2970 	 * The page straddles i_size.  It must be zeroed out on each and every
2971 	 * writepage invocation because it may be mmapped.  "A file is mapped
2972 	 * in multiples of the page size.  For a file that is not a multiple of
2973 	 * the  page size, the remaining memory is zeroed when mapped, and
2974 	 * writes to that region are not written out to the file."
2975 	 */
2976 	zero_user_segment(page, offset, PAGE_SIZE);
2977 	return __block_write_full_page(inode, page, get_block, wbc,
2978 							end_buffer_async_write);
2979 }
2980 EXPORT_SYMBOL(block_write_full_page);
2981 
2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983 			    get_block_t *get_block)
2984 {
2985 	struct buffer_head tmp;
2986 	struct inode *inode = mapping->host;
2987 	tmp.b_state = 0;
2988 	tmp.b_blocknr = 0;
2989 	tmp.b_size = 1 << inode->i_blkbits;
2990 	get_block(inode, block, &tmp, 0);
2991 	return tmp.b_blocknr;
2992 }
2993 EXPORT_SYMBOL(generic_block_bmap);
2994 
2995 static void end_bio_bh_io_sync(struct bio *bio)
2996 {
2997 	struct buffer_head *bh = bio->bi_private;
2998 
2999 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3000 		set_bit(BH_Quiet, &bh->b_state);
3001 
3002 	bh->b_end_io(bh, !bio->bi_error);
3003 	bio_put(bio);
3004 }
3005 
3006 /*
3007  * This allows us to do IO even on the odd last sectors
3008  * of a device, even if the block size is some multiple
3009  * of the physical sector size.
3010  *
3011  * We'll just truncate the bio to the size of the device,
3012  * and clear the end of the buffer head manually.
3013  *
3014  * Truly out-of-range accesses will turn into actual IO
3015  * errors, this only handles the "we need to be able to
3016  * do IO at the final sector" case.
3017  */
3018 void guard_bio_eod(int op, struct bio *bio)
3019 {
3020 	sector_t maxsector;
3021 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3022 	unsigned truncated_bytes;
3023 
3024 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3025 	if (!maxsector)
3026 		return;
3027 
3028 	/*
3029 	 * If the *whole* IO is past the end of the device,
3030 	 * let it through, and the IO layer will turn it into
3031 	 * an EIO.
3032 	 */
3033 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3034 		return;
3035 
3036 	maxsector -= bio->bi_iter.bi_sector;
3037 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3038 		return;
3039 
3040 	/* Uhhuh. We've got a bio that straddles the device size! */
3041 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3042 
3043 	/* Truncate the bio.. */
3044 	bio->bi_iter.bi_size -= truncated_bytes;
3045 	bvec->bv_len -= truncated_bytes;
3046 
3047 	/* ..and clear the end of the buffer for reads */
3048 	if (op == REQ_OP_READ) {
3049 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3050 				truncated_bytes);
3051 	}
3052 }
3053 
3054 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3055 			 unsigned long bio_flags, struct writeback_control *wbc)
3056 {
3057 	struct bio *bio;
3058 
3059 	BUG_ON(!buffer_locked(bh));
3060 	BUG_ON(!buffer_mapped(bh));
3061 	BUG_ON(!bh->b_end_io);
3062 	BUG_ON(buffer_delay(bh));
3063 	BUG_ON(buffer_unwritten(bh));
3064 
3065 	/*
3066 	 * Only clear out a write error when rewriting
3067 	 */
3068 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3069 		clear_buffer_write_io_error(bh);
3070 
3071 	/*
3072 	 * from here on down, it's all bio -- do the initial mapping,
3073 	 * submit_bio -> generic_make_request may further map this bio around
3074 	 */
3075 	bio = bio_alloc(GFP_NOIO, 1);
3076 
3077 	if (wbc) {
3078 		wbc_init_bio(wbc, bio);
3079 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3080 	}
3081 
3082 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3083 	bio->bi_bdev = bh->b_bdev;
3084 
3085 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3086 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3087 
3088 	bio->bi_end_io = end_bio_bh_io_sync;
3089 	bio->bi_private = bh;
3090 	bio->bi_flags |= bio_flags;
3091 
3092 	/* Take care of bh's that straddle the end of the device */
3093 	guard_bio_eod(op, bio);
3094 
3095 	if (buffer_meta(bh))
3096 		op_flags |= REQ_META;
3097 	if (buffer_prio(bh))
3098 		op_flags |= REQ_PRIO;
3099 	bio_set_op_attrs(bio, op, op_flags);
3100 
3101 	submit_bio(bio);
3102 	return 0;
3103 }
3104 
3105 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3106 	       unsigned long bio_flags)
3107 {
3108 	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3109 }
3110 EXPORT_SYMBOL_GPL(_submit_bh);
3111 
3112 int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3113 {
3114 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3115 }
3116 EXPORT_SYMBOL(submit_bh);
3117 
3118 /**
3119  * ll_rw_block: low-level access to block devices (DEPRECATED)
3120  * @op: whether to %READ or %WRITE
3121  * @op_flags: rq_flag_bits
3122  * @nr: number of &struct buffer_heads in the array
3123  * @bhs: array of pointers to &struct buffer_head
3124  *
3125  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3126  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3127  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3128  * %REQ_RAHEAD.
3129  *
3130  * This function drops any buffer that it cannot get a lock on (with the
3131  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3132  * request, and any buffer that appears to be up-to-date when doing read
3133  * request.  Further it marks as clean buffers that are processed for
3134  * writing (the buffer cache won't assume that they are actually clean
3135  * until the buffer gets unlocked).
3136  *
3137  * ll_rw_block sets b_end_io to simple completion handler that marks
3138  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3139  * any waiters.
3140  *
3141  * All of the buffers must be for the same device, and must also be a
3142  * multiple of the current approved size for the device.
3143  */
3144 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3145 {
3146 	int i;
3147 
3148 	for (i = 0; i < nr; i++) {
3149 		struct buffer_head *bh = bhs[i];
3150 
3151 		if (!trylock_buffer(bh))
3152 			continue;
3153 		if (op == WRITE) {
3154 			if (test_clear_buffer_dirty(bh)) {
3155 				bh->b_end_io = end_buffer_write_sync;
3156 				get_bh(bh);
3157 				submit_bh(op, op_flags, bh);
3158 				continue;
3159 			}
3160 		} else {
3161 			if (!buffer_uptodate(bh)) {
3162 				bh->b_end_io = end_buffer_read_sync;
3163 				get_bh(bh);
3164 				submit_bh(op, op_flags, bh);
3165 				continue;
3166 			}
3167 		}
3168 		unlock_buffer(bh);
3169 	}
3170 }
3171 EXPORT_SYMBOL(ll_rw_block);
3172 
3173 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3174 {
3175 	lock_buffer(bh);
3176 	if (!test_clear_buffer_dirty(bh)) {
3177 		unlock_buffer(bh);
3178 		return;
3179 	}
3180 	bh->b_end_io = end_buffer_write_sync;
3181 	get_bh(bh);
3182 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3183 }
3184 EXPORT_SYMBOL(write_dirty_buffer);
3185 
3186 /*
3187  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3188  * and then start new I/O and then wait upon it.  The caller must have a ref on
3189  * the buffer_head.
3190  */
3191 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3192 {
3193 	int ret = 0;
3194 
3195 	WARN_ON(atomic_read(&bh->b_count) < 1);
3196 	lock_buffer(bh);
3197 	if (test_clear_buffer_dirty(bh)) {
3198 		get_bh(bh);
3199 		bh->b_end_io = end_buffer_write_sync;
3200 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3201 		wait_on_buffer(bh);
3202 		if (!ret && !buffer_uptodate(bh))
3203 			ret = -EIO;
3204 	} else {
3205 		unlock_buffer(bh);
3206 	}
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL(__sync_dirty_buffer);
3210 
3211 int sync_dirty_buffer(struct buffer_head *bh)
3212 {
3213 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3214 }
3215 EXPORT_SYMBOL(sync_dirty_buffer);
3216 
3217 /*
3218  * try_to_free_buffers() checks if all the buffers on this particular page
3219  * are unused, and releases them if so.
3220  *
3221  * Exclusion against try_to_free_buffers may be obtained by either
3222  * locking the page or by holding its mapping's private_lock.
3223  *
3224  * If the page is dirty but all the buffers are clean then we need to
3225  * be sure to mark the page clean as well.  This is because the page
3226  * may be against a block device, and a later reattachment of buffers
3227  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3228  * filesystem data on the same device.
3229  *
3230  * The same applies to regular filesystem pages: if all the buffers are
3231  * clean then we set the page clean and proceed.  To do that, we require
3232  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3233  * private_lock.
3234  *
3235  * try_to_free_buffers() is non-blocking.
3236  */
3237 static inline int buffer_busy(struct buffer_head *bh)
3238 {
3239 	return atomic_read(&bh->b_count) |
3240 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3241 }
3242 
3243 static int
3244 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3245 {
3246 	struct buffer_head *head = page_buffers(page);
3247 	struct buffer_head *bh;
3248 
3249 	bh = head;
3250 	do {
3251 		if (buffer_write_io_error(bh) && page->mapping)
3252 			mapping_set_error(page->mapping, -EIO);
3253 		if (buffer_busy(bh))
3254 			goto failed;
3255 		bh = bh->b_this_page;
3256 	} while (bh != head);
3257 
3258 	do {
3259 		struct buffer_head *next = bh->b_this_page;
3260 
3261 		if (bh->b_assoc_map)
3262 			__remove_assoc_queue(bh);
3263 		bh = next;
3264 	} while (bh != head);
3265 	*buffers_to_free = head;
3266 	__clear_page_buffers(page);
3267 	return 1;
3268 failed:
3269 	return 0;
3270 }
3271 
3272 int try_to_free_buffers(struct page *page)
3273 {
3274 	struct address_space * const mapping = page->mapping;
3275 	struct buffer_head *buffers_to_free = NULL;
3276 	int ret = 0;
3277 
3278 	BUG_ON(!PageLocked(page));
3279 	if (PageWriteback(page))
3280 		return 0;
3281 
3282 	if (mapping == NULL) {		/* can this still happen? */
3283 		ret = drop_buffers(page, &buffers_to_free);
3284 		goto out;
3285 	}
3286 
3287 	spin_lock(&mapping->private_lock);
3288 	ret = drop_buffers(page, &buffers_to_free);
3289 
3290 	/*
3291 	 * If the filesystem writes its buffers by hand (eg ext3)
3292 	 * then we can have clean buffers against a dirty page.  We
3293 	 * clean the page here; otherwise the VM will never notice
3294 	 * that the filesystem did any IO at all.
3295 	 *
3296 	 * Also, during truncate, discard_buffer will have marked all
3297 	 * the page's buffers clean.  We discover that here and clean
3298 	 * the page also.
3299 	 *
3300 	 * private_lock must be held over this entire operation in order
3301 	 * to synchronise against __set_page_dirty_buffers and prevent the
3302 	 * dirty bit from being lost.
3303 	 */
3304 	if (ret)
3305 		cancel_dirty_page(page);
3306 	spin_unlock(&mapping->private_lock);
3307 out:
3308 	if (buffers_to_free) {
3309 		struct buffer_head *bh = buffers_to_free;
3310 
3311 		do {
3312 			struct buffer_head *next = bh->b_this_page;
3313 			free_buffer_head(bh);
3314 			bh = next;
3315 		} while (bh != buffers_to_free);
3316 	}
3317 	return ret;
3318 }
3319 EXPORT_SYMBOL(try_to_free_buffers);
3320 
3321 /*
3322  * There are no bdflush tunables left.  But distributions are
3323  * still running obsolete flush daemons, so we terminate them here.
3324  *
3325  * Use of bdflush() is deprecated and will be removed in a future kernel.
3326  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3327  */
3328 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3329 {
3330 	static int msg_count;
3331 
3332 	if (!capable(CAP_SYS_ADMIN))
3333 		return -EPERM;
3334 
3335 	if (msg_count < 5) {
3336 		msg_count++;
3337 		printk(KERN_INFO
3338 			"warning: process `%s' used the obsolete bdflush"
3339 			" system call\n", current->comm);
3340 		printk(KERN_INFO "Fix your initscripts?\n");
3341 	}
3342 
3343 	if (func == 1)
3344 		do_exit(0);
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Buffer-head allocation
3350  */
3351 static struct kmem_cache *bh_cachep __read_mostly;
3352 
3353 /*
3354  * Once the number of bh's in the machine exceeds this level, we start
3355  * stripping them in writeback.
3356  */
3357 static unsigned long max_buffer_heads;
3358 
3359 int buffer_heads_over_limit;
3360 
3361 struct bh_accounting {
3362 	int nr;			/* Number of live bh's */
3363 	int ratelimit;		/* Limit cacheline bouncing */
3364 };
3365 
3366 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3367 
3368 static void recalc_bh_state(void)
3369 {
3370 	int i;
3371 	int tot = 0;
3372 
3373 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3374 		return;
3375 	__this_cpu_write(bh_accounting.ratelimit, 0);
3376 	for_each_online_cpu(i)
3377 		tot += per_cpu(bh_accounting, i).nr;
3378 	buffer_heads_over_limit = (tot > max_buffer_heads);
3379 }
3380 
3381 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3382 {
3383 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3384 	if (ret) {
3385 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3386 		preempt_disable();
3387 		__this_cpu_inc(bh_accounting.nr);
3388 		recalc_bh_state();
3389 		preempt_enable();
3390 	}
3391 	return ret;
3392 }
3393 EXPORT_SYMBOL(alloc_buffer_head);
3394 
3395 void free_buffer_head(struct buffer_head *bh)
3396 {
3397 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3398 	kmem_cache_free(bh_cachep, bh);
3399 	preempt_disable();
3400 	__this_cpu_dec(bh_accounting.nr);
3401 	recalc_bh_state();
3402 	preempt_enable();
3403 }
3404 EXPORT_SYMBOL(free_buffer_head);
3405 
3406 static void buffer_exit_cpu(int cpu)
3407 {
3408 	int i;
3409 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3410 
3411 	for (i = 0; i < BH_LRU_SIZE; i++) {
3412 		brelse(b->bhs[i]);
3413 		b->bhs[i] = NULL;
3414 	}
3415 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3416 	per_cpu(bh_accounting, cpu).nr = 0;
3417 }
3418 
3419 static int buffer_cpu_notify(struct notifier_block *self,
3420 			      unsigned long action, void *hcpu)
3421 {
3422 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3423 		buffer_exit_cpu((unsigned long)hcpu);
3424 	return NOTIFY_OK;
3425 }
3426 
3427 /**
3428  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3429  * @bh: struct buffer_head
3430  *
3431  * Return true if the buffer is up-to-date and false,
3432  * with the buffer locked, if not.
3433  */
3434 int bh_uptodate_or_lock(struct buffer_head *bh)
3435 {
3436 	if (!buffer_uptodate(bh)) {
3437 		lock_buffer(bh);
3438 		if (!buffer_uptodate(bh))
3439 			return 0;
3440 		unlock_buffer(bh);
3441 	}
3442 	return 1;
3443 }
3444 EXPORT_SYMBOL(bh_uptodate_or_lock);
3445 
3446 /**
3447  * bh_submit_read - Submit a locked buffer for reading
3448  * @bh: struct buffer_head
3449  *
3450  * Returns zero on success and -EIO on error.
3451  */
3452 int bh_submit_read(struct buffer_head *bh)
3453 {
3454 	BUG_ON(!buffer_locked(bh));
3455 
3456 	if (buffer_uptodate(bh)) {
3457 		unlock_buffer(bh);
3458 		return 0;
3459 	}
3460 
3461 	get_bh(bh);
3462 	bh->b_end_io = end_buffer_read_sync;
3463 	submit_bh(REQ_OP_READ, 0, bh);
3464 	wait_on_buffer(bh);
3465 	if (buffer_uptodate(bh))
3466 		return 0;
3467 	return -EIO;
3468 }
3469 EXPORT_SYMBOL(bh_submit_read);
3470 
3471 void __init buffer_init(void)
3472 {
3473 	unsigned long nrpages;
3474 
3475 	bh_cachep = kmem_cache_create("buffer_head",
3476 			sizeof(struct buffer_head), 0,
3477 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3478 				SLAB_MEM_SPREAD),
3479 				NULL);
3480 
3481 	/*
3482 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3483 	 */
3484 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3485 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3486 	hotcpu_notifier(buffer_cpu_notify, 0);
3487 }
3488