1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 inline void touch_buffer(struct buffer_head *bh) 57 { 58 trace_block_touch_buffer(bh); 59 mark_page_accessed(bh->b_page); 60 } 61 EXPORT_SYMBOL(touch_buffer); 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 66 } 67 EXPORT_SYMBOL(__lock_buffer); 68 69 void unlock_buffer(struct buffer_head *bh) 70 { 71 clear_bit_unlock(BH_Lock, &bh->b_state); 72 smp_mb__after_atomic(); 73 wake_up_bit(&bh->b_state, BH_Lock); 74 } 75 EXPORT_SYMBOL(unlock_buffer); 76 77 /* 78 * Returns if the page has dirty or writeback buffers. If all the buffers 79 * are unlocked and clean then the PageDirty information is stale. If 80 * any of the pages are locked, it is assumed they are locked for IO. 81 */ 82 void buffer_check_dirty_writeback(struct page *page, 83 bool *dirty, bool *writeback) 84 { 85 struct buffer_head *head, *bh; 86 *dirty = false; 87 *writeback = false; 88 89 BUG_ON(!PageLocked(page)); 90 91 if (!page_has_buffers(page)) 92 return; 93 94 if (PageWriteback(page)) 95 *writeback = true; 96 97 head = page_buffers(page); 98 bh = head; 99 do { 100 if (buffer_locked(bh)) 101 *writeback = true; 102 103 if (buffer_dirty(bh)) 104 *dirty = true; 105 106 bh = bh->b_this_page; 107 } while (bh != head); 108 } 109 EXPORT_SYMBOL(buffer_check_dirty_writeback); 110 111 /* 112 * Block until a buffer comes unlocked. This doesn't stop it 113 * from becoming locked again - you have to lock it yourself 114 * if you want to preserve its state. 115 */ 116 void __wait_on_buffer(struct buffer_head * bh) 117 { 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 119 } 120 EXPORT_SYMBOL(__wait_on_buffer); 121 122 static void 123 __clear_page_buffers(struct page *page) 124 { 125 ClearPagePrivate(page); 126 set_page_private(page, 0); 127 put_page(page); 128 } 129 130 static void buffer_io_error(struct buffer_head *bh, char *msg) 131 { 132 if (!test_bit(BH_Quiet, &bh->b_state)) 133 printk_ratelimited(KERN_ERR 134 "Buffer I/O error on dev %pg, logical block %llu%s\n", 135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 136 } 137 138 /* 139 * End-of-IO handler helper function which does not touch the bh after 140 * unlocking it. 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 142 * a race there is benign: unlock_buffer() only use the bh's address for 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh 144 * itself. 145 */ 146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 147 { 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 /* This happens, due to failed read-ahead attempts. */ 152 clear_buffer_uptodate(bh); 153 } 154 unlock_buffer(bh); 155 } 156 157 /* 158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 159 * unlock the buffer. This is what ll_rw_block uses too. 160 */ 161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 162 { 163 __end_buffer_read_notouch(bh, uptodate); 164 put_bh(bh); 165 } 166 EXPORT_SYMBOL(end_buffer_read_sync); 167 168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 169 { 170 if (uptodate) { 171 set_buffer_uptodate(bh); 172 } else { 173 buffer_io_error(bh, ", lost sync page write"); 174 mark_buffer_write_io_error(bh); 175 clear_buffer_uptodate(bh); 176 } 177 unlock_buffer(bh); 178 put_bh(bh); 179 } 180 EXPORT_SYMBOL(end_buffer_write_sync); 181 182 /* 183 * Various filesystems appear to want __find_get_block to be non-blocking. 184 * But it's the page lock which protects the buffers. To get around this, 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's 186 * private_lock. 187 * 188 * Hack idea: for the blockdev mapping, private_lock contention 189 * may be quite high. This code could TryLock the page, and if that 190 * succeeds, there is no need to take private_lock. 191 */ 192 static struct buffer_head * 193 __find_get_block_slow(struct block_device *bdev, sector_t block) 194 { 195 struct inode *bd_inode = bdev->bd_inode; 196 struct address_space *bd_mapping = bd_inode->i_mapping; 197 struct buffer_head *ret = NULL; 198 pgoff_t index; 199 struct buffer_head *bh; 200 struct buffer_head *head; 201 struct page *page; 202 int all_mapped = 1; 203 204 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 205 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 206 if (!page) 207 goto out; 208 209 spin_lock(&bd_mapping->private_lock); 210 if (!page_has_buffers(page)) 211 goto out_unlock; 212 head = page_buffers(page); 213 bh = head; 214 do { 215 if (!buffer_mapped(bh)) 216 all_mapped = 0; 217 else if (bh->b_blocknr == block) { 218 ret = bh; 219 get_bh(bh); 220 goto out_unlock; 221 } 222 bh = bh->b_this_page; 223 } while (bh != head); 224 225 /* we might be here because some of the buffers on this page are 226 * not mapped. This is due to various races between 227 * file io on the block device and getblk. It gets dealt with 228 * elsewhere, don't buffer_error if we had some unmapped buffers 229 */ 230 if (all_mapped) { 231 printk("__find_get_block_slow() failed. " 232 "block=%llu, b_blocknr=%llu\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr); 235 printk("b_state=0x%08lx, b_size=%zu\n", 236 bh->b_state, bh->b_size); 237 printk("device %pg blocksize: %d\n", bdev, 238 1 << bd_inode->i_blkbits); 239 } 240 out_unlock: 241 spin_unlock(&bd_mapping->private_lock); 242 put_page(page); 243 out: 244 return ret; 245 } 246 247 /* 248 * I/O completion handler for block_read_full_page() - pages 249 * which come unlocked at the end of I/O. 250 */ 251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 252 { 253 unsigned long flags; 254 struct buffer_head *first; 255 struct buffer_head *tmp; 256 struct page *page; 257 int page_uptodate = 1; 258 259 BUG_ON(!buffer_async_read(bh)); 260 261 page = bh->b_page; 262 if (uptodate) { 263 set_buffer_uptodate(bh); 264 } else { 265 clear_buffer_uptodate(bh); 266 buffer_io_error(bh, ", async page read"); 267 SetPageError(page); 268 } 269 270 /* 271 * Be _very_ careful from here on. Bad things can happen if 272 * two buffer heads end IO at almost the same time and both 273 * decide that the page is now completely done. 274 */ 275 first = page_buffers(page); 276 local_irq_save(flags); 277 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 278 clear_buffer_async_read(bh); 279 unlock_buffer(bh); 280 tmp = bh; 281 do { 282 if (!buffer_uptodate(tmp)) 283 page_uptodate = 0; 284 if (buffer_async_read(tmp)) { 285 BUG_ON(!buffer_locked(tmp)); 286 goto still_busy; 287 } 288 tmp = tmp->b_this_page; 289 } while (tmp != bh); 290 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 291 local_irq_restore(flags); 292 293 /* 294 * If none of the buffers had errors and they are all 295 * uptodate then we can set the page uptodate. 296 */ 297 if (page_uptodate && !PageError(page)) 298 SetPageUptodate(page); 299 unlock_page(page); 300 return; 301 302 still_busy: 303 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 304 local_irq_restore(flags); 305 return; 306 } 307 308 /* 309 * Completion handler for block_write_full_page() - pages which are unlocked 310 * during I/O, and which have PageWriteback cleared upon I/O completion. 311 */ 312 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 313 { 314 unsigned long flags; 315 struct buffer_head *first; 316 struct buffer_head *tmp; 317 struct page *page; 318 319 BUG_ON(!buffer_async_write(bh)); 320 321 page = bh->b_page; 322 if (uptodate) { 323 set_buffer_uptodate(bh); 324 } else { 325 buffer_io_error(bh, ", lost async page write"); 326 mark_buffer_write_io_error(bh); 327 clear_buffer_uptodate(bh); 328 SetPageError(page); 329 } 330 331 first = page_buffers(page); 332 local_irq_save(flags); 333 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 334 335 clear_buffer_async_write(bh); 336 unlock_buffer(bh); 337 tmp = bh->b_this_page; 338 while (tmp != bh) { 339 if (buffer_async_write(tmp)) { 340 BUG_ON(!buffer_locked(tmp)); 341 goto still_busy; 342 } 343 tmp = tmp->b_this_page; 344 } 345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 346 local_irq_restore(flags); 347 end_page_writeback(page); 348 return; 349 350 still_busy: 351 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 352 local_irq_restore(flags); 353 return; 354 } 355 EXPORT_SYMBOL(end_buffer_async_write); 356 357 /* 358 * If a page's buffers are under async readin (end_buffer_async_read 359 * completion) then there is a possibility that another thread of 360 * control could lock one of the buffers after it has completed 361 * but while some of the other buffers have not completed. This 362 * locked buffer would confuse end_buffer_async_read() into not unlocking 363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 364 * that this buffer is not under async I/O. 365 * 366 * The page comes unlocked when it has no locked buffer_async buffers 367 * left. 368 * 369 * PageLocked prevents anyone starting new async I/O reads any of 370 * the buffers. 371 * 372 * PageWriteback is used to prevent simultaneous writeout of the same 373 * page. 374 * 375 * PageLocked prevents anyone from starting writeback of a page which is 376 * under read I/O (PageWriteback is only ever set against a locked page). 377 */ 378 static void mark_buffer_async_read(struct buffer_head *bh) 379 { 380 bh->b_end_io = end_buffer_async_read; 381 set_buffer_async_read(bh); 382 } 383 384 static void mark_buffer_async_write_endio(struct buffer_head *bh, 385 bh_end_io_t *handler) 386 { 387 bh->b_end_io = handler; 388 set_buffer_async_write(bh); 389 } 390 391 void mark_buffer_async_write(struct buffer_head *bh) 392 { 393 mark_buffer_async_write_endio(bh, end_buffer_async_write); 394 } 395 EXPORT_SYMBOL(mark_buffer_async_write); 396 397 398 /* 399 * fs/buffer.c contains helper functions for buffer-backed address space's 400 * fsync functions. A common requirement for buffer-based filesystems is 401 * that certain data from the backing blockdev needs to be written out for 402 * a successful fsync(). For example, ext2 indirect blocks need to be 403 * written back and waited upon before fsync() returns. 404 * 405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 407 * management of a list of dependent buffers at ->i_mapping->private_list. 408 * 409 * Locking is a little subtle: try_to_free_buffers() will remove buffers 410 * from their controlling inode's queue when they are being freed. But 411 * try_to_free_buffers() will be operating against the *blockdev* mapping 412 * at the time, not against the S_ISREG file which depends on those buffers. 413 * So the locking for private_list is via the private_lock in the address_space 414 * which backs the buffers. Which is different from the address_space 415 * against which the buffers are listed. So for a particular address_space, 416 * mapping->private_lock does *not* protect mapping->private_list! In fact, 417 * mapping->private_list will always be protected by the backing blockdev's 418 * ->private_lock. 419 * 420 * Which introduces a requirement: all buffers on an address_space's 421 * ->private_list must be from the same address_space: the blockdev's. 422 * 423 * address_spaces which do not place buffers at ->private_list via these 424 * utility functions are free to use private_lock and private_list for 425 * whatever they want. The only requirement is that list_empty(private_list) 426 * be true at clear_inode() time. 427 * 428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 429 * filesystems should do that. invalidate_inode_buffers() should just go 430 * BUG_ON(!list_empty). 431 * 432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 433 * take an address_space, not an inode. And it should be called 434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 435 * queued up. 436 * 437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 438 * list if it is already on a list. Because if the buffer is on a list, 439 * it *must* already be on the right one. If not, the filesystem is being 440 * silly. This will save a ton of locking. But first we have to ensure 441 * that buffers are taken *off* the old inode's list when they are freed 442 * (presumably in truncate). That requires careful auditing of all 443 * filesystems (do it inside bforget()). It could also be done by bringing 444 * b_inode back. 445 */ 446 447 /* 448 * The buffer's backing address_space's private_lock must be held 449 */ 450 static void __remove_assoc_queue(struct buffer_head *bh) 451 { 452 list_del_init(&bh->b_assoc_buffers); 453 WARN_ON(!bh->b_assoc_map); 454 bh->b_assoc_map = NULL; 455 } 456 457 int inode_has_buffers(struct inode *inode) 458 { 459 return !list_empty(&inode->i_data.private_list); 460 } 461 462 /* 463 * osync is designed to support O_SYNC io. It waits synchronously for 464 * all already-submitted IO to complete, but does not queue any new 465 * writes to the disk. 466 * 467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 468 * you dirty the buffers, and then use osync_inode_buffers to wait for 469 * completion. Any other dirty buffers which are not yet queued for 470 * write will not be flushed to disk by the osync. 471 */ 472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 473 { 474 struct buffer_head *bh; 475 struct list_head *p; 476 int err = 0; 477 478 spin_lock(lock); 479 repeat: 480 list_for_each_prev(p, list) { 481 bh = BH_ENTRY(p); 482 if (buffer_locked(bh)) { 483 get_bh(bh); 484 spin_unlock(lock); 485 wait_on_buffer(bh); 486 if (!buffer_uptodate(bh)) 487 err = -EIO; 488 brelse(bh); 489 spin_lock(lock); 490 goto repeat; 491 } 492 } 493 spin_unlock(lock); 494 return err; 495 } 496 497 void emergency_thaw_bdev(struct super_block *sb) 498 { 499 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 500 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 501 } 502 503 /** 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 505 * @mapping: the mapping which wants those buffers written 506 * 507 * Starts I/O against the buffers at mapping->private_list, and waits upon 508 * that I/O. 509 * 510 * Basically, this is a convenience function for fsync(). 511 * @mapping is a file or directory which needs those buffers to be written for 512 * a successful fsync(). 513 */ 514 int sync_mapping_buffers(struct address_space *mapping) 515 { 516 struct address_space *buffer_mapping = mapping->private_data; 517 518 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 519 return 0; 520 521 return fsync_buffers_list(&buffer_mapping->private_lock, 522 &mapping->private_list); 523 } 524 EXPORT_SYMBOL(sync_mapping_buffers); 525 526 /* 527 * Called when we've recently written block `bblock', and it is known that 528 * `bblock' was for a buffer_boundary() buffer. This means that the block at 529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 530 * dirty, schedule it for IO. So that indirects merge nicely with their data. 531 */ 532 void write_boundary_block(struct block_device *bdev, 533 sector_t bblock, unsigned blocksize) 534 { 535 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 536 if (bh) { 537 if (buffer_dirty(bh)) 538 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 539 put_bh(bh); 540 } 541 } 542 543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 544 { 545 struct address_space *mapping = inode->i_mapping; 546 struct address_space *buffer_mapping = bh->b_page->mapping; 547 548 mark_buffer_dirty(bh); 549 if (!mapping->private_data) { 550 mapping->private_data = buffer_mapping; 551 } else { 552 BUG_ON(mapping->private_data != buffer_mapping); 553 } 554 if (!bh->b_assoc_map) { 555 spin_lock(&buffer_mapping->private_lock); 556 list_move_tail(&bh->b_assoc_buffers, 557 &mapping->private_list); 558 bh->b_assoc_map = mapping; 559 spin_unlock(&buffer_mapping->private_lock); 560 } 561 } 562 EXPORT_SYMBOL(mark_buffer_dirty_inode); 563 564 /* 565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 566 * dirty. 567 * 568 * If warn is true, then emit a warning if the page is not uptodate and has 569 * not been truncated. 570 * 571 * The caller must hold lock_page_memcg(). 572 */ 573 void __set_page_dirty(struct page *page, struct address_space *mapping, 574 int warn) 575 { 576 unsigned long flags; 577 578 xa_lock_irqsave(&mapping->i_pages, flags); 579 if (page->mapping) { /* Race with truncate? */ 580 WARN_ON_ONCE(warn && !PageUptodate(page)); 581 account_page_dirtied(page, mapping); 582 radix_tree_tag_set(&mapping->i_pages, 583 page_index(page), PAGECACHE_TAG_DIRTY); 584 } 585 xa_unlock_irqrestore(&mapping->i_pages, flags); 586 } 587 EXPORT_SYMBOL_GPL(__set_page_dirty); 588 589 /* 590 * Add a page to the dirty page list. 591 * 592 * It is a sad fact of life that this function is called from several places 593 * deeply under spinlocking. It may not sleep. 594 * 595 * If the page has buffers, the uptodate buffers are set dirty, to preserve 596 * dirty-state coherency between the page and the buffers. It the page does 597 * not have buffers then when they are later attached they will all be set 598 * dirty. 599 * 600 * The buffers are dirtied before the page is dirtied. There's a small race 601 * window in which a writepage caller may see the page cleanness but not the 602 * buffer dirtiness. That's fine. If this code were to set the page dirty 603 * before the buffers, a concurrent writepage caller could clear the page dirty 604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 605 * page on the dirty page list. 606 * 607 * We use private_lock to lock against try_to_free_buffers while using the 608 * page's buffer list. Also use this to protect against clean buffers being 609 * added to the page after it was set dirty. 610 * 611 * FIXME: may need to call ->reservepage here as well. That's rather up to the 612 * address_space though. 613 */ 614 int __set_page_dirty_buffers(struct page *page) 615 { 616 int newly_dirty; 617 struct address_space *mapping = page_mapping(page); 618 619 if (unlikely(!mapping)) 620 return !TestSetPageDirty(page); 621 622 spin_lock(&mapping->private_lock); 623 if (page_has_buffers(page)) { 624 struct buffer_head *head = page_buffers(page); 625 struct buffer_head *bh = head; 626 627 do { 628 set_buffer_dirty(bh); 629 bh = bh->b_this_page; 630 } while (bh != head); 631 } 632 /* 633 * Lock out page->mem_cgroup migration to keep PageDirty 634 * synchronized with per-memcg dirty page counters. 635 */ 636 lock_page_memcg(page); 637 newly_dirty = !TestSetPageDirty(page); 638 spin_unlock(&mapping->private_lock); 639 640 if (newly_dirty) 641 __set_page_dirty(page, mapping, 1); 642 643 unlock_page_memcg(page); 644 645 if (newly_dirty) 646 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 647 648 return newly_dirty; 649 } 650 EXPORT_SYMBOL(__set_page_dirty_buffers); 651 652 /* 653 * Write out and wait upon a list of buffers. 654 * 655 * We have conflicting pressures: we want to make sure that all 656 * initially dirty buffers get waited on, but that any subsequently 657 * dirtied buffers don't. After all, we don't want fsync to last 658 * forever if somebody is actively writing to the file. 659 * 660 * Do this in two main stages: first we copy dirty buffers to a 661 * temporary inode list, queueing the writes as we go. Then we clean 662 * up, waiting for those writes to complete. 663 * 664 * During this second stage, any subsequent updates to the file may end 665 * up refiling the buffer on the original inode's dirty list again, so 666 * there is a chance we will end up with a buffer queued for write but 667 * not yet completed on that list. So, as a final cleanup we go through 668 * the osync code to catch these locked, dirty buffers without requeuing 669 * any newly dirty buffers for write. 670 */ 671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 672 { 673 struct buffer_head *bh; 674 struct list_head tmp; 675 struct address_space *mapping; 676 int err = 0, err2; 677 struct blk_plug plug; 678 679 INIT_LIST_HEAD(&tmp); 680 blk_start_plug(&plug); 681 682 spin_lock(lock); 683 while (!list_empty(list)) { 684 bh = BH_ENTRY(list->next); 685 mapping = bh->b_assoc_map; 686 __remove_assoc_queue(bh); 687 /* Avoid race with mark_buffer_dirty_inode() which does 688 * a lockless check and we rely on seeing the dirty bit */ 689 smp_mb(); 690 if (buffer_dirty(bh) || buffer_locked(bh)) { 691 list_add(&bh->b_assoc_buffers, &tmp); 692 bh->b_assoc_map = mapping; 693 if (buffer_dirty(bh)) { 694 get_bh(bh); 695 spin_unlock(lock); 696 /* 697 * Ensure any pending I/O completes so that 698 * write_dirty_buffer() actually writes the 699 * current contents - it is a noop if I/O is 700 * still in flight on potentially older 701 * contents. 702 */ 703 write_dirty_buffer(bh, REQ_SYNC); 704 705 /* 706 * Kick off IO for the previous mapping. Note 707 * that we will not run the very last mapping, 708 * wait_on_buffer() will do that for us 709 * through sync_buffer(). 710 */ 711 brelse(bh); 712 spin_lock(lock); 713 } 714 } 715 } 716 717 spin_unlock(lock); 718 blk_finish_plug(&plug); 719 spin_lock(lock); 720 721 while (!list_empty(&tmp)) { 722 bh = BH_ENTRY(tmp.prev); 723 get_bh(bh); 724 mapping = bh->b_assoc_map; 725 __remove_assoc_queue(bh); 726 /* Avoid race with mark_buffer_dirty_inode() which does 727 * a lockless check and we rely on seeing the dirty bit */ 728 smp_mb(); 729 if (buffer_dirty(bh)) { 730 list_add(&bh->b_assoc_buffers, 731 &mapping->private_list); 732 bh->b_assoc_map = mapping; 733 } 734 spin_unlock(lock); 735 wait_on_buffer(bh); 736 if (!buffer_uptodate(bh)) 737 err = -EIO; 738 brelse(bh); 739 spin_lock(lock); 740 } 741 742 spin_unlock(lock); 743 err2 = osync_buffers_list(lock, list); 744 if (err) 745 return err; 746 else 747 return err2; 748 } 749 750 /* 751 * Invalidate any and all dirty buffers on a given inode. We are 752 * probably unmounting the fs, but that doesn't mean we have already 753 * done a sync(). Just drop the buffers from the inode list. 754 * 755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 756 * assumes that all the buffers are against the blockdev. Not true 757 * for reiserfs. 758 */ 759 void invalidate_inode_buffers(struct inode *inode) 760 { 761 if (inode_has_buffers(inode)) { 762 struct address_space *mapping = &inode->i_data; 763 struct list_head *list = &mapping->private_list; 764 struct address_space *buffer_mapping = mapping->private_data; 765 766 spin_lock(&buffer_mapping->private_lock); 767 while (!list_empty(list)) 768 __remove_assoc_queue(BH_ENTRY(list->next)); 769 spin_unlock(&buffer_mapping->private_lock); 770 } 771 } 772 EXPORT_SYMBOL(invalidate_inode_buffers); 773 774 /* 775 * Remove any clean buffers from the inode's buffer list. This is called 776 * when we're trying to free the inode itself. Those buffers can pin it. 777 * 778 * Returns true if all buffers were removed. 779 */ 780 int remove_inode_buffers(struct inode *inode) 781 { 782 int ret = 1; 783 784 if (inode_has_buffers(inode)) { 785 struct address_space *mapping = &inode->i_data; 786 struct list_head *list = &mapping->private_list; 787 struct address_space *buffer_mapping = mapping->private_data; 788 789 spin_lock(&buffer_mapping->private_lock); 790 while (!list_empty(list)) { 791 struct buffer_head *bh = BH_ENTRY(list->next); 792 if (buffer_dirty(bh)) { 793 ret = 0; 794 break; 795 } 796 __remove_assoc_queue(bh); 797 } 798 spin_unlock(&buffer_mapping->private_lock); 799 } 800 return ret; 801 } 802 803 /* 804 * Create the appropriate buffers when given a page for data area and 805 * the size of each buffer.. Use the bh->b_this_page linked list to 806 * follow the buffers created. Return NULL if unable to create more 807 * buffers. 808 * 809 * The retry flag is used to differentiate async IO (paging, swapping) 810 * which may not fail from ordinary buffer allocations. 811 */ 812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 813 bool retry) 814 { 815 struct buffer_head *bh, *head; 816 gfp_t gfp = GFP_NOFS; 817 long offset; 818 819 if (retry) 820 gfp |= __GFP_NOFAIL; 821 822 head = NULL; 823 offset = PAGE_SIZE; 824 while ((offset -= size) >= 0) { 825 bh = alloc_buffer_head(gfp); 826 if (!bh) 827 goto no_grow; 828 829 bh->b_this_page = head; 830 bh->b_blocknr = -1; 831 head = bh; 832 833 bh->b_size = size; 834 835 /* Link the buffer to its page */ 836 set_bh_page(bh, page, offset); 837 } 838 return head; 839 /* 840 * In case anything failed, we just free everything we got. 841 */ 842 no_grow: 843 if (head) { 844 do { 845 bh = head; 846 head = head->b_this_page; 847 free_buffer_head(bh); 848 } while (head); 849 } 850 851 return NULL; 852 } 853 EXPORT_SYMBOL_GPL(alloc_page_buffers); 854 855 static inline void 856 link_dev_buffers(struct page *page, struct buffer_head *head) 857 { 858 struct buffer_head *bh, *tail; 859 860 bh = head; 861 do { 862 tail = bh; 863 bh = bh->b_this_page; 864 } while (bh); 865 tail->b_this_page = head; 866 attach_page_buffers(page, head); 867 } 868 869 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 870 { 871 sector_t retval = ~((sector_t)0); 872 loff_t sz = i_size_read(bdev->bd_inode); 873 874 if (sz) { 875 unsigned int sizebits = blksize_bits(size); 876 retval = (sz >> sizebits); 877 } 878 return retval; 879 } 880 881 /* 882 * Initialise the state of a blockdev page's buffers. 883 */ 884 static sector_t 885 init_page_buffers(struct page *page, struct block_device *bdev, 886 sector_t block, int size) 887 { 888 struct buffer_head *head = page_buffers(page); 889 struct buffer_head *bh = head; 890 int uptodate = PageUptodate(page); 891 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 892 893 do { 894 if (!buffer_mapped(bh)) { 895 bh->b_end_io = NULL; 896 bh->b_private = NULL; 897 bh->b_bdev = bdev; 898 bh->b_blocknr = block; 899 if (uptodate) 900 set_buffer_uptodate(bh); 901 if (block < end_block) 902 set_buffer_mapped(bh); 903 } 904 block++; 905 bh = bh->b_this_page; 906 } while (bh != head); 907 908 /* 909 * Caller needs to validate requested block against end of device. 910 */ 911 return end_block; 912 } 913 914 /* 915 * Create the page-cache page that contains the requested block. 916 * 917 * This is used purely for blockdev mappings. 918 */ 919 static int 920 grow_dev_page(struct block_device *bdev, sector_t block, 921 pgoff_t index, int size, int sizebits, gfp_t gfp) 922 { 923 struct inode *inode = bdev->bd_inode; 924 struct page *page; 925 struct buffer_head *bh; 926 sector_t end_block; 927 int ret = 0; /* Will call free_more_memory() */ 928 gfp_t gfp_mask; 929 930 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 931 932 /* 933 * XXX: __getblk_slow() can not really deal with failure and 934 * will endlessly loop on improvised global reclaim. Prefer 935 * looping in the allocator rather than here, at least that 936 * code knows what it's doing. 937 */ 938 gfp_mask |= __GFP_NOFAIL; 939 940 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 941 942 BUG_ON(!PageLocked(page)); 943 944 if (page_has_buffers(page)) { 945 bh = page_buffers(page); 946 if (bh->b_size == size) { 947 end_block = init_page_buffers(page, bdev, 948 (sector_t)index << sizebits, 949 size); 950 goto done; 951 } 952 if (!try_to_free_buffers(page)) 953 goto failed; 954 } 955 956 /* 957 * Allocate some buffers for this page 958 */ 959 bh = alloc_page_buffers(page, size, true); 960 961 /* 962 * Link the page to the buffers and initialise them. Take the 963 * lock to be atomic wrt __find_get_block(), which does not 964 * run under the page lock. 965 */ 966 spin_lock(&inode->i_mapping->private_lock); 967 link_dev_buffers(page, bh); 968 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 969 size); 970 spin_unlock(&inode->i_mapping->private_lock); 971 done: 972 ret = (block < end_block) ? 1 : -ENXIO; 973 failed: 974 unlock_page(page); 975 put_page(page); 976 return ret; 977 } 978 979 /* 980 * Create buffers for the specified block device block's page. If 981 * that page was dirty, the buffers are set dirty also. 982 */ 983 static int 984 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 985 { 986 pgoff_t index; 987 int sizebits; 988 989 sizebits = -1; 990 do { 991 sizebits++; 992 } while ((size << sizebits) < PAGE_SIZE); 993 994 index = block >> sizebits; 995 996 /* 997 * Check for a block which wants to lie outside our maximum possible 998 * pagecache index. (this comparison is done using sector_t types). 999 */ 1000 if (unlikely(index != block >> sizebits)) { 1001 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1002 "device %pg\n", 1003 __func__, (unsigned long long)block, 1004 bdev); 1005 return -EIO; 1006 } 1007 1008 /* Create a page with the proper size buffers.. */ 1009 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1010 } 1011 1012 static struct buffer_head * 1013 __getblk_slow(struct block_device *bdev, sector_t block, 1014 unsigned size, gfp_t gfp) 1015 { 1016 /* Size must be multiple of hard sectorsize */ 1017 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1018 (size < 512 || size > PAGE_SIZE))) { 1019 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1020 size); 1021 printk(KERN_ERR "logical block size: %d\n", 1022 bdev_logical_block_size(bdev)); 1023 1024 dump_stack(); 1025 return NULL; 1026 } 1027 1028 for (;;) { 1029 struct buffer_head *bh; 1030 int ret; 1031 1032 bh = __find_get_block(bdev, block, size); 1033 if (bh) 1034 return bh; 1035 1036 ret = grow_buffers(bdev, block, size, gfp); 1037 if (ret < 0) 1038 return NULL; 1039 } 1040 } 1041 1042 /* 1043 * The relationship between dirty buffers and dirty pages: 1044 * 1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1046 * the page is tagged dirty in its radix tree. 1047 * 1048 * At all times, the dirtiness of the buffers represents the dirtiness of 1049 * subsections of the page. If the page has buffers, the page dirty bit is 1050 * merely a hint about the true dirty state. 1051 * 1052 * When a page is set dirty in its entirety, all its buffers are marked dirty 1053 * (if the page has buffers). 1054 * 1055 * When a buffer is marked dirty, its page is dirtied, but the page's other 1056 * buffers are not. 1057 * 1058 * Also. When blockdev buffers are explicitly read with bread(), they 1059 * individually become uptodate. But their backing page remains not 1060 * uptodate - even if all of its buffers are uptodate. A subsequent 1061 * block_read_full_page() against that page will discover all the uptodate 1062 * buffers, will set the page uptodate and will perform no I/O. 1063 */ 1064 1065 /** 1066 * mark_buffer_dirty - mark a buffer_head as needing writeout 1067 * @bh: the buffer_head to mark dirty 1068 * 1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1070 * backing page dirty, then tag the page as dirty in its address_space's radix 1071 * tree and then attach the address_space's inode to its superblock's dirty 1072 * inode list. 1073 * 1074 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1075 * i_pages lock and mapping->host->i_lock. 1076 */ 1077 void mark_buffer_dirty(struct buffer_head *bh) 1078 { 1079 WARN_ON_ONCE(!buffer_uptodate(bh)); 1080 1081 trace_block_dirty_buffer(bh); 1082 1083 /* 1084 * Very *carefully* optimize the it-is-already-dirty case. 1085 * 1086 * Don't let the final "is it dirty" escape to before we 1087 * perhaps modified the buffer. 1088 */ 1089 if (buffer_dirty(bh)) { 1090 smp_mb(); 1091 if (buffer_dirty(bh)) 1092 return; 1093 } 1094 1095 if (!test_set_buffer_dirty(bh)) { 1096 struct page *page = bh->b_page; 1097 struct address_space *mapping = NULL; 1098 1099 lock_page_memcg(page); 1100 if (!TestSetPageDirty(page)) { 1101 mapping = page_mapping(page); 1102 if (mapping) 1103 __set_page_dirty(page, mapping, 0); 1104 } 1105 unlock_page_memcg(page); 1106 if (mapping) 1107 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1108 } 1109 } 1110 EXPORT_SYMBOL(mark_buffer_dirty); 1111 1112 void mark_buffer_write_io_error(struct buffer_head *bh) 1113 { 1114 set_buffer_write_io_error(bh); 1115 /* FIXME: do we need to set this in both places? */ 1116 if (bh->b_page && bh->b_page->mapping) 1117 mapping_set_error(bh->b_page->mapping, -EIO); 1118 if (bh->b_assoc_map) 1119 mapping_set_error(bh->b_assoc_map, -EIO); 1120 } 1121 EXPORT_SYMBOL(mark_buffer_write_io_error); 1122 1123 /* 1124 * Decrement a buffer_head's reference count. If all buffers against a page 1125 * have zero reference count, are clean and unlocked, and if the page is clean 1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1128 * a page but it ends up not being freed, and buffers may later be reattached). 1129 */ 1130 void __brelse(struct buffer_head * buf) 1131 { 1132 if (atomic_read(&buf->b_count)) { 1133 put_bh(buf); 1134 return; 1135 } 1136 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1137 } 1138 EXPORT_SYMBOL(__brelse); 1139 1140 /* 1141 * bforget() is like brelse(), except it discards any 1142 * potentially dirty data. 1143 */ 1144 void __bforget(struct buffer_head *bh) 1145 { 1146 clear_buffer_dirty(bh); 1147 if (bh->b_assoc_map) { 1148 struct address_space *buffer_mapping = bh->b_page->mapping; 1149 1150 spin_lock(&buffer_mapping->private_lock); 1151 list_del_init(&bh->b_assoc_buffers); 1152 bh->b_assoc_map = NULL; 1153 spin_unlock(&buffer_mapping->private_lock); 1154 } 1155 __brelse(bh); 1156 } 1157 EXPORT_SYMBOL(__bforget); 1158 1159 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1160 { 1161 lock_buffer(bh); 1162 if (buffer_uptodate(bh)) { 1163 unlock_buffer(bh); 1164 return bh; 1165 } else { 1166 get_bh(bh); 1167 bh->b_end_io = end_buffer_read_sync; 1168 submit_bh(REQ_OP_READ, 0, bh); 1169 wait_on_buffer(bh); 1170 if (buffer_uptodate(bh)) 1171 return bh; 1172 } 1173 brelse(bh); 1174 return NULL; 1175 } 1176 1177 /* 1178 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1179 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1180 * refcount elevated by one when they're in an LRU. A buffer can only appear 1181 * once in a particular CPU's LRU. A single buffer can be present in multiple 1182 * CPU's LRUs at the same time. 1183 * 1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1185 * sb_find_get_block(). 1186 * 1187 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1188 * a local interrupt disable for that. 1189 */ 1190 1191 #define BH_LRU_SIZE 16 1192 1193 struct bh_lru { 1194 struct buffer_head *bhs[BH_LRU_SIZE]; 1195 }; 1196 1197 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1198 1199 #ifdef CONFIG_SMP 1200 #define bh_lru_lock() local_irq_disable() 1201 #define bh_lru_unlock() local_irq_enable() 1202 #else 1203 #define bh_lru_lock() preempt_disable() 1204 #define bh_lru_unlock() preempt_enable() 1205 #endif 1206 1207 static inline void check_irqs_on(void) 1208 { 1209 #ifdef irqs_disabled 1210 BUG_ON(irqs_disabled()); 1211 #endif 1212 } 1213 1214 /* 1215 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1216 * inserted at the front, and the buffer_head at the back if any is evicted. 1217 * Or, if already in the LRU it is moved to the front. 1218 */ 1219 static void bh_lru_install(struct buffer_head *bh) 1220 { 1221 struct buffer_head *evictee = bh; 1222 struct bh_lru *b; 1223 int i; 1224 1225 check_irqs_on(); 1226 bh_lru_lock(); 1227 1228 b = this_cpu_ptr(&bh_lrus); 1229 for (i = 0; i < BH_LRU_SIZE; i++) { 1230 swap(evictee, b->bhs[i]); 1231 if (evictee == bh) { 1232 bh_lru_unlock(); 1233 return; 1234 } 1235 } 1236 1237 get_bh(bh); 1238 bh_lru_unlock(); 1239 brelse(evictee); 1240 } 1241 1242 /* 1243 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1244 */ 1245 static struct buffer_head * 1246 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1247 { 1248 struct buffer_head *ret = NULL; 1249 unsigned int i; 1250 1251 check_irqs_on(); 1252 bh_lru_lock(); 1253 for (i = 0; i < BH_LRU_SIZE; i++) { 1254 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1255 1256 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1257 bh->b_size == size) { 1258 if (i) { 1259 while (i) { 1260 __this_cpu_write(bh_lrus.bhs[i], 1261 __this_cpu_read(bh_lrus.bhs[i - 1])); 1262 i--; 1263 } 1264 __this_cpu_write(bh_lrus.bhs[0], bh); 1265 } 1266 get_bh(bh); 1267 ret = bh; 1268 break; 1269 } 1270 } 1271 bh_lru_unlock(); 1272 return ret; 1273 } 1274 1275 /* 1276 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1277 * it in the LRU and mark it as accessed. If it is not present then return 1278 * NULL 1279 */ 1280 struct buffer_head * 1281 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1282 { 1283 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1284 1285 if (bh == NULL) { 1286 /* __find_get_block_slow will mark the page accessed */ 1287 bh = __find_get_block_slow(bdev, block); 1288 if (bh) 1289 bh_lru_install(bh); 1290 } else 1291 touch_buffer(bh); 1292 1293 return bh; 1294 } 1295 EXPORT_SYMBOL(__find_get_block); 1296 1297 /* 1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1299 * which corresponds to the passed block_device, block and size. The 1300 * returned buffer has its reference count incremented. 1301 * 1302 * __getblk_gfp() will lock up the machine if grow_dev_page's 1303 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1304 */ 1305 struct buffer_head * 1306 __getblk_gfp(struct block_device *bdev, sector_t block, 1307 unsigned size, gfp_t gfp) 1308 { 1309 struct buffer_head *bh = __find_get_block(bdev, block, size); 1310 1311 might_sleep(); 1312 if (bh == NULL) 1313 bh = __getblk_slow(bdev, block, size, gfp); 1314 return bh; 1315 } 1316 EXPORT_SYMBOL(__getblk_gfp); 1317 1318 /* 1319 * Do async read-ahead on a buffer.. 1320 */ 1321 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1322 { 1323 struct buffer_head *bh = __getblk(bdev, block, size); 1324 if (likely(bh)) { 1325 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1326 brelse(bh); 1327 } 1328 } 1329 EXPORT_SYMBOL(__breadahead); 1330 1331 /** 1332 * __bread_gfp() - reads a specified block and returns the bh 1333 * @bdev: the block_device to read from 1334 * @block: number of block 1335 * @size: size (in bytes) to read 1336 * @gfp: page allocation flag 1337 * 1338 * Reads a specified block, and returns buffer head that contains it. 1339 * The page cache can be allocated from non-movable area 1340 * not to prevent page migration if you set gfp to zero. 1341 * It returns NULL if the block was unreadable. 1342 */ 1343 struct buffer_head * 1344 __bread_gfp(struct block_device *bdev, sector_t block, 1345 unsigned size, gfp_t gfp) 1346 { 1347 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1348 1349 if (likely(bh) && !buffer_uptodate(bh)) 1350 bh = __bread_slow(bh); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__bread_gfp); 1354 1355 /* 1356 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1357 * This doesn't race because it runs in each cpu either in irq 1358 * or with preempt disabled. 1359 */ 1360 static void invalidate_bh_lru(void *arg) 1361 { 1362 struct bh_lru *b = &get_cpu_var(bh_lrus); 1363 int i; 1364 1365 for (i = 0; i < BH_LRU_SIZE; i++) { 1366 brelse(b->bhs[i]); 1367 b->bhs[i] = NULL; 1368 } 1369 put_cpu_var(bh_lrus); 1370 } 1371 1372 static bool has_bh_in_lru(int cpu, void *dummy) 1373 { 1374 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1375 int i; 1376 1377 for (i = 0; i < BH_LRU_SIZE; i++) { 1378 if (b->bhs[i]) 1379 return 1; 1380 } 1381 1382 return 0; 1383 } 1384 1385 void invalidate_bh_lrus(void) 1386 { 1387 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1388 } 1389 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1390 1391 void set_bh_page(struct buffer_head *bh, 1392 struct page *page, unsigned long offset) 1393 { 1394 bh->b_page = page; 1395 BUG_ON(offset >= PAGE_SIZE); 1396 if (PageHighMem(page)) 1397 /* 1398 * This catches illegal uses and preserves the offset: 1399 */ 1400 bh->b_data = (char *)(0 + offset); 1401 else 1402 bh->b_data = page_address(page) + offset; 1403 } 1404 EXPORT_SYMBOL(set_bh_page); 1405 1406 /* 1407 * Called when truncating a buffer on a page completely. 1408 */ 1409 1410 /* Bits that are cleared during an invalidate */ 1411 #define BUFFER_FLAGS_DISCARD \ 1412 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1413 1 << BH_Delay | 1 << BH_Unwritten) 1414 1415 static void discard_buffer(struct buffer_head * bh) 1416 { 1417 unsigned long b_state, b_state_old; 1418 1419 lock_buffer(bh); 1420 clear_buffer_dirty(bh); 1421 bh->b_bdev = NULL; 1422 b_state = bh->b_state; 1423 for (;;) { 1424 b_state_old = cmpxchg(&bh->b_state, b_state, 1425 (b_state & ~BUFFER_FLAGS_DISCARD)); 1426 if (b_state_old == b_state) 1427 break; 1428 b_state = b_state_old; 1429 } 1430 unlock_buffer(bh); 1431 } 1432 1433 /** 1434 * block_invalidatepage - invalidate part or all of a buffer-backed page 1435 * 1436 * @page: the page which is affected 1437 * @offset: start of the range to invalidate 1438 * @length: length of the range to invalidate 1439 * 1440 * block_invalidatepage() is called when all or part of the page has become 1441 * invalidated by a truncate operation. 1442 * 1443 * block_invalidatepage() does not have to release all buffers, but it must 1444 * ensure that no dirty buffer is left outside @offset and that no I/O 1445 * is underway against any of the blocks which are outside the truncation 1446 * point. Because the caller is about to free (and possibly reuse) those 1447 * blocks on-disk. 1448 */ 1449 void block_invalidatepage(struct page *page, unsigned int offset, 1450 unsigned int length) 1451 { 1452 struct buffer_head *head, *bh, *next; 1453 unsigned int curr_off = 0; 1454 unsigned int stop = length + offset; 1455 1456 BUG_ON(!PageLocked(page)); 1457 if (!page_has_buffers(page)) 1458 goto out; 1459 1460 /* 1461 * Check for overflow 1462 */ 1463 BUG_ON(stop > PAGE_SIZE || stop < length); 1464 1465 head = page_buffers(page); 1466 bh = head; 1467 do { 1468 unsigned int next_off = curr_off + bh->b_size; 1469 next = bh->b_this_page; 1470 1471 /* 1472 * Are we still fully in range ? 1473 */ 1474 if (next_off > stop) 1475 goto out; 1476 1477 /* 1478 * is this block fully invalidated? 1479 */ 1480 if (offset <= curr_off) 1481 discard_buffer(bh); 1482 curr_off = next_off; 1483 bh = next; 1484 } while (bh != head); 1485 1486 /* 1487 * We release buffers only if the entire page is being invalidated. 1488 * The get_block cached value has been unconditionally invalidated, 1489 * so real IO is not possible anymore. 1490 */ 1491 if (length == PAGE_SIZE) 1492 try_to_release_page(page, 0); 1493 out: 1494 return; 1495 } 1496 EXPORT_SYMBOL(block_invalidatepage); 1497 1498 1499 /* 1500 * We attach and possibly dirty the buffers atomically wrt 1501 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1502 * is already excluded via the page lock. 1503 */ 1504 void create_empty_buffers(struct page *page, 1505 unsigned long blocksize, unsigned long b_state) 1506 { 1507 struct buffer_head *bh, *head, *tail; 1508 1509 head = alloc_page_buffers(page, blocksize, true); 1510 bh = head; 1511 do { 1512 bh->b_state |= b_state; 1513 tail = bh; 1514 bh = bh->b_this_page; 1515 } while (bh); 1516 tail->b_this_page = head; 1517 1518 spin_lock(&page->mapping->private_lock); 1519 if (PageUptodate(page) || PageDirty(page)) { 1520 bh = head; 1521 do { 1522 if (PageDirty(page)) 1523 set_buffer_dirty(bh); 1524 if (PageUptodate(page)) 1525 set_buffer_uptodate(bh); 1526 bh = bh->b_this_page; 1527 } while (bh != head); 1528 } 1529 attach_page_buffers(page, head); 1530 spin_unlock(&page->mapping->private_lock); 1531 } 1532 EXPORT_SYMBOL(create_empty_buffers); 1533 1534 /** 1535 * clean_bdev_aliases: clean a range of buffers in block device 1536 * @bdev: Block device to clean buffers in 1537 * @block: Start of a range of blocks to clean 1538 * @len: Number of blocks to clean 1539 * 1540 * We are taking a range of blocks for data and we don't want writeback of any 1541 * buffer-cache aliases starting from return from this function and until the 1542 * moment when something will explicitly mark the buffer dirty (hopefully that 1543 * will not happen until we will free that block ;-) We don't even need to mark 1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1547 * would confuse anyone who might pick it with bread() afterwards... 1548 * 1549 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1550 * writeout I/O going on against recently-freed buffers. We don't wait on that 1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1552 * need to. That happens here. 1553 */ 1554 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1555 { 1556 struct inode *bd_inode = bdev->bd_inode; 1557 struct address_space *bd_mapping = bd_inode->i_mapping; 1558 struct pagevec pvec; 1559 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1560 pgoff_t end; 1561 int i, count; 1562 struct buffer_head *bh; 1563 struct buffer_head *head; 1564 1565 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1566 pagevec_init(&pvec); 1567 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1568 count = pagevec_count(&pvec); 1569 for (i = 0; i < count; i++) { 1570 struct page *page = pvec.pages[i]; 1571 1572 if (!page_has_buffers(page)) 1573 continue; 1574 /* 1575 * We use page lock instead of bd_mapping->private_lock 1576 * to pin buffers here since we can afford to sleep and 1577 * it scales better than a global spinlock lock. 1578 */ 1579 lock_page(page); 1580 /* Recheck when the page is locked which pins bhs */ 1581 if (!page_has_buffers(page)) 1582 goto unlock_page; 1583 head = page_buffers(page); 1584 bh = head; 1585 do { 1586 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1587 goto next; 1588 if (bh->b_blocknr >= block + len) 1589 break; 1590 clear_buffer_dirty(bh); 1591 wait_on_buffer(bh); 1592 clear_buffer_req(bh); 1593 next: 1594 bh = bh->b_this_page; 1595 } while (bh != head); 1596 unlock_page: 1597 unlock_page(page); 1598 } 1599 pagevec_release(&pvec); 1600 cond_resched(); 1601 /* End of range already reached? */ 1602 if (index > end || !index) 1603 break; 1604 } 1605 } 1606 EXPORT_SYMBOL(clean_bdev_aliases); 1607 1608 /* 1609 * Size is a power-of-two in the range 512..PAGE_SIZE, 1610 * and the case we care about most is PAGE_SIZE. 1611 * 1612 * So this *could* possibly be written with those 1613 * constraints in mind (relevant mostly if some 1614 * architecture has a slow bit-scan instruction) 1615 */ 1616 static inline int block_size_bits(unsigned int blocksize) 1617 { 1618 return ilog2(blocksize); 1619 } 1620 1621 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1622 { 1623 BUG_ON(!PageLocked(page)); 1624 1625 if (!page_has_buffers(page)) 1626 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1627 b_state); 1628 return page_buffers(page); 1629 } 1630 1631 /* 1632 * NOTE! All mapped/uptodate combinations are valid: 1633 * 1634 * Mapped Uptodate Meaning 1635 * 1636 * No No "unknown" - must do get_block() 1637 * No Yes "hole" - zero-filled 1638 * Yes No "allocated" - allocated on disk, not read in 1639 * Yes Yes "valid" - allocated and up-to-date in memory. 1640 * 1641 * "Dirty" is valid only with the last case (mapped+uptodate). 1642 */ 1643 1644 /* 1645 * While block_write_full_page is writing back the dirty buffers under 1646 * the page lock, whoever dirtied the buffers may decide to clean them 1647 * again at any time. We handle that by only looking at the buffer 1648 * state inside lock_buffer(). 1649 * 1650 * If block_write_full_page() is called for regular writeback 1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1652 * locked buffer. This only can happen if someone has written the buffer 1653 * directly, with submit_bh(). At the address_space level PageWriteback 1654 * prevents this contention from occurring. 1655 * 1656 * If block_write_full_page() is called with wbc->sync_mode == 1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1658 * causes the writes to be flagged as synchronous writes. 1659 */ 1660 int __block_write_full_page(struct inode *inode, struct page *page, 1661 get_block_t *get_block, struct writeback_control *wbc, 1662 bh_end_io_t *handler) 1663 { 1664 int err; 1665 sector_t block; 1666 sector_t last_block; 1667 struct buffer_head *bh, *head; 1668 unsigned int blocksize, bbits; 1669 int nr_underway = 0; 1670 int write_flags = wbc_to_write_flags(wbc); 1671 1672 head = create_page_buffers(page, inode, 1673 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1674 1675 /* 1676 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1677 * here, and the (potentially unmapped) buffers may become dirty at 1678 * any time. If a buffer becomes dirty here after we've inspected it 1679 * then we just miss that fact, and the page stays dirty. 1680 * 1681 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1682 * handle that here by just cleaning them. 1683 */ 1684 1685 bh = head; 1686 blocksize = bh->b_size; 1687 bbits = block_size_bits(blocksize); 1688 1689 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1690 last_block = (i_size_read(inode) - 1) >> bbits; 1691 1692 /* 1693 * Get all the dirty buffers mapped to disk addresses and 1694 * handle any aliases from the underlying blockdev's mapping. 1695 */ 1696 do { 1697 if (block > last_block) { 1698 /* 1699 * mapped buffers outside i_size will occur, because 1700 * this page can be outside i_size when there is a 1701 * truncate in progress. 1702 */ 1703 /* 1704 * The buffer was zeroed by block_write_full_page() 1705 */ 1706 clear_buffer_dirty(bh); 1707 set_buffer_uptodate(bh); 1708 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1709 buffer_dirty(bh)) { 1710 WARN_ON(bh->b_size != blocksize); 1711 err = get_block(inode, block, bh, 1); 1712 if (err) 1713 goto recover; 1714 clear_buffer_delay(bh); 1715 if (buffer_new(bh)) { 1716 /* blockdev mappings never come here */ 1717 clear_buffer_new(bh); 1718 clean_bdev_bh_alias(bh); 1719 } 1720 } 1721 bh = bh->b_this_page; 1722 block++; 1723 } while (bh != head); 1724 1725 do { 1726 if (!buffer_mapped(bh)) 1727 continue; 1728 /* 1729 * If it's a fully non-blocking write attempt and we cannot 1730 * lock the buffer then redirty the page. Note that this can 1731 * potentially cause a busy-wait loop from writeback threads 1732 * and kswapd activity, but those code paths have their own 1733 * higher-level throttling. 1734 */ 1735 if (wbc->sync_mode != WB_SYNC_NONE) { 1736 lock_buffer(bh); 1737 } else if (!trylock_buffer(bh)) { 1738 redirty_page_for_writepage(wbc, page); 1739 continue; 1740 } 1741 if (test_clear_buffer_dirty(bh)) { 1742 mark_buffer_async_write_endio(bh, handler); 1743 } else { 1744 unlock_buffer(bh); 1745 } 1746 } while ((bh = bh->b_this_page) != head); 1747 1748 /* 1749 * The page and its buffers are protected by PageWriteback(), so we can 1750 * drop the bh refcounts early. 1751 */ 1752 BUG_ON(PageWriteback(page)); 1753 set_page_writeback(page); 1754 1755 do { 1756 struct buffer_head *next = bh->b_this_page; 1757 if (buffer_async_write(bh)) { 1758 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1759 inode->i_write_hint, wbc); 1760 nr_underway++; 1761 } 1762 bh = next; 1763 } while (bh != head); 1764 unlock_page(page); 1765 1766 err = 0; 1767 done: 1768 if (nr_underway == 0) { 1769 /* 1770 * The page was marked dirty, but the buffers were 1771 * clean. Someone wrote them back by hand with 1772 * ll_rw_block/submit_bh. A rare case. 1773 */ 1774 end_page_writeback(page); 1775 1776 /* 1777 * The page and buffer_heads can be released at any time from 1778 * here on. 1779 */ 1780 } 1781 return err; 1782 1783 recover: 1784 /* 1785 * ENOSPC, or some other error. We may already have added some 1786 * blocks to the file, so we need to write these out to avoid 1787 * exposing stale data. 1788 * The page is currently locked and not marked for writeback 1789 */ 1790 bh = head; 1791 /* Recovery: lock and submit the mapped buffers */ 1792 do { 1793 if (buffer_mapped(bh) && buffer_dirty(bh) && 1794 !buffer_delay(bh)) { 1795 lock_buffer(bh); 1796 mark_buffer_async_write_endio(bh, handler); 1797 } else { 1798 /* 1799 * The buffer may have been set dirty during 1800 * attachment to a dirty page. 1801 */ 1802 clear_buffer_dirty(bh); 1803 } 1804 } while ((bh = bh->b_this_page) != head); 1805 SetPageError(page); 1806 BUG_ON(PageWriteback(page)); 1807 mapping_set_error(page->mapping, err); 1808 set_page_writeback(page); 1809 do { 1810 struct buffer_head *next = bh->b_this_page; 1811 if (buffer_async_write(bh)) { 1812 clear_buffer_dirty(bh); 1813 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1814 inode->i_write_hint, wbc); 1815 nr_underway++; 1816 } 1817 bh = next; 1818 } while (bh != head); 1819 unlock_page(page); 1820 goto done; 1821 } 1822 EXPORT_SYMBOL(__block_write_full_page); 1823 1824 /* 1825 * If a page has any new buffers, zero them out here, and mark them uptodate 1826 * and dirty so they'll be written out (in order to prevent uninitialised 1827 * block data from leaking). And clear the new bit. 1828 */ 1829 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1830 { 1831 unsigned int block_start, block_end; 1832 struct buffer_head *head, *bh; 1833 1834 BUG_ON(!PageLocked(page)); 1835 if (!page_has_buffers(page)) 1836 return; 1837 1838 bh = head = page_buffers(page); 1839 block_start = 0; 1840 do { 1841 block_end = block_start + bh->b_size; 1842 1843 if (buffer_new(bh)) { 1844 if (block_end > from && block_start < to) { 1845 if (!PageUptodate(page)) { 1846 unsigned start, size; 1847 1848 start = max(from, block_start); 1849 size = min(to, block_end) - start; 1850 1851 zero_user(page, start, size); 1852 set_buffer_uptodate(bh); 1853 } 1854 1855 clear_buffer_new(bh); 1856 mark_buffer_dirty(bh); 1857 } 1858 } 1859 1860 block_start = block_end; 1861 bh = bh->b_this_page; 1862 } while (bh != head); 1863 } 1864 EXPORT_SYMBOL(page_zero_new_buffers); 1865 1866 static void 1867 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1868 struct iomap *iomap) 1869 { 1870 loff_t offset = block << inode->i_blkbits; 1871 1872 bh->b_bdev = iomap->bdev; 1873 1874 /* 1875 * Block points to offset in file we need to map, iomap contains 1876 * the offset at which the map starts. If the map ends before the 1877 * current block, then do not map the buffer and let the caller 1878 * handle it. 1879 */ 1880 BUG_ON(offset >= iomap->offset + iomap->length); 1881 1882 switch (iomap->type) { 1883 case IOMAP_HOLE: 1884 /* 1885 * If the buffer is not up to date or beyond the current EOF, 1886 * we need to mark it as new to ensure sub-block zeroing is 1887 * executed if necessary. 1888 */ 1889 if (!buffer_uptodate(bh) || 1890 (offset >= i_size_read(inode))) 1891 set_buffer_new(bh); 1892 break; 1893 case IOMAP_DELALLOC: 1894 if (!buffer_uptodate(bh) || 1895 (offset >= i_size_read(inode))) 1896 set_buffer_new(bh); 1897 set_buffer_uptodate(bh); 1898 set_buffer_mapped(bh); 1899 set_buffer_delay(bh); 1900 break; 1901 case IOMAP_UNWRITTEN: 1902 /* 1903 * For unwritten regions, we always need to ensure that 1904 * sub-block writes cause the regions in the block we are not 1905 * writing to are zeroed. Set the buffer as new to ensure this. 1906 */ 1907 set_buffer_new(bh); 1908 set_buffer_unwritten(bh); 1909 /* FALLTHRU */ 1910 case IOMAP_MAPPED: 1911 if (offset >= i_size_read(inode)) 1912 set_buffer_new(bh); 1913 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1914 inode->i_blkbits; 1915 set_buffer_mapped(bh); 1916 break; 1917 } 1918 } 1919 1920 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1921 get_block_t *get_block, struct iomap *iomap) 1922 { 1923 unsigned from = pos & (PAGE_SIZE - 1); 1924 unsigned to = from + len; 1925 struct inode *inode = page->mapping->host; 1926 unsigned block_start, block_end; 1927 sector_t block; 1928 int err = 0; 1929 unsigned blocksize, bbits; 1930 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1931 1932 BUG_ON(!PageLocked(page)); 1933 BUG_ON(from > PAGE_SIZE); 1934 BUG_ON(to > PAGE_SIZE); 1935 BUG_ON(from > to); 1936 1937 head = create_page_buffers(page, inode, 0); 1938 blocksize = head->b_size; 1939 bbits = block_size_bits(blocksize); 1940 1941 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1942 1943 for(bh = head, block_start = 0; bh != head || !block_start; 1944 block++, block_start=block_end, bh = bh->b_this_page) { 1945 block_end = block_start + blocksize; 1946 if (block_end <= from || block_start >= to) { 1947 if (PageUptodate(page)) { 1948 if (!buffer_uptodate(bh)) 1949 set_buffer_uptodate(bh); 1950 } 1951 continue; 1952 } 1953 if (buffer_new(bh)) 1954 clear_buffer_new(bh); 1955 if (!buffer_mapped(bh)) { 1956 WARN_ON(bh->b_size != blocksize); 1957 if (get_block) { 1958 err = get_block(inode, block, bh, 1); 1959 if (err) 1960 break; 1961 } else { 1962 iomap_to_bh(inode, block, bh, iomap); 1963 } 1964 1965 if (buffer_new(bh)) { 1966 clean_bdev_bh_alias(bh); 1967 if (PageUptodate(page)) { 1968 clear_buffer_new(bh); 1969 set_buffer_uptodate(bh); 1970 mark_buffer_dirty(bh); 1971 continue; 1972 } 1973 if (block_end > to || block_start < from) 1974 zero_user_segments(page, 1975 to, block_end, 1976 block_start, from); 1977 continue; 1978 } 1979 } 1980 if (PageUptodate(page)) { 1981 if (!buffer_uptodate(bh)) 1982 set_buffer_uptodate(bh); 1983 continue; 1984 } 1985 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1986 !buffer_unwritten(bh) && 1987 (block_start < from || block_end > to)) { 1988 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1989 *wait_bh++=bh; 1990 } 1991 } 1992 /* 1993 * If we issued read requests - let them complete. 1994 */ 1995 while(wait_bh > wait) { 1996 wait_on_buffer(*--wait_bh); 1997 if (!buffer_uptodate(*wait_bh)) 1998 err = -EIO; 1999 } 2000 if (unlikely(err)) 2001 page_zero_new_buffers(page, from, to); 2002 return err; 2003 } 2004 2005 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2006 get_block_t *get_block) 2007 { 2008 return __block_write_begin_int(page, pos, len, get_block, NULL); 2009 } 2010 EXPORT_SYMBOL(__block_write_begin); 2011 2012 static int __block_commit_write(struct inode *inode, struct page *page, 2013 unsigned from, unsigned to) 2014 { 2015 unsigned block_start, block_end; 2016 int partial = 0; 2017 unsigned blocksize; 2018 struct buffer_head *bh, *head; 2019 2020 bh = head = page_buffers(page); 2021 blocksize = bh->b_size; 2022 2023 block_start = 0; 2024 do { 2025 block_end = block_start + blocksize; 2026 if (block_end <= from || block_start >= to) { 2027 if (!buffer_uptodate(bh)) 2028 partial = 1; 2029 } else { 2030 set_buffer_uptodate(bh); 2031 mark_buffer_dirty(bh); 2032 } 2033 clear_buffer_new(bh); 2034 2035 block_start = block_end; 2036 bh = bh->b_this_page; 2037 } while (bh != head); 2038 2039 /* 2040 * If this is a partial write which happened to make all buffers 2041 * uptodate then we can optimize away a bogus readpage() for 2042 * the next read(). Here we 'discover' whether the page went 2043 * uptodate as a result of this (potentially partial) write. 2044 */ 2045 if (!partial) 2046 SetPageUptodate(page); 2047 return 0; 2048 } 2049 2050 /* 2051 * block_write_begin takes care of the basic task of block allocation and 2052 * bringing partial write blocks uptodate first. 2053 * 2054 * The filesystem needs to handle block truncation upon failure. 2055 */ 2056 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2057 unsigned flags, struct page **pagep, get_block_t *get_block) 2058 { 2059 pgoff_t index = pos >> PAGE_SHIFT; 2060 struct page *page; 2061 int status; 2062 2063 page = grab_cache_page_write_begin(mapping, index, flags); 2064 if (!page) 2065 return -ENOMEM; 2066 2067 status = __block_write_begin(page, pos, len, get_block); 2068 if (unlikely(status)) { 2069 unlock_page(page); 2070 put_page(page); 2071 page = NULL; 2072 } 2073 2074 *pagep = page; 2075 return status; 2076 } 2077 EXPORT_SYMBOL(block_write_begin); 2078 2079 int block_write_end(struct file *file, struct address_space *mapping, 2080 loff_t pos, unsigned len, unsigned copied, 2081 struct page *page, void *fsdata) 2082 { 2083 struct inode *inode = mapping->host; 2084 unsigned start; 2085 2086 start = pos & (PAGE_SIZE - 1); 2087 2088 if (unlikely(copied < len)) { 2089 /* 2090 * The buffers that were written will now be uptodate, so we 2091 * don't have to worry about a readpage reading them and 2092 * overwriting a partial write. However if we have encountered 2093 * a short write and only partially written into a buffer, it 2094 * will not be marked uptodate, so a readpage might come in and 2095 * destroy our partial write. 2096 * 2097 * Do the simplest thing, and just treat any short write to a 2098 * non uptodate page as a zero-length write, and force the 2099 * caller to redo the whole thing. 2100 */ 2101 if (!PageUptodate(page)) 2102 copied = 0; 2103 2104 page_zero_new_buffers(page, start+copied, start+len); 2105 } 2106 flush_dcache_page(page); 2107 2108 /* This could be a short (even 0-length) commit */ 2109 __block_commit_write(inode, page, start, start+copied); 2110 2111 return copied; 2112 } 2113 EXPORT_SYMBOL(block_write_end); 2114 2115 int generic_write_end(struct file *file, struct address_space *mapping, 2116 loff_t pos, unsigned len, unsigned copied, 2117 struct page *page, void *fsdata) 2118 { 2119 struct inode *inode = mapping->host; 2120 loff_t old_size = inode->i_size; 2121 int i_size_changed = 0; 2122 2123 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2124 2125 /* 2126 * No need to use i_size_read() here, the i_size 2127 * cannot change under us because we hold i_mutex. 2128 * 2129 * But it's important to update i_size while still holding page lock: 2130 * page writeout could otherwise come in and zero beyond i_size. 2131 */ 2132 if (pos+copied > inode->i_size) { 2133 i_size_write(inode, pos+copied); 2134 i_size_changed = 1; 2135 } 2136 2137 unlock_page(page); 2138 put_page(page); 2139 2140 if (old_size < pos) 2141 pagecache_isize_extended(inode, old_size, pos); 2142 /* 2143 * Don't mark the inode dirty under page lock. First, it unnecessarily 2144 * makes the holding time of page lock longer. Second, it forces lock 2145 * ordering of page lock and transaction start for journaling 2146 * filesystems. 2147 */ 2148 if (i_size_changed) 2149 mark_inode_dirty(inode); 2150 2151 return copied; 2152 } 2153 EXPORT_SYMBOL(generic_write_end); 2154 2155 /* 2156 * block_is_partially_uptodate checks whether buffers within a page are 2157 * uptodate or not. 2158 * 2159 * Returns true if all buffers which correspond to a file portion 2160 * we want to read are uptodate. 2161 */ 2162 int block_is_partially_uptodate(struct page *page, unsigned long from, 2163 unsigned long count) 2164 { 2165 unsigned block_start, block_end, blocksize; 2166 unsigned to; 2167 struct buffer_head *bh, *head; 2168 int ret = 1; 2169 2170 if (!page_has_buffers(page)) 2171 return 0; 2172 2173 head = page_buffers(page); 2174 blocksize = head->b_size; 2175 to = min_t(unsigned, PAGE_SIZE - from, count); 2176 to = from + to; 2177 if (from < blocksize && to > PAGE_SIZE - blocksize) 2178 return 0; 2179 2180 bh = head; 2181 block_start = 0; 2182 do { 2183 block_end = block_start + blocksize; 2184 if (block_end > from && block_start < to) { 2185 if (!buffer_uptodate(bh)) { 2186 ret = 0; 2187 break; 2188 } 2189 if (block_end >= to) 2190 break; 2191 } 2192 block_start = block_end; 2193 bh = bh->b_this_page; 2194 } while (bh != head); 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(block_is_partially_uptodate); 2199 2200 /* 2201 * Generic "read page" function for block devices that have the normal 2202 * get_block functionality. This is most of the block device filesystems. 2203 * Reads the page asynchronously --- the unlock_buffer() and 2204 * set/clear_buffer_uptodate() functions propagate buffer state into the 2205 * page struct once IO has completed. 2206 */ 2207 int block_read_full_page(struct page *page, get_block_t *get_block) 2208 { 2209 struct inode *inode = page->mapping->host; 2210 sector_t iblock, lblock; 2211 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2212 unsigned int blocksize, bbits; 2213 int nr, i; 2214 int fully_mapped = 1; 2215 2216 head = create_page_buffers(page, inode, 0); 2217 blocksize = head->b_size; 2218 bbits = block_size_bits(blocksize); 2219 2220 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2221 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2222 bh = head; 2223 nr = 0; 2224 i = 0; 2225 2226 do { 2227 if (buffer_uptodate(bh)) 2228 continue; 2229 2230 if (!buffer_mapped(bh)) { 2231 int err = 0; 2232 2233 fully_mapped = 0; 2234 if (iblock < lblock) { 2235 WARN_ON(bh->b_size != blocksize); 2236 err = get_block(inode, iblock, bh, 0); 2237 if (err) 2238 SetPageError(page); 2239 } 2240 if (!buffer_mapped(bh)) { 2241 zero_user(page, i * blocksize, blocksize); 2242 if (!err) 2243 set_buffer_uptodate(bh); 2244 continue; 2245 } 2246 /* 2247 * get_block() might have updated the buffer 2248 * synchronously 2249 */ 2250 if (buffer_uptodate(bh)) 2251 continue; 2252 } 2253 arr[nr++] = bh; 2254 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2255 2256 if (fully_mapped) 2257 SetPageMappedToDisk(page); 2258 2259 if (!nr) { 2260 /* 2261 * All buffers are uptodate - we can set the page uptodate 2262 * as well. But not if get_block() returned an error. 2263 */ 2264 if (!PageError(page)) 2265 SetPageUptodate(page); 2266 unlock_page(page); 2267 return 0; 2268 } 2269 2270 /* Stage two: lock the buffers */ 2271 for (i = 0; i < nr; i++) { 2272 bh = arr[i]; 2273 lock_buffer(bh); 2274 mark_buffer_async_read(bh); 2275 } 2276 2277 /* 2278 * Stage 3: start the IO. Check for uptodateness 2279 * inside the buffer lock in case another process reading 2280 * the underlying blockdev brought it uptodate (the sct fix). 2281 */ 2282 for (i = 0; i < nr; i++) { 2283 bh = arr[i]; 2284 if (buffer_uptodate(bh)) 2285 end_buffer_async_read(bh, 1); 2286 else 2287 submit_bh(REQ_OP_READ, 0, bh); 2288 } 2289 return 0; 2290 } 2291 EXPORT_SYMBOL(block_read_full_page); 2292 2293 /* utility function for filesystems that need to do work on expanding 2294 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2295 * deal with the hole. 2296 */ 2297 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2298 { 2299 struct address_space *mapping = inode->i_mapping; 2300 struct page *page; 2301 void *fsdata; 2302 int err; 2303 2304 err = inode_newsize_ok(inode, size); 2305 if (err) 2306 goto out; 2307 2308 err = pagecache_write_begin(NULL, mapping, size, 0, 2309 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2310 if (err) 2311 goto out; 2312 2313 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2314 BUG_ON(err > 0); 2315 2316 out: 2317 return err; 2318 } 2319 EXPORT_SYMBOL(generic_cont_expand_simple); 2320 2321 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2322 loff_t pos, loff_t *bytes) 2323 { 2324 struct inode *inode = mapping->host; 2325 unsigned int blocksize = i_blocksize(inode); 2326 struct page *page; 2327 void *fsdata; 2328 pgoff_t index, curidx; 2329 loff_t curpos; 2330 unsigned zerofrom, offset, len; 2331 int err = 0; 2332 2333 index = pos >> PAGE_SHIFT; 2334 offset = pos & ~PAGE_MASK; 2335 2336 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2337 zerofrom = curpos & ~PAGE_MASK; 2338 if (zerofrom & (blocksize-1)) { 2339 *bytes |= (blocksize-1); 2340 (*bytes)++; 2341 } 2342 len = PAGE_SIZE - zerofrom; 2343 2344 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2345 &page, &fsdata); 2346 if (err) 2347 goto out; 2348 zero_user(page, zerofrom, len); 2349 err = pagecache_write_end(file, mapping, curpos, len, len, 2350 page, fsdata); 2351 if (err < 0) 2352 goto out; 2353 BUG_ON(err != len); 2354 err = 0; 2355 2356 balance_dirty_pages_ratelimited(mapping); 2357 2358 if (unlikely(fatal_signal_pending(current))) { 2359 err = -EINTR; 2360 goto out; 2361 } 2362 } 2363 2364 /* page covers the boundary, find the boundary offset */ 2365 if (index == curidx) { 2366 zerofrom = curpos & ~PAGE_MASK; 2367 /* if we will expand the thing last block will be filled */ 2368 if (offset <= zerofrom) { 2369 goto out; 2370 } 2371 if (zerofrom & (blocksize-1)) { 2372 *bytes |= (blocksize-1); 2373 (*bytes)++; 2374 } 2375 len = offset - zerofrom; 2376 2377 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2378 &page, &fsdata); 2379 if (err) 2380 goto out; 2381 zero_user(page, zerofrom, len); 2382 err = pagecache_write_end(file, mapping, curpos, len, len, 2383 page, fsdata); 2384 if (err < 0) 2385 goto out; 2386 BUG_ON(err != len); 2387 err = 0; 2388 } 2389 out: 2390 return err; 2391 } 2392 2393 /* 2394 * For moronic filesystems that do not allow holes in file. 2395 * We may have to extend the file. 2396 */ 2397 int cont_write_begin(struct file *file, struct address_space *mapping, 2398 loff_t pos, unsigned len, unsigned flags, 2399 struct page **pagep, void **fsdata, 2400 get_block_t *get_block, loff_t *bytes) 2401 { 2402 struct inode *inode = mapping->host; 2403 unsigned int blocksize = i_blocksize(inode); 2404 unsigned int zerofrom; 2405 int err; 2406 2407 err = cont_expand_zero(file, mapping, pos, bytes); 2408 if (err) 2409 return err; 2410 2411 zerofrom = *bytes & ~PAGE_MASK; 2412 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2413 *bytes |= (blocksize-1); 2414 (*bytes)++; 2415 } 2416 2417 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2418 } 2419 EXPORT_SYMBOL(cont_write_begin); 2420 2421 int block_commit_write(struct page *page, unsigned from, unsigned to) 2422 { 2423 struct inode *inode = page->mapping->host; 2424 __block_commit_write(inode,page,from,to); 2425 return 0; 2426 } 2427 EXPORT_SYMBOL(block_commit_write); 2428 2429 /* 2430 * block_page_mkwrite() is not allowed to change the file size as it gets 2431 * called from a page fault handler when a page is first dirtied. Hence we must 2432 * be careful to check for EOF conditions here. We set the page up correctly 2433 * for a written page which means we get ENOSPC checking when writing into 2434 * holes and correct delalloc and unwritten extent mapping on filesystems that 2435 * support these features. 2436 * 2437 * We are not allowed to take the i_mutex here so we have to play games to 2438 * protect against truncate races as the page could now be beyond EOF. Because 2439 * truncate writes the inode size before removing pages, once we have the 2440 * page lock we can determine safely if the page is beyond EOF. If it is not 2441 * beyond EOF, then the page is guaranteed safe against truncation until we 2442 * unlock the page. 2443 * 2444 * Direct callers of this function should protect against filesystem freezing 2445 * using sb_start_pagefault() - sb_end_pagefault() functions. 2446 */ 2447 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2448 get_block_t get_block) 2449 { 2450 struct page *page = vmf->page; 2451 struct inode *inode = file_inode(vma->vm_file); 2452 unsigned long end; 2453 loff_t size; 2454 int ret; 2455 2456 lock_page(page); 2457 size = i_size_read(inode); 2458 if ((page->mapping != inode->i_mapping) || 2459 (page_offset(page) > size)) { 2460 /* We overload EFAULT to mean page got truncated */ 2461 ret = -EFAULT; 2462 goto out_unlock; 2463 } 2464 2465 /* page is wholly or partially inside EOF */ 2466 if (((page->index + 1) << PAGE_SHIFT) > size) 2467 end = size & ~PAGE_MASK; 2468 else 2469 end = PAGE_SIZE; 2470 2471 ret = __block_write_begin(page, 0, end, get_block); 2472 if (!ret) 2473 ret = block_commit_write(page, 0, end); 2474 2475 if (unlikely(ret < 0)) 2476 goto out_unlock; 2477 set_page_dirty(page); 2478 wait_for_stable_page(page); 2479 return 0; 2480 out_unlock: 2481 unlock_page(page); 2482 return ret; 2483 } 2484 EXPORT_SYMBOL(block_page_mkwrite); 2485 2486 /* 2487 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2488 * immediately, while under the page lock. So it needs a special end_io 2489 * handler which does not touch the bh after unlocking it. 2490 */ 2491 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2492 { 2493 __end_buffer_read_notouch(bh, uptodate); 2494 } 2495 2496 /* 2497 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2498 * the page (converting it to circular linked list and taking care of page 2499 * dirty races). 2500 */ 2501 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2502 { 2503 struct buffer_head *bh; 2504 2505 BUG_ON(!PageLocked(page)); 2506 2507 spin_lock(&page->mapping->private_lock); 2508 bh = head; 2509 do { 2510 if (PageDirty(page)) 2511 set_buffer_dirty(bh); 2512 if (!bh->b_this_page) 2513 bh->b_this_page = head; 2514 bh = bh->b_this_page; 2515 } while (bh != head); 2516 attach_page_buffers(page, head); 2517 spin_unlock(&page->mapping->private_lock); 2518 } 2519 2520 /* 2521 * On entry, the page is fully not uptodate. 2522 * On exit the page is fully uptodate in the areas outside (from,to) 2523 * The filesystem needs to handle block truncation upon failure. 2524 */ 2525 int nobh_write_begin(struct address_space *mapping, 2526 loff_t pos, unsigned len, unsigned flags, 2527 struct page **pagep, void **fsdata, 2528 get_block_t *get_block) 2529 { 2530 struct inode *inode = mapping->host; 2531 const unsigned blkbits = inode->i_blkbits; 2532 const unsigned blocksize = 1 << blkbits; 2533 struct buffer_head *head, *bh; 2534 struct page *page; 2535 pgoff_t index; 2536 unsigned from, to; 2537 unsigned block_in_page; 2538 unsigned block_start, block_end; 2539 sector_t block_in_file; 2540 int nr_reads = 0; 2541 int ret = 0; 2542 int is_mapped_to_disk = 1; 2543 2544 index = pos >> PAGE_SHIFT; 2545 from = pos & (PAGE_SIZE - 1); 2546 to = from + len; 2547 2548 page = grab_cache_page_write_begin(mapping, index, flags); 2549 if (!page) 2550 return -ENOMEM; 2551 *pagep = page; 2552 *fsdata = NULL; 2553 2554 if (page_has_buffers(page)) { 2555 ret = __block_write_begin(page, pos, len, get_block); 2556 if (unlikely(ret)) 2557 goto out_release; 2558 return ret; 2559 } 2560 2561 if (PageMappedToDisk(page)) 2562 return 0; 2563 2564 /* 2565 * Allocate buffers so that we can keep track of state, and potentially 2566 * attach them to the page if an error occurs. In the common case of 2567 * no error, they will just be freed again without ever being attached 2568 * to the page (which is all OK, because we're under the page lock). 2569 * 2570 * Be careful: the buffer linked list is a NULL terminated one, rather 2571 * than the circular one we're used to. 2572 */ 2573 head = alloc_page_buffers(page, blocksize, false); 2574 if (!head) { 2575 ret = -ENOMEM; 2576 goto out_release; 2577 } 2578 2579 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2580 2581 /* 2582 * We loop across all blocks in the page, whether or not they are 2583 * part of the affected region. This is so we can discover if the 2584 * page is fully mapped-to-disk. 2585 */ 2586 for (block_start = 0, block_in_page = 0, bh = head; 2587 block_start < PAGE_SIZE; 2588 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2589 int create; 2590 2591 block_end = block_start + blocksize; 2592 bh->b_state = 0; 2593 create = 1; 2594 if (block_start >= to) 2595 create = 0; 2596 ret = get_block(inode, block_in_file + block_in_page, 2597 bh, create); 2598 if (ret) 2599 goto failed; 2600 if (!buffer_mapped(bh)) 2601 is_mapped_to_disk = 0; 2602 if (buffer_new(bh)) 2603 clean_bdev_bh_alias(bh); 2604 if (PageUptodate(page)) { 2605 set_buffer_uptodate(bh); 2606 continue; 2607 } 2608 if (buffer_new(bh) || !buffer_mapped(bh)) { 2609 zero_user_segments(page, block_start, from, 2610 to, block_end); 2611 continue; 2612 } 2613 if (buffer_uptodate(bh)) 2614 continue; /* reiserfs does this */ 2615 if (block_start < from || block_end > to) { 2616 lock_buffer(bh); 2617 bh->b_end_io = end_buffer_read_nobh; 2618 submit_bh(REQ_OP_READ, 0, bh); 2619 nr_reads++; 2620 } 2621 } 2622 2623 if (nr_reads) { 2624 /* 2625 * The page is locked, so these buffers are protected from 2626 * any VM or truncate activity. Hence we don't need to care 2627 * for the buffer_head refcounts. 2628 */ 2629 for (bh = head; bh; bh = bh->b_this_page) { 2630 wait_on_buffer(bh); 2631 if (!buffer_uptodate(bh)) 2632 ret = -EIO; 2633 } 2634 if (ret) 2635 goto failed; 2636 } 2637 2638 if (is_mapped_to_disk) 2639 SetPageMappedToDisk(page); 2640 2641 *fsdata = head; /* to be released by nobh_write_end */ 2642 2643 return 0; 2644 2645 failed: 2646 BUG_ON(!ret); 2647 /* 2648 * Error recovery is a bit difficult. We need to zero out blocks that 2649 * were newly allocated, and dirty them to ensure they get written out. 2650 * Buffers need to be attached to the page at this point, otherwise 2651 * the handling of potential IO errors during writeout would be hard 2652 * (could try doing synchronous writeout, but what if that fails too?) 2653 */ 2654 attach_nobh_buffers(page, head); 2655 page_zero_new_buffers(page, from, to); 2656 2657 out_release: 2658 unlock_page(page); 2659 put_page(page); 2660 *pagep = NULL; 2661 2662 return ret; 2663 } 2664 EXPORT_SYMBOL(nobh_write_begin); 2665 2666 int nobh_write_end(struct file *file, struct address_space *mapping, 2667 loff_t pos, unsigned len, unsigned copied, 2668 struct page *page, void *fsdata) 2669 { 2670 struct inode *inode = page->mapping->host; 2671 struct buffer_head *head = fsdata; 2672 struct buffer_head *bh; 2673 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2674 2675 if (unlikely(copied < len) && head) 2676 attach_nobh_buffers(page, head); 2677 if (page_has_buffers(page)) 2678 return generic_write_end(file, mapping, pos, len, 2679 copied, page, fsdata); 2680 2681 SetPageUptodate(page); 2682 set_page_dirty(page); 2683 if (pos+copied > inode->i_size) { 2684 i_size_write(inode, pos+copied); 2685 mark_inode_dirty(inode); 2686 } 2687 2688 unlock_page(page); 2689 put_page(page); 2690 2691 while (head) { 2692 bh = head; 2693 head = head->b_this_page; 2694 free_buffer_head(bh); 2695 } 2696 2697 return copied; 2698 } 2699 EXPORT_SYMBOL(nobh_write_end); 2700 2701 /* 2702 * nobh_writepage() - based on block_full_write_page() except 2703 * that it tries to operate without attaching bufferheads to 2704 * the page. 2705 */ 2706 int nobh_writepage(struct page *page, get_block_t *get_block, 2707 struct writeback_control *wbc) 2708 { 2709 struct inode * const inode = page->mapping->host; 2710 loff_t i_size = i_size_read(inode); 2711 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2712 unsigned offset; 2713 int ret; 2714 2715 /* Is the page fully inside i_size? */ 2716 if (page->index < end_index) 2717 goto out; 2718 2719 /* Is the page fully outside i_size? (truncate in progress) */ 2720 offset = i_size & (PAGE_SIZE-1); 2721 if (page->index >= end_index+1 || !offset) { 2722 /* 2723 * The page may have dirty, unmapped buffers. For example, 2724 * they may have been added in ext3_writepage(). Make them 2725 * freeable here, so the page does not leak. 2726 */ 2727 #if 0 2728 /* Not really sure about this - do we need this ? */ 2729 if (page->mapping->a_ops->invalidatepage) 2730 page->mapping->a_ops->invalidatepage(page, offset); 2731 #endif 2732 unlock_page(page); 2733 return 0; /* don't care */ 2734 } 2735 2736 /* 2737 * The page straddles i_size. It must be zeroed out on each and every 2738 * writepage invocation because it may be mmapped. "A file is mapped 2739 * in multiples of the page size. For a file that is not a multiple of 2740 * the page size, the remaining memory is zeroed when mapped, and 2741 * writes to that region are not written out to the file." 2742 */ 2743 zero_user_segment(page, offset, PAGE_SIZE); 2744 out: 2745 ret = mpage_writepage(page, get_block, wbc); 2746 if (ret == -EAGAIN) 2747 ret = __block_write_full_page(inode, page, get_block, wbc, 2748 end_buffer_async_write); 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(nobh_writepage); 2752 2753 int nobh_truncate_page(struct address_space *mapping, 2754 loff_t from, get_block_t *get_block) 2755 { 2756 pgoff_t index = from >> PAGE_SHIFT; 2757 unsigned offset = from & (PAGE_SIZE-1); 2758 unsigned blocksize; 2759 sector_t iblock; 2760 unsigned length, pos; 2761 struct inode *inode = mapping->host; 2762 struct page *page; 2763 struct buffer_head map_bh; 2764 int err; 2765 2766 blocksize = i_blocksize(inode); 2767 length = offset & (blocksize - 1); 2768 2769 /* Block boundary? Nothing to do */ 2770 if (!length) 2771 return 0; 2772 2773 length = blocksize - length; 2774 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2775 2776 page = grab_cache_page(mapping, index); 2777 err = -ENOMEM; 2778 if (!page) 2779 goto out; 2780 2781 if (page_has_buffers(page)) { 2782 has_buffers: 2783 unlock_page(page); 2784 put_page(page); 2785 return block_truncate_page(mapping, from, get_block); 2786 } 2787 2788 /* Find the buffer that contains "offset" */ 2789 pos = blocksize; 2790 while (offset >= pos) { 2791 iblock++; 2792 pos += blocksize; 2793 } 2794 2795 map_bh.b_size = blocksize; 2796 map_bh.b_state = 0; 2797 err = get_block(inode, iblock, &map_bh, 0); 2798 if (err) 2799 goto unlock; 2800 /* unmapped? It's a hole - nothing to do */ 2801 if (!buffer_mapped(&map_bh)) 2802 goto unlock; 2803 2804 /* Ok, it's mapped. Make sure it's up-to-date */ 2805 if (!PageUptodate(page)) { 2806 err = mapping->a_ops->readpage(NULL, page); 2807 if (err) { 2808 put_page(page); 2809 goto out; 2810 } 2811 lock_page(page); 2812 if (!PageUptodate(page)) { 2813 err = -EIO; 2814 goto unlock; 2815 } 2816 if (page_has_buffers(page)) 2817 goto has_buffers; 2818 } 2819 zero_user(page, offset, length); 2820 set_page_dirty(page); 2821 err = 0; 2822 2823 unlock: 2824 unlock_page(page); 2825 put_page(page); 2826 out: 2827 return err; 2828 } 2829 EXPORT_SYMBOL(nobh_truncate_page); 2830 2831 int block_truncate_page(struct address_space *mapping, 2832 loff_t from, get_block_t *get_block) 2833 { 2834 pgoff_t index = from >> PAGE_SHIFT; 2835 unsigned offset = from & (PAGE_SIZE-1); 2836 unsigned blocksize; 2837 sector_t iblock; 2838 unsigned length, pos; 2839 struct inode *inode = mapping->host; 2840 struct page *page; 2841 struct buffer_head *bh; 2842 int err; 2843 2844 blocksize = i_blocksize(inode); 2845 length = offset & (blocksize - 1); 2846 2847 /* Block boundary? Nothing to do */ 2848 if (!length) 2849 return 0; 2850 2851 length = blocksize - length; 2852 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2853 2854 page = grab_cache_page(mapping, index); 2855 err = -ENOMEM; 2856 if (!page) 2857 goto out; 2858 2859 if (!page_has_buffers(page)) 2860 create_empty_buffers(page, blocksize, 0); 2861 2862 /* Find the buffer that contains "offset" */ 2863 bh = page_buffers(page); 2864 pos = blocksize; 2865 while (offset >= pos) { 2866 bh = bh->b_this_page; 2867 iblock++; 2868 pos += blocksize; 2869 } 2870 2871 err = 0; 2872 if (!buffer_mapped(bh)) { 2873 WARN_ON(bh->b_size != blocksize); 2874 err = get_block(inode, iblock, bh, 0); 2875 if (err) 2876 goto unlock; 2877 /* unmapped? It's a hole - nothing to do */ 2878 if (!buffer_mapped(bh)) 2879 goto unlock; 2880 } 2881 2882 /* Ok, it's mapped. Make sure it's up-to-date */ 2883 if (PageUptodate(page)) 2884 set_buffer_uptodate(bh); 2885 2886 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2887 err = -EIO; 2888 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2889 wait_on_buffer(bh); 2890 /* Uhhuh. Read error. Complain and punt. */ 2891 if (!buffer_uptodate(bh)) 2892 goto unlock; 2893 } 2894 2895 zero_user(page, offset, length); 2896 mark_buffer_dirty(bh); 2897 err = 0; 2898 2899 unlock: 2900 unlock_page(page); 2901 put_page(page); 2902 out: 2903 return err; 2904 } 2905 EXPORT_SYMBOL(block_truncate_page); 2906 2907 /* 2908 * The generic ->writepage function for buffer-backed address_spaces 2909 */ 2910 int block_write_full_page(struct page *page, get_block_t *get_block, 2911 struct writeback_control *wbc) 2912 { 2913 struct inode * const inode = page->mapping->host; 2914 loff_t i_size = i_size_read(inode); 2915 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2916 unsigned offset; 2917 2918 /* Is the page fully inside i_size? */ 2919 if (page->index < end_index) 2920 return __block_write_full_page(inode, page, get_block, wbc, 2921 end_buffer_async_write); 2922 2923 /* Is the page fully outside i_size? (truncate in progress) */ 2924 offset = i_size & (PAGE_SIZE-1); 2925 if (page->index >= end_index+1 || !offset) { 2926 /* 2927 * The page may have dirty, unmapped buffers. For example, 2928 * they may have been added in ext3_writepage(). Make them 2929 * freeable here, so the page does not leak. 2930 */ 2931 do_invalidatepage(page, 0, PAGE_SIZE); 2932 unlock_page(page); 2933 return 0; /* don't care */ 2934 } 2935 2936 /* 2937 * The page straddles i_size. It must be zeroed out on each and every 2938 * writepage invocation because it may be mmapped. "A file is mapped 2939 * in multiples of the page size. For a file that is not a multiple of 2940 * the page size, the remaining memory is zeroed when mapped, and 2941 * writes to that region are not written out to the file." 2942 */ 2943 zero_user_segment(page, offset, PAGE_SIZE); 2944 return __block_write_full_page(inode, page, get_block, wbc, 2945 end_buffer_async_write); 2946 } 2947 EXPORT_SYMBOL(block_write_full_page); 2948 2949 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2950 get_block_t *get_block) 2951 { 2952 struct inode *inode = mapping->host; 2953 struct buffer_head tmp = { 2954 .b_size = i_blocksize(inode), 2955 }; 2956 2957 get_block(inode, block, &tmp, 0); 2958 return tmp.b_blocknr; 2959 } 2960 EXPORT_SYMBOL(generic_block_bmap); 2961 2962 static void end_bio_bh_io_sync(struct bio *bio) 2963 { 2964 struct buffer_head *bh = bio->bi_private; 2965 2966 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2967 set_bit(BH_Quiet, &bh->b_state); 2968 2969 bh->b_end_io(bh, !bio->bi_status); 2970 bio_put(bio); 2971 } 2972 2973 /* 2974 * This allows us to do IO even on the odd last sectors 2975 * of a device, even if the block size is some multiple 2976 * of the physical sector size. 2977 * 2978 * We'll just truncate the bio to the size of the device, 2979 * and clear the end of the buffer head manually. 2980 * 2981 * Truly out-of-range accesses will turn into actual IO 2982 * errors, this only handles the "we need to be able to 2983 * do IO at the final sector" case. 2984 */ 2985 void guard_bio_eod(int op, struct bio *bio) 2986 { 2987 sector_t maxsector; 2988 struct bio_vec *bvec = bio_last_bvec_all(bio); 2989 unsigned truncated_bytes; 2990 struct hd_struct *part; 2991 2992 rcu_read_lock(); 2993 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 2994 if (part) 2995 maxsector = part_nr_sects_read(part); 2996 else 2997 maxsector = get_capacity(bio->bi_disk); 2998 rcu_read_unlock(); 2999 3000 if (!maxsector) 3001 return; 3002 3003 /* 3004 * If the *whole* IO is past the end of the device, 3005 * let it through, and the IO layer will turn it into 3006 * an EIO. 3007 */ 3008 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3009 return; 3010 3011 maxsector -= bio->bi_iter.bi_sector; 3012 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3013 return; 3014 3015 /* Uhhuh. We've got a bio that straddles the device size! */ 3016 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3017 3018 /* Truncate the bio.. */ 3019 bio->bi_iter.bi_size -= truncated_bytes; 3020 bvec->bv_len -= truncated_bytes; 3021 3022 /* ..and clear the end of the buffer for reads */ 3023 if (op == REQ_OP_READ) { 3024 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3025 truncated_bytes); 3026 } 3027 } 3028 3029 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3030 enum rw_hint write_hint, struct writeback_control *wbc) 3031 { 3032 struct bio *bio; 3033 3034 BUG_ON(!buffer_locked(bh)); 3035 BUG_ON(!buffer_mapped(bh)); 3036 BUG_ON(!bh->b_end_io); 3037 BUG_ON(buffer_delay(bh)); 3038 BUG_ON(buffer_unwritten(bh)); 3039 3040 /* 3041 * Only clear out a write error when rewriting 3042 */ 3043 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3044 clear_buffer_write_io_error(bh); 3045 3046 /* 3047 * from here on down, it's all bio -- do the initial mapping, 3048 * submit_bio -> generic_make_request may further map this bio around 3049 */ 3050 bio = bio_alloc(GFP_NOIO, 1); 3051 3052 if (wbc) { 3053 wbc_init_bio(wbc, bio); 3054 wbc_account_io(wbc, bh->b_page, bh->b_size); 3055 } 3056 3057 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3058 bio_set_dev(bio, bh->b_bdev); 3059 bio->bi_write_hint = write_hint; 3060 3061 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3062 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3063 3064 bio->bi_end_io = end_bio_bh_io_sync; 3065 bio->bi_private = bh; 3066 3067 /* Take care of bh's that straddle the end of the device */ 3068 guard_bio_eod(op, bio); 3069 3070 if (buffer_meta(bh)) 3071 op_flags |= REQ_META; 3072 if (buffer_prio(bh)) 3073 op_flags |= REQ_PRIO; 3074 bio_set_op_attrs(bio, op, op_flags); 3075 3076 submit_bio(bio); 3077 return 0; 3078 } 3079 3080 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3081 { 3082 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3083 } 3084 EXPORT_SYMBOL(submit_bh); 3085 3086 /** 3087 * ll_rw_block: low-level access to block devices (DEPRECATED) 3088 * @op: whether to %READ or %WRITE 3089 * @op_flags: req_flag_bits 3090 * @nr: number of &struct buffer_heads in the array 3091 * @bhs: array of pointers to &struct buffer_head 3092 * 3093 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3094 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3095 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3096 * %REQ_RAHEAD. 3097 * 3098 * This function drops any buffer that it cannot get a lock on (with the 3099 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3100 * request, and any buffer that appears to be up-to-date when doing read 3101 * request. Further it marks as clean buffers that are processed for 3102 * writing (the buffer cache won't assume that they are actually clean 3103 * until the buffer gets unlocked). 3104 * 3105 * ll_rw_block sets b_end_io to simple completion handler that marks 3106 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3107 * any waiters. 3108 * 3109 * All of the buffers must be for the same device, and must also be a 3110 * multiple of the current approved size for the device. 3111 */ 3112 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3113 { 3114 int i; 3115 3116 for (i = 0; i < nr; i++) { 3117 struct buffer_head *bh = bhs[i]; 3118 3119 if (!trylock_buffer(bh)) 3120 continue; 3121 if (op == WRITE) { 3122 if (test_clear_buffer_dirty(bh)) { 3123 bh->b_end_io = end_buffer_write_sync; 3124 get_bh(bh); 3125 submit_bh(op, op_flags, bh); 3126 continue; 3127 } 3128 } else { 3129 if (!buffer_uptodate(bh)) { 3130 bh->b_end_io = end_buffer_read_sync; 3131 get_bh(bh); 3132 submit_bh(op, op_flags, bh); 3133 continue; 3134 } 3135 } 3136 unlock_buffer(bh); 3137 } 3138 } 3139 EXPORT_SYMBOL(ll_rw_block); 3140 3141 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3142 { 3143 lock_buffer(bh); 3144 if (!test_clear_buffer_dirty(bh)) { 3145 unlock_buffer(bh); 3146 return; 3147 } 3148 bh->b_end_io = end_buffer_write_sync; 3149 get_bh(bh); 3150 submit_bh(REQ_OP_WRITE, op_flags, bh); 3151 } 3152 EXPORT_SYMBOL(write_dirty_buffer); 3153 3154 /* 3155 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3156 * and then start new I/O and then wait upon it. The caller must have a ref on 3157 * the buffer_head. 3158 */ 3159 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3160 { 3161 int ret = 0; 3162 3163 WARN_ON(atomic_read(&bh->b_count) < 1); 3164 lock_buffer(bh); 3165 if (test_clear_buffer_dirty(bh)) { 3166 get_bh(bh); 3167 bh->b_end_io = end_buffer_write_sync; 3168 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3169 wait_on_buffer(bh); 3170 if (!ret && !buffer_uptodate(bh)) 3171 ret = -EIO; 3172 } else { 3173 unlock_buffer(bh); 3174 } 3175 return ret; 3176 } 3177 EXPORT_SYMBOL(__sync_dirty_buffer); 3178 3179 int sync_dirty_buffer(struct buffer_head *bh) 3180 { 3181 return __sync_dirty_buffer(bh, REQ_SYNC); 3182 } 3183 EXPORT_SYMBOL(sync_dirty_buffer); 3184 3185 /* 3186 * try_to_free_buffers() checks if all the buffers on this particular page 3187 * are unused, and releases them if so. 3188 * 3189 * Exclusion against try_to_free_buffers may be obtained by either 3190 * locking the page or by holding its mapping's private_lock. 3191 * 3192 * If the page is dirty but all the buffers are clean then we need to 3193 * be sure to mark the page clean as well. This is because the page 3194 * may be against a block device, and a later reattachment of buffers 3195 * to a dirty page will set *all* buffers dirty. Which would corrupt 3196 * filesystem data on the same device. 3197 * 3198 * The same applies to regular filesystem pages: if all the buffers are 3199 * clean then we set the page clean and proceed. To do that, we require 3200 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3201 * private_lock. 3202 * 3203 * try_to_free_buffers() is non-blocking. 3204 */ 3205 static inline int buffer_busy(struct buffer_head *bh) 3206 { 3207 return atomic_read(&bh->b_count) | 3208 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3209 } 3210 3211 static int 3212 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3213 { 3214 struct buffer_head *head = page_buffers(page); 3215 struct buffer_head *bh; 3216 3217 bh = head; 3218 do { 3219 if (buffer_busy(bh)) 3220 goto failed; 3221 bh = bh->b_this_page; 3222 } while (bh != head); 3223 3224 do { 3225 struct buffer_head *next = bh->b_this_page; 3226 3227 if (bh->b_assoc_map) 3228 __remove_assoc_queue(bh); 3229 bh = next; 3230 } while (bh != head); 3231 *buffers_to_free = head; 3232 __clear_page_buffers(page); 3233 return 1; 3234 failed: 3235 return 0; 3236 } 3237 3238 int try_to_free_buffers(struct page *page) 3239 { 3240 struct address_space * const mapping = page->mapping; 3241 struct buffer_head *buffers_to_free = NULL; 3242 int ret = 0; 3243 3244 BUG_ON(!PageLocked(page)); 3245 if (PageWriteback(page)) 3246 return 0; 3247 3248 if (mapping == NULL) { /* can this still happen? */ 3249 ret = drop_buffers(page, &buffers_to_free); 3250 goto out; 3251 } 3252 3253 spin_lock(&mapping->private_lock); 3254 ret = drop_buffers(page, &buffers_to_free); 3255 3256 /* 3257 * If the filesystem writes its buffers by hand (eg ext3) 3258 * then we can have clean buffers against a dirty page. We 3259 * clean the page here; otherwise the VM will never notice 3260 * that the filesystem did any IO at all. 3261 * 3262 * Also, during truncate, discard_buffer will have marked all 3263 * the page's buffers clean. We discover that here and clean 3264 * the page also. 3265 * 3266 * private_lock must be held over this entire operation in order 3267 * to synchronise against __set_page_dirty_buffers and prevent the 3268 * dirty bit from being lost. 3269 */ 3270 if (ret) 3271 cancel_dirty_page(page); 3272 spin_unlock(&mapping->private_lock); 3273 out: 3274 if (buffers_to_free) { 3275 struct buffer_head *bh = buffers_to_free; 3276 3277 do { 3278 struct buffer_head *next = bh->b_this_page; 3279 free_buffer_head(bh); 3280 bh = next; 3281 } while (bh != buffers_to_free); 3282 } 3283 return ret; 3284 } 3285 EXPORT_SYMBOL(try_to_free_buffers); 3286 3287 /* 3288 * There are no bdflush tunables left. But distributions are 3289 * still running obsolete flush daemons, so we terminate them here. 3290 * 3291 * Use of bdflush() is deprecated and will be removed in a future kernel. 3292 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3293 */ 3294 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3295 { 3296 static int msg_count; 3297 3298 if (!capable(CAP_SYS_ADMIN)) 3299 return -EPERM; 3300 3301 if (msg_count < 5) { 3302 msg_count++; 3303 printk(KERN_INFO 3304 "warning: process `%s' used the obsolete bdflush" 3305 " system call\n", current->comm); 3306 printk(KERN_INFO "Fix your initscripts?\n"); 3307 } 3308 3309 if (func == 1) 3310 do_exit(0); 3311 return 0; 3312 } 3313 3314 /* 3315 * Buffer-head allocation 3316 */ 3317 static struct kmem_cache *bh_cachep __read_mostly; 3318 3319 /* 3320 * Once the number of bh's in the machine exceeds this level, we start 3321 * stripping them in writeback. 3322 */ 3323 static unsigned long max_buffer_heads; 3324 3325 int buffer_heads_over_limit; 3326 3327 struct bh_accounting { 3328 int nr; /* Number of live bh's */ 3329 int ratelimit; /* Limit cacheline bouncing */ 3330 }; 3331 3332 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3333 3334 static void recalc_bh_state(void) 3335 { 3336 int i; 3337 int tot = 0; 3338 3339 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3340 return; 3341 __this_cpu_write(bh_accounting.ratelimit, 0); 3342 for_each_online_cpu(i) 3343 tot += per_cpu(bh_accounting, i).nr; 3344 buffer_heads_over_limit = (tot > max_buffer_heads); 3345 } 3346 3347 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3348 { 3349 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3350 if (ret) { 3351 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3352 preempt_disable(); 3353 __this_cpu_inc(bh_accounting.nr); 3354 recalc_bh_state(); 3355 preempt_enable(); 3356 } 3357 return ret; 3358 } 3359 EXPORT_SYMBOL(alloc_buffer_head); 3360 3361 void free_buffer_head(struct buffer_head *bh) 3362 { 3363 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3364 kmem_cache_free(bh_cachep, bh); 3365 preempt_disable(); 3366 __this_cpu_dec(bh_accounting.nr); 3367 recalc_bh_state(); 3368 preempt_enable(); 3369 } 3370 EXPORT_SYMBOL(free_buffer_head); 3371 3372 static int buffer_exit_cpu_dead(unsigned int cpu) 3373 { 3374 int i; 3375 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3376 3377 for (i = 0; i < BH_LRU_SIZE; i++) { 3378 brelse(b->bhs[i]); 3379 b->bhs[i] = NULL; 3380 } 3381 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3382 per_cpu(bh_accounting, cpu).nr = 0; 3383 return 0; 3384 } 3385 3386 /** 3387 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3388 * @bh: struct buffer_head 3389 * 3390 * Return true if the buffer is up-to-date and false, 3391 * with the buffer locked, if not. 3392 */ 3393 int bh_uptodate_or_lock(struct buffer_head *bh) 3394 { 3395 if (!buffer_uptodate(bh)) { 3396 lock_buffer(bh); 3397 if (!buffer_uptodate(bh)) 3398 return 0; 3399 unlock_buffer(bh); 3400 } 3401 return 1; 3402 } 3403 EXPORT_SYMBOL(bh_uptodate_or_lock); 3404 3405 /** 3406 * bh_submit_read - Submit a locked buffer for reading 3407 * @bh: struct buffer_head 3408 * 3409 * Returns zero on success and -EIO on error. 3410 */ 3411 int bh_submit_read(struct buffer_head *bh) 3412 { 3413 BUG_ON(!buffer_locked(bh)); 3414 3415 if (buffer_uptodate(bh)) { 3416 unlock_buffer(bh); 3417 return 0; 3418 } 3419 3420 get_bh(bh); 3421 bh->b_end_io = end_buffer_read_sync; 3422 submit_bh(REQ_OP_READ, 0, bh); 3423 wait_on_buffer(bh); 3424 if (buffer_uptodate(bh)) 3425 return 0; 3426 return -EIO; 3427 } 3428 EXPORT_SYMBOL(bh_submit_read); 3429 3430 /* 3431 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff. 3432 * 3433 * Returns the offset within the file on success, and -ENOENT otherwise. 3434 */ 3435 static loff_t 3436 page_seek_hole_data(struct page *page, loff_t lastoff, int whence) 3437 { 3438 loff_t offset = page_offset(page); 3439 struct buffer_head *bh, *head; 3440 bool seek_data = whence == SEEK_DATA; 3441 3442 if (lastoff < offset) 3443 lastoff = offset; 3444 3445 bh = head = page_buffers(page); 3446 do { 3447 offset += bh->b_size; 3448 if (lastoff >= offset) 3449 continue; 3450 3451 /* 3452 * Unwritten extents that have data in the page cache covering 3453 * them can be identified by the BH_Unwritten state flag. 3454 * Pages with multiple buffers might have a mix of holes, data 3455 * and unwritten extents - any buffer with valid data in it 3456 * should have BH_Uptodate flag set on it. 3457 */ 3458 3459 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data) 3460 return lastoff; 3461 3462 lastoff = offset; 3463 } while ((bh = bh->b_this_page) != head); 3464 return -ENOENT; 3465 } 3466 3467 /* 3468 * Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3469 * 3470 * Within unwritten extents, the page cache determines which parts are holes 3471 * and which are data: unwritten and uptodate buffer heads count as data; 3472 * everything else counts as a hole. 3473 * 3474 * Returns the resulting offset on successs, and -ENOENT otherwise. 3475 */ 3476 loff_t 3477 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length, 3478 int whence) 3479 { 3480 pgoff_t index = offset >> PAGE_SHIFT; 3481 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE); 3482 loff_t lastoff = offset; 3483 struct pagevec pvec; 3484 3485 if (length <= 0) 3486 return -ENOENT; 3487 3488 pagevec_init(&pvec); 3489 3490 do { 3491 unsigned nr_pages, i; 3492 3493 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index, 3494 end - 1); 3495 if (nr_pages == 0) 3496 break; 3497 3498 for (i = 0; i < nr_pages; i++) { 3499 struct page *page = pvec.pages[i]; 3500 3501 /* 3502 * At this point, the page may be truncated or 3503 * invalidated (changing page->mapping to NULL), or 3504 * even swizzled back from swapper_space to tmpfs file 3505 * mapping. However, page->index will not change 3506 * because we have a reference on the page. 3507 * 3508 * If current page offset is beyond where we've ended, 3509 * we've found a hole. 3510 */ 3511 if (whence == SEEK_HOLE && 3512 lastoff < page_offset(page)) 3513 goto check_range; 3514 3515 lock_page(page); 3516 if (likely(page->mapping == inode->i_mapping) && 3517 page_has_buffers(page)) { 3518 lastoff = page_seek_hole_data(page, lastoff, whence); 3519 if (lastoff >= 0) { 3520 unlock_page(page); 3521 goto check_range; 3522 } 3523 } 3524 unlock_page(page); 3525 lastoff = page_offset(page) + PAGE_SIZE; 3526 } 3527 pagevec_release(&pvec); 3528 } while (index < end); 3529 3530 /* When no page at lastoff and we are not done, we found a hole. */ 3531 if (whence != SEEK_HOLE) 3532 goto not_found; 3533 3534 check_range: 3535 if (lastoff < offset + length) 3536 goto out; 3537 not_found: 3538 lastoff = -ENOENT; 3539 out: 3540 pagevec_release(&pvec); 3541 return lastoff; 3542 } 3543 3544 void __init buffer_init(void) 3545 { 3546 unsigned long nrpages; 3547 int ret; 3548 3549 bh_cachep = kmem_cache_create("buffer_head", 3550 sizeof(struct buffer_head), 0, 3551 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3552 SLAB_MEM_SPREAD), 3553 NULL); 3554 3555 /* 3556 * Limit the bh occupancy to 10% of ZONE_NORMAL 3557 */ 3558 nrpages = (nr_free_buffer_pages() * 10) / 100; 3559 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3560 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3561 NULL, buffer_exit_cpu_dead); 3562 WARN_ON(ret < 0); 3563 } 3564