1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 593 * dirty. 594 * 595 * If warn is true, then emit a warning if the page is not uptodate and has 596 * not been truncated. 597 * 598 * The caller must hold lock_page_memcg(). 599 */ 600 void __set_page_dirty(struct page *page, struct address_space *mapping, 601 int warn) 602 { 603 unsigned long flags; 604 605 xa_lock_irqsave(&mapping->i_pages, flags); 606 if (page->mapping) { /* Race with truncate? */ 607 WARN_ON_ONCE(warn && !PageUptodate(page)); 608 account_page_dirtied(page, mapping); 609 __xa_set_mark(&mapping->i_pages, page_index(page), 610 PAGECACHE_TAG_DIRTY); 611 } 612 xa_unlock_irqrestore(&mapping->i_pages, flags); 613 } 614 EXPORT_SYMBOL_GPL(__set_page_dirty); 615 616 /* 617 * Add a page to the dirty page list. 618 * 619 * It is a sad fact of life that this function is called from several places 620 * deeply under spinlocking. It may not sleep. 621 * 622 * If the page has buffers, the uptodate buffers are set dirty, to preserve 623 * dirty-state coherency between the page and the buffers. It the page does 624 * not have buffers then when they are later attached they will all be set 625 * dirty. 626 * 627 * The buffers are dirtied before the page is dirtied. There's a small race 628 * window in which a writepage caller may see the page cleanness but not the 629 * buffer dirtiness. That's fine. If this code were to set the page dirty 630 * before the buffers, a concurrent writepage caller could clear the page dirty 631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 632 * page on the dirty page list. 633 * 634 * We use private_lock to lock against try_to_free_buffers while using the 635 * page's buffer list. Also use this to protect against clean buffers being 636 * added to the page after it was set dirty. 637 * 638 * FIXME: may need to call ->reservepage here as well. That's rather up to the 639 * address_space though. 640 */ 641 int __set_page_dirty_buffers(struct page *page) 642 { 643 int newly_dirty; 644 struct address_space *mapping = page_mapping(page); 645 646 if (unlikely(!mapping)) 647 return !TestSetPageDirty(page); 648 649 spin_lock(&mapping->private_lock); 650 if (page_has_buffers(page)) { 651 struct buffer_head *head = page_buffers(page); 652 struct buffer_head *bh = head; 653 654 do { 655 set_buffer_dirty(bh); 656 bh = bh->b_this_page; 657 } while (bh != head); 658 } 659 /* 660 * Lock out page's memcg migration to keep PageDirty 661 * synchronized with per-memcg dirty page counters. 662 */ 663 lock_page_memcg(page); 664 newly_dirty = !TestSetPageDirty(page); 665 spin_unlock(&mapping->private_lock); 666 667 if (newly_dirty) 668 __set_page_dirty(page, mapping, 1); 669 670 unlock_page_memcg(page); 671 672 if (newly_dirty) 673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 674 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, REQ_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->private_data; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->private_data; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 bool retry) 841 { 842 struct buffer_head *bh, *head; 843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 844 long offset; 845 struct mem_cgroup *memcg, *old_memcg; 846 847 if (retry) 848 gfp |= __GFP_NOFAIL; 849 850 /* The page lock pins the memcg */ 851 memcg = page_memcg(page); 852 old_memcg = set_active_memcg(memcg); 853 854 head = NULL; 855 offset = PAGE_SIZE; 856 while ((offset -= size) >= 0) { 857 bh = alloc_buffer_head(gfp); 858 if (!bh) 859 goto no_grow; 860 861 bh->b_this_page = head; 862 bh->b_blocknr = -1; 863 head = bh; 864 865 bh->b_size = size; 866 867 /* Link the buffer to its page */ 868 set_bh_page(bh, page, offset); 869 } 870 out: 871 set_active_memcg(old_memcg); 872 return head; 873 /* 874 * In case anything failed, we just free everything we got. 875 */ 876 no_grow: 877 if (head) { 878 do { 879 bh = head; 880 head = head->b_this_page; 881 free_buffer_head(bh); 882 } while (head); 883 } 884 885 goto out; 886 } 887 EXPORT_SYMBOL_GPL(alloc_page_buffers); 888 889 static inline void 890 link_dev_buffers(struct page *page, struct buffer_head *head) 891 { 892 struct buffer_head *bh, *tail; 893 894 bh = head; 895 do { 896 tail = bh; 897 bh = bh->b_this_page; 898 } while (bh); 899 tail->b_this_page = head; 900 attach_page_private(page, head); 901 } 902 903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 904 { 905 sector_t retval = ~((sector_t)0); 906 loff_t sz = i_size_read(bdev->bd_inode); 907 908 if (sz) { 909 unsigned int sizebits = blksize_bits(size); 910 retval = (sz >> sizebits); 911 } 912 return retval; 913 } 914 915 /* 916 * Initialise the state of a blockdev page's buffers. 917 */ 918 static sector_t 919 init_page_buffers(struct page *page, struct block_device *bdev, 920 sector_t block, int size) 921 { 922 struct buffer_head *head = page_buffers(page); 923 struct buffer_head *bh = head; 924 int uptodate = PageUptodate(page); 925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 926 927 do { 928 if (!buffer_mapped(bh)) { 929 bh->b_end_io = NULL; 930 bh->b_private = NULL; 931 bh->b_bdev = bdev; 932 bh->b_blocknr = block; 933 if (uptodate) 934 set_buffer_uptodate(bh); 935 if (block < end_block) 936 set_buffer_mapped(bh); 937 } 938 block++; 939 bh = bh->b_this_page; 940 } while (bh != head); 941 942 /* 943 * Caller needs to validate requested block against end of device. 944 */ 945 return end_block; 946 } 947 948 /* 949 * Create the page-cache page that contains the requested block. 950 * 951 * This is used purely for blockdev mappings. 952 */ 953 static int 954 grow_dev_page(struct block_device *bdev, sector_t block, 955 pgoff_t index, int size, int sizebits, gfp_t gfp) 956 { 957 struct inode *inode = bdev->bd_inode; 958 struct page *page; 959 struct buffer_head *bh; 960 sector_t end_block; 961 int ret = 0; 962 gfp_t gfp_mask; 963 964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 965 966 /* 967 * XXX: __getblk_slow() can not really deal with failure and 968 * will endlessly loop on improvised global reclaim. Prefer 969 * looping in the allocator rather than here, at least that 970 * code knows what it's doing. 971 */ 972 gfp_mask |= __GFP_NOFAIL; 973 974 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 975 976 BUG_ON(!PageLocked(page)); 977 978 if (page_has_buffers(page)) { 979 bh = page_buffers(page); 980 if (bh->b_size == size) { 981 end_block = init_page_buffers(page, bdev, 982 (sector_t)index << sizebits, 983 size); 984 goto done; 985 } 986 if (!try_to_free_buffers(page)) 987 goto failed; 988 } 989 990 /* 991 * Allocate some buffers for this page 992 */ 993 bh = alloc_page_buffers(page, size, true); 994 995 /* 996 * Link the page to the buffers and initialise them. Take the 997 * lock to be atomic wrt __find_get_block(), which does not 998 * run under the page lock. 999 */ 1000 spin_lock(&inode->i_mapping->private_lock); 1001 link_dev_buffers(page, bh); 1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1003 size); 1004 spin_unlock(&inode->i_mapping->private_lock); 1005 done: 1006 ret = (block < end_block) ? 1 : -ENXIO; 1007 failed: 1008 unlock_page(page); 1009 put_page(page); 1010 return ret; 1011 } 1012 1013 /* 1014 * Create buffers for the specified block device block's page. If 1015 * that page was dirty, the buffers are set dirty also. 1016 */ 1017 static int 1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1019 { 1020 pgoff_t index; 1021 int sizebits; 1022 1023 sizebits = PAGE_SHIFT - __ffs(size); 1024 index = block >> sizebits; 1025 1026 /* 1027 * Check for a block which wants to lie outside our maximum possible 1028 * pagecache index. (this comparison is done using sector_t types). 1029 */ 1030 if (unlikely(index != block >> sizebits)) { 1031 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1032 "device %pg\n", 1033 __func__, (unsigned long long)block, 1034 bdev); 1035 return -EIO; 1036 } 1037 1038 /* Create a page with the proper size buffers.. */ 1039 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1040 } 1041 1042 static struct buffer_head * 1043 __getblk_slow(struct block_device *bdev, sector_t block, 1044 unsigned size, gfp_t gfp) 1045 { 1046 /* Size must be multiple of hard sectorsize */ 1047 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1048 (size < 512 || size > PAGE_SIZE))) { 1049 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1050 size); 1051 printk(KERN_ERR "logical block size: %d\n", 1052 bdev_logical_block_size(bdev)); 1053 1054 dump_stack(); 1055 return NULL; 1056 } 1057 1058 for (;;) { 1059 struct buffer_head *bh; 1060 int ret; 1061 1062 bh = __find_get_block(bdev, block, size); 1063 if (bh) 1064 return bh; 1065 1066 ret = grow_buffers(bdev, block, size, gfp); 1067 if (ret < 0) 1068 return NULL; 1069 } 1070 } 1071 1072 /* 1073 * The relationship between dirty buffers and dirty pages: 1074 * 1075 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1076 * the page is tagged dirty in the page cache. 1077 * 1078 * At all times, the dirtiness of the buffers represents the dirtiness of 1079 * subsections of the page. If the page has buffers, the page dirty bit is 1080 * merely a hint about the true dirty state. 1081 * 1082 * When a page is set dirty in its entirety, all its buffers are marked dirty 1083 * (if the page has buffers). 1084 * 1085 * When a buffer is marked dirty, its page is dirtied, but the page's other 1086 * buffers are not. 1087 * 1088 * Also. When blockdev buffers are explicitly read with bread(), they 1089 * individually become uptodate. But their backing page remains not 1090 * uptodate - even if all of its buffers are uptodate. A subsequent 1091 * block_read_full_page() against that page will discover all the uptodate 1092 * buffers, will set the page uptodate and will perform no I/O. 1093 */ 1094 1095 /** 1096 * mark_buffer_dirty - mark a buffer_head as needing writeout 1097 * @bh: the buffer_head to mark dirty 1098 * 1099 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1100 * its backing page dirty, then tag the page as dirty in the page cache 1101 * and then attach the address_space's inode to its superblock's dirty 1102 * inode list. 1103 * 1104 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1105 * i_pages lock and mapping->host->i_lock. 1106 */ 1107 void mark_buffer_dirty(struct buffer_head *bh) 1108 { 1109 WARN_ON_ONCE(!buffer_uptodate(bh)); 1110 1111 trace_block_dirty_buffer(bh); 1112 1113 /* 1114 * Very *carefully* optimize the it-is-already-dirty case. 1115 * 1116 * Don't let the final "is it dirty" escape to before we 1117 * perhaps modified the buffer. 1118 */ 1119 if (buffer_dirty(bh)) { 1120 smp_mb(); 1121 if (buffer_dirty(bh)) 1122 return; 1123 } 1124 1125 if (!test_set_buffer_dirty(bh)) { 1126 struct page *page = bh->b_page; 1127 struct address_space *mapping = NULL; 1128 1129 lock_page_memcg(page); 1130 if (!TestSetPageDirty(page)) { 1131 mapping = page_mapping(page); 1132 if (mapping) 1133 __set_page_dirty(page, mapping, 0); 1134 } 1135 unlock_page_memcg(page); 1136 if (mapping) 1137 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1138 } 1139 } 1140 EXPORT_SYMBOL(mark_buffer_dirty); 1141 1142 void mark_buffer_write_io_error(struct buffer_head *bh) 1143 { 1144 struct super_block *sb; 1145 1146 set_buffer_write_io_error(bh); 1147 /* FIXME: do we need to set this in both places? */ 1148 if (bh->b_page && bh->b_page->mapping) 1149 mapping_set_error(bh->b_page->mapping, -EIO); 1150 if (bh->b_assoc_map) 1151 mapping_set_error(bh->b_assoc_map, -EIO); 1152 rcu_read_lock(); 1153 sb = READ_ONCE(bh->b_bdev->bd_super); 1154 if (sb) 1155 errseq_set(&sb->s_wb_err, -EIO); 1156 rcu_read_unlock(); 1157 } 1158 EXPORT_SYMBOL(mark_buffer_write_io_error); 1159 1160 /* 1161 * Decrement a buffer_head's reference count. If all buffers against a page 1162 * have zero reference count, are clean and unlocked, and if the page is clean 1163 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1164 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1165 * a page but it ends up not being freed, and buffers may later be reattached). 1166 */ 1167 void __brelse(struct buffer_head * buf) 1168 { 1169 if (atomic_read(&buf->b_count)) { 1170 put_bh(buf); 1171 return; 1172 } 1173 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1174 } 1175 EXPORT_SYMBOL(__brelse); 1176 1177 /* 1178 * bforget() is like brelse(), except it discards any 1179 * potentially dirty data. 1180 */ 1181 void __bforget(struct buffer_head *bh) 1182 { 1183 clear_buffer_dirty(bh); 1184 if (bh->b_assoc_map) { 1185 struct address_space *buffer_mapping = bh->b_page->mapping; 1186 1187 spin_lock(&buffer_mapping->private_lock); 1188 list_del_init(&bh->b_assoc_buffers); 1189 bh->b_assoc_map = NULL; 1190 spin_unlock(&buffer_mapping->private_lock); 1191 } 1192 __brelse(bh); 1193 } 1194 EXPORT_SYMBOL(__bforget); 1195 1196 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1197 { 1198 lock_buffer(bh); 1199 if (buffer_uptodate(bh)) { 1200 unlock_buffer(bh); 1201 return bh; 1202 } else { 1203 get_bh(bh); 1204 bh->b_end_io = end_buffer_read_sync; 1205 submit_bh(REQ_OP_READ, 0, bh); 1206 wait_on_buffer(bh); 1207 if (buffer_uptodate(bh)) 1208 return bh; 1209 } 1210 brelse(bh); 1211 return NULL; 1212 } 1213 1214 /* 1215 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1216 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1217 * refcount elevated by one when they're in an LRU. A buffer can only appear 1218 * once in a particular CPU's LRU. A single buffer can be present in multiple 1219 * CPU's LRUs at the same time. 1220 * 1221 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1222 * sb_find_get_block(). 1223 * 1224 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1225 * a local interrupt disable for that. 1226 */ 1227 1228 #define BH_LRU_SIZE 16 1229 1230 struct bh_lru { 1231 struct buffer_head *bhs[BH_LRU_SIZE]; 1232 }; 1233 1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1235 1236 #ifdef CONFIG_SMP 1237 #define bh_lru_lock() local_irq_disable() 1238 #define bh_lru_unlock() local_irq_enable() 1239 #else 1240 #define bh_lru_lock() preempt_disable() 1241 #define bh_lru_unlock() preempt_enable() 1242 #endif 1243 1244 static inline void check_irqs_on(void) 1245 { 1246 #ifdef irqs_disabled 1247 BUG_ON(irqs_disabled()); 1248 #endif 1249 } 1250 1251 /* 1252 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1253 * inserted at the front, and the buffer_head at the back if any is evicted. 1254 * Or, if already in the LRU it is moved to the front. 1255 */ 1256 static void bh_lru_install(struct buffer_head *bh) 1257 { 1258 struct buffer_head *evictee = bh; 1259 struct bh_lru *b; 1260 int i; 1261 1262 check_irqs_on(); 1263 /* 1264 * the refcount of buffer_head in bh_lru prevents dropping the 1265 * attached page(i.e., try_to_free_buffers) so it could cause 1266 * failing page migration. 1267 * Skip putting upcoming bh into bh_lru until migration is done. 1268 */ 1269 if (lru_cache_disabled()) 1270 return; 1271 1272 bh_lru_lock(); 1273 1274 b = this_cpu_ptr(&bh_lrus); 1275 for (i = 0; i < BH_LRU_SIZE; i++) { 1276 swap(evictee, b->bhs[i]); 1277 if (evictee == bh) { 1278 bh_lru_unlock(); 1279 return; 1280 } 1281 } 1282 1283 get_bh(bh); 1284 bh_lru_unlock(); 1285 brelse(evictee); 1286 } 1287 1288 /* 1289 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1290 */ 1291 static struct buffer_head * 1292 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1293 { 1294 struct buffer_head *ret = NULL; 1295 unsigned int i; 1296 1297 check_irqs_on(); 1298 bh_lru_lock(); 1299 for (i = 0; i < BH_LRU_SIZE; i++) { 1300 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1301 1302 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1303 bh->b_size == size) { 1304 if (i) { 1305 while (i) { 1306 __this_cpu_write(bh_lrus.bhs[i], 1307 __this_cpu_read(bh_lrus.bhs[i - 1])); 1308 i--; 1309 } 1310 __this_cpu_write(bh_lrus.bhs[0], bh); 1311 } 1312 get_bh(bh); 1313 ret = bh; 1314 break; 1315 } 1316 } 1317 bh_lru_unlock(); 1318 return ret; 1319 } 1320 1321 /* 1322 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1323 * it in the LRU and mark it as accessed. If it is not present then return 1324 * NULL 1325 */ 1326 struct buffer_head * 1327 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1328 { 1329 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1330 1331 if (bh == NULL) { 1332 /* __find_get_block_slow will mark the page accessed */ 1333 bh = __find_get_block_slow(bdev, block); 1334 if (bh) 1335 bh_lru_install(bh); 1336 } else 1337 touch_buffer(bh); 1338 1339 return bh; 1340 } 1341 EXPORT_SYMBOL(__find_get_block); 1342 1343 /* 1344 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1345 * which corresponds to the passed block_device, block and size. The 1346 * returned buffer has its reference count incremented. 1347 * 1348 * __getblk_gfp() will lock up the machine if grow_dev_page's 1349 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1350 */ 1351 struct buffer_head * 1352 __getblk_gfp(struct block_device *bdev, sector_t block, 1353 unsigned size, gfp_t gfp) 1354 { 1355 struct buffer_head *bh = __find_get_block(bdev, block, size); 1356 1357 might_sleep(); 1358 if (bh == NULL) 1359 bh = __getblk_slow(bdev, block, size, gfp); 1360 return bh; 1361 } 1362 EXPORT_SYMBOL(__getblk_gfp); 1363 1364 /* 1365 * Do async read-ahead on a buffer.. 1366 */ 1367 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1368 { 1369 struct buffer_head *bh = __getblk(bdev, block, size); 1370 if (likely(bh)) { 1371 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1372 brelse(bh); 1373 } 1374 } 1375 EXPORT_SYMBOL(__breadahead); 1376 1377 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1378 gfp_t gfp) 1379 { 1380 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1381 if (likely(bh)) { 1382 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1383 brelse(bh); 1384 } 1385 } 1386 EXPORT_SYMBOL(__breadahead_gfp); 1387 1388 /** 1389 * __bread_gfp() - reads a specified block and returns the bh 1390 * @bdev: the block_device to read from 1391 * @block: number of block 1392 * @size: size (in bytes) to read 1393 * @gfp: page allocation flag 1394 * 1395 * Reads a specified block, and returns buffer head that contains it. 1396 * The page cache can be allocated from non-movable area 1397 * not to prevent page migration if you set gfp to zero. 1398 * It returns NULL if the block was unreadable. 1399 */ 1400 struct buffer_head * 1401 __bread_gfp(struct block_device *bdev, sector_t block, 1402 unsigned size, gfp_t gfp) 1403 { 1404 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1405 1406 if (likely(bh) && !buffer_uptodate(bh)) 1407 bh = __bread_slow(bh); 1408 return bh; 1409 } 1410 EXPORT_SYMBOL(__bread_gfp); 1411 1412 static void __invalidate_bh_lrus(struct bh_lru *b) 1413 { 1414 int i; 1415 1416 for (i = 0; i < BH_LRU_SIZE; i++) { 1417 brelse(b->bhs[i]); 1418 b->bhs[i] = NULL; 1419 } 1420 } 1421 /* 1422 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1423 * This doesn't race because it runs in each cpu either in irq 1424 * or with preempt disabled. 1425 */ 1426 static void invalidate_bh_lru(void *arg) 1427 { 1428 struct bh_lru *b = &get_cpu_var(bh_lrus); 1429 1430 __invalidate_bh_lrus(b); 1431 put_cpu_var(bh_lrus); 1432 } 1433 1434 bool has_bh_in_lru(int cpu, void *dummy) 1435 { 1436 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1437 int i; 1438 1439 for (i = 0; i < BH_LRU_SIZE; i++) { 1440 if (b->bhs[i]) 1441 return true; 1442 } 1443 1444 return false; 1445 } 1446 1447 void invalidate_bh_lrus(void) 1448 { 1449 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1450 } 1451 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1452 1453 void invalidate_bh_lrus_cpu(int cpu) 1454 { 1455 struct bh_lru *b; 1456 1457 bh_lru_lock(); 1458 b = per_cpu_ptr(&bh_lrus, cpu); 1459 __invalidate_bh_lrus(b); 1460 bh_lru_unlock(); 1461 } 1462 1463 void set_bh_page(struct buffer_head *bh, 1464 struct page *page, unsigned long offset) 1465 { 1466 bh->b_page = page; 1467 BUG_ON(offset >= PAGE_SIZE); 1468 if (PageHighMem(page)) 1469 /* 1470 * This catches illegal uses and preserves the offset: 1471 */ 1472 bh->b_data = (char *)(0 + offset); 1473 else 1474 bh->b_data = page_address(page) + offset; 1475 } 1476 EXPORT_SYMBOL(set_bh_page); 1477 1478 /* 1479 * Called when truncating a buffer on a page completely. 1480 */ 1481 1482 /* Bits that are cleared during an invalidate */ 1483 #define BUFFER_FLAGS_DISCARD \ 1484 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1485 1 << BH_Delay | 1 << BH_Unwritten) 1486 1487 static void discard_buffer(struct buffer_head * bh) 1488 { 1489 unsigned long b_state, b_state_old; 1490 1491 lock_buffer(bh); 1492 clear_buffer_dirty(bh); 1493 bh->b_bdev = NULL; 1494 b_state = bh->b_state; 1495 for (;;) { 1496 b_state_old = cmpxchg(&bh->b_state, b_state, 1497 (b_state & ~BUFFER_FLAGS_DISCARD)); 1498 if (b_state_old == b_state) 1499 break; 1500 b_state = b_state_old; 1501 } 1502 unlock_buffer(bh); 1503 } 1504 1505 /** 1506 * block_invalidatepage - invalidate part or all of a buffer-backed page 1507 * 1508 * @page: the page which is affected 1509 * @offset: start of the range to invalidate 1510 * @length: length of the range to invalidate 1511 * 1512 * block_invalidatepage() is called when all or part of the page has become 1513 * invalidated by a truncate operation. 1514 * 1515 * block_invalidatepage() does not have to release all buffers, but it must 1516 * ensure that no dirty buffer is left outside @offset and that no I/O 1517 * is underway against any of the blocks which are outside the truncation 1518 * point. Because the caller is about to free (and possibly reuse) those 1519 * blocks on-disk. 1520 */ 1521 void block_invalidatepage(struct page *page, unsigned int offset, 1522 unsigned int length) 1523 { 1524 struct buffer_head *head, *bh, *next; 1525 unsigned int curr_off = 0; 1526 unsigned int stop = length + offset; 1527 1528 BUG_ON(!PageLocked(page)); 1529 if (!page_has_buffers(page)) 1530 goto out; 1531 1532 /* 1533 * Check for overflow 1534 */ 1535 BUG_ON(stop > PAGE_SIZE || stop < length); 1536 1537 head = page_buffers(page); 1538 bh = head; 1539 do { 1540 unsigned int next_off = curr_off + bh->b_size; 1541 next = bh->b_this_page; 1542 1543 /* 1544 * Are we still fully in range ? 1545 */ 1546 if (next_off > stop) 1547 goto out; 1548 1549 /* 1550 * is this block fully invalidated? 1551 */ 1552 if (offset <= curr_off) 1553 discard_buffer(bh); 1554 curr_off = next_off; 1555 bh = next; 1556 } while (bh != head); 1557 1558 /* 1559 * We release buffers only if the entire page is being invalidated. 1560 * The get_block cached value has been unconditionally invalidated, 1561 * so real IO is not possible anymore. 1562 */ 1563 if (length == PAGE_SIZE) 1564 try_to_release_page(page, 0); 1565 out: 1566 return; 1567 } 1568 EXPORT_SYMBOL(block_invalidatepage); 1569 1570 1571 /* 1572 * We attach and possibly dirty the buffers atomically wrt 1573 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1574 * is already excluded via the page lock. 1575 */ 1576 void create_empty_buffers(struct page *page, 1577 unsigned long blocksize, unsigned long b_state) 1578 { 1579 struct buffer_head *bh, *head, *tail; 1580 1581 head = alloc_page_buffers(page, blocksize, true); 1582 bh = head; 1583 do { 1584 bh->b_state |= b_state; 1585 tail = bh; 1586 bh = bh->b_this_page; 1587 } while (bh); 1588 tail->b_this_page = head; 1589 1590 spin_lock(&page->mapping->private_lock); 1591 if (PageUptodate(page) || PageDirty(page)) { 1592 bh = head; 1593 do { 1594 if (PageDirty(page)) 1595 set_buffer_dirty(bh); 1596 if (PageUptodate(page)) 1597 set_buffer_uptodate(bh); 1598 bh = bh->b_this_page; 1599 } while (bh != head); 1600 } 1601 attach_page_private(page, head); 1602 spin_unlock(&page->mapping->private_lock); 1603 } 1604 EXPORT_SYMBOL(create_empty_buffers); 1605 1606 /** 1607 * clean_bdev_aliases: clean a range of buffers in block device 1608 * @bdev: Block device to clean buffers in 1609 * @block: Start of a range of blocks to clean 1610 * @len: Number of blocks to clean 1611 * 1612 * We are taking a range of blocks for data and we don't want writeback of any 1613 * buffer-cache aliases starting from return from this function and until the 1614 * moment when something will explicitly mark the buffer dirty (hopefully that 1615 * will not happen until we will free that block ;-) We don't even need to mark 1616 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1617 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1618 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1619 * would confuse anyone who might pick it with bread() afterwards... 1620 * 1621 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1622 * writeout I/O going on against recently-freed buffers. We don't wait on that 1623 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1624 * need to. That happens here. 1625 */ 1626 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1627 { 1628 struct inode *bd_inode = bdev->bd_inode; 1629 struct address_space *bd_mapping = bd_inode->i_mapping; 1630 struct pagevec pvec; 1631 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1632 pgoff_t end; 1633 int i, count; 1634 struct buffer_head *bh; 1635 struct buffer_head *head; 1636 1637 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1638 pagevec_init(&pvec); 1639 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1640 count = pagevec_count(&pvec); 1641 for (i = 0; i < count; i++) { 1642 struct page *page = pvec.pages[i]; 1643 1644 if (!page_has_buffers(page)) 1645 continue; 1646 /* 1647 * We use page lock instead of bd_mapping->private_lock 1648 * to pin buffers here since we can afford to sleep and 1649 * it scales better than a global spinlock lock. 1650 */ 1651 lock_page(page); 1652 /* Recheck when the page is locked which pins bhs */ 1653 if (!page_has_buffers(page)) 1654 goto unlock_page; 1655 head = page_buffers(page); 1656 bh = head; 1657 do { 1658 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1659 goto next; 1660 if (bh->b_blocknr >= block + len) 1661 break; 1662 clear_buffer_dirty(bh); 1663 wait_on_buffer(bh); 1664 clear_buffer_req(bh); 1665 next: 1666 bh = bh->b_this_page; 1667 } while (bh != head); 1668 unlock_page: 1669 unlock_page(page); 1670 } 1671 pagevec_release(&pvec); 1672 cond_resched(); 1673 /* End of range already reached? */ 1674 if (index > end || !index) 1675 break; 1676 } 1677 } 1678 EXPORT_SYMBOL(clean_bdev_aliases); 1679 1680 /* 1681 * Size is a power-of-two in the range 512..PAGE_SIZE, 1682 * and the case we care about most is PAGE_SIZE. 1683 * 1684 * So this *could* possibly be written with those 1685 * constraints in mind (relevant mostly if some 1686 * architecture has a slow bit-scan instruction) 1687 */ 1688 static inline int block_size_bits(unsigned int blocksize) 1689 { 1690 return ilog2(blocksize); 1691 } 1692 1693 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1694 { 1695 BUG_ON(!PageLocked(page)); 1696 1697 if (!page_has_buffers(page)) 1698 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1699 b_state); 1700 return page_buffers(page); 1701 } 1702 1703 /* 1704 * NOTE! All mapped/uptodate combinations are valid: 1705 * 1706 * Mapped Uptodate Meaning 1707 * 1708 * No No "unknown" - must do get_block() 1709 * No Yes "hole" - zero-filled 1710 * Yes No "allocated" - allocated on disk, not read in 1711 * Yes Yes "valid" - allocated and up-to-date in memory. 1712 * 1713 * "Dirty" is valid only with the last case (mapped+uptodate). 1714 */ 1715 1716 /* 1717 * While block_write_full_page is writing back the dirty buffers under 1718 * the page lock, whoever dirtied the buffers may decide to clean them 1719 * again at any time. We handle that by only looking at the buffer 1720 * state inside lock_buffer(). 1721 * 1722 * If block_write_full_page() is called for regular writeback 1723 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1724 * locked buffer. This only can happen if someone has written the buffer 1725 * directly, with submit_bh(). At the address_space level PageWriteback 1726 * prevents this contention from occurring. 1727 * 1728 * If block_write_full_page() is called with wbc->sync_mode == 1729 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1730 * causes the writes to be flagged as synchronous writes. 1731 */ 1732 int __block_write_full_page(struct inode *inode, struct page *page, 1733 get_block_t *get_block, struct writeback_control *wbc, 1734 bh_end_io_t *handler) 1735 { 1736 int err; 1737 sector_t block; 1738 sector_t last_block; 1739 struct buffer_head *bh, *head; 1740 unsigned int blocksize, bbits; 1741 int nr_underway = 0; 1742 int write_flags = wbc_to_write_flags(wbc); 1743 1744 head = create_page_buffers(page, inode, 1745 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1746 1747 /* 1748 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1749 * here, and the (potentially unmapped) buffers may become dirty at 1750 * any time. If a buffer becomes dirty here after we've inspected it 1751 * then we just miss that fact, and the page stays dirty. 1752 * 1753 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1754 * handle that here by just cleaning them. 1755 */ 1756 1757 bh = head; 1758 blocksize = bh->b_size; 1759 bbits = block_size_bits(blocksize); 1760 1761 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1762 last_block = (i_size_read(inode) - 1) >> bbits; 1763 1764 /* 1765 * Get all the dirty buffers mapped to disk addresses and 1766 * handle any aliases from the underlying blockdev's mapping. 1767 */ 1768 do { 1769 if (block > last_block) { 1770 /* 1771 * mapped buffers outside i_size will occur, because 1772 * this page can be outside i_size when there is a 1773 * truncate in progress. 1774 */ 1775 /* 1776 * The buffer was zeroed by block_write_full_page() 1777 */ 1778 clear_buffer_dirty(bh); 1779 set_buffer_uptodate(bh); 1780 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1781 buffer_dirty(bh)) { 1782 WARN_ON(bh->b_size != blocksize); 1783 err = get_block(inode, block, bh, 1); 1784 if (err) 1785 goto recover; 1786 clear_buffer_delay(bh); 1787 if (buffer_new(bh)) { 1788 /* blockdev mappings never come here */ 1789 clear_buffer_new(bh); 1790 clean_bdev_bh_alias(bh); 1791 } 1792 } 1793 bh = bh->b_this_page; 1794 block++; 1795 } while (bh != head); 1796 1797 do { 1798 if (!buffer_mapped(bh)) 1799 continue; 1800 /* 1801 * If it's a fully non-blocking write attempt and we cannot 1802 * lock the buffer then redirty the page. Note that this can 1803 * potentially cause a busy-wait loop from writeback threads 1804 * and kswapd activity, but those code paths have their own 1805 * higher-level throttling. 1806 */ 1807 if (wbc->sync_mode != WB_SYNC_NONE) { 1808 lock_buffer(bh); 1809 } else if (!trylock_buffer(bh)) { 1810 redirty_page_for_writepage(wbc, page); 1811 continue; 1812 } 1813 if (test_clear_buffer_dirty(bh)) { 1814 mark_buffer_async_write_endio(bh, handler); 1815 } else { 1816 unlock_buffer(bh); 1817 } 1818 } while ((bh = bh->b_this_page) != head); 1819 1820 /* 1821 * The page and its buffers are protected by PageWriteback(), so we can 1822 * drop the bh refcounts early. 1823 */ 1824 BUG_ON(PageWriteback(page)); 1825 set_page_writeback(page); 1826 1827 do { 1828 struct buffer_head *next = bh->b_this_page; 1829 if (buffer_async_write(bh)) { 1830 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1831 inode->i_write_hint, wbc); 1832 nr_underway++; 1833 } 1834 bh = next; 1835 } while (bh != head); 1836 unlock_page(page); 1837 1838 err = 0; 1839 done: 1840 if (nr_underway == 0) { 1841 /* 1842 * The page was marked dirty, but the buffers were 1843 * clean. Someone wrote them back by hand with 1844 * ll_rw_block/submit_bh. A rare case. 1845 */ 1846 end_page_writeback(page); 1847 1848 /* 1849 * The page and buffer_heads can be released at any time from 1850 * here on. 1851 */ 1852 } 1853 return err; 1854 1855 recover: 1856 /* 1857 * ENOSPC, or some other error. We may already have added some 1858 * blocks to the file, so we need to write these out to avoid 1859 * exposing stale data. 1860 * The page is currently locked and not marked for writeback 1861 */ 1862 bh = head; 1863 /* Recovery: lock and submit the mapped buffers */ 1864 do { 1865 if (buffer_mapped(bh) && buffer_dirty(bh) && 1866 !buffer_delay(bh)) { 1867 lock_buffer(bh); 1868 mark_buffer_async_write_endio(bh, handler); 1869 } else { 1870 /* 1871 * The buffer may have been set dirty during 1872 * attachment to a dirty page. 1873 */ 1874 clear_buffer_dirty(bh); 1875 } 1876 } while ((bh = bh->b_this_page) != head); 1877 SetPageError(page); 1878 BUG_ON(PageWriteback(page)); 1879 mapping_set_error(page->mapping, err); 1880 set_page_writeback(page); 1881 do { 1882 struct buffer_head *next = bh->b_this_page; 1883 if (buffer_async_write(bh)) { 1884 clear_buffer_dirty(bh); 1885 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1886 inode->i_write_hint, wbc); 1887 nr_underway++; 1888 } 1889 bh = next; 1890 } while (bh != head); 1891 unlock_page(page); 1892 goto done; 1893 } 1894 EXPORT_SYMBOL(__block_write_full_page); 1895 1896 /* 1897 * If a page has any new buffers, zero them out here, and mark them uptodate 1898 * and dirty so they'll be written out (in order to prevent uninitialised 1899 * block data from leaking). And clear the new bit. 1900 */ 1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1902 { 1903 unsigned int block_start, block_end; 1904 struct buffer_head *head, *bh; 1905 1906 BUG_ON(!PageLocked(page)); 1907 if (!page_has_buffers(page)) 1908 return; 1909 1910 bh = head = page_buffers(page); 1911 block_start = 0; 1912 do { 1913 block_end = block_start + bh->b_size; 1914 1915 if (buffer_new(bh)) { 1916 if (block_end > from && block_start < to) { 1917 if (!PageUptodate(page)) { 1918 unsigned start, size; 1919 1920 start = max(from, block_start); 1921 size = min(to, block_end) - start; 1922 1923 zero_user(page, start, size); 1924 set_buffer_uptodate(bh); 1925 } 1926 1927 clear_buffer_new(bh); 1928 mark_buffer_dirty(bh); 1929 } 1930 } 1931 1932 block_start = block_end; 1933 bh = bh->b_this_page; 1934 } while (bh != head); 1935 } 1936 EXPORT_SYMBOL(page_zero_new_buffers); 1937 1938 static void 1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1940 struct iomap *iomap) 1941 { 1942 loff_t offset = block << inode->i_blkbits; 1943 1944 bh->b_bdev = iomap->bdev; 1945 1946 /* 1947 * Block points to offset in file we need to map, iomap contains 1948 * the offset at which the map starts. If the map ends before the 1949 * current block, then do not map the buffer and let the caller 1950 * handle it. 1951 */ 1952 BUG_ON(offset >= iomap->offset + iomap->length); 1953 1954 switch (iomap->type) { 1955 case IOMAP_HOLE: 1956 /* 1957 * If the buffer is not up to date or beyond the current EOF, 1958 * we need to mark it as new to ensure sub-block zeroing is 1959 * executed if necessary. 1960 */ 1961 if (!buffer_uptodate(bh) || 1962 (offset >= i_size_read(inode))) 1963 set_buffer_new(bh); 1964 break; 1965 case IOMAP_DELALLOC: 1966 if (!buffer_uptodate(bh) || 1967 (offset >= i_size_read(inode))) 1968 set_buffer_new(bh); 1969 set_buffer_uptodate(bh); 1970 set_buffer_mapped(bh); 1971 set_buffer_delay(bh); 1972 break; 1973 case IOMAP_UNWRITTEN: 1974 /* 1975 * For unwritten regions, we always need to ensure that regions 1976 * in the block we are not writing to are zeroed. Mark the 1977 * buffer as new to ensure this. 1978 */ 1979 set_buffer_new(bh); 1980 set_buffer_unwritten(bh); 1981 fallthrough; 1982 case IOMAP_MAPPED: 1983 if ((iomap->flags & IOMAP_F_NEW) || 1984 offset >= i_size_read(inode)) 1985 set_buffer_new(bh); 1986 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1987 inode->i_blkbits; 1988 set_buffer_mapped(bh); 1989 break; 1990 } 1991 } 1992 1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1994 get_block_t *get_block, struct iomap *iomap) 1995 { 1996 unsigned from = pos & (PAGE_SIZE - 1); 1997 unsigned to = from + len; 1998 struct inode *inode = page->mapping->host; 1999 unsigned block_start, block_end; 2000 sector_t block; 2001 int err = 0; 2002 unsigned blocksize, bbits; 2003 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2004 2005 BUG_ON(!PageLocked(page)); 2006 BUG_ON(from > PAGE_SIZE); 2007 BUG_ON(to > PAGE_SIZE); 2008 BUG_ON(from > to); 2009 2010 head = create_page_buffers(page, inode, 0); 2011 blocksize = head->b_size; 2012 bbits = block_size_bits(blocksize); 2013 2014 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 2015 2016 for(bh = head, block_start = 0; bh != head || !block_start; 2017 block++, block_start=block_end, bh = bh->b_this_page) { 2018 block_end = block_start + blocksize; 2019 if (block_end <= from || block_start >= to) { 2020 if (PageUptodate(page)) { 2021 if (!buffer_uptodate(bh)) 2022 set_buffer_uptodate(bh); 2023 } 2024 continue; 2025 } 2026 if (buffer_new(bh)) 2027 clear_buffer_new(bh); 2028 if (!buffer_mapped(bh)) { 2029 WARN_ON(bh->b_size != blocksize); 2030 if (get_block) { 2031 err = get_block(inode, block, bh, 1); 2032 if (err) 2033 break; 2034 } else { 2035 iomap_to_bh(inode, block, bh, iomap); 2036 } 2037 2038 if (buffer_new(bh)) { 2039 clean_bdev_bh_alias(bh); 2040 if (PageUptodate(page)) { 2041 clear_buffer_new(bh); 2042 set_buffer_uptodate(bh); 2043 mark_buffer_dirty(bh); 2044 continue; 2045 } 2046 if (block_end > to || block_start < from) 2047 zero_user_segments(page, 2048 to, block_end, 2049 block_start, from); 2050 continue; 2051 } 2052 } 2053 if (PageUptodate(page)) { 2054 if (!buffer_uptodate(bh)) 2055 set_buffer_uptodate(bh); 2056 continue; 2057 } 2058 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2059 !buffer_unwritten(bh) && 2060 (block_start < from || block_end > to)) { 2061 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2062 *wait_bh++=bh; 2063 } 2064 } 2065 /* 2066 * If we issued read requests - let them complete. 2067 */ 2068 while(wait_bh > wait) { 2069 wait_on_buffer(*--wait_bh); 2070 if (!buffer_uptodate(*wait_bh)) 2071 err = -EIO; 2072 } 2073 if (unlikely(err)) 2074 page_zero_new_buffers(page, from, to); 2075 return err; 2076 } 2077 2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2079 get_block_t *get_block) 2080 { 2081 return __block_write_begin_int(page, pos, len, get_block, NULL); 2082 } 2083 EXPORT_SYMBOL(__block_write_begin); 2084 2085 static int __block_commit_write(struct inode *inode, struct page *page, 2086 unsigned from, unsigned to) 2087 { 2088 unsigned block_start, block_end; 2089 int partial = 0; 2090 unsigned blocksize; 2091 struct buffer_head *bh, *head; 2092 2093 bh = head = page_buffers(page); 2094 blocksize = bh->b_size; 2095 2096 block_start = 0; 2097 do { 2098 block_end = block_start + blocksize; 2099 if (block_end <= from || block_start >= to) { 2100 if (!buffer_uptodate(bh)) 2101 partial = 1; 2102 } else { 2103 set_buffer_uptodate(bh); 2104 mark_buffer_dirty(bh); 2105 } 2106 if (buffer_new(bh)) 2107 clear_buffer_new(bh); 2108 2109 block_start = block_end; 2110 bh = bh->b_this_page; 2111 } while (bh != head); 2112 2113 /* 2114 * If this is a partial write which happened to make all buffers 2115 * uptodate then we can optimize away a bogus readpage() for 2116 * the next read(). Here we 'discover' whether the page went 2117 * uptodate as a result of this (potentially partial) write. 2118 */ 2119 if (!partial) 2120 SetPageUptodate(page); 2121 return 0; 2122 } 2123 2124 /* 2125 * block_write_begin takes care of the basic task of block allocation and 2126 * bringing partial write blocks uptodate first. 2127 * 2128 * The filesystem needs to handle block truncation upon failure. 2129 */ 2130 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2131 unsigned flags, struct page **pagep, get_block_t *get_block) 2132 { 2133 pgoff_t index = pos >> PAGE_SHIFT; 2134 struct page *page; 2135 int status; 2136 2137 page = grab_cache_page_write_begin(mapping, index, flags); 2138 if (!page) 2139 return -ENOMEM; 2140 2141 status = __block_write_begin(page, pos, len, get_block); 2142 if (unlikely(status)) { 2143 unlock_page(page); 2144 put_page(page); 2145 page = NULL; 2146 } 2147 2148 *pagep = page; 2149 return status; 2150 } 2151 EXPORT_SYMBOL(block_write_begin); 2152 2153 int block_write_end(struct file *file, struct address_space *mapping, 2154 loff_t pos, unsigned len, unsigned copied, 2155 struct page *page, void *fsdata) 2156 { 2157 struct inode *inode = mapping->host; 2158 unsigned start; 2159 2160 start = pos & (PAGE_SIZE - 1); 2161 2162 if (unlikely(copied < len)) { 2163 /* 2164 * The buffers that were written will now be uptodate, so we 2165 * don't have to worry about a readpage reading them and 2166 * overwriting a partial write. However if we have encountered 2167 * a short write and only partially written into a buffer, it 2168 * will not be marked uptodate, so a readpage might come in and 2169 * destroy our partial write. 2170 * 2171 * Do the simplest thing, and just treat any short write to a 2172 * non uptodate page as a zero-length write, and force the 2173 * caller to redo the whole thing. 2174 */ 2175 if (!PageUptodate(page)) 2176 copied = 0; 2177 2178 page_zero_new_buffers(page, start+copied, start+len); 2179 } 2180 flush_dcache_page(page); 2181 2182 /* This could be a short (even 0-length) commit */ 2183 __block_commit_write(inode, page, start, start+copied); 2184 2185 return copied; 2186 } 2187 EXPORT_SYMBOL(block_write_end); 2188 2189 int generic_write_end(struct file *file, struct address_space *mapping, 2190 loff_t pos, unsigned len, unsigned copied, 2191 struct page *page, void *fsdata) 2192 { 2193 struct inode *inode = mapping->host; 2194 loff_t old_size = inode->i_size; 2195 bool i_size_changed = false; 2196 2197 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2198 2199 /* 2200 * No need to use i_size_read() here, the i_size cannot change under us 2201 * because we hold i_rwsem. 2202 * 2203 * But it's important to update i_size while still holding page lock: 2204 * page writeout could otherwise come in and zero beyond i_size. 2205 */ 2206 if (pos + copied > inode->i_size) { 2207 i_size_write(inode, pos + copied); 2208 i_size_changed = true; 2209 } 2210 2211 unlock_page(page); 2212 put_page(page); 2213 2214 if (old_size < pos) 2215 pagecache_isize_extended(inode, old_size, pos); 2216 /* 2217 * Don't mark the inode dirty under page lock. First, it unnecessarily 2218 * makes the holding time of page lock longer. Second, it forces lock 2219 * ordering of page lock and transaction start for journaling 2220 * filesystems. 2221 */ 2222 if (i_size_changed) 2223 mark_inode_dirty(inode); 2224 return copied; 2225 } 2226 EXPORT_SYMBOL(generic_write_end); 2227 2228 /* 2229 * block_is_partially_uptodate checks whether buffers within a page are 2230 * uptodate or not. 2231 * 2232 * Returns true if all buffers which correspond to a file portion 2233 * we want to read are uptodate. 2234 */ 2235 int block_is_partially_uptodate(struct page *page, unsigned long from, 2236 unsigned long count) 2237 { 2238 unsigned block_start, block_end, blocksize; 2239 unsigned to; 2240 struct buffer_head *bh, *head; 2241 int ret = 1; 2242 2243 if (!page_has_buffers(page)) 2244 return 0; 2245 2246 head = page_buffers(page); 2247 blocksize = head->b_size; 2248 to = min_t(unsigned, PAGE_SIZE - from, count); 2249 to = from + to; 2250 if (from < blocksize && to > PAGE_SIZE - blocksize) 2251 return 0; 2252 2253 bh = head; 2254 block_start = 0; 2255 do { 2256 block_end = block_start + blocksize; 2257 if (block_end > from && block_start < to) { 2258 if (!buffer_uptodate(bh)) { 2259 ret = 0; 2260 break; 2261 } 2262 if (block_end >= to) 2263 break; 2264 } 2265 block_start = block_end; 2266 bh = bh->b_this_page; 2267 } while (bh != head); 2268 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(block_is_partially_uptodate); 2272 2273 /* 2274 * Generic "read page" function for block devices that have the normal 2275 * get_block functionality. This is most of the block device filesystems. 2276 * Reads the page asynchronously --- the unlock_buffer() and 2277 * set/clear_buffer_uptodate() functions propagate buffer state into the 2278 * page struct once IO has completed. 2279 */ 2280 int block_read_full_page(struct page *page, get_block_t *get_block) 2281 { 2282 struct inode *inode = page->mapping->host; 2283 sector_t iblock, lblock; 2284 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2285 unsigned int blocksize, bbits; 2286 int nr, i; 2287 int fully_mapped = 1; 2288 2289 head = create_page_buffers(page, inode, 0); 2290 blocksize = head->b_size; 2291 bbits = block_size_bits(blocksize); 2292 2293 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2294 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2295 bh = head; 2296 nr = 0; 2297 i = 0; 2298 2299 do { 2300 if (buffer_uptodate(bh)) 2301 continue; 2302 2303 if (!buffer_mapped(bh)) { 2304 int err = 0; 2305 2306 fully_mapped = 0; 2307 if (iblock < lblock) { 2308 WARN_ON(bh->b_size != blocksize); 2309 err = get_block(inode, iblock, bh, 0); 2310 if (err) 2311 SetPageError(page); 2312 } 2313 if (!buffer_mapped(bh)) { 2314 zero_user(page, i * blocksize, blocksize); 2315 if (!err) 2316 set_buffer_uptodate(bh); 2317 continue; 2318 } 2319 /* 2320 * get_block() might have updated the buffer 2321 * synchronously 2322 */ 2323 if (buffer_uptodate(bh)) 2324 continue; 2325 } 2326 arr[nr++] = bh; 2327 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2328 2329 if (fully_mapped) 2330 SetPageMappedToDisk(page); 2331 2332 if (!nr) { 2333 /* 2334 * All buffers are uptodate - we can set the page uptodate 2335 * as well. But not if get_block() returned an error. 2336 */ 2337 if (!PageError(page)) 2338 SetPageUptodate(page); 2339 unlock_page(page); 2340 return 0; 2341 } 2342 2343 /* Stage two: lock the buffers */ 2344 for (i = 0; i < nr; i++) { 2345 bh = arr[i]; 2346 lock_buffer(bh); 2347 mark_buffer_async_read(bh); 2348 } 2349 2350 /* 2351 * Stage 3: start the IO. Check for uptodateness 2352 * inside the buffer lock in case another process reading 2353 * the underlying blockdev brought it uptodate (the sct fix). 2354 */ 2355 for (i = 0; i < nr; i++) { 2356 bh = arr[i]; 2357 if (buffer_uptodate(bh)) 2358 end_buffer_async_read(bh, 1); 2359 else 2360 submit_bh(REQ_OP_READ, 0, bh); 2361 } 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(block_read_full_page); 2365 2366 /* utility function for filesystems that need to do work on expanding 2367 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2368 * deal with the hole. 2369 */ 2370 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2371 { 2372 struct address_space *mapping = inode->i_mapping; 2373 struct page *page; 2374 void *fsdata; 2375 int err; 2376 2377 err = inode_newsize_ok(inode, size); 2378 if (err) 2379 goto out; 2380 2381 err = pagecache_write_begin(NULL, mapping, size, 0, 2382 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2383 if (err) 2384 goto out; 2385 2386 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2387 BUG_ON(err > 0); 2388 2389 out: 2390 return err; 2391 } 2392 EXPORT_SYMBOL(generic_cont_expand_simple); 2393 2394 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2395 loff_t pos, loff_t *bytes) 2396 { 2397 struct inode *inode = mapping->host; 2398 unsigned int blocksize = i_blocksize(inode); 2399 struct page *page; 2400 void *fsdata; 2401 pgoff_t index, curidx; 2402 loff_t curpos; 2403 unsigned zerofrom, offset, len; 2404 int err = 0; 2405 2406 index = pos >> PAGE_SHIFT; 2407 offset = pos & ~PAGE_MASK; 2408 2409 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2410 zerofrom = curpos & ~PAGE_MASK; 2411 if (zerofrom & (blocksize-1)) { 2412 *bytes |= (blocksize-1); 2413 (*bytes)++; 2414 } 2415 len = PAGE_SIZE - zerofrom; 2416 2417 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2418 &page, &fsdata); 2419 if (err) 2420 goto out; 2421 zero_user(page, zerofrom, len); 2422 err = pagecache_write_end(file, mapping, curpos, len, len, 2423 page, fsdata); 2424 if (err < 0) 2425 goto out; 2426 BUG_ON(err != len); 2427 err = 0; 2428 2429 balance_dirty_pages_ratelimited(mapping); 2430 2431 if (fatal_signal_pending(current)) { 2432 err = -EINTR; 2433 goto out; 2434 } 2435 } 2436 2437 /* page covers the boundary, find the boundary offset */ 2438 if (index == curidx) { 2439 zerofrom = curpos & ~PAGE_MASK; 2440 /* if we will expand the thing last block will be filled */ 2441 if (offset <= zerofrom) { 2442 goto out; 2443 } 2444 if (zerofrom & (blocksize-1)) { 2445 *bytes |= (blocksize-1); 2446 (*bytes)++; 2447 } 2448 len = offset - zerofrom; 2449 2450 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2451 &page, &fsdata); 2452 if (err) 2453 goto out; 2454 zero_user(page, zerofrom, len); 2455 err = pagecache_write_end(file, mapping, curpos, len, len, 2456 page, fsdata); 2457 if (err < 0) 2458 goto out; 2459 BUG_ON(err != len); 2460 err = 0; 2461 } 2462 out: 2463 return err; 2464 } 2465 2466 /* 2467 * For moronic filesystems that do not allow holes in file. 2468 * We may have to extend the file. 2469 */ 2470 int cont_write_begin(struct file *file, struct address_space *mapping, 2471 loff_t pos, unsigned len, unsigned flags, 2472 struct page **pagep, void **fsdata, 2473 get_block_t *get_block, loff_t *bytes) 2474 { 2475 struct inode *inode = mapping->host; 2476 unsigned int blocksize = i_blocksize(inode); 2477 unsigned int zerofrom; 2478 int err; 2479 2480 err = cont_expand_zero(file, mapping, pos, bytes); 2481 if (err) 2482 return err; 2483 2484 zerofrom = *bytes & ~PAGE_MASK; 2485 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2486 *bytes |= (blocksize-1); 2487 (*bytes)++; 2488 } 2489 2490 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2491 } 2492 EXPORT_SYMBOL(cont_write_begin); 2493 2494 int block_commit_write(struct page *page, unsigned from, unsigned to) 2495 { 2496 struct inode *inode = page->mapping->host; 2497 __block_commit_write(inode,page,from,to); 2498 return 0; 2499 } 2500 EXPORT_SYMBOL(block_commit_write); 2501 2502 /* 2503 * block_page_mkwrite() is not allowed to change the file size as it gets 2504 * called from a page fault handler when a page is first dirtied. Hence we must 2505 * be careful to check for EOF conditions here. We set the page up correctly 2506 * for a written page which means we get ENOSPC checking when writing into 2507 * holes and correct delalloc and unwritten extent mapping on filesystems that 2508 * support these features. 2509 * 2510 * We are not allowed to take the i_mutex here so we have to play games to 2511 * protect against truncate races as the page could now be beyond EOF. Because 2512 * truncate writes the inode size before removing pages, once we have the 2513 * page lock we can determine safely if the page is beyond EOF. If it is not 2514 * beyond EOF, then the page is guaranteed safe against truncation until we 2515 * unlock the page. 2516 * 2517 * Direct callers of this function should protect against filesystem freezing 2518 * using sb_start_pagefault() - sb_end_pagefault() functions. 2519 */ 2520 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2521 get_block_t get_block) 2522 { 2523 struct page *page = vmf->page; 2524 struct inode *inode = file_inode(vma->vm_file); 2525 unsigned long end; 2526 loff_t size; 2527 int ret; 2528 2529 lock_page(page); 2530 size = i_size_read(inode); 2531 if ((page->mapping != inode->i_mapping) || 2532 (page_offset(page) > size)) { 2533 /* We overload EFAULT to mean page got truncated */ 2534 ret = -EFAULT; 2535 goto out_unlock; 2536 } 2537 2538 /* page is wholly or partially inside EOF */ 2539 if (((page->index + 1) << PAGE_SHIFT) > size) 2540 end = size & ~PAGE_MASK; 2541 else 2542 end = PAGE_SIZE; 2543 2544 ret = __block_write_begin(page, 0, end, get_block); 2545 if (!ret) 2546 ret = block_commit_write(page, 0, end); 2547 2548 if (unlikely(ret < 0)) 2549 goto out_unlock; 2550 set_page_dirty(page); 2551 wait_for_stable_page(page); 2552 return 0; 2553 out_unlock: 2554 unlock_page(page); 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(block_page_mkwrite); 2558 2559 /* 2560 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2561 * immediately, while under the page lock. So it needs a special end_io 2562 * handler which does not touch the bh after unlocking it. 2563 */ 2564 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2565 { 2566 __end_buffer_read_notouch(bh, uptodate); 2567 } 2568 2569 /* 2570 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2571 * the page (converting it to circular linked list and taking care of page 2572 * dirty races). 2573 */ 2574 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2575 { 2576 struct buffer_head *bh; 2577 2578 BUG_ON(!PageLocked(page)); 2579 2580 spin_lock(&page->mapping->private_lock); 2581 bh = head; 2582 do { 2583 if (PageDirty(page)) 2584 set_buffer_dirty(bh); 2585 if (!bh->b_this_page) 2586 bh->b_this_page = head; 2587 bh = bh->b_this_page; 2588 } while (bh != head); 2589 attach_page_private(page, head); 2590 spin_unlock(&page->mapping->private_lock); 2591 } 2592 2593 /* 2594 * On entry, the page is fully not uptodate. 2595 * On exit the page is fully uptodate in the areas outside (from,to) 2596 * The filesystem needs to handle block truncation upon failure. 2597 */ 2598 int nobh_write_begin(struct address_space *mapping, 2599 loff_t pos, unsigned len, unsigned flags, 2600 struct page **pagep, void **fsdata, 2601 get_block_t *get_block) 2602 { 2603 struct inode *inode = mapping->host; 2604 const unsigned blkbits = inode->i_blkbits; 2605 const unsigned blocksize = 1 << blkbits; 2606 struct buffer_head *head, *bh; 2607 struct page *page; 2608 pgoff_t index; 2609 unsigned from, to; 2610 unsigned block_in_page; 2611 unsigned block_start, block_end; 2612 sector_t block_in_file; 2613 int nr_reads = 0; 2614 int ret = 0; 2615 int is_mapped_to_disk = 1; 2616 2617 index = pos >> PAGE_SHIFT; 2618 from = pos & (PAGE_SIZE - 1); 2619 to = from + len; 2620 2621 page = grab_cache_page_write_begin(mapping, index, flags); 2622 if (!page) 2623 return -ENOMEM; 2624 *pagep = page; 2625 *fsdata = NULL; 2626 2627 if (page_has_buffers(page)) { 2628 ret = __block_write_begin(page, pos, len, get_block); 2629 if (unlikely(ret)) 2630 goto out_release; 2631 return ret; 2632 } 2633 2634 if (PageMappedToDisk(page)) 2635 return 0; 2636 2637 /* 2638 * Allocate buffers so that we can keep track of state, and potentially 2639 * attach them to the page if an error occurs. In the common case of 2640 * no error, they will just be freed again without ever being attached 2641 * to the page (which is all OK, because we're under the page lock). 2642 * 2643 * Be careful: the buffer linked list is a NULL terminated one, rather 2644 * than the circular one we're used to. 2645 */ 2646 head = alloc_page_buffers(page, blocksize, false); 2647 if (!head) { 2648 ret = -ENOMEM; 2649 goto out_release; 2650 } 2651 2652 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2653 2654 /* 2655 * We loop across all blocks in the page, whether or not they are 2656 * part of the affected region. This is so we can discover if the 2657 * page is fully mapped-to-disk. 2658 */ 2659 for (block_start = 0, block_in_page = 0, bh = head; 2660 block_start < PAGE_SIZE; 2661 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2662 int create; 2663 2664 block_end = block_start + blocksize; 2665 bh->b_state = 0; 2666 create = 1; 2667 if (block_start >= to) 2668 create = 0; 2669 ret = get_block(inode, block_in_file + block_in_page, 2670 bh, create); 2671 if (ret) 2672 goto failed; 2673 if (!buffer_mapped(bh)) 2674 is_mapped_to_disk = 0; 2675 if (buffer_new(bh)) 2676 clean_bdev_bh_alias(bh); 2677 if (PageUptodate(page)) { 2678 set_buffer_uptodate(bh); 2679 continue; 2680 } 2681 if (buffer_new(bh) || !buffer_mapped(bh)) { 2682 zero_user_segments(page, block_start, from, 2683 to, block_end); 2684 continue; 2685 } 2686 if (buffer_uptodate(bh)) 2687 continue; /* reiserfs does this */ 2688 if (block_start < from || block_end > to) { 2689 lock_buffer(bh); 2690 bh->b_end_io = end_buffer_read_nobh; 2691 submit_bh(REQ_OP_READ, 0, bh); 2692 nr_reads++; 2693 } 2694 } 2695 2696 if (nr_reads) { 2697 /* 2698 * The page is locked, so these buffers are protected from 2699 * any VM or truncate activity. Hence we don't need to care 2700 * for the buffer_head refcounts. 2701 */ 2702 for (bh = head; bh; bh = bh->b_this_page) { 2703 wait_on_buffer(bh); 2704 if (!buffer_uptodate(bh)) 2705 ret = -EIO; 2706 } 2707 if (ret) 2708 goto failed; 2709 } 2710 2711 if (is_mapped_to_disk) 2712 SetPageMappedToDisk(page); 2713 2714 *fsdata = head; /* to be released by nobh_write_end */ 2715 2716 return 0; 2717 2718 failed: 2719 BUG_ON(!ret); 2720 /* 2721 * Error recovery is a bit difficult. We need to zero out blocks that 2722 * were newly allocated, and dirty them to ensure they get written out. 2723 * Buffers need to be attached to the page at this point, otherwise 2724 * the handling of potential IO errors during writeout would be hard 2725 * (could try doing synchronous writeout, but what if that fails too?) 2726 */ 2727 attach_nobh_buffers(page, head); 2728 page_zero_new_buffers(page, from, to); 2729 2730 out_release: 2731 unlock_page(page); 2732 put_page(page); 2733 *pagep = NULL; 2734 2735 return ret; 2736 } 2737 EXPORT_SYMBOL(nobh_write_begin); 2738 2739 int nobh_write_end(struct file *file, struct address_space *mapping, 2740 loff_t pos, unsigned len, unsigned copied, 2741 struct page *page, void *fsdata) 2742 { 2743 struct inode *inode = page->mapping->host; 2744 struct buffer_head *head = fsdata; 2745 struct buffer_head *bh; 2746 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2747 2748 if (unlikely(copied < len) && head) 2749 attach_nobh_buffers(page, head); 2750 if (page_has_buffers(page)) 2751 return generic_write_end(file, mapping, pos, len, 2752 copied, page, fsdata); 2753 2754 SetPageUptodate(page); 2755 set_page_dirty(page); 2756 if (pos+copied > inode->i_size) { 2757 i_size_write(inode, pos+copied); 2758 mark_inode_dirty(inode); 2759 } 2760 2761 unlock_page(page); 2762 put_page(page); 2763 2764 while (head) { 2765 bh = head; 2766 head = head->b_this_page; 2767 free_buffer_head(bh); 2768 } 2769 2770 return copied; 2771 } 2772 EXPORT_SYMBOL(nobh_write_end); 2773 2774 /* 2775 * nobh_writepage() - based on block_full_write_page() except 2776 * that it tries to operate without attaching bufferheads to 2777 * the page. 2778 */ 2779 int nobh_writepage(struct page *page, get_block_t *get_block, 2780 struct writeback_control *wbc) 2781 { 2782 struct inode * const inode = page->mapping->host; 2783 loff_t i_size = i_size_read(inode); 2784 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2785 unsigned offset; 2786 int ret; 2787 2788 /* Is the page fully inside i_size? */ 2789 if (page->index < end_index) 2790 goto out; 2791 2792 /* Is the page fully outside i_size? (truncate in progress) */ 2793 offset = i_size & (PAGE_SIZE-1); 2794 if (page->index >= end_index+1 || !offset) { 2795 unlock_page(page); 2796 return 0; /* don't care */ 2797 } 2798 2799 /* 2800 * The page straddles i_size. It must be zeroed out on each and every 2801 * writepage invocation because it may be mmapped. "A file is mapped 2802 * in multiples of the page size. For a file that is not a multiple of 2803 * the page size, the remaining memory is zeroed when mapped, and 2804 * writes to that region are not written out to the file." 2805 */ 2806 zero_user_segment(page, offset, PAGE_SIZE); 2807 out: 2808 ret = mpage_writepage(page, get_block, wbc); 2809 if (ret == -EAGAIN) 2810 ret = __block_write_full_page(inode, page, get_block, wbc, 2811 end_buffer_async_write); 2812 return ret; 2813 } 2814 EXPORT_SYMBOL(nobh_writepage); 2815 2816 int nobh_truncate_page(struct address_space *mapping, 2817 loff_t from, get_block_t *get_block) 2818 { 2819 pgoff_t index = from >> PAGE_SHIFT; 2820 unsigned offset = from & (PAGE_SIZE-1); 2821 unsigned blocksize; 2822 sector_t iblock; 2823 unsigned length, pos; 2824 struct inode *inode = mapping->host; 2825 struct page *page; 2826 struct buffer_head map_bh; 2827 int err; 2828 2829 blocksize = i_blocksize(inode); 2830 length = offset & (blocksize - 1); 2831 2832 /* Block boundary? Nothing to do */ 2833 if (!length) 2834 return 0; 2835 2836 length = blocksize - length; 2837 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2838 2839 page = grab_cache_page(mapping, index); 2840 err = -ENOMEM; 2841 if (!page) 2842 goto out; 2843 2844 if (page_has_buffers(page)) { 2845 has_buffers: 2846 unlock_page(page); 2847 put_page(page); 2848 return block_truncate_page(mapping, from, get_block); 2849 } 2850 2851 /* Find the buffer that contains "offset" */ 2852 pos = blocksize; 2853 while (offset >= pos) { 2854 iblock++; 2855 pos += blocksize; 2856 } 2857 2858 map_bh.b_size = blocksize; 2859 map_bh.b_state = 0; 2860 err = get_block(inode, iblock, &map_bh, 0); 2861 if (err) 2862 goto unlock; 2863 /* unmapped? It's a hole - nothing to do */ 2864 if (!buffer_mapped(&map_bh)) 2865 goto unlock; 2866 2867 /* Ok, it's mapped. Make sure it's up-to-date */ 2868 if (!PageUptodate(page)) { 2869 err = mapping->a_ops->readpage(NULL, page); 2870 if (err) { 2871 put_page(page); 2872 goto out; 2873 } 2874 lock_page(page); 2875 if (!PageUptodate(page)) { 2876 err = -EIO; 2877 goto unlock; 2878 } 2879 if (page_has_buffers(page)) 2880 goto has_buffers; 2881 } 2882 zero_user(page, offset, length); 2883 set_page_dirty(page); 2884 err = 0; 2885 2886 unlock: 2887 unlock_page(page); 2888 put_page(page); 2889 out: 2890 return err; 2891 } 2892 EXPORT_SYMBOL(nobh_truncate_page); 2893 2894 int block_truncate_page(struct address_space *mapping, 2895 loff_t from, get_block_t *get_block) 2896 { 2897 pgoff_t index = from >> PAGE_SHIFT; 2898 unsigned offset = from & (PAGE_SIZE-1); 2899 unsigned blocksize; 2900 sector_t iblock; 2901 unsigned length, pos; 2902 struct inode *inode = mapping->host; 2903 struct page *page; 2904 struct buffer_head *bh; 2905 int err; 2906 2907 blocksize = i_blocksize(inode); 2908 length = offset & (blocksize - 1); 2909 2910 /* Block boundary? Nothing to do */ 2911 if (!length) 2912 return 0; 2913 2914 length = blocksize - length; 2915 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2916 2917 page = grab_cache_page(mapping, index); 2918 err = -ENOMEM; 2919 if (!page) 2920 goto out; 2921 2922 if (!page_has_buffers(page)) 2923 create_empty_buffers(page, blocksize, 0); 2924 2925 /* Find the buffer that contains "offset" */ 2926 bh = page_buffers(page); 2927 pos = blocksize; 2928 while (offset >= pos) { 2929 bh = bh->b_this_page; 2930 iblock++; 2931 pos += blocksize; 2932 } 2933 2934 err = 0; 2935 if (!buffer_mapped(bh)) { 2936 WARN_ON(bh->b_size != blocksize); 2937 err = get_block(inode, iblock, bh, 0); 2938 if (err) 2939 goto unlock; 2940 /* unmapped? It's a hole - nothing to do */ 2941 if (!buffer_mapped(bh)) 2942 goto unlock; 2943 } 2944 2945 /* Ok, it's mapped. Make sure it's up-to-date */ 2946 if (PageUptodate(page)) 2947 set_buffer_uptodate(bh); 2948 2949 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2950 err = -EIO; 2951 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2952 wait_on_buffer(bh); 2953 /* Uhhuh. Read error. Complain and punt. */ 2954 if (!buffer_uptodate(bh)) 2955 goto unlock; 2956 } 2957 2958 zero_user(page, offset, length); 2959 mark_buffer_dirty(bh); 2960 err = 0; 2961 2962 unlock: 2963 unlock_page(page); 2964 put_page(page); 2965 out: 2966 return err; 2967 } 2968 EXPORT_SYMBOL(block_truncate_page); 2969 2970 /* 2971 * The generic ->writepage function for buffer-backed address_spaces 2972 */ 2973 int block_write_full_page(struct page *page, get_block_t *get_block, 2974 struct writeback_control *wbc) 2975 { 2976 struct inode * const inode = page->mapping->host; 2977 loff_t i_size = i_size_read(inode); 2978 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2979 unsigned offset; 2980 2981 /* Is the page fully inside i_size? */ 2982 if (page->index < end_index) 2983 return __block_write_full_page(inode, page, get_block, wbc, 2984 end_buffer_async_write); 2985 2986 /* Is the page fully outside i_size? (truncate in progress) */ 2987 offset = i_size & (PAGE_SIZE-1); 2988 if (page->index >= end_index+1 || !offset) { 2989 unlock_page(page); 2990 return 0; /* don't care */ 2991 } 2992 2993 /* 2994 * The page straddles i_size. It must be zeroed out on each and every 2995 * writepage invocation because it may be mmapped. "A file is mapped 2996 * in multiples of the page size. For a file that is not a multiple of 2997 * the page size, the remaining memory is zeroed when mapped, and 2998 * writes to that region are not written out to the file." 2999 */ 3000 zero_user_segment(page, offset, PAGE_SIZE); 3001 return __block_write_full_page(inode, page, get_block, wbc, 3002 end_buffer_async_write); 3003 } 3004 EXPORT_SYMBOL(block_write_full_page); 3005 3006 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3007 get_block_t *get_block) 3008 { 3009 struct inode *inode = mapping->host; 3010 struct buffer_head tmp = { 3011 .b_size = i_blocksize(inode), 3012 }; 3013 3014 get_block(inode, block, &tmp, 0); 3015 return tmp.b_blocknr; 3016 } 3017 EXPORT_SYMBOL(generic_block_bmap); 3018 3019 static void end_bio_bh_io_sync(struct bio *bio) 3020 { 3021 struct buffer_head *bh = bio->bi_private; 3022 3023 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3024 set_bit(BH_Quiet, &bh->b_state); 3025 3026 bh->b_end_io(bh, !bio->bi_status); 3027 bio_put(bio); 3028 } 3029 3030 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3031 enum rw_hint write_hint, struct writeback_control *wbc) 3032 { 3033 struct bio *bio; 3034 3035 BUG_ON(!buffer_locked(bh)); 3036 BUG_ON(!buffer_mapped(bh)); 3037 BUG_ON(!bh->b_end_io); 3038 BUG_ON(buffer_delay(bh)); 3039 BUG_ON(buffer_unwritten(bh)); 3040 3041 /* 3042 * Only clear out a write error when rewriting 3043 */ 3044 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3045 clear_buffer_write_io_error(bh); 3046 3047 bio = bio_alloc(GFP_NOIO, 1); 3048 3049 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3050 3051 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3052 bio_set_dev(bio, bh->b_bdev); 3053 bio->bi_write_hint = write_hint; 3054 3055 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3056 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3057 3058 bio->bi_end_io = end_bio_bh_io_sync; 3059 bio->bi_private = bh; 3060 3061 if (buffer_meta(bh)) 3062 op_flags |= REQ_META; 3063 if (buffer_prio(bh)) 3064 op_flags |= REQ_PRIO; 3065 bio_set_op_attrs(bio, op, op_flags); 3066 3067 /* Take care of bh's that straddle the end of the device */ 3068 guard_bio_eod(bio); 3069 3070 if (wbc) { 3071 wbc_init_bio(wbc, bio); 3072 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3073 } 3074 3075 submit_bio(bio); 3076 return 0; 3077 } 3078 3079 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3080 { 3081 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3082 } 3083 EXPORT_SYMBOL(submit_bh); 3084 3085 /** 3086 * ll_rw_block: low-level access to block devices (DEPRECATED) 3087 * @op: whether to %READ or %WRITE 3088 * @op_flags: req_flag_bits 3089 * @nr: number of &struct buffer_heads in the array 3090 * @bhs: array of pointers to &struct buffer_head 3091 * 3092 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3093 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3094 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3095 * %REQ_RAHEAD. 3096 * 3097 * This function drops any buffer that it cannot get a lock on (with the 3098 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3099 * request, and any buffer that appears to be up-to-date when doing read 3100 * request. Further it marks as clean buffers that are processed for 3101 * writing (the buffer cache won't assume that they are actually clean 3102 * until the buffer gets unlocked). 3103 * 3104 * ll_rw_block sets b_end_io to simple completion handler that marks 3105 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3106 * any waiters. 3107 * 3108 * All of the buffers must be for the same device, and must also be a 3109 * multiple of the current approved size for the device. 3110 */ 3111 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3112 { 3113 int i; 3114 3115 for (i = 0; i < nr; i++) { 3116 struct buffer_head *bh = bhs[i]; 3117 3118 if (!trylock_buffer(bh)) 3119 continue; 3120 if (op == WRITE) { 3121 if (test_clear_buffer_dirty(bh)) { 3122 bh->b_end_io = end_buffer_write_sync; 3123 get_bh(bh); 3124 submit_bh(op, op_flags, bh); 3125 continue; 3126 } 3127 } else { 3128 if (!buffer_uptodate(bh)) { 3129 bh->b_end_io = end_buffer_read_sync; 3130 get_bh(bh); 3131 submit_bh(op, op_flags, bh); 3132 continue; 3133 } 3134 } 3135 unlock_buffer(bh); 3136 } 3137 } 3138 EXPORT_SYMBOL(ll_rw_block); 3139 3140 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3141 { 3142 lock_buffer(bh); 3143 if (!test_clear_buffer_dirty(bh)) { 3144 unlock_buffer(bh); 3145 return; 3146 } 3147 bh->b_end_io = end_buffer_write_sync; 3148 get_bh(bh); 3149 submit_bh(REQ_OP_WRITE, op_flags, bh); 3150 } 3151 EXPORT_SYMBOL(write_dirty_buffer); 3152 3153 /* 3154 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3155 * and then start new I/O and then wait upon it. The caller must have a ref on 3156 * the buffer_head. 3157 */ 3158 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3159 { 3160 int ret = 0; 3161 3162 WARN_ON(atomic_read(&bh->b_count) < 1); 3163 lock_buffer(bh); 3164 if (test_clear_buffer_dirty(bh)) { 3165 /* 3166 * The bh should be mapped, but it might not be if the 3167 * device was hot-removed. Not much we can do but fail the I/O. 3168 */ 3169 if (!buffer_mapped(bh)) { 3170 unlock_buffer(bh); 3171 return -EIO; 3172 } 3173 3174 get_bh(bh); 3175 bh->b_end_io = end_buffer_write_sync; 3176 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3177 wait_on_buffer(bh); 3178 if (!ret && !buffer_uptodate(bh)) 3179 ret = -EIO; 3180 } else { 3181 unlock_buffer(bh); 3182 } 3183 return ret; 3184 } 3185 EXPORT_SYMBOL(__sync_dirty_buffer); 3186 3187 int sync_dirty_buffer(struct buffer_head *bh) 3188 { 3189 return __sync_dirty_buffer(bh, REQ_SYNC); 3190 } 3191 EXPORT_SYMBOL(sync_dirty_buffer); 3192 3193 /* 3194 * try_to_free_buffers() checks if all the buffers on this particular page 3195 * are unused, and releases them if so. 3196 * 3197 * Exclusion against try_to_free_buffers may be obtained by either 3198 * locking the page or by holding its mapping's private_lock. 3199 * 3200 * If the page is dirty but all the buffers are clean then we need to 3201 * be sure to mark the page clean as well. This is because the page 3202 * may be against a block device, and a later reattachment of buffers 3203 * to a dirty page will set *all* buffers dirty. Which would corrupt 3204 * filesystem data on the same device. 3205 * 3206 * The same applies to regular filesystem pages: if all the buffers are 3207 * clean then we set the page clean and proceed. To do that, we require 3208 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3209 * private_lock. 3210 * 3211 * try_to_free_buffers() is non-blocking. 3212 */ 3213 static inline int buffer_busy(struct buffer_head *bh) 3214 { 3215 return atomic_read(&bh->b_count) | 3216 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3217 } 3218 3219 static int 3220 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3221 { 3222 struct buffer_head *head = page_buffers(page); 3223 struct buffer_head *bh; 3224 3225 bh = head; 3226 do { 3227 if (buffer_busy(bh)) 3228 goto failed; 3229 bh = bh->b_this_page; 3230 } while (bh != head); 3231 3232 do { 3233 struct buffer_head *next = bh->b_this_page; 3234 3235 if (bh->b_assoc_map) 3236 __remove_assoc_queue(bh); 3237 bh = next; 3238 } while (bh != head); 3239 *buffers_to_free = head; 3240 detach_page_private(page); 3241 return 1; 3242 failed: 3243 return 0; 3244 } 3245 3246 int try_to_free_buffers(struct page *page) 3247 { 3248 struct address_space * const mapping = page->mapping; 3249 struct buffer_head *buffers_to_free = NULL; 3250 int ret = 0; 3251 3252 BUG_ON(!PageLocked(page)); 3253 if (PageWriteback(page)) 3254 return 0; 3255 3256 if (mapping == NULL) { /* can this still happen? */ 3257 ret = drop_buffers(page, &buffers_to_free); 3258 goto out; 3259 } 3260 3261 spin_lock(&mapping->private_lock); 3262 ret = drop_buffers(page, &buffers_to_free); 3263 3264 /* 3265 * If the filesystem writes its buffers by hand (eg ext3) 3266 * then we can have clean buffers against a dirty page. We 3267 * clean the page here; otherwise the VM will never notice 3268 * that the filesystem did any IO at all. 3269 * 3270 * Also, during truncate, discard_buffer will have marked all 3271 * the page's buffers clean. We discover that here and clean 3272 * the page also. 3273 * 3274 * private_lock must be held over this entire operation in order 3275 * to synchronise against __set_page_dirty_buffers and prevent the 3276 * dirty bit from being lost. 3277 */ 3278 if (ret) 3279 cancel_dirty_page(page); 3280 spin_unlock(&mapping->private_lock); 3281 out: 3282 if (buffers_to_free) { 3283 struct buffer_head *bh = buffers_to_free; 3284 3285 do { 3286 struct buffer_head *next = bh->b_this_page; 3287 free_buffer_head(bh); 3288 bh = next; 3289 } while (bh != buffers_to_free); 3290 } 3291 return ret; 3292 } 3293 EXPORT_SYMBOL(try_to_free_buffers); 3294 3295 /* 3296 * There are no bdflush tunables left. But distributions are 3297 * still running obsolete flush daemons, so we terminate them here. 3298 * 3299 * Use of bdflush() is deprecated and will be removed in a future kernel. 3300 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3301 */ 3302 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3303 { 3304 static int msg_count; 3305 3306 if (!capable(CAP_SYS_ADMIN)) 3307 return -EPERM; 3308 3309 if (msg_count < 5) { 3310 msg_count++; 3311 printk(KERN_INFO 3312 "warning: process `%s' used the obsolete bdflush" 3313 " system call\n", current->comm); 3314 printk(KERN_INFO "Fix your initscripts?\n"); 3315 } 3316 3317 if (func == 1) 3318 do_exit(0); 3319 return 0; 3320 } 3321 3322 /* 3323 * Buffer-head allocation 3324 */ 3325 static struct kmem_cache *bh_cachep __read_mostly; 3326 3327 /* 3328 * Once the number of bh's in the machine exceeds this level, we start 3329 * stripping them in writeback. 3330 */ 3331 static unsigned long max_buffer_heads; 3332 3333 int buffer_heads_over_limit; 3334 3335 struct bh_accounting { 3336 int nr; /* Number of live bh's */ 3337 int ratelimit; /* Limit cacheline bouncing */ 3338 }; 3339 3340 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3341 3342 static void recalc_bh_state(void) 3343 { 3344 int i; 3345 int tot = 0; 3346 3347 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3348 return; 3349 __this_cpu_write(bh_accounting.ratelimit, 0); 3350 for_each_online_cpu(i) 3351 tot += per_cpu(bh_accounting, i).nr; 3352 buffer_heads_over_limit = (tot > max_buffer_heads); 3353 } 3354 3355 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3356 { 3357 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3358 if (ret) { 3359 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3360 spin_lock_init(&ret->b_uptodate_lock); 3361 preempt_disable(); 3362 __this_cpu_inc(bh_accounting.nr); 3363 recalc_bh_state(); 3364 preempt_enable(); 3365 } 3366 return ret; 3367 } 3368 EXPORT_SYMBOL(alloc_buffer_head); 3369 3370 void free_buffer_head(struct buffer_head *bh) 3371 { 3372 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3373 kmem_cache_free(bh_cachep, bh); 3374 preempt_disable(); 3375 __this_cpu_dec(bh_accounting.nr); 3376 recalc_bh_state(); 3377 preempt_enable(); 3378 } 3379 EXPORT_SYMBOL(free_buffer_head); 3380 3381 static int buffer_exit_cpu_dead(unsigned int cpu) 3382 { 3383 int i; 3384 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3385 3386 for (i = 0; i < BH_LRU_SIZE; i++) { 3387 brelse(b->bhs[i]); 3388 b->bhs[i] = NULL; 3389 } 3390 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3391 per_cpu(bh_accounting, cpu).nr = 0; 3392 return 0; 3393 } 3394 3395 /** 3396 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3397 * @bh: struct buffer_head 3398 * 3399 * Return true if the buffer is up-to-date and false, 3400 * with the buffer locked, if not. 3401 */ 3402 int bh_uptodate_or_lock(struct buffer_head *bh) 3403 { 3404 if (!buffer_uptodate(bh)) { 3405 lock_buffer(bh); 3406 if (!buffer_uptodate(bh)) 3407 return 0; 3408 unlock_buffer(bh); 3409 } 3410 return 1; 3411 } 3412 EXPORT_SYMBOL(bh_uptodate_or_lock); 3413 3414 /** 3415 * bh_submit_read - Submit a locked buffer for reading 3416 * @bh: struct buffer_head 3417 * 3418 * Returns zero on success and -EIO on error. 3419 */ 3420 int bh_submit_read(struct buffer_head *bh) 3421 { 3422 BUG_ON(!buffer_locked(bh)); 3423 3424 if (buffer_uptodate(bh)) { 3425 unlock_buffer(bh); 3426 return 0; 3427 } 3428 3429 get_bh(bh); 3430 bh->b_end_io = end_buffer_read_sync; 3431 submit_bh(REQ_OP_READ, 0, bh); 3432 wait_on_buffer(bh); 3433 if (buffer_uptodate(bh)) 3434 return 0; 3435 return -EIO; 3436 } 3437 EXPORT_SYMBOL(bh_submit_read); 3438 3439 void __init buffer_init(void) 3440 { 3441 unsigned long nrpages; 3442 int ret; 3443 3444 bh_cachep = kmem_cache_create("buffer_head", 3445 sizeof(struct buffer_head), 0, 3446 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3447 SLAB_MEM_SPREAD), 3448 NULL); 3449 3450 /* 3451 * Limit the bh occupancy to 10% of ZONE_NORMAL 3452 */ 3453 nrpages = (nr_free_buffer_pages() * 10) / 100; 3454 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3455 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3456 NULL, buffer_exit_cpu_dead); 3457 WARN_ON(ret < 0); 3458 } 3459