xref: /openbmc/linux/fs/buffer.c (revision ec788f7e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct page *page;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204 	if (!page)
205 		goto out;
206 
207 	spin_lock(&bd_mapping->private_lock);
208 	if (!page_has_buffers(page))
209 		goto out_unlock;
210 	head = page_buffers(page);
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->private_lock);
240 	put_page(page);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	/*
286 	 * If all of the buffers are uptodate then we can set the page
287 	 * uptodate.
288 	 */
289 	if (folio_uptodate)
290 		folio_mark_uptodate(folio);
291 	folio_unlock(folio);
292 	return;
293 
294 still_busy:
295 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 	return;
297 }
298 
299 struct postprocess_bh_ctx {
300 	struct work_struct work;
301 	struct buffer_head *bh;
302 };
303 
304 static void verify_bh(struct work_struct *work)
305 {
306 	struct postprocess_bh_ctx *ctx =
307 		container_of(work, struct postprocess_bh_ctx, work);
308 	struct buffer_head *bh = ctx->bh;
309 	bool valid;
310 
311 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 	end_buffer_async_read(bh, valid);
313 	kfree(ctx);
314 }
315 
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318 	struct folio *folio = bh->b_folio;
319 	struct inode *inode = folio->mapping->host;
320 
321 	return fsverity_active(inode) &&
322 		/* needed by ext4 */
323 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325 
326 static void decrypt_bh(struct work_struct *work)
327 {
328 	struct postprocess_bh_ctx *ctx =
329 		container_of(work, struct postprocess_bh_ctx, work);
330 	struct buffer_head *bh = ctx->bh;
331 	int err;
332 
333 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 					       bh_offset(bh));
335 	if (err == 0 && need_fsverity(bh)) {
336 		/*
337 		 * We use different work queues for decryption and for verity
338 		 * because verity may require reading metadata pages that need
339 		 * decryption, and we shouldn't recurse to the same workqueue.
340 		 */
341 		INIT_WORK(&ctx->work, verify_bh);
342 		fsverity_enqueue_verify_work(&ctx->work);
343 		return;
344 	}
345 	end_buffer_async_read(bh, err == 0);
346 	kfree(ctx);
347 }
348 
349 /*
350  * I/O completion handler for block_read_full_folio() - pages
351  * which come unlocked at the end of I/O.
352  */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355 	struct inode *inode = bh->b_folio->mapping->host;
356 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 	bool verify = need_fsverity(bh);
358 
359 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 	if (uptodate && (decrypt || verify)) {
361 		struct postprocess_bh_ctx *ctx =
362 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
363 
364 		if (ctx) {
365 			ctx->bh = bh;
366 			if (decrypt) {
367 				INIT_WORK(&ctx->work, decrypt_bh);
368 				fscrypt_enqueue_decrypt_work(&ctx->work);
369 			} else {
370 				INIT_WORK(&ctx->work, verify_bh);
371 				fsverity_enqueue_verify_work(&ctx->work);
372 			}
373 			return;
374 		}
375 		uptodate = 0;
376 	}
377 	end_buffer_async_read(bh, uptodate);
378 }
379 
380 /*
381  * Completion handler for block_write_full_page() - pages which are unlocked
382  * during I/O, and which have PageWriteback cleared upon I/O completion.
383  */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 	unsigned long flags;
387 	struct buffer_head *first;
388 	struct buffer_head *tmp;
389 	struct folio *folio;
390 
391 	BUG_ON(!buffer_async_write(bh));
392 
393 	folio = bh->b_folio;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		buffer_io_error(bh, ", lost async page write");
398 		mark_buffer_write_io_error(bh);
399 		clear_buffer_uptodate(bh);
400 		folio_set_error(folio);
401 	}
402 
403 	first = folio_buffers(folio);
404 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
405 
406 	clear_buffer_async_write(bh);
407 	unlock_buffer(bh);
408 	tmp = bh->b_this_page;
409 	while (tmp != bh) {
410 		if (buffer_async_write(tmp)) {
411 			BUG_ON(!buffer_locked(tmp));
412 			goto still_busy;
413 		}
414 		tmp = tmp->b_this_page;
415 	}
416 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 	folio_end_writeback(folio);
418 	return;
419 
420 still_busy:
421 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422 	return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425 
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 	bh->b_end_io = end_buffer_async_read_io;
450 	set_buffer_async_read(bh);
451 }
452 
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 					  bh_end_io_t *handler)
455 {
456 	bh->b_end_io = handler;
457 	set_buffer_async_write(bh);
458 }
459 
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465 
466 
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for private_list is via the private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
486  * mapping->private_list will always be protected by the backing blockdev's
487  * ->private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->private_list via these
493  * utility functions are free to use private_lock and private_list for
494  * whatever they want.  The only requirement is that list_empty(private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515 
516 /*
517  * The buffer's backing address_space's private_lock must be held
518  */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 	list_del_init(&bh->b_assoc_buffers);
522 	WARN_ON(!bh->b_assoc_map);
523 	bh->b_assoc_map = NULL;
524 }
525 
526 int inode_has_buffers(struct inode *inode)
527 {
528 	return !list_empty(&inode->i_data.private_list);
529 }
530 
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 	struct buffer_head *bh;
544 	struct list_head *p;
545 	int err = 0;
546 
547 	spin_lock(lock);
548 repeat:
549 	list_for_each_prev(p, list) {
550 		bh = BH_ENTRY(p);
551 		if (buffer_locked(bh)) {
552 			get_bh(bh);
553 			spin_unlock(lock);
554 			wait_on_buffer(bh);
555 			if (!buffer_uptodate(bh))
556 				err = -EIO;
557 			brelse(bh);
558 			spin_lock(lock);
559 			goto repeat;
560 		}
561 	}
562 	spin_unlock(lock);
563 	return err;
564 }
565 
566 void emergency_thaw_bdev(struct super_block *sb)
567 {
568 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
569 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
570 }
571 
572 /**
573  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
574  * @mapping: the mapping which wants those buffers written
575  *
576  * Starts I/O against the buffers at mapping->private_list, and waits upon
577  * that I/O.
578  *
579  * Basically, this is a convenience function for fsync().
580  * @mapping is a file or directory which needs those buffers to be written for
581  * a successful fsync().
582  */
583 int sync_mapping_buffers(struct address_space *mapping)
584 {
585 	struct address_space *buffer_mapping = mapping->private_data;
586 
587 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
588 		return 0;
589 
590 	return fsync_buffers_list(&buffer_mapping->private_lock,
591 					&mapping->private_list);
592 }
593 EXPORT_SYMBOL(sync_mapping_buffers);
594 
595 /*
596  * Called when we've recently written block `bblock', and it is known that
597  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
598  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
599  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
600  */
601 void write_boundary_block(struct block_device *bdev,
602 			sector_t bblock, unsigned blocksize)
603 {
604 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
605 	if (bh) {
606 		if (buffer_dirty(bh))
607 			write_dirty_buffer(bh, 0);
608 		put_bh(bh);
609 	}
610 }
611 
612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
613 {
614 	struct address_space *mapping = inode->i_mapping;
615 	struct address_space *buffer_mapping = bh->b_folio->mapping;
616 
617 	mark_buffer_dirty(bh);
618 	if (!mapping->private_data) {
619 		mapping->private_data = buffer_mapping;
620 	} else {
621 		BUG_ON(mapping->private_data != buffer_mapping);
622 	}
623 	if (!bh->b_assoc_map) {
624 		spin_lock(&buffer_mapping->private_lock);
625 		list_move_tail(&bh->b_assoc_buffers,
626 				&mapping->private_list);
627 		bh->b_assoc_map = mapping;
628 		spin_unlock(&buffer_mapping->private_lock);
629 	}
630 }
631 EXPORT_SYMBOL(mark_buffer_dirty_inode);
632 
633 /*
634  * Add a page to the dirty page list.
635  *
636  * It is a sad fact of life that this function is called from several places
637  * deeply under spinlocking.  It may not sleep.
638  *
639  * If the page has buffers, the uptodate buffers are set dirty, to preserve
640  * dirty-state coherency between the page and the buffers.  It the page does
641  * not have buffers then when they are later attached they will all be set
642  * dirty.
643  *
644  * The buffers are dirtied before the page is dirtied.  There's a small race
645  * window in which a writepage caller may see the page cleanness but not the
646  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
647  * before the buffers, a concurrent writepage caller could clear the page dirty
648  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
649  * page on the dirty page list.
650  *
651  * We use private_lock to lock against try_to_free_buffers while using the
652  * page's buffer list.  Also use this to protect against clean buffers being
653  * added to the page after it was set dirty.
654  *
655  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
656  * address_space though.
657  */
658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
659 {
660 	struct buffer_head *head;
661 	bool newly_dirty;
662 
663 	spin_lock(&mapping->private_lock);
664 	head = folio_buffers(folio);
665 	if (head) {
666 		struct buffer_head *bh = head;
667 
668 		do {
669 			set_buffer_dirty(bh);
670 			bh = bh->b_this_page;
671 		} while (bh != head);
672 	}
673 	/*
674 	 * Lock out page's memcg migration to keep PageDirty
675 	 * synchronized with per-memcg dirty page counters.
676 	 */
677 	folio_memcg_lock(folio);
678 	newly_dirty = !folio_test_set_dirty(folio);
679 	spin_unlock(&mapping->private_lock);
680 
681 	if (newly_dirty)
682 		__folio_mark_dirty(folio, mapping, 1);
683 
684 	folio_memcg_unlock(folio);
685 
686 	if (newly_dirty)
687 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
688 
689 	return newly_dirty;
690 }
691 EXPORT_SYMBOL(block_dirty_folio);
692 
693 /*
694  * Write out and wait upon a list of buffers.
695  *
696  * We have conflicting pressures: we want to make sure that all
697  * initially dirty buffers get waited on, but that any subsequently
698  * dirtied buffers don't.  After all, we don't want fsync to last
699  * forever if somebody is actively writing to the file.
700  *
701  * Do this in two main stages: first we copy dirty buffers to a
702  * temporary inode list, queueing the writes as we go.  Then we clean
703  * up, waiting for those writes to complete.
704  *
705  * During this second stage, any subsequent updates to the file may end
706  * up refiling the buffer on the original inode's dirty list again, so
707  * there is a chance we will end up with a buffer queued for write but
708  * not yet completed on that list.  So, as a final cleanup we go through
709  * the osync code to catch these locked, dirty buffers without requeuing
710  * any newly dirty buffers for write.
711  */
712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
713 {
714 	struct buffer_head *bh;
715 	struct list_head tmp;
716 	struct address_space *mapping;
717 	int err = 0, err2;
718 	struct blk_plug plug;
719 
720 	INIT_LIST_HEAD(&tmp);
721 	blk_start_plug(&plug);
722 
723 	spin_lock(lock);
724 	while (!list_empty(list)) {
725 		bh = BH_ENTRY(list->next);
726 		mapping = bh->b_assoc_map;
727 		__remove_assoc_queue(bh);
728 		/* Avoid race with mark_buffer_dirty_inode() which does
729 		 * a lockless check and we rely on seeing the dirty bit */
730 		smp_mb();
731 		if (buffer_dirty(bh) || buffer_locked(bh)) {
732 			list_add(&bh->b_assoc_buffers, &tmp);
733 			bh->b_assoc_map = mapping;
734 			if (buffer_dirty(bh)) {
735 				get_bh(bh);
736 				spin_unlock(lock);
737 				/*
738 				 * Ensure any pending I/O completes so that
739 				 * write_dirty_buffer() actually writes the
740 				 * current contents - it is a noop if I/O is
741 				 * still in flight on potentially older
742 				 * contents.
743 				 */
744 				write_dirty_buffer(bh, REQ_SYNC);
745 
746 				/*
747 				 * Kick off IO for the previous mapping. Note
748 				 * that we will not run the very last mapping,
749 				 * wait_on_buffer() will do that for us
750 				 * through sync_buffer().
751 				 */
752 				brelse(bh);
753 				spin_lock(lock);
754 			}
755 		}
756 	}
757 
758 	spin_unlock(lock);
759 	blk_finish_plug(&plug);
760 	spin_lock(lock);
761 
762 	while (!list_empty(&tmp)) {
763 		bh = BH_ENTRY(tmp.prev);
764 		get_bh(bh);
765 		mapping = bh->b_assoc_map;
766 		__remove_assoc_queue(bh);
767 		/* Avoid race with mark_buffer_dirty_inode() which does
768 		 * a lockless check and we rely on seeing the dirty bit */
769 		smp_mb();
770 		if (buffer_dirty(bh)) {
771 			list_add(&bh->b_assoc_buffers,
772 				 &mapping->private_list);
773 			bh->b_assoc_map = mapping;
774 		}
775 		spin_unlock(lock);
776 		wait_on_buffer(bh);
777 		if (!buffer_uptodate(bh))
778 			err = -EIO;
779 		brelse(bh);
780 		spin_lock(lock);
781 	}
782 
783 	spin_unlock(lock);
784 	err2 = osync_buffers_list(lock, list);
785 	if (err)
786 		return err;
787 	else
788 		return err2;
789 }
790 
791 /*
792  * Invalidate any and all dirty buffers on a given inode.  We are
793  * probably unmounting the fs, but that doesn't mean we have already
794  * done a sync().  Just drop the buffers from the inode list.
795  *
796  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
797  * assumes that all the buffers are against the blockdev.  Not true
798  * for reiserfs.
799  */
800 void invalidate_inode_buffers(struct inode *inode)
801 {
802 	if (inode_has_buffers(inode)) {
803 		struct address_space *mapping = &inode->i_data;
804 		struct list_head *list = &mapping->private_list;
805 		struct address_space *buffer_mapping = mapping->private_data;
806 
807 		spin_lock(&buffer_mapping->private_lock);
808 		while (!list_empty(list))
809 			__remove_assoc_queue(BH_ENTRY(list->next));
810 		spin_unlock(&buffer_mapping->private_lock);
811 	}
812 }
813 EXPORT_SYMBOL(invalidate_inode_buffers);
814 
815 /*
816  * Remove any clean buffers from the inode's buffer list.  This is called
817  * when we're trying to free the inode itself.  Those buffers can pin it.
818  *
819  * Returns true if all buffers were removed.
820  */
821 int remove_inode_buffers(struct inode *inode)
822 {
823 	int ret = 1;
824 
825 	if (inode_has_buffers(inode)) {
826 		struct address_space *mapping = &inode->i_data;
827 		struct list_head *list = &mapping->private_list;
828 		struct address_space *buffer_mapping = mapping->private_data;
829 
830 		spin_lock(&buffer_mapping->private_lock);
831 		while (!list_empty(list)) {
832 			struct buffer_head *bh = BH_ENTRY(list->next);
833 			if (buffer_dirty(bh)) {
834 				ret = 0;
835 				break;
836 			}
837 			__remove_assoc_queue(bh);
838 		}
839 		spin_unlock(&buffer_mapping->private_lock);
840 	}
841 	return ret;
842 }
843 
844 /*
845  * Create the appropriate buffers when given a page for data area and
846  * the size of each buffer.. Use the bh->b_this_page linked list to
847  * follow the buffers created.  Return NULL if unable to create more
848  * buffers.
849  *
850  * The retry flag is used to differentiate async IO (paging, swapping)
851  * which may not fail from ordinary buffer allocations.
852  */
853 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
854 		bool retry)
855 {
856 	struct buffer_head *bh, *head;
857 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
858 	long offset;
859 	struct mem_cgroup *memcg, *old_memcg;
860 
861 	if (retry)
862 		gfp |= __GFP_NOFAIL;
863 
864 	/* The page lock pins the memcg */
865 	memcg = page_memcg(page);
866 	old_memcg = set_active_memcg(memcg);
867 
868 	head = NULL;
869 	offset = PAGE_SIZE;
870 	while ((offset -= size) >= 0) {
871 		bh = alloc_buffer_head(gfp);
872 		if (!bh)
873 			goto no_grow;
874 
875 		bh->b_this_page = head;
876 		bh->b_blocknr = -1;
877 		head = bh;
878 
879 		bh->b_size = size;
880 
881 		/* Link the buffer to its page */
882 		set_bh_page(bh, page, offset);
883 	}
884 out:
885 	set_active_memcg(old_memcg);
886 	return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891 	if (head) {
892 		do {
893 			bh = head;
894 			head = head->b_this_page;
895 			free_buffer_head(bh);
896 		} while (head);
897 	}
898 
899 	goto out;
900 }
901 EXPORT_SYMBOL_GPL(alloc_page_buffers);
902 
903 static inline void
904 link_dev_buffers(struct page *page, struct buffer_head *head)
905 {
906 	struct buffer_head *bh, *tail;
907 
908 	bh = head;
909 	do {
910 		tail = bh;
911 		bh = bh->b_this_page;
912 	} while (bh);
913 	tail->b_this_page = head;
914 	attach_page_private(page, head);
915 }
916 
917 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
918 {
919 	sector_t retval = ~((sector_t)0);
920 	loff_t sz = bdev_nr_bytes(bdev);
921 
922 	if (sz) {
923 		unsigned int sizebits = blksize_bits(size);
924 		retval = (sz >> sizebits);
925 	}
926 	return retval;
927 }
928 
929 /*
930  * Initialise the state of a blockdev page's buffers.
931  */
932 static sector_t
933 init_page_buffers(struct page *page, struct block_device *bdev,
934 			sector_t block, int size)
935 {
936 	struct buffer_head *head = page_buffers(page);
937 	struct buffer_head *bh = head;
938 	int uptodate = PageUptodate(page);
939 	sector_t end_block = blkdev_max_block(bdev, size);
940 
941 	do {
942 		if (!buffer_mapped(bh)) {
943 			bh->b_end_io = NULL;
944 			bh->b_private = NULL;
945 			bh->b_bdev = bdev;
946 			bh->b_blocknr = block;
947 			if (uptodate)
948 				set_buffer_uptodate(bh);
949 			if (block < end_block)
950 				set_buffer_mapped(bh);
951 		}
952 		block++;
953 		bh = bh->b_this_page;
954 	} while (bh != head);
955 
956 	/*
957 	 * Caller needs to validate requested block against end of device.
958 	 */
959 	return end_block;
960 }
961 
962 /*
963  * Create the page-cache page that contains the requested block.
964  *
965  * This is used purely for blockdev mappings.
966  */
967 static int
968 grow_dev_page(struct block_device *bdev, sector_t block,
969 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
970 {
971 	struct inode *inode = bdev->bd_inode;
972 	struct page *page;
973 	struct buffer_head *bh;
974 	sector_t end_block;
975 	int ret = 0;
976 	gfp_t gfp_mask;
977 
978 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
979 
980 	/*
981 	 * XXX: __getblk_slow() can not really deal with failure and
982 	 * will endlessly loop on improvised global reclaim.  Prefer
983 	 * looping in the allocator rather than here, at least that
984 	 * code knows what it's doing.
985 	 */
986 	gfp_mask |= __GFP_NOFAIL;
987 
988 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
989 
990 	BUG_ON(!PageLocked(page));
991 
992 	if (page_has_buffers(page)) {
993 		bh = page_buffers(page);
994 		if (bh->b_size == size) {
995 			end_block = init_page_buffers(page, bdev,
996 						(sector_t)index << sizebits,
997 						size);
998 			goto done;
999 		}
1000 		if (!try_to_free_buffers(page_folio(page)))
1001 			goto failed;
1002 	}
1003 
1004 	/*
1005 	 * Allocate some buffers for this page
1006 	 */
1007 	bh = alloc_page_buffers(page, size, true);
1008 
1009 	/*
1010 	 * Link the page to the buffers and initialise them.  Take the
1011 	 * lock to be atomic wrt __find_get_block(), which does not
1012 	 * run under the page lock.
1013 	 */
1014 	spin_lock(&inode->i_mapping->private_lock);
1015 	link_dev_buffers(page, bh);
1016 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1017 			size);
1018 	spin_unlock(&inode->i_mapping->private_lock);
1019 done:
1020 	ret = (block < end_block) ? 1 : -ENXIO;
1021 failed:
1022 	unlock_page(page);
1023 	put_page(page);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * Create buffers for the specified block device block's page.  If
1029  * that page was dirty, the buffers are set dirty also.
1030  */
1031 static int
1032 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1033 {
1034 	pgoff_t index;
1035 	int sizebits;
1036 
1037 	sizebits = PAGE_SHIFT - __ffs(size);
1038 	index = block >> sizebits;
1039 
1040 	/*
1041 	 * Check for a block which wants to lie outside our maximum possible
1042 	 * pagecache index.  (this comparison is done using sector_t types).
1043 	 */
1044 	if (unlikely(index != block >> sizebits)) {
1045 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1046 			"device %pg\n",
1047 			__func__, (unsigned long long)block,
1048 			bdev);
1049 		return -EIO;
1050 	}
1051 
1052 	/* Create a page with the proper size buffers.. */
1053 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1054 }
1055 
1056 static struct buffer_head *
1057 __getblk_slow(struct block_device *bdev, sector_t block,
1058 	     unsigned size, gfp_t gfp)
1059 {
1060 	/* Size must be multiple of hard sectorsize */
1061 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1062 			(size < 512 || size > PAGE_SIZE))) {
1063 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1064 					size);
1065 		printk(KERN_ERR "logical block size: %d\n",
1066 					bdev_logical_block_size(bdev));
1067 
1068 		dump_stack();
1069 		return NULL;
1070 	}
1071 
1072 	for (;;) {
1073 		struct buffer_head *bh;
1074 		int ret;
1075 
1076 		bh = __find_get_block(bdev, block, size);
1077 		if (bh)
1078 			return bh;
1079 
1080 		ret = grow_buffers(bdev, block, size, gfp);
1081 		if (ret < 0)
1082 			return NULL;
1083 	}
1084 }
1085 
1086 /*
1087  * The relationship between dirty buffers and dirty pages:
1088  *
1089  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1090  * the page is tagged dirty in the page cache.
1091  *
1092  * At all times, the dirtiness of the buffers represents the dirtiness of
1093  * subsections of the page.  If the page has buffers, the page dirty bit is
1094  * merely a hint about the true dirty state.
1095  *
1096  * When a page is set dirty in its entirety, all its buffers are marked dirty
1097  * (if the page has buffers).
1098  *
1099  * When a buffer is marked dirty, its page is dirtied, but the page's other
1100  * buffers are not.
1101  *
1102  * Also.  When blockdev buffers are explicitly read with bread(), they
1103  * individually become uptodate.  But their backing page remains not
1104  * uptodate - even if all of its buffers are uptodate.  A subsequent
1105  * block_read_full_folio() against that folio will discover all the uptodate
1106  * buffers, will set the folio uptodate and will perform no I/O.
1107  */
1108 
1109 /**
1110  * mark_buffer_dirty - mark a buffer_head as needing writeout
1111  * @bh: the buffer_head to mark dirty
1112  *
1113  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1114  * its backing page dirty, then tag the page as dirty in the page cache
1115  * and then attach the address_space's inode to its superblock's dirty
1116  * inode list.
1117  *
1118  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1119  * i_pages lock and mapping->host->i_lock.
1120  */
1121 void mark_buffer_dirty(struct buffer_head *bh)
1122 {
1123 	WARN_ON_ONCE(!buffer_uptodate(bh));
1124 
1125 	trace_block_dirty_buffer(bh);
1126 
1127 	/*
1128 	 * Very *carefully* optimize the it-is-already-dirty case.
1129 	 *
1130 	 * Don't let the final "is it dirty" escape to before we
1131 	 * perhaps modified the buffer.
1132 	 */
1133 	if (buffer_dirty(bh)) {
1134 		smp_mb();
1135 		if (buffer_dirty(bh))
1136 			return;
1137 	}
1138 
1139 	if (!test_set_buffer_dirty(bh)) {
1140 		struct folio *folio = bh->b_folio;
1141 		struct address_space *mapping = NULL;
1142 
1143 		folio_memcg_lock(folio);
1144 		if (!folio_test_set_dirty(folio)) {
1145 			mapping = folio->mapping;
1146 			if (mapping)
1147 				__folio_mark_dirty(folio, mapping, 0);
1148 		}
1149 		folio_memcg_unlock(folio);
1150 		if (mapping)
1151 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1152 	}
1153 }
1154 EXPORT_SYMBOL(mark_buffer_dirty);
1155 
1156 void mark_buffer_write_io_error(struct buffer_head *bh)
1157 {
1158 	struct super_block *sb;
1159 
1160 	set_buffer_write_io_error(bh);
1161 	/* FIXME: do we need to set this in both places? */
1162 	if (bh->b_folio && bh->b_folio->mapping)
1163 		mapping_set_error(bh->b_folio->mapping, -EIO);
1164 	if (bh->b_assoc_map)
1165 		mapping_set_error(bh->b_assoc_map, -EIO);
1166 	rcu_read_lock();
1167 	sb = READ_ONCE(bh->b_bdev->bd_super);
1168 	if (sb)
1169 		errseq_set(&sb->s_wb_err, -EIO);
1170 	rcu_read_unlock();
1171 }
1172 EXPORT_SYMBOL(mark_buffer_write_io_error);
1173 
1174 /*
1175  * Decrement a buffer_head's reference count.  If all buffers against a page
1176  * have zero reference count, are clean and unlocked, and if the page is clean
1177  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179  * a page but it ends up not being freed, and buffers may later be reattached).
1180  */
1181 void __brelse(struct buffer_head * buf)
1182 {
1183 	if (atomic_read(&buf->b_count)) {
1184 		put_bh(buf);
1185 		return;
1186 	}
1187 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188 }
1189 EXPORT_SYMBOL(__brelse);
1190 
1191 /*
1192  * bforget() is like brelse(), except it discards any
1193  * potentially dirty data.
1194  */
1195 void __bforget(struct buffer_head *bh)
1196 {
1197 	clear_buffer_dirty(bh);
1198 	if (bh->b_assoc_map) {
1199 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1200 
1201 		spin_lock(&buffer_mapping->private_lock);
1202 		list_del_init(&bh->b_assoc_buffers);
1203 		bh->b_assoc_map = NULL;
1204 		spin_unlock(&buffer_mapping->private_lock);
1205 	}
1206 	__brelse(bh);
1207 }
1208 EXPORT_SYMBOL(__bforget);
1209 
1210 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1211 {
1212 	lock_buffer(bh);
1213 	if (buffer_uptodate(bh)) {
1214 		unlock_buffer(bh);
1215 		return bh;
1216 	} else {
1217 		get_bh(bh);
1218 		bh->b_end_io = end_buffer_read_sync;
1219 		submit_bh(REQ_OP_READ, bh);
1220 		wait_on_buffer(bh);
1221 		if (buffer_uptodate(bh))
1222 			return bh;
1223 	}
1224 	brelse(bh);
1225 	return NULL;
1226 }
1227 
1228 /*
1229  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1230  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1231  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1232  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1233  * CPU's LRUs at the same time.
1234  *
1235  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1236  * sb_find_get_block().
1237  *
1238  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1239  * a local interrupt disable for that.
1240  */
1241 
1242 #define BH_LRU_SIZE	16
1243 
1244 struct bh_lru {
1245 	struct buffer_head *bhs[BH_LRU_SIZE];
1246 };
1247 
1248 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1249 
1250 #ifdef CONFIG_SMP
1251 #define bh_lru_lock()	local_irq_disable()
1252 #define bh_lru_unlock()	local_irq_enable()
1253 #else
1254 #define bh_lru_lock()	preempt_disable()
1255 #define bh_lru_unlock()	preempt_enable()
1256 #endif
1257 
1258 static inline void check_irqs_on(void)
1259 {
1260 #ifdef irqs_disabled
1261 	BUG_ON(irqs_disabled());
1262 #endif
1263 }
1264 
1265 /*
1266  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1267  * inserted at the front, and the buffer_head at the back if any is evicted.
1268  * Or, if already in the LRU it is moved to the front.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = bh;
1273 	struct bh_lru *b;
1274 	int i;
1275 
1276 	check_irqs_on();
1277 	bh_lru_lock();
1278 
1279 	/*
1280 	 * the refcount of buffer_head in bh_lru prevents dropping the
1281 	 * attached page(i.e., try_to_free_buffers) so it could cause
1282 	 * failing page migration.
1283 	 * Skip putting upcoming bh into bh_lru until migration is done.
1284 	 */
1285 	if (lru_cache_disabled()) {
1286 		bh_lru_unlock();
1287 		return;
1288 	}
1289 
1290 	b = this_cpu_ptr(&bh_lrus);
1291 	for (i = 0; i < BH_LRU_SIZE; i++) {
1292 		swap(evictee, b->bhs[i]);
1293 		if (evictee == bh) {
1294 			bh_lru_unlock();
1295 			return;
1296 		}
1297 	}
1298 
1299 	get_bh(bh);
1300 	bh_lru_unlock();
1301 	brelse(evictee);
1302 }
1303 
1304 /*
1305  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1306  */
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1309 {
1310 	struct buffer_head *ret = NULL;
1311 	unsigned int i;
1312 
1313 	check_irqs_on();
1314 	bh_lru_lock();
1315 	for (i = 0; i < BH_LRU_SIZE; i++) {
1316 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1317 
1318 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1319 		    bh->b_size == size) {
1320 			if (i) {
1321 				while (i) {
1322 					__this_cpu_write(bh_lrus.bhs[i],
1323 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1324 					i--;
1325 				}
1326 				__this_cpu_write(bh_lrus.bhs[0], bh);
1327 			}
1328 			get_bh(bh);
1329 			ret = bh;
1330 			break;
1331 		}
1332 	}
1333 	bh_lru_unlock();
1334 	return ret;
1335 }
1336 
1337 /*
1338  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1339  * it in the LRU and mark it as accessed.  If it is not present then return
1340  * NULL
1341  */
1342 struct buffer_head *
1343 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1344 {
1345 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1346 
1347 	if (bh == NULL) {
1348 		/* __find_get_block_slow will mark the page accessed */
1349 		bh = __find_get_block_slow(bdev, block);
1350 		if (bh)
1351 			bh_lru_install(bh);
1352 	} else
1353 		touch_buffer(bh);
1354 
1355 	return bh;
1356 }
1357 EXPORT_SYMBOL(__find_get_block);
1358 
1359 /*
1360  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1361  * which corresponds to the passed block_device, block and size. The
1362  * returned buffer has its reference count incremented.
1363  *
1364  * __getblk_gfp() will lock up the machine if grow_dev_page's
1365  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1366  */
1367 struct buffer_head *
1368 __getblk_gfp(struct block_device *bdev, sector_t block,
1369 	     unsigned size, gfp_t gfp)
1370 {
1371 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1372 
1373 	might_sleep();
1374 	if (bh == NULL)
1375 		bh = __getblk_slow(bdev, block, size, gfp);
1376 	return bh;
1377 }
1378 EXPORT_SYMBOL(__getblk_gfp);
1379 
1380 /*
1381  * Do async read-ahead on a buffer..
1382  */
1383 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1384 {
1385 	struct buffer_head *bh = __getblk(bdev, block, size);
1386 	if (likely(bh)) {
1387 		bh_readahead(bh, REQ_RAHEAD);
1388 		brelse(bh);
1389 	}
1390 }
1391 EXPORT_SYMBOL(__breadahead);
1392 
1393 /**
1394  *  __bread_gfp() - reads a specified block and returns the bh
1395  *  @bdev: the block_device to read from
1396  *  @block: number of block
1397  *  @size: size (in bytes) to read
1398  *  @gfp: page allocation flag
1399  *
1400  *  Reads a specified block, and returns buffer head that contains it.
1401  *  The page cache can be allocated from non-movable area
1402  *  not to prevent page migration if you set gfp to zero.
1403  *  It returns NULL if the block was unreadable.
1404  */
1405 struct buffer_head *
1406 __bread_gfp(struct block_device *bdev, sector_t block,
1407 		   unsigned size, gfp_t gfp)
1408 {
1409 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1410 
1411 	if (likely(bh) && !buffer_uptodate(bh))
1412 		bh = __bread_slow(bh);
1413 	return bh;
1414 }
1415 EXPORT_SYMBOL(__bread_gfp);
1416 
1417 static void __invalidate_bh_lrus(struct bh_lru *b)
1418 {
1419 	int i;
1420 
1421 	for (i = 0; i < BH_LRU_SIZE; i++) {
1422 		brelse(b->bhs[i]);
1423 		b->bhs[i] = NULL;
1424 	}
1425 }
1426 /*
1427  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1428  * This doesn't race because it runs in each cpu either in irq
1429  * or with preempt disabled.
1430  */
1431 static void invalidate_bh_lru(void *arg)
1432 {
1433 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1434 
1435 	__invalidate_bh_lrus(b);
1436 	put_cpu_var(bh_lrus);
1437 }
1438 
1439 bool has_bh_in_lru(int cpu, void *dummy)
1440 {
1441 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1442 	int i;
1443 
1444 	for (i = 0; i < BH_LRU_SIZE; i++) {
1445 		if (b->bhs[i])
1446 			return true;
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 void invalidate_bh_lrus(void)
1453 {
1454 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1455 }
1456 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1457 
1458 /*
1459  * It's called from workqueue context so we need a bh_lru_lock to close
1460  * the race with preemption/irq.
1461  */
1462 void invalidate_bh_lrus_cpu(void)
1463 {
1464 	struct bh_lru *b;
1465 
1466 	bh_lru_lock();
1467 	b = this_cpu_ptr(&bh_lrus);
1468 	__invalidate_bh_lrus(b);
1469 	bh_lru_unlock();
1470 }
1471 
1472 void set_bh_page(struct buffer_head *bh,
1473 		struct page *page, unsigned long offset)
1474 {
1475 	bh->b_page = page;
1476 	BUG_ON(offset >= PAGE_SIZE);
1477 	if (PageHighMem(page))
1478 		/*
1479 		 * This catches illegal uses and preserves the offset:
1480 		 */
1481 		bh->b_data = (char *)(0 + offset);
1482 	else
1483 		bh->b_data = page_address(page) + offset;
1484 }
1485 EXPORT_SYMBOL(set_bh_page);
1486 
1487 /*
1488  * Called when truncating a buffer on a page completely.
1489  */
1490 
1491 /* Bits that are cleared during an invalidate */
1492 #define BUFFER_FLAGS_DISCARD \
1493 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1494 	 1 << BH_Delay | 1 << BH_Unwritten)
1495 
1496 static void discard_buffer(struct buffer_head * bh)
1497 {
1498 	unsigned long b_state;
1499 
1500 	lock_buffer(bh);
1501 	clear_buffer_dirty(bh);
1502 	bh->b_bdev = NULL;
1503 	b_state = READ_ONCE(bh->b_state);
1504 	do {
1505 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1506 			      b_state & ~BUFFER_FLAGS_DISCARD));
1507 	unlock_buffer(bh);
1508 }
1509 
1510 /**
1511  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1512  * @folio: The folio which is affected.
1513  * @offset: start of the range to invalidate
1514  * @length: length of the range to invalidate
1515  *
1516  * block_invalidate_folio() is called when all or part of the folio has been
1517  * invalidated by a truncate operation.
1518  *
1519  * block_invalidate_folio() does not have to release all buffers, but it must
1520  * ensure that no dirty buffer is left outside @offset and that no I/O
1521  * is underway against any of the blocks which are outside the truncation
1522  * point.  Because the caller is about to free (and possibly reuse) those
1523  * blocks on-disk.
1524  */
1525 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1526 {
1527 	struct buffer_head *head, *bh, *next;
1528 	size_t curr_off = 0;
1529 	size_t stop = length + offset;
1530 
1531 	BUG_ON(!folio_test_locked(folio));
1532 
1533 	/*
1534 	 * Check for overflow
1535 	 */
1536 	BUG_ON(stop > folio_size(folio) || stop < length);
1537 
1538 	head = folio_buffers(folio);
1539 	if (!head)
1540 		return;
1541 
1542 	bh = head;
1543 	do {
1544 		size_t next_off = curr_off + bh->b_size;
1545 		next = bh->b_this_page;
1546 
1547 		/*
1548 		 * Are we still fully in range ?
1549 		 */
1550 		if (next_off > stop)
1551 			goto out;
1552 
1553 		/*
1554 		 * is this block fully invalidated?
1555 		 */
1556 		if (offset <= curr_off)
1557 			discard_buffer(bh);
1558 		curr_off = next_off;
1559 		bh = next;
1560 	} while (bh != head);
1561 
1562 	/*
1563 	 * We release buffers only if the entire folio is being invalidated.
1564 	 * The get_block cached value has been unconditionally invalidated,
1565 	 * so real IO is not possible anymore.
1566 	 */
1567 	if (length == folio_size(folio))
1568 		filemap_release_folio(folio, 0);
1569 out:
1570 	return;
1571 }
1572 EXPORT_SYMBOL(block_invalidate_folio);
1573 
1574 
1575 /*
1576  * We attach and possibly dirty the buffers atomically wrt
1577  * block_dirty_folio() via private_lock.  try_to_free_buffers
1578  * is already excluded via the page lock.
1579  */
1580 void create_empty_buffers(struct page *page,
1581 			unsigned long blocksize, unsigned long b_state)
1582 {
1583 	struct buffer_head *bh, *head, *tail;
1584 
1585 	head = alloc_page_buffers(page, blocksize, true);
1586 	bh = head;
1587 	do {
1588 		bh->b_state |= b_state;
1589 		tail = bh;
1590 		bh = bh->b_this_page;
1591 	} while (bh);
1592 	tail->b_this_page = head;
1593 
1594 	spin_lock(&page->mapping->private_lock);
1595 	if (PageUptodate(page) || PageDirty(page)) {
1596 		bh = head;
1597 		do {
1598 			if (PageDirty(page))
1599 				set_buffer_dirty(bh);
1600 			if (PageUptodate(page))
1601 				set_buffer_uptodate(bh);
1602 			bh = bh->b_this_page;
1603 		} while (bh != head);
1604 	}
1605 	attach_page_private(page, head);
1606 	spin_unlock(&page->mapping->private_lock);
1607 }
1608 EXPORT_SYMBOL(create_empty_buffers);
1609 
1610 /**
1611  * clean_bdev_aliases: clean a range of buffers in block device
1612  * @bdev: Block device to clean buffers in
1613  * @block: Start of a range of blocks to clean
1614  * @len: Number of blocks to clean
1615  *
1616  * We are taking a range of blocks for data and we don't want writeback of any
1617  * buffer-cache aliases starting from return from this function and until the
1618  * moment when something will explicitly mark the buffer dirty (hopefully that
1619  * will not happen until we will free that block ;-) We don't even need to mark
1620  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1621  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1622  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1623  * would confuse anyone who might pick it with bread() afterwards...
1624  *
1625  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1626  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1627  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1628  * need to.  That happens here.
1629  */
1630 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1631 {
1632 	struct inode *bd_inode = bdev->bd_inode;
1633 	struct address_space *bd_mapping = bd_inode->i_mapping;
1634 	struct folio_batch fbatch;
1635 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1636 	pgoff_t end;
1637 	int i, count;
1638 	struct buffer_head *bh;
1639 	struct buffer_head *head;
1640 
1641 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1642 	folio_batch_init(&fbatch);
1643 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1644 		count = folio_batch_count(&fbatch);
1645 		for (i = 0; i < count; i++) {
1646 			struct folio *folio = fbatch.folios[i];
1647 
1648 			if (!folio_buffers(folio))
1649 				continue;
1650 			/*
1651 			 * We use folio lock instead of bd_mapping->private_lock
1652 			 * to pin buffers here since we can afford to sleep and
1653 			 * it scales better than a global spinlock lock.
1654 			 */
1655 			folio_lock(folio);
1656 			/* Recheck when the folio is locked which pins bhs */
1657 			head = folio_buffers(folio);
1658 			if (!head)
1659 				goto unlock_page;
1660 			bh = head;
1661 			do {
1662 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1663 					goto next;
1664 				if (bh->b_blocknr >= block + len)
1665 					break;
1666 				clear_buffer_dirty(bh);
1667 				wait_on_buffer(bh);
1668 				clear_buffer_req(bh);
1669 next:
1670 				bh = bh->b_this_page;
1671 			} while (bh != head);
1672 unlock_page:
1673 			folio_unlock(folio);
1674 		}
1675 		folio_batch_release(&fbatch);
1676 		cond_resched();
1677 		/* End of range already reached? */
1678 		if (index > end || !index)
1679 			break;
1680 	}
1681 }
1682 EXPORT_SYMBOL(clean_bdev_aliases);
1683 
1684 /*
1685  * Size is a power-of-two in the range 512..PAGE_SIZE,
1686  * and the case we care about most is PAGE_SIZE.
1687  *
1688  * So this *could* possibly be written with those
1689  * constraints in mind (relevant mostly if some
1690  * architecture has a slow bit-scan instruction)
1691  */
1692 static inline int block_size_bits(unsigned int blocksize)
1693 {
1694 	return ilog2(blocksize);
1695 }
1696 
1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 {
1699 	BUG_ON(!PageLocked(page));
1700 
1701 	if (!page_has_buffers(page))
1702 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1703 				     b_state);
1704 	return page_buffers(page);
1705 }
1706 
1707 /*
1708  * NOTE! All mapped/uptodate combinations are valid:
1709  *
1710  *	Mapped	Uptodate	Meaning
1711  *
1712  *	No	No		"unknown" - must do get_block()
1713  *	No	Yes		"hole" - zero-filled
1714  *	Yes	No		"allocated" - allocated on disk, not read in
1715  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1716  *
1717  * "Dirty" is valid only with the last case (mapped+uptodate).
1718  */
1719 
1720 /*
1721  * While block_write_full_page is writing back the dirty buffers under
1722  * the page lock, whoever dirtied the buffers may decide to clean them
1723  * again at any time.  We handle that by only looking at the buffer
1724  * state inside lock_buffer().
1725  *
1726  * If block_write_full_page() is called for regular writeback
1727  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1728  * locked buffer.   This only can happen if someone has written the buffer
1729  * directly, with submit_bh().  At the address_space level PageWriteback
1730  * prevents this contention from occurring.
1731  *
1732  * If block_write_full_page() is called with wbc->sync_mode ==
1733  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1734  * causes the writes to be flagged as synchronous writes.
1735  */
1736 int __block_write_full_page(struct inode *inode, struct page *page,
1737 			get_block_t *get_block, struct writeback_control *wbc,
1738 			bh_end_io_t *handler)
1739 {
1740 	int err;
1741 	sector_t block;
1742 	sector_t last_block;
1743 	struct buffer_head *bh, *head;
1744 	unsigned int blocksize, bbits;
1745 	int nr_underway = 0;
1746 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1747 
1748 	head = create_page_buffers(page, inode,
1749 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1750 
1751 	/*
1752 	 * Be very careful.  We have no exclusion from block_dirty_folio
1753 	 * here, and the (potentially unmapped) buffers may become dirty at
1754 	 * any time.  If a buffer becomes dirty here after we've inspected it
1755 	 * then we just miss that fact, and the page stays dirty.
1756 	 *
1757 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1758 	 * handle that here by just cleaning them.
1759 	 */
1760 
1761 	bh = head;
1762 	blocksize = bh->b_size;
1763 	bbits = block_size_bits(blocksize);
1764 
1765 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1766 	last_block = (i_size_read(inode) - 1) >> bbits;
1767 
1768 	/*
1769 	 * Get all the dirty buffers mapped to disk addresses and
1770 	 * handle any aliases from the underlying blockdev's mapping.
1771 	 */
1772 	do {
1773 		if (block > last_block) {
1774 			/*
1775 			 * mapped buffers outside i_size will occur, because
1776 			 * this page can be outside i_size when there is a
1777 			 * truncate in progress.
1778 			 */
1779 			/*
1780 			 * The buffer was zeroed by block_write_full_page()
1781 			 */
1782 			clear_buffer_dirty(bh);
1783 			set_buffer_uptodate(bh);
1784 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1785 			   buffer_dirty(bh)) {
1786 			WARN_ON(bh->b_size != blocksize);
1787 			err = get_block(inode, block, bh, 1);
1788 			if (err)
1789 				goto recover;
1790 			clear_buffer_delay(bh);
1791 			if (buffer_new(bh)) {
1792 				/* blockdev mappings never come here */
1793 				clear_buffer_new(bh);
1794 				clean_bdev_bh_alias(bh);
1795 			}
1796 		}
1797 		bh = bh->b_this_page;
1798 		block++;
1799 	} while (bh != head);
1800 
1801 	do {
1802 		if (!buffer_mapped(bh))
1803 			continue;
1804 		/*
1805 		 * If it's a fully non-blocking write attempt and we cannot
1806 		 * lock the buffer then redirty the page.  Note that this can
1807 		 * potentially cause a busy-wait loop from writeback threads
1808 		 * and kswapd activity, but those code paths have their own
1809 		 * higher-level throttling.
1810 		 */
1811 		if (wbc->sync_mode != WB_SYNC_NONE) {
1812 			lock_buffer(bh);
1813 		} else if (!trylock_buffer(bh)) {
1814 			redirty_page_for_writepage(wbc, page);
1815 			continue;
1816 		}
1817 		if (test_clear_buffer_dirty(bh)) {
1818 			mark_buffer_async_write_endio(bh, handler);
1819 		} else {
1820 			unlock_buffer(bh);
1821 		}
1822 	} while ((bh = bh->b_this_page) != head);
1823 
1824 	/*
1825 	 * The page and its buffers are protected by PageWriteback(), so we can
1826 	 * drop the bh refcounts early.
1827 	 */
1828 	BUG_ON(PageWriteback(page));
1829 	set_page_writeback(page);
1830 
1831 	do {
1832 		struct buffer_head *next = bh->b_this_page;
1833 		if (buffer_async_write(bh)) {
1834 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1835 			nr_underway++;
1836 		}
1837 		bh = next;
1838 	} while (bh != head);
1839 	unlock_page(page);
1840 
1841 	err = 0;
1842 done:
1843 	if (nr_underway == 0) {
1844 		/*
1845 		 * The page was marked dirty, but the buffers were
1846 		 * clean.  Someone wrote them back by hand with
1847 		 * write_dirty_buffer/submit_bh.  A rare case.
1848 		 */
1849 		end_page_writeback(page);
1850 
1851 		/*
1852 		 * The page and buffer_heads can be released at any time from
1853 		 * here on.
1854 		 */
1855 	}
1856 	return err;
1857 
1858 recover:
1859 	/*
1860 	 * ENOSPC, or some other error.  We may already have added some
1861 	 * blocks to the file, so we need to write these out to avoid
1862 	 * exposing stale data.
1863 	 * The page is currently locked and not marked for writeback
1864 	 */
1865 	bh = head;
1866 	/* Recovery: lock and submit the mapped buffers */
1867 	do {
1868 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1869 		    !buffer_delay(bh)) {
1870 			lock_buffer(bh);
1871 			mark_buffer_async_write_endio(bh, handler);
1872 		} else {
1873 			/*
1874 			 * The buffer may have been set dirty during
1875 			 * attachment to a dirty page.
1876 			 */
1877 			clear_buffer_dirty(bh);
1878 		}
1879 	} while ((bh = bh->b_this_page) != head);
1880 	SetPageError(page);
1881 	BUG_ON(PageWriteback(page));
1882 	mapping_set_error(page->mapping, err);
1883 	set_page_writeback(page);
1884 	do {
1885 		struct buffer_head *next = bh->b_this_page;
1886 		if (buffer_async_write(bh)) {
1887 			clear_buffer_dirty(bh);
1888 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1889 			nr_underway++;
1890 		}
1891 		bh = next;
1892 	} while (bh != head);
1893 	unlock_page(page);
1894 	goto done;
1895 }
1896 EXPORT_SYMBOL(__block_write_full_page);
1897 
1898 /*
1899  * If a page has any new buffers, zero them out here, and mark them uptodate
1900  * and dirty so they'll be written out (in order to prevent uninitialised
1901  * block data from leaking). And clear the new bit.
1902  */
1903 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1904 {
1905 	unsigned int block_start, block_end;
1906 	struct buffer_head *head, *bh;
1907 
1908 	BUG_ON(!PageLocked(page));
1909 	if (!page_has_buffers(page))
1910 		return;
1911 
1912 	bh = head = page_buffers(page);
1913 	block_start = 0;
1914 	do {
1915 		block_end = block_start + bh->b_size;
1916 
1917 		if (buffer_new(bh)) {
1918 			if (block_end > from && block_start < to) {
1919 				if (!PageUptodate(page)) {
1920 					unsigned start, size;
1921 
1922 					start = max(from, block_start);
1923 					size = min(to, block_end) - start;
1924 
1925 					zero_user(page, start, size);
1926 					set_buffer_uptodate(bh);
1927 				}
1928 
1929 				clear_buffer_new(bh);
1930 				mark_buffer_dirty(bh);
1931 			}
1932 		}
1933 
1934 		block_start = block_end;
1935 		bh = bh->b_this_page;
1936 	} while (bh != head);
1937 }
1938 EXPORT_SYMBOL(page_zero_new_buffers);
1939 
1940 static void
1941 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1942 		const struct iomap *iomap)
1943 {
1944 	loff_t offset = block << inode->i_blkbits;
1945 
1946 	bh->b_bdev = iomap->bdev;
1947 
1948 	/*
1949 	 * Block points to offset in file we need to map, iomap contains
1950 	 * the offset at which the map starts. If the map ends before the
1951 	 * current block, then do not map the buffer and let the caller
1952 	 * handle it.
1953 	 */
1954 	BUG_ON(offset >= iomap->offset + iomap->length);
1955 
1956 	switch (iomap->type) {
1957 	case IOMAP_HOLE:
1958 		/*
1959 		 * If the buffer is not up to date or beyond the current EOF,
1960 		 * we need to mark it as new to ensure sub-block zeroing is
1961 		 * executed if necessary.
1962 		 */
1963 		if (!buffer_uptodate(bh) ||
1964 		    (offset >= i_size_read(inode)))
1965 			set_buffer_new(bh);
1966 		break;
1967 	case IOMAP_DELALLOC:
1968 		if (!buffer_uptodate(bh) ||
1969 		    (offset >= i_size_read(inode)))
1970 			set_buffer_new(bh);
1971 		set_buffer_uptodate(bh);
1972 		set_buffer_mapped(bh);
1973 		set_buffer_delay(bh);
1974 		break;
1975 	case IOMAP_UNWRITTEN:
1976 		/*
1977 		 * For unwritten regions, we always need to ensure that regions
1978 		 * in the block we are not writing to are zeroed. Mark the
1979 		 * buffer as new to ensure this.
1980 		 */
1981 		set_buffer_new(bh);
1982 		set_buffer_unwritten(bh);
1983 		fallthrough;
1984 	case IOMAP_MAPPED:
1985 		if ((iomap->flags & IOMAP_F_NEW) ||
1986 		    offset >= i_size_read(inode))
1987 			set_buffer_new(bh);
1988 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1989 				inode->i_blkbits;
1990 		set_buffer_mapped(bh);
1991 		break;
1992 	}
1993 }
1994 
1995 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1996 		get_block_t *get_block, const struct iomap *iomap)
1997 {
1998 	unsigned from = pos & (PAGE_SIZE - 1);
1999 	unsigned to = from + len;
2000 	struct inode *inode = folio->mapping->host;
2001 	unsigned block_start, block_end;
2002 	sector_t block;
2003 	int err = 0;
2004 	unsigned blocksize, bbits;
2005 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2006 
2007 	BUG_ON(!folio_test_locked(folio));
2008 	BUG_ON(from > PAGE_SIZE);
2009 	BUG_ON(to > PAGE_SIZE);
2010 	BUG_ON(from > to);
2011 
2012 	head = create_page_buffers(&folio->page, inode, 0);
2013 	blocksize = head->b_size;
2014 	bbits = block_size_bits(blocksize);
2015 
2016 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2017 
2018 	for(bh = head, block_start = 0; bh != head || !block_start;
2019 	    block++, block_start=block_end, bh = bh->b_this_page) {
2020 		block_end = block_start + blocksize;
2021 		if (block_end <= from || block_start >= to) {
2022 			if (folio_test_uptodate(folio)) {
2023 				if (!buffer_uptodate(bh))
2024 					set_buffer_uptodate(bh);
2025 			}
2026 			continue;
2027 		}
2028 		if (buffer_new(bh))
2029 			clear_buffer_new(bh);
2030 		if (!buffer_mapped(bh)) {
2031 			WARN_ON(bh->b_size != blocksize);
2032 			if (get_block) {
2033 				err = get_block(inode, block, bh, 1);
2034 				if (err)
2035 					break;
2036 			} else {
2037 				iomap_to_bh(inode, block, bh, iomap);
2038 			}
2039 
2040 			if (buffer_new(bh)) {
2041 				clean_bdev_bh_alias(bh);
2042 				if (folio_test_uptodate(folio)) {
2043 					clear_buffer_new(bh);
2044 					set_buffer_uptodate(bh);
2045 					mark_buffer_dirty(bh);
2046 					continue;
2047 				}
2048 				if (block_end > to || block_start < from)
2049 					folio_zero_segments(folio,
2050 						to, block_end,
2051 						block_start, from);
2052 				continue;
2053 			}
2054 		}
2055 		if (folio_test_uptodate(folio)) {
2056 			if (!buffer_uptodate(bh))
2057 				set_buffer_uptodate(bh);
2058 			continue;
2059 		}
2060 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2061 		    !buffer_unwritten(bh) &&
2062 		     (block_start < from || block_end > to)) {
2063 			bh_read_nowait(bh, 0);
2064 			*wait_bh++=bh;
2065 		}
2066 	}
2067 	/*
2068 	 * If we issued read requests - let them complete.
2069 	 */
2070 	while(wait_bh > wait) {
2071 		wait_on_buffer(*--wait_bh);
2072 		if (!buffer_uptodate(*wait_bh))
2073 			err = -EIO;
2074 	}
2075 	if (unlikely(err))
2076 		page_zero_new_buffers(&folio->page, from, to);
2077 	return err;
2078 }
2079 
2080 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2081 		get_block_t *get_block)
2082 {
2083 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2084 				       NULL);
2085 }
2086 EXPORT_SYMBOL(__block_write_begin);
2087 
2088 static int __block_commit_write(struct inode *inode, struct page *page,
2089 		unsigned from, unsigned to)
2090 {
2091 	unsigned block_start, block_end;
2092 	int partial = 0;
2093 	unsigned blocksize;
2094 	struct buffer_head *bh, *head;
2095 
2096 	bh = head = page_buffers(page);
2097 	blocksize = bh->b_size;
2098 
2099 	block_start = 0;
2100 	do {
2101 		block_end = block_start + blocksize;
2102 		if (block_end <= from || block_start >= to) {
2103 			if (!buffer_uptodate(bh))
2104 				partial = 1;
2105 		} else {
2106 			set_buffer_uptodate(bh);
2107 			mark_buffer_dirty(bh);
2108 		}
2109 		if (buffer_new(bh))
2110 			clear_buffer_new(bh);
2111 
2112 		block_start = block_end;
2113 		bh = bh->b_this_page;
2114 	} while (bh != head);
2115 
2116 	/*
2117 	 * If this is a partial write which happened to make all buffers
2118 	 * uptodate then we can optimize away a bogus read_folio() for
2119 	 * the next read(). Here we 'discover' whether the page went
2120 	 * uptodate as a result of this (potentially partial) write.
2121 	 */
2122 	if (!partial)
2123 		SetPageUptodate(page);
2124 	return 0;
2125 }
2126 
2127 /*
2128  * block_write_begin takes care of the basic task of block allocation and
2129  * bringing partial write blocks uptodate first.
2130  *
2131  * The filesystem needs to handle block truncation upon failure.
2132  */
2133 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2134 		struct page **pagep, get_block_t *get_block)
2135 {
2136 	pgoff_t index = pos >> PAGE_SHIFT;
2137 	struct page *page;
2138 	int status;
2139 
2140 	page = grab_cache_page_write_begin(mapping, index);
2141 	if (!page)
2142 		return -ENOMEM;
2143 
2144 	status = __block_write_begin(page, pos, len, get_block);
2145 	if (unlikely(status)) {
2146 		unlock_page(page);
2147 		put_page(page);
2148 		page = NULL;
2149 	}
2150 
2151 	*pagep = page;
2152 	return status;
2153 }
2154 EXPORT_SYMBOL(block_write_begin);
2155 
2156 int block_write_end(struct file *file, struct address_space *mapping,
2157 			loff_t pos, unsigned len, unsigned copied,
2158 			struct page *page, void *fsdata)
2159 {
2160 	struct inode *inode = mapping->host;
2161 	unsigned start;
2162 
2163 	start = pos & (PAGE_SIZE - 1);
2164 
2165 	if (unlikely(copied < len)) {
2166 		/*
2167 		 * The buffers that were written will now be uptodate, so
2168 		 * we don't have to worry about a read_folio reading them
2169 		 * and overwriting a partial write. However if we have
2170 		 * encountered a short write and only partially written
2171 		 * into a buffer, it will not be marked uptodate, so a
2172 		 * read_folio might come in and destroy our partial write.
2173 		 *
2174 		 * Do the simplest thing, and just treat any short write to a
2175 		 * non uptodate page as a zero-length write, and force the
2176 		 * caller to redo the whole thing.
2177 		 */
2178 		if (!PageUptodate(page))
2179 			copied = 0;
2180 
2181 		page_zero_new_buffers(page, start+copied, start+len);
2182 	}
2183 	flush_dcache_page(page);
2184 
2185 	/* This could be a short (even 0-length) commit */
2186 	__block_commit_write(inode, page, start, start+copied);
2187 
2188 	return copied;
2189 }
2190 EXPORT_SYMBOL(block_write_end);
2191 
2192 int generic_write_end(struct file *file, struct address_space *mapping,
2193 			loff_t pos, unsigned len, unsigned copied,
2194 			struct page *page, void *fsdata)
2195 {
2196 	struct inode *inode = mapping->host;
2197 	loff_t old_size = inode->i_size;
2198 	bool i_size_changed = false;
2199 
2200 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2201 
2202 	/*
2203 	 * No need to use i_size_read() here, the i_size cannot change under us
2204 	 * because we hold i_rwsem.
2205 	 *
2206 	 * But it's important to update i_size while still holding page lock:
2207 	 * page writeout could otherwise come in and zero beyond i_size.
2208 	 */
2209 	if (pos + copied > inode->i_size) {
2210 		i_size_write(inode, pos + copied);
2211 		i_size_changed = true;
2212 	}
2213 
2214 	unlock_page(page);
2215 	put_page(page);
2216 
2217 	if (old_size < pos)
2218 		pagecache_isize_extended(inode, old_size, pos);
2219 	/*
2220 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2221 	 * makes the holding time of page lock longer. Second, it forces lock
2222 	 * ordering of page lock and transaction start for journaling
2223 	 * filesystems.
2224 	 */
2225 	if (i_size_changed)
2226 		mark_inode_dirty(inode);
2227 	return copied;
2228 }
2229 EXPORT_SYMBOL(generic_write_end);
2230 
2231 /*
2232  * block_is_partially_uptodate checks whether buffers within a folio are
2233  * uptodate or not.
2234  *
2235  * Returns true if all buffers which correspond to the specified part
2236  * of the folio are uptodate.
2237  */
2238 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2239 {
2240 	unsigned block_start, block_end, blocksize;
2241 	unsigned to;
2242 	struct buffer_head *bh, *head;
2243 	bool ret = true;
2244 
2245 	head = folio_buffers(folio);
2246 	if (!head)
2247 		return false;
2248 	blocksize = head->b_size;
2249 	to = min_t(unsigned, folio_size(folio) - from, count);
2250 	to = from + to;
2251 	if (from < blocksize && to > folio_size(folio) - blocksize)
2252 		return false;
2253 
2254 	bh = head;
2255 	block_start = 0;
2256 	do {
2257 		block_end = block_start + blocksize;
2258 		if (block_end > from && block_start < to) {
2259 			if (!buffer_uptodate(bh)) {
2260 				ret = false;
2261 				break;
2262 			}
2263 			if (block_end >= to)
2264 				break;
2265 		}
2266 		block_start = block_end;
2267 		bh = bh->b_this_page;
2268 	} while (bh != head);
2269 
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL(block_is_partially_uptodate);
2273 
2274 /*
2275  * Generic "read_folio" function for block devices that have the normal
2276  * get_block functionality. This is most of the block device filesystems.
2277  * Reads the folio asynchronously --- the unlock_buffer() and
2278  * set/clear_buffer_uptodate() functions propagate buffer state into the
2279  * folio once IO has completed.
2280  */
2281 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2282 {
2283 	struct inode *inode = folio->mapping->host;
2284 	sector_t iblock, lblock;
2285 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2286 	unsigned int blocksize, bbits;
2287 	int nr, i;
2288 	int fully_mapped = 1;
2289 	bool page_error = false;
2290 	loff_t limit = i_size_read(inode);
2291 
2292 	/* This is needed for ext4. */
2293 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2294 		limit = inode->i_sb->s_maxbytes;
2295 
2296 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2297 
2298 	head = create_page_buffers(&folio->page, inode, 0);
2299 	blocksize = head->b_size;
2300 	bbits = block_size_bits(blocksize);
2301 
2302 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2303 	lblock = (limit+blocksize-1) >> bbits;
2304 	bh = head;
2305 	nr = 0;
2306 	i = 0;
2307 
2308 	do {
2309 		if (buffer_uptodate(bh))
2310 			continue;
2311 
2312 		if (!buffer_mapped(bh)) {
2313 			int err = 0;
2314 
2315 			fully_mapped = 0;
2316 			if (iblock < lblock) {
2317 				WARN_ON(bh->b_size != blocksize);
2318 				err = get_block(inode, iblock, bh, 0);
2319 				if (err) {
2320 					folio_set_error(folio);
2321 					page_error = true;
2322 				}
2323 			}
2324 			if (!buffer_mapped(bh)) {
2325 				folio_zero_range(folio, i * blocksize,
2326 						blocksize);
2327 				if (!err)
2328 					set_buffer_uptodate(bh);
2329 				continue;
2330 			}
2331 			/*
2332 			 * get_block() might have updated the buffer
2333 			 * synchronously
2334 			 */
2335 			if (buffer_uptodate(bh))
2336 				continue;
2337 		}
2338 		arr[nr++] = bh;
2339 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2340 
2341 	if (fully_mapped)
2342 		folio_set_mappedtodisk(folio);
2343 
2344 	if (!nr) {
2345 		/*
2346 		 * All buffers are uptodate - we can set the folio uptodate
2347 		 * as well. But not if get_block() returned an error.
2348 		 */
2349 		if (!page_error)
2350 			folio_mark_uptodate(folio);
2351 		folio_unlock(folio);
2352 		return 0;
2353 	}
2354 
2355 	/* Stage two: lock the buffers */
2356 	for (i = 0; i < nr; i++) {
2357 		bh = arr[i];
2358 		lock_buffer(bh);
2359 		mark_buffer_async_read(bh);
2360 	}
2361 
2362 	/*
2363 	 * Stage 3: start the IO.  Check for uptodateness
2364 	 * inside the buffer lock in case another process reading
2365 	 * the underlying blockdev brought it uptodate (the sct fix).
2366 	 */
2367 	for (i = 0; i < nr; i++) {
2368 		bh = arr[i];
2369 		if (buffer_uptodate(bh))
2370 			end_buffer_async_read(bh, 1);
2371 		else
2372 			submit_bh(REQ_OP_READ, bh);
2373 	}
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(block_read_full_folio);
2377 
2378 /* utility function for filesystems that need to do work on expanding
2379  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2380  * deal with the hole.
2381  */
2382 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2383 {
2384 	struct address_space *mapping = inode->i_mapping;
2385 	const struct address_space_operations *aops = mapping->a_ops;
2386 	struct page *page;
2387 	void *fsdata = NULL;
2388 	int err;
2389 
2390 	err = inode_newsize_ok(inode, size);
2391 	if (err)
2392 		goto out;
2393 
2394 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2395 	if (err)
2396 		goto out;
2397 
2398 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2399 	BUG_ON(err > 0);
2400 
2401 out:
2402 	return err;
2403 }
2404 EXPORT_SYMBOL(generic_cont_expand_simple);
2405 
2406 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2407 			    loff_t pos, loff_t *bytes)
2408 {
2409 	struct inode *inode = mapping->host;
2410 	const struct address_space_operations *aops = mapping->a_ops;
2411 	unsigned int blocksize = i_blocksize(inode);
2412 	struct page *page;
2413 	void *fsdata = NULL;
2414 	pgoff_t index, curidx;
2415 	loff_t curpos;
2416 	unsigned zerofrom, offset, len;
2417 	int err = 0;
2418 
2419 	index = pos >> PAGE_SHIFT;
2420 	offset = pos & ~PAGE_MASK;
2421 
2422 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2423 		zerofrom = curpos & ~PAGE_MASK;
2424 		if (zerofrom & (blocksize-1)) {
2425 			*bytes |= (blocksize-1);
2426 			(*bytes)++;
2427 		}
2428 		len = PAGE_SIZE - zerofrom;
2429 
2430 		err = aops->write_begin(file, mapping, curpos, len,
2431 					    &page, &fsdata);
2432 		if (err)
2433 			goto out;
2434 		zero_user(page, zerofrom, len);
2435 		err = aops->write_end(file, mapping, curpos, len, len,
2436 						page, fsdata);
2437 		if (err < 0)
2438 			goto out;
2439 		BUG_ON(err != len);
2440 		err = 0;
2441 
2442 		balance_dirty_pages_ratelimited(mapping);
2443 
2444 		if (fatal_signal_pending(current)) {
2445 			err = -EINTR;
2446 			goto out;
2447 		}
2448 	}
2449 
2450 	/* page covers the boundary, find the boundary offset */
2451 	if (index == curidx) {
2452 		zerofrom = curpos & ~PAGE_MASK;
2453 		/* if we will expand the thing last block will be filled */
2454 		if (offset <= zerofrom) {
2455 			goto out;
2456 		}
2457 		if (zerofrom & (blocksize-1)) {
2458 			*bytes |= (blocksize-1);
2459 			(*bytes)++;
2460 		}
2461 		len = offset - zerofrom;
2462 
2463 		err = aops->write_begin(file, mapping, curpos, len,
2464 					    &page, &fsdata);
2465 		if (err)
2466 			goto out;
2467 		zero_user(page, zerofrom, len);
2468 		err = aops->write_end(file, mapping, curpos, len, len,
2469 						page, fsdata);
2470 		if (err < 0)
2471 			goto out;
2472 		BUG_ON(err != len);
2473 		err = 0;
2474 	}
2475 out:
2476 	return err;
2477 }
2478 
2479 /*
2480  * For moronic filesystems that do not allow holes in file.
2481  * We may have to extend the file.
2482  */
2483 int cont_write_begin(struct file *file, struct address_space *mapping,
2484 			loff_t pos, unsigned len,
2485 			struct page **pagep, void **fsdata,
2486 			get_block_t *get_block, loff_t *bytes)
2487 {
2488 	struct inode *inode = mapping->host;
2489 	unsigned int blocksize = i_blocksize(inode);
2490 	unsigned int zerofrom;
2491 	int err;
2492 
2493 	err = cont_expand_zero(file, mapping, pos, bytes);
2494 	if (err)
2495 		return err;
2496 
2497 	zerofrom = *bytes & ~PAGE_MASK;
2498 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2499 		*bytes |= (blocksize-1);
2500 		(*bytes)++;
2501 	}
2502 
2503 	return block_write_begin(mapping, pos, len, pagep, get_block);
2504 }
2505 EXPORT_SYMBOL(cont_write_begin);
2506 
2507 int block_commit_write(struct page *page, unsigned from, unsigned to)
2508 {
2509 	struct inode *inode = page->mapping->host;
2510 	__block_commit_write(inode,page,from,to);
2511 	return 0;
2512 }
2513 EXPORT_SYMBOL(block_commit_write);
2514 
2515 /*
2516  * block_page_mkwrite() is not allowed to change the file size as it gets
2517  * called from a page fault handler when a page is first dirtied. Hence we must
2518  * be careful to check for EOF conditions here. We set the page up correctly
2519  * for a written page which means we get ENOSPC checking when writing into
2520  * holes and correct delalloc and unwritten extent mapping on filesystems that
2521  * support these features.
2522  *
2523  * We are not allowed to take the i_mutex here so we have to play games to
2524  * protect against truncate races as the page could now be beyond EOF.  Because
2525  * truncate writes the inode size before removing pages, once we have the
2526  * page lock we can determine safely if the page is beyond EOF. If it is not
2527  * beyond EOF, then the page is guaranteed safe against truncation until we
2528  * unlock the page.
2529  *
2530  * Direct callers of this function should protect against filesystem freezing
2531  * using sb_start_pagefault() - sb_end_pagefault() functions.
2532  */
2533 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2534 			 get_block_t get_block)
2535 {
2536 	struct page *page = vmf->page;
2537 	struct inode *inode = file_inode(vma->vm_file);
2538 	unsigned long end;
2539 	loff_t size;
2540 	int ret;
2541 
2542 	lock_page(page);
2543 	size = i_size_read(inode);
2544 	if ((page->mapping != inode->i_mapping) ||
2545 	    (page_offset(page) > size)) {
2546 		/* We overload EFAULT to mean page got truncated */
2547 		ret = -EFAULT;
2548 		goto out_unlock;
2549 	}
2550 
2551 	/* page is wholly or partially inside EOF */
2552 	if (((page->index + 1) << PAGE_SHIFT) > size)
2553 		end = size & ~PAGE_MASK;
2554 	else
2555 		end = PAGE_SIZE;
2556 
2557 	ret = __block_write_begin(page, 0, end, get_block);
2558 	if (!ret)
2559 		ret = block_commit_write(page, 0, end);
2560 
2561 	if (unlikely(ret < 0))
2562 		goto out_unlock;
2563 	set_page_dirty(page);
2564 	wait_for_stable_page(page);
2565 	return 0;
2566 out_unlock:
2567 	unlock_page(page);
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(block_page_mkwrite);
2571 
2572 int block_truncate_page(struct address_space *mapping,
2573 			loff_t from, get_block_t *get_block)
2574 {
2575 	pgoff_t index = from >> PAGE_SHIFT;
2576 	unsigned offset = from & (PAGE_SIZE-1);
2577 	unsigned blocksize;
2578 	sector_t iblock;
2579 	unsigned length, pos;
2580 	struct inode *inode = mapping->host;
2581 	struct page *page;
2582 	struct buffer_head *bh;
2583 	int err = 0;
2584 
2585 	blocksize = i_blocksize(inode);
2586 	length = offset & (blocksize - 1);
2587 
2588 	/* Block boundary? Nothing to do */
2589 	if (!length)
2590 		return 0;
2591 
2592 	length = blocksize - length;
2593 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2594 
2595 	page = grab_cache_page(mapping, index);
2596 	if (!page)
2597 		return -ENOMEM;
2598 
2599 	if (!page_has_buffers(page))
2600 		create_empty_buffers(page, blocksize, 0);
2601 
2602 	/* Find the buffer that contains "offset" */
2603 	bh = page_buffers(page);
2604 	pos = blocksize;
2605 	while (offset >= pos) {
2606 		bh = bh->b_this_page;
2607 		iblock++;
2608 		pos += blocksize;
2609 	}
2610 
2611 	if (!buffer_mapped(bh)) {
2612 		WARN_ON(bh->b_size != blocksize);
2613 		err = get_block(inode, iblock, bh, 0);
2614 		if (err)
2615 			goto unlock;
2616 		/* unmapped? It's a hole - nothing to do */
2617 		if (!buffer_mapped(bh))
2618 			goto unlock;
2619 	}
2620 
2621 	/* Ok, it's mapped. Make sure it's up-to-date */
2622 	if (PageUptodate(page))
2623 		set_buffer_uptodate(bh);
2624 
2625 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2626 		err = bh_read(bh, 0);
2627 		/* Uhhuh. Read error. Complain and punt. */
2628 		if (err < 0)
2629 			goto unlock;
2630 	}
2631 
2632 	zero_user(page, offset, length);
2633 	mark_buffer_dirty(bh);
2634 
2635 unlock:
2636 	unlock_page(page);
2637 	put_page(page);
2638 
2639 	return err;
2640 }
2641 EXPORT_SYMBOL(block_truncate_page);
2642 
2643 /*
2644  * The generic ->writepage function for buffer-backed address_spaces
2645  */
2646 int block_write_full_page(struct page *page, get_block_t *get_block,
2647 			struct writeback_control *wbc)
2648 {
2649 	struct inode * const inode = page->mapping->host;
2650 	loff_t i_size = i_size_read(inode);
2651 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2652 	unsigned offset;
2653 
2654 	/* Is the page fully inside i_size? */
2655 	if (page->index < end_index)
2656 		return __block_write_full_page(inode, page, get_block, wbc,
2657 					       end_buffer_async_write);
2658 
2659 	/* Is the page fully outside i_size? (truncate in progress) */
2660 	offset = i_size & (PAGE_SIZE-1);
2661 	if (page->index >= end_index+1 || !offset) {
2662 		unlock_page(page);
2663 		return 0; /* don't care */
2664 	}
2665 
2666 	/*
2667 	 * The page straddles i_size.  It must be zeroed out on each and every
2668 	 * writepage invocation because it may be mmapped.  "A file is mapped
2669 	 * in multiples of the page size.  For a file that is not a multiple of
2670 	 * the  page size, the remaining memory is zeroed when mapped, and
2671 	 * writes to that region are not written out to the file."
2672 	 */
2673 	zero_user_segment(page, offset, PAGE_SIZE);
2674 	return __block_write_full_page(inode, page, get_block, wbc,
2675 							end_buffer_async_write);
2676 }
2677 EXPORT_SYMBOL(block_write_full_page);
2678 
2679 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2680 			    get_block_t *get_block)
2681 {
2682 	struct inode *inode = mapping->host;
2683 	struct buffer_head tmp = {
2684 		.b_size = i_blocksize(inode),
2685 	};
2686 
2687 	get_block(inode, block, &tmp, 0);
2688 	return tmp.b_blocknr;
2689 }
2690 EXPORT_SYMBOL(generic_block_bmap);
2691 
2692 static void end_bio_bh_io_sync(struct bio *bio)
2693 {
2694 	struct buffer_head *bh = bio->bi_private;
2695 
2696 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2697 		set_bit(BH_Quiet, &bh->b_state);
2698 
2699 	bh->b_end_io(bh, !bio->bi_status);
2700 	bio_put(bio);
2701 }
2702 
2703 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2704 			  struct writeback_control *wbc)
2705 {
2706 	const enum req_op op = opf & REQ_OP_MASK;
2707 	struct bio *bio;
2708 
2709 	BUG_ON(!buffer_locked(bh));
2710 	BUG_ON(!buffer_mapped(bh));
2711 	BUG_ON(!bh->b_end_io);
2712 	BUG_ON(buffer_delay(bh));
2713 	BUG_ON(buffer_unwritten(bh));
2714 
2715 	/*
2716 	 * Only clear out a write error when rewriting
2717 	 */
2718 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2719 		clear_buffer_write_io_error(bh);
2720 
2721 	if (buffer_meta(bh))
2722 		opf |= REQ_META;
2723 	if (buffer_prio(bh))
2724 		opf |= REQ_PRIO;
2725 
2726 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2727 
2728 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2729 
2730 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2731 
2732 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2733 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2734 
2735 	bio->bi_end_io = end_bio_bh_io_sync;
2736 	bio->bi_private = bh;
2737 
2738 	/* Take care of bh's that straddle the end of the device */
2739 	guard_bio_eod(bio);
2740 
2741 	if (wbc) {
2742 		wbc_init_bio(wbc, bio);
2743 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2744 	}
2745 
2746 	submit_bio(bio);
2747 }
2748 
2749 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2750 {
2751 	submit_bh_wbc(opf, bh, NULL);
2752 }
2753 EXPORT_SYMBOL(submit_bh);
2754 
2755 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2756 {
2757 	lock_buffer(bh);
2758 	if (!test_clear_buffer_dirty(bh)) {
2759 		unlock_buffer(bh);
2760 		return;
2761 	}
2762 	bh->b_end_io = end_buffer_write_sync;
2763 	get_bh(bh);
2764 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2765 }
2766 EXPORT_SYMBOL(write_dirty_buffer);
2767 
2768 /*
2769  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2770  * and then start new I/O and then wait upon it.  The caller must have a ref on
2771  * the buffer_head.
2772  */
2773 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2774 {
2775 	WARN_ON(atomic_read(&bh->b_count) < 1);
2776 	lock_buffer(bh);
2777 	if (test_clear_buffer_dirty(bh)) {
2778 		/*
2779 		 * The bh should be mapped, but it might not be if the
2780 		 * device was hot-removed. Not much we can do but fail the I/O.
2781 		 */
2782 		if (!buffer_mapped(bh)) {
2783 			unlock_buffer(bh);
2784 			return -EIO;
2785 		}
2786 
2787 		get_bh(bh);
2788 		bh->b_end_io = end_buffer_write_sync;
2789 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2790 		wait_on_buffer(bh);
2791 		if (!buffer_uptodate(bh))
2792 			return -EIO;
2793 	} else {
2794 		unlock_buffer(bh);
2795 	}
2796 	return 0;
2797 }
2798 EXPORT_SYMBOL(__sync_dirty_buffer);
2799 
2800 int sync_dirty_buffer(struct buffer_head *bh)
2801 {
2802 	return __sync_dirty_buffer(bh, REQ_SYNC);
2803 }
2804 EXPORT_SYMBOL(sync_dirty_buffer);
2805 
2806 /*
2807  * try_to_free_buffers() checks if all the buffers on this particular folio
2808  * are unused, and releases them if so.
2809  *
2810  * Exclusion against try_to_free_buffers may be obtained by either
2811  * locking the folio or by holding its mapping's private_lock.
2812  *
2813  * If the folio is dirty but all the buffers are clean then we need to
2814  * be sure to mark the folio clean as well.  This is because the folio
2815  * may be against a block device, and a later reattachment of buffers
2816  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2817  * filesystem data on the same device.
2818  *
2819  * The same applies to regular filesystem folios: if all the buffers are
2820  * clean then we set the folio clean and proceed.  To do that, we require
2821  * total exclusion from block_dirty_folio().  That is obtained with
2822  * private_lock.
2823  *
2824  * try_to_free_buffers() is non-blocking.
2825  */
2826 static inline int buffer_busy(struct buffer_head *bh)
2827 {
2828 	return atomic_read(&bh->b_count) |
2829 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2830 }
2831 
2832 static bool
2833 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2834 {
2835 	struct buffer_head *head = folio_buffers(folio);
2836 	struct buffer_head *bh;
2837 
2838 	bh = head;
2839 	do {
2840 		if (buffer_busy(bh))
2841 			goto failed;
2842 		bh = bh->b_this_page;
2843 	} while (bh != head);
2844 
2845 	do {
2846 		struct buffer_head *next = bh->b_this_page;
2847 
2848 		if (bh->b_assoc_map)
2849 			__remove_assoc_queue(bh);
2850 		bh = next;
2851 	} while (bh != head);
2852 	*buffers_to_free = head;
2853 	folio_detach_private(folio);
2854 	return true;
2855 failed:
2856 	return false;
2857 }
2858 
2859 bool try_to_free_buffers(struct folio *folio)
2860 {
2861 	struct address_space * const mapping = folio->mapping;
2862 	struct buffer_head *buffers_to_free = NULL;
2863 	bool ret = 0;
2864 
2865 	BUG_ON(!folio_test_locked(folio));
2866 	if (folio_test_writeback(folio))
2867 		return false;
2868 
2869 	if (mapping == NULL) {		/* can this still happen? */
2870 		ret = drop_buffers(folio, &buffers_to_free);
2871 		goto out;
2872 	}
2873 
2874 	spin_lock(&mapping->private_lock);
2875 	ret = drop_buffers(folio, &buffers_to_free);
2876 
2877 	/*
2878 	 * If the filesystem writes its buffers by hand (eg ext3)
2879 	 * then we can have clean buffers against a dirty folio.  We
2880 	 * clean the folio here; otherwise the VM will never notice
2881 	 * that the filesystem did any IO at all.
2882 	 *
2883 	 * Also, during truncate, discard_buffer will have marked all
2884 	 * the folio's buffers clean.  We discover that here and clean
2885 	 * the folio also.
2886 	 *
2887 	 * private_lock must be held over this entire operation in order
2888 	 * to synchronise against block_dirty_folio and prevent the
2889 	 * dirty bit from being lost.
2890 	 */
2891 	if (ret)
2892 		folio_cancel_dirty(folio);
2893 	spin_unlock(&mapping->private_lock);
2894 out:
2895 	if (buffers_to_free) {
2896 		struct buffer_head *bh = buffers_to_free;
2897 
2898 		do {
2899 			struct buffer_head *next = bh->b_this_page;
2900 			free_buffer_head(bh);
2901 			bh = next;
2902 		} while (bh != buffers_to_free);
2903 	}
2904 	return ret;
2905 }
2906 EXPORT_SYMBOL(try_to_free_buffers);
2907 
2908 /*
2909  * Buffer-head allocation
2910  */
2911 static struct kmem_cache *bh_cachep __read_mostly;
2912 
2913 /*
2914  * Once the number of bh's in the machine exceeds this level, we start
2915  * stripping them in writeback.
2916  */
2917 static unsigned long max_buffer_heads;
2918 
2919 int buffer_heads_over_limit;
2920 
2921 struct bh_accounting {
2922 	int nr;			/* Number of live bh's */
2923 	int ratelimit;		/* Limit cacheline bouncing */
2924 };
2925 
2926 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2927 
2928 static void recalc_bh_state(void)
2929 {
2930 	int i;
2931 	int tot = 0;
2932 
2933 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2934 		return;
2935 	__this_cpu_write(bh_accounting.ratelimit, 0);
2936 	for_each_online_cpu(i)
2937 		tot += per_cpu(bh_accounting, i).nr;
2938 	buffer_heads_over_limit = (tot > max_buffer_heads);
2939 }
2940 
2941 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2942 {
2943 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2944 	if (ret) {
2945 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2946 		spin_lock_init(&ret->b_uptodate_lock);
2947 		preempt_disable();
2948 		__this_cpu_inc(bh_accounting.nr);
2949 		recalc_bh_state();
2950 		preempt_enable();
2951 	}
2952 	return ret;
2953 }
2954 EXPORT_SYMBOL(alloc_buffer_head);
2955 
2956 void free_buffer_head(struct buffer_head *bh)
2957 {
2958 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2959 	kmem_cache_free(bh_cachep, bh);
2960 	preempt_disable();
2961 	__this_cpu_dec(bh_accounting.nr);
2962 	recalc_bh_state();
2963 	preempt_enable();
2964 }
2965 EXPORT_SYMBOL(free_buffer_head);
2966 
2967 static int buffer_exit_cpu_dead(unsigned int cpu)
2968 {
2969 	int i;
2970 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2971 
2972 	for (i = 0; i < BH_LRU_SIZE; i++) {
2973 		brelse(b->bhs[i]);
2974 		b->bhs[i] = NULL;
2975 	}
2976 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2977 	per_cpu(bh_accounting, cpu).nr = 0;
2978 	return 0;
2979 }
2980 
2981 /**
2982  * bh_uptodate_or_lock - Test whether the buffer is uptodate
2983  * @bh: struct buffer_head
2984  *
2985  * Return true if the buffer is up-to-date and false,
2986  * with the buffer locked, if not.
2987  */
2988 int bh_uptodate_or_lock(struct buffer_head *bh)
2989 {
2990 	if (!buffer_uptodate(bh)) {
2991 		lock_buffer(bh);
2992 		if (!buffer_uptodate(bh))
2993 			return 0;
2994 		unlock_buffer(bh);
2995 	}
2996 	return 1;
2997 }
2998 EXPORT_SYMBOL(bh_uptodate_or_lock);
2999 
3000 /**
3001  * __bh_read - Submit read for a locked buffer
3002  * @bh: struct buffer_head
3003  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3004  * @wait: wait until reading finish
3005  *
3006  * Returns zero on success or don't wait, and -EIO on error.
3007  */
3008 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3009 {
3010 	int ret = 0;
3011 
3012 	BUG_ON(!buffer_locked(bh));
3013 
3014 	get_bh(bh);
3015 	bh->b_end_io = end_buffer_read_sync;
3016 	submit_bh(REQ_OP_READ | op_flags, bh);
3017 	if (wait) {
3018 		wait_on_buffer(bh);
3019 		if (!buffer_uptodate(bh))
3020 			ret = -EIO;
3021 	}
3022 	return ret;
3023 }
3024 EXPORT_SYMBOL(__bh_read);
3025 
3026 /**
3027  * __bh_read_batch - Submit read for a batch of unlocked buffers
3028  * @nr: entry number of the buffer batch
3029  * @bhs: a batch of struct buffer_head
3030  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3031  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3032  *              buffer that cannot lock.
3033  *
3034  * Returns zero on success or don't wait, and -EIO on error.
3035  */
3036 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3037 		     blk_opf_t op_flags, bool force_lock)
3038 {
3039 	int i;
3040 
3041 	for (i = 0; i < nr; i++) {
3042 		struct buffer_head *bh = bhs[i];
3043 
3044 		if (buffer_uptodate(bh))
3045 			continue;
3046 
3047 		if (force_lock)
3048 			lock_buffer(bh);
3049 		else
3050 			if (!trylock_buffer(bh))
3051 				continue;
3052 
3053 		if (buffer_uptodate(bh)) {
3054 			unlock_buffer(bh);
3055 			continue;
3056 		}
3057 
3058 		bh->b_end_io = end_buffer_read_sync;
3059 		get_bh(bh);
3060 		submit_bh(REQ_OP_READ | op_flags, bh);
3061 	}
3062 }
3063 EXPORT_SYMBOL(__bh_read_batch);
3064 
3065 void __init buffer_init(void)
3066 {
3067 	unsigned long nrpages;
3068 	int ret;
3069 
3070 	bh_cachep = kmem_cache_create("buffer_head",
3071 			sizeof(struct buffer_head), 0,
3072 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3073 				SLAB_MEM_SPREAD),
3074 				NULL);
3075 
3076 	/*
3077 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3078 	 */
3079 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3080 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3081 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3082 					NULL, buffer_exit_cpu_dead);
3083 	WARN_ON(ret < 0);
3084 }
3085