1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct page *page; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 204 if (!page) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 if (!page_has_buffers(page)) 209 goto out_unlock; 210 head = page_buffers(page); 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 put_page(page); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 312 end_buffer_async_read(bh, valid); 313 kfree(ctx); 314 } 315 316 static bool need_fsverity(struct buffer_head *bh) 317 { 318 struct folio *folio = bh->b_folio; 319 struct inode *inode = folio->mapping->host; 320 321 return fsverity_active(inode) && 322 /* needed by ext4 */ 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 324 } 325 326 static void decrypt_bh(struct work_struct *work) 327 { 328 struct postprocess_bh_ctx *ctx = 329 container_of(work, struct postprocess_bh_ctx, work); 330 struct buffer_head *bh = ctx->bh; 331 int err; 332 333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 334 bh_offset(bh)); 335 if (err == 0 && need_fsverity(bh)) { 336 /* 337 * We use different work queues for decryption and for verity 338 * because verity may require reading metadata pages that need 339 * decryption, and we shouldn't recurse to the same workqueue. 340 */ 341 INIT_WORK(&ctx->work, verify_bh); 342 fsverity_enqueue_verify_work(&ctx->work); 343 return; 344 } 345 end_buffer_async_read(bh, err == 0); 346 kfree(ctx); 347 } 348 349 /* 350 * I/O completion handler for block_read_full_folio() - pages 351 * which come unlocked at the end of I/O. 352 */ 353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 354 { 355 struct inode *inode = bh->b_folio->mapping->host; 356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 357 bool verify = need_fsverity(bh); 358 359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 360 if (uptodate && (decrypt || verify)) { 361 struct postprocess_bh_ctx *ctx = 362 kmalloc(sizeof(*ctx), GFP_ATOMIC); 363 364 if (ctx) { 365 ctx->bh = bh; 366 if (decrypt) { 367 INIT_WORK(&ctx->work, decrypt_bh); 368 fscrypt_enqueue_decrypt_work(&ctx->work); 369 } else { 370 INIT_WORK(&ctx->work, verify_bh); 371 fsverity_enqueue_verify_work(&ctx->work); 372 } 373 return; 374 } 375 uptodate = 0; 376 } 377 end_buffer_async_read(bh, uptodate); 378 } 379 380 /* 381 * Completion handler for block_write_full_page() - pages which are unlocked 382 * during I/O, and which have PageWriteback cleared upon I/O completion. 383 */ 384 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 385 { 386 unsigned long flags; 387 struct buffer_head *first; 388 struct buffer_head *tmp; 389 struct folio *folio; 390 391 BUG_ON(!buffer_async_write(bh)); 392 393 folio = bh->b_folio; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 buffer_io_error(bh, ", lost async page write"); 398 mark_buffer_write_io_error(bh); 399 clear_buffer_uptodate(bh); 400 folio_set_error(folio); 401 } 402 403 first = folio_buffers(folio); 404 spin_lock_irqsave(&first->b_uptodate_lock, flags); 405 406 clear_buffer_async_write(bh); 407 unlock_buffer(bh); 408 tmp = bh->b_this_page; 409 while (tmp != bh) { 410 if (buffer_async_write(tmp)) { 411 BUG_ON(!buffer_locked(tmp)); 412 goto still_busy; 413 } 414 tmp = tmp->b_this_page; 415 } 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 417 folio_end_writeback(folio); 418 return; 419 420 still_busy: 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 422 return; 423 } 424 EXPORT_SYMBOL(end_buffer_async_write); 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for private_list is via the private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->private_lock does *not* protect mapping->private_list! In fact, 486 * mapping->private_list will always be protected by the backing blockdev's 487 * ->private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->private_list via these 493 * utility functions are free to use private_lock and private_list for 494 * whatever they want. The only requirement is that list_empty(private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 void emergency_thaw_bdev(struct super_block *sb) 567 { 568 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 569 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 570 } 571 572 /** 573 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 574 * @mapping: the mapping which wants those buffers written 575 * 576 * Starts I/O against the buffers at mapping->private_list, and waits upon 577 * that I/O. 578 * 579 * Basically, this is a convenience function for fsync(). 580 * @mapping is a file or directory which needs those buffers to be written for 581 * a successful fsync(). 582 */ 583 int sync_mapping_buffers(struct address_space *mapping) 584 { 585 struct address_space *buffer_mapping = mapping->private_data; 586 587 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 588 return 0; 589 590 return fsync_buffers_list(&buffer_mapping->private_lock, 591 &mapping->private_list); 592 } 593 EXPORT_SYMBOL(sync_mapping_buffers); 594 595 /* 596 * Called when we've recently written block `bblock', and it is known that 597 * `bblock' was for a buffer_boundary() buffer. This means that the block at 598 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 599 * dirty, schedule it for IO. So that indirects merge nicely with their data. 600 */ 601 void write_boundary_block(struct block_device *bdev, 602 sector_t bblock, unsigned blocksize) 603 { 604 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 605 if (bh) { 606 if (buffer_dirty(bh)) 607 write_dirty_buffer(bh, 0); 608 put_bh(bh); 609 } 610 } 611 612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 613 { 614 struct address_space *mapping = inode->i_mapping; 615 struct address_space *buffer_mapping = bh->b_folio->mapping; 616 617 mark_buffer_dirty(bh); 618 if (!mapping->private_data) { 619 mapping->private_data = buffer_mapping; 620 } else { 621 BUG_ON(mapping->private_data != buffer_mapping); 622 } 623 if (!bh->b_assoc_map) { 624 spin_lock(&buffer_mapping->private_lock); 625 list_move_tail(&bh->b_assoc_buffers, 626 &mapping->private_list); 627 bh->b_assoc_map = mapping; 628 spin_unlock(&buffer_mapping->private_lock); 629 } 630 } 631 EXPORT_SYMBOL(mark_buffer_dirty_inode); 632 633 /* 634 * Add a page to the dirty page list. 635 * 636 * It is a sad fact of life that this function is called from several places 637 * deeply under spinlocking. It may not sleep. 638 * 639 * If the page has buffers, the uptodate buffers are set dirty, to preserve 640 * dirty-state coherency between the page and the buffers. It the page does 641 * not have buffers then when they are later attached they will all be set 642 * dirty. 643 * 644 * The buffers are dirtied before the page is dirtied. There's a small race 645 * window in which a writepage caller may see the page cleanness but not the 646 * buffer dirtiness. That's fine. If this code were to set the page dirty 647 * before the buffers, a concurrent writepage caller could clear the page dirty 648 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 649 * page on the dirty page list. 650 * 651 * We use private_lock to lock against try_to_free_buffers while using the 652 * page's buffer list. Also use this to protect against clean buffers being 653 * added to the page after it was set dirty. 654 * 655 * FIXME: may need to call ->reservepage here as well. That's rather up to the 656 * address_space though. 657 */ 658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 659 { 660 struct buffer_head *head; 661 bool newly_dirty; 662 663 spin_lock(&mapping->private_lock); 664 head = folio_buffers(folio); 665 if (head) { 666 struct buffer_head *bh = head; 667 668 do { 669 set_buffer_dirty(bh); 670 bh = bh->b_this_page; 671 } while (bh != head); 672 } 673 /* 674 * Lock out page's memcg migration to keep PageDirty 675 * synchronized with per-memcg dirty page counters. 676 */ 677 folio_memcg_lock(folio); 678 newly_dirty = !folio_test_set_dirty(folio); 679 spin_unlock(&mapping->private_lock); 680 681 if (newly_dirty) 682 __folio_mark_dirty(folio, mapping, 1); 683 684 folio_memcg_unlock(folio); 685 686 if (newly_dirty) 687 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 688 689 return newly_dirty; 690 } 691 EXPORT_SYMBOL(block_dirty_folio); 692 693 /* 694 * Write out and wait upon a list of buffers. 695 * 696 * We have conflicting pressures: we want to make sure that all 697 * initially dirty buffers get waited on, but that any subsequently 698 * dirtied buffers don't. After all, we don't want fsync to last 699 * forever if somebody is actively writing to the file. 700 * 701 * Do this in two main stages: first we copy dirty buffers to a 702 * temporary inode list, queueing the writes as we go. Then we clean 703 * up, waiting for those writes to complete. 704 * 705 * During this second stage, any subsequent updates to the file may end 706 * up refiling the buffer on the original inode's dirty list again, so 707 * there is a chance we will end up with a buffer queued for write but 708 * not yet completed on that list. So, as a final cleanup we go through 709 * the osync code to catch these locked, dirty buffers without requeuing 710 * any newly dirty buffers for write. 711 */ 712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 713 { 714 struct buffer_head *bh; 715 struct list_head tmp; 716 struct address_space *mapping; 717 int err = 0, err2; 718 struct blk_plug plug; 719 720 INIT_LIST_HEAD(&tmp); 721 blk_start_plug(&plug); 722 723 spin_lock(lock); 724 while (!list_empty(list)) { 725 bh = BH_ENTRY(list->next); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh) || buffer_locked(bh)) { 732 list_add(&bh->b_assoc_buffers, &tmp); 733 bh->b_assoc_map = mapping; 734 if (buffer_dirty(bh)) { 735 get_bh(bh); 736 spin_unlock(lock); 737 /* 738 * Ensure any pending I/O completes so that 739 * write_dirty_buffer() actually writes the 740 * current contents - it is a noop if I/O is 741 * still in flight on potentially older 742 * contents. 743 */ 744 write_dirty_buffer(bh, REQ_SYNC); 745 746 /* 747 * Kick off IO for the previous mapping. Note 748 * that we will not run the very last mapping, 749 * wait_on_buffer() will do that for us 750 * through sync_buffer(). 751 */ 752 brelse(bh); 753 spin_lock(lock); 754 } 755 } 756 } 757 758 spin_unlock(lock); 759 blk_finish_plug(&plug); 760 spin_lock(lock); 761 762 while (!list_empty(&tmp)) { 763 bh = BH_ENTRY(tmp.prev); 764 get_bh(bh); 765 mapping = bh->b_assoc_map; 766 __remove_assoc_queue(bh); 767 /* Avoid race with mark_buffer_dirty_inode() which does 768 * a lockless check and we rely on seeing the dirty bit */ 769 smp_mb(); 770 if (buffer_dirty(bh)) { 771 list_add(&bh->b_assoc_buffers, 772 &mapping->private_list); 773 bh->b_assoc_map = mapping; 774 } 775 spin_unlock(lock); 776 wait_on_buffer(bh); 777 if (!buffer_uptodate(bh)) 778 err = -EIO; 779 brelse(bh); 780 spin_lock(lock); 781 } 782 783 spin_unlock(lock); 784 err2 = osync_buffers_list(lock, list); 785 if (err) 786 return err; 787 else 788 return err2; 789 } 790 791 /* 792 * Invalidate any and all dirty buffers on a given inode. We are 793 * probably unmounting the fs, but that doesn't mean we have already 794 * done a sync(). Just drop the buffers from the inode list. 795 * 796 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 797 * assumes that all the buffers are against the blockdev. Not true 798 * for reiserfs. 799 */ 800 void invalidate_inode_buffers(struct inode *inode) 801 { 802 if (inode_has_buffers(inode)) { 803 struct address_space *mapping = &inode->i_data; 804 struct list_head *list = &mapping->private_list; 805 struct address_space *buffer_mapping = mapping->private_data; 806 807 spin_lock(&buffer_mapping->private_lock); 808 while (!list_empty(list)) 809 __remove_assoc_queue(BH_ENTRY(list->next)); 810 spin_unlock(&buffer_mapping->private_lock); 811 } 812 } 813 EXPORT_SYMBOL(invalidate_inode_buffers); 814 815 /* 816 * Remove any clean buffers from the inode's buffer list. This is called 817 * when we're trying to free the inode itself. Those buffers can pin it. 818 * 819 * Returns true if all buffers were removed. 820 */ 821 int remove_inode_buffers(struct inode *inode) 822 { 823 int ret = 1; 824 825 if (inode_has_buffers(inode)) { 826 struct address_space *mapping = &inode->i_data; 827 struct list_head *list = &mapping->private_list; 828 struct address_space *buffer_mapping = mapping->private_data; 829 830 spin_lock(&buffer_mapping->private_lock); 831 while (!list_empty(list)) { 832 struct buffer_head *bh = BH_ENTRY(list->next); 833 if (buffer_dirty(bh)) { 834 ret = 0; 835 break; 836 } 837 __remove_assoc_queue(bh); 838 } 839 spin_unlock(&buffer_mapping->private_lock); 840 } 841 return ret; 842 } 843 844 /* 845 * Create the appropriate buffers when given a page for data area and 846 * the size of each buffer.. Use the bh->b_this_page linked list to 847 * follow the buffers created. Return NULL if unable to create more 848 * buffers. 849 * 850 * The retry flag is used to differentiate async IO (paging, swapping) 851 * which may not fail from ordinary buffer allocations. 852 */ 853 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 854 bool retry) 855 { 856 struct buffer_head *bh, *head; 857 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 858 long offset; 859 struct mem_cgroup *memcg, *old_memcg; 860 861 if (retry) 862 gfp |= __GFP_NOFAIL; 863 864 /* The page lock pins the memcg */ 865 memcg = page_memcg(page); 866 old_memcg = set_active_memcg(memcg); 867 868 head = NULL; 869 offset = PAGE_SIZE; 870 while ((offset -= size) >= 0) { 871 bh = alloc_buffer_head(gfp); 872 if (!bh) 873 goto no_grow; 874 875 bh->b_this_page = head; 876 bh->b_blocknr = -1; 877 head = bh; 878 879 bh->b_size = size; 880 881 /* Link the buffer to its page */ 882 set_bh_page(bh, page, offset); 883 } 884 out: 885 set_active_memcg(old_memcg); 886 return head; 887 /* 888 * In case anything failed, we just free everything we got. 889 */ 890 no_grow: 891 if (head) { 892 do { 893 bh = head; 894 head = head->b_this_page; 895 free_buffer_head(bh); 896 } while (head); 897 } 898 899 goto out; 900 } 901 EXPORT_SYMBOL_GPL(alloc_page_buffers); 902 903 static inline void 904 link_dev_buffers(struct page *page, struct buffer_head *head) 905 { 906 struct buffer_head *bh, *tail; 907 908 bh = head; 909 do { 910 tail = bh; 911 bh = bh->b_this_page; 912 } while (bh); 913 tail->b_this_page = head; 914 attach_page_private(page, head); 915 } 916 917 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 918 { 919 sector_t retval = ~((sector_t)0); 920 loff_t sz = bdev_nr_bytes(bdev); 921 922 if (sz) { 923 unsigned int sizebits = blksize_bits(size); 924 retval = (sz >> sizebits); 925 } 926 return retval; 927 } 928 929 /* 930 * Initialise the state of a blockdev page's buffers. 931 */ 932 static sector_t 933 init_page_buffers(struct page *page, struct block_device *bdev, 934 sector_t block, int size) 935 { 936 struct buffer_head *head = page_buffers(page); 937 struct buffer_head *bh = head; 938 int uptodate = PageUptodate(page); 939 sector_t end_block = blkdev_max_block(bdev, size); 940 941 do { 942 if (!buffer_mapped(bh)) { 943 bh->b_end_io = NULL; 944 bh->b_private = NULL; 945 bh->b_bdev = bdev; 946 bh->b_blocknr = block; 947 if (uptodate) 948 set_buffer_uptodate(bh); 949 if (block < end_block) 950 set_buffer_mapped(bh); 951 } 952 block++; 953 bh = bh->b_this_page; 954 } while (bh != head); 955 956 /* 957 * Caller needs to validate requested block against end of device. 958 */ 959 return end_block; 960 } 961 962 /* 963 * Create the page-cache page that contains the requested block. 964 * 965 * This is used purely for blockdev mappings. 966 */ 967 static int 968 grow_dev_page(struct block_device *bdev, sector_t block, 969 pgoff_t index, int size, int sizebits, gfp_t gfp) 970 { 971 struct inode *inode = bdev->bd_inode; 972 struct page *page; 973 struct buffer_head *bh; 974 sector_t end_block; 975 int ret = 0; 976 gfp_t gfp_mask; 977 978 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 979 980 /* 981 * XXX: __getblk_slow() can not really deal with failure and 982 * will endlessly loop on improvised global reclaim. Prefer 983 * looping in the allocator rather than here, at least that 984 * code knows what it's doing. 985 */ 986 gfp_mask |= __GFP_NOFAIL; 987 988 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 989 990 BUG_ON(!PageLocked(page)); 991 992 if (page_has_buffers(page)) { 993 bh = page_buffers(page); 994 if (bh->b_size == size) { 995 end_block = init_page_buffers(page, bdev, 996 (sector_t)index << sizebits, 997 size); 998 goto done; 999 } 1000 if (!try_to_free_buffers(page_folio(page))) 1001 goto failed; 1002 } 1003 1004 /* 1005 * Allocate some buffers for this page 1006 */ 1007 bh = alloc_page_buffers(page, size, true); 1008 1009 /* 1010 * Link the page to the buffers and initialise them. Take the 1011 * lock to be atomic wrt __find_get_block(), which does not 1012 * run under the page lock. 1013 */ 1014 spin_lock(&inode->i_mapping->private_lock); 1015 link_dev_buffers(page, bh); 1016 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1017 size); 1018 spin_unlock(&inode->i_mapping->private_lock); 1019 done: 1020 ret = (block < end_block) ? 1 : -ENXIO; 1021 failed: 1022 unlock_page(page); 1023 put_page(page); 1024 return ret; 1025 } 1026 1027 /* 1028 * Create buffers for the specified block device block's page. If 1029 * that page was dirty, the buffers are set dirty also. 1030 */ 1031 static int 1032 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1033 { 1034 pgoff_t index; 1035 int sizebits; 1036 1037 sizebits = PAGE_SHIFT - __ffs(size); 1038 index = block >> sizebits; 1039 1040 /* 1041 * Check for a block which wants to lie outside our maximum possible 1042 * pagecache index. (this comparison is done using sector_t types). 1043 */ 1044 if (unlikely(index != block >> sizebits)) { 1045 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1046 "device %pg\n", 1047 __func__, (unsigned long long)block, 1048 bdev); 1049 return -EIO; 1050 } 1051 1052 /* Create a page with the proper size buffers.. */ 1053 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1054 } 1055 1056 static struct buffer_head * 1057 __getblk_slow(struct block_device *bdev, sector_t block, 1058 unsigned size, gfp_t gfp) 1059 { 1060 /* Size must be multiple of hard sectorsize */ 1061 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1062 (size < 512 || size > PAGE_SIZE))) { 1063 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1064 size); 1065 printk(KERN_ERR "logical block size: %d\n", 1066 bdev_logical_block_size(bdev)); 1067 1068 dump_stack(); 1069 return NULL; 1070 } 1071 1072 for (;;) { 1073 struct buffer_head *bh; 1074 int ret; 1075 1076 bh = __find_get_block(bdev, block, size); 1077 if (bh) 1078 return bh; 1079 1080 ret = grow_buffers(bdev, block, size, gfp); 1081 if (ret < 0) 1082 return NULL; 1083 } 1084 } 1085 1086 /* 1087 * The relationship between dirty buffers and dirty pages: 1088 * 1089 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1090 * the page is tagged dirty in the page cache. 1091 * 1092 * At all times, the dirtiness of the buffers represents the dirtiness of 1093 * subsections of the page. If the page has buffers, the page dirty bit is 1094 * merely a hint about the true dirty state. 1095 * 1096 * When a page is set dirty in its entirety, all its buffers are marked dirty 1097 * (if the page has buffers). 1098 * 1099 * When a buffer is marked dirty, its page is dirtied, but the page's other 1100 * buffers are not. 1101 * 1102 * Also. When blockdev buffers are explicitly read with bread(), they 1103 * individually become uptodate. But their backing page remains not 1104 * uptodate - even if all of its buffers are uptodate. A subsequent 1105 * block_read_full_folio() against that folio will discover all the uptodate 1106 * buffers, will set the folio uptodate and will perform no I/O. 1107 */ 1108 1109 /** 1110 * mark_buffer_dirty - mark a buffer_head as needing writeout 1111 * @bh: the buffer_head to mark dirty 1112 * 1113 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1114 * its backing page dirty, then tag the page as dirty in the page cache 1115 * and then attach the address_space's inode to its superblock's dirty 1116 * inode list. 1117 * 1118 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1119 * i_pages lock and mapping->host->i_lock. 1120 */ 1121 void mark_buffer_dirty(struct buffer_head *bh) 1122 { 1123 WARN_ON_ONCE(!buffer_uptodate(bh)); 1124 1125 trace_block_dirty_buffer(bh); 1126 1127 /* 1128 * Very *carefully* optimize the it-is-already-dirty case. 1129 * 1130 * Don't let the final "is it dirty" escape to before we 1131 * perhaps modified the buffer. 1132 */ 1133 if (buffer_dirty(bh)) { 1134 smp_mb(); 1135 if (buffer_dirty(bh)) 1136 return; 1137 } 1138 1139 if (!test_set_buffer_dirty(bh)) { 1140 struct folio *folio = bh->b_folio; 1141 struct address_space *mapping = NULL; 1142 1143 folio_memcg_lock(folio); 1144 if (!folio_test_set_dirty(folio)) { 1145 mapping = folio->mapping; 1146 if (mapping) 1147 __folio_mark_dirty(folio, mapping, 0); 1148 } 1149 folio_memcg_unlock(folio); 1150 if (mapping) 1151 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1152 } 1153 } 1154 EXPORT_SYMBOL(mark_buffer_dirty); 1155 1156 void mark_buffer_write_io_error(struct buffer_head *bh) 1157 { 1158 struct super_block *sb; 1159 1160 set_buffer_write_io_error(bh); 1161 /* FIXME: do we need to set this in both places? */ 1162 if (bh->b_folio && bh->b_folio->mapping) 1163 mapping_set_error(bh->b_folio->mapping, -EIO); 1164 if (bh->b_assoc_map) 1165 mapping_set_error(bh->b_assoc_map, -EIO); 1166 rcu_read_lock(); 1167 sb = READ_ONCE(bh->b_bdev->bd_super); 1168 if (sb) 1169 errseq_set(&sb->s_wb_err, -EIO); 1170 rcu_read_unlock(); 1171 } 1172 EXPORT_SYMBOL(mark_buffer_write_io_error); 1173 1174 /* 1175 * Decrement a buffer_head's reference count. If all buffers against a page 1176 * have zero reference count, are clean and unlocked, and if the page is clean 1177 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1178 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1179 * a page but it ends up not being freed, and buffers may later be reattached). 1180 */ 1181 void __brelse(struct buffer_head * buf) 1182 { 1183 if (atomic_read(&buf->b_count)) { 1184 put_bh(buf); 1185 return; 1186 } 1187 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1188 } 1189 EXPORT_SYMBOL(__brelse); 1190 1191 /* 1192 * bforget() is like brelse(), except it discards any 1193 * potentially dirty data. 1194 */ 1195 void __bforget(struct buffer_head *bh) 1196 { 1197 clear_buffer_dirty(bh); 1198 if (bh->b_assoc_map) { 1199 struct address_space *buffer_mapping = bh->b_folio->mapping; 1200 1201 spin_lock(&buffer_mapping->private_lock); 1202 list_del_init(&bh->b_assoc_buffers); 1203 bh->b_assoc_map = NULL; 1204 spin_unlock(&buffer_mapping->private_lock); 1205 } 1206 __brelse(bh); 1207 } 1208 EXPORT_SYMBOL(__bforget); 1209 1210 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1211 { 1212 lock_buffer(bh); 1213 if (buffer_uptodate(bh)) { 1214 unlock_buffer(bh); 1215 return bh; 1216 } else { 1217 get_bh(bh); 1218 bh->b_end_io = end_buffer_read_sync; 1219 submit_bh(REQ_OP_READ, bh); 1220 wait_on_buffer(bh); 1221 if (buffer_uptodate(bh)) 1222 return bh; 1223 } 1224 brelse(bh); 1225 return NULL; 1226 } 1227 1228 /* 1229 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1230 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1231 * refcount elevated by one when they're in an LRU. A buffer can only appear 1232 * once in a particular CPU's LRU. A single buffer can be present in multiple 1233 * CPU's LRUs at the same time. 1234 * 1235 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1236 * sb_find_get_block(). 1237 * 1238 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1239 * a local interrupt disable for that. 1240 */ 1241 1242 #define BH_LRU_SIZE 16 1243 1244 struct bh_lru { 1245 struct buffer_head *bhs[BH_LRU_SIZE]; 1246 }; 1247 1248 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1249 1250 #ifdef CONFIG_SMP 1251 #define bh_lru_lock() local_irq_disable() 1252 #define bh_lru_unlock() local_irq_enable() 1253 #else 1254 #define bh_lru_lock() preempt_disable() 1255 #define bh_lru_unlock() preempt_enable() 1256 #endif 1257 1258 static inline void check_irqs_on(void) 1259 { 1260 #ifdef irqs_disabled 1261 BUG_ON(irqs_disabled()); 1262 #endif 1263 } 1264 1265 /* 1266 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1267 * inserted at the front, and the buffer_head at the back if any is evicted. 1268 * Or, if already in the LRU it is moved to the front. 1269 */ 1270 static void bh_lru_install(struct buffer_head *bh) 1271 { 1272 struct buffer_head *evictee = bh; 1273 struct bh_lru *b; 1274 int i; 1275 1276 check_irqs_on(); 1277 bh_lru_lock(); 1278 1279 /* 1280 * the refcount of buffer_head in bh_lru prevents dropping the 1281 * attached page(i.e., try_to_free_buffers) so it could cause 1282 * failing page migration. 1283 * Skip putting upcoming bh into bh_lru until migration is done. 1284 */ 1285 if (lru_cache_disabled()) { 1286 bh_lru_unlock(); 1287 return; 1288 } 1289 1290 b = this_cpu_ptr(&bh_lrus); 1291 for (i = 0; i < BH_LRU_SIZE; i++) { 1292 swap(evictee, b->bhs[i]); 1293 if (evictee == bh) { 1294 bh_lru_unlock(); 1295 return; 1296 } 1297 } 1298 1299 get_bh(bh); 1300 bh_lru_unlock(); 1301 brelse(evictee); 1302 } 1303 1304 /* 1305 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1306 */ 1307 static struct buffer_head * 1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1309 { 1310 struct buffer_head *ret = NULL; 1311 unsigned int i; 1312 1313 check_irqs_on(); 1314 bh_lru_lock(); 1315 for (i = 0; i < BH_LRU_SIZE; i++) { 1316 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1317 1318 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1319 bh->b_size == size) { 1320 if (i) { 1321 while (i) { 1322 __this_cpu_write(bh_lrus.bhs[i], 1323 __this_cpu_read(bh_lrus.bhs[i - 1])); 1324 i--; 1325 } 1326 __this_cpu_write(bh_lrus.bhs[0], bh); 1327 } 1328 get_bh(bh); 1329 ret = bh; 1330 break; 1331 } 1332 } 1333 bh_lru_unlock(); 1334 return ret; 1335 } 1336 1337 /* 1338 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1339 * it in the LRU and mark it as accessed. If it is not present then return 1340 * NULL 1341 */ 1342 struct buffer_head * 1343 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1344 { 1345 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1346 1347 if (bh == NULL) { 1348 /* __find_get_block_slow will mark the page accessed */ 1349 bh = __find_get_block_slow(bdev, block); 1350 if (bh) 1351 bh_lru_install(bh); 1352 } else 1353 touch_buffer(bh); 1354 1355 return bh; 1356 } 1357 EXPORT_SYMBOL(__find_get_block); 1358 1359 /* 1360 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1361 * which corresponds to the passed block_device, block and size. The 1362 * returned buffer has its reference count incremented. 1363 * 1364 * __getblk_gfp() will lock up the machine if grow_dev_page's 1365 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1366 */ 1367 struct buffer_head * 1368 __getblk_gfp(struct block_device *bdev, sector_t block, 1369 unsigned size, gfp_t gfp) 1370 { 1371 struct buffer_head *bh = __find_get_block(bdev, block, size); 1372 1373 might_sleep(); 1374 if (bh == NULL) 1375 bh = __getblk_slow(bdev, block, size, gfp); 1376 return bh; 1377 } 1378 EXPORT_SYMBOL(__getblk_gfp); 1379 1380 /* 1381 * Do async read-ahead on a buffer.. 1382 */ 1383 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1384 { 1385 struct buffer_head *bh = __getblk(bdev, block, size); 1386 if (likely(bh)) { 1387 bh_readahead(bh, REQ_RAHEAD); 1388 brelse(bh); 1389 } 1390 } 1391 EXPORT_SYMBOL(__breadahead); 1392 1393 /** 1394 * __bread_gfp() - reads a specified block and returns the bh 1395 * @bdev: the block_device to read from 1396 * @block: number of block 1397 * @size: size (in bytes) to read 1398 * @gfp: page allocation flag 1399 * 1400 * Reads a specified block, and returns buffer head that contains it. 1401 * The page cache can be allocated from non-movable area 1402 * not to prevent page migration if you set gfp to zero. 1403 * It returns NULL if the block was unreadable. 1404 */ 1405 struct buffer_head * 1406 __bread_gfp(struct block_device *bdev, sector_t block, 1407 unsigned size, gfp_t gfp) 1408 { 1409 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1410 1411 if (likely(bh) && !buffer_uptodate(bh)) 1412 bh = __bread_slow(bh); 1413 return bh; 1414 } 1415 EXPORT_SYMBOL(__bread_gfp); 1416 1417 static void __invalidate_bh_lrus(struct bh_lru *b) 1418 { 1419 int i; 1420 1421 for (i = 0; i < BH_LRU_SIZE; i++) { 1422 brelse(b->bhs[i]); 1423 b->bhs[i] = NULL; 1424 } 1425 } 1426 /* 1427 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1428 * This doesn't race because it runs in each cpu either in irq 1429 * or with preempt disabled. 1430 */ 1431 static void invalidate_bh_lru(void *arg) 1432 { 1433 struct bh_lru *b = &get_cpu_var(bh_lrus); 1434 1435 __invalidate_bh_lrus(b); 1436 put_cpu_var(bh_lrus); 1437 } 1438 1439 bool has_bh_in_lru(int cpu, void *dummy) 1440 { 1441 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1442 int i; 1443 1444 for (i = 0; i < BH_LRU_SIZE; i++) { 1445 if (b->bhs[i]) 1446 return true; 1447 } 1448 1449 return false; 1450 } 1451 1452 void invalidate_bh_lrus(void) 1453 { 1454 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1455 } 1456 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1457 1458 /* 1459 * It's called from workqueue context so we need a bh_lru_lock to close 1460 * the race with preemption/irq. 1461 */ 1462 void invalidate_bh_lrus_cpu(void) 1463 { 1464 struct bh_lru *b; 1465 1466 bh_lru_lock(); 1467 b = this_cpu_ptr(&bh_lrus); 1468 __invalidate_bh_lrus(b); 1469 bh_lru_unlock(); 1470 } 1471 1472 void set_bh_page(struct buffer_head *bh, 1473 struct page *page, unsigned long offset) 1474 { 1475 bh->b_page = page; 1476 BUG_ON(offset >= PAGE_SIZE); 1477 if (PageHighMem(page)) 1478 /* 1479 * This catches illegal uses and preserves the offset: 1480 */ 1481 bh->b_data = (char *)(0 + offset); 1482 else 1483 bh->b_data = page_address(page) + offset; 1484 } 1485 EXPORT_SYMBOL(set_bh_page); 1486 1487 /* 1488 * Called when truncating a buffer on a page completely. 1489 */ 1490 1491 /* Bits that are cleared during an invalidate */ 1492 #define BUFFER_FLAGS_DISCARD \ 1493 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1494 1 << BH_Delay | 1 << BH_Unwritten) 1495 1496 static void discard_buffer(struct buffer_head * bh) 1497 { 1498 unsigned long b_state; 1499 1500 lock_buffer(bh); 1501 clear_buffer_dirty(bh); 1502 bh->b_bdev = NULL; 1503 b_state = READ_ONCE(bh->b_state); 1504 do { 1505 } while (!try_cmpxchg(&bh->b_state, &b_state, 1506 b_state & ~BUFFER_FLAGS_DISCARD)); 1507 unlock_buffer(bh); 1508 } 1509 1510 /** 1511 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1512 * @folio: The folio which is affected. 1513 * @offset: start of the range to invalidate 1514 * @length: length of the range to invalidate 1515 * 1516 * block_invalidate_folio() is called when all or part of the folio has been 1517 * invalidated by a truncate operation. 1518 * 1519 * block_invalidate_folio() does not have to release all buffers, but it must 1520 * ensure that no dirty buffer is left outside @offset and that no I/O 1521 * is underway against any of the blocks which are outside the truncation 1522 * point. Because the caller is about to free (and possibly reuse) those 1523 * blocks on-disk. 1524 */ 1525 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1526 { 1527 struct buffer_head *head, *bh, *next; 1528 size_t curr_off = 0; 1529 size_t stop = length + offset; 1530 1531 BUG_ON(!folio_test_locked(folio)); 1532 1533 /* 1534 * Check for overflow 1535 */ 1536 BUG_ON(stop > folio_size(folio) || stop < length); 1537 1538 head = folio_buffers(folio); 1539 if (!head) 1540 return; 1541 1542 bh = head; 1543 do { 1544 size_t next_off = curr_off + bh->b_size; 1545 next = bh->b_this_page; 1546 1547 /* 1548 * Are we still fully in range ? 1549 */ 1550 if (next_off > stop) 1551 goto out; 1552 1553 /* 1554 * is this block fully invalidated? 1555 */ 1556 if (offset <= curr_off) 1557 discard_buffer(bh); 1558 curr_off = next_off; 1559 bh = next; 1560 } while (bh != head); 1561 1562 /* 1563 * We release buffers only if the entire folio is being invalidated. 1564 * The get_block cached value has been unconditionally invalidated, 1565 * so real IO is not possible anymore. 1566 */ 1567 if (length == folio_size(folio)) 1568 filemap_release_folio(folio, 0); 1569 out: 1570 return; 1571 } 1572 EXPORT_SYMBOL(block_invalidate_folio); 1573 1574 1575 /* 1576 * We attach and possibly dirty the buffers atomically wrt 1577 * block_dirty_folio() via private_lock. try_to_free_buffers 1578 * is already excluded via the page lock. 1579 */ 1580 void create_empty_buffers(struct page *page, 1581 unsigned long blocksize, unsigned long b_state) 1582 { 1583 struct buffer_head *bh, *head, *tail; 1584 1585 head = alloc_page_buffers(page, blocksize, true); 1586 bh = head; 1587 do { 1588 bh->b_state |= b_state; 1589 tail = bh; 1590 bh = bh->b_this_page; 1591 } while (bh); 1592 tail->b_this_page = head; 1593 1594 spin_lock(&page->mapping->private_lock); 1595 if (PageUptodate(page) || PageDirty(page)) { 1596 bh = head; 1597 do { 1598 if (PageDirty(page)) 1599 set_buffer_dirty(bh); 1600 if (PageUptodate(page)) 1601 set_buffer_uptodate(bh); 1602 bh = bh->b_this_page; 1603 } while (bh != head); 1604 } 1605 attach_page_private(page, head); 1606 spin_unlock(&page->mapping->private_lock); 1607 } 1608 EXPORT_SYMBOL(create_empty_buffers); 1609 1610 /** 1611 * clean_bdev_aliases: clean a range of buffers in block device 1612 * @bdev: Block device to clean buffers in 1613 * @block: Start of a range of blocks to clean 1614 * @len: Number of blocks to clean 1615 * 1616 * We are taking a range of blocks for data and we don't want writeback of any 1617 * buffer-cache aliases starting from return from this function and until the 1618 * moment when something will explicitly mark the buffer dirty (hopefully that 1619 * will not happen until we will free that block ;-) We don't even need to mark 1620 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1621 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1622 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1623 * would confuse anyone who might pick it with bread() afterwards... 1624 * 1625 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1626 * writeout I/O going on against recently-freed buffers. We don't wait on that 1627 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1628 * need to. That happens here. 1629 */ 1630 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1631 { 1632 struct inode *bd_inode = bdev->bd_inode; 1633 struct address_space *bd_mapping = bd_inode->i_mapping; 1634 struct folio_batch fbatch; 1635 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1636 pgoff_t end; 1637 int i, count; 1638 struct buffer_head *bh; 1639 struct buffer_head *head; 1640 1641 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1642 folio_batch_init(&fbatch); 1643 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1644 count = folio_batch_count(&fbatch); 1645 for (i = 0; i < count; i++) { 1646 struct folio *folio = fbatch.folios[i]; 1647 1648 if (!folio_buffers(folio)) 1649 continue; 1650 /* 1651 * We use folio lock instead of bd_mapping->private_lock 1652 * to pin buffers here since we can afford to sleep and 1653 * it scales better than a global spinlock lock. 1654 */ 1655 folio_lock(folio); 1656 /* Recheck when the folio is locked which pins bhs */ 1657 head = folio_buffers(folio); 1658 if (!head) 1659 goto unlock_page; 1660 bh = head; 1661 do { 1662 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1663 goto next; 1664 if (bh->b_blocknr >= block + len) 1665 break; 1666 clear_buffer_dirty(bh); 1667 wait_on_buffer(bh); 1668 clear_buffer_req(bh); 1669 next: 1670 bh = bh->b_this_page; 1671 } while (bh != head); 1672 unlock_page: 1673 folio_unlock(folio); 1674 } 1675 folio_batch_release(&fbatch); 1676 cond_resched(); 1677 /* End of range already reached? */ 1678 if (index > end || !index) 1679 break; 1680 } 1681 } 1682 EXPORT_SYMBOL(clean_bdev_aliases); 1683 1684 /* 1685 * Size is a power-of-two in the range 512..PAGE_SIZE, 1686 * and the case we care about most is PAGE_SIZE. 1687 * 1688 * So this *could* possibly be written with those 1689 * constraints in mind (relevant mostly if some 1690 * architecture has a slow bit-scan instruction) 1691 */ 1692 static inline int block_size_bits(unsigned int blocksize) 1693 { 1694 return ilog2(blocksize); 1695 } 1696 1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1698 { 1699 BUG_ON(!PageLocked(page)); 1700 1701 if (!page_has_buffers(page)) 1702 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1703 b_state); 1704 return page_buffers(page); 1705 } 1706 1707 /* 1708 * NOTE! All mapped/uptodate combinations are valid: 1709 * 1710 * Mapped Uptodate Meaning 1711 * 1712 * No No "unknown" - must do get_block() 1713 * No Yes "hole" - zero-filled 1714 * Yes No "allocated" - allocated on disk, not read in 1715 * Yes Yes "valid" - allocated and up-to-date in memory. 1716 * 1717 * "Dirty" is valid only with the last case (mapped+uptodate). 1718 */ 1719 1720 /* 1721 * While block_write_full_page is writing back the dirty buffers under 1722 * the page lock, whoever dirtied the buffers may decide to clean them 1723 * again at any time. We handle that by only looking at the buffer 1724 * state inside lock_buffer(). 1725 * 1726 * If block_write_full_page() is called for regular writeback 1727 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1728 * locked buffer. This only can happen if someone has written the buffer 1729 * directly, with submit_bh(). At the address_space level PageWriteback 1730 * prevents this contention from occurring. 1731 * 1732 * If block_write_full_page() is called with wbc->sync_mode == 1733 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1734 * causes the writes to be flagged as synchronous writes. 1735 */ 1736 int __block_write_full_page(struct inode *inode, struct page *page, 1737 get_block_t *get_block, struct writeback_control *wbc, 1738 bh_end_io_t *handler) 1739 { 1740 int err; 1741 sector_t block; 1742 sector_t last_block; 1743 struct buffer_head *bh, *head; 1744 unsigned int blocksize, bbits; 1745 int nr_underway = 0; 1746 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1747 1748 head = create_page_buffers(page, inode, 1749 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1750 1751 /* 1752 * Be very careful. We have no exclusion from block_dirty_folio 1753 * here, and the (potentially unmapped) buffers may become dirty at 1754 * any time. If a buffer becomes dirty here after we've inspected it 1755 * then we just miss that fact, and the page stays dirty. 1756 * 1757 * Buffers outside i_size may be dirtied by block_dirty_folio; 1758 * handle that here by just cleaning them. 1759 */ 1760 1761 bh = head; 1762 blocksize = bh->b_size; 1763 bbits = block_size_bits(blocksize); 1764 1765 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1766 last_block = (i_size_read(inode) - 1) >> bbits; 1767 1768 /* 1769 * Get all the dirty buffers mapped to disk addresses and 1770 * handle any aliases from the underlying blockdev's mapping. 1771 */ 1772 do { 1773 if (block > last_block) { 1774 /* 1775 * mapped buffers outside i_size will occur, because 1776 * this page can be outside i_size when there is a 1777 * truncate in progress. 1778 */ 1779 /* 1780 * The buffer was zeroed by block_write_full_page() 1781 */ 1782 clear_buffer_dirty(bh); 1783 set_buffer_uptodate(bh); 1784 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1785 buffer_dirty(bh)) { 1786 WARN_ON(bh->b_size != blocksize); 1787 err = get_block(inode, block, bh, 1); 1788 if (err) 1789 goto recover; 1790 clear_buffer_delay(bh); 1791 if (buffer_new(bh)) { 1792 /* blockdev mappings never come here */ 1793 clear_buffer_new(bh); 1794 clean_bdev_bh_alias(bh); 1795 } 1796 } 1797 bh = bh->b_this_page; 1798 block++; 1799 } while (bh != head); 1800 1801 do { 1802 if (!buffer_mapped(bh)) 1803 continue; 1804 /* 1805 * If it's a fully non-blocking write attempt and we cannot 1806 * lock the buffer then redirty the page. Note that this can 1807 * potentially cause a busy-wait loop from writeback threads 1808 * and kswapd activity, but those code paths have their own 1809 * higher-level throttling. 1810 */ 1811 if (wbc->sync_mode != WB_SYNC_NONE) { 1812 lock_buffer(bh); 1813 } else if (!trylock_buffer(bh)) { 1814 redirty_page_for_writepage(wbc, page); 1815 continue; 1816 } 1817 if (test_clear_buffer_dirty(bh)) { 1818 mark_buffer_async_write_endio(bh, handler); 1819 } else { 1820 unlock_buffer(bh); 1821 } 1822 } while ((bh = bh->b_this_page) != head); 1823 1824 /* 1825 * The page and its buffers are protected by PageWriteback(), so we can 1826 * drop the bh refcounts early. 1827 */ 1828 BUG_ON(PageWriteback(page)); 1829 set_page_writeback(page); 1830 1831 do { 1832 struct buffer_head *next = bh->b_this_page; 1833 if (buffer_async_write(bh)) { 1834 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1835 nr_underway++; 1836 } 1837 bh = next; 1838 } while (bh != head); 1839 unlock_page(page); 1840 1841 err = 0; 1842 done: 1843 if (nr_underway == 0) { 1844 /* 1845 * The page was marked dirty, but the buffers were 1846 * clean. Someone wrote them back by hand with 1847 * write_dirty_buffer/submit_bh. A rare case. 1848 */ 1849 end_page_writeback(page); 1850 1851 /* 1852 * The page and buffer_heads can be released at any time from 1853 * here on. 1854 */ 1855 } 1856 return err; 1857 1858 recover: 1859 /* 1860 * ENOSPC, or some other error. We may already have added some 1861 * blocks to the file, so we need to write these out to avoid 1862 * exposing stale data. 1863 * The page is currently locked and not marked for writeback 1864 */ 1865 bh = head; 1866 /* Recovery: lock and submit the mapped buffers */ 1867 do { 1868 if (buffer_mapped(bh) && buffer_dirty(bh) && 1869 !buffer_delay(bh)) { 1870 lock_buffer(bh); 1871 mark_buffer_async_write_endio(bh, handler); 1872 } else { 1873 /* 1874 * The buffer may have been set dirty during 1875 * attachment to a dirty page. 1876 */ 1877 clear_buffer_dirty(bh); 1878 } 1879 } while ((bh = bh->b_this_page) != head); 1880 SetPageError(page); 1881 BUG_ON(PageWriteback(page)); 1882 mapping_set_error(page->mapping, err); 1883 set_page_writeback(page); 1884 do { 1885 struct buffer_head *next = bh->b_this_page; 1886 if (buffer_async_write(bh)) { 1887 clear_buffer_dirty(bh); 1888 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1889 nr_underway++; 1890 } 1891 bh = next; 1892 } while (bh != head); 1893 unlock_page(page); 1894 goto done; 1895 } 1896 EXPORT_SYMBOL(__block_write_full_page); 1897 1898 /* 1899 * If a page has any new buffers, zero them out here, and mark them uptodate 1900 * and dirty so they'll be written out (in order to prevent uninitialised 1901 * block data from leaking). And clear the new bit. 1902 */ 1903 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1904 { 1905 unsigned int block_start, block_end; 1906 struct buffer_head *head, *bh; 1907 1908 BUG_ON(!PageLocked(page)); 1909 if (!page_has_buffers(page)) 1910 return; 1911 1912 bh = head = page_buffers(page); 1913 block_start = 0; 1914 do { 1915 block_end = block_start + bh->b_size; 1916 1917 if (buffer_new(bh)) { 1918 if (block_end > from && block_start < to) { 1919 if (!PageUptodate(page)) { 1920 unsigned start, size; 1921 1922 start = max(from, block_start); 1923 size = min(to, block_end) - start; 1924 1925 zero_user(page, start, size); 1926 set_buffer_uptodate(bh); 1927 } 1928 1929 clear_buffer_new(bh); 1930 mark_buffer_dirty(bh); 1931 } 1932 } 1933 1934 block_start = block_end; 1935 bh = bh->b_this_page; 1936 } while (bh != head); 1937 } 1938 EXPORT_SYMBOL(page_zero_new_buffers); 1939 1940 static void 1941 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1942 const struct iomap *iomap) 1943 { 1944 loff_t offset = block << inode->i_blkbits; 1945 1946 bh->b_bdev = iomap->bdev; 1947 1948 /* 1949 * Block points to offset in file we need to map, iomap contains 1950 * the offset at which the map starts. If the map ends before the 1951 * current block, then do not map the buffer and let the caller 1952 * handle it. 1953 */ 1954 BUG_ON(offset >= iomap->offset + iomap->length); 1955 1956 switch (iomap->type) { 1957 case IOMAP_HOLE: 1958 /* 1959 * If the buffer is not up to date or beyond the current EOF, 1960 * we need to mark it as new to ensure sub-block zeroing is 1961 * executed if necessary. 1962 */ 1963 if (!buffer_uptodate(bh) || 1964 (offset >= i_size_read(inode))) 1965 set_buffer_new(bh); 1966 break; 1967 case IOMAP_DELALLOC: 1968 if (!buffer_uptodate(bh) || 1969 (offset >= i_size_read(inode))) 1970 set_buffer_new(bh); 1971 set_buffer_uptodate(bh); 1972 set_buffer_mapped(bh); 1973 set_buffer_delay(bh); 1974 break; 1975 case IOMAP_UNWRITTEN: 1976 /* 1977 * For unwritten regions, we always need to ensure that regions 1978 * in the block we are not writing to are zeroed. Mark the 1979 * buffer as new to ensure this. 1980 */ 1981 set_buffer_new(bh); 1982 set_buffer_unwritten(bh); 1983 fallthrough; 1984 case IOMAP_MAPPED: 1985 if ((iomap->flags & IOMAP_F_NEW) || 1986 offset >= i_size_read(inode)) 1987 set_buffer_new(bh); 1988 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1989 inode->i_blkbits; 1990 set_buffer_mapped(bh); 1991 break; 1992 } 1993 } 1994 1995 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 1996 get_block_t *get_block, const struct iomap *iomap) 1997 { 1998 unsigned from = pos & (PAGE_SIZE - 1); 1999 unsigned to = from + len; 2000 struct inode *inode = folio->mapping->host; 2001 unsigned block_start, block_end; 2002 sector_t block; 2003 int err = 0; 2004 unsigned blocksize, bbits; 2005 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2006 2007 BUG_ON(!folio_test_locked(folio)); 2008 BUG_ON(from > PAGE_SIZE); 2009 BUG_ON(to > PAGE_SIZE); 2010 BUG_ON(from > to); 2011 2012 head = create_page_buffers(&folio->page, inode, 0); 2013 blocksize = head->b_size; 2014 bbits = block_size_bits(blocksize); 2015 2016 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2017 2018 for(bh = head, block_start = 0; bh != head || !block_start; 2019 block++, block_start=block_end, bh = bh->b_this_page) { 2020 block_end = block_start + blocksize; 2021 if (block_end <= from || block_start >= to) { 2022 if (folio_test_uptodate(folio)) { 2023 if (!buffer_uptodate(bh)) 2024 set_buffer_uptodate(bh); 2025 } 2026 continue; 2027 } 2028 if (buffer_new(bh)) 2029 clear_buffer_new(bh); 2030 if (!buffer_mapped(bh)) { 2031 WARN_ON(bh->b_size != blocksize); 2032 if (get_block) { 2033 err = get_block(inode, block, bh, 1); 2034 if (err) 2035 break; 2036 } else { 2037 iomap_to_bh(inode, block, bh, iomap); 2038 } 2039 2040 if (buffer_new(bh)) { 2041 clean_bdev_bh_alias(bh); 2042 if (folio_test_uptodate(folio)) { 2043 clear_buffer_new(bh); 2044 set_buffer_uptodate(bh); 2045 mark_buffer_dirty(bh); 2046 continue; 2047 } 2048 if (block_end > to || block_start < from) 2049 folio_zero_segments(folio, 2050 to, block_end, 2051 block_start, from); 2052 continue; 2053 } 2054 } 2055 if (folio_test_uptodate(folio)) { 2056 if (!buffer_uptodate(bh)) 2057 set_buffer_uptodate(bh); 2058 continue; 2059 } 2060 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2061 !buffer_unwritten(bh) && 2062 (block_start < from || block_end > to)) { 2063 bh_read_nowait(bh, 0); 2064 *wait_bh++=bh; 2065 } 2066 } 2067 /* 2068 * If we issued read requests - let them complete. 2069 */ 2070 while(wait_bh > wait) { 2071 wait_on_buffer(*--wait_bh); 2072 if (!buffer_uptodate(*wait_bh)) 2073 err = -EIO; 2074 } 2075 if (unlikely(err)) 2076 page_zero_new_buffers(&folio->page, from, to); 2077 return err; 2078 } 2079 2080 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2081 get_block_t *get_block) 2082 { 2083 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2084 NULL); 2085 } 2086 EXPORT_SYMBOL(__block_write_begin); 2087 2088 static int __block_commit_write(struct inode *inode, struct page *page, 2089 unsigned from, unsigned to) 2090 { 2091 unsigned block_start, block_end; 2092 int partial = 0; 2093 unsigned blocksize; 2094 struct buffer_head *bh, *head; 2095 2096 bh = head = page_buffers(page); 2097 blocksize = bh->b_size; 2098 2099 block_start = 0; 2100 do { 2101 block_end = block_start + blocksize; 2102 if (block_end <= from || block_start >= to) { 2103 if (!buffer_uptodate(bh)) 2104 partial = 1; 2105 } else { 2106 set_buffer_uptodate(bh); 2107 mark_buffer_dirty(bh); 2108 } 2109 if (buffer_new(bh)) 2110 clear_buffer_new(bh); 2111 2112 block_start = block_end; 2113 bh = bh->b_this_page; 2114 } while (bh != head); 2115 2116 /* 2117 * If this is a partial write which happened to make all buffers 2118 * uptodate then we can optimize away a bogus read_folio() for 2119 * the next read(). Here we 'discover' whether the page went 2120 * uptodate as a result of this (potentially partial) write. 2121 */ 2122 if (!partial) 2123 SetPageUptodate(page); 2124 return 0; 2125 } 2126 2127 /* 2128 * block_write_begin takes care of the basic task of block allocation and 2129 * bringing partial write blocks uptodate first. 2130 * 2131 * The filesystem needs to handle block truncation upon failure. 2132 */ 2133 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2134 struct page **pagep, get_block_t *get_block) 2135 { 2136 pgoff_t index = pos >> PAGE_SHIFT; 2137 struct page *page; 2138 int status; 2139 2140 page = grab_cache_page_write_begin(mapping, index); 2141 if (!page) 2142 return -ENOMEM; 2143 2144 status = __block_write_begin(page, pos, len, get_block); 2145 if (unlikely(status)) { 2146 unlock_page(page); 2147 put_page(page); 2148 page = NULL; 2149 } 2150 2151 *pagep = page; 2152 return status; 2153 } 2154 EXPORT_SYMBOL(block_write_begin); 2155 2156 int block_write_end(struct file *file, struct address_space *mapping, 2157 loff_t pos, unsigned len, unsigned copied, 2158 struct page *page, void *fsdata) 2159 { 2160 struct inode *inode = mapping->host; 2161 unsigned start; 2162 2163 start = pos & (PAGE_SIZE - 1); 2164 2165 if (unlikely(copied < len)) { 2166 /* 2167 * The buffers that were written will now be uptodate, so 2168 * we don't have to worry about a read_folio reading them 2169 * and overwriting a partial write. However if we have 2170 * encountered a short write and only partially written 2171 * into a buffer, it will not be marked uptodate, so a 2172 * read_folio might come in and destroy our partial write. 2173 * 2174 * Do the simplest thing, and just treat any short write to a 2175 * non uptodate page as a zero-length write, and force the 2176 * caller to redo the whole thing. 2177 */ 2178 if (!PageUptodate(page)) 2179 copied = 0; 2180 2181 page_zero_new_buffers(page, start+copied, start+len); 2182 } 2183 flush_dcache_page(page); 2184 2185 /* This could be a short (even 0-length) commit */ 2186 __block_commit_write(inode, page, start, start+copied); 2187 2188 return copied; 2189 } 2190 EXPORT_SYMBOL(block_write_end); 2191 2192 int generic_write_end(struct file *file, struct address_space *mapping, 2193 loff_t pos, unsigned len, unsigned copied, 2194 struct page *page, void *fsdata) 2195 { 2196 struct inode *inode = mapping->host; 2197 loff_t old_size = inode->i_size; 2198 bool i_size_changed = false; 2199 2200 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2201 2202 /* 2203 * No need to use i_size_read() here, the i_size cannot change under us 2204 * because we hold i_rwsem. 2205 * 2206 * But it's important to update i_size while still holding page lock: 2207 * page writeout could otherwise come in and zero beyond i_size. 2208 */ 2209 if (pos + copied > inode->i_size) { 2210 i_size_write(inode, pos + copied); 2211 i_size_changed = true; 2212 } 2213 2214 unlock_page(page); 2215 put_page(page); 2216 2217 if (old_size < pos) 2218 pagecache_isize_extended(inode, old_size, pos); 2219 /* 2220 * Don't mark the inode dirty under page lock. First, it unnecessarily 2221 * makes the holding time of page lock longer. Second, it forces lock 2222 * ordering of page lock and transaction start for journaling 2223 * filesystems. 2224 */ 2225 if (i_size_changed) 2226 mark_inode_dirty(inode); 2227 return copied; 2228 } 2229 EXPORT_SYMBOL(generic_write_end); 2230 2231 /* 2232 * block_is_partially_uptodate checks whether buffers within a folio are 2233 * uptodate or not. 2234 * 2235 * Returns true if all buffers which correspond to the specified part 2236 * of the folio are uptodate. 2237 */ 2238 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2239 { 2240 unsigned block_start, block_end, blocksize; 2241 unsigned to; 2242 struct buffer_head *bh, *head; 2243 bool ret = true; 2244 2245 head = folio_buffers(folio); 2246 if (!head) 2247 return false; 2248 blocksize = head->b_size; 2249 to = min_t(unsigned, folio_size(folio) - from, count); 2250 to = from + to; 2251 if (from < blocksize && to > folio_size(folio) - blocksize) 2252 return false; 2253 2254 bh = head; 2255 block_start = 0; 2256 do { 2257 block_end = block_start + blocksize; 2258 if (block_end > from && block_start < to) { 2259 if (!buffer_uptodate(bh)) { 2260 ret = false; 2261 break; 2262 } 2263 if (block_end >= to) 2264 break; 2265 } 2266 block_start = block_end; 2267 bh = bh->b_this_page; 2268 } while (bh != head); 2269 2270 return ret; 2271 } 2272 EXPORT_SYMBOL(block_is_partially_uptodate); 2273 2274 /* 2275 * Generic "read_folio" function for block devices that have the normal 2276 * get_block functionality. This is most of the block device filesystems. 2277 * Reads the folio asynchronously --- the unlock_buffer() and 2278 * set/clear_buffer_uptodate() functions propagate buffer state into the 2279 * folio once IO has completed. 2280 */ 2281 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2282 { 2283 struct inode *inode = folio->mapping->host; 2284 sector_t iblock, lblock; 2285 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2286 unsigned int blocksize, bbits; 2287 int nr, i; 2288 int fully_mapped = 1; 2289 bool page_error = false; 2290 loff_t limit = i_size_read(inode); 2291 2292 /* This is needed for ext4. */ 2293 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2294 limit = inode->i_sb->s_maxbytes; 2295 2296 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2297 2298 head = create_page_buffers(&folio->page, inode, 0); 2299 blocksize = head->b_size; 2300 bbits = block_size_bits(blocksize); 2301 2302 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2303 lblock = (limit+blocksize-1) >> bbits; 2304 bh = head; 2305 nr = 0; 2306 i = 0; 2307 2308 do { 2309 if (buffer_uptodate(bh)) 2310 continue; 2311 2312 if (!buffer_mapped(bh)) { 2313 int err = 0; 2314 2315 fully_mapped = 0; 2316 if (iblock < lblock) { 2317 WARN_ON(bh->b_size != blocksize); 2318 err = get_block(inode, iblock, bh, 0); 2319 if (err) { 2320 folio_set_error(folio); 2321 page_error = true; 2322 } 2323 } 2324 if (!buffer_mapped(bh)) { 2325 folio_zero_range(folio, i * blocksize, 2326 blocksize); 2327 if (!err) 2328 set_buffer_uptodate(bh); 2329 continue; 2330 } 2331 /* 2332 * get_block() might have updated the buffer 2333 * synchronously 2334 */ 2335 if (buffer_uptodate(bh)) 2336 continue; 2337 } 2338 arr[nr++] = bh; 2339 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2340 2341 if (fully_mapped) 2342 folio_set_mappedtodisk(folio); 2343 2344 if (!nr) { 2345 /* 2346 * All buffers are uptodate - we can set the folio uptodate 2347 * as well. But not if get_block() returned an error. 2348 */ 2349 if (!page_error) 2350 folio_mark_uptodate(folio); 2351 folio_unlock(folio); 2352 return 0; 2353 } 2354 2355 /* Stage two: lock the buffers */ 2356 for (i = 0; i < nr; i++) { 2357 bh = arr[i]; 2358 lock_buffer(bh); 2359 mark_buffer_async_read(bh); 2360 } 2361 2362 /* 2363 * Stage 3: start the IO. Check for uptodateness 2364 * inside the buffer lock in case another process reading 2365 * the underlying blockdev brought it uptodate (the sct fix). 2366 */ 2367 for (i = 0; i < nr; i++) { 2368 bh = arr[i]; 2369 if (buffer_uptodate(bh)) 2370 end_buffer_async_read(bh, 1); 2371 else 2372 submit_bh(REQ_OP_READ, bh); 2373 } 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(block_read_full_folio); 2377 2378 /* utility function for filesystems that need to do work on expanding 2379 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2380 * deal with the hole. 2381 */ 2382 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2383 { 2384 struct address_space *mapping = inode->i_mapping; 2385 const struct address_space_operations *aops = mapping->a_ops; 2386 struct page *page; 2387 void *fsdata = NULL; 2388 int err; 2389 2390 err = inode_newsize_ok(inode, size); 2391 if (err) 2392 goto out; 2393 2394 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2395 if (err) 2396 goto out; 2397 2398 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2399 BUG_ON(err > 0); 2400 2401 out: 2402 return err; 2403 } 2404 EXPORT_SYMBOL(generic_cont_expand_simple); 2405 2406 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2407 loff_t pos, loff_t *bytes) 2408 { 2409 struct inode *inode = mapping->host; 2410 const struct address_space_operations *aops = mapping->a_ops; 2411 unsigned int blocksize = i_blocksize(inode); 2412 struct page *page; 2413 void *fsdata = NULL; 2414 pgoff_t index, curidx; 2415 loff_t curpos; 2416 unsigned zerofrom, offset, len; 2417 int err = 0; 2418 2419 index = pos >> PAGE_SHIFT; 2420 offset = pos & ~PAGE_MASK; 2421 2422 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2423 zerofrom = curpos & ~PAGE_MASK; 2424 if (zerofrom & (blocksize-1)) { 2425 *bytes |= (blocksize-1); 2426 (*bytes)++; 2427 } 2428 len = PAGE_SIZE - zerofrom; 2429 2430 err = aops->write_begin(file, mapping, curpos, len, 2431 &page, &fsdata); 2432 if (err) 2433 goto out; 2434 zero_user(page, zerofrom, len); 2435 err = aops->write_end(file, mapping, curpos, len, len, 2436 page, fsdata); 2437 if (err < 0) 2438 goto out; 2439 BUG_ON(err != len); 2440 err = 0; 2441 2442 balance_dirty_pages_ratelimited(mapping); 2443 2444 if (fatal_signal_pending(current)) { 2445 err = -EINTR; 2446 goto out; 2447 } 2448 } 2449 2450 /* page covers the boundary, find the boundary offset */ 2451 if (index == curidx) { 2452 zerofrom = curpos & ~PAGE_MASK; 2453 /* if we will expand the thing last block will be filled */ 2454 if (offset <= zerofrom) { 2455 goto out; 2456 } 2457 if (zerofrom & (blocksize-1)) { 2458 *bytes |= (blocksize-1); 2459 (*bytes)++; 2460 } 2461 len = offset - zerofrom; 2462 2463 err = aops->write_begin(file, mapping, curpos, len, 2464 &page, &fsdata); 2465 if (err) 2466 goto out; 2467 zero_user(page, zerofrom, len); 2468 err = aops->write_end(file, mapping, curpos, len, len, 2469 page, fsdata); 2470 if (err < 0) 2471 goto out; 2472 BUG_ON(err != len); 2473 err = 0; 2474 } 2475 out: 2476 return err; 2477 } 2478 2479 /* 2480 * For moronic filesystems that do not allow holes in file. 2481 * We may have to extend the file. 2482 */ 2483 int cont_write_begin(struct file *file, struct address_space *mapping, 2484 loff_t pos, unsigned len, 2485 struct page **pagep, void **fsdata, 2486 get_block_t *get_block, loff_t *bytes) 2487 { 2488 struct inode *inode = mapping->host; 2489 unsigned int blocksize = i_blocksize(inode); 2490 unsigned int zerofrom; 2491 int err; 2492 2493 err = cont_expand_zero(file, mapping, pos, bytes); 2494 if (err) 2495 return err; 2496 2497 zerofrom = *bytes & ~PAGE_MASK; 2498 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2499 *bytes |= (blocksize-1); 2500 (*bytes)++; 2501 } 2502 2503 return block_write_begin(mapping, pos, len, pagep, get_block); 2504 } 2505 EXPORT_SYMBOL(cont_write_begin); 2506 2507 int block_commit_write(struct page *page, unsigned from, unsigned to) 2508 { 2509 struct inode *inode = page->mapping->host; 2510 __block_commit_write(inode,page,from,to); 2511 return 0; 2512 } 2513 EXPORT_SYMBOL(block_commit_write); 2514 2515 /* 2516 * block_page_mkwrite() is not allowed to change the file size as it gets 2517 * called from a page fault handler when a page is first dirtied. Hence we must 2518 * be careful to check for EOF conditions here. We set the page up correctly 2519 * for a written page which means we get ENOSPC checking when writing into 2520 * holes and correct delalloc and unwritten extent mapping on filesystems that 2521 * support these features. 2522 * 2523 * We are not allowed to take the i_mutex here so we have to play games to 2524 * protect against truncate races as the page could now be beyond EOF. Because 2525 * truncate writes the inode size before removing pages, once we have the 2526 * page lock we can determine safely if the page is beyond EOF. If it is not 2527 * beyond EOF, then the page is guaranteed safe against truncation until we 2528 * unlock the page. 2529 * 2530 * Direct callers of this function should protect against filesystem freezing 2531 * using sb_start_pagefault() - sb_end_pagefault() functions. 2532 */ 2533 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2534 get_block_t get_block) 2535 { 2536 struct page *page = vmf->page; 2537 struct inode *inode = file_inode(vma->vm_file); 2538 unsigned long end; 2539 loff_t size; 2540 int ret; 2541 2542 lock_page(page); 2543 size = i_size_read(inode); 2544 if ((page->mapping != inode->i_mapping) || 2545 (page_offset(page) > size)) { 2546 /* We overload EFAULT to mean page got truncated */ 2547 ret = -EFAULT; 2548 goto out_unlock; 2549 } 2550 2551 /* page is wholly or partially inside EOF */ 2552 if (((page->index + 1) << PAGE_SHIFT) > size) 2553 end = size & ~PAGE_MASK; 2554 else 2555 end = PAGE_SIZE; 2556 2557 ret = __block_write_begin(page, 0, end, get_block); 2558 if (!ret) 2559 ret = block_commit_write(page, 0, end); 2560 2561 if (unlikely(ret < 0)) 2562 goto out_unlock; 2563 set_page_dirty(page); 2564 wait_for_stable_page(page); 2565 return 0; 2566 out_unlock: 2567 unlock_page(page); 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(block_page_mkwrite); 2571 2572 int block_truncate_page(struct address_space *mapping, 2573 loff_t from, get_block_t *get_block) 2574 { 2575 pgoff_t index = from >> PAGE_SHIFT; 2576 unsigned offset = from & (PAGE_SIZE-1); 2577 unsigned blocksize; 2578 sector_t iblock; 2579 unsigned length, pos; 2580 struct inode *inode = mapping->host; 2581 struct page *page; 2582 struct buffer_head *bh; 2583 int err = 0; 2584 2585 blocksize = i_blocksize(inode); 2586 length = offset & (blocksize - 1); 2587 2588 /* Block boundary? Nothing to do */ 2589 if (!length) 2590 return 0; 2591 2592 length = blocksize - length; 2593 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2594 2595 page = grab_cache_page(mapping, index); 2596 if (!page) 2597 return -ENOMEM; 2598 2599 if (!page_has_buffers(page)) 2600 create_empty_buffers(page, blocksize, 0); 2601 2602 /* Find the buffer that contains "offset" */ 2603 bh = page_buffers(page); 2604 pos = blocksize; 2605 while (offset >= pos) { 2606 bh = bh->b_this_page; 2607 iblock++; 2608 pos += blocksize; 2609 } 2610 2611 if (!buffer_mapped(bh)) { 2612 WARN_ON(bh->b_size != blocksize); 2613 err = get_block(inode, iblock, bh, 0); 2614 if (err) 2615 goto unlock; 2616 /* unmapped? It's a hole - nothing to do */ 2617 if (!buffer_mapped(bh)) 2618 goto unlock; 2619 } 2620 2621 /* Ok, it's mapped. Make sure it's up-to-date */ 2622 if (PageUptodate(page)) 2623 set_buffer_uptodate(bh); 2624 2625 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2626 err = bh_read(bh, 0); 2627 /* Uhhuh. Read error. Complain and punt. */ 2628 if (err < 0) 2629 goto unlock; 2630 } 2631 2632 zero_user(page, offset, length); 2633 mark_buffer_dirty(bh); 2634 2635 unlock: 2636 unlock_page(page); 2637 put_page(page); 2638 2639 return err; 2640 } 2641 EXPORT_SYMBOL(block_truncate_page); 2642 2643 /* 2644 * The generic ->writepage function for buffer-backed address_spaces 2645 */ 2646 int block_write_full_page(struct page *page, get_block_t *get_block, 2647 struct writeback_control *wbc) 2648 { 2649 struct inode * const inode = page->mapping->host; 2650 loff_t i_size = i_size_read(inode); 2651 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2652 unsigned offset; 2653 2654 /* Is the page fully inside i_size? */ 2655 if (page->index < end_index) 2656 return __block_write_full_page(inode, page, get_block, wbc, 2657 end_buffer_async_write); 2658 2659 /* Is the page fully outside i_size? (truncate in progress) */ 2660 offset = i_size & (PAGE_SIZE-1); 2661 if (page->index >= end_index+1 || !offset) { 2662 unlock_page(page); 2663 return 0; /* don't care */ 2664 } 2665 2666 /* 2667 * The page straddles i_size. It must be zeroed out on each and every 2668 * writepage invocation because it may be mmapped. "A file is mapped 2669 * in multiples of the page size. For a file that is not a multiple of 2670 * the page size, the remaining memory is zeroed when mapped, and 2671 * writes to that region are not written out to the file." 2672 */ 2673 zero_user_segment(page, offset, PAGE_SIZE); 2674 return __block_write_full_page(inode, page, get_block, wbc, 2675 end_buffer_async_write); 2676 } 2677 EXPORT_SYMBOL(block_write_full_page); 2678 2679 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2680 get_block_t *get_block) 2681 { 2682 struct inode *inode = mapping->host; 2683 struct buffer_head tmp = { 2684 .b_size = i_blocksize(inode), 2685 }; 2686 2687 get_block(inode, block, &tmp, 0); 2688 return tmp.b_blocknr; 2689 } 2690 EXPORT_SYMBOL(generic_block_bmap); 2691 2692 static void end_bio_bh_io_sync(struct bio *bio) 2693 { 2694 struct buffer_head *bh = bio->bi_private; 2695 2696 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2697 set_bit(BH_Quiet, &bh->b_state); 2698 2699 bh->b_end_io(bh, !bio->bi_status); 2700 bio_put(bio); 2701 } 2702 2703 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2704 struct writeback_control *wbc) 2705 { 2706 const enum req_op op = opf & REQ_OP_MASK; 2707 struct bio *bio; 2708 2709 BUG_ON(!buffer_locked(bh)); 2710 BUG_ON(!buffer_mapped(bh)); 2711 BUG_ON(!bh->b_end_io); 2712 BUG_ON(buffer_delay(bh)); 2713 BUG_ON(buffer_unwritten(bh)); 2714 2715 /* 2716 * Only clear out a write error when rewriting 2717 */ 2718 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2719 clear_buffer_write_io_error(bh); 2720 2721 if (buffer_meta(bh)) 2722 opf |= REQ_META; 2723 if (buffer_prio(bh)) 2724 opf |= REQ_PRIO; 2725 2726 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2727 2728 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2729 2730 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2731 2732 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2733 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 2734 2735 bio->bi_end_io = end_bio_bh_io_sync; 2736 bio->bi_private = bh; 2737 2738 /* Take care of bh's that straddle the end of the device */ 2739 guard_bio_eod(bio); 2740 2741 if (wbc) { 2742 wbc_init_bio(wbc, bio); 2743 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2744 } 2745 2746 submit_bio(bio); 2747 } 2748 2749 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2750 { 2751 submit_bh_wbc(opf, bh, NULL); 2752 } 2753 EXPORT_SYMBOL(submit_bh); 2754 2755 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2756 { 2757 lock_buffer(bh); 2758 if (!test_clear_buffer_dirty(bh)) { 2759 unlock_buffer(bh); 2760 return; 2761 } 2762 bh->b_end_io = end_buffer_write_sync; 2763 get_bh(bh); 2764 submit_bh(REQ_OP_WRITE | op_flags, bh); 2765 } 2766 EXPORT_SYMBOL(write_dirty_buffer); 2767 2768 /* 2769 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2770 * and then start new I/O and then wait upon it. The caller must have a ref on 2771 * the buffer_head. 2772 */ 2773 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2774 { 2775 WARN_ON(atomic_read(&bh->b_count) < 1); 2776 lock_buffer(bh); 2777 if (test_clear_buffer_dirty(bh)) { 2778 /* 2779 * The bh should be mapped, but it might not be if the 2780 * device was hot-removed. Not much we can do but fail the I/O. 2781 */ 2782 if (!buffer_mapped(bh)) { 2783 unlock_buffer(bh); 2784 return -EIO; 2785 } 2786 2787 get_bh(bh); 2788 bh->b_end_io = end_buffer_write_sync; 2789 submit_bh(REQ_OP_WRITE | op_flags, bh); 2790 wait_on_buffer(bh); 2791 if (!buffer_uptodate(bh)) 2792 return -EIO; 2793 } else { 2794 unlock_buffer(bh); 2795 } 2796 return 0; 2797 } 2798 EXPORT_SYMBOL(__sync_dirty_buffer); 2799 2800 int sync_dirty_buffer(struct buffer_head *bh) 2801 { 2802 return __sync_dirty_buffer(bh, REQ_SYNC); 2803 } 2804 EXPORT_SYMBOL(sync_dirty_buffer); 2805 2806 /* 2807 * try_to_free_buffers() checks if all the buffers on this particular folio 2808 * are unused, and releases them if so. 2809 * 2810 * Exclusion against try_to_free_buffers may be obtained by either 2811 * locking the folio or by holding its mapping's private_lock. 2812 * 2813 * If the folio is dirty but all the buffers are clean then we need to 2814 * be sure to mark the folio clean as well. This is because the folio 2815 * may be against a block device, and a later reattachment of buffers 2816 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2817 * filesystem data on the same device. 2818 * 2819 * The same applies to regular filesystem folios: if all the buffers are 2820 * clean then we set the folio clean and proceed. To do that, we require 2821 * total exclusion from block_dirty_folio(). That is obtained with 2822 * private_lock. 2823 * 2824 * try_to_free_buffers() is non-blocking. 2825 */ 2826 static inline int buffer_busy(struct buffer_head *bh) 2827 { 2828 return atomic_read(&bh->b_count) | 2829 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2830 } 2831 2832 static bool 2833 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2834 { 2835 struct buffer_head *head = folio_buffers(folio); 2836 struct buffer_head *bh; 2837 2838 bh = head; 2839 do { 2840 if (buffer_busy(bh)) 2841 goto failed; 2842 bh = bh->b_this_page; 2843 } while (bh != head); 2844 2845 do { 2846 struct buffer_head *next = bh->b_this_page; 2847 2848 if (bh->b_assoc_map) 2849 __remove_assoc_queue(bh); 2850 bh = next; 2851 } while (bh != head); 2852 *buffers_to_free = head; 2853 folio_detach_private(folio); 2854 return true; 2855 failed: 2856 return false; 2857 } 2858 2859 bool try_to_free_buffers(struct folio *folio) 2860 { 2861 struct address_space * const mapping = folio->mapping; 2862 struct buffer_head *buffers_to_free = NULL; 2863 bool ret = 0; 2864 2865 BUG_ON(!folio_test_locked(folio)); 2866 if (folio_test_writeback(folio)) 2867 return false; 2868 2869 if (mapping == NULL) { /* can this still happen? */ 2870 ret = drop_buffers(folio, &buffers_to_free); 2871 goto out; 2872 } 2873 2874 spin_lock(&mapping->private_lock); 2875 ret = drop_buffers(folio, &buffers_to_free); 2876 2877 /* 2878 * If the filesystem writes its buffers by hand (eg ext3) 2879 * then we can have clean buffers against a dirty folio. We 2880 * clean the folio here; otherwise the VM will never notice 2881 * that the filesystem did any IO at all. 2882 * 2883 * Also, during truncate, discard_buffer will have marked all 2884 * the folio's buffers clean. We discover that here and clean 2885 * the folio also. 2886 * 2887 * private_lock must be held over this entire operation in order 2888 * to synchronise against block_dirty_folio and prevent the 2889 * dirty bit from being lost. 2890 */ 2891 if (ret) 2892 folio_cancel_dirty(folio); 2893 spin_unlock(&mapping->private_lock); 2894 out: 2895 if (buffers_to_free) { 2896 struct buffer_head *bh = buffers_to_free; 2897 2898 do { 2899 struct buffer_head *next = bh->b_this_page; 2900 free_buffer_head(bh); 2901 bh = next; 2902 } while (bh != buffers_to_free); 2903 } 2904 return ret; 2905 } 2906 EXPORT_SYMBOL(try_to_free_buffers); 2907 2908 /* 2909 * Buffer-head allocation 2910 */ 2911 static struct kmem_cache *bh_cachep __read_mostly; 2912 2913 /* 2914 * Once the number of bh's in the machine exceeds this level, we start 2915 * stripping them in writeback. 2916 */ 2917 static unsigned long max_buffer_heads; 2918 2919 int buffer_heads_over_limit; 2920 2921 struct bh_accounting { 2922 int nr; /* Number of live bh's */ 2923 int ratelimit; /* Limit cacheline bouncing */ 2924 }; 2925 2926 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2927 2928 static void recalc_bh_state(void) 2929 { 2930 int i; 2931 int tot = 0; 2932 2933 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2934 return; 2935 __this_cpu_write(bh_accounting.ratelimit, 0); 2936 for_each_online_cpu(i) 2937 tot += per_cpu(bh_accounting, i).nr; 2938 buffer_heads_over_limit = (tot > max_buffer_heads); 2939 } 2940 2941 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2942 { 2943 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2944 if (ret) { 2945 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2946 spin_lock_init(&ret->b_uptodate_lock); 2947 preempt_disable(); 2948 __this_cpu_inc(bh_accounting.nr); 2949 recalc_bh_state(); 2950 preempt_enable(); 2951 } 2952 return ret; 2953 } 2954 EXPORT_SYMBOL(alloc_buffer_head); 2955 2956 void free_buffer_head(struct buffer_head *bh) 2957 { 2958 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2959 kmem_cache_free(bh_cachep, bh); 2960 preempt_disable(); 2961 __this_cpu_dec(bh_accounting.nr); 2962 recalc_bh_state(); 2963 preempt_enable(); 2964 } 2965 EXPORT_SYMBOL(free_buffer_head); 2966 2967 static int buffer_exit_cpu_dead(unsigned int cpu) 2968 { 2969 int i; 2970 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2971 2972 for (i = 0; i < BH_LRU_SIZE; i++) { 2973 brelse(b->bhs[i]); 2974 b->bhs[i] = NULL; 2975 } 2976 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 2977 per_cpu(bh_accounting, cpu).nr = 0; 2978 return 0; 2979 } 2980 2981 /** 2982 * bh_uptodate_or_lock - Test whether the buffer is uptodate 2983 * @bh: struct buffer_head 2984 * 2985 * Return true if the buffer is up-to-date and false, 2986 * with the buffer locked, if not. 2987 */ 2988 int bh_uptodate_or_lock(struct buffer_head *bh) 2989 { 2990 if (!buffer_uptodate(bh)) { 2991 lock_buffer(bh); 2992 if (!buffer_uptodate(bh)) 2993 return 0; 2994 unlock_buffer(bh); 2995 } 2996 return 1; 2997 } 2998 EXPORT_SYMBOL(bh_uptodate_or_lock); 2999 3000 /** 3001 * __bh_read - Submit read for a locked buffer 3002 * @bh: struct buffer_head 3003 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3004 * @wait: wait until reading finish 3005 * 3006 * Returns zero on success or don't wait, and -EIO on error. 3007 */ 3008 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3009 { 3010 int ret = 0; 3011 3012 BUG_ON(!buffer_locked(bh)); 3013 3014 get_bh(bh); 3015 bh->b_end_io = end_buffer_read_sync; 3016 submit_bh(REQ_OP_READ | op_flags, bh); 3017 if (wait) { 3018 wait_on_buffer(bh); 3019 if (!buffer_uptodate(bh)) 3020 ret = -EIO; 3021 } 3022 return ret; 3023 } 3024 EXPORT_SYMBOL(__bh_read); 3025 3026 /** 3027 * __bh_read_batch - Submit read for a batch of unlocked buffers 3028 * @nr: entry number of the buffer batch 3029 * @bhs: a batch of struct buffer_head 3030 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3031 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3032 * buffer that cannot lock. 3033 * 3034 * Returns zero on success or don't wait, and -EIO on error. 3035 */ 3036 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3037 blk_opf_t op_flags, bool force_lock) 3038 { 3039 int i; 3040 3041 for (i = 0; i < nr; i++) { 3042 struct buffer_head *bh = bhs[i]; 3043 3044 if (buffer_uptodate(bh)) 3045 continue; 3046 3047 if (force_lock) 3048 lock_buffer(bh); 3049 else 3050 if (!trylock_buffer(bh)) 3051 continue; 3052 3053 if (buffer_uptodate(bh)) { 3054 unlock_buffer(bh); 3055 continue; 3056 } 3057 3058 bh->b_end_io = end_buffer_read_sync; 3059 get_bh(bh); 3060 submit_bh(REQ_OP_READ | op_flags, bh); 3061 } 3062 } 3063 EXPORT_SYMBOL(__bh_read_batch); 3064 3065 void __init buffer_init(void) 3066 { 3067 unsigned long nrpages; 3068 int ret; 3069 3070 bh_cachep = kmem_cache_create("buffer_head", 3071 sizeof(struct buffer_head), 0, 3072 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3073 SLAB_MEM_SPREAD), 3074 NULL); 3075 3076 /* 3077 * Limit the bh occupancy to 10% of ZONE_NORMAL 3078 */ 3079 nrpages = (nr_free_buffer_pages() * 10) / 100; 3080 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3081 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3082 NULL, buffer_exit_cpu_dead); 3083 WARN_ON(ret < 0); 3084 } 3085