xref: /openbmc/linux/fs/buffer.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * write_dirty_buffer() actually writes the
774 				 * current contents - it is a noop if I/O is
775 				 * still in flight on potentially older
776 				 * contents.
777 				 */
778 				write_dirty_buffer(bh, WRITE_SYNC_PLUG);
779 
780 				/*
781 				 * Kick off IO for the previous mapping. Note
782 				 * that we will not run the very last mapping,
783 				 * wait_on_buffer() will do that for us
784 				 * through sync_buffer().
785 				 */
786 				if (prev_mapping && prev_mapping != mapping)
787 					blk_run_address_space(prev_mapping);
788 				prev_mapping = mapping;
789 
790 				brelse(bh);
791 				spin_lock(lock);
792 			}
793 		}
794 	}
795 
796 	while (!list_empty(&tmp)) {
797 		bh = BH_ENTRY(tmp.prev);
798 		get_bh(bh);
799 		mapping = bh->b_assoc_map;
800 		__remove_assoc_queue(bh);
801 		/* Avoid race with mark_buffer_dirty_inode() which does
802 		 * a lockless check and we rely on seeing the dirty bit */
803 		smp_mb();
804 		if (buffer_dirty(bh)) {
805 			list_add(&bh->b_assoc_buffers,
806 				 &mapping->private_list);
807 			bh->b_assoc_map = mapping;
808 		}
809 		spin_unlock(lock);
810 		wait_on_buffer(bh);
811 		if (!buffer_uptodate(bh))
812 			err = -EIO;
813 		brelse(bh);
814 		spin_lock(lock);
815 	}
816 
817 	spin_unlock(lock);
818 	err2 = osync_buffers_list(lock, list);
819 	if (err)
820 		return err;
821 	else
822 		return err2;
823 }
824 
825 /*
826  * Invalidate any and all dirty buffers on a given inode.  We are
827  * probably unmounting the fs, but that doesn't mean we have already
828  * done a sync().  Just drop the buffers from the inode list.
829  *
830  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
831  * assumes that all the buffers are against the blockdev.  Not true
832  * for reiserfs.
833  */
834 void invalidate_inode_buffers(struct inode *inode)
835 {
836 	if (inode_has_buffers(inode)) {
837 		struct address_space *mapping = &inode->i_data;
838 		struct list_head *list = &mapping->private_list;
839 		struct address_space *buffer_mapping = mapping->assoc_mapping;
840 
841 		spin_lock(&buffer_mapping->private_lock);
842 		while (!list_empty(list))
843 			__remove_assoc_queue(BH_ENTRY(list->next));
844 		spin_unlock(&buffer_mapping->private_lock);
845 	}
846 }
847 EXPORT_SYMBOL(invalidate_inode_buffers);
848 
849 /*
850  * Remove any clean buffers from the inode's buffer list.  This is called
851  * when we're trying to free the inode itself.  Those buffers can pin it.
852  *
853  * Returns true if all buffers were removed.
854  */
855 int remove_inode_buffers(struct inode *inode)
856 {
857 	int ret = 1;
858 
859 	if (inode_has_buffers(inode)) {
860 		struct address_space *mapping = &inode->i_data;
861 		struct list_head *list = &mapping->private_list;
862 		struct address_space *buffer_mapping = mapping->assoc_mapping;
863 
864 		spin_lock(&buffer_mapping->private_lock);
865 		while (!list_empty(list)) {
866 			struct buffer_head *bh = BH_ENTRY(list->next);
867 			if (buffer_dirty(bh)) {
868 				ret = 0;
869 				break;
870 			}
871 			__remove_assoc_queue(bh);
872 		}
873 		spin_unlock(&buffer_mapping->private_lock);
874 	}
875 	return ret;
876 }
877 
878 /*
879  * Create the appropriate buffers when given a page for data area and
880  * the size of each buffer.. Use the bh->b_this_page linked list to
881  * follow the buffers created.  Return NULL if unable to create more
882  * buffers.
883  *
884  * The retry flag is used to differentiate async IO (paging, swapping)
885  * which may not fail from ordinary buffer allocations.
886  */
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 		int retry)
889 {
890 	struct buffer_head *bh, *head;
891 	long offset;
892 
893 try_again:
894 	head = NULL;
895 	offset = PAGE_SIZE;
896 	while ((offset -= size) >= 0) {
897 		bh = alloc_buffer_head(GFP_NOFS);
898 		if (!bh)
899 			goto no_grow;
900 
901 		bh->b_bdev = NULL;
902 		bh->b_this_page = head;
903 		bh->b_blocknr = -1;
904 		head = bh;
905 
906 		bh->b_state = 0;
907 		atomic_set(&bh->b_count, 0);
908 		bh->b_size = size;
909 
910 		/* Link the buffer to its page */
911 		set_bh_page(bh, page, offset);
912 
913 		init_buffer(bh, NULL, NULL);
914 	}
915 	return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920 	if (head) {
921 		do {
922 			bh = head;
923 			head = head->b_this_page;
924 			free_buffer_head(bh);
925 		} while (head);
926 	}
927 
928 	/*
929 	 * Return failure for non-async IO requests.  Async IO requests
930 	 * are not allowed to fail, so we have to wait until buffer heads
931 	 * become available.  But we don't want tasks sleeping with
932 	 * partially complete buffers, so all were released above.
933 	 */
934 	if (!retry)
935 		return NULL;
936 
937 	/* We're _really_ low on memory. Now we just
938 	 * wait for old buffer heads to become free due to
939 	 * finishing IO.  Since this is an async request and
940 	 * the reserve list is empty, we're sure there are
941 	 * async buffer heads in use.
942 	 */
943 	free_more_memory();
944 	goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951 	struct buffer_head *bh, *tail;
952 
953 	bh = head;
954 	do {
955 		tail = bh;
956 		bh = bh->b_this_page;
957 	} while (bh);
958 	tail->b_this_page = head;
959 	attach_page_buffers(page, head);
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 
973 	do {
974 		if (!buffer_mapped(bh)) {
975 			init_buffer(bh, NULL, NULL);
976 			bh->b_bdev = bdev;
977 			bh->b_blocknr = block;
978 			if (uptodate)
979 				set_buffer_uptodate(bh);
980 			set_buffer_mapped(bh);
981 		}
982 		block++;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 }
986 
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994 		pgoff_t index, int size)
995 {
996 	struct inode *inode = bdev->bd_inode;
997 	struct page *page;
998 	struct buffer_head *bh;
999 
1000 	page = find_or_create_page(inode->i_mapping, index,
1001 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 	if (!page)
1003 		return NULL;
1004 
1005 	BUG_ON(!PageLocked(page));
1006 
1007 	if (page_has_buffers(page)) {
1008 		bh = page_buffers(page);
1009 		if (bh->b_size == size) {
1010 			init_page_buffers(page, bdev, block, size);
1011 			return page;
1012 		}
1013 		if (!try_to_free_buffers(page))
1014 			goto failed;
1015 	}
1016 
1017 	/*
1018 	 * Allocate some buffers for this page
1019 	 */
1020 	bh = alloc_page_buffers(page, size, 0);
1021 	if (!bh)
1022 		goto failed;
1023 
1024 	/*
1025 	 * Link the page to the buffers and initialise them.  Take the
1026 	 * lock to be atomic wrt __find_get_block(), which does not
1027 	 * run under the page lock.
1028 	 */
1029 	spin_lock(&inode->i_mapping->private_lock);
1030 	link_dev_buffers(page, bh);
1031 	init_page_buffers(page, bdev, block, size);
1032 	spin_unlock(&inode->i_mapping->private_lock);
1033 	return page;
1034 
1035 failed:
1036 	BUG();
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049 	struct page *page;
1050 	pgoff_t index;
1051 	int sizebits;
1052 
1053 	sizebits = -1;
1054 	do {
1055 		sizebits++;
1056 	} while ((size << sizebits) < PAGE_SIZE);
1057 
1058 	index = block >> sizebits;
1059 
1060 	/*
1061 	 * Check for a block which wants to lie outside our maximum possible
1062 	 * pagecache index.  (this comparison is done using sector_t types).
1063 	 */
1064 	if (unlikely(index != block >> sizebits)) {
1065 		char b[BDEVNAME_SIZE];
1066 
1067 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 			"device %s\n",
1069 			__func__, (unsigned long long)block,
1070 			bdevname(bdev, b));
1071 		return -EIO;
1072 	}
1073 	block = index << sizebits;
1074 	/* Create a page with the proper size buffers.. */
1075 	page = grow_dev_page(bdev, block, index, size);
1076 	if (!page)
1077 		return 0;
1078 	unlock_page(page);
1079 	page_cache_release(page);
1080 	return 1;
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head * bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and the global inode_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	/*
1154 	 * Very *carefully* optimize the it-is-already-dirty case.
1155 	 *
1156 	 * Don't let the final "is it dirty" escape to before we
1157 	 * perhaps modified the buffer.
1158 	 */
1159 	if (buffer_dirty(bh)) {
1160 		smp_mb();
1161 		if (buffer_dirty(bh))
1162 			return;
1163 	}
1164 
1165 	if (!test_set_buffer_dirty(bh)) {
1166 		struct page *page = bh->b_page;
1167 		if (!TestSetPageDirty(page)) {
1168 			struct address_space *mapping = page_mapping(page);
1169 			if (mapping)
1170 				__set_page_dirty(page, mapping, 0);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175 
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185 	if (atomic_read(&buf->b_count)) {
1186 		put_bh(buf);
1187 		return;
1188 	}
1189 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192 
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199 	clear_buffer_dirty(bh);
1200 	if (bh->b_assoc_map) {
1201 		struct address_space *buffer_mapping = bh->b_page->mapping;
1202 
1203 		spin_lock(&buffer_mapping->private_lock);
1204 		list_del_init(&bh->b_assoc_buffers);
1205 		bh->b_assoc_map = NULL;
1206 		spin_unlock(&buffer_mapping->private_lock);
1207 	}
1208 	__brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211 
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214 	lock_buffer(bh);
1215 	if (buffer_uptodate(bh)) {
1216 		unlock_buffer(bh);
1217 		return bh;
1218 	} else {
1219 		get_bh(bh);
1220 		bh->b_end_io = end_buffer_read_sync;
1221 		submit_bh(READ, bh);
1222 		wait_on_buffer(bh);
1223 		if (buffer_uptodate(bh))
1224 			return bh;
1225 	}
1226 	brelse(bh);
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243 
1244 #define BH_LRU_SIZE	8
1245 
1246 struct bh_lru {
1247 	struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249 
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()	local_irq_disable()
1254 #define bh_lru_unlock()	local_irq_enable()
1255 #else
1256 #define bh_lru_lock()	preempt_disable()
1257 #define bh_lru_unlock()	preempt_enable()
1258 #endif
1259 
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263 	BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266 
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = NULL;
1273 
1274 	check_irqs_on();
1275 	bh_lru_lock();
1276 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1277 		struct buffer_head *bhs[BH_LRU_SIZE];
1278 		int in;
1279 		int out = 0;
1280 
1281 		get_bh(bh);
1282 		bhs[out++] = bh;
1283 		for (in = 0; in < BH_LRU_SIZE; in++) {
1284 			struct buffer_head *bh2 =
1285 				__this_cpu_read(bh_lrus.bhs[in]);
1286 
1287 			if (bh2 == bh) {
1288 				__brelse(bh2);
1289 			} else {
1290 				if (out >= BH_LRU_SIZE) {
1291 					BUG_ON(evictee != NULL);
1292 					evictee = bh2;
1293 				} else {
1294 					bhs[out++] = bh2;
1295 				}
1296 			}
1297 		}
1298 		while (out < BH_LRU_SIZE)
1299 			bhs[out++] = NULL;
1300 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1301 	}
1302 	bh_lru_unlock();
1303 
1304 	if (evictee)
1305 		__brelse(evictee);
1306 }
1307 
1308 /*
1309  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1310  */
1311 static struct buffer_head *
1312 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1313 {
1314 	struct buffer_head *ret = NULL;
1315 	unsigned int i;
1316 
1317 	check_irqs_on();
1318 	bh_lru_lock();
1319 	for (i = 0; i < BH_LRU_SIZE; i++) {
1320 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1321 
1322 		if (bh && bh->b_bdev == bdev &&
1323 				bh->b_blocknr == block && bh->b_size == size) {
1324 			if (i) {
1325 				while (i) {
1326 					__this_cpu_write(bh_lrus.bhs[i],
1327 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1328 					i--;
1329 				}
1330 				__this_cpu_write(bh_lrus.bhs[0], bh);
1331 			}
1332 			get_bh(bh);
1333 			ret = bh;
1334 			break;
1335 		}
1336 	}
1337 	bh_lru_unlock();
1338 	return ret;
1339 }
1340 
1341 /*
1342  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1343  * it in the LRU and mark it as accessed.  If it is not present then return
1344  * NULL
1345  */
1346 struct buffer_head *
1347 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1348 {
1349 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1350 
1351 	if (bh == NULL) {
1352 		bh = __find_get_block_slow(bdev, block);
1353 		if (bh)
1354 			bh_lru_install(bh);
1355 	}
1356 	if (bh)
1357 		touch_buffer(bh);
1358 	return bh;
1359 }
1360 EXPORT_SYMBOL(__find_get_block);
1361 
1362 /*
1363  * __getblk will locate (and, if necessary, create) the buffer_head
1364  * which corresponds to the passed block_device, block and size. The
1365  * returned buffer has its reference count incremented.
1366  *
1367  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1368  * illegal block number, __getblk() will happily return a buffer_head
1369  * which represents the non-existent block.  Very weird.
1370  *
1371  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1372  * attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1376 {
1377 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1378 
1379 	might_sleep();
1380 	if (bh == NULL)
1381 		bh = __getblk_slow(bdev, block, size);
1382 	return bh;
1383 }
1384 EXPORT_SYMBOL(__getblk);
1385 
1386 /*
1387  * Do async read-ahead on a buffer..
1388  */
1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1390 {
1391 	struct buffer_head *bh = __getblk(bdev, block, size);
1392 	if (likely(bh)) {
1393 		ll_rw_block(READA, 1, &bh);
1394 		brelse(bh);
1395 	}
1396 }
1397 EXPORT_SYMBOL(__breadahead);
1398 
1399 /**
1400  *  __bread() - reads a specified block and returns the bh
1401  *  @bdev: the block_device to read from
1402  *  @block: number of block
1403  *  @size: size (in bytes) to read
1404  *
1405  *  Reads a specified block, and returns buffer head that contains it.
1406  *  It returns NULL if the block was unreadable.
1407  */
1408 struct buffer_head *
1409 __bread(struct block_device *bdev, sector_t block, unsigned size)
1410 {
1411 	struct buffer_head *bh = __getblk(bdev, block, size);
1412 
1413 	if (likely(bh) && !buffer_uptodate(bh))
1414 		bh = __bread_slow(bh);
1415 	return bh;
1416 }
1417 EXPORT_SYMBOL(__bread);
1418 
1419 /*
1420  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1421  * This doesn't race because it runs in each cpu either in irq
1422  * or with preempt disabled.
1423  */
1424 static void invalidate_bh_lru(void *arg)
1425 {
1426 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1427 	int i;
1428 
1429 	for (i = 0; i < BH_LRU_SIZE; i++) {
1430 		brelse(b->bhs[i]);
1431 		b->bhs[i] = NULL;
1432 	}
1433 	put_cpu_var(bh_lrus);
1434 }
1435 
1436 void invalidate_bh_lrus(void)
1437 {
1438 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1439 }
1440 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1441 
1442 void set_bh_page(struct buffer_head *bh,
1443 		struct page *page, unsigned long offset)
1444 {
1445 	bh->b_page = page;
1446 	BUG_ON(offset >= PAGE_SIZE);
1447 	if (PageHighMem(page))
1448 		/*
1449 		 * This catches illegal uses and preserves the offset:
1450 		 */
1451 		bh->b_data = (char *)(0 + offset);
1452 	else
1453 		bh->b_data = page_address(page) + offset;
1454 }
1455 EXPORT_SYMBOL(set_bh_page);
1456 
1457 /*
1458  * Called when truncating a buffer on a page completely.
1459  */
1460 static void discard_buffer(struct buffer_head * bh)
1461 {
1462 	lock_buffer(bh);
1463 	clear_buffer_dirty(bh);
1464 	bh->b_bdev = NULL;
1465 	clear_buffer_mapped(bh);
1466 	clear_buffer_req(bh);
1467 	clear_buffer_new(bh);
1468 	clear_buffer_delay(bh);
1469 	clear_buffer_unwritten(bh);
1470 	unlock_buffer(bh);
1471 }
1472 
1473 /**
1474  * block_invalidatepage - invalidate part of all of a buffer-backed page
1475  *
1476  * @page: the page which is affected
1477  * @offset: the index of the truncation point
1478  *
1479  * block_invalidatepage() is called when all or part of the page has become
1480  * invalidatedby a truncate operation.
1481  *
1482  * block_invalidatepage() does not have to release all buffers, but it must
1483  * ensure that no dirty buffer is left outside @offset and that no I/O
1484  * is underway against any of the blocks which are outside the truncation
1485  * point.  Because the caller is about to free (and possibly reuse) those
1486  * blocks on-disk.
1487  */
1488 void block_invalidatepage(struct page *page, unsigned long offset)
1489 {
1490 	struct buffer_head *head, *bh, *next;
1491 	unsigned int curr_off = 0;
1492 
1493 	BUG_ON(!PageLocked(page));
1494 	if (!page_has_buffers(page))
1495 		goto out;
1496 
1497 	head = page_buffers(page);
1498 	bh = head;
1499 	do {
1500 		unsigned int next_off = curr_off + bh->b_size;
1501 		next = bh->b_this_page;
1502 
1503 		/*
1504 		 * is this block fully invalidated?
1505 		 */
1506 		if (offset <= curr_off)
1507 			discard_buffer(bh);
1508 		curr_off = next_off;
1509 		bh = next;
1510 	} while (bh != head);
1511 
1512 	/*
1513 	 * We release buffers only if the entire page is being invalidated.
1514 	 * The get_block cached value has been unconditionally invalidated,
1515 	 * so real IO is not possible anymore.
1516 	 */
1517 	if (offset == 0)
1518 		try_to_release_page(page, 0);
1519 out:
1520 	return;
1521 }
1522 EXPORT_SYMBOL(block_invalidatepage);
1523 
1524 /*
1525  * We attach and possibly dirty the buffers atomically wrt
1526  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1527  * is already excluded via the page lock.
1528  */
1529 void create_empty_buffers(struct page *page,
1530 			unsigned long blocksize, unsigned long b_state)
1531 {
1532 	struct buffer_head *bh, *head, *tail;
1533 
1534 	head = alloc_page_buffers(page, blocksize, 1);
1535 	bh = head;
1536 	do {
1537 		bh->b_state |= b_state;
1538 		tail = bh;
1539 		bh = bh->b_this_page;
1540 	} while (bh);
1541 	tail->b_this_page = head;
1542 
1543 	spin_lock(&page->mapping->private_lock);
1544 	if (PageUptodate(page) || PageDirty(page)) {
1545 		bh = head;
1546 		do {
1547 			if (PageDirty(page))
1548 				set_buffer_dirty(bh);
1549 			if (PageUptodate(page))
1550 				set_buffer_uptodate(bh);
1551 			bh = bh->b_this_page;
1552 		} while (bh != head);
1553 	}
1554 	attach_page_buffers(page, head);
1555 	spin_unlock(&page->mapping->private_lock);
1556 }
1557 EXPORT_SYMBOL(create_empty_buffers);
1558 
1559 /*
1560  * We are taking a block for data and we don't want any output from any
1561  * buffer-cache aliases starting from return from that function and
1562  * until the moment when something will explicitly mark the buffer
1563  * dirty (hopefully that will not happen until we will free that block ;-)
1564  * We don't even need to mark it not-uptodate - nobody can expect
1565  * anything from a newly allocated buffer anyway. We used to used
1566  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1567  * don't want to mark the alias unmapped, for example - it would confuse
1568  * anyone who might pick it with bread() afterwards...
1569  *
1570  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1571  * be writeout I/O going on against recently-freed buffers.  We don't
1572  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1573  * only if we really need to.  That happens here.
1574  */
1575 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1576 {
1577 	struct buffer_head *old_bh;
1578 
1579 	might_sleep();
1580 
1581 	old_bh = __find_get_block_slow(bdev, block);
1582 	if (old_bh) {
1583 		clear_buffer_dirty(old_bh);
1584 		wait_on_buffer(old_bh);
1585 		clear_buffer_req(old_bh);
1586 		__brelse(old_bh);
1587 	}
1588 }
1589 EXPORT_SYMBOL(unmap_underlying_metadata);
1590 
1591 /*
1592  * NOTE! All mapped/uptodate combinations are valid:
1593  *
1594  *	Mapped	Uptodate	Meaning
1595  *
1596  *	No	No		"unknown" - must do get_block()
1597  *	No	Yes		"hole" - zero-filled
1598  *	Yes	No		"allocated" - allocated on disk, not read in
1599  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1600  *
1601  * "Dirty" is valid only with the last case (mapped+uptodate).
1602  */
1603 
1604 /*
1605  * While block_write_full_page is writing back the dirty buffers under
1606  * the page lock, whoever dirtied the buffers may decide to clean them
1607  * again at any time.  We handle that by only looking at the buffer
1608  * state inside lock_buffer().
1609  *
1610  * If block_write_full_page() is called for regular writeback
1611  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1612  * locked buffer.   This only can happen if someone has written the buffer
1613  * directly, with submit_bh().  At the address_space level PageWriteback
1614  * prevents this contention from occurring.
1615  *
1616  * If block_write_full_page() is called with wbc->sync_mode ==
1617  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1618  * causes the writes to be flagged as synchronous writes, but the
1619  * block device queue will NOT be unplugged, since usually many pages
1620  * will be pushed to the out before the higher-level caller actually
1621  * waits for the writes to be completed.  The various wait functions,
1622  * such as wait_on_writeback_range() will ultimately call sync_page()
1623  * which will ultimately call blk_run_backing_dev(), which will end up
1624  * unplugging the device queue.
1625  */
1626 static int __block_write_full_page(struct inode *inode, struct page *page,
1627 			get_block_t *get_block, struct writeback_control *wbc,
1628 			bh_end_io_t *handler)
1629 {
1630 	int err;
1631 	sector_t block;
1632 	sector_t last_block;
1633 	struct buffer_head *bh, *head;
1634 	const unsigned blocksize = 1 << inode->i_blkbits;
1635 	int nr_underway = 0;
1636 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1637 			WRITE_SYNC_PLUG : WRITE);
1638 
1639 	BUG_ON(!PageLocked(page));
1640 
1641 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1642 
1643 	if (!page_has_buffers(page)) {
1644 		create_empty_buffers(page, blocksize,
1645 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1646 	}
1647 
1648 	/*
1649 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1650 	 * here, and the (potentially unmapped) buffers may become dirty at
1651 	 * any time.  If a buffer becomes dirty here after we've inspected it
1652 	 * then we just miss that fact, and the page stays dirty.
1653 	 *
1654 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1655 	 * handle that here by just cleaning them.
1656 	 */
1657 
1658 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1659 	head = page_buffers(page);
1660 	bh = head;
1661 
1662 	/*
1663 	 * Get all the dirty buffers mapped to disk addresses and
1664 	 * handle any aliases from the underlying blockdev's mapping.
1665 	 */
1666 	do {
1667 		if (block > last_block) {
1668 			/*
1669 			 * mapped buffers outside i_size will occur, because
1670 			 * this page can be outside i_size when there is a
1671 			 * truncate in progress.
1672 			 */
1673 			/*
1674 			 * The buffer was zeroed by block_write_full_page()
1675 			 */
1676 			clear_buffer_dirty(bh);
1677 			set_buffer_uptodate(bh);
1678 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1679 			   buffer_dirty(bh)) {
1680 			WARN_ON(bh->b_size != blocksize);
1681 			err = get_block(inode, block, bh, 1);
1682 			if (err)
1683 				goto recover;
1684 			clear_buffer_delay(bh);
1685 			if (buffer_new(bh)) {
1686 				/* blockdev mappings never come here */
1687 				clear_buffer_new(bh);
1688 				unmap_underlying_metadata(bh->b_bdev,
1689 							bh->b_blocknr);
1690 			}
1691 		}
1692 		bh = bh->b_this_page;
1693 		block++;
1694 	} while (bh != head);
1695 
1696 	do {
1697 		if (!buffer_mapped(bh))
1698 			continue;
1699 		/*
1700 		 * If it's a fully non-blocking write attempt and we cannot
1701 		 * lock the buffer then redirty the page.  Note that this can
1702 		 * potentially cause a busy-wait loop from writeback threads
1703 		 * and kswapd activity, but those code paths have their own
1704 		 * higher-level throttling.
1705 		 */
1706 		if (wbc->sync_mode != WB_SYNC_NONE) {
1707 			lock_buffer(bh);
1708 		} else if (!trylock_buffer(bh)) {
1709 			redirty_page_for_writepage(wbc, page);
1710 			continue;
1711 		}
1712 		if (test_clear_buffer_dirty(bh)) {
1713 			mark_buffer_async_write_endio(bh, handler);
1714 		} else {
1715 			unlock_buffer(bh);
1716 		}
1717 	} while ((bh = bh->b_this_page) != head);
1718 
1719 	/*
1720 	 * The page and its buffers are protected by PageWriteback(), so we can
1721 	 * drop the bh refcounts early.
1722 	 */
1723 	BUG_ON(PageWriteback(page));
1724 	set_page_writeback(page);
1725 
1726 	do {
1727 		struct buffer_head *next = bh->b_this_page;
1728 		if (buffer_async_write(bh)) {
1729 			submit_bh(write_op, bh);
1730 			nr_underway++;
1731 		}
1732 		bh = next;
1733 	} while (bh != head);
1734 	unlock_page(page);
1735 
1736 	err = 0;
1737 done:
1738 	if (nr_underway == 0) {
1739 		/*
1740 		 * The page was marked dirty, but the buffers were
1741 		 * clean.  Someone wrote them back by hand with
1742 		 * ll_rw_block/submit_bh.  A rare case.
1743 		 */
1744 		end_page_writeback(page);
1745 
1746 		/*
1747 		 * The page and buffer_heads can be released at any time from
1748 		 * here on.
1749 		 */
1750 	}
1751 	return err;
1752 
1753 recover:
1754 	/*
1755 	 * ENOSPC, or some other error.  We may already have added some
1756 	 * blocks to the file, so we need to write these out to avoid
1757 	 * exposing stale data.
1758 	 * The page is currently locked and not marked for writeback
1759 	 */
1760 	bh = head;
1761 	/* Recovery: lock and submit the mapped buffers */
1762 	do {
1763 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1764 		    !buffer_delay(bh)) {
1765 			lock_buffer(bh);
1766 			mark_buffer_async_write_endio(bh, handler);
1767 		} else {
1768 			/*
1769 			 * The buffer may have been set dirty during
1770 			 * attachment to a dirty page.
1771 			 */
1772 			clear_buffer_dirty(bh);
1773 		}
1774 	} while ((bh = bh->b_this_page) != head);
1775 	SetPageError(page);
1776 	BUG_ON(PageWriteback(page));
1777 	mapping_set_error(page->mapping, err);
1778 	set_page_writeback(page);
1779 	do {
1780 		struct buffer_head *next = bh->b_this_page;
1781 		if (buffer_async_write(bh)) {
1782 			clear_buffer_dirty(bh);
1783 			submit_bh(write_op, bh);
1784 			nr_underway++;
1785 		}
1786 		bh = next;
1787 	} while (bh != head);
1788 	unlock_page(page);
1789 	goto done;
1790 }
1791 
1792 /*
1793  * If a page has any new buffers, zero them out here, and mark them uptodate
1794  * and dirty so they'll be written out (in order to prevent uninitialised
1795  * block data from leaking). And clear the new bit.
1796  */
1797 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1798 {
1799 	unsigned int block_start, block_end;
1800 	struct buffer_head *head, *bh;
1801 
1802 	BUG_ON(!PageLocked(page));
1803 	if (!page_has_buffers(page))
1804 		return;
1805 
1806 	bh = head = page_buffers(page);
1807 	block_start = 0;
1808 	do {
1809 		block_end = block_start + bh->b_size;
1810 
1811 		if (buffer_new(bh)) {
1812 			if (block_end > from && block_start < to) {
1813 				if (!PageUptodate(page)) {
1814 					unsigned start, size;
1815 
1816 					start = max(from, block_start);
1817 					size = min(to, block_end) - start;
1818 
1819 					zero_user(page, start, size);
1820 					set_buffer_uptodate(bh);
1821 				}
1822 
1823 				clear_buffer_new(bh);
1824 				mark_buffer_dirty(bh);
1825 			}
1826 		}
1827 
1828 		block_start = block_end;
1829 		bh = bh->b_this_page;
1830 	} while (bh != head);
1831 }
1832 EXPORT_SYMBOL(page_zero_new_buffers);
1833 
1834 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1835 		get_block_t *get_block)
1836 {
1837 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1838 	unsigned to = from + len;
1839 	struct inode *inode = page->mapping->host;
1840 	unsigned block_start, block_end;
1841 	sector_t block;
1842 	int err = 0;
1843 	unsigned blocksize, bbits;
1844 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1845 
1846 	BUG_ON(!PageLocked(page));
1847 	BUG_ON(from > PAGE_CACHE_SIZE);
1848 	BUG_ON(to > PAGE_CACHE_SIZE);
1849 	BUG_ON(from > to);
1850 
1851 	blocksize = 1 << inode->i_blkbits;
1852 	if (!page_has_buffers(page))
1853 		create_empty_buffers(page, blocksize, 0);
1854 	head = page_buffers(page);
1855 
1856 	bbits = inode->i_blkbits;
1857 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1858 
1859 	for(bh = head, block_start = 0; bh != head || !block_start;
1860 	    block++, block_start=block_end, bh = bh->b_this_page) {
1861 		block_end = block_start + blocksize;
1862 		if (block_end <= from || block_start >= to) {
1863 			if (PageUptodate(page)) {
1864 				if (!buffer_uptodate(bh))
1865 					set_buffer_uptodate(bh);
1866 			}
1867 			continue;
1868 		}
1869 		if (buffer_new(bh))
1870 			clear_buffer_new(bh);
1871 		if (!buffer_mapped(bh)) {
1872 			WARN_ON(bh->b_size != blocksize);
1873 			err = get_block(inode, block, bh, 1);
1874 			if (err)
1875 				break;
1876 			if (buffer_new(bh)) {
1877 				unmap_underlying_metadata(bh->b_bdev,
1878 							bh->b_blocknr);
1879 				if (PageUptodate(page)) {
1880 					clear_buffer_new(bh);
1881 					set_buffer_uptodate(bh);
1882 					mark_buffer_dirty(bh);
1883 					continue;
1884 				}
1885 				if (block_end > to || block_start < from)
1886 					zero_user_segments(page,
1887 						to, block_end,
1888 						block_start, from);
1889 				continue;
1890 			}
1891 		}
1892 		if (PageUptodate(page)) {
1893 			if (!buffer_uptodate(bh))
1894 				set_buffer_uptodate(bh);
1895 			continue;
1896 		}
1897 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1898 		    !buffer_unwritten(bh) &&
1899 		     (block_start < from || block_end > to)) {
1900 			ll_rw_block(READ, 1, &bh);
1901 			*wait_bh++=bh;
1902 		}
1903 	}
1904 	/*
1905 	 * If we issued read requests - let them complete.
1906 	 */
1907 	while(wait_bh > wait) {
1908 		wait_on_buffer(*--wait_bh);
1909 		if (!buffer_uptodate(*wait_bh))
1910 			err = -EIO;
1911 	}
1912 	if (unlikely(err)) {
1913 		page_zero_new_buffers(page, from, to);
1914 		ClearPageUptodate(page);
1915 	}
1916 	return err;
1917 }
1918 EXPORT_SYMBOL(__block_write_begin);
1919 
1920 static int __block_commit_write(struct inode *inode, struct page *page,
1921 		unsigned from, unsigned to)
1922 {
1923 	unsigned block_start, block_end;
1924 	int partial = 0;
1925 	unsigned blocksize;
1926 	struct buffer_head *bh, *head;
1927 
1928 	blocksize = 1 << inode->i_blkbits;
1929 
1930 	for(bh = head = page_buffers(page), block_start = 0;
1931 	    bh != head || !block_start;
1932 	    block_start=block_end, bh = bh->b_this_page) {
1933 		block_end = block_start + blocksize;
1934 		if (block_end <= from || block_start >= to) {
1935 			if (!buffer_uptodate(bh))
1936 				partial = 1;
1937 		} else {
1938 			set_buffer_uptodate(bh);
1939 			mark_buffer_dirty(bh);
1940 		}
1941 		clear_buffer_new(bh);
1942 	}
1943 
1944 	/*
1945 	 * If this is a partial write which happened to make all buffers
1946 	 * uptodate then we can optimize away a bogus readpage() for
1947 	 * the next read(). Here we 'discover' whether the page went
1948 	 * uptodate as a result of this (potentially partial) write.
1949 	 */
1950 	if (!partial)
1951 		SetPageUptodate(page);
1952 	return 0;
1953 }
1954 
1955 /*
1956  * block_write_begin takes care of the basic task of block allocation and
1957  * bringing partial write blocks uptodate first.
1958  *
1959  * The filesystem needs to handle block truncation upon failure.
1960  */
1961 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1962 		unsigned flags, struct page **pagep, get_block_t *get_block)
1963 {
1964 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1965 	struct page *page;
1966 	int status;
1967 
1968 	page = grab_cache_page_write_begin(mapping, index, flags);
1969 	if (!page)
1970 		return -ENOMEM;
1971 
1972 	status = __block_write_begin(page, pos, len, get_block);
1973 	if (unlikely(status)) {
1974 		unlock_page(page);
1975 		page_cache_release(page);
1976 		page = NULL;
1977 	}
1978 
1979 	*pagep = page;
1980 	return status;
1981 }
1982 EXPORT_SYMBOL(block_write_begin);
1983 
1984 int block_write_end(struct file *file, struct address_space *mapping,
1985 			loff_t pos, unsigned len, unsigned copied,
1986 			struct page *page, void *fsdata)
1987 {
1988 	struct inode *inode = mapping->host;
1989 	unsigned start;
1990 
1991 	start = pos & (PAGE_CACHE_SIZE - 1);
1992 
1993 	if (unlikely(copied < len)) {
1994 		/*
1995 		 * The buffers that were written will now be uptodate, so we
1996 		 * don't have to worry about a readpage reading them and
1997 		 * overwriting a partial write. However if we have encountered
1998 		 * a short write and only partially written into a buffer, it
1999 		 * will not be marked uptodate, so a readpage might come in and
2000 		 * destroy our partial write.
2001 		 *
2002 		 * Do the simplest thing, and just treat any short write to a
2003 		 * non uptodate page as a zero-length write, and force the
2004 		 * caller to redo the whole thing.
2005 		 */
2006 		if (!PageUptodate(page))
2007 			copied = 0;
2008 
2009 		page_zero_new_buffers(page, start+copied, start+len);
2010 	}
2011 	flush_dcache_page(page);
2012 
2013 	/* This could be a short (even 0-length) commit */
2014 	__block_commit_write(inode, page, start, start+copied);
2015 
2016 	return copied;
2017 }
2018 EXPORT_SYMBOL(block_write_end);
2019 
2020 int generic_write_end(struct file *file, struct address_space *mapping,
2021 			loff_t pos, unsigned len, unsigned copied,
2022 			struct page *page, void *fsdata)
2023 {
2024 	struct inode *inode = mapping->host;
2025 	int i_size_changed = 0;
2026 
2027 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2028 
2029 	/*
2030 	 * No need to use i_size_read() here, the i_size
2031 	 * cannot change under us because we hold i_mutex.
2032 	 *
2033 	 * But it's important to update i_size while still holding page lock:
2034 	 * page writeout could otherwise come in and zero beyond i_size.
2035 	 */
2036 	if (pos+copied > inode->i_size) {
2037 		i_size_write(inode, pos+copied);
2038 		i_size_changed = 1;
2039 	}
2040 
2041 	unlock_page(page);
2042 	page_cache_release(page);
2043 
2044 	/*
2045 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2046 	 * makes the holding time of page lock longer. Second, it forces lock
2047 	 * ordering of page lock and transaction start for journaling
2048 	 * filesystems.
2049 	 */
2050 	if (i_size_changed)
2051 		mark_inode_dirty(inode);
2052 
2053 	return copied;
2054 }
2055 EXPORT_SYMBOL(generic_write_end);
2056 
2057 /*
2058  * block_is_partially_uptodate checks whether buffers within a page are
2059  * uptodate or not.
2060  *
2061  * Returns true if all buffers which correspond to a file portion
2062  * we want to read are uptodate.
2063  */
2064 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2065 					unsigned long from)
2066 {
2067 	struct inode *inode = page->mapping->host;
2068 	unsigned block_start, block_end, blocksize;
2069 	unsigned to;
2070 	struct buffer_head *bh, *head;
2071 	int ret = 1;
2072 
2073 	if (!page_has_buffers(page))
2074 		return 0;
2075 
2076 	blocksize = 1 << inode->i_blkbits;
2077 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2078 	to = from + to;
2079 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2080 		return 0;
2081 
2082 	head = page_buffers(page);
2083 	bh = head;
2084 	block_start = 0;
2085 	do {
2086 		block_end = block_start + blocksize;
2087 		if (block_end > from && block_start < to) {
2088 			if (!buffer_uptodate(bh)) {
2089 				ret = 0;
2090 				break;
2091 			}
2092 			if (block_end >= to)
2093 				break;
2094 		}
2095 		block_start = block_end;
2096 		bh = bh->b_this_page;
2097 	} while (bh != head);
2098 
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL(block_is_partially_uptodate);
2102 
2103 /*
2104  * Generic "read page" function for block devices that have the normal
2105  * get_block functionality. This is most of the block device filesystems.
2106  * Reads the page asynchronously --- the unlock_buffer() and
2107  * set/clear_buffer_uptodate() functions propagate buffer state into the
2108  * page struct once IO has completed.
2109  */
2110 int block_read_full_page(struct page *page, get_block_t *get_block)
2111 {
2112 	struct inode *inode = page->mapping->host;
2113 	sector_t iblock, lblock;
2114 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2115 	unsigned int blocksize;
2116 	int nr, i;
2117 	int fully_mapped = 1;
2118 
2119 	BUG_ON(!PageLocked(page));
2120 	blocksize = 1 << inode->i_blkbits;
2121 	if (!page_has_buffers(page))
2122 		create_empty_buffers(page, blocksize, 0);
2123 	head = page_buffers(page);
2124 
2125 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2127 	bh = head;
2128 	nr = 0;
2129 	i = 0;
2130 
2131 	do {
2132 		if (buffer_uptodate(bh))
2133 			continue;
2134 
2135 		if (!buffer_mapped(bh)) {
2136 			int err = 0;
2137 
2138 			fully_mapped = 0;
2139 			if (iblock < lblock) {
2140 				WARN_ON(bh->b_size != blocksize);
2141 				err = get_block(inode, iblock, bh, 0);
2142 				if (err)
2143 					SetPageError(page);
2144 			}
2145 			if (!buffer_mapped(bh)) {
2146 				zero_user(page, i * blocksize, blocksize);
2147 				if (!err)
2148 					set_buffer_uptodate(bh);
2149 				continue;
2150 			}
2151 			/*
2152 			 * get_block() might have updated the buffer
2153 			 * synchronously
2154 			 */
2155 			if (buffer_uptodate(bh))
2156 				continue;
2157 		}
2158 		arr[nr++] = bh;
2159 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2160 
2161 	if (fully_mapped)
2162 		SetPageMappedToDisk(page);
2163 
2164 	if (!nr) {
2165 		/*
2166 		 * All buffers are uptodate - we can set the page uptodate
2167 		 * as well. But not if get_block() returned an error.
2168 		 */
2169 		if (!PageError(page))
2170 			SetPageUptodate(page);
2171 		unlock_page(page);
2172 		return 0;
2173 	}
2174 
2175 	/* Stage two: lock the buffers */
2176 	for (i = 0; i < nr; i++) {
2177 		bh = arr[i];
2178 		lock_buffer(bh);
2179 		mark_buffer_async_read(bh);
2180 	}
2181 
2182 	/*
2183 	 * Stage 3: start the IO.  Check for uptodateness
2184 	 * inside the buffer lock in case another process reading
2185 	 * the underlying blockdev brought it uptodate (the sct fix).
2186 	 */
2187 	for (i = 0; i < nr; i++) {
2188 		bh = arr[i];
2189 		if (buffer_uptodate(bh))
2190 			end_buffer_async_read(bh, 1);
2191 		else
2192 			submit_bh(READ, bh);
2193 	}
2194 	return 0;
2195 }
2196 EXPORT_SYMBOL(block_read_full_page);
2197 
2198 /* utility function for filesystems that need to do work on expanding
2199  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2200  * deal with the hole.
2201  */
2202 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2203 {
2204 	struct address_space *mapping = inode->i_mapping;
2205 	struct page *page;
2206 	void *fsdata;
2207 	int err;
2208 
2209 	err = inode_newsize_ok(inode, size);
2210 	if (err)
2211 		goto out;
2212 
2213 	err = pagecache_write_begin(NULL, mapping, size, 0,
2214 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2215 				&page, &fsdata);
2216 	if (err)
2217 		goto out;
2218 
2219 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2220 	BUG_ON(err > 0);
2221 
2222 out:
2223 	return err;
2224 }
2225 EXPORT_SYMBOL(generic_cont_expand_simple);
2226 
2227 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2228 			    loff_t pos, loff_t *bytes)
2229 {
2230 	struct inode *inode = mapping->host;
2231 	unsigned blocksize = 1 << inode->i_blkbits;
2232 	struct page *page;
2233 	void *fsdata;
2234 	pgoff_t index, curidx;
2235 	loff_t curpos;
2236 	unsigned zerofrom, offset, len;
2237 	int err = 0;
2238 
2239 	index = pos >> PAGE_CACHE_SHIFT;
2240 	offset = pos & ~PAGE_CACHE_MASK;
2241 
2242 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2243 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2244 		if (zerofrom & (blocksize-1)) {
2245 			*bytes |= (blocksize-1);
2246 			(*bytes)++;
2247 		}
2248 		len = PAGE_CACHE_SIZE - zerofrom;
2249 
2250 		err = pagecache_write_begin(file, mapping, curpos, len,
2251 						AOP_FLAG_UNINTERRUPTIBLE,
2252 						&page, &fsdata);
2253 		if (err)
2254 			goto out;
2255 		zero_user(page, zerofrom, len);
2256 		err = pagecache_write_end(file, mapping, curpos, len, len,
2257 						page, fsdata);
2258 		if (err < 0)
2259 			goto out;
2260 		BUG_ON(err != len);
2261 		err = 0;
2262 
2263 		balance_dirty_pages_ratelimited(mapping);
2264 	}
2265 
2266 	/* page covers the boundary, find the boundary offset */
2267 	if (index == curidx) {
2268 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2269 		/* if we will expand the thing last block will be filled */
2270 		if (offset <= zerofrom) {
2271 			goto out;
2272 		}
2273 		if (zerofrom & (blocksize-1)) {
2274 			*bytes |= (blocksize-1);
2275 			(*bytes)++;
2276 		}
2277 		len = offset - zerofrom;
2278 
2279 		err = pagecache_write_begin(file, mapping, curpos, len,
2280 						AOP_FLAG_UNINTERRUPTIBLE,
2281 						&page, &fsdata);
2282 		if (err)
2283 			goto out;
2284 		zero_user(page, zerofrom, len);
2285 		err = pagecache_write_end(file, mapping, curpos, len, len,
2286 						page, fsdata);
2287 		if (err < 0)
2288 			goto out;
2289 		BUG_ON(err != len);
2290 		err = 0;
2291 	}
2292 out:
2293 	return err;
2294 }
2295 
2296 /*
2297  * For moronic filesystems that do not allow holes in file.
2298  * We may have to extend the file.
2299  */
2300 int cont_write_begin(struct file *file, struct address_space *mapping,
2301 			loff_t pos, unsigned len, unsigned flags,
2302 			struct page **pagep, void **fsdata,
2303 			get_block_t *get_block, loff_t *bytes)
2304 {
2305 	struct inode *inode = mapping->host;
2306 	unsigned blocksize = 1 << inode->i_blkbits;
2307 	unsigned zerofrom;
2308 	int err;
2309 
2310 	err = cont_expand_zero(file, mapping, pos, bytes);
2311 	if (err)
2312 		return err;
2313 
2314 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2315 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2316 		*bytes |= (blocksize-1);
2317 		(*bytes)++;
2318 	}
2319 
2320 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2321 }
2322 EXPORT_SYMBOL(cont_write_begin);
2323 
2324 int block_commit_write(struct page *page, unsigned from, unsigned to)
2325 {
2326 	struct inode *inode = page->mapping->host;
2327 	__block_commit_write(inode,page,from,to);
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL(block_commit_write);
2331 
2332 /*
2333  * block_page_mkwrite() is not allowed to change the file size as it gets
2334  * called from a page fault handler when a page is first dirtied. Hence we must
2335  * be careful to check for EOF conditions here. We set the page up correctly
2336  * for a written page which means we get ENOSPC checking when writing into
2337  * holes and correct delalloc and unwritten extent mapping on filesystems that
2338  * support these features.
2339  *
2340  * We are not allowed to take the i_mutex here so we have to play games to
2341  * protect against truncate races as the page could now be beyond EOF.  Because
2342  * truncate writes the inode size before removing pages, once we have the
2343  * page lock we can determine safely if the page is beyond EOF. If it is not
2344  * beyond EOF, then the page is guaranteed safe against truncation until we
2345  * unlock the page.
2346  */
2347 int
2348 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2349 		   get_block_t get_block)
2350 {
2351 	struct page *page = vmf->page;
2352 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2353 	unsigned long end;
2354 	loff_t size;
2355 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2356 
2357 	lock_page(page);
2358 	size = i_size_read(inode);
2359 	if ((page->mapping != inode->i_mapping) ||
2360 	    (page_offset(page) > size)) {
2361 		/* page got truncated out from underneath us */
2362 		unlock_page(page);
2363 		goto out;
2364 	}
2365 
2366 	/* page is wholly or partially inside EOF */
2367 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2368 		end = size & ~PAGE_CACHE_MASK;
2369 	else
2370 		end = PAGE_CACHE_SIZE;
2371 
2372 	ret = __block_write_begin(page, 0, end, get_block);
2373 	if (!ret)
2374 		ret = block_commit_write(page, 0, end);
2375 
2376 	if (unlikely(ret)) {
2377 		unlock_page(page);
2378 		if (ret == -ENOMEM)
2379 			ret = VM_FAULT_OOM;
2380 		else /* -ENOSPC, -EIO, etc */
2381 			ret = VM_FAULT_SIGBUS;
2382 	} else
2383 		ret = VM_FAULT_LOCKED;
2384 
2385 out:
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL(block_page_mkwrite);
2389 
2390 /*
2391  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2392  * immediately, while under the page lock.  So it needs a special end_io
2393  * handler which does not touch the bh after unlocking it.
2394  */
2395 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2396 {
2397 	__end_buffer_read_notouch(bh, uptodate);
2398 }
2399 
2400 /*
2401  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2402  * the page (converting it to circular linked list and taking care of page
2403  * dirty races).
2404  */
2405 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2406 {
2407 	struct buffer_head *bh;
2408 
2409 	BUG_ON(!PageLocked(page));
2410 
2411 	spin_lock(&page->mapping->private_lock);
2412 	bh = head;
2413 	do {
2414 		if (PageDirty(page))
2415 			set_buffer_dirty(bh);
2416 		if (!bh->b_this_page)
2417 			bh->b_this_page = head;
2418 		bh = bh->b_this_page;
2419 	} while (bh != head);
2420 	attach_page_buffers(page, head);
2421 	spin_unlock(&page->mapping->private_lock);
2422 }
2423 
2424 /*
2425  * On entry, the page is fully not uptodate.
2426  * On exit the page is fully uptodate in the areas outside (from,to)
2427  * The filesystem needs to handle block truncation upon failure.
2428  */
2429 int nobh_write_begin(struct address_space *mapping,
2430 			loff_t pos, unsigned len, unsigned flags,
2431 			struct page **pagep, void **fsdata,
2432 			get_block_t *get_block)
2433 {
2434 	struct inode *inode = mapping->host;
2435 	const unsigned blkbits = inode->i_blkbits;
2436 	const unsigned blocksize = 1 << blkbits;
2437 	struct buffer_head *head, *bh;
2438 	struct page *page;
2439 	pgoff_t index;
2440 	unsigned from, to;
2441 	unsigned block_in_page;
2442 	unsigned block_start, block_end;
2443 	sector_t block_in_file;
2444 	int nr_reads = 0;
2445 	int ret = 0;
2446 	int is_mapped_to_disk = 1;
2447 
2448 	index = pos >> PAGE_CACHE_SHIFT;
2449 	from = pos & (PAGE_CACHE_SIZE - 1);
2450 	to = from + len;
2451 
2452 	page = grab_cache_page_write_begin(mapping, index, flags);
2453 	if (!page)
2454 		return -ENOMEM;
2455 	*pagep = page;
2456 	*fsdata = NULL;
2457 
2458 	if (page_has_buffers(page)) {
2459 		ret = __block_write_begin(page, pos, len, get_block);
2460 		if (unlikely(ret))
2461 			goto out_release;
2462 		return ret;
2463 	}
2464 
2465 	if (PageMappedToDisk(page))
2466 		return 0;
2467 
2468 	/*
2469 	 * Allocate buffers so that we can keep track of state, and potentially
2470 	 * attach them to the page if an error occurs. In the common case of
2471 	 * no error, they will just be freed again without ever being attached
2472 	 * to the page (which is all OK, because we're under the page lock).
2473 	 *
2474 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2475 	 * than the circular one we're used to.
2476 	 */
2477 	head = alloc_page_buffers(page, blocksize, 0);
2478 	if (!head) {
2479 		ret = -ENOMEM;
2480 		goto out_release;
2481 	}
2482 
2483 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2484 
2485 	/*
2486 	 * We loop across all blocks in the page, whether or not they are
2487 	 * part of the affected region.  This is so we can discover if the
2488 	 * page is fully mapped-to-disk.
2489 	 */
2490 	for (block_start = 0, block_in_page = 0, bh = head;
2491 		  block_start < PAGE_CACHE_SIZE;
2492 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2493 		int create;
2494 
2495 		block_end = block_start + blocksize;
2496 		bh->b_state = 0;
2497 		create = 1;
2498 		if (block_start >= to)
2499 			create = 0;
2500 		ret = get_block(inode, block_in_file + block_in_page,
2501 					bh, create);
2502 		if (ret)
2503 			goto failed;
2504 		if (!buffer_mapped(bh))
2505 			is_mapped_to_disk = 0;
2506 		if (buffer_new(bh))
2507 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2508 		if (PageUptodate(page)) {
2509 			set_buffer_uptodate(bh);
2510 			continue;
2511 		}
2512 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2513 			zero_user_segments(page, block_start, from,
2514 							to, block_end);
2515 			continue;
2516 		}
2517 		if (buffer_uptodate(bh))
2518 			continue;	/* reiserfs does this */
2519 		if (block_start < from || block_end > to) {
2520 			lock_buffer(bh);
2521 			bh->b_end_io = end_buffer_read_nobh;
2522 			submit_bh(READ, bh);
2523 			nr_reads++;
2524 		}
2525 	}
2526 
2527 	if (nr_reads) {
2528 		/*
2529 		 * The page is locked, so these buffers are protected from
2530 		 * any VM or truncate activity.  Hence we don't need to care
2531 		 * for the buffer_head refcounts.
2532 		 */
2533 		for (bh = head; bh; bh = bh->b_this_page) {
2534 			wait_on_buffer(bh);
2535 			if (!buffer_uptodate(bh))
2536 				ret = -EIO;
2537 		}
2538 		if (ret)
2539 			goto failed;
2540 	}
2541 
2542 	if (is_mapped_to_disk)
2543 		SetPageMappedToDisk(page);
2544 
2545 	*fsdata = head; /* to be released by nobh_write_end */
2546 
2547 	return 0;
2548 
2549 failed:
2550 	BUG_ON(!ret);
2551 	/*
2552 	 * Error recovery is a bit difficult. We need to zero out blocks that
2553 	 * were newly allocated, and dirty them to ensure they get written out.
2554 	 * Buffers need to be attached to the page at this point, otherwise
2555 	 * the handling of potential IO errors during writeout would be hard
2556 	 * (could try doing synchronous writeout, but what if that fails too?)
2557 	 */
2558 	attach_nobh_buffers(page, head);
2559 	page_zero_new_buffers(page, from, to);
2560 
2561 out_release:
2562 	unlock_page(page);
2563 	page_cache_release(page);
2564 	*pagep = NULL;
2565 
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL(nobh_write_begin);
2569 
2570 int nobh_write_end(struct file *file, struct address_space *mapping,
2571 			loff_t pos, unsigned len, unsigned copied,
2572 			struct page *page, void *fsdata)
2573 {
2574 	struct inode *inode = page->mapping->host;
2575 	struct buffer_head *head = fsdata;
2576 	struct buffer_head *bh;
2577 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2578 
2579 	if (unlikely(copied < len) && head)
2580 		attach_nobh_buffers(page, head);
2581 	if (page_has_buffers(page))
2582 		return generic_write_end(file, mapping, pos, len,
2583 					copied, page, fsdata);
2584 
2585 	SetPageUptodate(page);
2586 	set_page_dirty(page);
2587 	if (pos+copied > inode->i_size) {
2588 		i_size_write(inode, pos+copied);
2589 		mark_inode_dirty(inode);
2590 	}
2591 
2592 	unlock_page(page);
2593 	page_cache_release(page);
2594 
2595 	while (head) {
2596 		bh = head;
2597 		head = head->b_this_page;
2598 		free_buffer_head(bh);
2599 	}
2600 
2601 	return copied;
2602 }
2603 EXPORT_SYMBOL(nobh_write_end);
2604 
2605 /*
2606  * nobh_writepage() - based on block_full_write_page() except
2607  * that it tries to operate without attaching bufferheads to
2608  * the page.
2609  */
2610 int nobh_writepage(struct page *page, get_block_t *get_block,
2611 			struct writeback_control *wbc)
2612 {
2613 	struct inode * const inode = page->mapping->host;
2614 	loff_t i_size = i_size_read(inode);
2615 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2616 	unsigned offset;
2617 	int ret;
2618 
2619 	/* Is the page fully inside i_size? */
2620 	if (page->index < end_index)
2621 		goto out;
2622 
2623 	/* Is the page fully outside i_size? (truncate in progress) */
2624 	offset = i_size & (PAGE_CACHE_SIZE-1);
2625 	if (page->index >= end_index+1 || !offset) {
2626 		/*
2627 		 * The page may have dirty, unmapped buffers.  For example,
2628 		 * they may have been added in ext3_writepage().  Make them
2629 		 * freeable here, so the page does not leak.
2630 		 */
2631 #if 0
2632 		/* Not really sure about this  - do we need this ? */
2633 		if (page->mapping->a_ops->invalidatepage)
2634 			page->mapping->a_ops->invalidatepage(page, offset);
2635 #endif
2636 		unlock_page(page);
2637 		return 0; /* don't care */
2638 	}
2639 
2640 	/*
2641 	 * The page straddles i_size.  It must be zeroed out on each and every
2642 	 * writepage invocation because it may be mmapped.  "A file is mapped
2643 	 * in multiples of the page size.  For a file that is not a multiple of
2644 	 * the  page size, the remaining memory is zeroed when mapped, and
2645 	 * writes to that region are not written out to the file."
2646 	 */
2647 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2648 out:
2649 	ret = mpage_writepage(page, get_block, wbc);
2650 	if (ret == -EAGAIN)
2651 		ret = __block_write_full_page(inode, page, get_block, wbc,
2652 					      end_buffer_async_write);
2653 	return ret;
2654 }
2655 EXPORT_SYMBOL(nobh_writepage);
2656 
2657 int nobh_truncate_page(struct address_space *mapping,
2658 			loff_t from, get_block_t *get_block)
2659 {
2660 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2661 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2662 	unsigned blocksize;
2663 	sector_t iblock;
2664 	unsigned length, pos;
2665 	struct inode *inode = mapping->host;
2666 	struct page *page;
2667 	struct buffer_head map_bh;
2668 	int err;
2669 
2670 	blocksize = 1 << inode->i_blkbits;
2671 	length = offset & (blocksize - 1);
2672 
2673 	/* Block boundary? Nothing to do */
2674 	if (!length)
2675 		return 0;
2676 
2677 	length = blocksize - length;
2678 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2679 
2680 	page = grab_cache_page(mapping, index);
2681 	err = -ENOMEM;
2682 	if (!page)
2683 		goto out;
2684 
2685 	if (page_has_buffers(page)) {
2686 has_buffers:
2687 		unlock_page(page);
2688 		page_cache_release(page);
2689 		return block_truncate_page(mapping, from, get_block);
2690 	}
2691 
2692 	/* Find the buffer that contains "offset" */
2693 	pos = blocksize;
2694 	while (offset >= pos) {
2695 		iblock++;
2696 		pos += blocksize;
2697 	}
2698 
2699 	map_bh.b_size = blocksize;
2700 	map_bh.b_state = 0;
2701 	err = get_block(inode, iblock, &map_bh, 0);
2702 	if (err)
2703 		goto unlock;
2704 	/* unmapped? It's a hole - nothing to do */
2705 	if (!buffer_mapped(&map_bh))
2706 		goto unlock;
2707 
2708 	/* Ok, it's mapped. Make sure it's up-to-date */
2709 	if (!PageUptodate(page)) {
2710 		err = mapping->a_ops->readpage(NULL, page);
2711 		if (err) {
2712 			page_cache_release(page);
2713 			goto out;
2714 		}
2715 		lock_page(page);
2716 		if (!PageUptodate(page)) {
2717 			err = -EIO;
2718 			goto unlock;
2719 		}
2720 		if (page_has_buffers(page))
2721 			goto has_buffers;
2722 	}
2723 	zero_user(page, offset, length);
2724 	set_page_dirty(page);
2725 	err = 0;
2726 
2727 unlock:
2728 	unlock_page(page);
2729 	page_cache_release(page);
2730 out:
2731 	return err;
2732 }
2733 EXPORT_SYMBOL(nobh_truncate_page);
2734 
2735 int block_truncate_page(struct address_space *mapping,
2736 			loff_t from, get_block_t *get_block)
2737 {
2738 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2739 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2740 	unsigned blocksize;
2741 	sector_t iblock;
2742 	unsigned length, pos;
2743 	struct inode *inode = mapping->host;
2744 	struct page *page;
2745 	struct buffer_head *bh;
2746 	int err;
2747 
2748 	blocksize = 1 << inode->i_blkbits;
2749 	length = offset & (blocksize - 1);
2750 
2751 	/* Block boundary? Nothing to do */
2752 	if (!length)
2753 		return 0;
2754 
2755 	length = blocksize - length;
2756 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2757 
2758 	page = grab_cache_page(mapping, index);
2759 	err = -ENOMEM;
2760 	if (!page)
2761 		goto out;
2762 
2763 	if (!page_has_buffers(page))
2764 		create_empty_buffers(page, blocksize, 0);
2765 
2766 	/* Find the buffer that contains "offset" */
2767 	bh = page_buffers(page);
2768 	pos = blocksize;
2769 	while (offset >= pos) {
2770 		bh = bh->b_this_page;
2771 		iblock++;
2772 		pos += blocksize;
2773 	}
2774 
2775 	err = 0;
2776 	if (!buffer_mapped(bh)) {
2777 		WARN_ON(bh->b_size != blocksize);
2778 		err = get_block(inode, iblock, bh, 0);
2779 		if (err)
2780 			goto unlock;
2781 		/* unmapped? It's a hole - nothing to do */
2782 		if (!buffer_mapped(bh))
2783 			goto unlock;
2784 	}
2785 
2786 	/* Ok, it's mapped. Make sure it's up-to-date */
2787 	if (PageUptodate(page))
2788 		set_buffer_uptodate(bh);
2789 
2790 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2791 		err = -EIO;
2792 		ll_rw_block(READ, 1, &bh);
2793 		wait_on_buffer(bh);
2794 		/* Uhhuh. Read error. Complain and punt. */
2795 		if (!buffer_uptodate(bh))
2796 			goto unlock;
2797 	}
2798 
2799 	zero_user(page, offset, length);
2800 	mark_buffer_dirty(bh);
2801 	err = 0;
2802 
2803 unlock:
2804 	unlock_page(page);
2805 	page_cache_release(page);
2806 out:
2807 	return err;
2808 }
2809 EXPORT_SYMBOL(block_truncate_page);
2810 
2811 /*
2812  * The generic ->writepage function for buffer-backed address_spaces
2813  * this form passes in the end_io handler used to finish the IO.
2814  */
2815 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2816 			struct writeback_control *wbc, bh_end_io_t *handler)
2817 {
2818 	struct inode * const inode = page->mapping->host;
2819 	loff_t i_size = i_size_read(inode);
2820 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2821 	unsigned offset;
2822 
2823 	/* Is the page fully inside i_size? */
2824 	if (page->index < end_index)
2825 		return __block_write_full_page(inode, page, get_block, wbc,
2826 					       handler);
2827 
2828 	/* Is the page fully outside i_size? (truncate in progress) */
2829 	offset = i_size & (PAGE_CACHE_SIZE-1);
2830 	if (page->index >= end_index+1 || !offset) {
2831 		/*
2832 		 * The page may have dirty, unmapped buffers.  For example,
2833 		 * they may have been added in ext3_writepage().  Make them
2834 		 * freeable here, so the page does not leak.
2835 		 */
2836 		do_invalidatepage(page, 0);
2837 		unlock_page(page);
2838 		return 0; /* don't care */
2839 	}
2840 
2841 	/*
2842 	 * The page straddles i_size.  It must be zeroed out on each and every
2843 	 * writepage invocation because it may be mmapped.  "A file is mapped
2844 	 * in multiples of the page size.  For a file that is not a multiple of
2845 	 * the  page size, the remaining memory is zeroed when mapped, and
2846 	 * writes to that region are not written out to the file."
2847 	 */
2848 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2849 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2850 }
2851 EXPORT_SYMBOL(block_write_full_page_endio);
2852 
2853 /*
2854  * The generic ->writepage function for buffer-backed address_spaces
2855  */
2856 int block_write_full_page(struct page *page, get_block_t *get_block,
2857 			struct writeback_control *wbc)
2858 {
2859 	return block_write_full_page_endio(page, get_block, wbc,
2860 					   end_buffer_async_write);
2861 }
2862 EXPORT_SYMBOL(block_write_full_page);
2863 
2864 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2865 			    get_block_t *get_block)
2866 {
2867 	struct buffer_head tmp;
2868 	struct inode *inode = mapping->host;
2869 	tmp.b_state = 0;
2870 	tmp.b_blocknr = 0;
2871 	tmp.b_size = 1 << inode->i_blkbits;
2872 	get_block(inode, block, &tmp, 0);
2873 	return tmp.b_blocknr;
2874 }
2875 EXPORT_SYMBOL(generic_block_bmap);
2876 
2877 static void end_bio_bh_io_sync(struct bio *bio, int err)
2878 {
2879 	struct buffer_head *bh = bio->bi_private;
2880 
2881 	if (err == -EOPNOTSUPP) {
2882 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2883 	}
2884 
2885 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2886 		set_bit(BH_Quiet, &bh->b_state);
2887 
2888 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2889 	bio_put(bio);
2890 }
2891 
2892 int submit_bh(int rw, struct buffer_head * bh)
2893 {
2894 	struct bio *bio;
2895 	int ret = 0;
2896 
2897 	BUG_ON(!buffer_locked(bh));
2898 	BUG_ON(!buffer_mapped(bh));
2899 	BUG_ON(!bh->b_end_io);
2900 	BUG_ON(buffer_delay(bh));
2901 	BUG_ON(buffer_unwritten(bh));
2902 
2903 	/*
2904 	 * Only clear out a write error when rewriting
2905 	 */
2906 	if (test_set_buffer_req(bh) && (rw & WRITE))
2907 		clear_buffer_write_io_error(bh);
2908 
2909 	/*
2910 	 * from here on down, it's all bio -- do the initial mapping,
2911 	 * submit_bio -> generic_make_request may further map this bio around
2912 	 */
2913 	bio = bio_alloc(GFP_NOIO, 1);
2914 
2915 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2916 	bio->bi_bdev = bh->b_bdev;
2917 	bio->bi_io_vec[0].bv_page = bh->b_page;
2918 	bio->bi_io_vec[0].bv_len = bh->b_size;
2919 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2920 
2921 	bio->bi_vcnt = 1;
2922 	bio->bi_idx = 0;
2923 	bio->bi_size = bh->b_size;
2924 
2925 	bio->bi_end_io = end_bio_bh_io_sync;
2926 	bio->bi_private = bh;
2927 
2928 	bio_get(bio);
2929 	submit_bio(rw, bio);
2930 
2931 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2932 		ret = -EOPNOTSUPP;
2933 
2934 	bio_put(bio);
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL(submit_bh);
2938 
2939 /**
2940  * ll_rw_block: low-level access to block devices (DEPRECATED)
2941  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2942  * @nr: number of &struct buffer_heads in the array
2943  * @bhs: array of pointers to &struct buffer_head
2944  *
2945  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2946  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2947  * %READA option is described in the documentation for generic_make_request()
2948  * which ll_rw_block() calls.
2949  *
2950  * This function drops any buffer that it cannot get a lock on (with the
2951  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2952  * request, and any buffer that appears to be up-to-date when doing read
2953  * request.  Further it marks as clean buffers that are processed for
2954  * writing (the buffer cache won't assume that they are actually clean
2955  * until the buffer gets unlocked).
2956  *
2957  * ll_rw_block sets b_end_io to simple completion handler that marks
2958  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2959  * any waiters.
2960  *
2961  * All of the buffers must be for the same device, and must also be a
2962  * multiple of the current approved size for the device.
2963  */
2964 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2965 {
2966 	int i;
2967 
2968 	for (i = 0; i < nr; i++) {
2969 		struct buffer_head *bh = bhs[i];
2970 
2971 		if (!trylock_buffer(bh))
2972 			continue;
2973 		if (rw == WRITE) {
2974 			if (test_clear_buffer_dirty(bh)) {
2975 				bh->b_end_io = end_buffer_write_sync;
2976 				get_bh(bh);
2977 				submit_bh(WRITE, bh);
2978 				continue;
2979 			}
2980 		} else {
2981 			if (!buffer_uptodate(bh)) {
2982 				bh->b_end_io = end_buffer_read_sync;
2983 				get_bh(bh);
2984 				submit_bh(rw, bh);
2985 				continue;
2986 			}
2987 		}
2988 		unlock_buffer(bh);
2989 	}
2990 }
2991 EXPORT_SYMBOL(ll_rw_block);
2992 
2993 void write_dirty_buffer(struct buffer_head *bh, int rw)
2994 {
2995 	lock_buffer(bh);
2996 	if (!test_clear_buffer_dirty(bh)) {
2997 		unlock_buffer(bh);
2998 		return;
2999 	}
3000 	bh->b_end_io = end_buffer_write_sync;
3001 	get_bh(bh);
3002 	submit_bh(rw, bh);
3003 }
3004 EXPORT_SYMBOL(write_dirty_buffer);
3005 
3006 /*
3007  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3008  * and then start new I/O and then wait upon it.  The caller must have a ref on
3009  * the buffer_head.
3010  */
3011 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3012 {
3013 	int ret = 0;
3014 
3015 	WARN_ON(atomic_read(&bh->b_count) < 1);
3016 	lock_buffer(bh);
3017 	if (test_clear_buffer_dirty(bh)) {
3018 		get_bh(bh);
3019 		bh->b_end_io = end_buffer_write_sync;
3020 		ret = submit_bh(rw, bh);
3021 		wait_on_buffer(bh);
3022 		if (!ret && !buffer_uptodate(bh))
3023 			ret = -EIO;
3024 	} else {
3025 		unlock_buffer(bh);
3026 	}
3027 	return ret;
3028 }
3029 EXPORT_SYMBOL(__sync_dirty_buffer);
3030 
3031 int sync_dirty_buffer(struct buffer_head *bh)
3032 {
3033 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3034 }
3035 EXPORT_SYMBOL(sync_dirty_buffer);
3036 
3037 /*
3038  * try_to_free_buffers() checks if all the buffers on this particular page
3039  * are unused, and releases them if so.
3040  *
3041  * Exclusion against try_to_free_buffers may be obtained by either
3042  * locking the page or by holding its mapping's private_lock.
3043  *
3044  * If the page is dirty but all the buffers are clean then we need to
3045  * be sure to mark the page clean as well.  This is because the page
3046  * may be against a block device, and a later reattachment of buffers
3047  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3048  * filesystem data on the same device.
3049  *
3050  * The same applies to regular filesystem pages: if all the buffers are
3051  * clean then we set the page clean and proceed.  To do that, we require
3052  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3053  * private_lock.
3054  *
3055  * try_to_free_buffers() is non-blocking.
3056  */
3057 static inline int buffer_busy(struct buffer_head *bh)
3058 {
3059 	return atomic_read(&bh->b_count) |
3060 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3061 }
3062 
3063 static int
3064 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3065 {
3066 	struct buffer_head *head = page_buffers(page);
3067 	struct buffer_head *bh;
3068 
3069 	bh = head;
3070 	do {
3071 		if (buffer_write_io_error(bh) && page->mapping)
3072 			set_bit(AS_EIO, &page->mapping->flags);
3073 		if (buffer_busy(bh))
3074 			goto failed;
3075 		bh = bh->b_this_page;
3076 	} while (bh != head);
3077 
3078 	do {
3079 		struct buffer_head *next = bh->b_this_page;
3080 
3081 		if (bh->b_assoc_map)
3082 			__remove_assoc_queue(bh);
3083 		bh = next;
3084 	} while (bh != head);
3085 	*buffers_to_free = head;
3086 	__clear_page_buffers(page);
3087 	return 1;
3088 failed:
3089 	return 0;
3090 }
3091 
3092 int try_to_free_buffers(struct page *page)
3093 {
3094 	struct address_space * const mapping = page->mapping;
3095 	struct buffer_head *buffers_to_free = NULL;
3096 	int ret = 0;
3097 
3098 	BUG_ON(!PageLocked(page));
3099 	if (PageWriteback(page))
3100 		return 0;
3101 
3102 	if (mapping == NULL) {		/* can this still happen? */
3103 		ret = drop_buffers(page, &buffers_to_free);
3104 		goto out;
3105 	}
3106 
3107 	spin_lock(&mapping->private_lock);
3108 	ret = drop_buffers(page, &buffers_to_free);
3109 
3110 	/*
3111 	 * If the filesystem writes its buffers by hand (eg ext3)
3112 	 * then we can have clean buffers against a dirty page.  We
3113 	 * clean the page here; otherwise the VM will never notice
3114 	 * that the filesystem did any IO at all.
3115 	 *
3116 	 * Also, during truncate, discard_buffer will have marked all
3117 	 * the page's buffers clean.  We discover that here and clean
3118 	 * the page also.
3119 	 *
3120 	 * private_lock must be held over this entire operation in order
3121 	 * to synchronise against __set_page_dirty_buffers and prevent the
3122 	 * dirty bit from being lost.
3123 	 */
3124 	if (ret)
3125 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3126 	spin_unlock(&mapping->private_lock);
3127 out:
3128 	if (buffers_to_free) {
3129 		struct buffer_head *bh = buffers_to_free;
3130 
3131 		do {
3132 			struct buffer_head *next = bh->b_this_page;
3133 			free_buffer_head(bh);
3134 			bh = next;
3135 		} while (bh != buffers_to_free);
3136 	}
3137 	return ret;
3138 }
3139 EXPORT_SYMBOL(try_to_free_buffers);
3140 
3141 void block_sync_page(struct page *page)
3142 {
3143 	struct address_space *mapping;
3144 
3145 	smp_mb();
3146 	mapping = page_mapping(page);
3147 	if (mapping)
3148 		blk_run_backing_dev(mapping->backing_dev_info, page);
3149 }
3150 EXPORT_SYMBOL(block_sync_page);
3151 
3152 /*
3153  * There are no bdflush tunables left.  But distributions are
3154  * still running obsolete flush daemons, so we terminate them here.
3155  *
3156  * Use of bdflush() is deprecated and will be removed in a future kernel.
3157  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3158  */
3159 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3160 {
3161 	static int msg_count;
3162 
3163 	if (!capable(CAP_SYS_ADMIN))
3164 		return -EPERM;
3165 
3166 	if (msg_count < 5) {
3167 		msg_count++;
3168 		printk(KERN_INFO
3169 			"warning: process `%s' used the obsolete bdflush"
3170 			" system call\n", current->comm);
3171 		printk(KERN_INFO "Fix your initscripts?\n");
3172 	}
3173 
3174 	if (func == 1)
3175 		do_exit(0);
3176 	return 0;
3177 }
3178 
3179 /*
3180  * Buffer-head allocation
3181  */
3182 static struct kmem_cache *bh_cachep;
3183 
3184 /*
3185  * Once the number of bh's in the machine exceeds this level, we start
3186  * stripping them in writeback.
3187  */
3188 static int max_buffer_heads;
3189 
3190 int buffer_heads_over_limit;
3191 
3192 struct bh_accounting {
3193 	int nr;			/* Number of live bh's */
3194 	int ratelimit;		/* Limit cacheline bouncing */
3195 };
3196 
3197 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3198 
3199 static void recalc_bh_state(void)
3200 {
3201 	int i;
3202 	int tot = 0;
3203 
3204 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3205 		return;
3206 	__this_cpu_write(bh_accounting.ratelimit, 0);
3207 	for_each_online_cpu(i)
3208 		tot += per_cpu(bh_accounting, i).nr;
3209 	buffer_heads_over_limit = (tot > max_buffer_heads);
3210 }
3211 
3212 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3213 {
3214 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3215 	if (ret) {
3216 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3217 		preempt_disable();
3218 		__this_cpu_inc(bh_accounting.nr);
3219 		recalc_bh_state();
3220 		preempt_enable();
3221 	}
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL(alloc_buffer_head);
3225 
3226 void free_buffer_head(struct buffer_head *bh)
3227 {
3228 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3229 	kmem_cache_free(bh_cachep, bh);
3230 	preempt_disable();
3231 	__this_cpu_dec(bh_accounting.nr);
3232 	recalc_bh_state();
3233 	preempt_enable();
3234 }
3235 EXPORT_SYMBOL(free_buffer_head);
3236 
3237 static void buffer_exit_cpu(int cpu)
3238 {
3239 	int i;
3240 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3241 
3242 	for (i = 0; i < BH_LRU_SIZE; i++) {
3243 		brelse(b->bhs[i]);
3244 		b->bhs[i] = NULL;
3245 	}
3246 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3247 	per_cpu(bh_accounting, cpu).nr = 0;
3248 }
3249 
3250 static int buffer_cpu_notify(struct notifier_block *self,
3251 			      unsigned long action, void *hcpu)
3252 {
3253 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3254 		buffer_exit_cpu((unsigned long)hcpu);
3255 	return NOTIFY_OK;
3256 }
3257 
3258 /**
3259  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3260  * @bh: struct buffer_head
3261  *
3262  * Return true if the buffer is up-to-date and false,
3263  * with the buffer locked, if not.
3264  */
3265 int bh_uptodate_or_lock(struct buffer_head *bh)
3266 {
3267 	if (!buffer_uptodate(bh)) {
3268 		lock_buffer(bh);
3269 		if (!buffer_uptodate(bh))
3270 			return 0;
3271 		unlock_buffer(bh);
3272 	}
3273 	return 1;
3274 }
3275 EXPORT_SYMBOL(bh_uptodate_or_lock);
3276 
3277 /**
3278  * bh_submit_read - Submit a locked buffer for reading
3279  * @bh: struct buffer_head
3280  *
3281  * Returns zero on success and -EIO on error.
3282  */
3283 int bh_submit_read(struct buffer_head *bh)
3284 {
3285 	BUG_ON(!buffer_locked(bh));
3286 
3287 	if (buffer_uptodate(bh)) {
3288 		unlock_buffer(bh);
3289 		return 0;
3290 	}
3291 
3292 	get_bh(bh);
3293 	bh->b_end_io = end_buffer_read_sync;
3294 	submit_bh(READ, bh);
3295 	wait_on_buffer(bh);
3296 	if (buffer_uptodate(bh))
3297 		return 0;
3298 	return -EIO;
3299 }
3300 EXPORT_SYMBOL(bh_submit_read);
3301 
3302 void __init buffer_init(void)
3303 {
3304 	int nrpages;
3305 
3306 	bh_cachep = kmem_cache_create("buffer_head",
3307 			sizeof(struct buffer_head), 0,
3308 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3309 				SLAB_MEM_SPREAD),
3310 				NULL);
3311 
3312 	/*
3313 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3314 	 */
3315 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3316 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3317 	hotcpu_notifier(buffer_cpu_notify, 0);
3318 }
3319