xref: /openbmc/linux/fs/buffer.c (revision d23015c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129 	ClearPagePrivate(page);
130 	set_page_private(page, 0);
131 	put_page(page);
132 }
133 
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136 	if (!test_bit(BH_Quiet, &bh->b_state))
137 		printk_ratelimited(KERN_ERR
138 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
139 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141 
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		/* This happens, due to failed read-ahead attempts. */
156 		clear_buffer_uptodate(bh);
157 	}
158 	unlock_buffer(bh);
159 }
160 
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 	__end_buffer_read_notouch(bh, uptodate);
168 	put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171 
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 	if (uptodate) {
175 		set_buffer_uptodate(bh);
176 	} else {
177 		buffer_io_error(bh, ", lost sync page write");
178 		mark_buffer_write_io_error(bh);
179 		clear_buffer_uptodate(bh);
180 	}
181 	unlock_buffer(bh);
182 	put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185 
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199 	struct inode *bd_inode = bdev->bd_inode;
200 	struct address_space *bd_mapping = bd_inode->i_mapping;
201 	struct buffer_head *ret = NULL;
202 	pgoff_t index;
203 	struct buffer_head *bh;
204 	struct buffer_head *head;
205 	struct page *page;
206 	int all_mapped = 1;
207 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208 
209 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 	if (!page)
212 		goto out;
213 
214 	spin_lock(&bd_mapping->private_lock);
215 	if (!page_has_buffers(page))
216 		goto out_unlock;
217 	head = page_buffers(page);
218 	bh = head;
219 	do {
220 		if (!buffer_mapped(bh))
221 			all_mapped = 0;
222 		else if (bh->b_blocknr == block) {
223 			ret = bh;
224 			get_bh(bh);
225 			goto out_unlock;
226 		}
227 		bh = bh->b_this_page;
228 	} while (bh != head);
229 
230 	/* we might be here because some of the buffers on this page are
231 	 * not mapped.  This is due to various races between
232 	 * file io on the block device and getblk.  It gets dealt with
233 	 * elsewhere, don't buffer_error if we had some unmapped buffers
234 	 */
235 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 	if (all_mapped && __ratelimit(&last_warned)) {
237 		printk("__find_get_block_slow() failed. block=%llu, "
238 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 		       "device %pg blocksize: %d\n",
240 		       (unsigned long long)block,
241 		       (unsigned long long)bh->b_blocknr,
242 		       bh->b_state, bh->b_size, bdev,
243 		       1 << bd_inode->i_blkbits);
244 	}
245 out_unlock:
246 	spin_unlock(&bd_mapping->private_lock);
247 	put_page(page);
248 out:
249 	return ret;
250 }
251 
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 	unsigned long flags;
255 	struct buffer_head *first;
256 	struct buffer_head *tmp;
257 	struct page *page;
258 	int page_uptodate = 1;
259 
260 	BUG_ON(!buffer_async_read(bh));
261 
262 	page = bh->b_page;
263 	if (uptodate) {
264 		set_buffer_uptodate(bh);
265 	} else {
266 		clear_buffer_uptodate(bh);
267 		buffer_io_error(bh, ", async page read");
268 		SetPageError(page);
269 	}
270 
271 	/*
272 	 * Be _very_ careful from here on. Bad things can happen if
273 	 * two buffer heads end IO at almost the same time and both
274 	 * decide that the page is now completely done.
275 	 */
276 	first = page_buffers(page);
277 	local_irq_save(flags);
278 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 	clear_buffer_async_read(bh);
280 	unlock_buffer(bh);
281 	tmp = bh;
282 	do {
283 		if (!buffer_uptodate(tmp))
284 			page_uptodate = 0;
285 		if (buffer_async_read(tmp)) {
286 			BUG_ON(!buffer_locked(tmp));
287 			goto still_busy;
288 		}
289 		tmp = tmp->b_this_page;
290 	} while (tmp != bh);
291 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 	local_irq_restore(flags);
293 
294 	/*
295 	 * If none of the buffers had errors and they are all
296 	 * uptodate then we can set the page uptodate.
297 	 */
298 	if (page_uptodate && !PageError(page))
299 		SetPageUptodate(page);
300 	unlock_page(page);
301 	return;
302 
303 still_busy:
304 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 	local_irq_restore(flags);
306 	return;
307 }
308 
309 struct decrypt_bh_ctx {
310 	struct work_struct work;
311 	struct buffer_head *bh;
312 };
313 
314 static void decrypt_bh(struct work_struct *work)
315 {
316 	struct decrypt_bh_ctx *ctx =
317 		container_of(work, struct decrypt_bh_ctx, work);
318 	struct buffer_head *bh = ctx->bh;
319 	int err;
320 
321 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
322 					       bh_offset(bh));
323 	end_buffer_async_read(bh, err == 0);
324 	kfree(ctx);
325 }
326 
327 /*
328  * I/O completion handler for block_read_full_page() - pages
329  * which come unlocked at the end of I/O.
330  */
331 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
332 {
333 	/* Decrypt if needed */
334 	if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
335 	    IS_ENCRYPTED(bh->b_page->mapping->host) &&
336 	    S_ISREG(bh->b_page->mapping->host->i_mode)) {
337 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
338 
339 		if (ctx) {
340 			INIT_WORK(&ctx->work, decrypt_bh);
341 			ctx->bh = bh;
342 			fscrypt_enqueue_decrypt_work(&ctx->work);
343 			return;
344 		}
345 		uptodate = 0;
346 	}
347 	end_buffer_async_read(bh, uptodate);
348 }
349 
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 	unsigned long flags;
357 	struct buffer_head *first;
358 	struct buffer_head *tmp;
359 	struct page *page;
360 
361 	BUG_ON(!buffer_async_write(bh));
362 
363 	page = bh->b_page;
364 	if (uptodate) {
365 		set_buffer_uptodate(bh);
366 	} else {
367 		buffer_io_error(bh, ", lost async page write");
368 		mark_buffer_write_io_error(bh);
369 		clear_buffer_uptodate(bh);
370 		SetPageError(page);
371 	}
372 
373 	first = page_buffers(page);
374 	local_irq_save(flags);
375 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
376 
377 	clear_buffer_async_write(bh);
378 	unlock_buffer(bh);
379 	tmp = bh->b_this_page;
380 	while (tmp != bh) {
381 		if (buffer_async_write(tmp)) {
382 			BUG_ON(!buffer_locked(tmp));
383 			goto still_busy;
384 		}
385 		tmp = tmp->b_this_page;
386 	}
387 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
388 	local_irq_restore(flags);
389 	end_page_writeback(page);
390 	return;
391 
392 still_busy:
393 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
394 	local_irq_restore(flags);
395 	return;
396 }
397 EXPORT_SYMBOL(end_buffer_async_write);
398 
399 /*
400  * If a page's buffers are under async readin (end_buffer_async_read
401  * completion) then there is a possibility that another thread of
402  * control could lock one of the buffers after it has completed
403  * but while some of the other buffers have not completed.  This
404  * locked buffer would confuse end_buffer_async_read() into not unlocking
405  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
406  * that this buffer is not under async I/O.
407  *
408  * The page comes unlocked when it has no locked buffer_async buffers
409  * left.
410  *
411  * PageLocked prevents anyone starting new async I/O reads any of
412  * the buffers.
413  *
414  * PageWriteback is used to prevent simultaneous writeout of the same
415  * page.
416  *
417  * PageLocked prevents anyone from starting writeback of a page which is
418  * under read I/O (PageWriteback is only ever set against a locked page).
419  */
420 static void mark_buffer_async_read(struct buffer_head *bh)
421 {
422 	bh->b_end_io = end_buffer_async_read_io;
423 	set_buffer_async_read(bh);
424 }
425 
426 static void mark_buffer_async_write_endio(struct buffer_head *bh,
427 					  bh_end_io_t *handler)
428 {
429 	bh->b_end_io = handler;
430 	set_buffer_async_write(bh);
431 }
432 
433 void mark_buffer_async_write(struct buffer_head *bh)
434 {
435 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
436 }
437 EXPORT_SYMBOL(mark_buffer_async_write);
438 
439 
440 /*
441  * fs/buffer.c contains helper functions for buffer-backed address space's
442  * fsync functions.  A common requirement for buffer-based filesystems is
443  * that certain data from the backing blockdev needs to be written out for
444  * a successful fsync().  For example, ext2 indirect blocks need to be
445  * written back and waited upon before fsync() returns.
446  *
447  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
448  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
449  * management of a list of dependent buffers at ->i_mapping->private_list.
450  *
451  * Locking is a little subtle: try_to_free_buffers() will remove buffers
452  * from their controlling inode's queue when they are being freed.  But
453  * try_to_free_buffers() will be operating against the *blockdev* mapping
454  * at the time, not against the S_ISREG file which depends on those buffers.
455  * So the locking for private_list is via the private_lock in the address_space
456  * which backs the buffers.  Which is different from the address_space
457  * against which the buffers are listed.  So for a particular address_space,
458  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
459  * mapping->private_list will always be protected by the backing blockdev's
460  * ->private_lock.
461  *
462  * Which introduces a requirement: all buffers on an address_space's
463  * ->private_list must be from the same address_space: the blockdev's.
464  *
465  * address_spaces which do not place buffers at ->private_list via these
466  * utility functions are free to use private_lock and private_list for
467  * whatever they want.  The only requirement is that list_empty(private_list)
468  * be true at clear_inode() time.
469  *
470  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
471  * filesystems should do that.  invalidate_inode_buffers() should just go
472  * BUG_ON(!list_empty).
473  *
474  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
475  * take an address_space, not an inode.  And it should be called
476  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
477  * queued up.
478  *
479  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
480  * list if it is already on a list.  Because if the buffer is on a list,
481  * it *must* already be on the right one.  If not, the filesystem is being
482  * silly.  This will save a ton of locking.  But first we have to ensure
483  * that buffers are taken *off* the old inode's list when they are freed
484  * (presumably in truncate).  That requires careful auditing of all
485  * filesystems (do it inside bforget()).  It could also be done by bringing
486  * b_inode back.
487  */
488 
489 /*
490  * The buffer's backing address_space's private_lock must be held
491  */
492 static void __remove_assoc_queue(struct buffer_head *bh)
493 {
494 	list_del_init(&bh->b_assoc_buffers);
495 	WARN_ON(!bh->b_assoc_map);
496 	bh->b_assoc_map = NULL;
497 }
498 
499 int inode_has_buffers(struct inode *inode)
500 {
501 	return !list_empty(&inode->i_data.private_list);
502 }
503 
504 /*
505  * osync is designed to support O_SYNC io.  It waits synchronously for
506  * all already-submitted IO to complete, but does not queue any new
507  * writes to the disk.
508  *
509  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
510  * you dirty the buffers, and then use osync_inode_buffers to wait for
511  * completion.  Any other dirty buffers which are not yet queued for
512  * write will not be flushed to disk by the osync.
513  */
514 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
515 {
516 	struct buffer_head *bh;
517 	struct list_head *p;
518 	int err = 0;
519 
520 	spin_lock(lock);
521 repeat:
522 	list_for_each_prev(p, list) {
523 		bh = BH_ENTRY(p);
524 		if (buffer_locked(bh)) {
525 			get_bh(bh);
526 			spin_unlock(lock);
527 			wait_on_buffer(bh);
528 			if (!buffer_uptodate(bh))
529 				err = -EIO;
530 			brelse(bh);
531 			spin_lock(lock);
532 			goto repeat;
533 		}
534 	}
535 	spin_unlock(lock);
536 	return err;
537 }
538 
539 void emergency_thaw_bdev(struct super_block *sb)
540 {
541 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
542 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
543 }
544 
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 	struct address_space *buffer_mapping = mapping->private_data;
559 
560 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 		return 0;
562 
563 	return fsync_buffers_list(&buffer_mapping->private_lock,
564 					&mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567 
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
574 void write_boundary_block(struct block_device *bdev,
575 			sector_t bblock, unsigned blocksize)
576 {
577 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 	if (bh) {
579 		if (buffer_dirty(bh))
580 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
581 		put_bh(bh);
582 	}
583 }
584 
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 	struct address_space *mapping = inode->i_mapping;
588 	struct address_space *buffer_mapping = bh->b_page->mapping;
589 
590 	mark_buffer_dirty(bh);
591 	if (!mapping->private_data) {
592 		mapping->private_data = buffer_mapping;
593 	} else {
594 		BUG_ON(mapping->private_data != buffer_mapping);
595 	}
596 	if (!bh->b_assoc_map) {
597 		spin_lock(&buffer_mapping->private_lock);
598 		list_move_tail(&bh->b_assoc_buffers,
599 				&mapping->private_list);
600 		bh->b_assoc_map = mapping;
601 		spin_unlock(&buffer_mapping->private_lock);
602 	}
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605 
606 /*
607  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  *
613  * The caller must hold lock_page_memcg().
614  */
615 void __set_page_dirty(struct page *page, struct address_space *mapping,
616 			     int warn)
617 {
618 	unsigned long flags;
619 
620 	xa_lock_irqsave(&mapping->i_pages, flags);
621 	if (page->mapping) {	/* Race with truncate? */
622 		WARN_ON_ONCE(warn && !PageUptodate(page));
623 		account_page_dirtied(page, mapping);
624 		__xa_set_mark(&mapping->i_pages, page_index(page),
625 				PAGECACHE_TAG_DIRTY);
626 	}
627 	xa_unlock_irqrestore(&mapping->i_pages, flags);
628 }
629 EXPORT_SYMBOL_GPL(__set_page_dirty);
630 
631 /*
632  * Add a page to the dirty page list.
633  *
634  * It is a sad fact of life that this function is called from several places
635  * deeply under spinlocking.  It may not sleep.
636  *
637  * If the page has buffers, the uptodate buffers are set dirty, to preserve
638  * dirty-state coherency between the page and the buffers.  It the page does
639  * not have buffers then when they are later attached they will all be set
640  * dirty.
641  *
642  * The buffers are dirtied before the page is dirtied.  There's a small race
643  * window in which a writepage caller may see the page cleanness but not the
644  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
645  * before the buffers, a concurrent writepage caller could clear the page dirty
646  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
647  * page on the dirty page list.
648  *
649  * We use private_lock to lock against try_to_free_buffers while using the
650  * page's buffer list.  Also use this to protect against clean buffers being
651  * added to the page after it was set dirty.
652  *
653  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
654  * address_space though.
655  */
656 int __set_page_dirty_buffers(struct page *page)
657 {
658 	int newly_dirty;
659 	struct address_space *mapping = page_mapping(page);
660 
661 	if (unlikely(!mapping))
662 		return !TestSetPageDirty(page);
663 
664 	spin_lock(&mapping->private_lock);
665 	if (page_has_buffers(page)) {
666 		struct buffer_head *head = page_buffers(page);
667 		struct buffer_head *bh = head;
668 
669 		do {
670 			set_buffer_dirty(bh);
671 			bh = bh->b_this_page;
672 		} while (bh != head);
673 	}
674 	/*
675 	 * Lock out page->mem_cgroup migration to keep PageDirty
676 	 * synchronized with per-memcg dirty page counters.
677 	 */
678 	lock_page_memcg(page);
679 	newly_dirty = !TestSetPageDirty(page);
680 	spin_unlock(&mapping->private_lock);
681 
682 	if (newly_dirty)
683 		__set_page_dirty(page, mapping, 1);
684 
685 	unlock_page_memcg(page);
686 
687 	if (newly_dirty)
688 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689 
690 	return newly_dirty;
691 }
692 EXPORT_SYMBOL(__set_page_dirty_buffers);
693 
694 /*
695  * Write out and wait upon a list of buffers.
696  *
697  * We have conflicting pressures: we want to make sure that all
698  * initially dirty buffers get waited on, but that any subsequently
699  * dirtied buffers don't.  After all, we don't want fsync to last
700  * forever if somebody is actively writing to the file.
701  *
702  * Do this in two main stages: first we copy dirty buffers to a
703  * temporary inode list, queueing the writes as we go.  Then we clean
704  * up, waiting for those writes to complete.
705  *
706  * During this second stage, any subsequent updates to the file may end
707  * up refiling the buffer on the original inode's dirty list again, so
708  * there is a chance we will end up with a buffer queued for write but
709  * not yet completed on that list.  So, as a final cleanup we go through
710  * the osync code to catch these locked, dirty buffers without requeuing
711  * any newly dirty buffers for write.
712  */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715 	struct buffer_head *bh;
716 	struct list_head tmp;
717 	struct address_space *mapping;
718 	int err = 0, err2;
719 	struct blk_plug plug;
720 
721 	INIT_LIST_HEAD(&tmp);
722 	blk_start_plug(&plug);
723 
724 	spin_lock(lock);
725 	while (!list_empty(list)) {
726 		bh = BH_ENTRY(list->next);
727 		mapping = bh->b_assoc_map;
728 		__remove_assoc_queue(bh);
729 		/* Avoid race with mark_buffer_dirty_inode() which does
730 		 * a lockless check and we rely on seeing the dirty bit */
731 		smp_mb();
732 		if (buffer_dirty(bh) || buffer_locked(bh)) {
733 			list_add(&bh->b_assoc_buffers, &tmp);
734 			bh->b_assoc_map = mapping;
735 			if (buffer_dirty(bh)) {
736 				get_bh(bh);
737 				spin_unlock(lock);
738 				/*
739 				 * Ensure any pending I/O completes so that
740 				 * write_dirty_buffer() actually writes the
741 				 * current contents - it is a noop if I/O is
742 				 * still in flight on potentially older
743 				 * contents.
744 				 */
745 				write_dirty_buffer(bh, REQ_SYNC);
746 
747 				/*
748 				 * Kick off IO for the previous mapping. Note
749 				 * that we will not run the very last mapping,
750 				 * wait_on_buffer() will do that for us
751 				 * through sync_buffer().
752 				 */
753 				brelse(bh);
754 				spin_lock(lock);
755 			}
756 		}
757 	}
758 
759 	spin_unlock(lock);
760 	blk_finish_plug(&plug);
761 	spin_lock(lock);
762 
763 	while (!list_empty(&tmp)) {
764 		bh = BH_ENTRY(tmp.prev);
765 		get_bh(bh);
766 		mapping = bh->b_assoc_map;
767 		__remove_assoc_queue(bh);
768 		/* Avoid race with mark_buffer_dirty_inode() which does
769 		 * a lockless check and we rely on seeing the dirty bit */
770 		smp_mb();
771 		if (buffer_dirty(bh)) {
772 			list_add(&bh->b_assoc_buffers,
773 				 &mapping->private_list);
774 			bh->b_assoc_map = mapping;
775 		}
776 		spin_unlock(lock);
777 		wait_on_buffer(bh);
778 		if (!buffer_uptodate(bh))
779 			err = -EIO;
780 		brelse(bh);
781 		spin_lock(lock);
782 	}
783 
784 	spin_unlock(lock);
785 	err2 = osync_buffers_list(lock, list);
786 	if (err)
787 		return err;
788 	else
789 		return err2;
790 }
791 
792 /*
793  * Invalidate any and all dirty buffers on a given inode.  We are
794  * probably unmounting the fs, but that doesn't mean we have already
795  * done a sync().  Just drop the buffers from the inode list.
796  *
797  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
798  * assumes that all the buffers are against the blockdev.  Not true
799  * for reiserfs.
800  */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803 	if (inode_has_buffers(inode)) {
804 		struct address_space *mapping = &inode->i_data;
805 		struct list_head *list = &mapping->private_list;
806 		struct address_space *buffer_mapping = mapping->private_data;
807 
808 		spin_lock(&buffer_mapping->private_lock);
809 		while (!list_empty(list))
810 			__remove_assoc_queue(BH_ENTRY(list->next));
811 		spin_unlock(&buffer_mapping->private_lock);
812 	}
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815 
816 /*
817  * Remove any clean buffers from the inode's buffer list.  This is called
818  * when we're trying to free the inode itself.  Those buffers can pin it.
819  *
820  * Returns true if all buffers were removed.
821  */
822 int remove_inode_buffers(struct inode *inode)
823 {
824 	int ret = 1;
825 
826 	if (inode_has_buffers(inode)) {
827 		struct address_space *mapping = &inode->i_data;
828 		struct list_head *list = &mapping->private_list;
829 		struct address_space *buffer_mapping = mapping->private_data;
830 
831 		spin_lock(&buffer_mapping->private_lock);
832 		while (!list_empty(list)) {
833 			struct buffer_head *bh = BH_ENTRY(list->next);
834 			if (buffer_dirty(bh)) {
835 				ret = 0;
836 				break;
837 			}
838 			__remove_assoc_queue(bh);
839 		}
840 		spin_unlock(&buffer_mapping->private_lock);
841 	}
842 	return ret;
843 }
844 
845 /*
846  * Create the appropriate buffers when given a page for data area and
847  * the size of each buffer.. Use the bh->b_this_page linked list to
848  * follow the buffers created.  Return NULL if unable to create more
849  * buffers.
850  *
851  * The retry flag is used to differentiate async IO (paging, swapping)
852  * which may not fail from ordinary buffer allocations.
853  */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855 		bool retry)
856 {
857 	struct buffer_head *bh, *head;
858 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 	long offset;
860 	struct mem_cgroup *memcg;
861 
862 	if (retry)
863 		gfp |= __GFP_NOFAIL;
864 
865 	memcg = get_mem_cgroup_from_page(page);
866 	memalloc_use_memcg(memcg);
867 
868 	head = NULL;
869 	offset = PAGE_SIZE;
870 	while ((offset -= size) >= 0) {
871 		bh = alloc_buffer_head(gfp);
872 		if (!bh)
873 			goto no_grow;
874 
875 		bh->b_this_page = head;
876 		bh->b_blocknr = -1;
877 		head = bh;
878 
879 		bh->b_size = size;
880 
881 		/* Link the buffer to its page */
882 		set_bh_page(bh, page, offset);
883 	}
884 out:
885 	memalloc_unuse_memcg();
886 	mem_cgroup_put(memcg);
887 	return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892 	if (head) {
893 		do {
894 			bh = head;
895 			head = head->b_this_page;
896 			free_buffer_head(bh);
897 		} while (head);
898 	}
899 
900 	goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903 
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 	struct buffer_head *bh, *tail;
908 
909 	bh = head;
910 	do {
911 		tail = bh;
912 		bh = bh->b_this_page;
913 	} while (bh);
914 	tail->b_this_page = head;
915 	attach_page_buffers(page, head);
916 }
917 
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 	sector_t retval = ~((sector_t)0);
921 	loff_t sz = i_size_read(bdev->bd_inode);
922 
923 	if (sz) {
924 		unsigned int sizebits = blksize_bits(size);
925 		retval = (sz >> sizebits);
926 	}
927 	return retval;
928 }
929 
930 /*
931  * Initialise the state of a blockdev page's buffers.
932  */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 			sector_t block, int size)
936 {
937 	struct buffer_head *head = page_buffers(page);
938 	struct buffer_head *bh = head;
939 	int uptodate = PageUptodate(page);
940 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941 
942 	do {
943 		if (!buffer_mapped(bh)) {
944 			bh->b_end_io = NULL;
945 			bh->b_private = NULL;
946 			bh->b_bdev = bdev;
947 			bh->b_blocknr = block;
948 			if (uptodate)
949 				set_buffer_uptodate(bh);
950 			if (block < end_block)
951 				set_buffer_mapped(bh);
952 		}
953 		block++;
954 		bh = bh->b_this_page;
955 	} while (bh != head);
956 
957 	/*
958 	 * Caller needs to validate requested block against end of device.
959 	 */
960 	return end_block;
961 }
962 
963 /*
964  * Create the page-cache page that contains the requested block.
965  *
966  * This is used purely for blockdev mappings.
967  */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972 	struct inode *inode = bdev->bd_inode;
973 	struct page *page;
974 	struct buffer_head *bh;
975 	sector_t end_block;
976 	int ret = 0;		/* Will call free_more_memory() */
977 	gfp_t gfp_mask;
978 
979 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980 
981 	/*
982 	 * XXX: __getblk_slow() can not really deal with failure and
983 	 * will endlessly loop on improvised global reclaim.  Prefer
984 	 * looping in the allocator rather than here, at least that
985 	 * code knows what it's doing.
986 	 */
987 	gfp_mask |= __GFP_NOFAIL;
988 
989 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990 
991 	BUG_ON(!PageLocked(page));
992 
993 	if (page_has_buffers(page)) {
994 		bh = page_buffers(page);
995 		if (bh->b_size == size) {
996 			end_block = init_page_buffers(page, bdev,
997 						(sector_t)index << sizebits,
998 						size);
999 			goto done;
1000 		}
1001 		if (!try_to_free_buffers(page))
1002 			goto failed;
1003 	}
1004 
1005 	/*
1006 	 * Allocate some buffers for this page
1007 	 */
1008 	bh = alloc_page_buffers(page, size, true);
1009 
1010 	/*
1011 	 * Link the page to the buffers and initialise them.  Take the
1012 	 * lock to be atomic wrt __find_get_block(), which does not
1013 	 * run under the page lock.
1014 	 */
1015 	spin_lock(&inode->i_mapping->private_lock);
1016 	link_dev_buffers(page, bh);
1017 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018 			size);
1019 	spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 	ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 	unlock_page(page);
1024 	put_page(page);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035 	pgoff_t index;
1036 	int sizebits;
1037 
1038 	sizebits = -1;
1039 	do {
1040 		sizebits++;
1041 	} while ((size << sizebits) < PAGE_SIZE);
1042 
1043 	index = block >> sizebits;
1044 
1045 	/*
1046 	 * Check for a block which wants to lie outside our maximum possible
1047 	 * pagecache index.  (this comparison is done using sector_t types).
1048 	 */
1049 	if (unlikely(index != block >> sizebits)) {
1050 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051 			"device %pg\n",
1052 			__func__, (unsigned long long)block,
1053 			bdev);
1054 		return -EIO;
1055 	}
1056 
1057 	/* Create a page with the proper size buffers.. */
1058 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1059 }
1060 
1061 static struct buffer_head *
1062 __getblk_slow(struct block_device *bdev, sector_t block,
1063 	     unsigned size, gfp_t gfp)
1064 {
1065 	/* Size must be multiple of hard sectorsize */
1066 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067 			(size < 512 || size > PAGE_SIZE))) {
1068 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069 					size);
1070 		printk(KERN_ERR "logical block size: %d\n",
1071 					bdev_logical_block_size(bdev));
1072 
1073 		dump_stack();
1074 		return NULL;
1075 	}
1076 
1077 	for (;;) {
1078 		struct buffer_head *bh;
1079 		int ret;
1080 
1081 		bh = __find_get_block(bdev, block, size);
1082 		if (bh)
1083 			return bh;
1084 
1085 		ret = grow_buffers(bdev, block, size, gfp);
1086 		if (ret < 0)
1087 			return NULL;
1088 	}
1089 }
1090 
1091 /*
1092  * The relationship between dirty buffers and dirty pages:
1093  *
1094  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095  * the page is tagged dirty in the page cache.
1096  *
1097  * At all times, the dirtiness of the buffers represents the dirtiness of
1098  * subsections of the page.  If the page has buffers, the page dirty bit is
1099  * merely a hint about the true dirty state.
1100  *
1101  * When a page is set dirty in its entirety, all its buffers are marked dirty
1102  * (if the page has buffers).
1103  *
1104  * When a buffer is marked dirty, its page is dirtied, but the page's other
1105  * buffers are not.
1106  *
1107  * Also.  When blockdev buffers are explicitly read with bread(), they
1108  * individually become uptodate.  But their backing page remains not
1109  * uptodate - even if all of its buffers are uptodate.  A subsequent
1110  * block_read_full_page() against that page will discover all the uptodate
1111  * buffers, will set the page uptodate and will perform no I/O.
1112  */
1113 
1114 /**
1115  * mark_buffer_dirty - mark a buffer_head as needing writeout
1116  * @bh: the buffer_head to mark dirty
1117  *
1118  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119  * its backing page dirty, then tag the page as dirty in the page cache
1120  * and then attach the address_space's inode to its superblock's dirty
1121  * inode list.
1122  *
1123  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1124  * i_pages lock and mapping->host->i_lock.
1125  */
1126 void mark_buffer_dirty(struct buffer_head *bh)
1127 {
1128 	WARN_ON_ONCE(!buffer_uptodate(bh));
1129 
1130 	trace_block_dirty_buffer(bh);
1131 
1132 	/*
1133 	 * Very *carefully* optimize the it-is-already-dirty case.
1134 	 *
1135 	 * Don't let the final "is it dirty" escape to before we
1136 	 * perhaps modified the buffer.
1137 	 */
1138 	if (buffer_dirty(bh)) {
1139 		smp_mb();
1140 		if (buffer_dirty(bh))
1141 			return;
1142 	}
1143 
1144 	if (!test_set_buffer_dirty(bh)) {
1145 		struct page *page = bh->b_page;
1146 		struct address_space *mapping = NULL;
1147 
1148 		lock_page_memcg(page);
1149 		if (!TestSetPageDirty(page)) {
1150 			mapping = page_mapping(page);
1151 			if (mapping)
1152 				__set_page_dirty(page, mapping, 0);
1153 		}
1154 		unlock_page_memcg(page);
1155 		if (mapping)
1156 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1157 	}
1158 }
1159 EXPORT_SYMBOL(mark_buffer_dirty);
1160 
1161 void mark_buffer_write_io_error(struct buffer_head *bh)
1162 {
1163 	set_buffer_write_io_error(bh);
1164 	/* FIXME: do we need to set this in both places? */
1165 	if (bh->b_page && bh->b_page->mapping)
1166 		mapping_set_error(bh->b_page->mapping, -EIO);
1167 	if (bh->b_assoc_map)
1168 		mapping_set_error(bh->b_assoc_map, -EIO);
1169 }
1170 EXPORT_SYMBOL(mark_buffer_write_io_error);
1171 
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181 	if (atomic_read(&buf->b_count)) {
1182 		put_bh(buf);
1183 		return;
1184 	}
1185 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186 }
1187 EXPORT_SYMBOL(__brelse);
1188 
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195 	clear_buffer_dirty(bh);
1196 	if (bh->b_assoc_map) {
1197 		struct address_space *buffer_mapping = bh->b_page->mapping;
1198 
1199 		spin_lock(&buffer_mapping->private_lock);
1200 		list_del_init(&bh->b_assoc_buffers);
1201 		bh->b_assoc_map = NULL;
1202 		spin_unlock(&buffer_mapping->private_lock);
1203 	}
1204 	__brelse(bh);
1205 }
1206 EXPORT_SYMBOL(__bforget);
1207 
1208 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1209 {
1210 	lock_buffer(bh);
1211 	if (buffer_uptodate(bh)) {
1212 		unlock_buffer(bh);
1213 		return bh;
1214 	} else {
1215 		get_bh(bh);
1216 		bh->b_end_io = end_buffer_read_sync;
1217 		submit_bh(REQ_OP_READ, 0, bh);
1218 		wait_on_buffer(bh);
1219 		if (buffer_uptodate(bh))
1220 			return bh;
1221 	}
1222 	brelse(bh);
1223 	return NULL;
1224 }
1225 
1226 /*
1227  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1228  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1229  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1230  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1231  * CPU's LRUs at the same time.
1232  *
1233  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234  * sb_find_get_block().
1235  *
1236  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1237  * a local interrupt disable for that.
1238  */
1239 
1240 #define BH_LRU_SIZE	16
1241 
1242 struct bh_lru {
1243 	struct buffer_head *bhs[BH_LRU_SIZE];
1244 };
1245 
1246 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1247 
1248 #ifdef CONFIG_SMP
1249 #define bh_lru_lock()	local_irq_disable()
1250 #define bh_lru_unlock()	local_irq_enable()
1251 #else
1252 #define bh_lru_lock()	preempt_disable()
1253 #define bh_lru_unlock()	preempt_enable()
1254 #endif
1255 
1256 static inline void check_irqs_on(void)
1257 {
1258 #ifdef irqs_disabled
1259 	BUG_ON(irqs_disabled());
1260 #endif
1261 }
1262 
1263 /*
1264  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1265  * inserted at the front, and the buffer_head at the back if any is evicted.
1266  * Or, if already in the LRU it is moved to the front.
1267  */
1268 static void bh_lru_install(struct buffer_head *bh)
1269 {
1270 	struct buffer_head *evictee = bh;
1271 	struct bh_lru *b;
1272 	int i;
1273 
1274 	check_irqs_on();
1275 	bh_lru_lock();
1276 
1277 	b = this_cpu_ptr(&bh_lrus);
1278 	for (i = 0; i < BH_LRU_SIZE; i++) {
1279 		swap(evictee, b->bhs[i]);
1280 		if (evictee == bh) {
1281 			bh_lru_unlock();
1282 			return;
1283 		}
1284 	}
1285 
1286 	get_bh(bh);
1287 	bh_lru_unlock();
1288 	brelse(evictee);
1289 }
1290 
1291 /*
1292  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1293  */
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296 {
1297 	struct buffer_head *ret = NULL;
1298 	unsigned int i;
1299 
1300 	check_irqs_on();
1301 	bh_lru_lock();
1302 	for (i = 0; i < BH_LRU_SIZE; i++) {
1303 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1304 
1305 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1306 		    bh->b_size == size) {
1307 			if (i) {
1308 				while (i) {
1309 					__this_cpu_write(bh_lrus.bhs[i],
1310 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1311 					i--;
1312 				}
1313 				__this_cpu_write(bh_lrus.bhs[0], bh);
1314 			}
1315 			get_bh(bh);
1316 			ret = bh;
1317 			break;
1318 		}
1319 	}
1320 	bh_lru_unlock();
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1326  * it in the LRU and mark it as accessed.  If it is not present then return
1327  * NULL
1328  */
1329 struct buffer_head *
1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333 
1334 	if (bh == NULL) {
1335 		/* __find_get_block_slow will mark the page accessed */
1336 		bh = __find_get_block_slow(bdev, block);
1337 		if (bh)
1338 			bh_lru_install(bh);
1339 	} else
1340 		touch_buffer(bh);
1341 
1342 	return bh;
1343 }
1344 EXPORT_SYMBOL(__find_get_block);
1345 
1346 /*
1347  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348  * which corresponds to the passed block_device, block and size. The
1349  * returned buffer has its reference count incremented.
1350  *
1351  * __getblk_gfp() will lock up the machine if grow_dev_page's
1352  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1353  */
1354 struct buffer_head *
1355 __getblk_gfp(struct block_device *bdev, sector_t block,
1356 	     unsigned size, gfp_t gfp)
1357 {
1358 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1359 
1360 	might_sleep();
1361 	if (bh == NULL)
1362 		bh = __getblk_slow(bdev, block, size, gfp);
1363 	return bh;
1364 }
1365 EXPORT_SYMBOL(__getblk_gfp);
1366 
1367 /*
1368  * Do async read-ahead on a buffer..
1369  */
1370 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1371 {
1372 	struct buffer_head *bh = __getblk(bdev, block, size);
1373 	if (likely(bh)) {
1374 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1375 		brelse(bh);
1376 	}
1377 }
1378 EXPORT_SYMBOL(__breadahead);
1379 
1380 /**
1381  *  __bread_gfp() - reads a specified block and returns the bh
1382  *  @bdev: the block_device to read from
1383  *  @block: number of block
1384  *  @size: size (in bytes) to read
1385  *  @gfp: page allocation flag
1386  *
1387  *  Reads a specified block, and returns buffer head that contains it.
1388  *  The page cache can be allocated from non-movable area
1389  *  not to prevent page migration if you set gfp to zero.
1390  *  It returns NULL if the block was unreadable.
1391  */
1392 struct buffer_head *
1393 __bread_gfp(struct block_device *bdev, sector_t block,
1394 		   unsigned size, gfp_t gfp)
1395 {
1396 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1397 
1398 	if (likely(bh) && !buffer_uptodate(bh))
1399 		bh = __bread_slow(bh);
1400 	return bh;
1401 }
1402 EXPORT_SYMBOL(__bread_gfp);
1403 
1404 /*
1405  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1406  * This doesn't race because it runs in each cpu either in irq
1407  * or with preempt disabled.
1408  */
1409 static void invalidate_bh_lru(void *arg)
1410 {
1411 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1412 	int i;
1413 
1414 	for (i = 0; i < BH_LRU_SIZE; i++) {
1415 		brelse(b->bhs[i]);
1416 		b->bhs[i] = NULL;
1417 	}
1418 	put_cpu_var(bh_lrus);
1419 }
1420 
1421 static bool has_bh_in_lru(int cpu, void *dummy)
1422 {
1423 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1424 	int i;
1425 
1426 	for (i = 0; i < BH_LRU_SIZE; i++) {
1427 		if (b->bhs[i])
1428 			return true;
1429 	}
1430 
1431 	return false;
1432 }
1433 
1434 void invalidate_bh_lrus(void)
1435 {
1436 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1437 }
1438 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1439 
1440 void set_bh_page(struct buffer_head *bh,
1441 		struct page *page, unsigned long offset)
1442 {
1443 	bh->b_page = page;
1444 	BUG_ON(offset >= PAGE_SIZE);
1445 	if (PageHighMem(page))
1446 		/*
1447 		 * This catches illegal uses and preserves the offset:
1448 		 */
1449 		bh->b_data = (char *)(0 + offset);
1450 	else
1451 		bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454 
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458 
1459 /* Bits that are cleared during an invalidate */
1460 #define BUFFER_FLAGS_DISCARD \
1461 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1462 	 1 << BH_Delay | 1 << BH_Unwritten)
1463 
1464 static void discard_buffer(struct buffer_head * bh)
1465 {
1466 	unsigned long b_state, b_state_old;
1467 
1468 	lock_buffer(bh);
1469 	clear_buffer_dirty(bh);
1470 	bh->b_bdev = NULL;
1471 	b_state = bh->b_state;
1472 	for (;;) {
1473 		b_state_old = cmpxchg(&bh->b_state, b_state,
1474 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1475 		if (b_state_old == b_state)
1476 			break;
1477 		b_state = b_state_old;
1478 	}
1479 	unlock_buffer(bh);
1480 }
1481 
1482 /**
1483  * block_invalidatepage - invalidate part or all of a buffer-backed page
1484  *
1485  * @page: the page which is affected
1486  * @offset: start of the range to invalidate
1487  * @length: length of the range to invalidate
1488  *
1489  * block_invalidatepage() is called when all or part of the page has become
1490  * invalidated by a truncate operation.
1491  *
1492  * block_invalidatepage() does not have to release all buffers, but it must
1493  * ensure that no dirty buffer is left outside @offset and that no I/O
1494  * is underway against any of the blocks which are outside the truncation
1495  * point.  Because the caller is about to free (and possibly reuse) those
1496  * blocks on-disk.
1497  */
1498 void block_invalidatepage(struct page *page, unsigned int offset,
1499 			  unsigned int length)
1500 {
1501 	struct buffer_head *head, *bh, *next;
1502 	unsigned int curr_off = 0;
1503 	unsigned int stop = length + offset;
1504 
1505 	BUG_ON(!PageLocked(page));
1506 	if (!page_has_buffers(page))
1507 		goto out;
1508 
1509 	/*
1510 	 * Check for overflow
1511 	 */
1512 	BUG_ON(stop > PAGE_SIZE || stop < length);
1513 
1514 	head = page_buffers(page);
1515 	bh = head;
1516 	do {
1517 		unsigned int next_off = curr_off + bh->b_size;
1518 		next = bh->b_this_page;
1519 
1520 		/*
1521 		 * Are we still fully in range ?
1522 		 */
1523 		if (next_off > stop)
1524 			goto out;
1525 
1526 		/*
1527 		 * is this block fully invalidated?
1528 		 */
1529 		if (offset <= curr_off)
1530 			discard_buffer(bh);
1531 		curr_off = next_off;
1532 		bh = next;
1533 	} while (bh != head);
1534 
1535 	/*
1536 	 * We release buffers only if the entire page is being invalidated.
1537 	 * The get_block cached value has been unconditionally invalidated,
1538 	 * so real IO is not possible anymore.
1539 	 */
1540 	if (length == PAGE_SIZE)
1541 		try_to_release_page(page, 0);
1542 out:
1543 	return;
1544 }
1545 EXPORT_SYMBOL(block_invalidatepage);
1546 
1547 
1548 /*
1549  * We attach and possibly dirty the buffers atomically wrt
1550  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1551  * is already excluded via the page lock.
1552  */
1553 void create_empty_buffers(struct page *page,
1554 			unsigned long blocksize, unsigned long b_state)
1555 {
1556 	struct buffer_head *bh, *head, *tail;
1557 
1558 	head = alloc_page_buffers(page, blocksize, true);
1559 	bh = head;
1560 	do {
1561 		bh->b_state |= b_state;
1562 		tail = bh;
1563 		bh = bh->b_this_page;
1564 	} while (bh);
1565 	tail->b_this_page = head;
1566 
1567 	spin_lock(&page->mapping->private_lock);
1568 	if (PageUptodate(page) || PageDirty(page)) {
1569 		bh = head;
1570 		do {
1571 			if (PageDirty(page))
1572 				set_buffer_dirty(bh);
1573 			if (PageUptodate(page))
1574 				set_buffer_uptodate(bh);
1575 			bh = bh->b_this_page;
1576 		} while (bh != head);
1577 	}
1578 	attach_page_buffers(page, head);
1579 	spin_unlock(&page->mapping->private_lock);
1580 }
1581 EXPORT_SYMBOL(create_empty_buffers);
1582 
1583 /**
1584  * clean_bdev_aliases: clean a range of buffers in block device
1585  * @bdev: Block device to clean buffers in
1586  * @block: Start of a range of blocks to clean
1587  * @len: Number of blocks to clean
1588  *
1589  * We are taking a range of blocks for data and we don't want writeback of any
1590  * buffer-cache aliases starting from return from this function and until the
1591  * moment when something will explicitly mark the buffer dirty (hopefully that
1592  * will not happen until we will free that block ;-) We don't even need to mark
1593  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596  * would confuse anyone who might pick it with bread() afterwards...
1597  *
1598  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1599  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1600  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601  * need to.  That happens here.
1602  */
1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604 {
1605 	struct inode *bd_inode = bdev->bd_inode;
1606 	struct address_space *bd_mapping = bd_inode->i_mapping;
1607 	struct pagevec pvec;
1608 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 	pgoff_t end;
1610 	int i, count;
1611 	struct buffer_head *bh;
1612 	struct buffer_head *head;
1613 
1614 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615 	pagevec_init(&pvec);
1616 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617 		count = pagevec_count(&pvec);
1618 		for (i = 0; i < count; i++) {
1619 			struct page *page = pvec.pages[i];
1620 
1621 			if (!page_has_buffers(page))
1622 				continue;
1623 			/*
1624 			 * We use page lock instead of bd_mapping->private_lock
1625 			 * to pin buffers here since we can afford to sleep and
1626 			 * it scales better than a global spinlock lock.
1627 			 */
1628 			lock_page(page);
1629 			/* Recheck when the page is locked which pins bhs */
1630 			if (!page_has_buffers(page))
1631 				goto unlock_page;
1632 			head = page_buffers(page);
1633 			bh = head;
1634 			do {
1635 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636 					goto next;
1637 				if (bh->b_blocknr >= block + len)
1638 					break;
1639 				clear_buffer_dirty(bh);
1640 				wait_on_buffer(bh);
1641 				clear_buffer_req(bh);
1642 next:
1643 				bh = bh->b_this_page;
1644 			} while (bh != head);
1645 unlock_page:
1646 			unlock_page(page);
1647 		}
1648 		pagevec_release(&pvec);
1649 		cond_resched();
1650 		/* End of range already reached? */
1651 		if (index > end || !index)
1652 			break;
1653 	}
1654 }
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1656 
1657 /*
1658  * Size is a power-of-two in the range 512..PAGE_SIZE,
1659  * and the case we care about most is PAGE_SIZE.
1660  *
1661  * So this *could* possibly be written with those
1662  * constraints in mind (relevant mostly if some
1663  * architecture has a slow bit-scan instruction)
1664  */
1665 static inline int block_size_bits(unsigned int blocksize)
1666 {
1667 	return ilog2(blocksize);
1668 }
1669 
1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671 {
1672 	BUG_ON(!PageLocked(page));
1673 
1674 	if (!page_has_buffers(page))
1675 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676 				     b_state);
1677 	return page_buffers(page);
1678 }
1679 
1680 /*
1681  * NOTE! All mapped/uptodate combinations are valid:
1682  *
1683  *	Mapped	Uptodate	Meaning
1684  *
1685  *	No	No		"unknown" - must do get_block()
1686  *	No	Yes		"hole" - zero-filled
1687  *	Yes	No		"allocated" - allocated on disk, not read in
1688  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1689  *
1690  * "Dirty" is valid only with the last case (mapped+uptodate).
1691  */
1692 
1693 /*
1694  * While block_write_full_page is writing back the dirty buffers under
1695  * the page lock, whoever dirtied the buffers may decide to clean them
1696  * again at any time.  We handle that by only looking at the buffer
1697  * state inside lock_buffer().
1698  *
1699  * If block_write_full_page() is called for regular writeback
1700  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701  * locked buffer.   This only can happen if someone has written the buffer
1702  * directly, with submit_bh().  At the address_space level PageWriteback
1703  * prevents this contention from occurring.
1704  *
1705  * If block_write_full_page() is called with wbc->sync_mode ==
1706  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707  * causes the writes to be flagged as synchronous writes.
1708  */
1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710 			get_block_t *get_block, struct writeback_control *wbc,
1711 			bh_end_io_t *handler)
1712 {
1713 	int err;
1714 	sector_t block;
1715 	sector_t last_block;
1716 	struct buffer_head *bh, *head;
1717 	unsigned int blocksize, bbits;
1718 	int nr_underway = 0;
1719 	int write_flags = wbc_to_write_flags(wbc);
1720 
1721 	head = create_page_buffers(page, inode,
1722 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1723 
1724 	/*
1725 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1726 	 * here, and the (potentially unmapped) buffers may become dirty at
1727 	 * any time.  If a buffer becomes dirty here after we've inspected it
1728 	 * then we just miss that fact, and the page stays dirty.
1729 	 *
1730 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1731 	 * handle that here by just cleaning them.
1732 	 */
1733 
1734 	bh = head;
1735 	blocksize = bh->b_size;
1736 	bbits = block_size_bits(blocksize);
1737 
1738 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739 	last_block = (i_size_read(inode) - 1) >> bbits;
1740 
1741 	/*
1742 	 * Get all the dirty buffers mapped to disk addresses and
1743 	 * handle any aliases from the underlying blockdev's mapping.
1744 	 */
1745 	do {
1746 		if (block > last_block) {
1747 			/*
1748 			 * mapped buffers outside i_size will occur, because
1749 			 * this page can be outside i_size when there is a
1750 			 * truncate in progress.
1751 			 */
1752 			/*
1753 			 * The buffer was zeroed by block_write_full_page()
1754 			 */
1755 			clear_buffer_dirty(bh);
1756 			set_buffer_uptodate(bh);
1757 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758 			   buffer_dirty(bh)) {
1759 			WARN_ON(bh->b_size != blocksize);
1760 			err = get_block(inode, block, bh, 1);
1761 			if (err)
1762 				goto recover;
1763 			clear_buffer_delay(bh);
1764 			if (buffer_new(bh)) {
1765 				/* blockdev mappings never come here */
1766 				clear_buffer_new(bh);
1767 				clean_bdev_bh_alias(bh);
1768 			}
1769 		}
1770 		bh = bh->b_this_page;
1771 		block++;
1772 	} while (bh != head);
1773 
1774 	do {
1775 		if (!buffer_mapped(bh))
1776 			continue;
1777 		/*
1778 		 * If it's a fully non-blocking write attempt and we cannot
1779 		 * lock the buffer then redirty the page.  Note that this can
1780 		 * potentially cause a busy-wait loop from writeback threads
1781 		 * and kswapd activity, but those code paths have their own
1782 		 * higher-level throttling.
1783 		 */
1784 		if (wbc->sync_mode != WB_SYNC_NONE) {
1785 			lock_buffer(bh);
1786 		} else if (!trylock_buffer(bh)) {
1787 			redirty_page_for_writepage(wbc, page);
1788 			continue;
1789 		}
1790 		if (test_clear_buffer_dirty(bh)) {
1791 			mark_buffer_async_write_endio(bh, handler);
1792 		} else {
1793 			unlock_buffer(bh);
1794 		}
1795 	} while ((bh = bh->b_this_page) != head);
1796 
1797 	/*
1798 	 * The page and its buffers are protected by PageWriteback(), so we can
1799 	 * drop the bh refcounts early.
1800 	 */
1801 	BUG_ON(PageWriteback(page));
1802 	set_page_writeback(page);
1803 
1804 	do {
1805 		struct buffer_head *next = bh->b_this_page;
1806 		if (buffer_async_write(bh)) {
1807 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1808 					inode->i_write_hint, wbc);
1809 			nr_underway++;
1810 		}
1811 		bh = next;
1812 	} while (bh != head);
1813 	unlock_page(page);
1814 
1815 	err = 0;
1816 done:
1817 	if (nr_underway == 0) {
1818 		/*
1819 		 * The page was marked dirty, but the buffers were
1820 		 * clean.  Someone wrote them back by hand with
1821 		 * ll_rw_block/submit_bh.  A rare case.
1822 		 */
1823 		end_page_writeback(page);
1824 
1825 		/*
1826 		 * The page and buffer_heads can be released at any time from
1827 		 * here on.
1828 		 */
1829 	}
1830 	return err;
1831 
1832 recover:
1833 	/*
1834 	 * ENOSPC, or some other error.  We may already have added some
1835 	 * blocks to the file, so we need to write these out to avoid
1836 	 * exposing stale data.
1837 	 * The page is currently locked and not marked for writeback
1838 	 */
1839 	bh = head;
1840 	/* Recovery: lock and submit the mapped buffers */
1841 	do {
1842 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843 		    !buffer_delay(bh)) {
1844 			lock_buffer(bh);
1845 			mark_buffer_async_write_endio(bh, handler);
1846 		} else {
1847 			/*
1848 			 * The buffer may have been set dirty during
1849 			 * attachment to a dirty page.
1850 			 */
1851 			clear_buffer_dirty(bh);
1852 		}
1853 	} while ((bh = bh->b_this_page) != head);
1854 	SetPageError(page);
1855 	BUG_ON(PageWriteback(page));
1856 	mapping_set_error(page->mapping, err);
1857 	set_page_writeback(page);
1858 	do {
1859 		struct buffer_head *next = bh->b_this_page;
1860 		if (buffer_async_write(bh)) {
1861 			clear_buffer_dirty(bh);
1862 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1863 					inode->i_write_hint, wbc);
1864 			nr_underway++;
1865 		}
1866 		bh = next;
1867 	} while (bh != head);
1868 	unlock_page(page);
1869 	goto done;
1870 }
1871 EXPORT_SYMBOL(__block_write_full_page);
1872 
1873 /*
1874  * If a page has any new buffers, zero them out here, and mark them uptodate
1875  * and dirty so they'll be written out (in order to prevent uninitialised
1876  * block data from leaking). And clear the new bit.
1877  */
1878 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1879 {
1880 	unsigned int block_start, block_end;
1881 	struct buffer_head *head, *bh;
1882 
1883 	BUG_ON(!PageLocked(page));
1884 	if (!page_has_buffers(page))
1885 		return;
1886 
1887 	bh = head = page_buffers(page);
1888 	block_start = 0;
1889 	do {
1890 		block_end = block_start + bh->b_size;
1891 
1892 		if (buffer_new(bh)) {
1893 			if (block_end > from && block_start < to) {
1894 				if (!PageUptodate(page)) {
1895 					unsigned start, size;
1896 
1897 					start = max(from, block_start);
1898 					size = min(to, block_end) - start;
1899 
1900 					zero_user(page, start, size);
1901 					set_buffer_uptodate(bh);
1902 				}
1903 
1904 				clear_buffer_new(bh);
1905 				mark_buffer_dirty(bh);
1906 			}
1907 		}
1908 
1909 		block_start = block_end;
1910 		bh = bh->b_this_page;
1911 	} while (bh != head);
1912 }
1913 EXPORT_SYMBOL(page_zero_new_buffers);
1914 
1915 static void
1916 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1917 		struct iomap *iomap)
1918 {
1919 	loff_t offset = block << inode->i_blkbits;
1920 
1921 	bh->b_bdev = iomap->bdev;
1922 
1923 	/*
1924 	 * Block points to offset in file we need to map, iomap contains
1925 	 * the offset at which the map starts. If the map ends before the
1926 	 * current block, then do not map the buffer and let the caller
1927 	 * handle it.
1928 	 */
1929 	BUG_ON(offset >= iomap->offset + iomap->length);
1930 
1931 	switch (iomap->type) {
1932 	case IOMAP_HOLE:
1933 		/*
1934 		 * If the buffer is not up to date or beyond the current EOF,
1935 		 * we need to mark it as new to ensure sub-block zeroing is
1936 		 * executed if necessary.
1937 		 */
1938 		if (!buffer_uptodate(bh) ||
1939 		    (offset >= i_size_read(inode)))
1940 			set_buffer_new(bh);
1941 		break;
1942 	case IOMAP_DELALLOC:
1943 		if (!buffer_uptodate(bh) ||
1944 		    (offset >= i_size_read(inode)))
1945 			set_buffer_new(bh);
1946 		set_buffer_uptodate(bh);
1947 		set_buffer_mapped(bh);
1948 		set_buffer_delay(bh);
1949 		break;
1950 	case IOMAP_UNWRITTEN:
1951 		/*
1952 		 * For unwritten regions, we always need to ensure that regions
1953 		 * in the block we are not writing to are zeroed. Mark the
1954 		 * buffer as new to ensure this.
1955 		 */
1956 		set_buffer_new(bh);
1957 		set_buffer_unwritten(bh);
1958 		/* FALLTHRU */
1959 	case IOMAP_MAPPED:
1960 		if ((iomap->flags & IOMAP_F_NEW) ||
1961 		    offset >= i_size_read(inode))
1962 			set_buffer_new(bh);
1963 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1964 				inode->i_blkbits;
1965 		set_buffer_mapped(bh);
1966 		break;
1967 	}
1968 }
1969 
1970 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1971 		get_block_t *get_block, struct iomap *iomap)
1972 {
1973 	unsigned from = pos & (PAGE_SIZE - 1);
1974 	unsigned to = from + len;
1975 	struct inode *inode = page->mapping->host;
1976 	unsigned block_start, block_end;
1977 	sector_t block;
1978 	int err = 0;
1979 	unsigned blocksize, bbits;
1980 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1981 
1982 	BUG_ON(!PageLocked(page));
1983 	BUG_ON(from > PAGE_SIZE);
1984 	BUG_ON(to > PAGE_SIZE);
1985 	BUG_ON(from > to);
1986 
1987 	head = create_page_buffers(page, inode, 0);
1988 	blocksize = head->b_size;
1989 	bbits = block_size_bits(blocksize);
1990 
1991 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1992 
1993 	for(bh = head, block_start = 0; bh != head || !block_start;
1994 	    block++, block_start=block_end, bh = bh->b_this_page) {
1995 		block_end = block_start + blocksize;
1996 		if (block_end <= from || block_start >= to) {
1997 			if (PageUptodate(page)) {
1998 				if (!buffer_uptodate(bh))
1999 					set_buffer_uptodate(bh);
2000 			}
2001 			continue;
2002 		}
2003 		if (buffer_new(bh))
2004 			clear_buffer_new(bh);
2005 		if (!buffer_mapped(bh)) {
2006 			WARN_ON(bh->b_size != blocksize);
2007 			if (get_block) {
2008 				err = get_block(inode, block, bh, 1);
2009 				if (err)
2010 					break;
2011 			} else {
2012 				iomap_to_bh(inode, block, bh, iomap);
2013 			}
2014 
2015 			if (buffer_new(bh)) {
2016 				clean_bdev_bh_alias(bh);
2017 				if (PageUptodate(page)) {
2018 					clear_buffer_new(bh);
2019 					set_buffer_uptodate(bh);
2020 					mark_buffer_dirty(bh);
2021 					continue;
2022 				}
2023 				if (block_end > to || block_start < from)
2024 					zero_user_segments(page,
2025 						to, block_end,
2026 						block_start, from);
2027 				continue;
2028 			}
2029 		}
2030 		if (PageUptodate(page)) {
2031 			if (!buffer_uptodate(bh))
2032 				set_buffer_uptodate(bh);
2033 			continue;
2034 		}
2035 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2036 		    !buffer_unwritten(bh) &&
2037 		     (block_start < from || block_end > to)) {
2038 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2039 			*wait_bh++=bh;
2040 		}
2041 	}
2042 	/*
2043 	 * If we issued read requests - let them complete.
2044 	 */
2045 	while(wait_bh > wait) {
2046 		wait_on_buffer(*--wait_bh);
2047 		if (!buffer_uptodate(*wait_bh))
2048 			err = -EIO;
2049 	}
2050 	if (unlikely(err))
2051 		page_zero_new_buffers(page, from, to);
2052 	return err;
2053 }
2054 
2055 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2056 		get_block_t *get_block)
2057 {
2058 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2059 }
2060 EXPORT_SYMBOL(__block_write_begin);
2061 
2062 static int __block_commit_write(struct inode *inode, struct page *page,
2063 		unsigned from, unsigned to)
2064 {
2065 	unsigned block_start, block_end;
2066 	int partial = 0;
2067 	unsigned blocksize;
2068 	struct buffer_head *bh, *head;
2069 
2070 	bh = head = page_buffers(page);
2071 	blocksize = bh->b_size;
2072 
2073 	block_start = 0;
2074 	do {
2075 		block_end = block_start + blocksize;
2076 		if (block_end <= from || block_start >= to) {
2077 			if (!buffer_uptodate(bh))
2078 				partial = 1;
2079 		} else {
2080 			set_buffer_uptodate(bh);
2081 			mark_buffer_dirty(bh);
2082 		}
2083 		clear_buffer_new(bh);
2084 
2085 		block_start = block_end;
2086 		bh = bh->b_this_page;
2087 	} while (bh != head);
2088 
2089 	/*
2090 	 * If this is a partial write which happened to make all buffers
2091 	 * uptodate then we can optimize away a bogus readpage() for
2092 	 * the next read(). Here we 'discover' whether the page went
2093 	 * uptodate as a result of this (potentially partial) write.
2094 	 */
2095 	if (!partial)
2096 		SetPageUptodate(page);
2097 	return 0;
2098 }
2099 
2100 /*
2101  * block_write_begin takes care of the basic task of block allocation and
2102  * bringing partial write blocks uptodate first.
2103  *
2104  * The filesystem needs to handle block truncation upon failure.
2105  */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107 		unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109 	pgoff_t index = pos >> PAGE_SHIFT;
2110 	struct page *page;
2111 	int status;
2112 
2113 	page = grab_cache_page_write_begin(mapping, index, flags);
2114 	if (!page)
2115 		return -ENOMEM;
2116 
2117 	status = __block_write_begin(page, pos, len, get_block);
2118 	if (unlikely(status)) {
2119 		unlock_page(page);
2120 		put_page(page);
2121 		page = NULL;
2122 	}
2123 
2124 	*pagep = page;
2125 	return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128 
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130 			loff_t pos, unsigned len, unsigned copied,
2131 			struct page *page, void *fsdata)
2132 {
2133 	struct inode *inode = mapping->host;
2134 	unsigned start;
2135 
2136 	start = pos & (PAGE_SIZE - 1);
2137 
2138 	if (unlikely(copied < len)) {
2139 		/*
2140 		 * The buffers that were written will now be uptodate, so we
2141 		 * don't have to worry about a readpage reading them and
2142 		 * overwriting a partial write. However if we have encountered
2143 		 * a short write and only partially written into a buffer, it
2144 		 * will not be marked uptodate, so a readpage might come in and
2145 		 * destroy our partial write.
2146 		 *
2147 		 * Do the simplest thing, and just treat any short write to a
2148 		 * non uptodate page as a zero-length write, and force the
2149 		 * caller to redo the whole thing.
2150 		 */
2151 		if (!PageUptodate(page))
2152 			copied = 0;
2153 
2154 		page_zero_new_buffers(page, start+copied, start+len);
2155 	}
2156 	flush_dcache_page(page);
2157 
2158 	/* This could be a short (even 0-length) commit */
2159 	__block_commit_write(inode, page, start, start+copied);
2160 
2161 	return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164 
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166 			loff_t pos, unsigned len, unsigned copied,
2167 			struct page *page, void *fsdata)
2168 {
2169 	struct inode *inode = mapping->host;
2170 	loff_t old_size = inode->i_size;
2171 	bool i_size_changed = false;
2172 
2173 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174 
2175 	/*
2176 	 * No need to use i_size_read() here, the i_size cannot change under us
2177 	 * because we hold i_rwsem.
2178 	 *
2179 	 * But it's important to update i_size while still holding page lock:
2180 	 * page writeout could otherwise come in and zero beyond i_size.
2181 	 */
2182 	if (pos + copied > inode->i_size) {
2183 		i_size_write(inode, pos + copied);
2184 		i_size_changed = true;
2185 	}
2186 
2187 	unlock_page(page);
2188 	put_page(page);
2189 
2190 	if (old_size < pos)
2191 		pagecache_isize_extended(inode, old_size, pos);
2192 	/*
2193 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 	 * makes the holding time of page lock longer. Second, it forces lock
2195 	 * ordering of page lock and transaction start for journaling
2196 	 * filesystems.
2197 	 */
2198 	if (i_size_changed)
2199 		mark_inode_dirty(inode);
2200 	return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203 
2204 /*
2205  * block_is_partially_uptodate checks whether buffers within a page are
2206  * uptodate or not.
2207  *
2208  * Returns true if all buffers which correspond to a file portion
2209  * we want to read are uptodate.
2210  */
2211 int block_is_partially_uptodate(struct page *page, unsigned long from,
2212 					unsigned long count)
2213 {
2214 	unsigned block_start, block_end, blocksize;
2215 	unsigned to;
2216 	struct buffer_head *bh, *head;
2217 	int ret = 1;
2218 
2219 	if (!page_has_buffers(page))
2220 		return 0;
2221 
2222 	head = page_buffers(page);
2223 	blocksize = head->b_size;
2224 	to = min_t(unsigned, PAGE_SIZE - from, count);
2225 	to = from + to;
2226 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2227 		return 0;
2228 
2229 	bh = head;
2230 	block_start = 0;
2231 	do {
2232 		block_end = block_start + blocksize;
2233 		if (block_end > from && block_start < to) {
2234 			if (!buffer_uptodate(bh)) {
2235 				ret = 0;
2236 				break;
2237 			}
2238 			if (block_end >= to)
2239 				break;
2240 		}
2241 		block_start = block_end;
2242 		bh = bh->b_this_page;
2243 	} while (bh != head);
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(block_is_partially_uptodate);
2248 
2249 /*
2250  * Generic "read page" function for block devices that have the normal
2251  * get_block functionality. This is most of the block device filesystems.
2252  * Reads the page asynchronously --- the unlock_buffer() and
2253  * set/clear_buffer_uptodate() functions propagate buffer state into the
2254  * page struct once IO has completed.
2255  */
2256 int block_read_full_page(struct page *page, get_block_t *get_block)
2257 {
2258 	struct inode *inode = page->mapping->host;
2259 	sector_t iblock, lblock;
2260 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261 	unsigned int blocksize, bbits;
2262 	int nr, i;
2263 	int fully_mapped = 1;
2264 
2265 	head = create_page_buffers(page, inode, 0);
2266 	blocksize = head->b_size;
2267 	bbits = block_size_bits(blocksize);
2268 
2269 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271 	bh = head;
2272 	nr = 0;
2273 	i = 0;
2274 
2275 	do {
2276 		if (buffer_uptodate(bh))
2277 			continue;
2278 
2279 		if (!buffer_mapped(bh)) {
2280 			int err = 0;
2281 
2282 			fully_mapped = 0;
2283 			if (iblock < lblock) {
2284 				WARN_ON(bh->b_size != blocksize);
2285 				err = get_block(inode, iblock, bh, 0);
2286 				if (err)
2287 					SetPageError(page);
2288 			}
2289 			if (!buffer_mapped(bh)) {
2290 				zero_user(page, i * blocksize, blocksize);
2291 				if (!err)
2292 					set_buffer_uptodate(bh);
2293 				continue;
2294 			}
2295 			/*
2296 			 * get_block() might have updated the buffer
2297 			 * synchronously
2298 			 */
2299 			if (buffer_uptodate(bh))
2300 				continue;
2301 		}
2302 		arr[nr++] = bh;
2303 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2304 
2305 	if (fully_mapped)
2306 		SetPageMappedToDisk(page);
2307 
2308 	if (!nr) {
2309 		/*
2310 		 * All buffers are uptodate - we can set the page uptodate
2311 		 * as well. But not if get_block() returned an error.
2312 		 */
2313 		if (!PageError(page))
2314 			SetPageUptodate(page);
2315 		unlock_page(page);
2316 		return 0;
2317 	}
2318 
2319 	/* Stage two: lock the buffers */
2320 	for (i = 0; i < nr; i++) {
2321 		bh = arr[i];
2322 		lock_buffer(bh);
2323 		mark_buffer_async_read(bh);
2324 	}
2325 
2326 	/*
2327 	 * Stage 3: start the IO.  Check for uptodateness
2328 	 * inside the buffer lock in case another process reading
2329 	 * the underlying blockdev brought it uptodate (the sct fix).
2330 	 */
2331 	for (i = 0; i < nr; i++) {
2332 		bh = arr[i];
2333 		if (buffer_uptodate(bh))
2334 			end_buffer_async_read(bh, 1);
2335 		else
2336 			submit_bh(REQ_OP_READ, 0, bh);
2337 	}
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_page);
2341 
2342 /* utility function for filesystems that need to do work on expanding
2343  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344  * deal with the hole.
2345  */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348 	struct address_space *mapping = inode->i_mapping;
2349 	struct page *page;
2350 	void *fsdata;
2351 	int err;
2352 
2353 	err = inode_newsize_ok(inode, size);
2354 	if (err)
2355 		goto out;
2356 
2357 	err = pagecache_write_begin(NULL, mapping, size, 0,
2358 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359 	if (err)
2360 		goto out;
2361 
2362 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363 	BUG_ON(err > 0);
2364 
2365 out:
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369 
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371 			    loff_t pos, loff_t *bytes)
2372 {
2373 	struct inode *inode = mapping->host;
2374 	unsigned int blocksize = i_blocksize(inode);
2375 	struct page *page;
2376 	void *fsdata;
2377 	pgoff_t index, curidx;
2378 	loff_t curpos;
2379 	unsigned zerofrom, offset, len;
2380 	int err = 0;
2381 
2382 	index = pos >> PAGE_SHIFT;
2383 	offset = pos & ~PAGE_MASK;
2384 
2385 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386 		zerofrom = curpos & ~PAGE_MASK;
2387 		if (zerofrom & (blocksize-1)) {
2388 			*bytes |= (blocksize-1);
2389 			(*bytes)++;
2390 		}
2391 		len = PAGE_SIZE - zerofrom;
2392 
2393 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394 					    &page, &fsdata);
2395 		if (err)
2396 			goto out;
2397 		zero_user(page, zerofrom, len);
2398 		err = pagecache_write_end(file, mapping, curpos, len, len,
2399 						page, fsdata);
2400 		if (err < 0)
2401 			goto out;
2402 		BUG_ON(err != len);
2403 		err = 0;
2404 
2405 		balance_dirty_pages_ratelimited(mapping);
2406 
2407 		if (fatal_signal_pending(current)) {
2408 			err = -EINTR;
2409 			goto out;
2410 		}
2411 	}
2412 
2413 	/* page covers the boundary, find the boundary offset */
2414 	if (index == curidx) {
2415 		zerofrom = curpos & ~PAGE_MASK;
2416 		/* if we will expand the thing last block will be filled */
2417 		if (offset <= zerofrom) {
2418 			goto out;
2419 		}
2420 		if (zerofrom & (blocksize-1)) {
2421 			*bytes |= (blocksize-1);
2422 			(*bytes)++;
2423 		}
2424 		len = offset - zerofrom;
2425 
2426 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427 					    &page, &fsdata);
2428 		if (err)
2429 			goto out;
2430 		zero_user(page, zerofrom, len);
2431 		err = pagecache_write_end(file, mapping, curpos, len, len,
2432 						page, fsdata);
2433 		if (err < 0)
2434 			goto out;
2435 		BUG_ON(err != len);
2436 		err = 0;
2437 	}
2438 out:
2439 	return err;
2440 }
2441 
2442 /*
2443  * For moronic filesystems that do not allow holes in file.
2444  * We may have to extend the file.
2445  */
2446 int cont_write_begin(struct file *file, struct address_space *mapping,
2447 			loff_t pos, unsigned len, unsigned flags,
2448 			struct page **pagep, void **fsdata,
2449 			get_block_t *get_block, loff_t *bytes)
2450 {
2451 	struct inode *inode = mapping->host;
2452 	unsigned int blocksize = i_blocksize(inode);
2453 	unsigned int zerofrom;
2454 	int err;
2455 
2456 	err = cont_expand_zero(file, mapping, pos, bytes);
2457 	if (err)
2458 		return err;
2459 
2460 	zerofrom = *bytes & ~PAGE_MASK;
2461 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462 		*bytes |= (blocksize-1);
2463 		(*bytes)++;
2464 	}
2465 
2466 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467 }
2468 EXPORT_SYMBOL(cont_write_begin);
2469 
2470 int block_commit_write(struct page *page, unsigned from, unsigned to)
2471 {
2472 	struct inode *inode = page->mapping->host;
2473 	__block_commit_write(inode,page,from,to);
2474 	return 0;
2475 }
2476 EXPORT_SYMBOL(block_commit_write);
2477 
2478 /*
2479  * block_page_mkwrite() is not allowed to change the file size as it gets
2480  * called from a page fault handler when a page is first dirtied. Hence we must
2481  * be careful to check for EOF conditions here. We set the page up correctly
2482  * for a written page which means we get ENOSPC checking when writing into
2483  * holes and correct delalloc and unwritten extent mapping on filesystems that
2484  * support these features.
2485  *
2486  * We are not allowed to take the i_mutex here so we have to play games to
2487  * protect against truncate races as the page could now be beyond EOF.  Because
2488  * truncate writes the inode size before removing pages, once we have the
2489  * page lock we can determine safely if the page is beyond EOF. If it is not
2490  * beyond EOF, then the page is guaranteed safe against truncation until we
2491  * unlock the page.
2492  *
2493  * Direct callers of this function should protect against filesystem freezing
2494  * using sb_start_pagefault() - sb_end_pagefault() functions.
2495  */
2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497 			 get_block_t get_block)
2498 {
2499 	struct page *page = vmf->page;
2500 	struct inode *inode = file_inode(vma->vm_file);
2501 	unsigned long end;
2502 	loff_t size;
2503 	int ret;
2504 
2505 	lock_page(page);
2506 	size = i_size_read(inode);
2507 	if ((page->mapping != inode->i_mapping) ||
2508 	    (page_offset(page) > size)) {
2509 		/* We overload EFAULT to mean page got truncated */
2510 		ret = -EFAULT;
2511 		goto out_unlock;
2512 	}
2513 
2514 	/* page is wholly or partially inside EOF */
2515 	if (((page->index + 1) << PAGE_SHIFT) > size)
2516 		end = size & ~PAGE_MASK;
2517 	else
2518 		end = PAGE_SIZE;
2519 
2520 	ret = __block_write_begin(page, 0, end, get_block);
2521 	if (!ret)
2522 		ret = block_commit_write(page, 0, end);
2523 
2524 	if (unlikely(ret < 0))
2525 		goto out_unlock;
2526 	set_page_dirty(page);
2527 	wait_for_stable_page(page);
2528 	return 0;
2529 out_unlock:
2530 	unlock_page(page);
2531 	return ret;
2532 }
2533 EXPORT_SYMBOL(block_page_mkwrite);
2534 
2535 /*
2536  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537  * immediately, while under the page lock.  So it needs a special end_io
2538  * handler which does not touch the bh after unlocking it.
2539  */
2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541 {
2542 	__end_buffer_read_notouch(bh, uptodate);
2543 }
2544 
2545 /*
2546  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547  * the page (converting it to circular linked list and taking care of page
2548  * dirty races).
2549  */
2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551 {
2552 	struct buffer_head *bh;
2553 
2554 	BUG_ON(!PageLocked(page));
2555 
2556 	spin_lock(&page->mapping->private_lock);
2557 	bh = head;
2558 	do {
2559 		if (PageDirty(page))
2560 			set_buffer_dirty(bh);
2561 		if (!bh->b_this_page)
2562 			bh->b_this_page = head;
2563 		bh = bh->b_this_page;
2564 	} while (bh != head);
2565 	attach_page_buffers(page, head);
2566 	spin_unlock(&page->mapping->private_lock);
2567 }
2568 
2569 /*
2570  * On entry, the page is fully not uptodate.
2571  * On exit the page is fully uptodate in the areas outside (from,to)
2572  * The filesystem needs to handle block truncation upon failure.
2573  */
2574 int nobh_write_begin(struct address_space *mapping,
2575 			loff_t pos, unsigned len, unsigned flags,
2576 			struct page **pagep, void **fsdata,
2577 			get_block_t *get_block)
2578 {
2579 	struct inode *inode = mapping->host;
2580 	const unsigned blkbits = inode->i_blkbits;
2581 	const unsigned blocksize = 1 << blkbits;
2582 	struct buffer_head *head, *bh;
2583 	struct page *page;
2584 	pgoff_t index;
2585 	unsigned from, to;
2586 	unsigned block_in_page;
2587 	unsigned block_start, block_end;
2588 	sector_t block_in_file;
2589 	int nr_reads = 0;
2590 	int ret = 0;
2591 	int is_mapped_to_disk = 1;
2592 
2593 	index = pos >> PAGE_SHIFT;
2594 	from = pos & (PAGE_SIZE - 1);
2595 	to = from + len;
2596 
2597 	page = grab_cache_page_write_begin(mapping, index, flags);
2598 	if (!page)
2599 		return -ENOMEM;
2600 	*pagep = page;
2601 	*fsdata = NULL;
2602 
2603 	if (page_has_buffers(page)) {
2604 		ret = __block_write_begin(page, pos, len, get_block);
2605 		if (unlikely(ret))
2606 			goto out_release;
2607 		return ret;
2608 	}
2609 
2610 	if (PageMappedToDisk(page))
2611 		return 0;
2612 
2613 	/*
2614 	 * Allocate buffers so that we can keep track of state, and potentially
2615 	 * attach them to the page if an error occurs. In the common case of
2616 	 * no error, they will just be freed again without ever being attached
2617 	 * to the page (which is all OK, because we're under the page lock).
2618 	 *
2619 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2620 	 * than the circular one we're used to.
2621 	 */
2622 	head = alloc_page_buffers(page, blocksize, false);
2623 	if (!head) {
2624 		ret = -ENOMEM;
2625 		goto out_release;
2626 	}
2627 
2628 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629 
2630 	/*
2631 	 * We loop across all blocks in the page, whether or not they are
2632 	 * part of the affected region.  This is so we can discover if the
2633 	 * page is fully mapped-to-disk.
2634 	 */
2635 	for (block_start = 0, block_in_page = 0, bh = head;
2636 		  block_start < PAGE_SIZE;
2637 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638 		int create;
2639 
2640 		block_end = block_start + blocksize;
2641 		bh->b_state = 0;
2642 		create = 1;
2643 		if (block_start >= to)
2644 			create = 0;
2645 		ret = get_block(inode, block_in_file + block_in_page,
2646 					bh, create);
2647 		if (ret)
2648 			goto failed;
2649 		if (!buffer_mapped(bh))
2650 			is_mapped_to_disk = 0;
2651 		if (buffer_new(bh))
2652 			clean_bdev_bh_alias(bh);
2653 		if (PageUptodate(page)) {
2654 			set_buffer_uptodate(bh);
2655 			continue;
2656 		}
2657 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2658 			zero_user_segments(page, block_start, from,
2659 							to, block_end);
2660 			continue;
2661 		}
2662 		if (buffer_uptodate(bh))
2663 			continue;	/* reiserfs does this */
2664 		if (block_start < from || block_end > to) {
2665 			lock_buffer(bh);
2666 			bh->b_end_io = end_buffer_read_nobh;
2667 			submit_bh(REQ_OP_READ, 0, bh);
2668 			nr_reads++;
2669 		}
2670 	}
2671 
2672 	if (nr_reads) {
2673 		/*
2674 		 * The page is locked, so these buffers are protected from
2675 		 * any VM or truncate activity.  Hence we don't need to care
2676 		 * for the buffer_head refcounts.
2677 		 */
2678 		for (bh = head; bh; bh = bh->b_this_page) {
2679 			wait_on_buffer(bh);
2680 			if (!buffer_uptodate(bh))
2681 				ret = -EIO;
2682 		}
2683 		if (ret)
2684 			goto failed;
2685 	}
2686 
2687 	if (is_mapped_to_disk)
2688 		SetPageMappedToDisk(page);
2689 
2690 	*fsdata = head; /* to be released by nobh_write_end */
2691 
2692 	return 0;
2693 
2694 failed:
2695 	BUG_ON(!ret);
2696 	/*
2697 	 * Error recovery is a bit difficult. We need to zero out blocks that
2698 	 * were newly allocated, and dirty them to ensure they get written out.
2699 	 * Buffers need to be attached to the page at this point, otherwise
2700 	 * the handling of potential IO errors during writeout would be hard
2701 	 * (could try doing synchronous writeout, but what if that fails too?)
2702 	 */
2703 	attach_nobh_buffers(page, head);
2704 	page_zero_new_buffers(page, from, to);
2705 
2706 out_release:
2707 	unlock_page(page);
2708 	put_page(page);
2709 	*pagep = NULL;
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL(nobh_write_begin);
2714 
2715 int nobh_write_end(struct file *file, struct address_space *mapping,
2716 			loff_t pos, unsigned len, unsigned copied,
2717 			struct page *page, void *fsdata)
2718 {
2719 	struct inode *inode = page->mapping->host;
2720 	struct buffer_head *head = fsdata;
2721 	struct buffer_head *bh;
2722 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2723 
2724 	if (unlikely(copied < len) && head)
2725 		attach_nobh_buffers(page, head);
2726 	if (page_has_buffers(page))
2727 		return generic_write_end(file, mapping, pos, len,
2728 					copied, page, fsdata);
2729 
2730 	SetPageUptodate(page);
2731 	set_page_dirty(page);
2732 	if (pos+copied > inode->i_size) {
2733 		i_size_write(inode, pos+copied);
2734 		mark_inode_dirty(inode);
2735 	}
2736 
2737 	unlock_page(page);
2738 	put_page(page);
2739 
2740 	while (head) {
2741 		bh = head;
2742 		head = head->b_this_page;
2743 		free_buffer_head(bh);
2744 	}
2745 
2746 	return copied;
2747 }
2748 EXPORT_SYMBOL(nobh_write_end);
2749 
2750 /*
2751  * nobh_writepage() - based on block_full_write_page() except
2752  * that it tries to operate without attaching bufferheads to
2753  * the page.
2754  */
2755 int nobh_writepage(struct page *page, get_block_t *get_block,
2756 			struct writeback_control *wbc)
2757 {
2758 	struct inode * const inode = page->mapping->host;
2759 	loff_t i_size = i_size_read(inode);
2760 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761 	unsigned offset;
2762 	int ret;
2763 
2764 	/* Is the page fully inside i_size? */
2765 	if (page->index < end_index)
2766 		goto out;
2767 
2768 	/* Is the page fully outside i_size? (truncate in progress) */
2769 	offset = i_size & (PAGE_SIZE-1);
2770 	if (page->index >= end_index+1 || !offset) {
2771 		/*
2772 		 * The page may have dirty, unmapped buffers.  For example,
2773 		 * they may have been added in ext3_writepage().  Make them
2774 		 * freeable here, so the page does not leak.
2775 		 */
2776 #if 0
2777 		/* Not really sure about this  - do we need this ? */
2778 		if (page->mapping->a_ops->invalidatepage)
2779 			page->mapping->a_ops->invalidatepage(page, offset);
2780 #endif
2781 		unlock_page(page);
2782 		return 0; /* don't care */
2783 	}
2784 
2785 	/*
2786 	 * The page straddles i_size.  It must be zeroed out on each and every
2787 	 * writepage invocation because it may be mmapped.  "A file is mapped
2788 	 * in multiples of the page size.  For a file that is not a multiple of
2789 	 * the  page size, the remaining memory is zeroed when mapped, and
2790 	 * writes to that region are not written out to the file."
2791 	 */
2792 	zero_user_segment(page, offset, PAGE_SIZE);
2793 out:
2794 	ret = mpage_writepage(page, get_block, wbc);
2795 	if (ret == -EAGAIN)
2796 		ret = __block_write_full_page(inode, page, get_block, wbc,
2797 					      end_buffer_async_write);
2798 	return ret;
2799 }
2800 EXPORT_SYMBOL(nobh_writepage);
2801 
2802 int nobh_truncate_page(struct address_space *mapping,
2803 			loff_t from, get_block_t *get_block)
2804 {
2805 	pgoff_t index = from >> PAGE_SHIFT;
2806 	unsigned offset = from & (PAGE_SIZE-1);
2807 	unsigned blocksize;
2808 	sector_t iblock;
2809 	unsigned length, pos;
2810 	struct inode *inode = mapping->host;
2811 	struct page *page;
2812 	struct buffer_head map_bh;
2813 	int err;
2814 
2815 	blocksize = i_blocksize(inode);
2816 	length = offset & (blocksize - 1);
2817 
2818 	/* Block boundary? Nothing to do */
2819 	if (!length)
2820 		return 0;
2821 
2822 	length = blocksize - length;
2823 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2824 
2825 	page = grab_cache_page(mapping, index);
2826 	err = -ENOMEM;
2827 	if (!page)
2828 		goto out;
2829 
2830 	if (page_has_buffers(page)) {
2831 has_buffers:
2832 		unlock_page(page);
2833 		put_page(page);
2834 		return block_truncate_page(mapping, from, get_block);
2835 	}
2836 
2837 	/* Find the buffer that contains "offset" */
2838 	pos = blocksize;
2839 	while (offset >= pos) {
2840 		iblock++;
2841 		pos += blocksize;
2842 	}
2843 
2844 	map_bh.b_size = blocksize;
2845 	map_bh.b_state = 0;
2846 	err = get_block(inode, iblock, &map_bh, 0);
2847 	if (err)
2848 		goto unlock;
2849 	/* unmapped? It's a hole - nothing to do */
2850 	if (!buffer_mapped(&map_bh))
2851 		goto unlock;
2852 
2853 	/* Ok, it's mapped. Make sure it's up-to-date */
2854 	if (!PageUptodate(page)) {
2855 		err = mapping->a_ops->readpage(NULL, page);
2856 		if (err) {
2857 			put_page(page);
2858 			goto out;
2859 		}
2860 		lock_page(page);
2861 		if (!PageUptodate(page)) {
2862 			err = -EIO;
2863 			goto unlock;
2864 		}
2865 		if (page_has_buffers(page))
2866 			goto has_buffers;
2867 	}
2868 	zero_user(page, offset, length);
2869 	set_page_dirty(page);
2870 	err = 0;
2871 
2872 unlock:
2873 	unlock_page(page);
2874 	put_page(page);
2875 out:
2876 	return err;
2877 }
2878 EXPORT_SYMBOL(nobh_truncate_page);
2879 
2880 int block_truncate_page(struct address_space *mapping,
2881 			loff_t from, get_block_t *get_block)
2882 {
2883 	pgoff_t index = from >> PAGE_SHIFT;
2884 	unsigned offset = from & (PAGE_SIZE-1);
2885 	unsigned blocksize;
2886 	sector_t iblock;
2887 	unsigned length, pos;
2888 	struct inode *inode = mapping->host;
2889 	struct page *page;
2890 	struct buffer_head *bh;
2891 	int err;
2892 
2893 	blocksize = i_blocksize(inode);
2894 	length = offset & (blocksize - 1);
2895 
2896 	/* Block boundary? Nothing to do */
2897 	if (!length)
2898 		return 0;
2899 
2900 	length = blocksize - length;
2901 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2902 
2903 	page = grab_cache_page(mapping, index);
2904 	err = -ENOMEM;
2905 	if (!page)
2906 		goto out;
2907 
2908 	if (!page_has_buffers(page))
2909 		create_empty_buffers(page, blocksize, 0);
2910 
2911 	/* Find the buffer that contains "offset" */
2912 	bh = page_buffers(page);
2913 	pos = blocksize;
2914 	while (offset >= pos) {
2915 		bh = bh->b_this_page;
2916 		iblock++;
2917 		pos += blocksize;
2918 	}
2919 
2920 	err = 0;
2921 	if (!buffer_mapped(bh)) {
2922 		WARN_ON(bh->b_size != blocksize);
2923 		err = get_block(inode, iblock, bh, 0);
2924 		if (err)
2925 			goto unlock;
2926 		/* unmapped? It's a hole - nothing to do */
2927 		if (!buffer_mapped(bh))
2928 			goto unlock;
2929 	}
2930 
2931 	/* Ok, it's mapped. Make sure it's up-to-date */
2932 	if (PageUptodate(page))
2933 		set_buffer_uptodate(bh);
2934 
2935 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2936 		err = -EIO;
2937 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2938 		wait_on_buffer(bh);
2939 		/* Uhhuh. Read error. Complain and punt. */
2940 		if (!buffer_uptodate(bh))
2941 			goto unlock;
2942 	}
2943 
2944 	zero_user(page, offset, length);
2945 	mark_buffer_dirty(bh);
2946 	err = 0;
2947 
2948 unlock:
2949 	unlock_page(page);
2950 	put_page(page);
2951 out:
2952 	return err;
2953 }
2954 EXPORT_SYMBOL(block_truncate_page);
2955 
2956 /*
2957  * The generic ->writepage function for buffer-backed address_spaces
2958  */
2959 int block_write_full_page(struct page *page, get_block_t *get_block,
2960 			struct writeback_control *wbc)
2961 {
2962 	struct inode * const inode = page->mapping->host;
2963 	loff_t i_size = i_size_read(inode);
2964 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2965 	unsigned offset;
2966 
2967 	/* Is the page fully inside i_size? */
2968 	if (page->index < end_index)
2969 		return __block_write_full_page(inode, page, get_block, wbc,
2970 					       end_buffer_async_write);
2971 
2972 	/* Is the page fully outside i_size? (truncate in progress) */
2973 	offset = i_size & (PAGE_SIZE-1);
2974 	if (page->index >= end_index+1 || !offset) {
2975 		/*
2976 		 * The page may have dirty, unmapped buffers.  For example,
2977 		 * they may have been added in ext3_writepage().  Make them
2978 		 * freeable here, so the page does not leak.
2979 		 */
2980 		do_invalidatepage(page, 0, PAGE_SIZE);
2981 		unlock_page(page);
2982 		return 0; /* don't care */
2983 	}
2984 
2985 	/*
2986 	 * The page straddles i_size.  It must be zeroed out on each and every
2987 	 * writepage invocation because it may be mmapped.  "A file is mapped
2988 	 * in multiples of the page size.  For a file that is not a multiple of
2989 	 * the  page size, the remaining memory is zeroed when mapped, and
2990 	 * writes to that region are not written out to the file."
2991 	 */
2992 	zero_user_segment(page, offset, PAGE_SIZE);
2993 	return __block_write_full_page(inode, page, get_block, wbc,
2994 							end_buffer_async_write);
2995 }
2996 EXPORT_SYMBOL(block_write_full_page);
2997 
2998 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2999 			    get_block_t *get_block)
3000 {
3001 	struct inode *inode = mapping->host;
3002 	struct buffer_head tmp = {
3003 		.b_size = i_blocksize(inode),
3004 	};
3005 
3006 	get_block(inode, block, &tmp, 0);
3007 	return tmp.b_blocknr;
3008 }
3009 EXPORT_SYMBOL(generic_block_bmap);
3010 
3011 static void end_bio_bh_io_sync(struct bio *bio)
3012 {
3013 	struct buffer_head *bh = bio->bi_private;
3014 
3015 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3016 		set_bit(BH_Quiet, &bh->b_state);
3017 
3018 	bh->b_end_io(bh, !bio->bi_status);
3019 	bio_put(bio);
3020 }
3021 
3022 /*
3023  * This allows us to do IO even on the odd last sectors
3024  * of a device, even if the block size is some multiple
3025  * of the physical sector size.
3026  *
3027  * We'll just truncate the bio to the size of the device,
3028  * and clear the end of the buffer head manually.
3029  *
3030  * Truly out-of-range accesses will turn into actual IO
3031  * errors, this only handles the "we need to be able to
3032  * do IO at the final sector" case.
3033  */
3034 void guard_bio_eod(int op, struct bio *bio)
3035 {
3036 	sector_t maxsector;
3037 	struct bio_vec *bvec = bio_last_bvec_all(bio);
3038 	unsigned truncated_bytes;
3039 	struct hd_struct *part;
3040 
3041 	rcu_read_lock();
3042 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3043 	if (part)
3044 		maxsector = part_nr_sects_read(part);
3045 	else
3046 		maxsector = get_capacity(bio->bi_disk);
3047 	rcu_read_unlock();
3048 
3049 	if (!maxsector)
3050 		return;
3051 
3052 	/*
3053 	 * If the *whole* IO is past the end of the device,
3054 	 * let it through, and the IO layer will turn it into
3055 	 * an EIO.
3056 	 */
3057 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3058 		return;
3059 
3060 	maxsector -= bio->bi_iter.bi_sector;
3061 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3062 		return;
3063 
3064 	/* Uhhuh. We've got a bio that straddles the device size! */
3065 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3066 
3067 	/*
3068 	 * The bio contains more than one segment which spans EOD, just return
3069 	 * and let IO layer turn it into an EIO
3070 	 */
3071 	if (truncated_bytes > bvec->bv_len)
3072 		return;
3073 
3074 	/* Truncate the bio.. */
3075 	bio->bi_iter.bi_size -= truncated_bytes;
3076 	bvec->bv_len -= truncated_bytes;
3077 
3078 	/* ..and clear the end of the buffer for reads */
3079 	if (op == REQ_OP_READ) {
3080 		struct bio_vec bv;
3081 
3082 		mp_bvec_last_segment(bvec, &bv);
3083 		zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3084 				truncated_bytes);
3085 	}
3086 }
3087 
3088 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3089 			 enum rw_hint write_hint, struct writeback_control *wbc)
3090 {
3091 	struct bio *bio;
3092 
3093 	BUG_ON(!buffer_locked(bh));
3094 	BUG_ON(!buffer_mapped(bh));
3095 	BUG_ON(!bh->b_end_io);
3096 	BUG_ON(buffer_delay(bh));
3097 	BUG_ON(buffer_unwritten(bh));
3098 
3099 	/*
3100 	 * Only clear out a write error when rewriting
3101 	 */
3102 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3103 		clear_buffer_write_io_error(bh);
3104 
3105 	/*
3106 	 * from here on down, it's all bio -- do the initial mapping,
3107 	 * submit_bio -> generic_make_request may further map this bio around
3108 	 */
3109 	bio = bio_alloc(GFP_NOIO, 1);
3110 
3111 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3112 	bio_set_dev(bio, bh->b_bdev);
3113 	bio->bi_write_hint = write_hint;
3114 
3115 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3116 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3117 
3118 	bio->bi_end_io = end_bio_bh_io_sync;
3119 	bio->bi_private = bh;
3120 
3121 	/* Take care of bh's that straddle the end of the device */
3122 	guard_bio_eod(op, bio);
3123 
3124 	if (buffer_meta(bh))
3125 		op_flags |= REQ_META;
3126 	if (buffer_prio(bh))
3127 		op_flags |= REQ_PRIO;
3128 	bio_set_op_attrs(bio, op, op_flags);
3129 
3130 	if (wbc) {
3131 		wbc_init_bio(wbc, bio);
3132 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3133 	}
3134 
3135 	submit_bio(bio);
3136 	return 0;
3137 }
3138 
3139 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3140 {
3141 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3142 }
3143 EXPORT_SYMBOL(submit_bh);
3144 
3145 /**
3146  * ll_rw_block: low-level access to block devices (DEPRECATED)
3147  * @op: whether to %READ or %WRITE
3148  * @op_flags: req_flag_bits
3149  * @nr: number of &struct buffer_heads in the array
3150  * @bhs: array of pointers to &struct buffer_head
3151  *
3152  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3153  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3154  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3155  * %REQ_RAHEAD.
3156  *
3157  * This function drops any buffer that it cannot get a lock on (with the
3158  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3159  * request, and any buffer that appears to be up-to-date when doing read
3160  * request.  Further it marks as clean buffers that are processed for
3161  * writing (the buffer cache won't assume that they are actually clean
3162  * until the buffer gets unlocked).
3163  *
3164  * ll_rw_block sets b_end_io to simple completion handler that marks
3165  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3166  * any waiters.
3167  *
3168  * All of the buffers must be for the same device, and must also be a
3169  * multiple of the current approved size for the device.
3170  */
3171 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3172 {
3173 	int i;
3174 
3175 	for (i = 0; i < nr; i++) {
3176 		struct buffer_head *bh = bhs[i];
3177 
3178 		if (!trylock_buffer(bh))
3179 			continue;
3180 		if (op == WRITE) {
3181 			if (test_clear_buffer_dirty(bh)) {
3182 				bh->b_end_io = end_buffer_write_sync;
3183 				get_bh(bh);
3184 				submit_bh(op, op_flags, bh);
3185 				continue;
3186 			}
3187 		} else {
3188 			if (!buffer_uptodate(bh)) {
3189 				bh->b_end_io = end_buffer_read_sync;
3190 				get_bh(bh);
3191 				submit_bh(op, op_flags, bh);
3192 				continue;
3193 			}
3194 		}
3195 		unlock_buffer(bh);
3196 	}
3197 }
3198 EXPORT_SYMBOL(ll_rw_block);
3199 
3200 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3201 {
3202 	lock_buffer(bh);
3203 	if (!test_clear_buffer_dirty(bh)) {
3204 		unlock_buffer(bh);
3205 		return;
3206 	}
3207 	bh->b_end_io = end_buffer_write_sync;
3208 	get_bh(bh);
3209 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3210 }
3211 EXPORT_SYMBOL(write_dirty_buffer);
3212 
3213 /*
3214  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3215  * and then start new I/O and then wait upon it.  The caller must have a ref on
3216  * the buffer_head.
3217  */
3218 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3219 {
3220 	int ret = 0;
3221 
3222 	WARN_ON(atomic_read(&bh->b_count) < 1);
3223 	lock_buffer(bh);
3224 	if (test_clear_buffer_dirty(bh)) {
3225 		get_bh(bh);
3226 		bh->b_end_io = end_buffer_write_sync;
3227 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3228 		wait_on_buffer(bh);
3229 		if (!ret && !buffer_uptodate(bh))
3230 			ret = -EIO;
3231 	} else {
3232 		unlock_buffer(bh);
3233 	}
3234 	return ret;
3235 }
3236 EXPORT_SYMBOL(__sync_dirty_buffer);
3237 
3238 int sync_dirty_buffer(struct buffer_head *bh)
3239 {
3240 	return __sync_dirty_buffer(bh, REQ_SYNC);
3241 }
3242 EXPORT_SYMBOL(sync_dirty_buffer);
3243 
3244 /*
3245  * try_to_free_buffers() checks if all the buffers on this particular page
3246  * are unused, and releases them if so.
3247  *
3248  * Exclusion against try_to_free_buffers may be obtained by either
3249  * locking the page or by holding its mapping's private_lock.
3250  *
3251  * If the page is dirty but all the buffers are clean then we need to
3252  * be sure to mark the page clean as well.  This is because the page
3253  * may be against a block device, and a later reattachment of buffers
3254  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3255  * filesystem data on the same device.
3256  *
3257  * The same applies to regular filesystem pages: if all the buffers are
3258  * clean then we set the page clean and proceed.  To do that, we require
3259  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3260  * private_lock.
3261  *
3262  * try_to_free_buffers() is non-blocking.
3263  */
3264 static inline int buffer_busy(struct buffer_head *bh)
3265 {
3266 	return atomic_read(&bh->b_count) |
3267 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3268 }
3269 
3270 static int
3271 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3272 {
3273 	struct buffer_head *head = page_buffers(page);
3274 	struct buffer_head *bh;
3275 
3276 	bh = head;
3277 	do {
3278 		if (buffer_busy(bh))
3279 			goto failed;
3280 		bh = bh->b_this_page;
3281 	} while (bh != head);
3282 
3283 	do {
3284 		struct buffer_head *next = bh->b_this_page;
3285 
3286 		if (bh->b_assoc_map)
3287 			__remove_assoc_queue(bh);
3288 		bh = next;
3289 	} while (bh != head);
3290 	*buffers_to_free = head;
3291 	__clear_page_buffers(page);
3292 	return 1;
3293 failed:
3294 	return 0;
3295 }
3296 
3297 int try_to_free_buffers(struct page *page)
3298 {
3299 	struct address_space * const mapping = page->mapping;
3300 	struct buffer_head *buffers_to_free = NULL;
3301 	int ret = 0;
3302 
3303 	BUG_ON(!PageLocked(page));
3304 	if (PageWriteback(page))
3305 		return 0;
3306 
3307 	if (mapping == NULL) {		/* can this still happen? */
3308 		ret = drop_buffers(page, &buffers_to_free);
3309 		goto out;
3310 	}
3311 
3312 	spin_lock(&mapping->private_lock);
3313 	ret = drop_buffers(page, &buffers_to_free);
3314 
3315 	/*
3316 	 * If the filesystem writes its buffers by hand (eg ext3)
3317 	 * then we can have clean buffers against a dirty page.  We
3318 	 * clean the page here; otherwise the VM will never notice
3319 	 * that the filesystem did any IO at all.
3320 	 *
3321 	 * Also, during truncate, discard_buffer will have marked all
3322 	 * the page's buffers clean.  We discover that here and clean
3323 	 * the page also.
3324 	 *
3325 	 * private_lock must be held over this entire operation in order
3326 	 * to synchronise against __set_page_dirty_buffers and prevent the
3327 	 * dirty bit from being lost.
3328 	 */
3329 	if (ret)
3330 		cancel_dirty_page(page);
3331 	spin_unlock(&mapping->private_lock);
3332 out:
3333 	if (buffers_to_free) {
3334 		struct buffer_head *bh = buffers_to_free;
3335 
3336 		do {
3337 			struct buffer_head *next = bh->b_this_page;
3338 			free_buffer_head(bh);
3339 			bh = next;
3340 		} while (bh != buffers_to_free);
3341 	}
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL(try_to_free_buffers);
3345 
3346 /*
3347  * There are no bdflush tunables left.  But distributions are
3348  * still running obsolete flush daemons, so we terminate them here.
3349  *
3350  * Use of bdflush() is deprecated and will be removed in a future kernel.
3351  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3352  */
3353 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3354 {
3355 	static int msg_count;
3356 
3357 	if (!capable(CAP_SYS_ADMIN))
3358 		return -EPERM;
3359 
3360 	if (msg_count < 5) {
3361 		msg_count++;
3362 		printk(KERN_INFO
3363 			"warning: process `%s' used the obsolete bdflush"
3364 			" system call\n", current->comm);
3365 		printk(KERN_INFO "Fix your initscripts?\n");
3366 	}
3367 
3368 	if (func == 1)
3369 		do_exit(0);
3370 	return 0;
3371 }
3372 
3373 /*
3374  * Buffer-head allocation
3375  */
3376 static struct kmem_cache *bh_cachep __read_mostly;
3377 
3378 /*
3379  * Once the number of bh's in the machine exceeds this level, we start
3380  * stripping them in writeback.
3381  */
3382 static unsigned long max_buffer_heads;
3383 
3384 int buffer_heads_over_limit;
3385 
3386 struct bh_accounting {
3387 	int nr;			/* Number of live bh's */
3388 	int ratelimit;		/* Limit cacheline bouncing */
3389 };
3390 
3391 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3392 
3393 static void recalc_bh_state(void)
3394 {
3395 	int i;
3396 	int tot = 0;
3397 
3398 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3399 		return;
3400 	__this_cpu_write(bh_accounting.ratelimit, 0);
3401 	for_each_online_cpu(i)
3402 		tot += per_cpu(bh_accounting, i).nr;
3403 	buffer_heads_over_limit = (tot > max_buffer_heads);
3404 }
3405 
3406 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3407 {
3408 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3409 	if (ret) {
3410 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3411 		preempt_disable();
3412 		__this_cpu_inc(bh_accounting.nr);
3413 		recalc_bh_state();
3414 		preempt_enable();
3415 	}
3416 	return ret;
3417 }
3418 EXPORT_SYMBOL(alloc_buffer_head);
3419 
3420 void free_buffer_head(struct buffer_head *bh)
3421 {
3422 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3423 	kmem_cache_free(bh_cachep, bh);
3424 	preempt_disable();
3425 	__this_cpu_dec(bh_accounting.nr);
3426 	recalc_bh_state();
3427 	preempt_enable();
3428 }
3429 EXPORT_SYMBOL(free_buffer_head);
3430 
3431 static int buffer_exit_cpu_dead(unsigned int cpu)
3432 {
3433 	int i;
3434 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3435 
3436 	for (i = 0; i < BH_LRU_SIZE; i++) {
3437 		brelse(b->bhs[i]);
3438 		b->bhs[i] = NULL;
3439 	}
3440 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3441 	per_cpu(bh_accounting, cpu).nr = 0;
3442 	return 0;
3443 }
3444 
3445 /**
3446  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3447  * @bh: struct buffer_head
3448  *
3449  * Return true if the buffer is up-to-date and false,
3450  * with the buffer locked, if not.
3451  */
3452 int bh_uptodate_or_lock(struct buffer_head *bh)
3453 {
3454 	if (!buffer_uptodate(bh)) {
3455 		lock_buffer(bh);
3456 		if (!buffer_uptodate(bh))
3457 			return 0;
3458 		unlock_buffer(bh);
3459 	}
3460 	return 1;
3461 }
3462 EXPORT_SYMBOL(bh_uptodate_or_lock);
3463 
3464 /**
3465  * bh_submit_read - Submit a locked buffer for reading
3466  * @bh: struct buffer_head
3467  *
3468  * Returns zero on success and -EIO on error.
3469  */
3470 int bh_submit_read(struct buffer_head *bh)
3471 {
3472 	BUG_ON(!buffer_locked(bh));
3473 
3474 	if (buffer_uptodate(bh)) {
3475 		unlock_buffer(bh);
3476 		return 0;
3477 	}
3478 
3479 	get_bh(bh);
3480 	bh->b_end_io = end_buffer_read_sync;
3481 	submit_bh(REQ_OP_READ, 0, bh);
3482 	wait_on_buffer(bh);
3483 	if (buffer_uptodate(bh))
3484 		return 0;
3485 	return -EIO;
3486 }
3487 EXPORT_SYMBOL(bh_submit_read);
3488 
3489 void __init buffer_init(void)
3490 {
3491 	unsigned long nrpages;
3492 	int ret;
3493 
3494 	bh_cachep = kmem_cache_create("buffer_head",
3495 			sizeof(struct buffer_head), 0,
3496 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3497 				SLAB_MEM_SPREAD),
3498 				NULL);
3499 
3500 	/*
3501 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3502 	 */
3503 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3504 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3505 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3506 					NULL, buffer_exit_cpu_dead);
3507 	WARN_ON(ret < 0);
3508 }
3509