xref: /openbmc/linux/fs/buffer.c (revision d7a3d85e)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	page_cache_release(page);
129 }
130 
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133 	char b[BDEVNAME_SIZE];
134 
135 	if (!test_bit(BH_Quiet, &bh->b_state))
136 		printk_ratelimited(KERN_ERR
137 			"Buffer I/O error on dev %s, logical block %llu%s\n",
138 			bdevname(bh->b_bdev, b),
139 			(unsigned long long)bh->b_blocknr, msg);
140 }
141 
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		/* This happens, due to failed READA attempts. */
156 		clear_buffer_uptodate(bh);
157 	}
158 	unlock_buffer(bh);
159 }
160 
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 	__end_buffer_read_notouch(bh, uptodate);
168 	put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171 
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 	if (uptodate) {
175 		set_buffer_uptodate(bh);
176 	} else {
177 		buffer_io_error(bh, ", lost sync page write");
178 		set_buffer_write_io_error(bh);
179 		clear_buffer_uptodate(bh);
180 	}
181 	unlock_buffer(bh);
182 	put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185 
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock. (But if
195  * private_lock is contended then so is mapping->tree_lock).
196  */
197 static struct buffer_head *
198 __find_get_block_slow(struct block_device *bdev, sector_t block)
199 {
200 	struct inode *bd_inode = bdev->bd_inode;
201 	struct address_space *bd_mapping = bd_inode->i_mapping;
202 	struct buffer_head *ret = NULL;
203 	pgoff_t index;
204 	struct buffer_head *bh;
205 	struct buffer_head *head;
206 	struct page *page;
207 	int all_mapped = 1;
208 
209 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
210 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 	if (!page)
212 		goto out;
213 
214 	spin_lock(&bd_mapping->private_lock);
215 	if (!page_has_buffers(page))
216 		goto out_unlock;
217 	head = page_buffers(page);
218 	bh = head;
219 	do {
220 		if (!buffer_mapped(bh))
221 			all_mapped = 0;
222 		else if (bh->b_blocknr == block) {
223 			ret = bh;
224 			get_bh(bh);
225 			goto out_unlock;
226 		}
227 		bh = bh->b_this_page;
228 	} while (bh != head);
229 
230 	/* we might be here because some of the buffers on this page are
231 	 * not mapped.  This is due to various races between
232 	 * file io on the block device and getblk.  It gets dealt with
233 	 * elsewhere, don't buffer_error if we had some unmapped buffers
234 	 */
235 	if (all_mapped) {
236 		char b[BDEVNAME_SIZE];
237 
238 		printk("__find_get_block_slow() failed. "
239 			"block=%llu, b_blocknr=%llu\n",
240 			(unsigned long long)block,
241 			(unsigned long long)bh->b_blocknr);
242 		printk("b_state=0x%08lx, b_size=%zu\n",
243 			bh->b_state, bh->b_size);
244 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
245 			1 << bd_inode->i_blkbits);
246 	}
247 out_unlock:
248 	spin_unlock(&bd_mapping->private_lock);
249 	page_cache_release(page);
250 out:
251 	return ret;
252 }
253 
254 /*
255  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256  */
257 static void free_more_memory(void)
258 {
259 	struct zone *zone;
260 	int nid;
261 
262 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 	yield();
264 
265 	for_each_online_node(nid) {
266 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
267 						gfp_zone(GFP_NOFS), NULL,
268 						&zone);
269 		if (zone)
270 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 						GFP_NOFS, NULL);
272 	}
273 }
274 
275 /*
276  * I/O completion handler for block_read_full_page() - pages
277  * which come unlocked at the end of I/O.
278  */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281 	unsigned long flags;
282 	struct buffer_head *first;
283 	struct buffer_head *tmp;
284 	struct page *page;
285 	int page_uptodate = 1;
286 
287 	BUG_ON(!buffer_async_read(bh));
288 
289 	page = bh->b_page;
290 	if (uptodate) {
291 		set_buffer_uptodate(bh);
292 	} else {
293 		clear_buffer_uptodate(bh);
294 		buffer_io_error(bh, ", async page read");
295 		SetPageError(page);
296 	}
297 
298 	/*
299 	 * Be _very_ careful from here on. Bad things can happen if
300 	 * two buffer heads end IO at almost the same time and both
301 	 * decide that the page is now completely done.
302 	 */
303 	first = page_buffers(page);
304 	local_irq_save(flags);
305 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 	clear_buffer_async_read(bh);
307 	unlock_buffer(bh);
308 	tmp = bh;
309 	do {
310 		if (!buffer_uptodate(tmp))
311 			page_uptodate = 0;
312 		if (buffer_async_read(tmp)) {
313 			BUG_ON(!buffer_locked(tmp));
314 			goto still_busy;
315 		}
316 		tmp = tmp->b_this_page;
317 	} while (tmp != bh);
318 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 	local_irq_restore(flags);
320 
321 	/*
322 	 * If none of the buffers had errors and they are all
323 	 * uptodate then we can set the page uptodate.
324 	 */
325 	if (page_uptodate && !PageError(page))
326 		SetPageUptodate(page);
327 	unlock_page(page);
328 	return;
329 
330 still_busy:
331 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 	local_irq_restore(flags);
333 	return;
334 }
335 
336 /*
337  * Completion handler for block_write_full_page() - pages which are unlocked
338  * during I/O, and which have PageWriteback cleared upon I/O completion.
339  */
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 {
342 	unsigned long flags;
343 	struct buffer_head *first;
344 	struct buffer_head *tmp;
345 	struct page *page;
346 
347 	BUG_ON(!buffer_async_write(bh));
348 
349 	page = bh->b_page;
350 	if (uptodate) {
351 		set_buffer_uptodate(bh);
352 	} else {
353 		buffer_io_error(bh, ", lost async page write");
354 		set_bit(AS_EIO, &page->mapping->flags);
355 		set_buffer_write_io_error(bh);
356 		clear_buffer_uptodate(bh);
357 		SetPageError(page);
358 	}
359 
360 	first = page_buffers(page);
361 	local_irq_save(flags);
362 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 	local_irq_restore(flags);
376 	end_page_writeback(page);
377 	return;
378 
379 still_busy:
380 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 	local_irq_restore(flags);
382 	return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385 
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 	bh->b_end_io = end_buffer_async_read;
410 	set_buffer_async_read(bh);
411 }
412 
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 					  bh_end_io_t *handler)
415 {
416 	bh->b_end_io = handler;
417 	set_buffer_async_write(bh);
418 }
419 
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425 
426 
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475 
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 	list_del_init(&bh->b_assoc_buffers);
482 	WARN_ON(!bh->b_assoc_map);
483 	if (buffer_write_io_error(bh))
484 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 	bh->b_assoc_map = NULL;
486 }
487 
488 int inode_has_buffers(struct inode *inode)
489 {
490 	return !list_empty(&inode->i_data.private_list);
491 }
492 
493 /*
494  * osync is designed to support O_SYNC io.  It waits synchronously for
495  * all already-submitted IO to complete, but does not queue any new
496  * writes to the disk.
497  *
498  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499  * you dirty the buffers, and then use osync_inode_buffers to wait for
500  * completion.  Any other dirty buffers which are not yet queued for
501  * write will not be flushed to disk by the osync.
502  */
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 {
505 	struct buffer_head *bh;
506 	struct list_head *p;
507 	int err = 0;
508 
509 	spin_lock(lock);
510 repeat:
511 	list_for_each_prev(p, list) {
512 		bh = BH_ENTRY(p);
513 		if (buffer_locked(bh)) {
514 			get_bh(bh);
515 			spin_unlock(lock);
516 			wait_on_buffer(bh);
517 			if (!buffer_uptodate(bh))
518 				err = -EIO;
519 			brelse(bh);
520 			spin_lock(lock);
521 			goto repeat;
522 		}
523 	}
524 	spin_unlock(lock);
525 	return err;
526 }
527 
528 static void do_thaw_one(struct super_block *sb, void *unused)
529 {
530 	char b[BDEVNAME_SIZE];
531 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 		printk(KERN_WARNING "Emergency Thaw on %s\n",
533 		       bdevname(sb->s_bdev, b));
534 }
535 
536 static void do_thaw_all(struct work_struct *work)
537 {
538 	iterate_supers(do_thaw_one, NULL);
539 	kfree(work);
540 	printk(KERN_WARNING "Emergency Thaw complete\n");
541 }
542 
543 /**
544  * emergency_thaw_all -- forcibly thaw every frozen filesystem
545  *
546  * Used for emergency unfreeze of all filesystems via SysRq
547  */
548 void emergency_thaw_all(void)
549 {
550 	struct work_struct *work;
551 
552 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 	if (work) {
554 		INIT_WORK(work, do_thaw_all);
555 		schedule_work(work);
556 	}
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->private_lock,
578 					&mapping->private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /*
583  * Called when we've recently written block `bblock', and it is known that
584  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
585  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
586  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
587  */
588 void write_boundary_block(struct block_device *bdev,
589 			sector_t bblock, unsigned blocksize)
590 {
591 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592 	if (bh) {
593 		if (buffer_dirty(bh))
594 			ll_rw_block(WRITE, 1, &bh);
595 		put_bh(bh);
596 	}
597 }
598 
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 {
601 	struct address_space *mapping = inode->i_mapping;
602 	struct address_space *buffer_mapping = bh->b_page->mapping;
603 
604 	mark_buffer_dirty(bh);
605 	if (!mapping->private_data) {
606 		mapping->private_data = buffer_mapping;
607 	} else {
608 		BUG_ON(mapping->private_data != buffer_mapping);
609 	}
610 	if (!bh->b_assoc_map) {
611 		spin_lock(&buffer_mapping->private_lock);
612 		list_move_tail(&bh->b_assoc_buffers,
613 				&mapping->private_list);
614 		bh->b_assoc_map = mapping;
615 		spin_unlock(&buffer_mapping->private_lock);
616 	}
617 }
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
619 
620 /*
621  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622  * dirty.
623  *
624  * If warn is true, then emit a warning if the page is not uptodate and has
625  * not been truncated.
626  */
627 static void __set_page_dirty(struct page *page,
628 		struct address_space *mapping, int warn)
629 {
630 	unsigned long flags;
631 
632 	spin_lock_irqsave(&mapping->tree_lock, flags);
633 	if (page->mapping) {	/* Race with truncate? */
634 		WARN_ON_ONCE(warn && !PageUptodate(page));
635 		account_page_dirtied(page, mapping);
636 		radix_tree_tag_set(&mapping->page_tree,
637 				page_index(page), PAGECACHE_TAG_DIRTY);
638 	}
639 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
640 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
641 }
642 
643 /*
644  * Add a page to the dirty page list.
645  *
646  * It is a sad fact of life that this function is called from several places
647  * deeply under spinlocking.  It may not sleep.
648  *
649  * If the page has buffers, the uptodate buffers are set dirty, to preserve
650  * dirty-state coherency between the page and the buffers.  It the page does
651  * not have buffers then when they are later attached they will all be set
652  * dirty.
653  *
654  * The buffers are dirtied before the page is dirtied.  There's a small race
655  * window in which a writepage caller may see the page cleanness but not the
656  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
657  * before the buffers, a concurrent writepage caller could clear the page dirty
658  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659  * page on the dirty page list.
660  *
661  * We use private_lock to lock against try_to_free_buffers while using the
662  * page's buffer list.  Also use this to protect against clean buffers being
663  * added to the page after it was set dirty.
664  *
665  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
666  * address_space though.
667  */
668 int __set_page_dirty_buffers(struct page *page)
669 {
670 	int newly_dirty;
671 	struct address_space *mapping = page_mapping(page);
672 
673 	if (unlikely(!mapping))
674 		return !TestSetPageDirty(page);
675 
676 	spin_lock(&mapping->private_lock);
677 	if (page_has_buffers(page)) {
678 		struct buffer_head *head = page_buffers(page);
679 		struct buffer_head *bh = head;
680 
681 		do {
682 			set_buffer_dirty(bh);
683 			bh = bh->b_this_page;
684 		} while (bh != head);
685 	}
686 	newly_dirty = !TestSetPageDirty(page);
687 	spin_unlock(&mapping->private_lock);
688 
689 	if (newly_dirty)
690 		__set_page_dirty(page, mapping, 1);
691 	return newly_dirty;
692 }
693 EXPORT_SYMBOL(__set_page_dirty_buffers);
694 
695 /*
696  * Write out and wait upon a list of buffers.
697  *
698  * We have conflicting pressures: we want to make sure that all
699  * initially dirty buffers get waited on, but that any subsequently
700  * dirtied buffers don't.  After all, we don't want fsync to last
701  * forever if somebody is actively writing to the file.
702  *
703  * Do this in two main stages: first we copy dirty buffers to a
704  * temporary inode list, queueing the writes as we go.  Then we clean
705  * up, waiting for those writes to complete.
706  *
707  * During this second stage, any subsequent updates to the file may end
708  * up refiling the buffer on the original inode's dirty list again, so
709  * there is a chance we will end up with a buffer queued for write but
710  * not yet completed on that list.  So, as a final cleanup we go through
711  * the osync code to catch these locked, dirty buffers without requeuing
712  * any newly dirty buffers for write.
713  */
714 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
715 {
716 	struct buffer_head *bh;
717 	struct list_head tmp;
718 	struct address_space *mapping;
719 	int err = 0, err2;
720 	struct blk_plug plug;
721 
722 	INIT_LIST_HEAD(&tmp);
723 	blk_start_plug(&plug);
724 
725 	spin_lock(lock);
726 	while (!list_empty(list)) {
727 		bh = BH_ENTRY(list->next);
728 		mapping = bh->b_assoc_map;
729 		__remove_assoc_queue(bh);
730 		/* Avoid race with mark_buffer_dirty_inode() which does
731 		 * a lockless check and we rely on seeing the dirty bit */
732 		smp_mb();
733 		if (buffer_dirty(bh) || buffer_locked(bh)) {
734 			list_add(&bh->b_assoc_buffers, &tmp);
735 			bh->b_assoc_map = mapping;
736 			if (buffer_dirty(bh)) {
737 				get_bh(bh);
738 				spin_unlock(lock);
739 				/*
740 				 * Ensure any pending I/O completes so that
741 				 * write_dirty_buffer() actually writes the
742 				 * current contents - it is a noop if I/O is
743 				 * still in flight on potentially older
744 				 * contents.
745 				 */
746 				write_dirty_buffer(bh, WRITE_SYNC);
747 
748 				/*
749 				 * Kick off IO for the previous mapping. Note
750 				 * that we will not run the very last mapping,
751 				 * wait_on_buffer() will do that for us
752 				 * through sync_buffer().
753 				 */
754 				brelse(bh);
755 				spin_lock(lock);
756 			}
757 		}
758 	}
759 
760 	spin_unlock(lock);
761 	blk_finish_plug(&plug);
762 	spin_lock(lock);
763 
764 	while (!list_empty(&tmp)) {
765 		bh = BH_ENTRY(tmp.prev);
766 		get_bh(bh);
767 		mapping = bh->b_assoc_map;
768 		__remove_assoc_queue(bh);
769 		/* Avoid race with mark_buffer_dirty_inode() which does
770 		 * a lockless check and we rely on seeing the dirty bit */
771 		smp_mb();
772 		if (buffer_dirty(bh)) {
773 			list_add(&bh->b_assoc_buffers,
774 				 &mapping->private_list);
775 			bh->b_assoc_map = mapping;
776 		}
777 		spin_unlock(lock);
778 		wait_on_buffer(bh);
779 		if (!buffer_uptodate(bh))
780 			err = -EIO;
781 		brelse(bh);
782 		spin_lock(lock);
783 	}
784 
785 	spin_unlock(lock);
786 	err2 = osync_buffers_list(lock, list);
787 	if (err)
788 		return err;
789 	else
790 		return err2;
791 }
792 
793 /*
794  * Invalidate any and all dirty buffers on a given inode.  We are
795  * probably unmounting the fs, but that doesn't mean we have already
796  * done a sync().  Just drop the buffers from the inode list.
797  *
798  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
799  * assumes that all the buffers are against the blockdev.  Not true
800  * for reiserfs.
801  */
802 void invalidate_inode_buffers(struct inode *inode)
803 {
804 	if (inode_has_buffers(inode)) {
805 		struct address_space *mapping = &inode->i_data;
806 		struct list_head *list = &mapping->private_list;
807 		struct address_space *buffer_mapping = mapping->private_data;
808 
809 		spin_lock(&buffer_mapping->private_lock);
810 		while (!list_empty(list))
811 			__remove_assoc_queue(BH_ENTRY(list->next));
812 		spin_unlock(&buffer_mapping->private_lock);
813 	}
814 }
815 EXPORT_SYMBOL(invalidate_inode_buffers);
816 
817 /*
818  * Remove any clean buffers from the inode's buffer list.  This is called
819  * when we're trying to free the inode itself.  Those buffers can pin it.
820  *
821  * Returns true if all buffers were removed.
822  */
823 int remove_inode_buffers(struct inode *inode)
824 {
825 	int ret = 1;
826 
827 	if (inode_has_buffers(inode)) {
828 		struct address_space *mapping = &inode->i_data;
829 		struct list_head *list = &mapping->private_list;
830 		struct address_space *buffer_mapping = mapping->private_data;
831 
832 		spin_lock(&buffer_mapping->private_lock);
833 		while (!list_empty(list)) {
834 			struct buffer_head *bh = BH_ENTRY(list->next);
835 			if (buffer_dirty(bh)) {
836 				ret = 0;
837 				break;
838 			}
839 			__remove_assoc_queue(bh);
840 		}
841 		spin_unlock(&buffer_mapping->private_lock);
842 	}
843 	return ret;
844 }
845 
846 /*
847  * Create the appropriate buffers when given a page for data area and
848  * the size of each buffer.. Use the bh->b_this_page linked list to
849  * follow the buffers created.  Return NULL if unable to create more
850  * buffers.
851  *
852  * The retry flag is used to differentiate async IO (paging, swapping)
853  * which may not fail from ordinary buffer allocations.
854  */
855 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
856 		int retry)
857 {
858 	struct buffer_head *bh, *head;
859 	long offset;
860 
861 try_again:
862 	head = NULL;
863 	offset = PAGE_SIZE;
864 	while ((offset -= size) >= 0) {
865 		bh = alloc_buffer_head(GFP_NOFS);
866 		if (!bh)
867 			goto no_grow;
868 
869 		bh->b_this_page = head;
870 		bh->b_blocknr = -1;
871 		head = bh;
872 
873 		bh->b_size = size;
874 
875 		/* Link the buffer to its page */
876 		set_bh_page(bh, page, offset);
877 	}
878 	return head;
879 /*
880  * In case anything failed, we just free everything we got.
881  */
882 no_grow:
883 	if (head) {
884 		do {
885 			bh = head;
886 			head = head->b_this_page;
887 			free_buffer_head(bh);
888 		} while (head);
889 	}
890 
891 	/*
892 	 * Return failure for non-async IO requests.  Async IO requests
893 	 * are not allowed to fail, so we have to wait until buffer heads
894 	 * become available.  But we don't want tasks sleeping with
895 	 * partially complete buffers, so all were released above.
896 	 */
897 	if (!retry)
898 		return NULL;
899 
900 	/* We're _really_ low on memory. Now we just
901 	 * wait for old buffer heads to become free due to
902 	 * finishing IO.  Since this is an async request and
903 	 * the reserve list is empty, we're sure there are
904 	 * async buffer heads in use.
905 	 */
906 	free_more_memory();
907 	goto try_again;
908 }
909 EXPORT_SYMBOL_GPL(alloc_page_buffers);
910 
911 static inline void
912 link_dev_buffers(struct page *page, struct buffer_head *head)
913 {
914 	struct buffer_head *bh, *tail;
915 
916 	bh = head;
917 	do {
918 		tail = bh;
919 		bh = bh->b_this_page;
920 	} while (bh);
921 	tail->b_this_page = head;
922 	attach_page_buffers(page, head);
923 }
924 
925 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
926 {
927 	sector_t retval = ~((sector_t)0);
928 	loff_t sz = i_size_read(bdev->bd_inode);
929 
930 	if (sz) {
931 		unsigned int sizebits = blksize_bits(size);
932 		retval = (sz >> sizebits);
933 	}
934 	return retval;
935 }
936 
937 /*
938  * Initialise the state of a blockdev page's buffers.
939  */
940 static sector_t
941 init_page_buffers(struct page *page, struct block_device *bdev,
942 			sector_t block, int size)
943 {
944 	struct buffer_head *head = page_buffers(page);
945 	struct buffer_head *bh = head;
946 	int uptodate = PageUptodate(page);
947 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
948 
949 	do {
950 		if (!buffer_mapped(bh)) {
951 			init_buffer(bh, NULL, NULL);
952 			bh->b_bdev = bdev;
953 			bh->b_blocknr = block;
954 			if (uptodate)
955 				set_buffer_uptodate(bh);
956 			if (block < end_block)
957 				set_buffer_mapped(bh);
958 		}
959 		block++;
960 		bh = bh->b_this_page;
961 	} while (bh != head);
962 
963 	/*
964 	 * Caller needs to validate requested block against end of device.
965 	 */
966 	return end_block;
967 }
968 
969 /*
970  * Create the page-cache page that contains the requested block.
971  *
972  * This is used purely for blockdev mappings.
973  */
974 static int
975 grow_dev_page(struct block_device *bdev, sector_t block,
976 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
977 {
978 	struct inode *inode = bdev->bd_inode;
979 	struct page *page;
980 	struct buffer_head *bh;
981 	sector_t end_block;
982 	int ret = 0;		/* Will call free_more_memory() */
983 	gfp_t gfp_mask;
984 
985 	gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
986 
987 	/*
988 	 * XXX: __getblk_slow() can not really deal with failure and
989 	 * will endlessly loop on improvised global reclaim.  Prefer
990 	 * looping in the allocator rather than here, at least that
991 	 * code knows what it's doing.
992 	 */
993 	gfp_mask |= __GFP_NOFAIL;
994 
995 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
996 	if (!page)
997 		return ret;
998 
999 	BUG_ON(!PageLocked(page));
1000 
1001 	if (page_has_buffers(page)) {
1002 		bh = page_buffers(page);
1003 		if (bh->b_size == size) {
1004 			end_block = init_page_buffers(page, bdev,
1005 						(sector_t)index << sizebits,
1006 						size);
1007 			goto done;
1008 		}
1009 		if (!try_to_free_buffers(page))
1010 			goto failed;
1011 	}
1012 
1013 	/*
1014 	 * Allocate some buffers for this page
1015 	 */
1016 	bh = alloc_page_buffers(page, size, 0);
1017 	if (!bh)
1018 		goto failed;
1019 
1020 	/*
1021 	 * Link the page to the buffers and initialise them.  Take the
1022 	 * lock to be atomic wrt __find_get_block(), which does not
1023 	 * run under the page lock.
1024 	 */
1025 	spin_lock(&inode->i_mapping->private_lock);
1026 	link_dev_buffers(page, bh);
1027 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1028 			size);
1029 	spin_unlock(&inode->i_mapping->private_lock);
1030 done:
1031 	ret = (block < end_block) ? 1 : -ENXIO;
1032 failed:
1033 	unlock_page(page);
1034 	page_cache_release(page);
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Create buffers for the specified block device block's page.  If
1040  * that page was dirty, the buffers are set dirty also.
1041  */
1042 static int
1043 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1044 {
1045 	pgoff_t index;
1046 	int sizebits;
1047 
1048 	sizebits = -1;
1049 	do {
1050 		sizebits++;
1051 	} while ((size << sizebits) < PAGE_SIZE);
1052 
1053 	index = block >> sizebits;
1054 
1055 	/*
1056 	 * Check for a block which wants to lie outside our maximum possible
1057 	 * pagecache index.  (this comparison is done using sector_t types).
1058 	 */
1059 	if (unlikely(index != block >> sizebits)) {
1060 		char b[BDEVNAME_SIZE];
1061 
1062 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 			"device %s\n",
1064 			__func__, (unsigned long long)block,
1065 			bdevname(bdev, b));
1066 		return -EIO;
1067 	}
1068 
1069 	/* Create a page with the proper size buffers.. */
1070 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1071 }
1072 
1073 struct buffer_head *
1074 __getblk_slow(struct block_device *bdev, sector_t block,
1075 	     unsigned size, gfp_t gfp)
1076 {
1077 	/* Size must be multiple of hard sectorsize */
1078 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1079 			(size < 512 || size > PAGE_SIZE))) {
1080 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1081 					size);
1082 		printk(KERN_ERR "logical block size: %d\n",
1083 					bdev_logical_block_size(bdev));
1084 
1085 		dump_stack();
1086 		return NULL;
1087 	}
1088 
1089 	for (;;) {
1090 		struct buffer_head *bh;
1091 		int ret;
1092 
1093 		bh = __find_get_block(bdev, block, size);
1094 		if (bh)
1095 			return bh;
1096 
1097 		ret = grow_buffers(bdev, block, size, gfp);
1098 		if (ret < 0)
1099 			return NULL;
1100 		if (ret == 0)
1101 			free_more_memory();
1102 	}
1103 }
1104 EXPORT_SYMBOL(__getblk_slow);
1105 
1106 /*
1107  * The relationship between dirty buffers and dirty pages:
1108  *
1109  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1110  * the page is tagged dirty in its radix tree.
1111  *
1112  * At all times, the dirtiness of the buffers represents the dirtiness of
1113  * subsections of the page.  If the page has buffers, the page dirty bit is
1114  * merely a hint about the true dirty state.
1115  *
1116  * When a page is set dirty in its entirety, all its buffers are marked dirty
1117  * (if the page has buffers).
1118  *
1119  * When a buffer is marked dirty, its page is dirtied, but the page's other
1120  * buffers are not.
1121  *
1122  * Also.  When blockdev buffers are explicitly read with bread(), they
1123  * individually become uptodate.  But their backing page remains not
1124  * uptodate - even if all of its buffers are uptodate.  A subsequent
1125  * block_read_full_page() against that page will discover all the uptodate
1126  * buffers, will set the page uptodate and will perform no I/O.
1127  */
1128 
1129 /**
1130  * mark_buffer_dirty - mark a buffer_head as needing writeout
1131  * @bh: the buffer_head to mark dirty
1132  *
1133  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1134  * backing page dirty, then tag the page as dirty in its address_space's radix
1135  * tree and then attach the address_space's inode to its superblock's dirty
1136  * inode list.
1137  *
1138  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1139  * mapping->tree_lock and mapping->host->i_lock.
1140  */
1141 void mark_buffer_dirty(struct buffer_head *bh)
1142 {
1143 	WARN_ON_ONCE(!buffer_uptodate(bh));
1144 
1145 	trace_block_dirty_buffer(bh);
1146 
1147 	/*
1148 	 * Very *carefully* optimize the it-is-already-dirty case.
1149 	 *
1150 	 * Don't let the final "is it dirty" escape to before we
1151 	 * perhaps modified the buffer.
1152 	 */
1153 	if (buffer_dirty(bh)) {
1154 		smp_mb();
1155 		if (buffer_dirty(bh))
1156 			return;
1157 	}
1158 
1159 	if (!test_set_buffer_dirty(bh)) {
1160 		struct page *page = bh->b_page;
1161 		if (!TestSetPageDirty(page)) {
1162 			struct address_space *mapping = page_mapping(page);
1163 			if (mapping)
1164 				__set_page_dirty(page, mapping, 0);
1165 		}
1166 	}
1167 }
1168 EXPORT_SYMBOL(mark_buffer_dirty);
1169 
1170 /*
1171  * Decrement a buffer_head's reference count.  If all buffers against a page
1172  * have zero reference count, are clean and unlocked, and if the page is clean
1173  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1174  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1175  * a page but it ends up not being freed, and buffers may later be reattached).
1176  */
1177 void __brelse(struct buffer_head * buf)
1178 {
1179 	if (atomic_read(&buf->b_count)) {
1180 		put_bh(buf);
1181 		return;
1182 	}
1183 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1184 }
1185 EXPORT_SYMBOL(__brelse);
1186 
1187 /*
1188  * bforget() is like brelse(), except it discards any
1189  * potentially dirty data.
1190  */
1191 void __bforget(struct buffer_head *bh)
1192 {
1193 	clear_buffer_dirty(bh);
1194 	if (bh->b_assoc_map) {
1195 		struct address_space *buffer_mapping = bh->b_page->mapping;
1196 
1197 		spin_lock(&buffer_mapping->private_lock);
1198 		list_del_init(&bh->b_assoc_buffers);
1199 		bh->b_assoc_map = NULL;
1200 		spin_unlock(&buffer_mapping->private_lock);
1201 	}
1202 	__brelse(bh);
1203 }
1204 EXPORT_SYMBOL(__bforget);
1205 
1206 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1207 {
1208 	lock_buffer(bh);
1209 	if (buffer_uptodate(bh)) {
1210 		unlock_buffer(bh);
1211 		return bh;
1212 	} else {
1213 		get_bh(bh);
1214 		bh->b_end_io = end_buffer_read_sync;
1215 		submit_bh(READ, bh);
1216 		wait_on_buffer(bh);
1217 		if (buffer_uptodate(bh))
1218 			return bh;
1219 	}
1220 	brelse(bh);
1221 	return NULL;
1222 }
1223 
1224 /*
1225  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1226  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1227  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1228  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1229  * CPU's LRUs at the same time.
1230  *
1231  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1232  * sb_find_get_block().
1233  *
1234  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1235  * a local interrupt disable for that.
1236  */
1237 
1238 #define BH_LRU_SIZE	16
1239 
1240 struct bh_lru {
1241 	struct buffer_head *bhs[BH_LRU_SIZE];
1242 };
1243 
1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1245 
1246 #ifdef CONFIG_SMP
1247 #define bh_lru_lock()	local_irq_disable()
1248 #define bh_lru_unlock()	local_irq_enable()
1249 #else
1250 #define bh_lru_lock()	preempt_disable()
1251 #define bh_lru_unlock()	preempt_enable()
1252 #endif
1253 
1254 static inline void check_irqs_on(void)
1255 {
1256 #ifdef irqs_disabled
1257 	BUG_ON(irqs_disabled());
1258 #endif
1259 }
1260 
1261 /*
1262  * The LRU management algorithm is dopey-but-simple.  Sorry.
1263  */
1264 static void bh_lru_install(struct buffer_head *bh)
1265 {
1266 	struct buffer_head *evictee = NULL;
1267 
1268 	check_irqs_on();
1269 	bh_lru_lock();
1270 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1271 		struct buffer_head *bhs[BH_LRU_SIZE];
1272 		int in;
1273 		int out = 0;
1274 
1275 		get_bh(bh);
1276 		bhs[out++] = bh;
1277 		for (in = 0; in < BH_LRU_SIZE; in++) {
1278 			struct buffer_head *bh2 =
1279 				__this_cpu_read(bh_lrus.bhs[in]);
1280 
1281 			if (bh2 == bh) {
1282 				__brelse(bh2);
1283 			} else {
1284 				if (out >= BH_LRU_SIZE) {
1285 					BUG_ON(evictee != NULL);
1286 					evictee = bh2;
1287 				} else {
1288 					bhs[out++] = bh2;
1289 				}
1290 			}
1291 		}
1292 		while (out < BH_LRU_SIZE)
1293 			bhs[out++] = NULL;
1294 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1295 	}
1296 	bh_lru_unlock();
1297 
1298 	if (evictee)
1299 		__brelse(evictee);
1300 }
1301 
1302 /*
1303  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1304  */
1305 static struct buffer_head *
1306 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1307 {
1308 	struct buffer_head *ret = NULL;
1309 	unsigned int i;
1310 
1311 	check_irqs_on();
1312 	bh_lru_lock();
1313 	for (i = 0; i < BH_LRU_SIZE; i++) {
1314 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1315 
1316 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1317 		    bh->b_size == size) {
1318 			if (i) {
1319 				while (i) {
1320 					__this_cpu_write(bh_lrus.bhs[i],
1321 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1322 					i--;
1323 				}
1324 				__this_cpu_write(bh_lrus.bhs[0], bh);
1325 			}
1326 			get_bh(bh);
1327 			ret = bh;
1328 			break;
1329 		}
1330 	}
1331 	bh_lru_unlock();
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1337  * it in the LRU and mark it as accessed.  If it is not present then return
1338  * NULL
1339  */
1340 struct buffer_head *
1341 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1344 
1345 	if (bh == NULL) {
1346 		/* __find_get_block_slow will mark the page accessed */
1347 		bh = __find_get_block_slow(bdev, block);
1348 		if (bh)
1349 			bh_lru_install(bh);
1350 	} else
1351 		touch_buffer(bh);
1352 
1353 	return bh;
1354 }
1355 EXPORT_SYMBOL(__find_get_block);
1356 
1357 /*
1358  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1359  * which corresponds to the passed block_device, block and size. The
1360  * returned buffer has its reference count incremented.
1361  *
1362  * __getblk_gfp() will lock up the machine if grow_dev_page's
1363  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1364  */
1365 struct buffer_head *
1366 __getblk_gfp(struct block_device *bdev, sector_t block,
1367 	     unsigned size, gfp_t gfp)
1368 {
1369 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1370 
1371 	might_sleep();
1372 	if (bh == NULL)
1373 		bh = __getblk_slow(bdev, block, size, gfp);
1374 	return bh;
1375 }
1376 EXPORT_SYMBOL(__getblk_gfp);
1377 
1378 /*
1379  * Do async read-ahead on a buffer..
1380  */
1381 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1382 {
1383 	struct buffer_head *bh = __getblk(bdev, block, size);
1384 	if (likely(bh)) {
1385 		ll_rw_block(READA, 1, &bh);
1386 		brelse(bh);
1387 	}
1388 }
1389 EXPORT_SYMBOL(__breadahead);
1390 
1391 /**
1392  *  __bread_gfp() - reads a specified block and returns the bh
1393  *  @bdev: the block_device to read from
1394  *  @block: number of block
1395  *  @size: size (in bytes) to read
1396  *  @gfp: page allocation flag
1397  *
1398  *  Reads a specified block, and returns buffer head that contains it.
1399  *  The page cache can be allocated from non-movable area
1400  *  not to prevent page migration if you set gfp to zero.
1401  *  It returns NULL if the block was unreadable.
1402  */
1403 struct buffer_head *
1404 __bread_gfp(struct block_device *bdev, sector_t block,
1405 		   unsigned size, gfp_t gfp)
1406 {
1407 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1408 
1409 	if (likely(bh) && !buffer_uptodate(bh))
1410 		bh = __bread_slow(bh);
1411 	return bh;
1412 }
1413 EXPORT_SYMBOL(__bread_gfp);
1414 
1415 /*
1416  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1417  * This doesn't race because it runs in each cpu either in irq
1418  * or with preempt disabled.
1419  */
1420 static void invalidate_bh_lru(void *arg)
1421 {
1422 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1423 	int i;
1424 
1425 	for (i = 0; i < BH_LRU_SIZE; i++) {
1426 		brelse(b->bhs[i]);
1427 		b->bhs[i] = NULL;
1428 	}
1429 	put_cpu_var(bh_lrus);
1430 }
1431 
1432 static bool has_bh_in_lru(int cpu, void *dummy)
1433 {
1434 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1435 	int i;
1436 
1437 	for (i = 0; i < BH_LRU_SIZE; i++) {
1438 		if (b->bhs[i])
1439 			return 1;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 void invalidate_bh_lrus(void)
1446 {
1447 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1448 }
1449 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1450 
1451 void set_bh_page(struct buffer_head *bh,
1452 		struct page *page, unsigned long offset)
1453 {
1454 	bh->b_page = page;
1455 	BUG_ON(offset >= PAGE_SIZE);
1456 	if (PageHighMem(page))
1457 		/*
1458 		 * This catches illegal uses and preserves the offset:
1459 		 */
1460 		bh->b_data = (char *)(0 + offset);
1461 	else
1462 		bh->b_data = page_address(page) + offset;
1463 }
1464 EXPORT_SYMBOL(set_bh_page);
1465 
1466 /*
1467  * Called when truncating a buffer on a page completely.
1468  */
1469 
1470 /* Bits that are cleared during an invalidate */
1471 #define BUFFER_FLAGS_DISCARD \
1472 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1473 	 1 << BH_Delay | 1 << BH_Unwritten)
1474 
1475 static void discard_buffer(struct buffer_head * bh)
1476 {
1477 	unsigned long b_state, b_state_old;
1478 
1479 	lock_buffer(bh);
1480 	clear_buffer_dirty(bh);
1481 	bh->b_bdev = NULL;
1482 	b_state = bh->b_state;
1483 	for (;;) {
1484 		b_state_old = cmpxchg(&bh->b_state, b_state,
1485 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1486 		if (b_state_old == b_state)
1487 			break;
1488 		b_state = b_state_old;
1489 	}
1490 	unlock_buffer(bh);
1491 }
1492 
1493 /**
1494  * block_invalidatepage - invalidate part or all of a buffer-backed page
1495  *
1496  * @page: the page which is affected
1497  * @offset: start of the range to invalidate
1498  * @length: length of the range to invalidate
1499  *
1500  * block_invalidatepage() is called when all or part of the page has become
1501  * invalidated by a truncate operation.
1502  *
1503  * block_invalidatepage() does not have to release all buffers, but it must
1504  * ensure that no dirty buffer is left outside @offset and that no I/O
1505  * is underway against any of the blocks which are outside the truncation
1506  * point.  Because the caller is about to free (and possibly reuse) those
1507  * blocks on-disk.
1508  */
1509 void block_invalidatepage(struct page *page, unsigned int offset,
1510 			  unsigned int length)
1511 {
1512 	struct buffer_head *head, *bh, *next;
1513 	unsigned int curr_off = 0;
1514 	unsigned int stop = length + offset;
1515 
1516 	BUG_ON(!PageLocked(page));
1517 	if (!page_has_buffers(page))
1518 		goto out;
1519 
1520 	/*
1521 	 * Check for overflow
1522 	 */
1523 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1524 
1525 	head = page_buffers(page);
1526 	bh = head;
1527 	do {
1528 		unsigned int next_off = curr_off + bh->b_size;
1529 		next = bh->b_this_page;
1530 
1531 		/*
1532 		 * Are we still fully in range ?
1533 		 */
1534 		if (next_off > stop)
1535 			goto out;
1536 
1537 		/*
1538 		 * is this block fully invalidated?
1539 		 */
1540 		if (offset <= curr_off)
1541 			discard_buffer(bh);
1542 		curr_off = next_off;
1543 		bh = next;
1544 	} while (bh != head);
1545 
1546 	/*
1547 	 * We release buffers only if the entire page is being invalidated.
1548 	 * The get_block cached value has been unconditionally invalidated,
1549 	 * so real IO is not possible anymore.
1550 	 */
1551 	if (offset == 0)
1552 		try_to_release_page(page, 0);
1553 out:
1554 	return;
1555 }
1556 EXPORT_SYMBOL(block_invalidatepage);
1557 
1558 
1559 /*
1560  * We attach and possibly dirty the buffers atomically wrt
1561  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1562  * is already excluded via the page lock.
1563  */
1564 void create_empty_buffers(struct page *page,
1565 			unsigned long blocksize, unsigned long b_state)
1566 {
1567 	struct buffer_head *bh, *head, *tail;
1568 
1569 	head = alloc_page_buffers(page, blocksize, 1);
1570 	bh = head;
1571 	do {
1572 		bh->b_state |= b_state;
1573 		tail = bh;
1574 		bh = bh->b_this_page;
1575 	} while (bh);
1576 	tail->b_this_page = head;
1577 
1578 	spin_lock(&page->mapping->private_lock);
1579 	if (PageUptodate(page) || PageDirty(page)) {
1580 		bh = head;
1581 		do {
1582 			if (PageDirty(page))
1583 				set_buffer_dirty(bh);
1584 			if (PageUptodate(page))
1585 				set_buffer_uptodate(bh);
1586 			bh = bh->b_this_page;
1587 		} while (bh != head);
1588 	}
1589 	attach_page_buffers(page, head);
1590 	spin_unlock(&page->mapping->private_lock);
1591 }
1592 EXPORT_SYMBOL(create_empty_buffers);
1593 
1594 /*
1595  * We are taking a block for data and we don't want any output from any
1596  * buffer-cache aliases starting from return from that function and
1597  * until the moment when something will explicitly mark the buffer
1598  * dirty (hopefully that will not happen until we will free that block ;-)
1599  * We don't even need to mark it not-uptodate - nobody can expect
1600  * anything from a newly allocated buffer anyway. We used to used
1601  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1602  * don't want to mark the alias unmapped, for example - it would confuse
1603  * anyone who might pick it with bread() afterwards...
1604  *
1605  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1606  * be writeout I/O going on against recently-freed buffers.  We don't
1607  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1608  * only if we really need to.  That happens here.
1609  */
1610 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1611 {
1612 	struct buffer_head *old_bh;
1613 
1614 	might_sleep();
1615 
1616 	old_bh = __find_get_block_slow(bdev, block);
1617 	if (old_bh) {
1618 		clear_buffer_dirty(old_bh);
1619 		wait_on_buffer(old_bh);
1620 		clear_buffer_req(old_bh);
1621 		__brelse(old_bh);
1622 	}
1623 }
1624 EXPORT_SYMBOL(unmap_underlying_metadata);
1625 
1626 /*
1627  * Size is a power-of-two in the range 512..PAGE_SIZE,
1628  * and the case we care about most is PAGE_SIZE.
1629  *
1630  * So this *could* possibly be written with those
1631  * constraints in mind (relevant mostly if some
1632  * architecture has a slow bit-scan instruction)
1633  */
1634 static inline int block_size_bits(unsigned int blocksize)
1635 {
1636 	return ilog2(blocksize);
1637 }
1638 
1639 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1640 {
1641 	BUG_ON(!PageLocked(page));
1642 
1643 	if (!page_has_buffers(page))
1644 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1645 	return page_buffers(page);
1646 }
1647 
1648 /*
1649  * NOTE! All mapped/uptodate combinations are valid:
1650  *
1651  *	Mapped	Uptodate	Meaning
1652  *
1653  *	No	No		"unknown" - must do get_block()
1654  *	No	Yes		"hole" - zero-filled
1655  *	Yes	No		"allocated" - allocated on disk, not read in
1656  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1657  *
1658  * "Dirty" is valid only with the last case (mapped+uptodate).
1659  */
1660 
1661 /*
1662  * While block_write_full_page is writing back the dirty buffers under
1663  * the page lock, whoever dirtied the buffers may decide to clean them
1664  * again at any time.  We handle that by only looking at the buffer
1665  * state inside lock_buffer().
1666  *
1667  * If block_write_full_page() is called for regular writeback
1668  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1669  * locked buffer.   This only can happen if someone has written the buffer
1670  * directly, with submit_bh().  At the address_space level PageWriteback
1671  * prevents this contention from occurring.
1672  *
1673  * If block_write_full_page() is called with wbc->sync_mode ==
1674  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1675  * causes the writes to be flagged as synchronous writes.
1676  */
1677 static int __block_write_full_page(struct inode *inode, struct page *page,
1678 			get_block_t *get_block, struct writeback_control *wbc,
1679 			bh_end_io_t *handler)
1680 {
1681 	int err;
1682 	sector_t block;
1683 	sector_t last_block;
1684 	struct buffer_head *bh, *head;
1685 	unsigned int blocksize, bbits;
1686 	int nr_underway = 0;
1687 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1688 			WRITE_SYNC : WRITE);
1689 
1690 	head = create_page_buffers(page, inode,
1691 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1692 
1693 	/*
1694 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1695 	 * here, and the (potentially unmapped) buffers may become dirty at
1696 	 * any time.  If a buffer becomes dirty here after we've inspected it
1697 	 * then we just miss that fact, and the page stays dirty.
1698 	 *
1699 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1700 	 * handle that here by just cleaning them.
1701 	 */
1702 
1703 	bh = head;
1704 	blocksize = bh->b_size;
1705 	bbits = block_size_bits(blocksize);
1706 
1707 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1708 	last_block = (i_size_read(inode) - 1) >> bbits;
1709 
1710 	/*
1711 	 * Get all the dirty buffers mapped to disk addresses and
1712 	 * handle any aliases from the underlying blockdev's mapping.
1713 	 */
1714 	do {
1715 		if (block > last_block) {
1716 			/*
1717 			 * mapped buffers outside i_size will occur, because
1718 			 * this page can be outside i_size when there is a
1719 			 * truncate in progress.
1720 			 */
1721 			/*
1722 			 * The buffer was zeroed by block_write_full_page()
1723 			 */
1724 			clear_buffer_dirty(bh);
1725 			set_buffer_uptodate(bh);
1726 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1727 			   buffer_dirty(bh)) {
1728 			WARN_ON(bh->b_size != blocksize);
1729 			err = get_block(inode, block, bh, 1);
1730 			if (err)
1731 				goto recover;
1732 			clear_buffer_delay(bh);
1733 			if (buffer_new(bh)) {
1734 				/* blockdev mappings never come here */
1735 				clear_buffer_new(bh);
1736 				unmap_underlying_metadata(bh->b_bdev,
1737 							bh->b_blocknr);
1738 			}
1739 		}
1740 		bh = bh->b_this_page;
1741 		block++;
1742 	} while (bh != head);
1743 
1744 	do {
1745 		if (!buffer_mapped(bh))
1746 			continue;
1747 		/*
1748 		 * If it's a fully non-blocking write attempt and we cannot
1749 		 * lock the buffer then redirty the page.  Note that this can
1750 		 * potentially cause a busy-wait loop from writeback threads
1751 		 * and kswapd activity, but those code paths have their own
1752 		 * higher-level throttling.
1753 		 */
1754 		if (wbc->sync_mode != WB_SYNC_NONE) {
1755 			lock_buffer(bh);
1756 		} else if (!trylock_buffer(bh)) {
1757 			redirty_page_for_writepage(wbc, page);
1758 			continue;
1759 		}
1760 		if (test_clear_buffer_dirty(bh)) {
1761 			mark_buffer_async_write_endio(bh, handler);
1762 		} else {
1763 			unlock_buffer(bh);
1764 		}
1765 	} while ((bh = bh->b_this_page) != head);
1766 
1767 	/*
1768 	 * The page and its buffers are protected by PageWriteback(), so we can
1769 	 * drop the bh refcounts early.
1770 	 */
1771 	BUG_ON(PageWriteback(page));
1772 	set_page_writeback(page);
1773 
1774 	do {
1775 		struct buffer_head *next = bh->b_this_page;
1776 		if (buffer_async_write(bh)) {
1777 			submit_bh(write_op, bh);
1778 			nr_underway++;
1779 		}
1780 		bh = next;
1781 	} while (bh != head);
1782 	unlock_page(page);
1783 
1784 	err = 0;
1785 done:
1786 	if (nr_underway == 0) {
1787 		/*
1788 		 * The page was marked dirty, but the buffers were
1789 		 * clean.  Someone wrote them back by hand with
1790 		 * ll_rw_block/submit_bh.  A rare case.
1791 		 */
1792 		end_page_writeback(page);
1793 
1794 		/*
1795 		 * The page and buffer_heads can be released at any time from
1796 		 * here on.
1797 		 */
1798 	}
1799 	return err;
1800 
1801 recover:
1802 	/*
1803 	 * ENOSPC, or some other error.  We may already have added some
1804 	 * blocks to the file, so we need to write these out to avoid
1805 	 * exposing stale data.
1806 	 * The page is currently locked and not marked for writeback
1807 	 */
1808 	bh = head;
1809 	/* Recovery: lock and submit the mapped buffers */
1810 	do {
1811 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1812 		    !buffer_delay(bh)) {
1813 			lock_buffer(bh);
1814 			mark_buffer_async_write_endio(bh, handler);
1815 		} else {
1816 			/*
1817 			 * The buffer may have been set dirty during
1818 			 * attachment to a dirty page.
1819 			 */
1820 			clear_buffer_dirty(bh);
1821 		}
1822 	} while ((bh = bh->b_this_page) != head);
1823 	SetPageError(page);
1824 	BUG_ON(PageWriteback(page));
1825 	mapping_set_error(page->mapping, err);
1826 	set_page_writeback(page);
1827 	do {
1828 		struct buffer_head *next = bh->b_this_page;
1829 		if (buffer_async_write(bh)) {
1830 			clear_buffer_dirty(bh);
1831 			submit_bh(write_op, bh);
1832 			nr_underway++;
1833 		}
1834 		bh = next;
1835 	} while (bh != head);
1836 	unlock_page(page);
1837 	goto done;
1838 }
1839 
1840 /*
1841  * If a page has any new buffers, zero them out here, and mark them uptodate
1842  * and dirty so they'll be written out (in order to prevent uninitialised
1843  * block data from leaking). And clear the new bit.
1844  */
1845 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1846 {
1847 	unsigned int block_start, block_end;
1848 	struct buffer_head *head, *bh;
1849 
1850 	BUG_ON(!PageLocked(page));
1851 	if (!page_has_buffers(page))
1852 		return;
1853 
1854 	bh = head = page_buffers(page);
1855 	block_start = 0;
1856 	do {
1857 		block_end = block_start + bh->b_size;
1858 
1859 		if (buffer_new(bh)) {
1860 			if (block_end > from && block_start < to) {
1861 				if (!PageUptodate(page)) {
1862 					unsigned start, size;
1863 
1864 					start = max(from, block_start);
1865 					size = min(to, block_end) - start;
1866 
1867 					zero_user(page, start, size);
1868 					set_buffer_uptodate(bh);
1869 				}
1870 
1871 				clear_buffer_new(bh);
1872 				mark_buffer_dirty(bh);
1873 			}
1874 		}
1875 
1876 		block_start = block_end;
1877 		bh = bh->b_this_page;
1878 	} while (bh != head);
1879 }
1880 EXPORT_SYMBOL(page_zero_new_buffers);
1881 
1882 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1883 		get_block_t *get_block)
1884 {
1885 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1886 	unsigned to = from + len;
1887 	struct inode *inode = page->mapping->host;
1888 	unsigned block_start, block_end;
1889 	sector_t block;
1890 	int err = 0;
1891 	unsigned blocksize, bbits;
1892 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1893 
1894 	BUG_ON(!PageLocked(page));
1895 	BUG_ON(from > PAGE_CACHE_SIZE);
1896 	BUG_ON(to > PAGE_CACHE_SIZE);
1897 	BUG_ON(from > to);
1898 
1899 	head = create_page_buffers(page, inode, 0);
1900 	blocksize = head->b_size;
1901 	bbits = block_size_bits(blocksize);
1902 
1903 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1904 
1905 	for(bh = head, block_start = 0; bh != head || !block_start;
1906 	    block++, block_start=block_end, bh = bh->b_this_page) {
1907 		block_end = block_start + blocksize;
1908 		if (block_end <= from || block_start >= to) {
1909 			if (PageUptodate(page)) {
1910 				if (!buffer_uptodate(bh))
1911 					set_buffer_uptodate(bh);
1912 			}
1913 			continue;
1914 		}
1915 		if (buffer_new(bh))
1916 			clear_buffer_new(bh);
1917 		if (!buffer_mapped(bh)) {
1918 			WARN_ON(bh->b_size != blocksize);
1919 			err = get_block(inode, block, bh, 1);
1920 			if (err)
1921 				break;
1922 			if (buffer_new(bh)) {
1923 				unmap_underlying_metadata(bh->b_bdev,
1924 							bh->b_blocknr);
1925 				if (PageUptodate(page)) {
1926 					clear_buffer_new(bh);
1927 					set_buffer_uptodate(bh);
1928 					mark_buffer_dirty(bh);
1929 					continue;
1930 				}
1931 				if (block_end > to || block_start < from)
1932 					zero_user_segments(page,
1933 						to, block_end,
1934 						block_start, from);
1935 				continue;
1936 			}
1937 		}
1938 		if (PageUptodate(page)) {
1939 			if (!buffer_uptodate(bh))
1940 				set_buffer_uptodate(bh);
1941 			continue;
1942 		}
1943 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1944 		    !buffer_unwritten(bh) &&
1945 		     (block_start < from || block_end > to)) {
1946 			ll_rw_block(READ, 1, &bh);
1947 			*wait_bh++=bh;
1948 		}
1949 	}
1950 	/*
1951 	 * If we issued read requests - let them complete.
1952 	 */
1953 	while(wait_bh > wait) {
1954 		wait_on_buffer(*--wait_bh);
1955 		if (!buffer_uptodate(*wait_bh))
1956 			err = -EIO;
1957 	}
1958 	if (unlikely(err))
1959 		page_zero_new_buffers(page, from, to);
1960 	return err;
1961 }
1962 EXPORT_SYMBOL(__block_write_begin);
1963 
1964 static int __block_commit_write(struct inode *inode, struct page *page,
1965 		unsigned from, unsigned to)
1966 {
1967 	unsigned block_start, block_end;
1968 	int partial = 0;
1969 	unsigned blocksize;
1970 	struct buffer_head *bh, *head;
1971 
1972 	bh = head = page_buffers(page);
1973 	blocksize = bh->b_size;
1974 
1975 	block_start = 0;
1976 	do {
1977 		block_end = block_start + blocksize;
1978 		if (block_end <= from || block_start >= to) {
1979 			if (!buffer_uptodate(bh))
1980 				partial = 1;
1981 		} else {
1982 			set_buffer_uptodate(bh);
1983 			mark_buffer_dirty(bh);
1984 		}
1985 		clear_buffer_new(bh);
1986 
1987 		block_start = block_end;
1988 		bh = bh->b_this_page;
1989 	} while (bh != head);
1990 
1991 	/*
1992 	 * If this is a partial write which happened to make all buffers
1993 	 * uptodate then we can optimize away a bogus readpage() for
1994 	 * the next read(). Here we 'discover' whether the page went
1995 	 * uptodate as a result of this (potentially partial) write.
1996 	 */
1997 	if (!partial)
1998 		SetPageUptodate(page);
1999 	return 0;
2000 }
2001 
2002 /*
2003  * block_write_begin takes care of the basic task of block allocation and
2004  * bringing partial write blocks uptodate first.
2005  *
2006  * The filesystem needs to handle block truncation upon failure.
2007  */
2008 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2009 		unsigned flags, struct page **pagep, get_block_t *get_block)
2010 {
2011 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2012 	struct page *page;
2013 	int status;
2014 
2015 	page = grab_cache_page_write_begin(mapping, index, flags);
2016 	if (!page)
2017 		return -ENOMEM;
2018 
2019 	status = __block_write_begin(page, pos, len, get_block);
2020 	if (unlikely(status)) {
2021 		unlock_page(page);
2022 		page_cache_release(page);
2023 		page = NULL;
2024 	}
2025 
2026 	*pagep = page;
2027 	return status;
2028 }
2029 EXPORT_SYMBOL(block_write_begin);
2030 
2031 int block_write_end(struct file *file, struct address_space *mapping,
2032 			loff_t pos, unsigned len, unsigned copied,
2033 			struct page *page, void *fsdata)
2034 {
2035 	struct inode *inode = mapping->host;
2036 	unsigned start;
2037 
2038 	start = pos & (PAGE_CACHE_SIZE - 1);
2039 
2040 	if (unlikely(copied < len)) {
2041 		/*
2042 		 * The buffers that were written will now be uptodate, so we
2043 		 * don't have to worry about a readpage reading them and
2044 		 * overwriting a partial write. However if we have encountered
2045 		 * a short write and only partially written into a buffer, it
2046 		 * will not be marked uptodate, so a readpage might come in and
2047 		 * destroy our partial write.
2048 		 *
2049 		 * Do the simplest thing, and just treat any short write to a
2050 		 * non uptodate page as a zero-length write, and force the
2051 		 * caller to redo the whole thing.
2052 		 */
2053 		if (!PageUptodate(page))
2054 			copied = 0;
2055 
2056 		page_zero_new_buffers(page, start+copied, start+len);
2057 	}
2058 	flush_dcache_page(page);
2059 
2060 	/* This could be a short (even 0-length) commit */
2061 	__block_commit_write(inode, page, start, start+copied);
2062 
2063 	return copied;
2064 }
2065 EXPORT_SYMBOL(block_write_end);
2066 
2067 int generic_write_end(struct file *file, struct address_space *mapping,
2068 			loff_t pos, unsigned len, unsigned copied,
2069 			struct page *page, void *fsdata)
2070 {
2071 	struct inode *inode = mapping->host;
2072 	loff_t old_size = inode->i_size;
2073 	int i_size_changed = 0;
2074 
2075 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2076 
2077 	/*
2078 	 * No need to use i_size_read() here, the i_size
2079 	 * cannot change under us because we hold i_mutex.
2080 	 *
2081 	 * But it's important to update i_size while still holding page lock:
2082 	 * page writeout could otherwise come in and zero beyond i_size.
2083 	 */
2084 	if (pos+copied > inode->i_size) {
2085 		i_size_write(inode, pos+copied);
2086 		i_size_changed = 1;
2087 	}
2088 
2089 	unlock_page(page);
2090 	page_cache_release(page);
2091 
2092 	if (old_size < pos)
2093 		pagecache_isize_extended(inode, old_size, pos);
2094 	/*
2095 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2096 	 * makes the holding time of page lock longer. Second, it forces lock
2097 	 * ordering of page lock and transaction start for journaling
2098 	 * filesystems.
2099 	 */
2100 	if (i_size_changed)
2101 		mark_inode_dirty(inode);
2102 
2103 	return copied;
2104 }
2105 EXPORT_SYMBOL(generic_write_end);
2106 
2107 /*
2108  * block_is_partially_uptodate checks whether buffers within a page are
2109  * uptodate or not.
2110  *
2111  * Returns true if all buffers which correspond to a file portion
2112  * we want to read are uptodate.
2113  */
2114 int block_is_partially_uptodate(struct page *page, unsigned long from,
2115 					unsigned long count)
2116 {
2117 	unsigned block_start, block_end, blocksize;
2118 	unsigned to;
2119 	struct buffer_head *bh, *head;
2120 	int ret = 1;
2121 
2122 	if (!page_has_buffers(page))
2123 		return 0;
2124 
2125 	head = page_buffers(page);
2126 	blocksize = head->b_size;
2127 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2128 	to = from + to;
2129 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2130 		return 0;
2131 
2132 	bh = head;
2133 	block_start = 0;
2134 	do {
2135 		block_end = block_start + blocksize;
2136 		if (block_end > from && block_start < to) {
2137 			if (!buffer_uptodate(bh)) {
2138 				ret = 0;
2139 				break;
2140 			}
2141 			if (block_end >= to)
2142 				break;
2143 		}
2144 		block_start = block_end;
2145 		bh = bh->b_this_page;
2146 	} while (bh != head);
2147 
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL(block_is_partially_uptodate);
2151 
2152 /*
2153  * Generic "read page" function for block devices that have the normal
2154  * get_block functionality. This is most of the block device filesystems.
2155  * Reads the page asynchronously --- the unlock_buffer() and
2156  * set/clear_buffer_uptodate() functions propagate buffer state into the
2157  * page struct once IO has completed.
2158  */
2159 int block_read_full_page(struct page *page, get_block_t *get_block)
2160 {
2161 	struct inode *inode = page->mapping->host;
2162 	sector_t iblock, lblock;
2163 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2164 	unsigned int blocksize, bbits;
2165 	int nr, i;
2166 	int fully_mapped = 1;
2167 
2168 	head = create_page_buffers(page, inode, 0);
2169 	blocksize = head->b_size;
2170 	bbits = block_size_bits(blocksize);
2171 
2172 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2173 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2174 	bh = head;
2175 	nr = 0;
2176 	i = 0;
2177 
2178 	do {
2179 		if (buffer_uptodate(bh))
2180 			continue;
2181 
2182 		if (!buffer_mapped(bh)) {
2183 			int err = 0;
2184 
2185 			fully_mapped = 0;
2186 			if (iblock < lblock) {
2187 				WARN_ON(bh->b_size != blocksize);
2188 				err = get_block(inode, iblock, bh, 0);
2189 				if (err)
2190 					SetPageError(page);
2191 			}
2192 			if (!buffer_mapped(bh)) {
2193 				zero_user(page, i * blocksize, blocksize);
2194 				if (!err)
2195 					set_buffer_uptodate(bh);
2196 				continue;
2197 			}
2198 			/*
2199 			 * get_block() might have updated the buffer
2200 			 * synchronously
2201 			 */
2202 			if (buffer_uptodate(bh))
2203 				continue;
2204 		}
2205 		arr[nr++] = bh;
2206 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2207 
2208 	if (fully_mapped)
2209 		SetPageMappedToDisk(page);
2210 
2211 	if (!nr) {
2212 		/*
2213 		 * All buffers are uptodate - we can set the page uptodate
2214 		 * as well. But not if get_block() returned an error.
2215 		 */
2216 		if (!PageError(page))
2217 			SetPageUptodate(page);
2218 		unlock_page(page);
2219 		return 0;
2220 	}
2221 
2222 	/* Stage two: lock the buffers */
2223 	for (i = 0; i < nr; i++) {
2224 		bh = arr[i];
2225 		lock_buffer(bh);
2226 		mark_buffer_async_read(bh);
2227 	}
2228 
2229 	/*
2230 	 * Stage 3: start the IO.  Check for uptodateness
2231 	 * inside the buffer lock in case another process reading
2232 	 * the underlying blockdev brought it uptodate (the sct fix).
2233 	 */
2234 	for (i = 0; i < nr; i++) {
2235 		bh = arr[i];
2236 		if (buffer_uptodate(bh))
2237 			end_buffer_async_read(bh, 1);
2238 		else
2239 			submit_bh(READ, bh);
2240 	}
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL(block_read_full_page);
2244 
2245 /* utility function for filesystems that need to do work on expanding
2246  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2247  * deal with the hole.
2248  */
2249 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2250 {
2251 	struct address_space *mapping = inode->i_mapping;
2252 	struct page *page;
2253 	void *fsdata;
2254 	int err;
2255 
2256 	err = inode_newsize_ok(inode, size);
2257 	if (err)
2258 		goto out;
2259 
2260 	err = pagecache_write_begin(NULL, mapping, size, 0,
2261 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2262 				&page, &fsdata);
2263 	if (err)
2264 		goto out;
2265 
2266 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2267 	BUG_ON(err > 0);
2268 
2269 out:
2270 	return err;
2271 }
2272 EXPORT_SYMBOL(generic_cont_expand_simple);
2273 
2274 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2275 			    loff_t pos, loff_t *bytes)
2276 {
2277 	struct inode *inode = mapping->host;
2278 	unsigned blocksize = 1 << inode->i_blkbits;
2279 	struct page *page;
2280 	void *fsdata;
2281 	pgoff_t index, curidx;
2282 	loff_t curpos;
2283 	unsigned zerofrom, offset, len;
2284 	int err = 0;
2285 
2286 	index = pos >> PAGE_CACHE_SHIFT;
2287 	offset = pos & ~PAGE_CACHE_MASK;
2288 
2289 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2290 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2291 		if (zerofrom & (blocksize-1)) {
2292 			*bytes |= (blocksize-1);
2293 			(*bytes)++;
2294 		}
2295 		len = PAGE_CACHE_SIZE - zerofrom;
2296 
2297 		err = pagecache_write_begin(file, mapping, curpos, len,
2298 						AOP_FLAG_UNINTERRUPTIBLE,
2299 						&page, &fsdata);
2300 		if (err)
2301 			goto out;
2302 		zero_user(page, zerofrom, len);
2303 		err = pagecache_write_end(file, mapping, curpos, len, len,
2304 						page, fsdata);
2305 		if (err < 0)
2306 			goto out;
2307 		BUG_ON(err != len);
2308 		err = 0;
2309 
2310 		balance_dirty_pages_ratelimited(mapping);
2311 
2312 		if (unlikely(fatal_signal_pending(current))) {
2313 			err = -EINTR;
2314 			goto out;
2315 		}
2316 	}
2317 
2318 	/* page covers the boundary, find the boundary offset */
2319 	if (index == curidx) {
2320 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2321 		/* if we will expand the thing last block will be filled */
2322 		if (offset <= zerofrom) {
2323 			goto out;
2324 		}
2325 		if (zerofrom & (blocksize-1)) {
2326 			*bytes |= (blocksize-1);
2327 			(*bytes)++;
2328 		}
2329 		len = offset - zerofrom;
2330 
2331 		err = pagecache_write_begin(file, mapping, curpos, len,
2332 						AOP_FLAG_UNINTERRUPTIBLE,
2333 						&page, &fsdata);
2334 		if (err)
2335 			goto out;
2336 		zero_user(page, zerofrom, len);
2337 		err = pagecache_write_end(file, mapping, curpos, len, len,
2338 						page, fsdata);
2339 		if (err < 0)
2340 			goto out;
2341 		BUG_ON(err != len);
2342 		err = 0;
2343 	}
2344 out:
2345 	return err;
2346 }
2347 
2348 /*
2349  * For moronic filesystems that do not allow holes in file.
2350  * We may have to extend the file.
2351  */
2352 int cont_write_begin(struct file *file, struct address_space *mapping,
2353 			loff_t pos, unsigned len, unsigned flags,
2354 			struct page **pagep, void **fsdata,
2355 			get_block_t *get_block, loff_t *bytes)
2356 {
2357 	struct inode *inode = mapping->host;
2358 	unsigned blocksize = 1 << inode->i_blkbits;
2359 	unsigned zerofrom;
2360 	int err;
2361 
2362 	err = cont_expand_zero(file, mapping, pos, bytes);
2363 	if (err)
2364 		return err;
2365 
2366 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2367 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2368 		*bytes |= (blocksize-1);
2369 		(*bytes)++;
2370 	}
2371 
2372 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2373 }
2374 EXPORT_SYMBOL(cont_write_begin);
2375 
2376 int block_commit_write(struct page *page, unsigned from, unsigned to)
2377 {
2378 	struct inode *inode = page->mapping->host;
2379 	__block_commit_write(inode,page,from,to);
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(block_commit_write);
2383 
2384 /*
2385  * block_page_mkwrite() is not allowed to change the file size as it gets
2386  * called from a page fault handler when a page is first dirtied. Hence we must
2387  * be careful to check for EOF conditions here. We set the page up correctly
2388  * for a written page which means we get ENOSPC checking when writing into
2389  * holes and correct delalloc and unwritten extent mapping on filesystems that
2390  * support these features.
2391  *
2392  * We are not allowed to take the i_mutex here so we have to play games to
2393  * protect against truncate races as the page could now be beyond EOF.  Because
2394  * truncate writes the inode size before removing pages, once we have the
2395  * page lock we can determine safely if the page is beyond EOF. If it is not
2396  * beyond EOF, then the page is guaranteed safe against truncation until we
2397  * unlock the page.
2398  *
2399  * Direct callers of this function should protect against filesystem freezing
2400  * using sb_start_write() - sb_end_write() functions.
2401  */
2402 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2403 			 get_block_t get_block)
2404 {
2405 	struct page *page = vmf->page;
2406 	struct inode *inode = file_inode(vma->vm_file);
2407 	unsigned long end;
2408 	loff_t size;
2409 	int ret;
2410 
2411 	lock_page(page);
2412 	size = i_size_read(inode);
2413 	if ((page->mapping != inode->i_mapping) ||
2414 	    (page_offset(page) > size)) {
2415 		/* We overload EFAULT to mean page got truncated */
2416 		ret = -EFAULT;
2417 		goto out_unlock;
2418 	}
2419 
2420 	/* page is wholly or partially inside EOF */
2421 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2422 		end = size & ~PAGE_CACHE_MASK;
2423 	else
2424 		end = PAGE_CACHE_SIZE;
2425 
2426 	ret = __block_write_begin(page, 0, end, get_block);
2427 	if (!ret)
2428 		ret = block_commit_write(page, 0, end);
2429 
2430 	if (unlikely(ret < 0))
2431 		goto out_unlock;
2432 	set_page_dirty(page);
2433 	wait_for_stable_page(page);
2434 	return 0;
2435 out_unlock:
2436 	unlock_page(page);
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL(__block_page_mkwrite);
2440 
2441 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2442 		   get_block_t get_block)
2443 {
2444 	int ret;
2445 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2446 
2447 	sb_start_pagefault(sb);
2448 
2449 	/*
2450 	 * Update file times before taking page lock. We may end up failing the
2451 	 * fault so this update may be superfluous but who really cares...
2452 	 */
2453 	file_update_time(vma->vm_file);
2454 
2455 	ret = __block_page_mkwrite(vma, vmf, get_block);
2456 	sb_end_pagefault(sb);
2457 	return block_page_mkwrite_return(ret);
2458 }
2459 EXPORT_SYMBOL(block_page_mkwrite);
2460 
2461 /*
2462  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2463  * immediately, while under the page lock.  So it needs a special end_io
2464  * handler which does not touch the bh after unlocking it.
2465  */
2466 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2467 {
2468 	__end_buffer_read_notouch(bh, uptodate);
2469 }
2470 
2471 /*
2472  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2473  * the page (converting it to circular linked list and taking care of page
2474  * dirty races).
2475  */
2476 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2477 {
2478 	struct buffer_head *bh;
2479 
2480 	BUG_ON(!PageLocked(page));
2481 
2482 	spin_lock(&page->mapping->private_lock);
2483 	bh = head;
2484 	do {
2485 		if (PageDirty(page))
2486 			set_buffer_dirty(bh);
2487 		if (!bh->b_this_page)
2488 			bh->b_this_page = head;
2489 		bh = bh->b_this_page;
2490 	} while (bh != head);
2491 	attach_page_buffers(page, head);
2492 	spin_unlock(&page->mapping->private_lock);
2493 }
2494 
2495 /*
2496  * On entry, the page is fully not uptodate.
2497  * On exit the page is fully uptodate in the areas outside (from,to)
2498  * The filesystem needs to handle block truncation upon failure.
2499  */
2500 int nobh_write_begin(struct address_space *mapping,
2501 			loff_t pos, unsigned len, unsigned flags,
2502 			struct page **pagep, void **fsdata,
2503 			get_block_t *get_block)
2504 {
2505 	struct inode *inode = mapping->host;
2506 	const unsigned blkbits = inode->i_blkbits;
2507 	const unsigned blocksize = 1 << blkbits;
2508 	struct buffer_head *head, *bh;
2509 	struct page *page;
2510 	pgoff_t index;
2511 	unsigned from, to;
2512 	unsigned block_in_page;
2513 	unsigned block_start, block_end;
2514 	sector_t block_in_file;
2515 	int nr_reads = 0;
2516 	int ret = 0;
2517 	int is_mapped_to_disk = 1;
2518 
2519 	index = pos >> PAGE_CACHE_SHIFT;
2520 	from = pos & (PAGE_CACHE_SIZE - 1);
2521 	to = from + len;
2522 
2523 	page = grab_cache_page_write_begin(mapping, index, flags);
2524 	if (!page)
2525 		return -ENOMEM;
2526 	*pagep = page;
2527 	*fsdata = NULL;
2528 
2529 	if (page_has_buffers(page)) {
2530 		ret = __block_write_begin(page, pos, len, get_block);
2531 		if (unlikely(ret))
2532 			goto out_release;
2533 		return ret;
2534 	}
2535 
2536 	if (PageMappedToDisk(page))
2537 		return 0;
2538 
2539 	/*
2540 	 * Allocate buffers so that we can keep track of state, and potentially
2541 	 * attach them to the page if an error occurs. In the common case of
2542 	 * no error, they will just be freed again without ever being attached
2543 	 * to the page (which is all OK, because we're under the page lock).
2544 	 *
2545 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2546 	 * than the circular one we're used to.
2547 	 */
2548 	head = alloc_page_buffers(page, blocksize, 0);
2549 	if (!head) {
2550 		ret = -ENOMEM;
2551 		goto out_release;
2552 	}
2553 
2554 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2555 
2556 	/*
2557 	 * We loop across all blocks in the page, whether or not they are
2558 	 * part of the affected region.  This is so we can discover if the
2559 	 * page is fully mapped-to-disk.
2560 	 */
2561 	for (block_start = 0, block_in_page = 0, bh = head;
2562 		  block_start < PAGE_CACHE_SIZE;
2563 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2564 		int create;
2565 
2566 		block_end = block_start + blocksize;
2567 		bh->b_state = 0;
2568 		create = 1;
2569 		if (block_start >= to)
2570 			create = 0;
2571 		ret = get_block(inode, block_in_file + block_in_page,
2572 					bh, create);
2573 		if (ret)
2574 			goto failed;
2575 		if (!buffer_mapped(bh))
2576 			is_mapped_to_disk = 0;
2577 		if (buffer_new(bh))
2578 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2579 		if (PageUptodate(page)) {
2580 			set_buffer_uptodate(bh);
2581 			continue;
2582 		}
2583 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2584 			zero_user_segments(page, block_start, from,
2585 							to, block_end);
2586 			continue;
2587 		}
2588 		if (buffer_uptodate(bh))
2589 			continue;	/* reiserfs does this */
2590 		if (block_start < from || block_end > to) {
2591 			lock_buffer(bh);
2592 			bh->b_end_io = end_buffer_read_nobh;
2593 			submit_bh(READ, bh);
2594 			nr_reads++;
2595 		}
2596 	}
2597 
2598 	if (nr_reads) {
2599 		/*
2600 		 * The page is locked, so these buffers are protected from
2601 		 * any VM or truncate activity.  Hence we don't need to care
2602 		 * for the buffer_head refcounts.
2603 		 */
2604 		for (bh = head; bh; bh = bh->b_this_page) {
2605 			wait_on_buffer(bh);
2606 			if (!buffer_uptodate(bh))
2607 				ret = -EIO;
2608 		}
2609 		if (ret)
2610 			goto failed;
2611 	}
2612 
2613 	if (is_mapped_to_disk)
2614 		SetPageMappedToDisk(page);
2615 
2616 	*fsdata = head; /* to be released by nobh_write_end */
2617 
2618 	return 0;
2619 
2620 failed:
2621 	BUG_ON(!ret);
2622 	/*
2623 	 * Error recovery is a bit difficult. We need to zero out blocks that
2624 	 * were newly allocated, and dirty them to ensure they get written out.
2625 	 * Buffers need to be attached to the page at this point, otherwise
2626 	 * the handling of potential IO errors during writeout would be hard
2627 	 * (could try doing synchronous writeout, but what if that fails too?)
2628 	 */
2629 	attach_nobh_buffers(page, head);
2630 	page_zero_new_buffers(page, from, to);
2631 
2632 out_release:
2633 	unlock_page(page);
2634 	page_cache_release(page);
2635 	*pagep = NULL;
2636 
2637 	return ret;
2638 }
2639 EXPORT_SYMBOL(nobh_write_begin);
2640 
2641 int nobh_write_end(struct file *file, struct address_space *mapping,
2642 			loff_t pos, unsigned len, unsigned copied,
2643 			struct page *page, void *fsdata)
2644 {
2645 	struct inode *inode = page->mapping->host;
2646 	struct buffer_head *head = fsdata;
2647 	struct buffer_head *bh;
2648 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2649 
2650 	if (unlikely(copied < len) && head)
2651 		attach_nobh_buffers(page, head);
2652 	if (page_has_buffers(page))
2653 		return generic_write_end(file, mapping, pos, len,
2654 					copied, page, fsdata);
2655 
2656 	SetPageUptodate(page);
2657 	set_page_dirty(page);
2658 	if (pos+copied > inode->i_size) {
2659 		i_size_write(inode, pos+copied);
2660 		mark_inode_dirty(inode);
2661 	}
2662 
2663 	unlock_page(page);
2664 	page_cache_release(page);
2665 
2666 	while (head) {
2667 		bh = head;
2668 		head = head->b_this_page;
2669 		free_buffer_head(bh);
2670 	}
2671 
2672 	return copied;
2673 }
2674 EXPORT_SYMBOL(nobh_write_end);
2675 
2676 /*
2677  * nobh_writepage() - based on block_full_write_page() except
2678  * that it tries to operate without attaching bufferheads to
2679  * the page.
2680  */
2681 int nobh_writepage(struct page *page, get_block_t *get_block,
2682 			struct writeback_control *wbc)
2683 {
2684 	struct inode * const inode = page->mapping->host;
2685 	loff_t i_size = i_size_read(inode);
2686 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2687 	unsigned offset;
2688 	int ret;
2689 
2690 	/* Is the page fully inside i_size? */
2691 	if (page->index < end_index)
2692 		goto out;
2693 
2694 	/* Is the page fully outside i_size? (truncate in progress) */
2695 	offset = i_size & (PAGE_CACHE_SIZE-1);
2696 	if (page->index >= end_index+1 || !offset) {
2697 		/*
2698 		 * The page may have dirty, unmapped buffers.  For example,
2699 		 * they may have been added in ext3_writepage().  Make them
2700 		 * freeable here, so the page does not leak.
2701 		 */
2702 #if 0
2703 		/* Not really sure about this  - do we need this ? */
2704 		if (page->mapping->a_ops->invalidatepage)
2705 			page->mapping->a_ops->invalidatepage(page, offset);
2706 #endif
2707 		unlock_page(page);
2708 		return 0; /* don't care */
2709 	}
2710 
2711 	/*
2712 	 * The page straddles i_size.  It must be zeroed out on each and every
2713 	 * writepage invocation because it may be mmapped.  "A file is mapped
2714 	 * in multiples of the page size.  For a file that is not a multiple of
2715 	 * the  page size, the remaining memory is zeroed when mapped, and
2716 	 * writes to that region are not written out to the file."
2717 	 */
2718 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2719 out:
2720 	ret = mpage_writepage(page, get_block, wbc);
2721 	if (ret == -EAGAIN)
2722 		ret = __block_write_full_page(inode, page, get_block, wbc,
2723 					      end_buffer_async_write);
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL(nobh_writepage);
2727 
2728 int nobh_truncate_page(struct address_space *mapping,
2729 			loff_t from, get_block_t *get_block)
2730 {
2731 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2732 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2733 	unsigned blocksize;
2734 	sector_t iblock;
2735 	unsigned length, pos;
2736 	struct inode *inode = mapping->host;
2737 	struct page *page;
2738 	struct buffer_head map_bh;
2739 	int err;
2740 
2741 	blocksize = 1 << inode->i_blkbits;
2742 	length = offset & (blocksize - 1);
2743 
2744 	/* Block boundary? Nothing to do */
2745 	if (!length)
2746 		return 0;
2747 
2748 	length = blocksize - length;
2749 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2750 
2751 	page = grab_cache_page(mapping, index);
2752 	err = -ENOMEM;
2753 	if (!page)
2754 		goto out;
2755 
2756 	if (page_has_buffers(page)) {
2757 has_buffers:
2758 		unlock_page(page);
2759 		page_cache_release(page);
2760 		return block_truncate_page(mapping, from, get_block);
2761 	}
2762 
2763 	/* Find the buffer that contains "offset" */
2764 	pos = blocksize;
2765 	while (offset >= pos) {
2766 		iblock++;
2767 		pos += blocksize;
2768 	}
2769 
2770 	map_bh.b_size = blocksize;
2771 	map_bh.b_state = 0;
2772 	err = get_block(inode, iblock, &map_bh, 0);
2773 	if (err)
2774 		goto unlock;
2775 	/* unmapped? It's a hole - nothing to do */
2776 	if (!buffer_mapped(&map_bh))
2777 		goto unlock;
2778 
2779 	/* Ok, it's mapped. Make sure it's up-to-date */
2780 	if (!PageUptodate(page)) {
2781 		err = mapping->a_ops->readpage(NULL, page);
2782 		if (err) {
2783 			page_cache_release(page);
2784 			goto out;
2785 		}
2786 		lock_page(page);
2787 		if (!PageUptodate(page)) {
2788 			err = -EIO;
2789 			goto unlock;
2790 		}
2791 		if (page_has_buffers(page))
2792 			goto has_buffers;
2793 	}
2794 	zero_user(page, offset, length);
2795 	set_page_dirty(page);
2796 	err = 0;
2797 
2798 unlock:
2799 	unlock_page(page);
2800 	page_cache_release(page);
2801 out:
2802 	return err;
2803 }
2804 EXPORT_SYMBOL(nobh_truncate_page);
2805 
2806 int block_truncate_page(struct address_space *mapping,
2807 			loff_t from, get_block_t *get_block)
2808 {
2809 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2810 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2811 	unsigned blocksize;
2812 	sector_t iblock;
2813 	unsigned length, pos;
2814 	struct inode *inode = mapping->host;
2815 	struct page *page;
2816 	struct buffer_head *bh;
2817 	int err;
2818 
2819 	blocksize = 1 << inode->i_blkbits;
2820 	length = offset & (blocksize - 1);
2821 
2822 	/* Block boundary? Nothing to do */
2823 	if (!length)
2824 		return 0;
2825 
2826 	length = blocksize - length;
2827 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2828 
2829 	page = grab_cache_page(mapping, index);
2830 	err = -ENOMEM;
2831 	if (!page)
2832 		goto out;
2833 
2834 	if (!page_has_buffers(page))
2835 		create_empty_buffers(page, blocksize, 0);
2836 
2837 	/* Find the buffer that contains "offset" */
2838 	bh = page_buffers(page);
2839 	pos = blocksize;
2840 	while (offset >= pos) {
2841 		bh = bh->b_this_page;
2842 		iblock++;
2843 		pos += blocksize;
2844 	}
2845 
2846 	err = 0;
2847 	if (!buffer_mapped(bh)) {
2848 		WARN_ON(bh->b_size != blocksize);
2849 		err = get_block(inode, iblock, bh, 0);
2850 		if (err)
2851 			goto unlock;
2852 		/* unmapped? It's a hole - nothing to do */
2853 		if (!buffer_mapped(bh))
2854 			goto unlock;
2855 	}
2856 
2857 	/* Ok, it's mapped. Make sure it's up-to-date */
2858 	if (PageUptodate(page))
2859 		set_buffer_uptodate(bh);
2860 
2861 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2862 		err = -EIO;
2863 		ll_rw_block(READ, 1, &bh);
2864 		wait_on_buffer(bh);
2865 		/* Uhhuh. Read error. Complain and punt. */
2866 		if (!buffer_uptodate(bh))
2867 			goto unlock;
2868 	}
2869 
2870 	zero_user(page, offset, length);
2871 	mark_buffer_dirty(bh);
2872 	err = 0;
2873 
2874 unlock:
2875 	unlock_page(page);
2876 	page_cache_release(page);
2877 out:
2878 	return err;
2879 }
2880 EXPORT_SYMBOL(block_truncate_page);
2881 
2882 /*
2883  * The generic ->writepage function for buffer-backed address_spaces
2884  */
2885 int block_write_full_page(struct page *page, get_block_t *get_block,
2886 			struct writeback_control *wbc)
2887 {
2888 	struct inode * const inode = page->mapping->host;
2889 	loff_t i_size = i_size_read(inode);
2890 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2891 	unsigned offset;
2892 
2893 	/* Is the page fully inside i_size? */
2894 	if (page->index < end_index)
2895 		return __block_write_full_page(inode, page, get_block, wbc,
2896 					       end_buffer_async_write);
2897 
2898 	/* Is the page fully outside i_size? (truncate in progress) */
2899 	offset = i_size & (PAGE_CACHE_SIZE-1);
2900 	if (page->index >= end_index+1 || !offset) {
2901 		/*
2902 		 * The page may have dirty, unmapped buffers.  For example,
2903 		 * they may have been added in ext3_writepage().  Make them
2904 		 * freeable here, so the page does not leak.
2905 		 */
2906 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2907 		unlock_page(page);
2908 		return 0; /* don't care */
2909 	}
2910 
2911 	/*
2912 	 * The page straddles i_size.  It must be zeroed out on each and every
2913 	 * writepage invocation because it may be mmapped.  "A file is mapped
2914 	 * in multiples of the page size.  For a file that is not a multiple of
2915 	 * the  page size, the remaining memory is zeroed when mapped, and
2916 	 * writes to that region are not written out to the file."
2917 	 */
2918 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2919 	return __block_write_full_page(inode, page, get_block, wbc,
2920 							end_buffer_async_write);
2921 }
2922 EXPORT_SYMBOL(block_write_full_page);
2923 
2924 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2925 			    get_block_t *get_block)
2926 {
2927 	struct buffer_head tmp;
2928 	struct inode *inode = mapping->host;
2929 	tmp.b_state = 0;
2930 	tmp.b_blocknr = 0;
2931 	tmp.b_size = 1 << inode->i_blkbits;
2932 	get_block(inode, block, &tmp, 0);
2933 	return tmp.b_blocknr;
2934 }
2935 EXPORT_SYMBOL(generic_block_bmap);
2936 
2937 static void end_bio_bh_io_sync(struct bio *bio, int err)
2938 {
2939 	struct buffer_head *bh = bio->bi_private;
2940 
2941 	if (err == -EOPNOTSUPP) {
2942 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2943 	}
2944 
2945 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2946 		set_bit(BH_Quiet, &bh->b_state);
2947 
2948 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2949 	bio_put(bio);
2950 }
2951 
2952 /*
2953  * This allows us to do IO even on the odd last sectors
2954  * of a device, even if the block size is some multiple
2955  * of the physical sector size.
2956  *
2957  * We'll just truncate the bio to the size of the device,
2958  * and clear the end of the buffer head manually.
2959  *
2960  * Truly out-of-range accesses will turn into actual IO
2961  * errors, this only handles the "we need to be able to
2962  * do IO at the final sector" case.
2963  */
2964 void guard_bio_eod(int rw, struct bio *bio)
2965 {
2966 	sector_t maxsector;
2967 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2968 	unsigned truncated_bytes;
2969 
2970 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2971 	if (!maxsector)
2972 		return;
2973 
2974 	/*
2975 	 * If the *whole* IO is past the end of the device,
2976 	 * let it through, and the IO layer will turn it into
2977 	 * an EIO.
2978 	 */
2979 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2980 		return;
2981 
2982 	maxsector -= bio->bi_iter.bi_sector;
2983 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2984 		return;
2985 
2986 	/* Uhhuh. We've got a bio that straddles the device size! */
2987 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2988 
2989 	/* Truncate the bio.. */
2990 	bio->bi_iter.bi_size -= truncated_bytes;
2991 	bvec->bv_len -= truncated_bytes;
2992 
2993 	/* ..and clear the end of the buffer for reads */
2994 	if ((rw & RW_MASK) == READ) {
2995 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2996 				truncated_bytes);
2997 	}
2998 }
2999 
3000 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3001 {
3002 	struct bio *bio;
3003 	int ret = 0;
3004 
3005 	BUG_ON(!buffer_locked(bh));
3006 	BUG_ON(!buffer_mapped(bh));
3007 	BUG_ON(!bh->b_end_io);
3008 	BUG_ON(buffer_delay(bh));
3009 	BUG_ON(buffer_unwritten(bh));
3010 
3011 	/*
3012 	 * Only clear out a write error when rewriting
3013 	 */
3014 	if (test_set_buffer_req(bh) && (rw & WRITE))
3015 		clear_buffer_write_io_error(bh);
3016 
3017 	/*
3018 	 * from here on down, it's all bio -- do the initial mapping,
3019 	 * submit_bio -> generic_make_request may further map this bio around
3020 	 */
3021 	bio = bio_alloc(GFP_NOIO, 1);
3022 
3023 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3024 	bio->bi_bdev = bh->b_bdev;
3025 	bio->bi_io_vec[0].bv_page = bh->b_page;
3026 	bio->bi_io_vec[0].bv_len = bh->b_size;
3027 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3028 
3029 	bio->bi_vcnt = 1;
3030 	bio->bi_iter.bi_size = bh->b_size;
3031 
3032 	bio->bi_end_io = end_bio_bh_io_sync;
3033 	bio->bi_private = bh;
3034 	bio->bi_flags |= bio_flags;
3035 
3036 	/* Take care of bh's that straddle the end of the device */
3037 	guard_bio_eod(rw, bio);
3038 
3039 	if (buffer_meta(bh))
3040 		rw |= REQ_META;
3041 	if (buffer_prio(bh))
3042 		rw |= REQ_PRIO;
3043 
3044 	bio_get(bio);
3045 	submit_bio(rw, bio);
3046 
3047 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3048 		ret = -EOPNOTSUPP;
3049 
3050 	bio_put(bio);
3051 	return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(_submit_bh);
3054 
3055 int submit_bh(int rw, struct buffer_head *bh)
3056 {
3057 	return _submit_bh(rw, bh, 0);
3058 }
3059 EXPORT_SYMBOL(submit_bh);
3060 
3061 /**
3062  * ll_rw_block: low-level access to block devices (DEPRECATED)
3063  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3064  * @nr: number of &struct buffer_heads in the array
3065  * @bhs: array of pointers to &struct buffer_head
3066  *
3067  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3069  * %READA option is described in the documentation for generic_make_request()
3070  * which ll_rw_block() calls.
3071  *
3072  * This function drops any buffer that it cannot get a lock on (with the
3073  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074  * request, and any buffer that appears to be up-to-date when doing read
3075  * request.  Further it marks as clean buffers that are processed for
3076  * writing (the buffer cache won't assume that they are actually clean
3077  * until the buffer gets unlocked).
3078  *
3079  * ll_rw_block sets b_end_io to simple completion handler that marks
3080  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3081  * any waiters.
3082  *
3083  * All of the buffers must be for the same device, and must also be a
3084  * multiple of the current approved size for the device.
3085  */
3086 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3087 {
3088 	int i;
3089 
3090 	for (i = 0; i < nr; i++) {
3091 		struct buffer_head *bh = bhs[i];
3092 
3093 		if (!trylock_buffer(bh))
3094 			continue;
3095 		if (rw == WRITE) {
3096 			if (test_clear_buffer_dirty(bh)) {
3097 				bh->b_end_io = end_buffer_write_sync;
3098 				get_bh(bh);
3099 				submit_bh(WRITE, bh);
3100 				continue;
3101 			}
3102 		} else {
3103 			if (!buffer_uptodate(bh)) {
3104 				bh->b_end_io = end_buffer_read_sync;
3105 				get_bh(bh);
3106 				submit_bh(rw, bh);
3107 				continue;
3108 			}
3109 		}
3110 		unlock_buffer(bh);
3111 	}
3112 }
3113 EXPORT_SYMBOL(ll_rw_block);
3114 
3115 void write_dirty_buffer(struct buffer_head *bh, int rw)
3116 {
3117 	lock_buffer(bh);
3118 	if (!test_clear_buffer_dirty(bh)) {
3119 		unlock_buffer(bh);
3120 		return;
3121 	}
3122 	bh->b_end_io = end_buffer_write_sync;
3123 	get_bh(bh);
3124 	submit_bh(rw, bh);
3125 }
3126 EXPORT_SYMBOL(write_dirty_buffer);
3127 
3128 /*
3129  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130  * and then start new I/O and then wait upon it.  The caller must have a ref on
3131  * the buffer_head.
3132  */
3133 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3134 {
3135 	int ret = 0;
3136 
3137 	WARN_ON(atomic_read(&bh->b_count) < 1);
3138 	lock_buffer(bh);
3139 	if (test_clear_buffer_dirty(bh)) {
3140 		get_bh(bh);
3141 		bh->b_end_io = end_buffer_write_sync;
3142 		ret = submit_bh(rw, bh);
3143 		wait_on_buffer(bh);
3144 		if (!ret && !buffer_uptodate(bh))
3145 			ret = -EIO;
3146 	} else {
3147 		unlock_buffer(bh);
3148 	}
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL(__sync_dirty_buffer);
3152 
3153 int sync_dirty_buffer(struct buffer_head *bh)
3154 {
3155 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3156 }
3157 EXPORT_SYMBOL(sync_dirty_buffer);
3158 
3159 /*
3160  * try_to_free_buffers() checks if all the buffers on this particular page
3161  * are unused, and releases them if so.
3162  *
3163  * Exclusion against try_to_free_buffers may be obtained by either
3164  * locking the page or by holding its mapping's private_lock.
3165  *
3166  * If the page is dirty but all the buffers are clean then we need to
3167  * be sure to mark the page clean as well.  This is because the page
3168  * may be against a block device, and a later reattachment of buffers
3169  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3170  * filesystem data on the same device.
3171  *
3172  * The same applies to regular filesystem pages: if all the buffers are
3173  * clean then we set the page clean and proceed.  To do that, we require
3174  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3175  * private_lock.
3176  *
3177  * try_to_free_buffers() is non-blocking.
3178  */
3179 static inline int buffer_busy(struct buffer_head *bh)
3180 {
3181 	return atomic_read(&bh->b_count) |
3182 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3183 }
3184 
3185 static int
3186 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3187 {
3188 	struct buffer_head *head = page_buffers(page);
3189 	struct buffer_head *bh;
3190 
3191 	bh = head;
3192 	do {
3193 		if (buffer_write_io_error(bh) && page->mapping)
3194 			set_bit(AS_EIO, &page->mapping->flags);
3195 		if (buffer_busy(bh))
3196 			goto failed;
3197 		bh = bh->b_this_page;
3198 	} while (bh != head);
3199 
3200 	do {
3201 		struct buffer_head *next = bh->b_this_page;
3202 
3203 		if (bh->b_assoc_map)
3204 			__remove_assoc_queue(bh);
3205 		bh = next;
3206 	} while (bh != head);
3207 	*buffers_to_free = head;
3208 	__clear_page_buffers(page);
3209 	return 1;
3210 failed:
3211 	return 0;
3212 }
3213 
3214 int try_to_free_buffers(struct page *page)
3215 {
3216 	struct address_space * const mapping = page->mapping;
3217 	struct buffer_head *buffers_to_free = NULL;
3218 	int ret = 0;
3219 
3220 	BUG_ON(!PageLocked(page));
3221 	if (PageWriteback(page))
3222 		return 0;
3223 
3224 	if (mapping == NULL) {		/* can this still happen? */
3225 		ret = drop_buffers(page, &buffers_to_free);
3226 		goto out;
3227 	}
3228 
3229 	spin_lock(&mapping->private_lock);
3230 	ret = drop_buffers(page, &buffers_to_free);
3231 
3232 	/*
3233 	 * If the filesystem writes its buffers by hand (eg ext3)
3234 	 * then we can have clean buffers against a dirty page.  We
3235 	 * clean the page here; otherwise the VM will never notice
3236 	 * that the filesystem did any IO at all.
3237 	 *
3238 	 * Also, during truncate, discard_buffer will have marked all
3239 	 * the page's buffers clean.  We discover that here and clean
3240 	 * the page also.
3241 	 *
3242 	 * private_lock must be held over this entire operation in order
3243 	 * to synchronise against __set_page_dirty_buffers and prevent the
3244 	 * dirty bit from being lost.
3245 	 */
3246 	if (ret && TestClearPageDirty(page))
3247 		account_page_cleaned(page, mapping);
3248 	spin_unlock(&mapping->private_lock);
3249 out:
3250 	if (buffers_to_free) {
3251 		struct buffer_head *bh = buffers_to_free;
3252 
3253 		do {
3254 			struct buffer_head *next = bh->b_this_page;
3255 			free_buffer_head(bh);
3256 			bh = next;
3257 		} while (bh != buffers_to_free);
3258 	}
3259 	return ret;
3260 }
3261 EXPORT_SYMBOL(try_to_free_buffers);
3262 
3263 /*
3264  * There are no bdflush tunables left.  But distributions are
3265  * still running obsolete flush daemons, so we terminate them here.
3266  *
3267  * Use of bdflush() is deprecated and will be removed in a future kernel.
3268  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3269  */
3270 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3271 {
3272 	static int msg_count;
3273 
3274 	if (!capable(CAP_SYS_ADMIN))
3275 		return -EPERM;
3276 
3277 	if (msg_count < 5) {
3278 		msg_count++;
3279 		printk(KERN_INFO
3280 			"warning: process `%s' used the obsolete bdflush"
3281 			" system call\n", current->comm);
3282 		printk(KERN_INFO "Fix your initscripts?\n");
3283 	}
3284 
3285 	if (func == 1)
3286 		do_exit(0);
3287 	return 0;
3288 }
3289 
3290 /*
3291  * Buffer-head allocation
3292  */
3293 static struct kmem_cache *bh_cachep __read_mostly;
3294 
3295 /*
3296  * Once the number of bh's in the machine exceeds this level, we start
3297  * stripping them in writeback.
3298  */
3299 static unsigned long max_buffer_heads;
3300 
3301 int buffer_heads_over_limit;
3302 
3303 struct bh_accounting {
3304 	int nr;			/* Number of live bh's */
3305 	int ratelimit;		/* Limit cacheline bouncing */
3306 };
3307 
3308 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3309 
3310 static void recalc_bh_state(void)
3311 {
3312 	int i;
3313 	int tot = 0;
3314 
3315 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3316 		return;
3317 	__this_cpu_write(bh_accounting.ratelimit, 0);
3318 	for_each_online_cpu(i)
3319 		tot += per_cpu(bh_accounting, i).nr;
3320 	buffer_heads_over_limit = (tot > max_buffer_heads);
3321 }
3322 
3323 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3324 {
3325 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3326 	if (ret) {
3327 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3328 		preempt_disable();
3329 		__this_cpu_inc(bh_accounting.nr);
3330 		recalc_bh_state();
3331 		preempt_enable();
3332 	}
3333 	return ret;
3334 }
3335 EXPORT_SYMBOL(alloc_buffer_head);
3336 
3337 void free_buffer_head(struct buffer_head *bh)
3338 {
3339 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3340 	kmem_cache_free(bh_cachep, bh);
3341 	preempt_disable();
3342 	__this_cpu_dec(bh_accounting.nr);
3343 	recalc_bh_state();
3344 	preempt_enable();
3345 }
3346 EXPORT_SYMBOL(free_buffer_head);
3347 
3348 static void buffer_exit_cpu(int cpu)
3349 {
3350 	int i;
3351 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3352 
3353 	for (i = 0; i < BH_LRU_SIZE; i++) {
3354 		brelse(b->bhs[i]);
3355 		b->bhs[i] = NULL;
3356 	}
3357 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3358 	per_cpu(bh_accounting, cpu).nr = 0;
3359 }
3360 
3361 static int buffer_cpu_notify(struct notifier_block *self,
3362 			      unsigned long action, void *hcpu)
3363 {
3364 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3365 		buffer_exit_cpu((unsigned long)hcpu);
3366 	return NOTIFY_OK;
3367 }
3368 
3369 /**
3370  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3371  * @bh: struct buffer_head
3372  *
3373  * Return true if the buffer is up-to-date and false,
3374  * with the buffer locked, if not.
3375  */
3376 int bh_uptodate_or_lock(struct buffer_head *bh)
3377 {
3378 	if (!buffer_uptodate(bh)) {
3379 		lock_buffer(bh);
3380 		if (!buffer_uptodate(bh))
3381 			return 0;
3382 		unlock_buffer(bh);
3383 	}
3384 	return 1;
3385 }
3386 EXPORT_SYMBOL(bh_uptodate_or_lock);
3387 
3388 /**
3389  * bh_submit_read - Submit a locked buffer for reading
3390  * @bh: struct buffer_head
3391  *
3392  * Returns zero on success and -EIO on error.
3393  */
3394 int bh_submit_read(struct buffer_head *bh)
3395 {
3396 	BUG_ON(!buffer_locked(bh));
3397 
3398 	if (buffer_uptodate(bh)) {
3399 		unlock_buffer(bh);
3400 		return 0;
3401 	}
3402 
3403 	get_bh(bh);
3404 	bh->b_end_io = end_buffer_read_sync;
3405 	submit_bh(READ, bh);
3406 	wait_on_buffer(bh);
3407 	if (buffer_uptodate(bh))
3408 		return 0;
3409 	return -EIO;
3410 }
3411 EXPORT_SYMBOL(bh_submit_read);
3412 
3413 void __init buffer_init(void)
3414 {
3415 	unsigned long nrpages;
3416 
3417 	bh_cachep = kmem_cache_create("buffer_head",
3418 			sizeof(struct buffer_head), 0,
3419 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3420 				SLAB_MEM_SPREAD),
3421 				NULL);
3422 
3423 	/*
3424 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3425 	 */
3426 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3427 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3428 	hotcpu_notifier(buffer_cpu_notify, 0);
3429 }
3430