xref: /openbmc/linux/fs/buffer.c (revision efe4a1ac)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 	bh->b_end_io = handler;
59 	bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62 
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 	trace_block_touch_buffer(bh);
66 	mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75 
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 	clear_bit_unlock(BH_Lock, &bh->b_state);
79 	smp_mb__after_atomic();
80 	wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83 
84 /*
85  * Returns if the page has dirty or writeback buffers. If all the buffers
86  * are unlocked and clean then the PageDirty information is stale. If
87  * any of the pages are locked, it is assumed they are locked for IO.
88  */
89 void buffer_check_dirty_writeback(struct page *page,
90 				     bool *dirty, bool *writeback)
91 {
92 	struct buffer_head *head, *bh;
93 	*dirty = false;
94 	*writeback = false;
95 
96 	BUG_ON(!PageLocked(page));
97 
98 	if (!page_has_buffers(page))
99 		return;
100 
101 	if (PageWriteback(page))
102 		*writeback = true;
103 
104 	head = page_buffers(page);
105 	bh = head;
106 	do {
107 		if (buffer_locked(bh))
108 			*writeback = true;
109 
110 		if (buffer_dirty(bh))
111 			*dirty = true;
112 
113 		bh = bh->b_this_page;
114 	} while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117 
118 /*
119  * Block until a buffer comes unlocked.  This doesn't stop it
120  * from becoming locked again - you have to lock it yourself
121  * if you want to preserve its state.
122  */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128 
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 	ClearPagePrivate(page);
133 	set_page_private(page, 0);
134 	put_page(page);
135 }
136 
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 	if (!test_bit(BH_Quiet, &bh->b_state))
140 		printk_ratelimited(KERN_ERR
141 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
142 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144 
145 /*
146  * End-of-IO handler helper function which does not touch the bh after
147  * unlocking it.
148  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149  * a race there is benign: unlock_buffer() only use the bh's address for
150  * hashing after unlocking the buffer, so it doesn't actually touch the bh
151  * itself.
152  */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 	if (uptodate) {
156 		set_buffer_uptodate(bh);
157 	} else {
158 		/* This happens, due to failed read-ahead attempts. */
159 		clear_buffer_uptodate(bh);
160 	}
161 	unlock_buffer(bh);
162 }
163 
164 /*
165  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
166  * unlock the buffer. This is what ll_rw_block uses too.
167  */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 	__end_buffer_read_notouch(bh, uptodate);
171 	put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174 
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 	if (uptodate) {
178 		set_buffer_uptodate(bh);
179 	} else {
180 		buffer_io_error(bh, ", lost sync page write");
181 		set_buffer_write_io_error(bh);
182 		clear_buffer_uptodate(bh);
183 	}
184 	unlock_buffer(bh);
185 	put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188 
189 /*
190  * Various filesystems appear to want __find_get_block to be non-blocking.
191  * But it's the page lock which protects the buffers.  To get around this,
192  * we get exclusion from try_to_free_buffers with the blockdev mapping's
193  * private_lock.
194  *
195  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196  * may be quite high.  This code could TryLock the page, and if that
197  * succeeds, there is no need to take private_lock. (But if
198  * private_lock is contended then so is mapping->tree_lock).
199  */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 	struct inode *bd_inode = bdev->bd_inode;
204 	struct address_space *bd_mapping = bd_inode->i_mapping;
205 	struct buffer_head *ret = NULL;
206 	pgoff_t index;
207 	struct buffer_head *bh;
208 	struct buffer_head *head;
209 	struct page *page;
210 	int all_mapped = 1;
211 
212 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 	if (!page)
215 		goto out;
216 
217 	spin_lock(&bd_mapping->private_lock);
218 	if (!page_has_buffers(page))
219 		goto out_unlock;
220 	head = page_buffers(page);
221 	bh = head;
222 	do {
223 		if (!buffer_mapped(bh))
224 			all_mapped = 0;
225 		else if (bh->b_blocknr == block) {
226 			ret = bh;
227 			get_bh(bh);
228 			goto out_unlock;
229 		}
230 		bh = bh->b_this_page;
231 	} while (bh != head);
232 
233 	/* we might be here because some of the buffers on this page are
234 	 * not mapped.  This is due to various races between
235 	 * file io on the block device and getblk.  It gets dealt with
236 	 * elsewhere, don't buffer_error if we had some unmapped buffers
237 	 */
238 	if (all_mapped) {
239 		printk("__find_get_block_slow() failed. "
240 			"block=%llu, b_blocknr=%llu\n",
241 			(unsigned long long)block,
242 			(unsigned long long)bh->b_blocknr);
243 		printk("b_state=0x%08lx, b_size=%zu\n",
244 			bh->b_state, bh->b_size);
245 		printk("device %pg blocksize: %d\n", bdev,
246 			1 << bd_inode->i_blkbits);
247 	}
248 out_unlock:
249 	spin_unlock(&bd_mapping->private_lock);
250 	put_page(page);
251 out:
252 	return ret;
253 }
254 
255 /*
256  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257  */
258 static void free_more_memory(void)
259 {
260 	struct zoneref *z;
261 	int nid;
262 
263 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 	yield();
265 
266 	for_each_online_node(nid) {
267 
268 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 						gfp_zone(GFP_NOFS), NULL);
270 		if (z->zone)
271 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 						GFP_NOFS, NULL);
273 	}
274 }
275 
276 /*
277  * I/O completion handler for block_read_full_page() - pages
278  * which come unlocked at the end of I/O.
279  */
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 {
282 	unsigned long flags;
283 	struct buffer_head *first;
284 	struct buffer_head *tmp;
285 	struct page *page;
286 	int page_uptodate = 1;
287 
288 	BUG_ON(!buffer_async_read(bh));
289 
290 	page = bh->b_page;
291 	if (uptodate) {
292 		set_buffer_uptodate(bh);
293 	} else {
294 		clear_buffer_uptodate(bh);
295 		buffer_io_error(bh, ", async page read");
296 		SetPageError(page);
297 	}
298 
299 	/*
300 	 * Be _very_ careful from here on. Bad things can happen if
301 	 * two buffer heads end IO at almost the same time and both
302 	 * decide that the page is now completely done.
303 	 */
304 	first = page_buffers(page);
305 	local_irq_save(flags);
306 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 	clear_buffer_async_read(bh);
308 	unlock_buffer(bh);
309 	tmp = bh;
310 	do {
311 		if (!buffer_uptodate(tmp))
312 			page_uptodate = 0;
313 		if (buffer_async_read(tmp)) {
314 			BUG_ON(!buffer_locked(tmp));
315 			goto still_busy;
316 		}
317 		tmp = tmp->b_this_page;
318 	} while (tmp != bh);
319 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 	local_irq_restore(flags);
321 
322 	/*
323 	 * If none of the buffers had errors and they are all
324 	 * uptodate then we can set the page uptodate.
325 	 */
326 	if (page_uptodate && !PageError(page))
327 		SetPageUptodate(page);
328 	unlock_page(page);
329 	return;
330 
331 still_busy:
332 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 	local_irq_restore(flags);
334 	return;
335 }
336 
337 /*
338  * Completion handler for block_write_full_page() - pages which are unlocked
339  * during I/O, and which have PageWriteback cleared upon I/O completion.
340  */
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 {
343 	unsigned long flags;
344 	struct buffer_head *first;
345 	struct buffer_head *tmp;
346 	struct page *page;
347 
348 	BUG_ON(!buffer_async_write(bh));
349 
350 	page = bh->b_page;
351 	if (uptodate) {
352 		set_buffer_uptodate(bh);
353 	} else {
354 		buffer_io_error(bh, ", lost async page write");
355 		mapping_set_error(page->mapping, -EIO);
356 		set_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	local_irq_save(flags);
363 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364 
365 	clear_buffer_async_write(bh);
366 	unlock_buffer(bh);
367 	tmp = bh->b_this_page;
368 	while (tmp != bh) {
369 		if (buffer_async_write(tmp)) {
370 			BUG_ON(!buffer_locked(tmp));
371 			goto still_busy;
372 		}
373 		tmp = tmp->b_this_page;
374 	}
375 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 	local_irq_restore(flags);
377 	end_page_writeback(page);
378 	return;
379 
380 still_busy:
381 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 	local_irq_restore(flags);
383 	return;
384 }
385 EXPORT_SYMBOL(end_buffer_async_write);
386 
387 /*
388  * If a page's buffers are under async readin (end_buffer_async_read
389  * completion) then there is a possibility that another thread of
390  * control could lock one of the buffers after it has completed
391  * but while some of the other buffers have not completed.  This
392  * locked buffer would confuse end_buffer_async_read() into not unlocking
393  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
394  * that this buffer is not under async I/O.
395  *
396  * The page comes unlocked when it has no locked buffer_async buffers
397  * left.
398  *
399  * PageLocked prevents anyone starting new async I/O reads any of
400  * the buffers.
401  *
402  * PageWriteback is used to prevent simultaneous writeout of the same
403  * page.
404  *
405  * PageLocked prevents anyone from starting writeback of a page which is
406  * under read I/O (PageWriteback is only ever set against a locked page).
407  */
408 static void mark_buffer_async_read(struct buffer_head *bh)
409 {
410 	bh->b_end_io = end_buffer_async_read;
411 	set_buffer_async_read(bh);
412 }
413 
414 static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 					  bh_end_io_t *handler)
416 {
417 	bh->b_end_io = handler;
418 	set_buffer_async_write(bh);
419 }
420 
421 void mark_buffer_async_write(struct buffer_head *bh)
422 {
423 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 }
425 EXPORT_SYMBOL(mark_buffer_async_write);
426 
427 
428 /*
429  * fs/buffer.c contains helper functions for buffer-backed address space's
430  * fsync functions.  A common requirement for buffer-based filesystems is
431  * that certain data from the backing blockdev needs to be written out for
432  * a successful fsync().  For example, ext2 indirect blocks need to be
433  * written back and waited upon before fsync() returns.
434  *
435  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437  * management of a list of dependent buffers at ->i_mapping->private_list.
438  *
439  * Locking is a little subtle: try_to_free_buffers() will remove buffers
440  * from their controlling inode's queue when they are being freed.  But
441  * try_to_free_buffers() will be operating against the *blockdev* mapping
442  * at the time, not against the S_ISREG file which depends on those buffers.
443  * So the locking for private_list is via the private_lock in the address_space
444  * which backs the buffers.  Which is different from the address_space
445  * against which the buffers are listed.  So for a particular address_space,
446  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
447  * mapping->private_list will always be protected by the backing blockdev's
448  * ->private_lock.
449  *
450  * Which introduces a requirement: all buffers on an address_space's
451  * ->private_list must be from the same address_space: the blockdev's.
452  *
453  * address_spaces which do not place buffers at ->private_list via these
454  * utility functions are free to use private_lock and private_list for
455  * whatever they want.  The only requirement is that list_empty(private_list)
456  * be true at clear_inode() time.
457  *
458  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
459  * filesystems should do that.  invalidate_inode_buffers() should just go
460  * BUG_ON(!list_empty).
461  *
462  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
463  * take an address_space, not an inode.  And it should be called
464  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465  * queued up.
466  *
467  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468  * list if it is already on a list.  Because if the buffer is on a list,
469  * it *must* already be on the right one.  If not, the filesystem is being
470  * silly.  This will save a ton of locking.  But first we have to ensure
471  * that buffers are taken *off* the old inode's list when they are freed
472  * (presumably in truncate).  That requires careful auditing of all
473  * filesystems (do it inside bforget()).  It could also be done by bringing
474  * b_inode back.
475  */
476 
477 /*
478  * The buffer's backing address_space's private_lock must be held
479  */
480 static void __remove_assoc_queue(struct buffer_head *bh)
481 {
482 	list_del_init(&bh->b_assoc_buffers);
483 	WARN_ON(!bh->b_assoc_map);
484 	if (buffer_write_io_error(bh))
485 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 	bh->b_assoc_map = NULL;
487 }
488 
489 int inode_has_buffers(struct inode *inode)
490 {
491 	return !list_empty(&inode->i_data.private_list);
492 }
493 
494 /*
495  * osync is designed to support O_SYNC io.  It waits synchronously for
496  * all already-submitted IO to complete, but does not queue any new
497  * writes to the disk.
498  *
499  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500  * you dirty the buffers, and then use osync_inode_buffers to wait for
501  * completion.  Any other dirty buffers which are not yet queued for
502  * write will not be flushed to disk by the osync.
503  */
504 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505 {
506 	struct buffer_head *bh;
507 	struct list_head *p;
508 	int err = 0;
509 
510 	spin_lock(lock);
511 repeat:
512 	list_for_each_prev(p, list) {
513 		bh = BH_ENTRY(p);
514 		if (buffer_locked(bh)) {
515 			get_bh(bh);
516 			spin_unlock(lock);
517 			wait_on_buffer(bh);
518 			if (!buffer_uptodate(bh))
519 				err = -EIO;
520 			brelse(bh);
521 			spin_lock(lock);
522 			goto repeat;
523 		}
524 	}
525 	spin_unlock(lock);
526 	return err;
527 }
528 
529 static void do_thaw_one(struct super_block *sb, void *unused)
530 {
531 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
533 }
534 
535 static void do_thaw_all(struct work_struct *work)
536 {
537 	iterate_supers(do_thaw_one, NULL);
538 	kfree(work);
539 	printk(KERN_WARNING "Emergency Thaw complete\n");
540 }
541 
542 /**
543  * emergency_thaw_all -- forcibly thaw every frozen filesystem
544  *
545  * Used for emergency unfreeze of all filesystems via SysRq
546  */
547 void emergency_thaw_all(void)
548 {
549 	struct work_struct *work;
550 
551 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 	if (work) {
553 		INIT_WORK(work, do_thaw_all);
554 		schedule_work(work);
555 	}
556 }
557 
558 /**
559  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
560  * @mapping: the mapping which wants those buffers written
561  *
562  * Starts I/O against the buffers at mapping->private_list, and waits upon
563  * that I/O.
564  *
565  * Basically, this is a convenience function for fsync().
566  * @mapping is a file or directory which needs those buffers to be written for
567  * a successful fsync().
568  */
569 int sync_mapping_buffers(struct address_space *mapping)
570 {
571 	struct address_space *buffer_mapping = mapping->private_data;
572 
573 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 		return 0;
575 
576 	return fsync_buffers_list(&buffer_mapping->private_lock,
577 					&mapping->private_list);
578 }
579 EXPORT_SYMBOL(sync_mapping_buffers);
580 
581 /*
582  * Called when we've recently written block `bblock', and it is known that
583  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
584  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
585  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
586  */
587 void write_boundary_block(struct block_device *bdev,
588 			sector_t bblock, unsigned blocksize)
589 {
590 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 	if (bh) {
592 		if (buffer_dirty(bh))
593 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
594 		put_bh(bh);
595 	}
596 }
597 
598 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599 {
600 	struct address_space *mapping = inode->i_mapping;
601 	struct address_space *buffer_mapping = bh->b_page->mapping;
602 
603 	mark_buffer_dirty(bh);
604 	if (!mapping->private_data) {
605 		mapping->private_data = buffer_mapping;
606 	} else {
607 		BUG_ON(mapping->private_data != buffer_mapping);
608 	}
609 	if (!bh->b_assoc_map) {
610 		spin_lock(&buffer_mapping->private_lock);
611 		list_move_tail(&bh->b_assoc_buffers,
612 				&mapping->private_list);
613 		bh->b_assoc_map = mapping;
614 		spin_unlock(&buffer_mapping->private_lock);
615 	}
616 }
617 EXPORT_SYMBOL(mark_buffer_dirty_inode);
618 
619 /*
620  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621  * dirty.
622  *
623  * If warn is true, then emit a warning if the page is not uptodate and has
624  * not been truncated.
625  *
626  * The caller must hold lock_page_memcg().
627  */
628 static void __set_page_dirty(struct page *page, struct address_space *mapping,
629 			     int warn)
630 {
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&mapping->tree_lock, flags);
634 	if (page->mapping) {	/* Race with truncate? */
635 		WARN_ON_ONCE(warn && !PageUptodate(page));
636 		account_page_dirtied(page, mapping);
637 		radix_tree_tag_set(&mapping->page_tree,
638 				page_index(page), PAGECACHE_TAG_DIRTY);
639 	}
640 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
641 }
642 
643 /*
644  * Add a page to the dirty page list.
645  *
646  * It is a sad fact of life that this function is called from several places
647  * deeply under spinlocking.  It may not sleep.
648  *
649  * If the page has buffers, the uptodate buffers are set dirty, to preserve
650  * dirty-state coherency between the page and the buffers.  It the page does
651  * not have buffers then when they are later attached they will all be set
652  * dirty.
653  *
654  * The buffers are dirtied before the page is dirtied.  There's a small race
655  * window in which a writepage caller may see the page cleanness but not the
656  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
657  * before the buffers, a concurrent writepage caller could clear the page dirty
658  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659  * page on the dirty page list.
660  *
661  * We use private_lock to lock against try_to_free_buffers while using the
662  * page's buffer list.  Also use this to protect against clean buffers being
663  * added to the page after it was set dirty.
664  *
665  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
666  * address_space though.
667  */
668 int __set_page_dirty_buffers(struct page *page)
669 {
670 	int newly_dirty;
671 	struct address_space *mapping = page_mapping(page);
672 
673 	if (unlikely(!mapping))
674 		return !TestSetPageDirty(page);
675 
676 	spin_lock(&mapping->private_lock);
677 	if (page_has_buffers(page)) {
678 		struct buffer_head *head = page_buffers(page);
679 		struct buffer_head *bh = head;
680 
681 		do {
682 			set_buffer_dirty(bh);
683 			bh = bh->b_this_page;
684 		} while (bh != head);
685 	}
686 	/*
687 	 * Lock out page->mem_cgroup migration to keep PageDirty
688 	 * synchronized with per-memcg dirty page counters.
689 	 */
690 	lock_page_memcg(page);
691 	newly_dirty = !TestSetPageDirty(page);
692 	spin_unlock(&mapping->private_lock);
693 
694 	if (newly_dirty)
695 		__set_page_dirty(page, mapping, 1);
696 
697 	unlock_page_memcg(page);
698 
699 	if (newly_dirty)
700 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701 
702 	return newly_dirty;
703 }
704 EXPORT_SYMBOL(__set_page_dirty_buffers);
705 
706 /*
707  * Write out and wait upon a list of buffers.
708  *
709  * We have conflicting pressures: we want to make sure that all
710  * initially dirty buffers get waited on, but that any subsequently
711  * dirtied buffers don't.  After all, we don't want fsync to last
712  * forever if somebody is actively writing to the file.
713  *
714  * Do this in two main stages: first we copy dirty buffers to a
715  * temporary inode list, queueing the writes as we go.  Then we clean
716  * up, waiting for those writes to complete.
717  *
718  * During this second stage, any subsequent updates to the file may end
719  * up refiling the buffer on the original inode's dirty list again, so
720  * there is a chance we will end up with a buffer queued for write but
721  * not yet completed on that list.  So, as a final cleanup we go through
722  * the osync code to catch these locked, dirty buffers without requeuing
723  * any newly dirty buffers for write.
724  */
725 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726 {
727 	struct buffer_head *bh;
728 	struct list_head tmp;
729 	struct address_space *mapping;
730 	int err = 0, err2;
731 	struct blk_plug plug;
732 
733 	INIT_LIST_HEAD(&tmp);
734 	blk_start_plug(&plug);
735 
736 	spin_lock(lock);
737 	while (!list_empty(list)) {
738 		bh = BH_ENTRY(list->next);
739 		mapping = bh->b_assoc_map;
740 		__remove_assoc_queue(bh);
741 		/* Avoid race with mark_buffer_dirty_inode() which does
742 		 * a lockless check and we rely on seeing the dirty bit */
743 		smp_mb();
744 		if (buffer_dirty(bh) || buffer_locked(bh)) {
745 			list_add(&bh->b_assoc_buffers, &tmp);
746 			bh->b_assoc_map = mapping;
747 			if (buffer_dirty(bh)) {
748 				get_bh(bh);
749 				spin_unlock(lock);
750 				/*
751 				 * Ensure any pending I/O completes so that
752 				 * write_dirty_buffer() actually writes the
753 				 * current contents - it is a noop if I/O is
754 				 * still in flight on potentially older
755 				 * contents.
756 				 */
757 				write_dirty_buffer(bh, REQ_SYNC);
758 
759 				/*
760 				 * Kick off IO for the previous mapping. Note
761 				 * that we will not run the very last mapping,
762 				 * wait_on_buffer() will do that for us
763 				 * through sync_buffer().
764 				 */
765 				brelse(bh);
766 				spin_lock(lock);
767 			}
768 		}
769 	}
770 
771 	spin_unlock(lock);
772 	blk_finish_plug(&plug);
773 	spin_lock(lock);
774 
775 	while (!list_empty(&tmp)) {
776 		bh = BH_ENTRY(tmp.prev);
777 		get_bh(bh);
778 		mapping = bh->b_assoc_map;
779 		__remove_assoc_queue(bh);
780 		/* Avoid race with mark_buffer_dirty_inode() which does
781 		 * a lockless check and we rely on seeing the dirty bit */
782 		smp_mb();
783 		if (buffer_dirty(bh)) {
784 			list_add(&bh->b_assoc_buffers,
785 				 &mapping->private_list);
786 			bh->b_assoc_map = mapping;
787 		}
788 		spin_unlock(lock);
789 		wait_on_buffer(bh);
790 		if (!buffer_uptodate(bh))
791 			err = -EIO;
792 		brelse(bh);
793 		spin_lock(lock);
794 	}
795 
796 	spin_unlock(lock);
797 	err2 = osync_buffers_list(lock, list);
798 	if (err)
799 		return err;
800 	else
801 		return err2;
802 }
803 
804 /*
805  * Invalidate any and all dirty buffers on a given inode.  We are
806  * probably unmounting the fs, but that doesn't mean we have already
807  * done a sync().  Just drop the buffers from the inode list.
808  *
809  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
810  * assumes that all the buffers are against the blockdev.  Not true
811  * for reiserfs.
812  */
813 void invalidate_inode_buffers(struct inode *inode)
814 {
815 	if (inode_has_buffers(inode)) {
816 		struct address_space *mapping = &inode->i_data;
817 		struct list_head *list = &mapping->private_list;
818 		struct address_space *buffer_mapping = mapping->private_data;
819 
820 		spin_lock(&buffer_mapping->private_lock);
821 		while (!list_empty(list))
822 			__remove_assoc_queue(BH_ENTRY(list->next));
823 		spin_unlock(&buffer_mapping->private_lock);
824 	}
825 }
826 EXPORT_SYMBOL(invalidate_inode_buffers);
827 
828 /*
829  * Remove any clean buffers from the inode's buffer list.  This is called
830  * when we're trying to free the inode itself.  Those buffers can pin it.
831  *
832  * Returns true if all buffers were removed.
833  */
834 int remove_inode_buffers(struct inode *inode)
835 {
836 	int ret = 1;
837 
838 	if (inode_has_buffers(inode)) {
839 		struct address_space *mapping = &inode->i_data;
840 		struct list_head *list = &mapping->private_list;
841 		struct address_space *buffer_mapping = mapping->private_data;
842 
843 		spin_lock(&buffer_mapping->private_lock);
844 		while (!list_empty(list)) {
845 			struct buffer_head *bh = BH_ENTRY(list->next);
846 			if (buffer_dirty(bh)) {
847 				ret = 0;
848 				break;
849 			}
850 			__remove_assoc_queue(bh);
851 		}
852 		spin_unlock(&buffer_mapping->private_lock);
853 	}
854 	return ret;
855 }
856 
857 /*
858  * Create the appropriate buffers when given a page for data area and
859  * the size of each buffer.. Use the bh->b_this_page linked list to
860  * follow the buffers created.  Return NULL if unable to create more
861  * buffers.
862  *
863  * The retry flag is used to differentiate async IO (paging, swapping)
864  * which may not fail from ordinary buffer allocations.
865  */
866 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 		int retry)
868 {
869 	struct buffer_head *bh, *head;
870 	long offset;
871 
872 try_again:
873 	head = NULL;
874 	offset = PAGE_SIZE;
875 	while ((offset -= size) >= 0) {
876 		bh = alloc_buffer_head(GFP_NOFS);
877 		if (!bh)
878 			goto no_grow;
879 
880 		bh->b_this_page = head;
881 		bh->b_blocknr = -1;
882 		head = bh;
883 
884 		bh->b_size = size;
885 
886 		/* Link the buffer to its page */
887 		set_bh_page(bh, page, offset);
888 	}
889 	return head;
890 /*
891  * In case anything failed, we just free everything we got.
892  */
893 no_grow:
894 	if (head) {
895 		do {
896 			bh = head;
897 			head = head->b_this_page;
898 			free_buffer_head(bh);
899 		} while (head);
900 	}
901 
902 	/*
903 	 * Return failure for non-async IO requests.  Async IO requests
904 	 * are not allowed to fail, so we have to wait until buffer heads
905 	 * become available.  But we don't want tasks sleeping with
906 	 * partially complete buffers, so all were released above.
907 	 */
908 	if (!retry)
909 		return NULL;
910 
911 	/* We're _really_ low on memory. Now we just
912 	 * wait for old buffer heads to become free due to
913 	 * finishing IO.  Since this is an async request and
914 	 * the reserve list is empty, we're sure there are
915 	 * async buffer heads in use.
916 	 */
917 	free_more_memory();
918 	goto try_again;
919 }
920 EXPORT_SYMBOL_GPL(alloc_page_buffers);
921 
922 static inline void
923 link_dev_buffers(struct page *page, struct buffer_head *head)
924 {
925 	struct buffer_head *bh, *tail;
926 
927 	bh = head;
928 	do {
929 		tail = bh;
930 		bh = bh->b_this_page;
931 	} while (bh);
932 	tail->b_this_page = head;
933 	attach_page_buffers(page, head);
934 }
935 
936 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937 {
938 	sector_t retval = ~((sector_t)0);
939 	loff_t sz = i_size_read(bdev->bd_inode);
940 
941 	if (sz) {
942 		unsigned int sizebits = blksize_bits(size);
943 		retval = (sz >> sizebits);
944 	}
945 	return retval;
946 }
947 
948 /*
949  * Initialise the state of a blockdev page's buffers.
950  */
951 static sector_t
952 init_page_buffers(struct page *page, struct block_device *bdev,
953 			sector_t block, int size)
954 {
955 	struct buffer_head *head = page_buffers(page);
956 	struct buffer_head *bh = head;
957 	int uptodate = PageUptodate(page);
958 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
959 
960 	do {
961 		if (!buffer_mapped(bh)) {
962 			init_buffer(bh, NULL, NULL);
963 			bh->b_bdev = bdev;
964 			bh->b_blocknr = block;
965 			if (uptodate)
966 				set_buffer_uptodate(bh);
967 			if (block < end_block)
968 				set_buffer_mapped(bh);
969 		}
970 		block++;
971 		bh = bh->b_this_page;
972 	} while (bh != head);
973 
974 	/*
975 	 * Caller needs to validate requested block against end of device.
976 	 */
977 	return end_block;
978 }
979 
980 /*
981  * Create the page-cache page that contains the requested block.
982  *
983  * This is used purely for blockdev mappings.
984  */
985 static int
986 grow_dev_page(struct block_device *bdev, sector_t block,
987 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
988 {
989 	struct inode *inode = bdev->bd_inode;
990 	struct page *page;
991 	struct buffer_head *bh;
992 	sector_t end_block;
993 	int ret = 0;		/* Will call free_more_memory() */
994 	gfp_t gfp_mask;
995 
996 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
997 
998 	/*
999 	 * XXX: __getblk_slow() can not really deal with failure and
1000 	 * will endlessly loop on improvised global reclaim.  Prefer
1001 	 * looping in the allocator rather than here, at least that
1002 	 * code knows what it's doing.
1003 	 */
1004 	gfp_mask |= __GFP_NOFAIL;
1005 
1006 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 	if (!page)
1008 		return ret;
1009 
1010 	BUG_ON(!PageLocked(page));
1011 
1012 	if (page_has_buffers(page)) {
1013 		bh = page_buffers(page);
1014 		if (bh->b_size == size) {
1015 			end_block = init_page_buffers(page, bdev,
1016 						(sector_t)index << sizebits,
1017 						size);
1018 			goto done;
1019 		}
1020 		if (!try_to_free_buffers(page))
1021 			goto failed;
1022 	}
1023 
1024 	/*
1025 	 * Allocate some buffers for this page
1026 	 */
1027 	bh = alloc_page_buffers(page, size, 0);
1028 	if (!bh)
1029 		goto failed;
1030 
1031 	/*
1032 	 * Link the page to the buffers and initialise them.  Take the
1033 	 * lock to be atomic wrt __find_get_block(), which does not
1034 	 * run under the page lock.
1035 	 */
1036 	spin_lock(&inode->i_mapping->private_lock);
1037 	link_dev_buffers(page, bh);
1038 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 			size);
1040 	spin_unlock(&inode->i_mapping->private_lock);
1041 done:
1042 	ret = (block < end_block) ? 1 : -ENXIO;
1043 failed:
1044 	unlock_page(page);
1045 	put_page(page);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * Create buffers for the specified block device block's page.  If
1051  * that page was dirty, the buffers are set dirty also.
1052  */
1053 static int
1054 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055 {
1056 	pgoff_t index;
1057 	int sizebits;
1058 
1059 	sizebits = -1;
1060 	do {
1061 		sizebits++;
1062 	} while ((size << sizebits) < PAGE_SIZE);
1063 
1064 	index = block >> sizebits;
1065 
1066 	/*
1067 	 * Check for a block which wants to lie outside our maximum possible
1068 	 * pagecache index.  (this comparison is done using sector_t types).
1069 	 */
1070 	if (unlikely(index != block >> sizebits)) {
1071 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072 			"device %pg\n",
1073 			__func__, (unsigned long long)block,
1074 			bdev);
1075 		return -EIO;
1076 	}
1077 
1078 	/* Create a page with the proper size buffers.. */
1079 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080 }
1081 
1082 static struct buffer_head *
1083 __getblk_slow(struct block_device *bdev, sector_t block,
1084 	     unsigned size, gfp_t gfp)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head *bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size, gfp);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and mapping->host->i_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	trace_block_dirty_buffer(bh);
1154 
1155 	/*
1156 	 * Very *carefully* optimize the it-is-already-dirty case.
1157 	 *
1158 	 * Don't let the final "is it dirty" escape to before we
1159 	 * perhaps modified the buffer.
1160 	 */
1161 	if (buffer_dirty(bh)) {
1162 		smp_mb();
1163 		if (buffer_dirty(bh))
1164 			return;
1165 	}
1166 
1167 	if (!test_set_buffer_dirty(bh)) {
1168 		struct page *page = bh->b_page;
1169 		struct address_space *mapping = NULL;
1170 
1171 		lock_page_memcg(page);
1172 		if (!TestSetPageDirty(page)) {
1173 			mapping = page_mapping(page);
1174 			if (mapping)
1175 				__set_page_dirty(page, mapping, 0);
1176 		}
1177 		unlock_page_memcg(page);
1178 		if (mapping)
1179 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 	}
1181 }
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1183 
1184 /*
1185  * Decrement a buffer_head's reference count.  If all buffers against a page
1186  * have zero reference count, are clean and unlocked, and if the page is clean
1187  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189  * a page but it ends up not being freed, and buffers may later be reattached).
1190  */
1191 void __brelse(struct buffer_head * buf)
1192 {
1193 	if (atomic_read(&buf->b_count)) {
1194 		put_bh(buf);
1195 		return;
1196 	}
1197 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 }
1199 EXPORT_SYMBOL(__brelse);
1200 
1201 /*
1202  * bforget() is like brelse(), except it discards any
1203  * potentially dirty data.
1204  */
1205 void __bforget(struct buffer_head *bh)
1206 {
1207 	clear_buffer_dirty(bh);
1208 	if (bh->b_assoc_map) {
1209 		struct address_space *buffer_mapping = bh->b_page->mapping;
1210 
1211 		spin_lock(&buffer_mapping->private_lock);
1212 		list_del_init(&bh->b_assoc_buffers);
1213 		bh->b_assoc_map = NULL;
1214 		spin_unlock(&buffer_mapping->private_lock);
1215 	}
1216 	__brelse(bh);
1217 }
1218 EXPORT_SYMBOL(__bforget);
1219 
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 {
1222 	lock_buffer(bh);
1223 	if (buffer_uptodate(bh)) {
1224 		unlock_buffer(bh);
1225 		return bh;
1226 	} else {
1227 		get_bh(bh);
1228 		bh->b_end_io = end_buffer_read_sync;
1229 		submit_bh(REQ_OP_READ, 0, bh);
1230 		wait_on_buffer(bh);
1231 		if (buffer_uptodate(bh))
1232 			return bh;
1233 	}
1234 	brelse(bh);
1235 	return NULL;
1236 }
1237 
1238 /*
1239  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243  * CPU's LRUs at the same time.
1244  *
1245  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246  * sb_find_get_block().
1247  *
1248  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249  * a local interrupt disable for that.
1250  */
1251 
1252 #define BH_LRU_SIZE	16
1253 
1254 struct bh_lru {
1255 	struct buffer_head *bhs[BH_LRU_SIZE];
1256 };
1257 
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259 
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock()	local_irq_disable()
1262 #define bh_lru_unlock()	local_irq_enable()
1263 #else
1264 #define bh_lru_lock()	preempt_disable()
1265 #define bh_lru_unlock()	preempt_enable()
1266 #endif
1267 
1268 static inline void check_irqs_on(void)
1269 {
1270 #ifdef irqs_disabled
1271 	BUG_ON(irqs_disabled());
1272 #endif
1273 }
1274 
1275 /*
1276  * The LRU management algorithm is dopey-but-simple.  Sorry.
1277  */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280 	struct buffer_head *evictee = NULL;
1281 
1282 	check_irqs_on();
1283 	bh_lru_lock();
1284 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 		struct buffer_head *bhs[BH_LRU_SIZE];
1286 		int in;
1287 		int out = 0;
1288 
1289 		get_bh(bh);
1290 		bhs[out++] = bh;
1291 		for (in = 0; in < BH_LRU_SIZE; in++) {
1292 			struct buffer_head *bh2 =
1293 				__this_cpu_read(bh_lrus.bhs[in]);
1294 
1295 			if (bh2 == bh) {
1296 				__brelse(bh2);
1297 			} else {
1298 				if (out >= BH_LRU_SIZE) {
1299 					BUG_ON(evictee != NULL);
1300 					evictee = bh2;
1301 				} else {
1302 					bhs[out++] = bh2;
1303 				}
1304 			}
1305 		}
1306 		while (out < BH_LRU_SIZE)
1307 			bhs[out++] = NULL;
1308 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 	}
1310 	bh_lru_unlock();
1311 
1312 	if (evictee)
1313 		__brelse(evictee);
1314 }
1315 
1316 /*
1317  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318  */
1319 static struct buffer_head *
1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 	struct buffer_head *ret = NULL;
1323 	unsigned int i;
1324 
1325 	check_irqs_on();
1326 	bh_lru_lock();
1327 	for (i = 0; i < BH_LRU_SIZE; i++) {
1328 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329 
1330 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 		    bh->b_size == size) {
1332 			if (i) {
1333 				while (i) {
1334 					__this_cpu_write(bh_lrus.bhs[i],
1335 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336 					i--;
1337 				}
1338 				__this_cpu_write(bh_lrus.bhs[0], bh);
1339 			}
1340 			get_bh(bh);
1341 			ret = bh;
1342 			break;
1343 		}
1344 	}
1345 	bh_lru_unlock();
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351  * it in the LRU and mark it as accessed.  If it is not present then return
1352  * NULL
1353  */
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358 
1359 	if (bh == NULL) {
1360 		/* __find_get_block_slow will mark the page accessed */
1361 		bh = __find_get_block_slow(bdev, block);
1362 		if (bh)
1363 			bh_lru_install(bh);
1364 	} else
1365 		touch_buffer(bh);
1366 
1367 	return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370 
1371 /*
1372  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373  * which corresponds to the passed block_device, block and size. The
1374  * returned buffer has its reference count incremented.
1375  *
1376  * __getblk_gfp() will lock up the machine if grow_dev_page's
1377  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378  */
1379 struct buffer_head *
1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 	     unsigned size, gfp_t gfp)
1382 {
1383 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384 
1385 	might_sleep();
1386 	if (bh == NULL)
1387 		bh = __getblk_slow(bdev, block, size, gfp);
1388 	return bh;
1389 }
1390 EXPORT_SYMBOL(__getblk_gfp);
1391 
1392 /*
1393  * Do async read-ahead on a buffer..
1394  */
1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 	struct buffer_head *bh = __getblk(bdev, block, size);
1398 	if (likely(bh)) {
1399 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 		brelse(bh);
1401 	}
1402 }
1403 EXPORT_SYMBOL(__breadahead);
1404 
1405 /**
1406  *  __bread_gfp() - reads a specified block and returns the bh
1407  *  @bdev: the block_device to read from
1408  *  @block: number of block
1409  *  @size: size (in bytes) to read
1410  *  @gfp: page allocation flag
1411  *
1412  *  Reads a specified block, and returns buffer head that contains it.
1413  *  The page cache can be allocated from non-movable area
1414  *  not to prevent page migration if you set gfp to zero.
1415  *  It returns NULL if the block was unreadable.
1416  */
1417 struct buffer_head *
1418 __bread_gfp(struct block_device *bdev, sector_t block,
1419 		   unsigned size, gfp_t gfp)
1420 {
1421 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422 
1423 	if (likely(bh) && !buffer_uptodate(bh))
1424 		bh = __bread_slow(bh);
1425 	return bh;
1426 }
1427 EXPORT_SYMBOL(__bread_gfp);
1428 
1429 /*
1430  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431  * This doesn't race because it runs in each cpu either in irq
1432  * or with preempt disabled.
1433  */
1434 static void invalidate_bh_lru(void *arg)
1435 {
1436 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 	int i;
1438 
1439 	for (i = 0; i < BH_LRU_SIZE; i++) {
1440 		brelse(b->bhs[i]);
1441 		b->bhs[i] = NULL;
1442 	}
1443 	put_cpu_var(bh_lrus);
1444 }
1445 
1446 static bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 	int i;
1450 
1451 	for (i = 0; i < BH_LRU_SIZE; i++) {
1452 		if (b->bhs[i])
1453 			return 1;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 void invalidate_bh_lrus(void)
1460 {
1461 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464 
1465 void set_bh_page(struct buffer_head *bh,
1466 		struct page *page, unsigned long offset)
1467 {
1468 	bh->b_page = page;
1469 	BUG_ON(offset >= PAGE_SIZE);
1470 	if (PageHighMem(page))
1471 		/*
1472 		 * This catches illegal uses and preserves the offset:
1473 		 */
1474 		bh->b_data = (char *)(0 + offset);
1475 	else
1476 		bh->b_data = page_address(page) + offset;
1477 }
1478 EXPORT_SYMBOL(set_bh_page);
1479 
1480 /*
1481  * Called when truncating a buffer on a page completely.
1482  */
1483 
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 	 1 << BH_Delay | 1 << BH_Unwritten)
1488 
1489 static void discard_buffer(struct buffer_head * bh)
1490 {
1491 	unsigned long b_state, b_state_old;
1492 
1493 	lock_buffer(bh);
1494 	clear_buffer_dirty(bh);
1495 	bh->b_bdev = NULL;
1496 	b_state = bh->b_state;
1497 	for (;;) {
1498 		b_state_old = cmpxchg(&bh->b_state, b_state,
1499 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500 		if (b_state_old == b_state)
1501 			break;
1502 		b_state = b_state_old;
1503 	}
1504 	unlock_buffer(bh);
1505 }
1506 
1507 /**
1508  * block_invalidatepage - invalidate part or all of a buffer-backed page
1509  *
1510  * @page: the page which is affected
1511  * @offset: start of the range to invalidate
1512  * @length: length of the range to invalidate
1513  *
1514  * block_invalidatepage() is called when all or part of the page has become
1515  * invalidated by a truncate operation.
1516  *
1517  * block_invalidatepage() does not have to release all buffers, but it must
1518  * ensure that no dirty buffer is left outside @offset and that no I/O
1519  * is underway against any of the blocks which are outside the truncation
1520  * point.  Because the caller is about to free (and possibly reuse) those
1521  * blocks on-disk.
1522  */
1523 void block_invalidatepage(struct page *page, unsigned int offset,
1524 			  unsigned int length)
1525 {
1526 	struct buffer_head *head, *bh, *next;
1527 	unsigned int curr_off = 0;
1528 	unsigned int stop = length + offset;
1529 
1530 	BUG_ON(!PageLocked(page));
1531 	if (!page_has_buffers(page))
1532 		goto out;
1533 
1534 	/*
1535 	 * Check for overflow
1536 	 */
1537 	BUG_ON(stop > PAGE_SIZE || stop < length);
1538 
1539 	head = page_buffers(page);
1540 	bh = head;
1541 	do {
1542 		unsigned int next_off = curr_off + bh->b_size;
1543 		next = bh->b_this_page;
1544 
1545 		/*
1546 		 * Are we still fully in range ?
1547 		 */
1548 		if (next_off > stop)
1549 			goto out;
1550 
1551 		/*
1552 		 * is this block fully invalidated?
1553 		 */
1554 		if (offset <= curr_off)
1555 			discard_buffer(bh);
1556 		curr_off = next_off;
1557 		bh = next;
1558 	} while (bh != head);
1559 
1560 	/*
1561 	 * We release buffers only if the entire page is being invalidated.
1562 	 * The get_block cached value has been unconditionally invalidated,
1563 	 * so real IO is not possible anymore.
1564 	 */
1565 	if (offset == 0)
1566 		try_to_release_page(page, 0);
1567 out:
1568 	return;
1569 }
1570 EXPORT_SYMBOL(block_invalidatepage);
1571 
1572 
1573 /*
1574  * We attach and possibly dirty the buffers atomically wrt
1575  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576  * is already excluded via the page lock.
1577  */
1578 void create_empty_buffers(struct page *page,
1579 			unsigned long blocksize, unsigned long b_state)
1580 {
1581 	struct buffer_head *bh, *head, *tail;
1582 
1583 	head = alloc_page_buffers(page, blocksize, 1);
1584 	bh = head;
1585 	do {
1586 		bh->b_state |= b_state;
1587 		tail = bh;
1588 		bh = bh->b_this_page;
1589 	} while (bh);
1590 	tail->b_this_page = head;
1591 
1592 	spin_lock(&page->mapping->private_lock);
1593 	if (PageUptodate(page) || PageDirty(page)) {
1594 		bh = head;
1595 		do {
1596 			if (PageDirty(page))
1597 				set_buffer_dirty(bh);
1598 			if (PageUptodate(page))
1599 				set_buffer_uptodate(bh);
1600 			bh = bh->b_this_page;
1601 		} while (bh != head);
1602 	}
1603 	attach_page_buffers(page, head);
1604 	spin_unlock(&page->mapping->private_lock);
1605 }
1606 EXPORT_SYMBOL(create_empty_buffers);
1607 
1608 /**
1609  * clean_bdev_aliases: clean a range of buffers in block device
1610  * @bdev: Block device to clean buffers in
1611  * @block: Start of a range of blocks to clean
1612  * @len: Number of blocks to clean
1613  *
1614  * We are taking a range of blocks for data and we don't want writeback of any
1615  * buffer-cache aliases starting from return from this function and until the
1616  * moment when something will explicitly mark the buffer dirty (hopefully that
1617  * will not happen until we will free that block ;-) We don't even need to mark
1618  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621  * would confuse anyone who might pick it with bread() afterwards...
1622  *
1623  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1624  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1625  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626  * need to.  That happens here.
1627  */
1628 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1629 {
1630 	struct inode *bd_inode = bdev->bd_inode;
1631 	struct address_space *bd_mapping = bd_inode->i_mapping;
1632 	struct pagevec pvec;
1633 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634 	pgoff_t end;
1635 	int i;
1636 	struct buffer_head *bh;
1637 	struct buffer_head *head;
1638 
1639 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 	pagevec_init(&pvec, 0);
1641 	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643 		for (i = 0; i < pagevec_count(&pvec); i++) {
1644 			struct page *page = pvec.pages[i];
1645 
1646 			index = page->index;
1647 			if (index > end)
1648 				break;
1649 			if (!page_has_buffers(page))
1650 				continue;
1651 			/*
1652 			 * We use page lock instead of bd_mapping->private_lock
1653 			 * to pin buffers here since we can afford to sleep and
1654 			 * it scales better than a global spinlock lock.
1655 			 */
1656 			lock_page(page);
1657 			/* Recheck when the page is locked which pins bhs */
1658 			if (!page_has_buffers(page))
1659 				goto unlock_page;
1660 			head = page_buffers(page);
1661 			bh = head;
1662 			do {
1663 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 					goto next;
1665 				if (bh->b_blocknr >= block + len)
1666 					break;
1667 				clear_buffer_dirty(bh);
1668 				wait_on_buffer(bh);
1669 				clear_buffer_req(bh);
1670 next:
1671 				bh = bh->b_this_page;
1672 			} while (bh != head);
1673 unlock_page:
1674 			unlock_page(page);
1675 		}
1676 		pagevec_release(&pvec);
1677 		cond_resched();
1678 		index++;
1679 	}
1680 }
1681 EXPORT_SYMBOL(clean_bdev_aliases);
1682 
1683 /*
1684  * Size is a power-of-two in the range 512..PAGE_SIZE,
1685  * and the case we care about most is PAGE_SIZE.
1686  *
1687  * So this *could* possibly be written with those
1688  * constraints in mind (relevant mostly if some
1689  * architecture has a slow bit-scan instruction)
1690  */
1691 static inline int block_size_bits(unsigned int blocksize)
1692 {
1693 	return ilog2(blocksize);
1694 }
1695 
1696 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697 {
1698 	BUG_ON(!PageLocked(page));
1699 
1700 	if (!page_has_buffers(page))
1701 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702 	return page_buffers(page);
1703 }
1704 
1705 /*
1706  * NOTE! All mapped/uptodate combinations are valid:
1707  *
1708  *	Mapped	Uptodate	Meaning
1709  *
1710  *	No	No		"unknown" - must do get_block()
1711  *	No	Yes		"hole" - zero-filled
1712  *	Yes	No		"allocated" - allocated on disk, not read in
1713  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1714  *
1715  * "Dirty" is valid only with the last case (mapped+uptodate).
1716  */
1717 
1718 /*
1719  * While block_write_full_page is writing back the dirty buffers under
1720  * the page lock, whoever dirtied the buffers may decide to clean them
1721  * again at any time.  We handle that by only looking at the buffer
1722  * state inside lock_buffer().
1723  *
1724  * If block_write_full_page() is called for regular writeback
1725  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726  * locked buffer.   This only can happen if someone has written the buffer
1727  * directly, with submit_bh().  At the address_space level PageWriteback
1728  * prevents this contention from occurring.
1729  *
1730  * If block_write_full_page() is called with wbc->sync_mode ==
1731  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732  * causes the writes to be flagged as synchronous writes.
1733  */
1734 int __block_write_full_page(struct inode *inode, struct page *page,
1735 			get_block_t *get_block, struct writeback_control *wbc,
1736 			bh_end_io_t *handler)
1737 {
1738 	int err;
1739 	sector_t block;
1740 	sector_t last_block;
1741 	struct buffer_head *bh, *head;
1742 	unsigned int blocksize, bbits;
1743 	int nr_underway = 0;
1744 	int write_flags = wbc_to_write_flags(wbc);
1745 
1746 	head = create_page_buffers(page, inode,
1747 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748 
1749 	/*
1750 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1751 	 * here, and the (potentially unmapped) buffers may become dirty at
1752 	 * any time.  If a buffer becomes dirty here after we've inspected it
1753 	 * then we just miss that fact, and the page stays dirty.
1754 	 *
1755 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 	 * handle that here by just cleaning them.
1757 	 */
1758 
1759 	bh = head;
1760 	blocksize = bh->b_size;
1761 	bbits = block_size_bits(blocksize);
1762 
1763 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764 	last_block = (i_size_read(inode) - 1) >> bbits;
1765 
1766 	/*
1767 	 * Get all the dirty buffers mapped to disk addresses and
1768 	 * handle any aliases from the underlying blockdev's mapping.
1769 	 */
1770 	do {
1771 		if (block > last_block) {
1772 			/*
1773 			 * mapped buffers outside i_size will occur, because
1774 			 * this page can be outside i_size when there is a
1775 			 * truncate in progress.
1776 			 */
1777 			/*
1778 			 * The buffer was zeroed by block_write_full_page()
1779 			 */
1780 			clear_buffer_dirty(bh);
1781 			set_buffer_uptodate(bh);
1782 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783 			   buffer_dirty(bh)) {
1784 			WARN_ON(bh->b_size != blocksize);
1785 			err = get_block(inode, block, bh, 1);
1786 			if (err)
1787 				goto recover;
1788 			clear_buffer_delay(bh);
1789 			if (buffer_new(bh)) {
1790 				/* blockdev mappings never come here */
1791 				clear_buffer_new(bh);
1792 				clean_bdev_bh_alias(bh);
1793 			}
1794 		}
1795 		bh = bh->b_this_page;
1796 		block++;
1797 	} while (bh != head);
1798 
1799 	do {
1800 		if (!buffer_mapped(bh))
1801 			continue;
1802 		/*
1803 		 * If it's a fully non-blocking write attempt and we cannot
1804 		 * lock the buffer then redirty the page.  Note that this can
1805 		 * potentially cause a busy-wait loop from writeback threads
1806 		 * and kswapd activity, but those code paths have their own
1807 		 * higher-level throttling.
1808 		 */
1809 		if (wbc->sync_mode != WB_SYNC_NONE) {
1810 			lock_buffer(bh);
1811 		} else if (!trylock_buffer(bh)) {
1812 			redirty_page_for_writepage(wbc, page);
1813 			continue;
1814 		}
1815 		if (test_clear_buffer_dirty(bh)) {
1816 			mark_buffer_async_write_endio(bh, handler);
1817 		} else {
1818 			unlock_buffer(bh);
1819 		}
1820 	} while ((bh = bh->b_this_page) != head);
1821 
1822 	/*
1823 	 * The page and its buffers are protected by PageWriteback(), so we can
1824 	 * drop the bh refcounts early.
1825 	 */
1826 	BUG_ON(PageWriteback(page));
1827 	set_page_writeback(page);
1828 
1829 	do {
1830 		struct buffer_head *next = bh->b_this_page;
1831 		if (buffer_async_write(bh)) {
1832 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1833 			nr_underway++;
1834 		}
1835 		bh = next;
1836 	} while (bh != head);
1837 	unlock_page(page);
1838 
1839 	err = 0;
1840 done:
1841 	if (nr_underway == 0) {
1842 		/*
1843 		 * The page was marked dirty, but the buffers were
1844 		 * clean.  Someone wrote them back by hand with
1845 		 * ll_rw_block/submit_bh.  A rare case.
1846 		 */
1847 		end_page_writeback(page);
1848 
1849 		/*
1850 		 * The page and buffer_heads can be released at any time from
1851 		 * here on.
1852 		 */
1853 	}
1854 	return err;
1855 
1856 recover:
1857 	/*
1858 	 * ENOSPC, or some other error.  We may already have added some
1859 	 * blocks to the file, so we need to write these out to avoid
1860 	 * exposing stale data.
1861 	 * The page is currently locked and not marked for writeback
1862 	 */
1863 	bh = head;
1864 	/* Recovery: lock and submit the mapped buffers */
1865 	do {
1866 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867 		    !buffer_delay(bh)) {
1868 			lock_buffer(bh);
1869 			mark_buffer_async_write_endio(bh, handler);
1870 		} else {
1871 			/*
1872 			 * The buffer may have been set dirty during
1873 			 * attachment to a dirty page.
1874 			 */
1875 			clear_buffer_dirty(bh);
1876 		}
1877 	} while ((bh = bh->b_this_page) != head);
1878 	SetPageError(page);
1879 	BUG_ON(PageWriteback(page));
1880 	mapping_set_error(page->mapping, err);
1881 	set_page_writeback(page);
1882 	do {
1883 		struct buffer_head *next = bh->b_this_page;
1884 		if (buffer_async_write(bh)) {
1885 			clear_buffer_dirty(bh);
1886 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1887 			nr_underway++;
1888 		}
1889 		bh = next;
1890 	} while (bh != head);
1891 	unlock_page(page);
1892 	goto done;
1893 }
1894 EXPORT_SYMBOL(__block_write_full_page);
1895 
1896 /*
1897  * If a page has any new buffers, zero them out here, and mark them uptodate
1898  * and dirty so they'll be written out (in order to prevent uninitialised
1899  * block data from leaking). And clear the new bit.
1900  */
1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902 {
1903 	unsigned int block_start, block_end;
1904 	struct buffer_head *head, *bh;
1905 
1906 	BUG_ON(!PageLocked(page));
1907 	if (!page_has_buffers(page))
1908 		return;
1909 
1910 	bh = head = page_buffers(page);
1911 	block_start = 0;
1912 	do {
1913 		block_end = block_start + bh->b_size;
1914 
1915 		if (buffer_new(bh)) {
1916 			if (block_end > from && block_start < to) {
1917 				if (!PageUptodate(page)) {
1918 					unsigned start, size;
1919 
1920 					start = max(from, block_start);
1921 					size = min(to, block_end) - start;
1922 
1923 					zero_user(page, start, size);
1924 					set_buffer_uptodate(bh);
1925 				}
1926 
1927 				clear_buffer_new(bh);
1928 				mark_buffer_dirty(bh);
1929 			}
1930 		}
1931 
1932 		block_start = block_end;
1933 		bh = bh->b_this_page;
1934 	} while (bh != head);
1935 }
1936 EXPORT_SYMBOL(page_zero_new_buffers);
1937 
1938 static void
1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 		struct iomap *iomap)
1941 {
1942 	loff_t offset = block << inode->i_blkbits;
1943 
1944 	bh->b_bdev = iomap->bdev;
1945 
1946 	/*
1947 	 * Block points to offset in file we need to map, iomap contains
1948 	 * the offset at which the map starts. If the map ends before the
1949 	 * current block, then do not map the buffer and let the caller
1950 	 * handle it.
1951 	 */
1952 	BUG_ON(offset >= iomap->offset + iomap->length);
1953 
1954 	switch (iomap->type) {
1955 	case IOMAP_HOLE:
1956 		/*
1957 		 * If the buffer is not up to date or beyond the current EOF,
1958 		 * we need to mark it as new to ensure sub-block zeroing is
1959 		 * executed if necessary.
1960 		 */
1961 		if (!buffer_uptodate(bh) ||
1962 		    (offset >= i_size_read(inode)))
1963 			set_buffer_new(bh);
1964 		break;
1965 	case IOMAP_DELALLOC:
1966 		if (!buffer_uptodate(bh) ||
1967 		    (offset >= i_size_read(inode)))
1968 			set_buffer_new(bh);
1969 		set_buffer_uptodate(bh);
1970 		set_buffer_mapped(bh);
1971 		set_buffer_delay(bh);
1972 		break;
1973 	case IOMAP_UNWRITTEN:
1974 		/*
1975 		 * For unwritten regions, we always need to ensure that
1976 		 * sub-block writes cause the regions in the block we are not
1977 		 * writing to are zeroed. Set the buffer as new to ensure this.
1978 		 */
1979 		set_buffer_new(bh);
1980 		set_buffer_unwritten(bh);
1981 		/* FALLTHRU */
1982 	case IOMAP_MAPPED:
1983 		if (offset >= i_size_read(inode))
1984 			set_buffer_new(bh);
1985 		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986 				((offset - iomap->offset) >> inode->i_blkbits);
1987 		set_buffer_mapped(bh);
1988 		break;
1989 	}
1990 }
1991 
1992 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993 		get_block_t *get_block, struct iomap *iomap)
1994 {
1995 	unsigned from = pos & (PAGE_SIZE - 1);
1996 	unsigned to = from + len;
1997 	struct inode *inode = page->mapping->host;
1998 	unsigned block_start, block_end;
1999 	sector_t block;
2000 	int err = 0;
2001 	unsigned blocksize, bbits;
2002 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003 
2004 	BUG_ON(!PageLocked(page));
2005 	BUG_ON(from > PAGE_SIZE);
2006 	BUG_ON(to > PAGE_SIZE);
2007 	BUG_ON(from > to);
2008 
2009 	head = create_page_buffers(page, inode, 0);
2010 	blocksize = head->b_size;
2011 	bbits = block_size_bits(blocksize);
2012 
2013 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2014 
2015 	for(bh = head, block_start = 0; bh != head || !block_start;
2016 	    block++, block_start=block_end, bh = bh->b_this_page) {
2017 		block_end = block_start + blocksize;
2018 		if (block_end <= from || block_start >= to) {
2019 			if (PageUptodate(page)) {
2020 				if (!buffer_uptodate(bh))
2021 					set_buffer_uptodate(bh);
2022 			}
2023 			continue;
2024 		}
2025 		if (buffer_new(bh))
2026 			clear_buffer_new(bh);
2027 		if (!buffer_mapped(bh)) {
2028 			WARN_ON(bh->b_size != blocksize);
2029 			if (get_block) {
2030 				err = get_block(inode, block, bh, 1);
2031 				if (err)
2032 					break;
2033 			} else {
2034 				iomap_to_bh(inode, block, bh, iomap);
2035 			}
2036 
2037 			if (buffer_new(bh)) {
2038 				clean_bdev_bh_alias(bh);
2039 				if (PageUptodate(page)) {
2040 					clear_buffer_new(bh);
2041 					set_buffer_uptodate(bh);
2042 					mark_buffer_dirty(bh);
2043 					continue;
2044 				}
2045 				if (block_end > to || block_start < from)
2046 					zero_user_segments(page,
2047 						to, block_end,
2048 						block_start, from);
2049 				continue;
2050 			}
2051 		}
2052 		if (PageUptodate(page)) {
2053 			if (!buffer_uptodate(bh))
2054 				set_buffer_uptodate(bh);
2055 			continue;
2056 		}
2057 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058 		    !buffer_unwritten(bh) &&
2059 		     (block_start < from || block_end > to)) {
2060 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061 			*wait_bh++=bh;
2062 		}
2063 	}
2064 	/*
2065 	 * If we issued read requests - let them complete.
2066 	 */
2067 	while(wait_bh > wait) {
2068 		wait_on_buffer(*--wait_bh);
2069 		if (!buffer_uptodate(*wait_bh))
2070 			err = -EIO;
2071 	}
2072 	if (unlikely(err))
2073 		page_zero_new_buffers(page, from, to);
2074 	return err;
2075 }
2076 
2077 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078 		get_block_t *get_block)
2079 {
2080 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2081 }
2082 EXPORT_SYMBOL(__block_write_begin);
2083 
2084 static int __block_commit_write(struct inode *inode, struct page *page,
2085 		unsigned from, unsigned to)
2086 {
2087 	unsigned block_start, block_end;
2088 	int partial = 0;
2089 	unsigned blocksize;
2090 	struct buffer_head *bh, *head;
2091 
2092 	bh = head = page_buffers(page);
2093 	blocksize = bh->b_size;
2094 
2095 	block_start = 0;
2096 	do {
2097 		block_end = block_start + blocksize;
2098 		if (block_end <= from || block_start >= to) {
2099 			if (!buffer_uptodate(bh))
2100 				partial = 1;
2101 		} else {
2102 			set_buffer_uptodate(bh);
2103 			mark_buffer_dirty(bh);
2104 		}
2105 		clear_buffer_new(bh);
2106 
2107 		block_start = block_end;
2108 		bh = bh->b_this_page;
2109 	} while (bh != head);
2110 
2111 	/*
2112 	 * If this is a partial write which happened to make all buffers
2113 	 * uptodate then we can optimize away a bogus readpage() for
2114 	 * the next read(). Here we 'discover' whether the page went
2115 	 * uptodate as a result of this (potentially partial) write.
2116 	 */
2117 	if (!partial)
2118 		SetPageUptodate(page);
2119 	return 0;
2120 }
2121 
2122 /*
2123  * block_write_begin takes care of the basic task of block allocation and
2124  * bringing partial write blocks uptodate first.
2125  *
2126  * The filesystem needs to handle block truncation upon failure.
2127  */
2128 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129 		unsigned flags, struct page **pagep, get_block_t *get_block)
2130 {
2131 	pgoff_t index = pos >> PAGE_SHIFT;
2132 	struct page *page;
2133 	int status;
2134 
2135 	page = grab_cache_page_write_begin(mapping, index, flags);
2136 	if (!page)
2137 		return -ENOMEM;
2138 
2139 	status = __block_write_begin(page, pos, len, get_block);
2140 	if (unlikely(status)) {
2141 		unlock_page(page);
2142 		put_page(page);
2143 		page = NULL;
2144 	}
2145 
2146 	*pagep = page;
2147 	return status;
2148 }
2149 EXPORT_SYMBOL(block_write_begin);
2150 
2151 int block_write_end(struct file *file, struct address_space *mapping,
2152 			loff_t pos, unsigned len, unsigned copied,
2153 			struct page *page, void *fsdata)
2154 {
2155 	struct inode *inode = mapping->host;
2156 	unsigned start;
2157 
2158 	start = pos & (PAGE_SIZE - 1);
2159 
2160 	if (unlikely(copied < len)) {
2161 		/*
2162 		 * The buffers that were written will now be uptodate, so we
2163 		 * don't have to worry about a readpage reading them and
2164 		 * overwriting a partial write. However if we have encountered
2165 		 * a short write and only partially written into a buffer, it
2166 		 * will not be marked uptodate, so a readpage might come in and
2167 		 * destroy our partial write.
2168 		 *
2169 		 * Do the simplest thing, and just treat any short write to a
2170 		 * non uptodate page as a zero-length write, and force the
2171 		 * caller to redo the whole thing.
2172 		 */
2173 		if (!PageUptodate(page))
2174 			copied = 0;
2175 
2176 		page_zero_new_buffers(page, start+copied, start+len);
2177 	}
2178 	flush_dcache_page(page);
2179 
2180 	/* This could be a short (even 0-length) commit */
2181 	__block_commit_write(inode, page, start, start+copied);
2182 
2183 	return copied;
2184 }
2185 EXPORT_SYMBOL(block_write_end);
2186 
2187 int generic_write_end(struct file *file, struct address_space *mapping,
2188 			loff_t pos, unsigned len, unsigned copied,
2189 			struct page *page, void *fsdata)
2190 {
2191 	struct inode *inode = mapping->host;
2192 	loff_t old_size = inode->i_size;
2193 	int i_size_changed = 0;
2194 
2195 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196 
2197 	/*
2198 	 * No need to use i_size_read() here, the i_size
2199 	 * cannot change under us because we hold i_mutex.
2200 	 *
2201 	 * But it's important to update i_size while still holding page lock:
2202 	 * page writeout could otherwise come in and zero beyond i_size.
2203 	 */
2204 	if (pos+copied > inode->i_size) {
2205 		i_size_write(inode, pos+copied);
2206 		i_size_changed = 1;
2207 	}
2208 
2209 	unlock_page(page);
2210 	put_page(page);
2211 
2212 	if (old_size < pos)
2213 		pagecache_isize_extended(inode, old_size, pos);
2214 	/*
2215 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216 	 * makes the holding time of page lock longer. Second, it forces lock
2217 	 * ordering of page lock and transaction start for journaling
2218 	 * filesystems.
2219 	 */
2220 	if (i_size_changed)
2221 		mark_inode_dirty(inode);
2222 
2223 	return copied;
2224 }
2225 EXPORT_SYMBOL(generic_write_end);
2226 
2227 /*
2228  * block_is_partially_uptodate checks whether buffers within a page are
2229  * uptodate or not.
2230  *
2231  * Returns true if all buffers which correspond to a file portion
2232  * we want to read are uptodate.
2233  */
2234 int block_is_partially_uptodate(struct page *page, unsigned long from,
2235 					unsigned long count)
2236 {
2237 	unsigned block_start, block_end, blocksize;
2238 	unsigned to;
2239 	struct buffer_head *bh, *head;
2240 	int ret = 1;
2241 
2242 	if (!page_has_buffers(page))
2243 		return 0;
2244 
2245 	head = page_buffers(page);
2246 	blocksize = head->b_size;
2247 	to = min_t(unsigned, PAGE_SIZE - from, count);
2248 	to = from + to;
2249 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2250 		return 0;
2251 
2252 	bh = head;
2253 	block_start = 0;
2254 	do {
2255 		block_end = block_start + blocksize;
2256 		if (block_end > from && block_start < to) {
2257 			if (!buffer_uptodate(bh)) {
2258 				ret = 0;
2259 				break;
2260 			}
2261 			if (block_end >= to)
2262 				break;
2263 		}
2264 		block_start = block_end;
2265 		bh = bh->b_this_page;
2266 	} while (bh != head);
2267 
2268 	return ret;
2269 }
2270 EXPORT_SYMBOL(block_is_partially_uptodate);
2271 
2272 /*
2273  * Generic "read page" function for block devices that have the normal
2274  * get_block functionality. This is most of the block device filesystems.
2275  * Reads the page asynchronously --- the unlock_buffer() and
2276  * set/clear_buffer_uptodate() functions propagate buffer state into the
2277  * page struct once IO has completed.
2278  */
2279 int block_read_full_page(struct page *page, get_block_t *get_block)
2280 {
2281 	struct inode *inode = page->mapping->host;
2282 	sector_t iblock, lblock;
2283 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284 	unsigned int blocksize, bbits;
2285 	int nr, i;
2286 	int fully_mapped = 1;
2287 
2288 	head = create_page_buffers(page, inode, 0);
2289 	blocksize = head->b_size;
2290 	bbits = block_size_bits(blocksize);
2291 
2292 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294 	bh = head;
2295 	nr = 0;
2296 	i = 0;
2297 
2298 	do {
2299 		if (buffer_uptodate(bh))
2300 			continue;
2301 
2302 		if (!buffer_mapped(bh)) {
2303 			int err = 0;
2304 
2305 			fully_mapped = 0;
2306 			if (iblock < lblock) {
2307 				WARN_ON(bh->b_size != blocksize);
2308 				err = get_block(inode, iblock, bh, 0);
2309 				if (err)
2310 					SetPageError(page);
2311 			}
2312 			if (!buffer_mapped(bh)) {
2313 				zero_user(page, i * blocksize, blocksize);
2314 				if (!err)
2315 					set_buffer_uptodate(bh);
2316 				continue;
2317 			}
2318 			/*
2319 			 * get_block() might have updated the buffer
2320 			 * synchronously
2321 			 */
2322 			if (buffer_uptodate(bh))
2323 				continue;
2324 		}
2325 		arr[nr++] = bh;
2326 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2327 
2328 	if (fully_mapped)
2329 		SetPageMappedToDisk(page);
2330 
2331 	if (!nr) {
2332 		/*
2333 		 * All buffers are uptodate - we can set the page uptodate
2334 		 * as well. But not if get_block() returned an error.
2335 		 */
2336 		if (!PageError(page))
2337 			SetPageUptodate(page);
2338 		unlock_page(page);
2339 		return 0;
2340 	}
2341 
2342 	/* Stage two: lock the buffers */
2343 	for (i = 0; i < nr; i++) {
2344 		bh = arr[i];
2345 		lock_buffer(bh);
2346 		mark_buffer_async_read(bh);
2347 	}
2348 
2349 	/*
2350 	 * Stage 3: start the IO.  Check for uptodateness
2351 	 * inside the buffer lock in case another process reading
2352 	 * the underlying blockdev brought it uptodate (the sct fix).
2353 	 */
2354 	for (i = 0; i < nr; i++) {
2355 		bh = arr[i];
2356 		if (buffer_uptodate(bh))
2357 			end_buffer_async_read(bh, 1);
2358 		else
2359 			submit_bh(REQ_OP_READ, 0, bh);
2360 	}
2361 	return 0;
2362 }
2363 EXPORT_SYMBOL(block_read_full_page);
2364 
2365 /* utility function for filesystems that need to do work on expanding
2366  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2367  * deal with the hole.
2368  */
2369 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2370 {
2371 	struct address_space *mapping = inode->i_mapping;
2372 	struct page *page;
2373 	void *fsdata;
2374 	int err;
2375 
2376 	err = inode_newsize_ok(inode, size);
2377 	if (err)
2378 		goto out;
2379 
2380 	err = pagecache_write_begin(NULL, mapping, size, 0,
2381 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2382 	if (err)
2383 		goto out;
2384 
2385 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2386 	BUG_ON(err > 0);
2387 
2388 out:
2389 	return err;
2390 }
2391 EXPORT_SYMBOL(generic_cont_expand_simple);
2392 
2393 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2394 			    loff_t pos, loff_t *bytes)
2395 {
2396 	struct inode *inode = mapping->host;
2397 	unsigned int blocksize = i_blocksize(inode);
2398 	struct page *page;
2399 	void *fsdata;
2400 	pgoff_t index, curidx;
2401 	loff_t curpos;
2402 	unsigned zerofrom, offset, len;
2403 	int err = 0;
2404 
2405 	index = pos >> PAGE_SHIFT;
2406 	offset = pos & ~PAGE_MASK;
2407 
2408 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2409 		zerofrom = curpos & ~PAGE_MASK;
2410 		if (zerofrom & (blocksize-1)) {
2411 			*bytes |= (blocksize-1);
2412 			(*bytes)++;
2413 		}
2414 		len = PAGE_SIZE - zerofrom;
2415 
2416 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2417 					    &page, &fsdata);
2418 		if (err)
2419 			goto out;
2420 		zero_user(page, zerofrom, len);
2421 		err = pagecache_write_end(file, mapping, curpos, len, len,
2422 						page, fsdata);
2423 		if (err < 0)
2424 			goto out;
2425 		BUG_ON(err != len);
2426 		err = 0;
2427 
2428 		balance_dirty_pages_ratelimited(mapping);
2429 
2430 		if (unlikely(fatal_signal_pending(current))) {
2431 			err = -EINTR;
2432 			goto out;
2433 		}
2434 	}
2435 
2436 	/* page covers the boundary, find the boundary offset */
2437 	if (index == curidx) {
2438 		zerofrom = curpos & ~PAGE_MASK;
2439 		/* if we will expand the thing last block will be filled */
2440 		if (offset <= zerofrom) {
2441 			goto out;
2442 		}
2443 		if (zerofrom & (blocksize-1)) {
2444 			*bytes |= (blocksize-1);
2445 			(*bytes)++;
2446 		}
2447 		len = offset - zerofrom;
2448 
2449 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2450 					    &page, &fsdata);
2451 		if (err)
2452 			goto out;
2453 		zero_user(page, zerofrom, len);
2454 		err = pagecache_write_end(file, mapping, curpos, len, len,
2455 						page, fsdata);
2456 		if (err < 0)
2457 			goto out;
2458 		BUG_ON(err != len);
2459 		err = 0;
2460 	}
2461 out:
2462 	return err;
2463 }
2464 
2465 /*
2466  * For moronic filesystems that do not allow holes in file.
2467  * We may have to extend the file.
2468  */
2469 int cont_write_begin(struct file *file, struct address_space *mapping,
2470 			loff_t pos, unsigned len, unsigned flags,
2471 			struct page **pagep, void **fsdata,
2472 			get_block_t *get_block, loff_t *bytes)
2473 {
2474 	struct inode *inode = mapping->host;
2475 	unsigned int blocksize = i_blocksize(inode);
2476 	unsigned int zerofrom;
2477 	int err;
2478 
2479 	err = cont_expand_zero(file, mapping, pos, bytes);
2480 	if (err)
2481 		return err;
2482 
2483 	zerofrom = *bytes & ~PAGE_MASK;
2484 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2485 		*bytes |= (blocksize-1);
2486 		(*bytes)++;
2487 	}
2488 
2489 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2490 }
2491 EXPORT_SYMBOL(cont_write_begin);
2492 
2493 int block_commit_write(struct page *page, unsigned from, unsigned to)
2494 {
2495 	struct inode *inode = page->mapping->host;
2496 	__block_commit_write(inode,page,from,to);
2497 	return 0;
2498 }
2499 EXPORT_SYMBOL(block_commit_write);
2500 
2501 /*
2502  * block_page_mkwrite() is not allowed to change the file size as it gets
2503  * called from a page fault handler when a page is first dirtied. Hence we must
2504  * be careful to check for EOF conditions here. We set the page up correctly
2505  * for a written page which means we get ENOSPC checking when writing into
2506  * holes and correct delalloc and unwritten extent mapping on filesystems that
2507  * support these features.
2508  *
2509  * We are not allowed to take the i_mutex here so we have to play games to
2510  * protect against truncate races as the page could now be beyond EOF.  Because
2511  * truncate writes the inode size before removing pages, once we have the
2512  * page lock we can determine safely if the page is beyond EOF. If it is not
2513  * beyond EOF, then the page is guaranteed safe against truncation until we
2514  * unlock the page.
2515  *
2516  * Direct callers of this function should protect against filesystem freezing
2517  * using sb_start_pagefault() - sb_end_pagefault() functions.
2518  */
2519 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2520 			 get_block_t get_block)
2521 {
2522 	struct page *page = vmf->page;
2523 	struct inode *inode = file_inode(vma->vm_file);
2524 	unsigned long end;
2525 	loff_t size;
2526 	int ret;
2527 
2528 	lock_page(page);
2529 	size = i_size_read(inode);
2530 	if ((page->mapping != inode->i_mapping) ||
2531 	    (page_offset(page) > size)) {
2532 		/* We overload EFAULT to mean page got truncated */
2533 		ret = -EFAULT;
2534 		goto out_unlock;
2535 	}
2536 
2537 	/* page is wholly or partially inside EOF */
2538 	if (((page->index + 1) << PAGE_SHIFT) > size)
2539 		end = size & ~PAGE_MASK;
2540 	else
2541 		end = PAGE_SIZE;
2542 
2543 	ret = __block_write_begin(page, 0, end, get_block);
2544 	if (!ret)
2545 		ret = block_commit_write(page, 0, end);
2546 
2547 	if (unlikely(ret < 0))
2548 		goto out_unlock;
2549 	set_page_dirty(page);
2550 	wait_for_stable_page(page);
2551 	return 0;
2552 out_unlock:
2553 	unlock_page(page);
2554 	return ret;
2555 }
2556 EXPORT_SYMBOL(block_page_mkwrite);
2557 
2558 /*
2559  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2560  * immediately, while under the page lock.  So it needs a special end_io
2561  * handler which does not touch the bh after unlocking it.
2562  */
2563 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2564 {
2565 	__end_buffer_read_notouch(bh, uptodate);
2566 }
2567 
2568 /*
2569  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2570  * the page (converting it to circular linked list and taking care of page
2571  * dirty races).
2572  */
2573 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2574 {
2575 	struct buffer_head *bh;
2576 
2577 	BUG_ON(!PageLocked(page));
2578 
2579 	spin_lock(&page->mapping->private_lock);
2580 	bh = head;
2581 	do {
2582 		if (PageDirty(page))
2583 			set_buffer_dirty(bh);
2584 		if (!bh->b_this_page)
2585 			bh->b_this_page = head;
2586 		bh = bh->b_this_page;
2587 	} while (bh != head);
2588 	attach_page_buffers(page, head);
2589 	spin_unlock(&page->mapping->private_lock);
2590 }
2591 
2592 /*
2593  * On entry, the page is fully not uptodate.
2594  * On exit the page is fully uptodate in the areas outside (from,to)
2595  * The filesystem needs to handle block truncation upon failure.
2596  */
2597 int nobh_write_begin(struct address_space *mapping,
2598 			loff_t pos, unsigned len, unsigned flags,
2599 			struct page **pagep, void **fsdata,
2600 			get_block_t *get_block)
2601 {
2602 	struct inode *inode = mapping->host;
2603 	const unsigned blkbits = inode->i_blkbits;
2604 	const unsigned blocksize = 1 << blkbits;
2605 	struct buffer_head *head, *bh;
2606 	struct page *page;
2607 	pgoff_t index;
2608 	unsigned from, to;
2609 	unsigned block_in_page;
2610 	unsigned block_start, block_end;
2611 	sector_t block_in_file;
2612 	int nr_reads = 0;
2613 	int ret = 0;
2614 	int is_mapped_to_disk = 1;
2615 
2616 	index = pos >> PAGE_SHIFT;
2617 	from = pos & (PAGE_SIZE - 1);
2618 	to = from + len;
2619 
2620 	page = grab_cache_page_write_begin(mapping, index, flags);
2621 	if (!page)
2622 		return -ENOMEM;
2623 	*pagep = page;
2624 	*fsdata = NULL;
2625 
2626 	if (page_has_buffers(page)) {
2627 		ret = __block_write_begin(page, pos, len, get_block);
2628 		if (unlikely(ret))
2629 			goto out_release;
2630 		return ret;
2631 	}
2632 
2633 	if (PageMappedToDisk(page))
2634 		return 0;
2635 
2636 	/*
2637 	 * Allocate buffers so that we can keep track of state, and potentially
2638 	 * attach them to the page if an error occurs. In the common case of
2639 	 * no error, they will just be freed again without ever being attached
2640 	 * to the page (which is all OK, because we're under the page lock).
2641 	 *
2642 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2643 	 * than the circular one we're used to.
2644 	 */
2645 	head = alloc_page_buffers(page, blocksize, 0);
2646 	if (!head) {
2647 		ret = -ENOMEM;
2648 		goto out_release;
2649 	}
2650 
2651 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2652 
2653 	/*
2654 	 * We loop across all blocks in the page, whether or not they are
2655 	 * part of the affected region.  This is so we can discover if the
2656 	 * page is fully mapped-to-disk.
2657 	 */
2658 	for (block_start = 0, block_in_page = 0, bh = head;
2659 		  block_start < PAGE_SIZE;
2660 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2661 		int create;
2662 
2663 		block_end = block_start + blocksize;
2664 		bh->b_state = 0;
2665 		create = 1;
2666 		if (block_start >= to)
2667 			create = 0;
2668 		ret = get_block(inode, block_in_file + block_in_page,
2669 					bh, create);
2670 		if (ret)
2671 			goto failed;
2672 		if (!buffer_mapped(bh))
2673 			is_mapped_to_disk = 0;
2674 		if (buffer_new(bh))
2675 			clean_bdev_bh_alias(bh);
2676 		if (PageUptodate(page)) {
2677 			set_buffer_uptodate(bh);
2678 			continue;
2679 		}
2680 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2681 			zero_user_segments(page, block_start, from,
2682 							to, block_end);
2683 			continue;
2684 		}
2685 		if (buffer_uptodate(bh))
2686 			continue;	/* reiserfs does this */
2687 		if (block_start < from || block_end > to) {
2688 			lock_buffer(bh);
2689 			bh->b_end_io = end_buffer_read_nobh;
2690 			submit_bh(REQ_OP_READ, 0, bh);
2691 			nr_reads++;
2692 		}
2693 	}
2694 
2695 	if (nr_reads) {
2696 		/*
2697 		 * The page is locked, so these buffers are protected from
2698 		 * any VM or truncate activity.  Hence we don't need to care
2699 		 * for the buffer_head refcounts.
2700 		 */
2701 		for (bh = head; bh; bh = bh->b_this_page) {
2702 			wait_on_buffer(bh);
2703 			if (!buffer_uptodate(bh))
2704 				ret = -EIO;
2705 		}
2706 		if (ret)
2707 			goto failed;
2708 	}
2709 
2710 	if (is_mapped_to_disk)
2711 		SetPageMappedToDisk(page);
2712 
2713 	*fsdata = head; /* to be released by nobh_write_end */
2714 
2715 	return 0;
2716 
2717 failed:
2718 	BUG_ON(!ret);
2719 	/*
2720 	 * Error recovery is a bit difficult. We need to zero out blocks that
2721 	 * were newly allocated, and dirty them to ensure they get written out.
2722 	 * Buffers need to be attached to the page at this point, otherwise
2723 	 * the handling of potential IO errors during writeout would be hard
2724 	 * (could try doing synchronous writeout, but what if that fails too?)
2725 	 */
2726 	attach_nobh_buffers(page, head);
2727 	page_zero_new_buffers(page, from, to);
2728 
2729 out_release:
2730 	unlock_page(page);
2731 	put_page(page);
2732 	*pagep = NULL;
2733 
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(nobh_write_begin);
2737 
2738 int nobh_write_end(struct file *file, struct address_space *mapping,
2739 			loff_t pos, unsigned len, unsigned copied,
2740 			struct page *page, void *fsdata)
2741 {
2742 	struct inode *inode = page->mapping->host;
2743 	struct buffer_head *head = fsdata;
2744 	struct buffer_head *bh;
2745 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2746 
2747 	if (unlikely(copied < len) && head)
2748 		attach_nobh_buffers(page, head);
2749 	if (page_has_buffers(page))
2750 		return generic_write_end(file, mapping, pos, len,
2751 					copied, page, fsdata);
2752 
2753 	SetPageUptodate(page);
2754 	set_page_dirty(page);
2755 	if (pos+copied > inode->i_size) {
2756 		i_size_write(inode, pos+copied);
2757 		mark_inode_dirty(inode);
2758 	}
2759 
2760 	unlock_page(page);
2761 	put_page(page);
2762 
2763 	while (head) {
2764 		bh = head;
2765 		head = head->b_this_page;
2766 		free_buffer_head(bh);
2767 	}
2768 
2769 	return copied;
2770 }
2771 EXPORT_SYMBOL(nobh_write_end);
2772 
2773 /*
2774  * nobh_writepage() - based on block_full_write_page() except
2775  * that it tries to operate without attaching bufferheads to
2776  * the page.
2777  */
2778 int nobh_writepage(struct page *page, get_block_t *get_block,
2779 			struct writeback_control *wbc)
2780 {
2781 	struct inode * const inode = page->mapping->host;
2782 	loff_t i_size = i_size_read(inode);
2783 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2784 	unsigned offset;
2785 	int ret;
2786 
2787 	/* Is the page fully inside i_size? */
2788 	if (page->index < end_index)
2789 		goto out;
2790 
2791 	/* Is the page fully outside i_size? (truncate in progress) */
2792 	offset = i_size & (PAGE_SIZE-1);
2793 	if (page->index >= end_index+1 || !offset) {
2794 		/*
2795 		 * The page may have dirty, unmapped buffers.  For example,
2796 		 * they may have been added in ext3_writepage().  Make them
2797 		 * freeable here, so the page does not leak.
2798 		 */
2799 #if 0
2800 		/* Not really sure about this  - do we need this ? */
2801 		if (page->mapping->a_ops->invalidatepage)
2802 			page->mapping->a_ops->invalidatepage(page, offset);
2803 #endif
2804 		unlock_page(page);
2805 		return 0; /* don't care */
2806 	}
2807 
2808 	/*
2809 	 * The page straddles i_size.  It must be zeroed out on each and every
2810 	 * writepage invocation because it may be mmapped.  "A file is mapped
2811 	 * in multiples of the page size.  For a file that is not a multiple of
2812 	 * the  page size, the remaining memory is zeroed when mapped, and
2813 	 * writes to that region are not written out to the file."
2814 	 */
2815 	zero_user_segment(page, offset, PAGE_SIZE);
2816 out:
2817 	ret = mpage_writepage(page, get_block, wbc);
2818 	if (ret == -EAGAIN)
2819 		ret = __block_write_full_page(inode, page, get_block, wbc,
2820 					      end_buffer_async_write);
2821 	return ret;
2822 }
2823 EXPORT_SYMBOL(nobh_writepage);
2824 
2825 int nobh_truncate_page(struct address_space *mapping,
2826 			loff_t from, get_block_t *get_block)
2827 {
2828 	pgoff_t index = from >> PAGE_SHIFT;
2829 	unsigned offset = from & (PAGE_SIZE-1);
2830 	unsigned blocksize;
2831 	sector_t iblock;
2832 	unsigned length, pos;
2833 	struct inode *inode = mapping->host;
2834 	struct page *page;
2835 	struct buffer_head map_bh;
2836 	int err;
2837 
2838 	blocksize = i_blocksize(inode);
2839 	length = offset & (blocksize - 1);
2840 
2841 	/* Block boundary? Nothing to do */
2842 	if (!length)
2843 		return 0;
2844 
2845 	length = blocksize - length;
2846 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2847 
2848 	page = grab_cache_page(mapping, index);
2849 	err = -ENOMEM;
2850 	if (!page)
2851 		goto out;
2852 
2853 	if (page_has_buffers(page)) {
2854 has_buffers:
2855 		unlock_page(page);
2856 		put_page(page);
2857 		return block_truncate_page(mapping, from, get_block);
2858 	}
2859 
2860 	/* Find the buffer that contains "offset" */
2861 	pos = blocksize;
2862 	while (offset >= pos) {
2863 		iblock++;
2864 		pos += blocksize;
2865 	}
2866 
2867 	map_bh.b_size = blocksize;
2868 	map_bh.b_state = 0;
2869 	err = get_block(inode, iblock, &map_bh, 0);
2870 	if (err)
2871 		goto unlock;
2872 	/* unmapped? It's a hole - nothing to do */
2873 	if (!buffer_mapped(&map_bh))
2874 		goto unlock;
2875 
2876 	/* Ok, it's mapped. Make sure it's up-to-date */
2877 	if (!PageUptodate(page)) {
2878 		err = mapping->a_ops->readpage(NULL, page);
2879 		if (err) {
2880 			put_page(page);
2881 			goto out;
2882 		}
2883 		lock_page(page);
2884 		if (!PageUptodate(page)) {
2885 			err = -EIO;
2886 			goto unlock;
2887 		}
2888 		if (page_has_buffers(page))
2889 			goto has_buffers;
2890 	}
2891 	zero_user(page, offset, length);
2892 	set_page_dirty(page);
2893 	err = 0;
2894 
2895 unlock:
2896 	unlock_page(page);
2897 	put_page(page);
2898 out:
2899 	return err;
2900 }
2901 EXPORT_SYMBOL(nobh_truncate_page);
2902 
2903 int block_truncate_page(struct address_space *mapping,
2904 			loff_t from, get_block_t *get_block)
2905 {
2906 	pgoff_t index = from >> PAGE_SHIFT;
2907 	unsigned offset = from & (PAGE_SIZE-1);
2908 	unsigned blocksize;
2909 	sector_t iblock;
2910 	unsigned length, pos;
2911 	struct inode *inode = mapping->host;
2912 	struct page *page;
2913 	struct buffer_head *bh;
2914 	int err;
2915 
2916 	blocksize = i_blocksize(inode);
2917 	length = offset & (blocksize - 1);
2918 
2919 	/* Block boundary? Nothing to do */
2920 	if (!length)
2921 		return 0;
2922 
2923 	length = blocksize - length;
2924 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2925 
2926 	page = grab_cache_page(mapping, index);
2927 	err = -ENOMEM;
2928 	if (!page)
2929 		goto out;
2930 
2931 	if (!page_has_buffers(page))
2932 		create_empty_buffers(page, blocksize, 0);
2933 
2934 	/* Find the buffer that contains "offset" */
2935 	bh = page_buffers(page);
2936 	pos = blocksize;
2937 	while (offset >= pos) {
2938 		bh = bh->b_this_page;
2939 		iblock++;
2940 		pos += blocksize;
2941 	}
2942 
2943 	err = 0;
2944 	if (!buffer_mapped(bh)) {
2945 		WARN_ON(bh->b_size != blocksize);
2946 		err = get_block(inode, iblock, bh, 0);
2947 		if (err)
2948 			goto unlock;
2949 		/* unmapped? It's a hole - nothing to do */
2950 		if (!buffer_mapped(bh))
2951 			goto unlock;
2952 	}
2953 
2954 	/* Ok, it's mapped. Make sure it's up-to-date */
2955 	if (PageUptodate(page))
2956 		set_buffer_uptodate(bh);
2957 
2958 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2959 		err = -EIO;
2960 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2961 		wait_on_buffer(bh);
2962 		/* Uhhuh. Read error. Complain and punt. */
2963 		if (!buffer_uptodate(bh))
2964 			goto unlock;
2965 	}
2966 
2967 	zero_user(page, offset, length);
2968 	mark_buffer_dirty(bh);
2969 	err = 0;
2970 
2971 unlock:
2972 	unlock_page(page);
2973 	put_page(page);
2974 out:
2975 	return err;
2976 }
2977 EXPORT_SYMBOL(block_truncate_page);
2978 
2979 /*
2980  * The generic ->writepage function for buffer-backed address_spaces
2981  */
2982 int block_write_full_page(struct page *page, get_block_t *get_block,
2983 			struct writeback_control *wbc)
2984 {
2985 	struct inode * const inode = page->mapping->host;
2986 	loff_t i_size = i_size_read(inode);
2987 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2988 	unsigned offset;
2989 
2990 	/* Is the page fully inside i_size? */
2991 	if (page->index < end_index)
2992 		return __block_write_full_page(inode, page, get_block, wbc,
2993 					       end_buffer_async_write);
2994 
2995 	/* Is the page fully outside i_size? (truncate in progress) */
2996 	offset = i_size & (PAGE_SIZE-1);
2997 	if (page->index >= end_index+1 || !offset) {
2998 		/*
2999 		 * The page may have dirty, unmapped buffers.  For example,
3000 		 * they may have been added in ext3_writepage().  Make them
3001 		 * freeable here, so the page does not leak.
3002 		 */
3003 		do_invalidatepage(page, 0, PAGE_SIZE);
3004 		unlock_page(page);
3005 		return 0; /* don't care */
3006 	}
3007 
3008 	/*
3009 	 * The page straddles i_size.  It must be zeroed out on each and every
3010 	 * writepage invocation because it may be mmapped.  "A file is mapped
3011 	 * in multiples of the page size.  For a file that is not a multiple of
3012 	 * the  page size, the remaining memory is zeroed when mapped, and
3013 	 * writes to that region are not written out to the file."
3014 	 */
3015 	zero_user_segment(page, offset, PAGE_SIZE);
3016 	return __block_write_full_page(inode, page, get_block, wbc,
3017 							end_buffer_async_write);
3018 }
3019 EXPORT_SYMBOL(block_write_full_page);
3020 
3021 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3022 			    get_block_t *get_block)
3023 {
3024 	struct buffer_head tmp;
3025 	struct inode *inode = mapping->host;
3026 	tmp.b_state = 0;
3027 	tmp.b_blocknr = 0;
3028 	tmp.b_size = i_blocksize(inode);
3029 	get_block(inode, block, &tmp, 0);
3030 	return tmp.b_blocknr;
3031 }
3032 EXPORT_SYMBOL(generic_block_bmap);
3033 
3034 static void end_bio_bh_io_sync(struct bio *bio)
3035 {
3036 	struct buffer_head *bh = bio->bi_private;
3037 
3038 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3039 		set_bit(BH_Quiet, &bh->b_state);
3040 
3041 	bh->b_end_io(bh, !bio->bi_error);
3042 	bio_put(bio);
3043 }
3044 
3045 /*
3046  * This allows us to do IO even on the odd last sectors
3047  * of a device, even if the block size is some multiple
3048  * of the physical sector size.
3049  *
3050  * We'll just truncate the bio to the size of the device,
3051  * and clear the end of the buffer head manually.
3052  *
3053  * Truly out-of-range accesses will turn into actual IO
3054  * errors, this only handles the "we need to be able to
3055  * do IO at the final sector" case.
3056  */
3057 void guard_bio_eod(int op, struct bio *bio)
3058 {
3059 	sector_t maxsector;
3060 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3061 	unsigned truncated_bytes;
3062 
3063 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3064 	if (!maxsector)
3065 		return;
3066 
3067 	/*
3068 	 * If the *whole* IO is past the end of the device,
3069 	 * let it through, and the IO layer will turn it into
3070 	 * an EIO.
3071 	 */
3072 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3073 		return;
3074 
3075 	maxsector -= bio->bi_iter.bi_sector;
3076 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3077 		return;
3078 
3079 	/* Uhhuh. We've got a bio that straddles the device size! */
3080 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3081 
3082 	/* Truncate the bio.. */
3083 	bio->bi_iter.bi_size -= truncated_bytes;
3084 	bvec->bv_len -= truncated_bytes;
3085 
3086 	/* ..and clear the end of the buffer for reads */
3087 	if (op == REQ_OP_READ) {
3088 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3089 				truncated_bytes);
3090 	}
3091 }
3092 
3093 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3094 			 struct writeback_control *wbc)
3095 {
3096 	struct bio *bio;
3097 
3098 	BUG_ON(!buffer_locked(bh));
3099 	BUG_ON(!buffer_mapped(bh));
3100 	BUG_ON(!bh->b_end_io);
3101 	BUG_ON(buffer_delay(bh));
3102 	BUG_ON(buffer_unwritten(bh));
3103 
3104 	/*
3105 	 * Only clear out a write error when rewriting
3106 	 */
3107 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3108 		clear_buffer_write_io_error(bh);
3109 
3110 	/*
3111 	 * from here on down, it's all bio -- do the initial mapping,
3112 	 * submit_bio -> generic_make_request may further map this bio around
3113 	 */
3114 	bio = bio_alloc(GFP_NOIO, 1);
3115 
3116 	if (wbc) {
3117 		wbc_init_bio(wbc, bio);
3118 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3119 	}
3120 
3121 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3122 	bio->bi_bdev = bh->b_bdev;
3123 
3124 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3125 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3126 
3127 	bio->bi_end_io = end_bio_bh_io_sync;
3128 	bio->bi_private = bh;
3129 
3130 	/* Take care of bh's that straddle the end of the device */
3131 	guard_bio_eod(op, bio);
3132 
3133 	if (buffer_meta(bh))
3134 		op_flags |= REQ_META;
3135 	if (buffer_prio(bh))
3136 		op_flags |= REQ_PRIO;
3137 	bio_set_op_attrs(bio, op, op_flags);
3138 
3139 	submit_bio(bio);
3140 	return 0;
3141 }
3142 
3143 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3144 {
3145 	return submit_bh_wbc(op, op_flags, bh, NULL);
3146 }
3147 EXPORT_SYMBOL(submit_bh);
3148 
3149 /**
3150  * ll_rw_block: low-level access to block devices (DEPRECATED)
3151  * @op: whether to %READ or %WRITE
3152  * @op_flags: req_flag_bits
3153  * @nr: number of &struct buffer_heads in the array
3154  * @bhs: array of pointers to &struct buffer_head
3155  *
3156  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3157  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3158  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3159  * %REQ_RAHEAD.
3160  *
3161  * This function drops any buffer that it cannot get a lock on (with the
3162  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3163  * request, and any buffer that appears to be up-to-date when doing read
3164  * request.  Further it marks as clean buffers that are processed for
3165  * writing (the buffer cache won't assume that they are actually clean
3166  * until the buffer gets unlocked).
3167  *
3168  * ll_rw_block sets b_end_io to simple completion handler that marks
3169  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3170  * any waiters.
3171  *
3172  * All of the buffers must be for the same device, and must also be a
3173  * multiple of the current approved size for the device.
3174  */
3175 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3176 {
3177 	int i;
3178 
3179 	for (i = 0; i < nr; i++) {
3180 		struct buffer_head *bh = bhs[i];
3181 
3182 		if (!trylock_buffer(bh))
3183 			continue;
3184 		if (op == WRITE) {
3185 			if (test_clear_buffer_dirty(bh)) {
3186 				bh->b_end_io = end_buffer_write_sync;
3187 				get_bh(bh);
3188 				submit_bh(op, op_flags, bh);
3189 				continue;
3190 			}
3191 		} else {
3192 			if (!buffer_uptodate(bh)) {
3193 				bh->b_end_io = end_buffer_read_sync;
3194 				get_bh(bh);
3195 				submit_bh(op, op_flags, bh);
3196 				continue;
3197 			}
3198 		}
3199 		unlock_buffer(bh);
3200 	}
3201 }
3202 EXPORT_SYMBOL(ll_rw_block);
3203 
3204 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3205 {
3206 	lock_buffer(bh);
3207 	if (!test_clear_buffer_dirty(bh)) {
3208 		unlock_buffer(bh);
3209 		return;
3210 	}
3211 	bh->b_end_io = end_buffer_write_sync;
3212 	get_bh(bh);
3213 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3214 }
3215 EXPORT_SYMBOL(write_dirty_buffer);
3216 
3217 /*
3218  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3219  * and then start new I/O and then wait upon it.  The caller must have a ref on
3220  * the buffer_head.
3221  */
3222 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3223 {
3224 	int ret = 0;
3225 
3226 	WARN_ON(atomic_read(&bh->b_count) < 1);
3227 	lock_buffer(bh);
3228 	if (test_clear_buffer_dirty(bh)) {
3229 		get_bh(bh);
3230 		bh->b_end_io = end_buffer_write_sync;
3231 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3232 		wait_on_buffer(bh);
3233 		if (!ret && !buffer_uptodate(bh))
3234 			ret = -EIO;
3235 	} else {
3236 		unlock_buffer(bh);
3237 	}
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL(__sync_dirty_buffer);
3241 
3242 int sync_dirty_buffer(struct buffer_head *bh)
3243 {
3244 	return __sync_dirty_buffer(bh, REQ_SYNC);
3245 }
3246 EXPORT_SYMBOL(sync_dirty_buffer);
3247 
3248 /*
3249  * try_to_free_buffers() checks if all the buffers on this particular page
3250  * are unused, and releases them if so.
3251  *
3252  * Exclusion against try_to_free_buffers may be obtained by either
3253  * locking the page or by holding its mapping's private_lock.
3254  *
3255  * If the page is dirty but all the buffers are clean then we need to
3256  * be sure to mark the page clean as well.  This is because the page
3257  * may be against a block device, and a later reattachment of buffers
3258  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3259  * filesystem data on the same device.
3260  *
3261  * The same applies to regular filesystem pages: if all the buffers are
3262  * clean then we set the page clean and proceed.  To do that, we require
3263  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3264  * private_lock.
3265  *
3266  * try_to_free_buffers() is non-blocking.
3267  */
3268 static inline int buffer_busy(struct buffer_head *bh)
3269 {
3270 	return atomic_read(&bh->b_count) |
3271 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3272 }
3273 
3274 static int
3275 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3276 {
3277 	struct buffer_head *head = page_buffers(page);
3278 	struct buffer_head *bh;
3279 
3280 	bh = head;
3281 	do {
3282 		if (buffer_write_io_error(bh) && page->mapping)
3283 			mapping_set_error(page->mapping, -EIO);
3284 		if (buffer_busy(bh))
3285 			goto failed;
3286 		bh = bh->b_this_page;
3287 	} while (bh != head);
3288 
3289 	do {
3290 		struct buffer_head *next = bh->b_this_page;
3291 
3292 		if (bh->b_assoc_map)
3293 			__remove_assoc_queue(bh);
3294 		bh = next;
3295 	} while (bh != head);
3296 	*buffers_to_free = head;
3297 	__clear_page_buffers(page);
3298 	return 1;
3299 failed:
3300 	return 0;
3301 }
3302 
3303 int try_to_free_buffers(struct page *page)
3304 {
3305 	struct address_space * const mapping = page->mapping;
3306 	struct buffer_head *buffers_to_free = NULL;
3307 	int ret = 0;
3308 
3309 	BUG_ON(!PageLocked(page));
3310 	if (PageWriteback(page))
3311 		return 0;
3312 
3313 	if (mapping == NULL) {		/* can this still happen? */
3314 		ret = drop_buffers(page, &buffers_to_free);
3315 		goto out;
3316 	}
3317 
3318 	spin_lock(&mapping->private_lock);
3319 	ret = drop_buffers(page, &buffers_to_free);
3320 
3321 	/*
3322 	 * If the filesystem writes its buffers by hand (eg ext3)
3323 	 * then we can have clean buffers against a dirty page.  We
3324 	 * clean the page here; otherwise the VM will never notice
3325 	 * that the filesystem did any IO at all.
3326 	 *
3327 	 * Also, during truncate, discard_buffer will have marked all
3328 	 * the page's buffers clean.  We discover that here and clean
3329 	 * the page also.
3330 	 *
3331 	 * private_lock must be held over this entire operation in order
3332 	 * to synchronise against __set_page_dirty_buffers and prevent the
3333 	 * dirty bit from being lost.
3334 	 */
3335 	if (ret)
3336 		cancel_dirty_page(page);
3337 	spin_unlock(&mapping->private_lock);
3338 out:
3339 	if (buffers_to_free) {
3340 		struct buffer_head *bh = buffers_to_free;
3341 
3342 		do {
3343 			struct buffer_head *next = bh->b_this_page;
3344 			free_buffer_head(bh);
3345 			bh = next;
3346 		} while (bh != buffers_to_free);
3347 	}
3348 	return ret;
3349 }
3350 EXPORT_SYMBOL(try_to_free_buffers);
3351 
3352 /*
3353  * There are no bdflush tunables left.  But distributions are
3354  * still running obsolete flush daemons, so we terminate them here.
3355  *
3356  * Use of bdflush() is deprecated and will be removed in a future kernel.
3357  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3358  */
3359 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3360 {
3361 	static int msg_count;
3362 
3363 	if (!capable(CAP_SYS_ADMIN))
3364 		return -EPERM;
3365 
3366 	if (msg_count < 5) {
3367 		msg_count++;
3368 		printk(KERN_INFO
3369 			"warning: process `%s' used the obsolete bdflush"
3370 			" system call\n", current->comm);
3371 		printk(KERN_INFO "Fix your initscripts?\n");
3372 	}
3373 
3374 	if (func == 1)
3375 		do_exit(0);
3376 	return 0;
3377 }
3378 
3379 /*
3380  * Buffer-head allocation
3381  */
3382 static struct kmem_cache *bh_cachep __read_mostly;
3383 
3384 /*
3385  * Once the number of bh's in the machine exceeds this level, we start
3386  * stripping them in writeback.
3387  */
3388 static unsigned long max_buffer_heads;
3389 
3390 int buffer_heads_over_limit;
3391 
3392 struct bh_accounting {
3393 	int nr;			/* Number of live bh's */
3394 	int ratelimit;		/* Limit cacheline bouncing */
3395 };
3396 
3397 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3398 
3399 static void recalc_bh_state(void)
3400 {
3401 	int i;
3402 	int tot = 0;
3403 
3404 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3405 		return;
3406 	__this_cpu_write(bh_accounting.ratelimit, 0);
3407 	for_each_online_cpu(i)
3408 		tot += per_cpu(bh_accounting, i).nr;
3409 	buffer_heads_over_limit = (tot > max_buffer_heads);
3410 }
3411 
3412 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3413 {
3414 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3415 	if (ret) {
3416 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3417 		preempt_disable();
3418 		__this_cpu_inc(bh_accounting.nr);
3419 		recalc_bh_state();
3420 		preempt_enable();
3421 	}
3422 	return ret;
3423 }
3424 EXPORT_SYMBOL(alloc_buffer_head);
3425 
3426 void free_buffer_head(struct buffer_head *bh)
3427 {
3428 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3429 	kmem_cache_free(bh_cachep, bh);
3430 	preempt_disable();
3431 	__this_cpu_dec(bh_accounting.nr);
3432 	recalc_bh_state();
3433 	preempt_enable();
3434 }
3435 EXPORT_SYMBOL(free_buffer_head);
3436 
3437 static int buffer_exit_cpu_dead(unsigned int cpu)
3438 {
3439 	int i;
3440 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3441 
3442 	for (i = 0; i < BH_LRU_SIZE; i++) {
3443 		brelse(b->bhs[i]);
3444 		b->bhs[i] = NULL;
3445 	}
3446 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3447 	per_cpu(bh_accounting, cpu).nr = 0;
3448 	return 0;
3449 }
3450 
3451 /**
3452  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3453  * @bh: struct buffer_head
3454  *
3455  * Return true if the buffer is up-to-date and false,
3456  * with the buffer locked, if not.
3457  */
3458 int bh_uptodate_or_lock(struct buffer_head *bh)
3459 {
3460 	if (!buffer_uptodate(bh)) {
3461 		lock_buffer(bh);
3462 		if (!buffer_uptodate(bh))
3463 			return 0;
3464 		unlock_buffer(bh);
3465 	}
3466 	return 1;
3467 }
3468 EXPORT_SYMBOL(bh_uptodate_or_lock);
3469 
3470 /**
3471  * bh_submit_read - Submit a locked buffer for reading
3472  * @bh: struct buffer_head
3473  *
3474  * Returns zero on success and -EIO on error.
3475  */
3476 int bh_submit_read(struct buffer_head *bh)
3477 {
3478 	BUG_ON(!buffer_locked(bh));
3479 
3480 	if (buffer_uptodate(bh)) {
3481 		unlock_buffer(bh);
3482 		return 0;
3483 	}
3484 
3485 	get_bh(bh);
3486 	bh->b_end_io = end_buffer_read_sync;
3487 	submit_bh(REQ_OP_READ, 0, bh);
3488 	wait_on_buffer(bh);
3489 	if (buffer_uptodate(bh))
3490 		return 0;
3491 	return -EIO;
3492 }
3493 EXPORT_SYMBOL(bh_submit_read);
3494 
3495 void __init buffer_init(void)
3496 {
3497 	unsigned long nrpages;
3498 	int ret;
3499 
3500 	bh_cachep = kmem_cache_create("buffer_head",
3501 			sizeof(struct buffer_head), 0,
3502 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3503 				SLAB_MEM_SPREAD),
3504 				NULL);
3505 
3506 	/*
3507 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3508 	 */
3509 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3510 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3511 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3512 					NULL, buffer_exit_cpu_dead);
3513 	WARN_ON(ret < 0);
3514 }
3515