xref: /openbmc/linux/fs/buffer.c (revision cf028200)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sleep_on_buffer(void *word)
58 {
59 	io_schedule();
60 	return 0;
61 }
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 							TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_clear_bit();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Block until a buffer comes unlocked.  This doesn't stop it
80  * from becoming locked again - you have to lock it yourself
81  * if you want to preserve its state.
82  */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88 
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92 	ClearPagePrivate(page);
93 	set_page_private(page, 0);
94 	page_cache_release(page);
95 }
96 
97 
98 static int quiet_error(struct buffer_head *bh)
99 {
100 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 		return 0;
102 	return 1;
103 }
104 
105 
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 	char b[BDEVNAME_SIZE];
109 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 			bdevname(bh->b_bdev, b),
111 			(unsigned long long)bh->b_blocknr);
112 }
113 
114 /*
115  * End-of-IO handler helper function which does not touch the bh after
116  * unlocking it.
117  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118  * a race there is benign: unlock_buffer() only use the bh's address for
119  * hashing after unlocking the buffer, so it doesn't actually touch the bh
120  * itself.
121  */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 	if (uptodate) {
125 		set_buffer_uptodate(bh);
126 	} else {
127 		/* This happens, due to failed READA attempts. */
128 		clear_buffer_uptodate(bh);
129 	}
130 	unlock_buffer(bh);
131 }
132 
133 /*
134  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
135  * unlock the buffer. This is what ll_rw_block uses too.
136  */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 	__end_buffer_read_notouch(bh, uptodate);
140 	put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143 
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 	char b[BDEVNAME_SIZE];
147 
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		if (!quiet_error(bh)) {
152 			buffer_io_error(bh);
153 			printk(KERN_WARNING "lost page write due to "
154 					"I/O error on %s\n",
155 				       bdevname(bh->b_bdev, b));
156 		}
157 		set_buffer_write_io_error(bh);
158 		clear_buffer_uptodate(bh);
159 	}
160 	unlock_buffer(bh);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164 
165 /*
166  * Various filesystems appear to want __find_get_block to be non-blocking.
167  * But it's the page lock which protects the buffers.  To get around this,
168  * we get exclusion from try_to_free_buffers with the blockdev mapping's
169  * private_lock.
170  *
171  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172  * may be quite high.  This code could TryLock the page, and if that
173  * succeeds, there is no need to take private_lock. (But if
174  * private_lock is contended then so is mapping->tree_lock).
175  */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 	struct inode *bd_inode = bdev->bd_inode;
180 	struct address_space *bd_mapping = bd_inode->i_mapping;
181 	struct buffer_head *ret = NULL;
182 	pgoff_t index;
183 	struct buffer_head *bh;
184 	struct buffer_head *head;
185 	struct page *page;
186 	int all_mapped = 1;
187 
188 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 	page = find_get_page(bd_mapping, index);
190 	if (!page)
191 		goto out;
192 
193 	spin_lock(&bd_mapping->private_lock);
194 	if (!page_has_buffers(page))
195 		goto out_unlock;
196 	head = page_buffers(page);
197 	bh = head;
198 	do {
199 		if (!buffer_mapped(bh))
200 			all_mapped = 0;
201 		else if (bh->b_blocknr == block) {
202 			ret = bh;
203 			get_bh(bh);
204 			goto out_unlock;
205 		}
206 		bh = bh->b_this_page;
207 	} while (bh != head);
208 
209 	/* we might be here because some of the buffers on this page are
210 	 * not mapped.  This is due to various races between
211 	 * file io on the block device and getblk.  It gets dealt with
212 	 * elsewhere, don't buffer_error if we had some unmapped buffers
213 	 */
214 	if (all_mapped) {
215 		char b[BDEVNAME_SIZE];
216 
217 		printk("__find_get_block_slow() failed. "
218 			"block=%llu, b_blocknr=%llu\n",
219 			(unsigned long long)block,
220 			(unsigned long long)bh->b_blocknr);
221 		printk("b_state=0x%08lx, b_size=%zu\n",
222 			bh->b_state, bh->b_size);
223 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 			1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /*
234  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235  */
236 static void free_more_memory(void)
237 {
238 	struct zone *zone;
239 	int nid;
240 
241 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 	yield();
243 
244 	for_each_online_node(nid) {
245 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 						gfp_zone(GFP_NOFS), NULL,
247 						&zone);
248 		if (zone)
249 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 						GFP_NOFS, NULL);
251 	}
252 }
253 
254 /*
255  * I/O completion handler for block_read_full_page() - pages
256  * which come unlocked at the end of I/O.
257  */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 	unsigned long flags;
261 	struct buffer_head *first;
262 	struct buffer_head *tmp;
263 	struct page *page;
264 	int page_uptodate = 1;
265 
266 	BUG_ON(!buffer_async_read(bh));
267 
268 	page = bh->b_page;
269 	if (uptodate) {
270 		set_buffer_uptodate(bh);
271 	} else {
272 		clear_buffer_uptodate(bh);
273 		if (!quiet_error(bh))
274 			buffer_io_error(bh);
275 		SetPageError(page);
276 	}
277 
278 	/*
279 	 * Be _very_ careful from here on. Bad things can happen if
280 	 * two buffer heads end IO at almost the same time and both
281 	 * decide that the page is now completely done.
282 	 */
283 	first = page_buffers(page);
284 	local_irq_save(flags);
285 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 	clear_buffer_async_read(bh);
287 	unlock_buffer(bh);
288 	tmp = bh;
289 	do {
290 		if (!buffer_uptodate(tmp))
291 			page_uptodate = 0;
292 		if (buffer_async_read(tmp)) {
293 			BUG_ON(!buffer_locked(tmp));
294 			goto still_busy;
295 		}
296 		tmp = tmp->b_this_page;
297 	} while (tmp != bh);
298 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 	local_irq_restore(flags);
300 
301 	/*
302 	 * If none of the buffers had errors and they are all
303 	 * uptodate then we can set the page uptodate.
304 	 */
305 	if (page_uptodate && !PageError(page))
306 		SetPageUptodate(page);
307 	unlock_page(page);
308 	return;
309 
310 still_busy:
311 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 	local_irq_restore(flags);
313 	return;
314 }
315 
316 /*
317  * Completion handler for block_write_full_page() - pages which are unlocked
318  * during I/O, and which have PageWriteback cleared upon I/O completion.
319  */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 	char b[BDEVNAME_SIZE];
323 	unsigned long flags;
324 	struct buffer_head *first;
325 	struct buffer_head *tmp;
326 	struct page *page;
327 
328 	BUG_ON(!buffer_async_write(bh));
329 
330 	page = bh->b_page;
331 	if (uptodate) {
332 		set_buffer_uptodate(bh);
333 	} else {
334 		if (!quiet_error(bh)) {
335 			buffer_io_error(bh);
336 			printk(KERN_WARNING "lost page write due to "
337 					"I/O error on %s\n",
338 			       bdevname(bh->b_bdev, b));
339 		}
340 		set_bit(AS_EIO, &page->mapping->flags);
341 		set_buffer_write_io_error(bh);
342 		clear_buffer_uptodate(bh);
343 		SetPageError(page);
344 	}
345 
346 	first = page_buffers(page);
347 	local_irq_save(flags);
348 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349 
350 	clear_buffer_async_write(bh);
351 	unlock_buffer(bh);
352 	tmp = bh->b_this_page;
353 	while (tmp != bh) {
354 		if (buffer_async_write(tmp)) {
355 			BUG_ON(!buffer_locked(tmp));
356 			goto still_busy;
357 		}
358 		tmp = tmp->b_this_page;
359 	}
360 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 	local_irq_restore(flags);
362 	end_page_writeback(page);
363 	return;
364 
365 still_busy:
366 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 	local_irq_restore(flags);
368 	return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371 
372 /*
373  * If a page's buffers are under async readin (end_buffer_async_read
374  * completion) then there is a possibility that another thread of
375  * control could lock one of the buffers after it has completed
376  * but while some of the other buffers have not completed.  This
377  * locked buffer would confuse end_buffer_async_read() into not unlocking
378  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
379  * that this buffer is not under async I/O.
380  *
381  * The page comes unlocked when it has no locked buffer_async buffers
382  * left.
383  *
384  * PageLocked prevents anyone starting new async I/O reads any of
385  * the buffers.
386  *
387  * PageWriteback is used to prevent simultaneous writeout of the same
388  * page.
389  *
390  * PageLocked prevents anyone from starting writeback of a page which is
391  * under read I/O (PageWriteback is only ever set against a locked page).
392  */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 	bh->b_end_io = end_buffer_async_read;
396 	set_buffer_async_read(bh);
397 }
398 
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 					  bh_end_io_t *handler)
401 {
402 	bh->b_end_io = handler;
403 	set_buffer_async_write(bh);
404 }
405 
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411 
412 
413 /*
414  * fs/buffer.c contains helper functions for buffer-backed address space's
415  * fsync functions.  A common requirement for buffer-based filesystems is
416  * that certain data from the backing blockdev needs to be written out for
417  * a successful fsync().  For example, ext2 indirect blocks need to be
418  * written back and waited upon before fsync() returns.
419  *
420  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422  * management of a list of dependent buffers at ->i_mapping->private_list.
423  *
424  * Locking is a little subtle: try_to_free_buffers() will remove buffers
425  * from their controlling inode's queue when they are being freed.  But
426  * try_to_free_buffers() will be operating against the *blockdev* mapping
427  * at the time, not against the S_ISREG file which depends on those buffers.
428  * So the locking for private_list is via the private_lock in the address_space
429  * which backs the buffers.  Which is different from the address_space
430  * against which the buffers are listed.  So for a particular address_space,
431  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
432  * mapping->private_list will always be protected by the backing blockdev's
433  * ->private_lock.
434  *
435  * Which introduces a requirement: all buffers on an address_space's
436  * ->private_list must be from the same address_space: the blockdev's.
437  *
438  * address_spaces which do not place buffers at ->private_list via these
439  * utility functions are free to use private_lock and private_list for
440  * whatever they want.  The only requirement is that list_empty(private_list)
441  * be true at clear_inode() time.
442  *
443  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
444  * filesystems should do that.  invalidate_inode_buffers() should just go
445  * BUG_ON(!list_empty).
446  *
447  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
448  * take an address_space, not an inode.  And it should be called
449  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450  * queued up.
451  *
452  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453  * list if it is already on a list.  Because if the buffer is on a list,
454  * it *must* already be on the right one.  If not, the filesystem is being
455  * silly.  This will save a ton of locking.  But first we have to ensure
456  * that buffers are taken *off* the old inode's list when they are freed
457  * (presumably in truncate).  That requires careful auditing of all
458  * filesystems (do it inside bforget()).  It could also be done by bringing
459  * b_inode back.
460  */
461 
462 /*
463  * The buffer's backing address_space's private_lock must be held
464  */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 	list_del_init(&bh->b_assoc_buffers);
468 	WARN_ON(!bh->b_assoc_map);
469 	if (buffer_write_io_error(bh))
470 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 	bh->b_assoc_map = NULL;
472 }
473 
474 int inode_has_buffers(struct inode *inode)
475 {
476 	return !list_empty(&inode->i_data.private_list);
477 }
478 
479 /*
480  * osync is designed to support O_SYNC io.  It waits synchronously for
481  * all already-submitted IO to complete, but does not queue any new
482  * writes to the disk.
483  *
484  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485  * you dirty the buffers, and then use osync_inode_buffers to wait for
486  * completion.  Any other dirty buffers which are not yet queued for
487  * write will not be flushed to disk by the osync.
488  */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 	struct buffer_head *bh;
492 	struct list_head *p;
493 	int err = 0;
494 
495 	spin_lock(lock);
496 repeat:
497 	list_for_each_prev(p, list) {
498 		bh = BH_ENTRY(p);
499 		if (buffer_locked(bh)) {
500 			get_bh(bh);
501 			spin_unlock(lock);
502 			wait_on_buffer(bh);
503 			if (!buffer_uptodate(bh))
504 				err = -EIO;
505 			brelse(bh);
506 			spin_lock(lock);
507 			goto repeat;
508 		}
509 	}
510 	spin_unlock(lock);
511 	return err;
512 }
513 
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 	char b[BDEVNAME_SIZE];
517 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 		printk(KERN_WARNING "Emergency Thaw on %s\n",
519 		       bdevname(sb->s_bdev, b));
520 }
521 
522 static void do_thaw_all(struct work_struct *work)
523 {
524 	iterate_supers(do_thaw_one, NULL);
525 	kfree(work);
526 	printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528 
529 /**
530  * emergency_thaw_all -- forcibly thaw every frozen filesystem
531  *
532  * Used for emergency unfreeze of all filesystems via SysRq
533  */
534 void emergency_thaw_all(void)
535 {
536 	struct work_struct *work;
537 
538 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 	if (work) {
540 		INIT_WORK(work, do_thaw_all);
541 		schedule_work(work);
542 	}
543 }
544 
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 	struct address_space *buffer_mapping = mapping->assoc_mapping;
559 
560 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 		return 0;
562 
563 	return fsync_buffers_list(&buffer_mapping->private_lock,
564 					&mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567 
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
574 void write_boundary_block(struct block_device *bdev,
575 			sector_t bblock, unsigned blocksize)
576 {
577 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 	if (bh) {
579 		if (buffer_dirty(bh))
580 			ll_rw_block(WRITE, 1, &bh);
581 		put_bh(bh);
582 	}
583 }
584 
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 	struct address_space *mapping = inode->i_mapping;
588 	struct address_space *buffer_mapping = bh->b_page->mapping;
589 
590 	mark_buffer_dirty(bh);
591 	if (!mapping->assoc_mapping) {
592 		mapping->assoc_mapping = buffer_mapping;
593 	} else {
594 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
595 	}
596 	if (!bh->b_assoc_map) {
597 		spin_lock(&buffer_mapping->private_lock);
598 		list_move_tail(&bh->b_assoc_buffers,
599 				&mapping->private_list);
600 		bh->b_assoc_map = mapping;
601 		spin_unlock(&buffer_mapping->private_lock);
602 	}
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605 
606 /*
607  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  */
613 static void __set_page_dirty(struct page *page,
614 		struct address_space *mapping, int warn)
615 {
616 	spin_lock_irq(&mapping->tree_lock);
617 	if (page->mapping) {	/* Race with truncate? */
618 		WARN_ON_ONCE(warn && !PageUptodate(page));
619 		account_page_dirtied(page, mapping);
620 		radix_tree_tag_set(&mapping->page_tree,
621 				page_index(page), PAGECACHE_TAG_DIRTY);
622 	}
623 	spin_unlock_irq(&mapping->tree_lock);
624 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626 
627 /*
628  * Add a page to the dirty page list.
629  *
630  * It is a sad fact of life that this function is called from several places
631  * deeply under spinlocking.  It may not sleep.
632  *
633  * If the page has buffers, the uptodate buffers are set dirty, to preserve
634  * dirty-state coherency between the page and the buffers.  It the page does
635  * not have buffers then when they are later attached they will all be set
636  * dirty.
637  *
638  * The buffers are dirtied before the page is dirtied.  There's a small race
639  * window in which a writepage caller may see the page cleanness but not the
640  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
641  * before the buffers, a concurrent writepage caller could clear the page dirty
642  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643  * page on the dirty page list.
644  *
645  * We use private_lock to lock against try_to_free_buffers while using the
646  * page's buffer list.  Also use this to protect against clean buffers being
647  * added to the page after it was set dirty.
648  *
649  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
650  * address_space though.
651  */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654 	int newly_dirty;
655 	struct address_space *mapping = page_mapping(page);
656 
657 	if (unlikely(!mapping))
658 		return !TestSetPageDirty(page);
659 
660 	spin_lock(&mapping->private_lock);
661 	if (page_has_buffers(page)) {
662 		struct buffer_head *head = page_buffers(page);
663 		struct buffer_head *bh = head;
664 
665 		do {
666 			set_buffer_dirty(bh);
667 			bh = bh->b_this_page;
668 		} while (bh != head);
669 	}
670 	newly_dirty = !TestSetPageDirty(page);
671 	spin_unlock(&mapping->private_lock);
672 
673 	if (newly_dirty)
674 		__set_page_dirty(page, mapping, 1);
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, WRITE_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->assoc_mapping;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->assoc_mapping;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		int retry)
841 {
842 	struct buffer_head *bh, *head;
843 	long offset;
844 
845 try_again:
846 	head = NULL;
847 	offset = PAGE_SIZE;
848 	while ((offset -= size) >= 0) {
849 		bh = alloc_buffer_head(GFP_NOFS);
850 		if (!bh)
851 			goto no_grow;
852 
853 		bh->b_bdev = NULL;
854 		bh->b_this_page = head;
855 		bh->b_blocknr = -1;
856 		head = bh;
857 
858 		bh->b_state = 0;
859 		atomic_set(&bh->b_count, 0);
860 		bh->b_size = size;
861 
862 		/* Link the buffer to its page */
863 		set_bh_page(bh, page, offset);
864 
865 		init_buffer(bh, NULL, NULL);
866 	}
867 	return head;
868 /*
869  * In case anything failed, we just free everything we got.
870  */
871 no_grow:
872 	if (head) {
873 		do {
874 			bh = head;
875 			head = head->b_this_page;
876 			free_buffer_head(bh);
877 		} while (head);
878 	}
879 
880 	/*
881 	 * Return failure for non-async IO requests.  Async IO requests
882 	 * are not allowed to fail, so we have to wait until buffer heads
883 	 * become available.  But we don't want tasks sleeping with
884 	 * partially complete buffers, so all were released above.
885 	 */
886 	if (!retry)
887 		return NULL;
888 
889 	/* We're _really_ low on memory. Now we just
890 	 * wait for old buffer heads to become free due to
891 	 * finishing IO.  Since this is an async request and
892 	 * the reserve list is empty, we're sure there are
893 	 * async buffer heads in use.
894 	 */
895 	free_more_memory();
896 	goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899 
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903 	struct buffer_head *bh, *tail;
904 
905 	bh = head;
906 	do {
907 		tail = bh;
908 		bh = bh->b_this_page;
909 	} while (bh);
910 	tail->b_this_page = head;
911 	attach_page_buffers(page, head);
912 }
913 
914 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
915 {
916 	sector_t retval = ~((sector_t)0);
917 	loff_t sz = i_size_read(bdev->bd_inode);
918 
919 	if (sz) {
920 		unsigned int sizebits = blksize_bits(size);
921 		retval = (sz >> sizebits);
922 	}
923 	return retval;
924 }
925 
926 /*
927  * Initialise the state of a blockdev page's buffers.
928  */
929 static sector_t
930 init_page_buffers(struct page *page, struct block_device *bdev,
931 			sector_t block, int size)
932 {
933 	struct buffer_head *head = page_buffers(page);
934 	struct buffer_head *bh = head;
935 	int uptodate = PageUptodate(page);
936 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
937 
938 	do {
939 		if (!buffer_mapped(bh)) {
940 			init_buffer(bh, NULL, NULL);
941 			bh->b_bdev = bdev;
942 			bh->b_blocknr = block;
943 			if (uptodate)
944 				set_buffer_uptodate(bh);
945 			if (block < end_block)
946 				set_buffer_mapped(bh);
947 		}
948 		block++;
949 		bh = bh->b_this_page;
950 	} while (bh != head);
951 
952 	/*
953 	 * Caller needs to validate requested block against end of device.
954 	 */
955 	return end_block;
956 }
957 
958 /*
959  * Create the page-cache page that contains the requested block.
960  *
961  * This is used purely for blockdev mappings.
962  */
963 static int
964 grow_dev_page(struct block_device *bdev, sector_t block,
965 		pgoff_t index, int size, int sizebits)
966 {
967 	struct inode *inode = bdev->bd_inode;
968 	struct page *page;
969 	struct buffer_head *bh;
970 	sector_t end_block;
971 	int ret = 0;		/* Will call free_more_memory() */
972 
973 	page = find_or_create_page(inode->i_mapping, index,
974 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
975 	if (!page)
976 		return ret;
977 
978 	BUG_ON(!PageLocked(page));
979 
980 	if (page_has_buffers(page)) {
981 		bh = page_buffers(page);
982 		if (bh->b_size == size) {
983 			end_block = init_page_buffers(page, bdev,
984 						index << sizebits, size);
985 			goto done;
986 		}
987 		if (!try_to_free_buffers(page))
988 			goto failed;
989 	}
990 
991 	/*
992 	 * Allocate some buffers for this page
993 	 */
994 	bh = alloc_page_buffers(page, size, 0);
995 	if (!bh)
996 		goto failed;
997 
998 	/*
999 	 * Link the page to the buffers and initialise them.  Take the
1000 	 * lock to be atomic wrt __find_get_block(), which does not
1001 	 * run under the page lock.
1002 	 */
1003 	spin_lock(&inode->i_mapping->private_lock);
1004 	link_dev_buffers(page, bh);
1005 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1006 	spin_unlock(&inode->i_mapping->private_lock);
1007 done:
1008 	ret = (block < end_block) ? 1 : -ENXIO;
1009 failed:
1010 	unlock_page(page);
1011 	page_cache_release(page);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * Create buffers for the specified block device block's page.  If
1017  * that page was dirty, the buffers are set dirty also.
1018  */
1019 static int
1020 grow_buffers(struct block_device *bdev, sector_t block, int size)
1021 {
1022 	pgoff_t index;
1023 	int sizebits;
1024 
1025 	sizebits = -1;
1026 	do {
1027 		sizebits++;
1028 	} while ((size << sizebits) < PAGE_SIZE);
1029 
1030 	index = block >> sizebits;
1031 
1032 	/*
1033 	 * Check for a block which wants to lie outside our maximum possible
1034 	 * pagecache index.  (this comparison is done using sector_t types).
1035 	 */
1036 	if (unlikely(index != block >> sizebits)) {
1037 		char b[BDEVNAME_SIZE];
1038 
1039 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1040 			"device %s\n",
1041 			__func__, (unsigned long long)block,
1042 			bdevname(bdev, b));
1043 		return -EIO;
1044 	}
1045 
1046 	/* Create a page with the proper size buffers.. */
1047 	return grow_dev_page(bdev, block, index, size, sizebits);
1048 }
1049 
1050 static struct buffer_head *
1051 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1052 {
1053 	/* Size must be multiple of hard sectorsize */
1054 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1055 			(size < 512 || size > PAGE_SIZE))) {
1056 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1057 					size);
1058 		printk(KERN_ERR "logical block size: %d\n",
1059 					bdev_logical_block_size(bdev));
1060 
1061 		dump_stack();
1062 		return NULL;
1063 	}
1064 
1065 	for (;;) {
1066 		struct buffer_head *bh;
1067 		int ret;
1068 
1069 		bh = __find_get_block(bdev, block, size);
1070 		if (bh)
1071 			return bh;
1072 
1073 		ret = grow_buffers(bdev, block, size);
1074 		if (ret < 0)
1075 			return NULL;
1076 		if (ret == 0)
1077 			free_more_memory();
1078 	}
1079 }
1080 
1081 /*
1082  * The relationship between dirty buffers and dirty pages:
1083  *
1084  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1085  * the page is tagged dirty in its radix tree.
1086  *
1087  * At all times, the dirtiness of the buffers represents the dirtiness of
1088  * subsections of the page.  If the page has buffers, the page dirty bit is
1089  * merely a hint about the true dirty state.
1090  *
1091  * When a page is set dirty in its entirety, all its buffers are marked dirty
1092  * (if the page has buffers).
1093  *
1094  * When a buffer is marked dirty, its page is dirtied, but the page's other
1095  * buffers are not.
1096  *
1097  * Also.  When blockdev buffers are explicitly read with bread(), they
1098  * individually become uptodate.  But their backing page remains not
1099  * uptodate - even if all of its buffers are uptodate.  A subsequent
1100  * block_read_full_page() against that page will discover all the uptodate
1101  * buffers, will set the page uptodate and will perform no I/O.
1102  */
1103 
1104 /**
1105  * mark_buffer_dirty - mark a buffer_head as needing writeout
1106  * @bh: the buffer_head to mark dirty
1107  *
1108  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1109  * backing page dirty, then tag the page as dirty in its address_space's radix
1110  * tree and then attach the address_space's inode to its superblock's dirty
1111  * inode list.
1112  *
1113  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1114  * mapping->tree_lock and mapping->host->i_lock.
1115  */
1116 void mark_buffer_dirty(struct buffer_head *bh)
1117 {
1118 	WARN_ON_ONCE(!buffer_uptodate(bh));
1119 
1120 	/*
1121 	 * Very *carefully* optimize the it-is-already-dirty case.
1122 	 *
1123 	 * Don't let the final "is it dirty" escape to before we
1124 	 * perhaps modified the buffer.
1125 	 */
1126 	if (buffer_dirty(bh)) {
1127 		smp_mb();
1128 		if (buffer_dirty(bh))
1129 			return;
1130 	}
1131 
1132 	if (!test_set_buffer_dirty(bh)) {
1133 		struct page *page = bh->b_page;
1134 		if (!TestSetPageDirty(page)) {
1135 			struct address_space *mapping = page_mapping(page);
1136 			if (mapping)
1137 				__set_page_dirty(page, mapping, 0);
1138 		}
1139 	}
1140 }
1141 EXPORT_SYMBOL(mark_buffer_dirty);
1142 
1143 /*
1144  * Decrement a buffer_head's reference count.  If all buffers against a page
1145  * have zero reference count, are clean and unlocked, and if the page is clean
1146  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148  * a page but it ends up not being freed, and buffers may later be reattached).
1149  */
1150 void __brelse(struct buffer_head * buf)
1151 {
1152 	if (atomic_read(&buf->b_count)) {
1153 		put_bh(buf);
1154 		return;
1155 	}
1156 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1157 }
1158 EXPORT_SYMBOL(__brelse);
1159 
1160 /*
1161  * bforget() is like brelse(), except it discards any
1162  * potentially dirty data.
1163  */
1164 void __bforget(struct buffer_head *bh)
1165 {
1166 	clear_buffer_dirty(bh);
1167 	if (bh->b_assoc_map) {
1168 		struct address_space *buffer_mapping = bh->b_page->mapping;
1169 
1170 		spin_lock(&buffer_mapping->private_lock);
1171 		list_del_init(&bh->b_assoc_buffers);
1172 		bh->b_assoc_map = NULL;
1173 		spin_unlock(&buffer_mapping->private_lock);
1174 	}
1175 	__brelse(bh);
1176 }
1177 EXPORT_SYMBOL(__bforget);
1178 
1179 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180 {
1181 	lock_buffer(bh);
1182 	if (buffer_uptodate(bh)) {
1183 		unlock_buffer(bh);
1184 		return bh;
1185 	} else {
1186 		get_bh(bh);
1187 		bh->b_end_io = end_buffer_read_sync;
1188 		submit_bh(READ, bh);
1189 		wait_on_buffer(bh);
1190 		if (buffer_uptodate(bh))
1191 			return bh;
1192 	}
1193 	brelse(bh);
1194 	return NULL;
1195 }
1196 
1197 /*
1198  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1199  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1200  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1201  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1202  * CPU's LRUs at the same time.
1203  *
1204  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205  * sb_find_get_block().
1206  *
1207  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1208  * a local interrupt disable for that.
1209  */
1210 
1211 #define BH_LRU_SIZE	8
1212 
1213 struct bh_lru {
1214 	struct buffer_head *bhs[BH_LRU_SIZE];
1215 };
1216 
1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218 
1219 #ifdef CONFIG_SMP
1220 #define bh_lru_lock()	local_irq_disable()
1221 #define bh_lru_unlock()	local_irq_enable()
1222 #else
1223 #define bh_lru_lock()	preempt_disable()
1224 #define bh_lru_unlock()	preempt_enable()
1225 #endif
1226 
1227 static inline void check_irqs_on(void)
1228 {
1229 #ifdef irqs_disabled
1230 	BUG_ON(irqs_disabled());
1231 #endif
1232 }
1233 
1234 /*
1235  * The LRU management algorithm is dopey-but-simple.  Sorry.
1236  */
1237 static void bh_lru_install(struct buffer_head *bh)
1238 {
1239 	struct buffer_head *evictee = NULL;
1240 
1241 	check_irqs_on();
1242 	bh_lru_lock();
1243 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1244 		struct buffer_head *bhs[BH_LRU_SIZE];
1245 		int in;
1246 		int out = 0;
1247 
1248 		get_bh(bh);
1249 		bhs[out++] = bh;
1250 		for (in = 0; in < BH_LRU_SIZE; in++) {
1251 			struct buffer_head *bh2 =
1252 				__this_cpu_read(bh_lrus.bhs[in]);
1253 
1254 			if (bh2 == bh) {
1255 				__brelse(bh2);
1256 			} else {
1257 				if (out >= BH_LRU_SIZE) {
1258 					BUG_ON(evictee != NULL);
1259 					evictee = bh2;
1260 				} else {
1261 					bhs[out++] = bh2;
1262 				}
1263 			}
1264 		}
1265 		while (out < BH_LRU_SIZE)
1266 			bhs[out++] = NULL;
1267 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1268 	}
1269 	bh_lru_unlock();
1270 
1271 	if (evictee)
1272 		__brelse(evictee);
1273 }
1274 
1275 /*
1276  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1277  */
1278 static struct buffer_head *
1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1280 {
1281 	struct buffer_head *ret = NULL;
1282 	unsigned int i;
1283 
1284 	check_irqs_on();
1285 	bh_lru_lock();
1286 	for (i = 0; i < BH_LRU_SIZE; i++) {
1287 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1288 
1289 		if (bh && bh->b_bdev == bdev &&
1290 				bh->b_blocknr == block && bh->b_size == size) {
1291 			if (i) {
1292 				while (i) {
1293 					__this_cpu_write(bh_lrus.bhs[i],
1294 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1295 					i--;
1296 				}
1297 				__this_cpu_write(bh_lrus.bhs[0], bh);
1298 			}
1299 			get_bh(bh);
1300 			ret = bh;
1301 			break;
1302 		}
1303 	}
1304 	bh_lru_unlock();
1305 	return ret;
1306 }
1307 
1308 /*
1309  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1310  * it in the LRU and mark it as accessed.  If it is not present then return
1311  * NULL
1312  */
1313 struct buffer_head *
1314 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1317 
1318 	if (bh == NULL) {
1319 		bh = __find_get_block_slow(bdev, block);
1320 		if (bh)
1321 			bh_lru_install(bh);
1322 	}
1323 	if (bh)
1324 		touch_buffer(bh);
1325 	return bh;
1326 }
1327 EXPORT_SYMBOL(__find_get_block);
1328 
1329 /*
1330  * __getblk will locate (and, if necessary, create) the buffer_head
1331  * which corresponds to the passed block_device, block and size. The
1332  * returned buffer has its reference count incremented.
1333  *
1334  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1335  * attempt is failing.  FIXME, perhaps?
1336  */
1337 struct buffer_head *
1338 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1341 
1342 	might_sleep();
1343 	if (bh == NULL)
1344 		bh = __getblk_slow(bdev, block, size);
1345 	return bh;
1346 }
1347 EXPORT_SYMBOL(__getblk);
1348 
1349 /*
1350  * Do async read-ahead on a buffer..
1351  */
1352 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1353 {
1354 	struct buffer_head *bh = __getblk(bdev, block, size);
1355 	if (likely(bh)) {
1356 		ll_rw_block(READA, 1, &bh);
1357 		brelse(bh);
1358 	}
1359 }
1360 EXPORT_SYMBOL(__breadahead);
1361 
1362 /**
1363  *  __bread() - reads a specified block and returns the bh
1364  *  @bdev: the block_device to read from
1365  *  @block: number of block
1366  *  @size: size (in bytes) to read
1367  *
1368  *  Reads a specified block, and returns buffer head that contains it.
1369  *  It returns NULL if the block was unreadable.
1370  */
1371 struct buffer_head *
1372 __bread(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374 	struct buffer_head *bh = __getblk(bdev, block, size);
1375 
1376 	if (likely(bh) && !buffer_uptodate(bh))
1377 		bh = __bread_slow(bh);
1378 	return bh;
1379 }
1380 EXPORT_SYMBOL(__bread);
1381 
1382 /*
1383  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1384  * This doesn't race because it runs in each cpu either in irq
1385  * or with preempt disabled.
1386  */
1387 static void invalidate_bh_lru(void *arg)
1388 {
1389 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1390 	int i;
1391 
1392 	for (i = 0; i < BH_LRU_SIZE; i++) {
1393 		brelse(b->bhs[i]);
1394 		b->bhs[i] = NULL;
1395 	}
1396 	put_cpu_var(bh_lrus);
1397 }
1398 
1399 static bool has_bh_in_lru(int cpu, void *dummy)
1400 {
1401 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1402 	int i;
1403 
1404 	for (i = 0; i < BH_LRU_SIZE; i++) {
1405 		if (b->bhs[i])
1406 			return 1;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 void invalidate_bh_lrus(void)
1413 {
1414 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1415 }
1416 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1417 
1418 void set_bh_page(struct buffer_head *bh,
1419 		struct page *page, unsigned long offset)
1420 {
1421 	bh->b_page = page;
1422 	BUG_ON(offset >= PAGE_SIZE);
1423 	if (PageHighMem(page))
1424 		/*
1425 		 * This catches illegal uses and preserves the offset:
1426 		 */
1427 		bh->b_data = (char *)(0 + offset);
1428 	else
1429 		bh->b_data = page_address(page) + offset;
1430 }
1431 EXPORT_SYMBOL(set_bh_page);
1432 
1433 /*
1434  * Called when truncating a buffer on a page completely.
1435  */
1436 static void discard_buffer(struct buffer_head * bh)
1437 {
1438 	lock_buffer(bh);
1439 	clear_buffer_dirty(bh);
1440 	bh->b_bdev = NULL;
1441 	clear_buffer_mapped(bh);
1442 	clear_buffer_req(bh);
1443 	clear_buffer_new(bh);
1444 	clear_buffer_delay(bh);
1445 	clear_buffer_unwritten(bh);
1446 	unlock_buffer(bh);
1447 }
1448 
1449 /**
1450  * block_invalidatepage - invalidate part or all of a buffer-backed page
1451  *
1452  * @page: the page which is affected
1453  * @offset: the index of the truncation point
1454  *
1455  * block_invalidatepage() is called when all or part of the page has become
1456  * invalidated by a truncate operation.
1457  *
1458  * block_invalidatepage() does not have to release all buffers, but it must
1459  * ensure that no dirty buffer is left outside @offset and that no I/O
1460  * is underway against any of the blocks which are outside the truncation
1461  * point.  Because the caller is about to free (and possibly reuse) those
1462  * blocks on-disk.
1463  */
1464 void block_invalidatepage(struct page *page, unsigned long offset)
1465 {
1466 	struct buffer_head *head, *bh, *next;
1467 	unsigned int curr_off = 0;
1468 
1469 	BUG_ON(!PageLocked(page));
1470 	if (!page_has_buffers(page))
1471 		goto out;
1472 
1473 	head = page_buffers(page);
1474 	bh = head;
1475 	do {
1476 		unsigned int next_off = curr_off + bh->b_size;
1477 		next = bh->b_this_page;
1478 
1479 		/*
1480 		 * is this block fully invalidated?
1481 		 */
1482 		if (offset <= curr_off)
1483 			discard_buffer(bh);
1484 		curr_off = next_off;
1485 		bh = next;
1486 	} while (bh != head);
1487 
1488 	/*
1489 	 * We release buffers only if the entire page is being invalidated.
1490 	 * The get_block cached value has been unconditionally invalidated,
1491 	 * so real IO is not possible anymore.
1492 	 */
1493 	if (offset == 0)
1494 		try_to_release_page(page, 0);
1495 out:
1496 	return;
1497 }
1498 EXPORT_SYMBOL(block_invalidatepage);
1499 
1500 /*
1501  * We attach and possibly dirty the buffers atomically wrt
1502  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1503  * is already excluded via the page lock.
1504  */
1505 void create_empty_buffers(struct page *page,
1506 			unsigned long blocksize, unsigned long b_state)
1507 {
1508 	struct buffer_head *bh, *head, *tail;
1509 
1510 	head = alloc_page_buffers(page, blocksize, 1);
1511 	bh = head;
1512 	do {
1513 		bh->b_state |= b_state;
1514 		tail = bh;
1515 		bh = bh->b_this_page;
1516 	} while (bh);
1517 	tail->b_this_page = head;
1518 
1519 	spin_lock(&page->mapping->private_lock);
1520 	if (PageUptodate(page) || PageDirty(page)) {
1521 		bh = head;
1522 		do {
1523 			if (PageDirty(page))
1524 				set_buffer_dirty(bh);
1525 			if (PageUptodate(page))
1526 				set_buffer_uptodate(bh);
1527 			bh = bh->b_this_page;
1528 		} while (bh != head);
1529 	}
1530 	attach_page_buffers(page, head);
1531 	spin_unlock(&page->mapping->private_lock);
1532 }
1533 EXPORT_SYMBOL(create_empty_buffers);
1534 
1535 /*
1536  * We are taking a block for data and we don't want any output from any
1537  * buffer-cache aliases starting from return from that function and
1538  * until the moment when something will explicitly mark the buffer
1539  * dirty (hopefully that will not happen until we will free that block ;-)
1540  * We don't even need to mark it not-uptodate - nobody can expect
1541  * anything from a newly allocated buffer anyway. We used to used
1542  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1543  * don't want to mark the alias unmapped, for example - it would confuse
1544  * anyone who might pick it with bread() afterwards...
1545  *
1546  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1547  * be writeout I/O going on against recently-freed buffers.  We don't
1548  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1549  * only if we really need to.  That happens here.
1550  */
1551 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1552 {
1553 	struct buffer_head *old_bh;
1554 
1555 	might_sleep();
1556 
1557 	old_bh = __find_get_block_slow(bdev, block);
1558 	if (old_bh) {
1559 		clear_buffer_dirty(old_bh);
1560 		wait_on_buffer(old_bh);
1561 		clear_buffer_req(old_bh);
1562 		__brelse(old_bh);
1563 	}
1564 }
1565 EXPORT_SYMBOL(unmap_underlying_metadata);
1566 
1567 /*
1568  * Size is a power-of-two in the range 512..PAGE_SIZE,
1569  * and the case we care about most is PAGE_SIZE.
1570  *
1571  * So this *could* possibly be written with those
1572  * constraints in mind (relevant mostly if some
1573  * architecture has a slow bit-scan instruction)
1574  */
1575 static inline int block_size_bits(unsigned int blocksize)
1576 {
1577 	return ilog2(blocksize);
1578 }
1579 
1580 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1581 {
1582 	BUG_ON(!PageLocked(page));
1583 
1584 	if (!page_has_buffers(page))
1585 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1586 	return page_buffers(page);
1587 }
1588 
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *	Mapped	Uptodate	Meaning
1593  *
1594  *	No	No		"unknown" - must do get_block()
1595  *	No	Yes		"hole" - zero-filled
1596  *	Yes	No		"allocated" - allocated on disk, not read in
1597  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601 
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  *
1614  * If block_write_full_page() is called with wbc->sync_mode ==
1615  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1616  * causes the writes to be flagged as synchronous writes.
1617  */
1618 static int __block_write_full_page(struct inode *inode, struct page *page,
1619 			get_block_t *get_block, struct writeback_control *wbc,
1620 			bh_end_io_t *handler)
1621 {
1622 	int err;
1623 	sector_t block;
1624 	sector_t last_block;
1625 	struct buffer_head *bh, *head;
1626 	unsigned int blocksize, bbits;
1627 	int nr_underway = 0;
1628 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1629 			WRITE_SYNC : WRITE);
1630 
1631 	head = create_page_buffers(page, inode,
1632 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1633 
1634 	/*
1635 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1636 	 * here, and the (potentially unmapped) buffers may become dirty at
1637 	 * any time.  If a buffer becomes dirty here after we've inspected it
1638 	 * then we just miss that fact, and the page stays dirty.
1639 	 *
1640 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1641 	 * handle that here by just cleaning them.
1642 	 */
1643 
1644 	bh = head;
1645 	blocksize = bh->b_size;
1646 	bbits = block_size_bits(blocksize);
1647 
1648 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1649 	last_block = (i_size_read(inode) - 1) >> bbits;
1650 
1651 	/*
1652 	 * Get all the dirty buffers mapped to disk addresses and
1653 	 * handle any aliases from the underlying blockdev's mapping.
1654 	 */
1655 	do {
1656 		if (block > last_block) {
1657 			/*
1658 			 * mapped buffers outside i_size will occur, because
1659 			 * this page can be outside i_size when there is a
1660 			 * truncate in progress.
1661 			 */
1662 			/*
1663 			 * The buffer was zeroed by block_write_full_page()
1664 			 */
1665 			clear_buffer_dirty(bh);
1666 			set_buffer_uptodate(bh);
1667 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1668 			   buffer_dirty(bh)) {
1669 			WARN_ON(bh->b_size != blocksize);
1670 			err = get_block(inode, block, bh, 1);
1671 			if (err)
1672 				goto recover;
1673 			clear_buffer_delay(bh);
1674 			if (buffer_new(bh)) {
1675 				/* blockdev mappings never come here */
1676 				clear_buffer_new(bh);
1677 				unmap_underlying_metadata(bh->b_bdev,
1678 							bh->b_blocknr);
1679 			}
1680 		}
1681 		bh = bh->b_this_page;
1682 		block++;
1683 	} while (bh != head);
1684 
1685 	do {
1686 		if (!buffer_mapped(bh))
1687 			continue;
1688 		/*
1689 		 * If it's a fully non-blocking write attempt and we cannot
1690 		 * lock the buffer then redirty the page.  Note that this can
1691 		 * potentially cause a busy-wait loop from writeback threads
1692 		 * and kswapd activity, but those code paths have their own
1693 		 * higher-level throttling.
1694 		 */
1695 		if (wbc->sync_mode != WB_SYNC_NONE) {
1696 			lock_buffer(bh);
1697 		} else if (!trylock_buffer(bh)) {
1698 			redirty_page_for_writepage(wbc, page);
1699 			continue;
1700 		}
1701 		if (test_clear_buffer_dirty(bh)) {
1702 			mark_buffer_async_write_endio(bh, handler);
1703 		} else {
1704 			unlock_buffer(bh);
1705 		}
1706 	} while ((bh = bh->b_this_page) != head);
1707 
1708 	/*
1709 	 * The page and its buffers are protected by PageWriteback(), so we can
1710 	 * drop the bh refcounts early.
1711 	 */
1712 	BUG_ON(PageWriteback(page));
1713 	set_page_writeback(page);
1714 
1715 	do {
1716 		struct buffer_head *next = bh->b_this_page;
1717 		if (buffer_async_write(bh)) {
1718 			submit_bh(write_op, bh);
1719 			nr_underway++;
1720 		}
1721 		bh = next;
1722 	} while (bh != head);
1723 	unlock_page(page);
1724 
1725 	err = 0;
1726 done:
1727 	if (nr_underway == 0) {
1728 		/*
1729 		 * The page was marked dirty, but the buffers were
1730 		 * clean.  Someone wrote them back by hand with
1731 		 * ll_rw_block/submit_bh.  A rare case.
1732 		 */
1733 		end_page_writeback(page);
1734 
1735 		/*
1736 		 * The page and buffer_heads can be released at any time from
1737 		 * here on.
1738 		 */
1739 	}
1740 	return err;
1741 
1742 recover:
1743 	/*
1744 	 * ENOSPC, or some other error.  We may already have added some
1745 	 * blocks to the file, so we need to write these out to avoid
1746 	 * exposing stale data.
1747 	 * The page is currently locked and not marked for writeback
1748 	 */
1749 	bh = head;
1750 	/* Recovery: lock and submit the mapped buffers */
1751 	do {
1752 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1753 		    !buffer_delay(bh)) {
1754 			lock_buffer(bh);
1755 			mark_buffer_async_write_endio(bh, handler);
1756 		} else {
1757 			/*
1758 			 * The buffer may have been set dirty during
1759 			 * attachment to a dirty page.
1760 			 */
1761 			clear_buffer_dirty(bh);
1762 		}
1763 	} while ((bh = bh->b_this_page) != head);
1764 	SetPageError(page);
1765 	BUG_ON(PageWriteback(page));
1766 	mapping_set_error(page->mapping, err);
1767 	set_page_writeback(page);
1768 	do {
1769 		struct buffer_head *next = bh->b_this_page;
1770 		if (buffer_async_write(bh)) {
1771 			clear_buffer_dirty(bh);
1772 			submit_bh(write_op, bh);
1773 			nr_underway++;
1774 		}
1775 		bh = next;
1776 	} while (bh != head);
1777 	unlock_page(page);
1778 	goto done;
1779 }
1780 
1781 /*
1782  * If a page has any new buffers, zero them out here, and mark them uptodate
1783  * and dirty so they'll be written out (in order to prevent uninitialised
1784  * block data from leaking). And clear the new bit.
1785  */
1786 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1787 {
1788 	unsigned int block_start, block_end;
1789 	struct buffer_head *head, *bh;
1790 
1791 	BUG_ON(!PageLocked(page));
1792 	if (!page_has_buffers(page))
1793 		return;
1794 
1795 	bh = head = page_buffers(page);
1796 	block_start = 0;
1797 	do {
1798 		block_end = block_start + bh->b_size;
1799 
1800 		if (buffer_new(bh)) {
1801 			if (block_end > from && block_start < to) {
1802 				if (!PageUptodate(page)) {
1803 					unsigned start, size;
1804 
1805 					start = max(from, block_start);
1806 					size = min(to, block_end) - start;
1807 
1808 					zero_user(page, start, size);
1809 					set_buffer_uptodate(bh);
1810 				}
1811 
1812 				clear_buffer_new(bh);
1813 				mark_buffer_dirty(bh);
1814 			}
1815 		}
1816 
1817 		block_start = block_end;
1818 		bh = bh->b_this_page;
1819 	} while (bh != head);
1820 }
1821 EXPORT_SYMBOL(page_zero_new_buffers);
1822 
1823 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1824 		get_block_t *get_block)
1825 {
1826 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1827 	unsigned to = from + len;
1828 	struct inode *inode = page->mapping->host;
1829 	unsigned block_start, block_end;
1830 	sector_t block;
1831 	int err = 0;
1832 	unsigned blocksize, bbits;
1833 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1834 
1835 	BUG_ON(!PageLocked(page));
1836 	BUG_ON(from > PAGE_CACHE_SIZE);
1837 	BUG_ON(to > PAGE_CACHE_SIZE);
1838 	BUG_ON(from > to);
1839 
1840 	head = create_page_buffers(page, inode, 0);
1841 	blocksize = head->b_size;
1842 	bbits = block_size_bits(blocksize);
1843 
1844 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845 
1846 	for(bh = head, block_start = 0; bh != head || !block_start;
1847 	    block++, block_start=block_end, bh = bh->b_this_page) {
1848 		block_end = block_start + blocksize;
1849 		if (block_end <= from || block_start >= to) {
1850 			if (PageUptodate(page)) {
1851 				if (!buffer_uptodate(bh))
1852 					set_buffer_uptodate(bh);
1853 			}
1854 			continue;
1855 		}
1856 		if (buffer_new(bh))
1857 			clear_buffer_new(bh);
1858 		if (!buffer_mapped(bh)) {
1859 			WARN_ON(bh->b_size != blocksize);
1860 			err = get_block(inode, block, bh, 1);
1861 			if (err)
1862 				break;
1863 			if (buffer_new(bh)) {
1864 				unmap_underlying_metadata(bh->b_bdev,
1865 							bh->b_blocknr);
1866 				if (PageUptodate(page)) {
1867 					clear_buffer_new(bh);
1868 					set_buffer_uptodate(bh);
1869 					mark_buffer_dirty(bh);
1870 					continue;
1871 				}
1872 				if (block_end > to || block_start < from)
1873 					zero_user_segments(page,
1874 						to, block_end,
1875 						block_start, from);
1876 				continue;
1877 			}
1878 		}
1879 		if (PageUptodate(page)) {
1880 			if (!buffer_uptodate(bh))
1881 				set_buffer_uptodate(bh);
1882 			continue;
1883 		}
1884 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 		    !buffer_unwritten(bh) &&
1886 		     (block_start < from || block_end > to)) {
1887 			ll_rw_block(READ, 1, &bh);
1888 			*wait_bh++=bh;
1889 		}
1890 	}
1891 	/*
1892 	 * If we issued read requests - let them complete.
1893 	 */
1894 	while(wait_bh > wait) {
1895 		wait_on_buffer(*--wait_bh);
1896 		if (!buffer_uptodate(*wait_bh))
1897 			err = -EIO;
1898 	}
1899 	if (unlikely(err))
1900 		page_zero_new_buffers(page, from, to);
1901 	return err;
1902 }
1903 EXPORT_SYMBOL(__block_write_begin);
1904 
1905 static int __block_commit_write(struct inode *inode, struct page *page,
1906 		unsigned from, unsigned to)
1907 {
1908 	unsigned block_start, block_end;
1909 	int partial = 0;
1910 	unsigned blocksize;
1911 	struct buffer_head *bh, *head;
1912 
1913 	bh = head = page_buffers(page);
1914 	blocksize = bh->b_size;
1915 
1916 	block_start = 0;
1917 	do {
1918 		block_end = block_start + blocksize;
1919 		if (block_end <= from || block_start >= to) {
1920 			if (!buffer_uptodate(bh))
1921 				partial = 1;
1922 		} else {
1923 			set_buffer_uptodate(bh);
1924 			mark_buffer_dirty(bh);
1925 		}
1926 		clear_buffer_new(bh);
1927 
1928 		block_start = block_end;
1929 		bh = bh->b_this_page;
1930 	} while (bh != head);
1931 
1932 	/*
1933 	 * If this is a partial write which happened to make all buffers
1934 	 * uptodate then we can optimize away a bogus readpage() for
1935 	 * the next read(). Here we 'discover' whether the page went
1936 	 * uptodate as a result of this (potentially partial) write.
1937 	 */
1938 	if (!partial)
1939 		SetPageUptodate(page);
1940 	return 0;
1941 }
1942 
1943 /*
1944  * block_write_begin takes care of the basic task of block allocation and
1945  * bringing partial write blocks uptodate first.
1946  *
1947  * The filesystem needs to handle block truncation upon failure.
1948  */
1949 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1950 		unsigned flags, struct page **pagep, get_block_t *get_block)
1951 {
1952 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1953 	struct page *page;
1954 	int status;
1955 
1956 	page = grab_cache_page_write_begin(mapping, index, flags);
1957 	if (!page)
1958 		return -ENOMEM;
1959 
1960 	status = __block_write_begin(page, pos, len, get_block);
1961 	if (unlikely(status)) {
1962 		unlock_page(page);
1963 		page_cache_release(page);
1964 		page = NULL;
1965 	}
1966 
1967 	*pagep = page;
1968 	return status;
1969 }
1970 EXPORT_SYMBOL(block_write_begin);
1971 
1972 int block_write_end(struct file *file, struct address_space *mapping,
1973 			loff_t pos, unsigned len, unsigned copied,
1974 			struct page *page, void *fsdata)
1975 {
1976 	struct inode *inode = mapping->host;
1977 	unsigned start;
1978 
1979 	start = pos & (PAGE_CACHE_SIZE - 1);
1980 
1981 	if (unlikely(copied < len)) {
1982 		/*
1983 		 * The buffers that were written will now be uptodate, so we
1984 		 * don't have to worry about a readpage reading them and
1985 		 * overwriting a partial write. However if we have encountered
1986 		 * a short write and only partially written into a buffer, it
1987 		 * will not be marked uptodate, so a readpage might come in and
1988 		 * destroy our partial write.
1989 		 *
1990 		 * Do the simplest thing, and just treat any short write to a
1991 		 * non uptodate page as a zero-length write, and force the
1992 		 * caller to redo the whole thing.
1993 		 */
1994 		if (!PageUptodate(page))
1995 			copied = 0;
1996 
1997 		page_zero_new_buffers(page, start+copied, start+len);
1998 	}
1999 	flush_dcache_page(page);
2000 
2001 	/* This could be a short (even 0-length) commit */
2002 	__block_commit_write(inode, page, start, start+copied);
2003 
2004 	return copied;
2005 }
2006 EXPORT_SYMBOL(block_write_end);
2007 
2008 int generic_write_end(struct file *file, struct address_space *mapping,
2009 			loff_t pos, unsigned len, unsigned copied,
2010 			struct page *page, void *fsdata)
2011 {
2012 	struct inode *inode = mapping->host;
2013 	int i_size_changed = 0;
2014 
2015 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2016 
2017 	/*
2018 	 * No need to use i_size_read() here, the i_size
2019 	 * cannot change under us because we hold i_mutex.
2020 	 *
2021 	 * But it's important to update i_size while still holding page lock:
2022 	 * page writeout could otherwise come in and zero beyond i_size.
2023 	 */
2024 	if (pos+copied > inode->i_size) {
2025 		i_size_write(inode, pos+copied);
2026 		i_size_changed = 1;
2027 	}
2028 
2029 	unlock_page(page);
2030 	page_cache_release(page);
2031 
2032 	/*
2033 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2034 	 * makes the holding time of page lock longer. Second, it forces lock
2035 	 * ordering of page lock and transaction start for journaling
2036 	 * filesystems.
2037 	 */
2038 	if (i_size_changed)
2039 		mark_inode_dirty(inode);
2040 
2041 	return copied;
2042 }
2043 EXPORT_SYMBOL(generic_write_end);
2044 
2045 /*
2046  * block_is_partially_uptodate checks whether buffers within a page are
2047  * uptodate or not.
2048  *
2049  * Returns true if all buffers which correspond to a file portion
2050  * we want to read are uptodate.
2051  */
2052 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2053 					unsigned long from)
2054 {
2055 	unsigned block_start, block_end, blocksize;
2056 	unsigned to;
2057 	struct buffer_head *bh, *head;
2058 	int ret = 1;
2059 
2060 	if (!page_has_buffers(page))
2061 		return 0;
2062 
2063 	head = page_buffers(page);
2064 	blocksize = head->b_size;
2065 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2066 	to = from + to;
2067 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2068 		return 0;
2069 
2070 	bh = head;
2071 	block_start = 0;
2072 	do {
2073 		block_end = block_start + blocksize;
2074 		if (block_end > from && block_start < to) {
2075 			if (!buffer_uptodate(bh)) {
2076 				ret = 0;
2077 				break;
2078 			}
2079 			if (block_end >= to)
2080 				break;
2081 		}
2082 		block_start = block_end;
2083 		bh = bh->b_this_page;
2084 	} while (bh != head);
2085 
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL(block_is_partially_uptodate);
2089 
2090 /*
2091  * Generic "read page" function for block devices that have the normal
2092  * get_block functionality. This is most of the block device filesystems.
2093  * Reads the page asynchronously --- the unlock_buffer() and
2094  * set/clear_buffer_uptodate() functions propagate buffer state into the
2095  * page struct once IO has completed.
2096  */
2097 int block_read_full_page(struct page *page, get_block_t *get_block)
2098 {
2099 	struct inode *inode = page->mapping->host;
2100 	sector_t iblock, lblock;
2101 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2102 	unsigned int blocksize, bbits;
2103 	int nr, i;
2104 	int fully_mapped = 1;
2105 
2106 	head = create_page_buffers(page, inode, 0);
2107 	blocksize = head->b_size;
2108 	bbits = block_size_bits(blocksize);
2109 
2110 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2111 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2112 	bh = head;
2113 	nr = 0;
2114 	i = 0;
2115 
2116 	do {
2117 		if (buffer_uptodate(bh))
2118 			continue;
2119 
2120 		if (!buffer_mapped(bh)) {
2121 			int err = 0;
2122 
2123 			fully_mapped = 0;
2124 			if (iblock < lblock) {
2125 				WARN_ON(bh->b_size != blocksize);
2126 				err = get_block(inode, iblock, bh, 0);
2127 				if (err)
2128 					SetPageError(page);
2129 			}
2130 			if (!buffer_mapped(bh)) {
2131 				zero_user(page, i * blocksize, blocksize);
2132 				if (!err)
2133 					set_buffer_uptodate(bh);
2134 				continue;
2135 			}
2136 			/*
2137 			 * get_block() might have updated the buffer
2138 			 * synchronously
2139 			 */
2140 			if (buffer_uptodate(bh))
2141 				continue;
2142 		}
2143 		arr[nr++] = bh;
2144 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2145 
2146 	if (fully_mapped)
2147 		SetPageMappedToDisk(page);
2148 
2149 	if (!nr) {
2150 		/*
2151 		 * All buffers are uptodate - we can set the page uptodate
2152 		 * as well. But not if get_block() returned an error.
2153 		 */
2154 		if (!PageError(page))
2155 			SetPageUptodate(page);
2156 		unlock_page(page);
2157 		return 0;
2158 	}
2159 
2160 	/* Stage two: lock the buffers */
2161 	for (i = 0; i < nr; i++) {
2162 		bh = arr[i];
2163 		lock_buffer(bh);
2164 		mark_buffer_async_read(bh);
2165 	}
2166 
2167 	/*
2168 	 * Stage 3: start the IO.  Check for uptodateness
2169 	 * inside the buffer lock in case another process reading
2170 	 * the underlying blockdev brought it uptodate (the sct fix).
2171 	 */
2172 	for (i = 0; i < nr; i++) {
2173 		bh = arr[i];
2174 		if (buffer_uptodate(bh))
2175 			end_buffer_async_read(bh, 1);
2176 		else
2177 			submit_bh(READ, bh);
2178 	}
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL(block_read_full_page);
2182 
2183 /* utility function for filesystems that need to do work on expanding
2184  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2185  * deal with the hole.
2186  */
2187 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2188 {
2189 	struct address_space *mapping = inode->i_mapping;
2190 	struct page *page;
2191 	void *fsdata;
2192 	int err;
2193 
2194 	err = inode_newsize_ok(inode, size);
2195 	if (err)
2196 		goto out;
2197 
2198 	err = pagecache_write_begin(NULL, mapping, size, 0,
2199 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2200 				&page, &fsdata);
2201 	if (err)
2202 		goto out;
2203 
2204 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2205 	BUG_ON(err > 0);
2206 
2207 out:
2208 	return err;
2209 }
2210 EXPORT_SYMBOL(generic_cont_expand_simple);
2211 
2212 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2213 			    loff_t pos, loff_t *bytes)
2214 {
2215 	struct inode *inode = mapping->host;
2216 	unsigned blocksize = 1 << inode->i_blkbits;
2217 	struct page *page;
2218 	void *fsdata;
2219 	pgoff_t index, curidx;
2220 	loff_t curpos;
2221 	unsigned zerofrom, offset, len;
2222 	int err = 0;
2223 
2224 	index = pos >> PAGE_CACHE_SHIFT;
2225 	offset = pos & ~PAGE_CACHE_MASK;
2226 
2227 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2228 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2229 		if (zerofrom & (blocksize-1)) {
2230 			*bytes |= (blocksize-1);
2231 			(*bytes)++;
2232 		}
2233 		len = PAGE_CACHE_SIZE - zerofrom;
2234 
2235 		err = pagecache_write_begin(file, mapping, curpos, len,
2236 						AOP_FLAG_UNINTERRUPTIBLE,
2237 						&page, &fsdata);
2238 		if (err)
2239 			goto out;
2240 		zero_user(page, zerofrom, len);
2241 		err = pagecache_write_end(file, mapping, curpos, len, len,
2242 						page, fsdata);
2243 		if (err < 0)
2244 			goto out;
2245 		BUG_ON(err != len);
2246 		err = 0;
2247 
2248 		balance_dirty_pages_ratelimited(mapping);
2249 	}
2250 
2251 	/* page covers the boundary, find the boundary offset */
2252 	if (index == curidx) {
2253 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2254 		/* if we will expand the thing last block will be filled */
2255 		if (offset <= zerofrom) {
2256 			goto out;
2257 		}
2258 		if (zerofrom & (blocksize-1)) {
2259 			*bytes |= (blocksize-1);
2260 			(*bytes)++;
2261 		}
2262 		len = offset - zerofrom;
2263 
2264 		err = pagecache_write_begin(file, mapping, curpos, len,
2265 						AOP_FLAG_UNINTERRUPTIBLE,
2266 						&page, &fsdata);
2267 		if (err)
2268 			goto out;
2269 		zero_user(page, zerofrom, len);
2270 		err = pagecache_write_end(file, mapping, curpos, len, len,
2271 						page, fsdata);
2272 		if (err < 0)
2273 			goto out;
2274 		BUG_ON(err != len);
2275 		err = 0;
2276 	}
2277 out:
2278 	return err;
2279 }
2280 
2281 /*
2282  * For moronic filesystems that do not allow holes in file.
2283  * We may have to extend the file.
2284  */
2285 int cont_write_begin(struct file *file, struct address_space *mapping,
2286 			loff_t pos, unsigned len, unsigned flags,
2287 			struct page **pagep, void **fsdata,
2288 			get_block_t *get_block, loff_t *bytes)
2289 {
2290 	struct inode *inode = mapping->host;
2291 	unsigned blocksize = 1 << inode->i_blkbits;
2292 	unsigned zerofrom;
2293 	int err;
2294 
2295 	err = cont_expand_zero(file, mapping, pos, bytes);
2296 	if (err)
2297 		return err;
2298 
2299 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2300 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2301 		*bytes |= (blocksize-1);
2302 		(*bytes)++;
2303 	}
2304 
2305 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2306 }
2307 EXPORT_SYMBOL(cont_write_begin);
2308 
2309 int block_commit_write(struct page *page, unsigned from, unsigned to)
2310 {
2311 	struct inode *inode = page->mapping->host;
2312 	__block_commit_write(inode,page,from,to);
2313 	return 0;
2314 }
2315 EXPORT_SYMBOL(block_commit_write);
2316 
2317 /*
2318  * block_page_mkwrite() is not allowed to change the file size as it gets
2319  * called from a page fault handler when a page is first dirtied. Hence we must
2320  * be careful to check for EOF conditions here. We set the page up correctly
2321  * for a written page which means we get ENOSPC checking when writing into
2322  * holes and correct delalloc and unwritten extent mapping on filesystems that
2323  * support these features.
2324  *
2325  * We are not allowed to take the i_mutex here so we have to play games to
2326  * protect against truncate races as the page could now be beyond EOF.  Because
2327  * truncate writes the inode size before removing pages, once we have the
2328  * page lock we can determine safely if the page is beyond EOF. If it is not
2329  * beyond EOF, then the page is guaranteed safe against truncation until we
2330  * unlock the page.
2331  *
2332  * Direct callers of this function should protect against filesystem freezing
2333  * using sb_start_write() - sb_end_write() functions.
2334  */
2335 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2336 			 get_block_t get_block)
2337 {
2338 	struct page *page = vmf->page;
2339 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2340 	unsigned long end;
2341 	loff_t size;
2342 	int ret;
2343 
2344 	lock_page(page);
2345 	size = i_size_read(inode);
2346 	if ((page->mapping != inode->i_mapping) ||
2347 	    (page_offset(page) > size)) {
2348 		/* We overload EFAULT to mean page got truncated */
2349 		ret = -EFAULT;
2350 		goto out_unlock;
2351 	}
2352 
2353 	/* page is wholly or partially inside EOF */
2354 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2355 		end = size & ~PAGE_CACHE_MASK;
2356 	else
2357 		end = PAGE_CACHE_SIZE;
2358 
2359 	ret = __block_write_begin(page, 0, end, get_block);
2360 	if (!ret)
2361 		ret = block_commit_write(page, 0, end);
2362 
2363 	if (unlikely(ret < 0))
2364 		goto out_unlock;
2365 	set_page_dirty(page);
2366 	wait_on_page_writeback(page);
2367 	return 0;
2368 out_unlock:
2369 	unlock_page(page);
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL(__block_page_mkwrite);
2373 
2374 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2375 		   get_block_t get_block)
2376 {
2377 	int ret;
2378 	struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2379 
2380 	sb_start_pagefault(sb);
2381 
2382 	/*
2383 	 * Update file times before taking page lock. We may end up failing the
2384 	 * fault so this update may be superfluous but who really cares...
2385 	 */
2386 	file_update_time(vma->vm_file);
2387 
2388 	ret = __block_page_mkwrite(vma, vmf, get_block);
2389 	sb_end_pagefault(sb);
2390 	return block_page_mkwrite_return(ret);
2391 }
2392 EXPORT_SYMBOL(block_page_mkwrite);
2393 
2394 /*
2395  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2396  * immediately, while under the page lock.  So it needs a special end_io
2397  * handler which does not touch the bh after unlocking it.
2398  */
2399 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2400 {
2401 	__end_buffer_read_notouch(bh, uptodate);
2402 }
2403 
2404 /*
2405  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2406  * the page (converting it to circular linked list and taking care of page
2407  * dirty races).
2408  */
2409 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2410 {
2411 	struct buffer_head *bh;
2412 
2413 	BUG_ON(!PageLocked(page));
2414 
2415 	spin_lock(&page->mapping->private_lock);
2416 	bh = head;
2417 	do {
2418 		if (PageDirty(page))
2419 			set_buffer_dirty(bh);
2420 		if (!bh->b_this_page)
2421 			bh->b_this_page = head;
2422 		bh = bh->b_this_page;
2423 	} while (bh != head);
2424 	attach_page_buffers(page, head);
2425 	spin_unlock(&page->mapping->private_lock);
2426 }
2427 
2428 /*
2429  * On entry, the page is fully not uptodate.
2430  * On exit the page is fully uptodate in the areas outside (from,to)
2431  * The filesystem needs to handle block truncation upon failure.
2432  */
2433 int nobh_write_begin(struct address_space *mapping,
2434 			loff_t pos, unsigned len, unsigned flags,
2435 			struct page **pagep, void **fsdata,
2436 			get_block_t *get_block)
2437 {
2438 	struct inode *inode = mapping->host;
2439 	const unsigned blkbits = inode->i_blkbits;
2440 	const unsigned blocksize = 1 << blkbits;
2441 	struct buffer_head *head, *bh;
2442 	struct page *page;
2443 	pgoff_t index;
2444 	unsigned from, to;
2445 	unsigned block_in_page;
2446 	unsigned block_start, block_end;
2447 	sector_t block_in_file;
2448 	int nr_reads = 0;
2449 	int ret = 0;
2450 	int is_mapped_to_disk = 1;
2451 
2452 	index = pos >> PAGE_CACHE_SHIFT;
2453 	from = pos & (PAGE_CACHE_SIZE - 1);
2454 	to = from + len;
2455 
2456 	page = grab_cache_page_write_begin(mapping, index, flags);
2457 	if (!page)
2458 		return -ENOMEM;
2459 	*pagep = page;
2460 	*fsdata = NULL;
2461 
2462 	if (page_has_buffers(page)) {
2463 		ret = __block_write_begin(page, pos, len, get_block);
2464 		if (unlikely(ret))
2465 			goto out_release;
2466 		return ret;
2467 	}
2468 
2469 	if (PageMappedToDisk(page))
2470 		return 0;
2471 
2472 	/*
2473 	 * Allocate buffers so that we can keep track of state, and potentially
2474 	 * attach them to the page if an error occurs. In the common case of
2475 	 * no error, they will just be freed again without ever being attached
2476 	 * to the page (which is all OK, because we're under the page lock).
2477 	 *
2478 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2479 	 * than the circular one we're used to.
2480 	 */
2481 	head = alloc_page_buffers(page, blocksize, 0);
2482 	if (!head) {
2483 		ret = -ENOMEM;
2484 		goto out_release;
2485 	}
2486 
2487 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2488 
2489 	/*
2490 	 * We loop across all blocks in the page, whether or not they are
2491 	 * part of the affected region.  This is so we can discover if the
2492 	 * page is fully mapped-to-disk.
2493 	 */
2494 	for (block_start = 0, block_in_page = 0, bh = head;
2495 		  block_start < PAGE_CACHE_SIZE;
2496 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2497 		int create;
2498 
2499 		block_end = block_start + blocksize;
2500 		bh->b_state = 0;
2501 		create = 1;
2502 		if (block_start >= to)
2503 			create = 0;
2504 		ret = get_block(inode, block_in_file + block_in_page,
2505 					bh, create);
2506 		if (ret)
2507 			goto failed;
2508 		if (!buffer_mapped(bh))
2509 			is_mapped_to_disk = 0;
2510 		if (buffer_new(bh))
2511 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2512 		if (PageUptodate(page)) {
2513 			set_buffer_uptodate(bh);
2514 			continue;
2515 		}
2516 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2517 			zero_user_segments(page, block_start, from,
2518 							to, block_end);
2519 			continue;
2520 		}
2521 		if (buffer_uptodate(bh))
2522 			continue;	/* reiserfs does this */
2523 		if (block_start < from || block_end > to) {
2524 			lock_buffer(bh);
2525 			bh->b_end_io = end_buffer_read_nobh;
2526 			submit_bh(READ, bh);
2527 			nr_reads++;
2528 		}
2529 	}
2530 
2531 	if (nr_reads) {
2532 		/*
2533 		 * The page is locked, so these buffers are protected from
2534 		 * any VM or truncate activity.  Hence we don't need to care
2535 		 * for the buffer_head refcounts.
2536 		 */
2537 		for (bh = head; bh; bh = bh->b_this_page) {
2538 			wait_on_buffer(bh);
2539 			if (!buffer_uptodate(bh))
2540 				ret = -EIO;
2541 		}
2542 		if (ret)
2543 			goto failed;
2544 	}
2545 
2546 	if (is_mapped_to_disk)
2547 		SetPageMappedToDisk(page);
2548 
2549 	*fsdata = head; /* to be released by nobh_write_end */
2550 
2551 	return 0;
2552 
2553 failed:
2554 	BUG_ON(!ret);
2555 	/*
2556 	 * Error recovery is a bit difficult. We need to zero out blocks that
2557 	 * were newly allocated, and dirty them to ensure they get written out.
2558 	 * Buffers need to be attached to the page at this point, otherwise
2559 	 * the handling of potential IO errors during writeout would be hard
2560 	 * (could try doing synchronous writeout, but what if that fails too?)
2561 	 */
2562 	attach_nobh_buffers(page, head);
2563 	page_zero_new_buffers(page, from, to);
2564 
2565 out_release:
2566 	unlock_page(page);
2567 	page_cache_release(page);
2568 	*pagep = NULL;
2569 
2570 	return ret;
2571 }
2572 EXPORT_SYMBOL(nobh_write_begin);
2573 
2574 int nobh_write_end(struct file *file, struct address_space *mapping,
2575 			loff_t pos, unsigned len, unsigned copied,
2576 			struct page *page, void *fsdata)
2577 {
2578 	struct inode *inode = page->mapping->host;
2579 	struct buffer_head *head = fsdata;
2580 	struct buffer_head *bh;
2581 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2582 
2583 	if (unlikely(copied < len) && head)
2584 		attach_nobh_buffers(page, head);
2585 	if (page_has_buffers(page))
2586 		return generic_write_end(file, mapping, pos, len,
2587 					copied, page, fsdata);
2588 
2589 	SetPageUptodate(page);
2590 	set_page_dirty(page);
2591 	if (pos+copied > inode->i_size) {
2592 		i_size_write(inode, pos+copied);
2593 		mark_inode_dirty(inode);
2594 	}
2595 
2596 	unlock_page(page);
2597 	page_cache_release(page);
2598 
2599 	while (head) {
2600 		bh = head;
2601 		head = head->b_this_page;
2602 		free_buffer_head(bh);
2603 	}
2604 
2605 	return copied;
2606 }
2607 EXPORT_SYMBOL(nobh_write_end);
2608 
2609 /*
2610  * nobh_writepage() - based on block_full_write_page() except
2611  * that it tries to operate without attaching bufferheads to
2612  * the page.
2613  */
2614 int nobh_writepage(struct page *page, get_block_t *get_block,
2615 			struct writeback_control *wbc)
2616 {
2617 	struct inode * const inode = page->mapping->host;
2618 	loff_t i_size = i_size_read(inode);
2619 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2620 	unsigned offset;
2621 	int ret;
2622 
2623 	/* Is the page fully inside i_size? */
2624 	if (page->index < end_index)
2625 		goto out;
2626 
2627 	/* Is the page fully outside i_size? (truncate in progress) */
2628 	offset = i_size & (PAGE_CACHE_SIZE-1);
2629 	if (page->index >= end_index+1 || !offset) {
2630 		/*
2631 		 * The page may have dirty, unmapped buffers.  For example,
2632 		 * they may have been added in ext3_writepage().  Make them
2633 		 * freeable here, so the page does not leak.
2634 		 */
2635 #if 0
2636 		/* Not really sure about this  - do we need this ? */
2637 		if (page->mapping->a_ops->invalidatepage)
2638 			page->mapping->a_ops->invalidatepage(page, offset);
2639 #endif
2640 		unlock_page(page);
2641 		return 0; /* don't care */
2642 	}
2643 
2644 	/*
2645 	 * The page straddles i_size.  It must be zeroed out on each and every
2646 	 * writepage invocation because it may be mmapped.  "A file is mapped
2647 	 * in multiples of the page size.  For a file that is not a multiple of
2648 	 * the  page size, the remaining memory is zeroed when mapped, and
2649 	 * writes to that region are not written out to the file."
2650 	 */
2651 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2652 out:
2653 	ret = mpage_writepage(page, get_block, wbc);
2654 	if (ret == -EAGAIN)
2655 		ret = __block_write_full_page(inode, page, get_block, wbc,
2656 					      end_buffer_async_write);
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_writepage);
2660 
2661 int nobh_truncate_page(struct address_space *mapping,
2662 			loff_t from, get_block_t *get_block)
2663 {
2664 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2665 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2666 	unsigned blocksize;
2667 	sector_t iblock;
2668 	unsigned length, pos;
2669 	struct inode *inode = mapping->host;
2670 	struct page *page;
2671 	struct buffer_head map_bh;
2672 	int err;
2673 
2674 	blocksize = 1 << inode->i_blkbits;
2675 	length = offset & (blocksize - 1);
2676 
2677 	/* Block boundary? Nothing to do */
2678 	if (!length)
2679 		return 0;
2680 
2681 	length = blocksize - length;
2682 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2683 
2684 	page = grab_cache_page(mapping, index);
2685 	err = -ENOMEM;
2686 	if (!page)
2687 		goto out;
2688 
2689 	if (page_has_buffers(page)) {
2690 has_buffers:
2691 		unlock_page(page);
2692 		page_cache_release(page);
2693 		return block_truncate_page(mapping, from, get_block);
2694 	}
2695 
2696 	/* Find the buffer that contains "offset" */
2697 	pos = blocksize;
2698 	while (offset >= pos) {
2699 		iblock++;
2700 		pos += blocksize;
2701 	}
2702 
2703 	map_bh.b_size = blocksize;
2704 	map_bh.b_state = 0;
2705 	err = get_block(inode, iblock, &map_bh, 0);
2706 	if (err)
2707 		goto unlock;
2708 	/* unmapped? It's a hole - nothing to do */
2709 	if (!buffer_mapped(&map_bh))
2710 		goto unlock;
2711 
2712 	/* Ok, it's mapped. Make sure it's up-to-date */
2713 	if (!PageUptodate(page)) {
2714 		err = mapping->a_ops->readpage(NULL, page);
2715 		if (err) {
2716 			page_cache_release(page);
2717 			goto out;
2718 		}
2719 		lock_page(page);
2720 		if (!PageUptodate(page)) {
2721 			err = -EIO;
2722 			goto unlock;
2723 		}
2724 		if (page_has_buffers(page))
2725 			goto has_buffers;
2726 	}
2727 	zero_user(page, offset, length);
2728 	set_page_dirty(page);
2729 	err = 0;
2730 
2731 unlock:
2732 	unlock_page(page);
2733 	page_cache_release(page);
2734 out:
2735 	return err;
2736 }
2737 EXPORT_SYMBOL(nobh_truncate_page);
2738 
2739 int block_truncate_page(struct address_space *mapping,
2740 			loff_t from, get_block_t *get_block)
2741 {
2742 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2743 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2744 	unsigned blocksize;
2745 	sector_t iblock;
2746 	unsigned length, pos;
2747 	struct inode *inode = mapping->host;
2748 	struct page *page;
2749 	struct buffer_head *bh;
2750 	int err;
2751 
2752 	blocksize = 1 << inode->i_blkbits;
2753 	length = offset & (blocksize - 1);
2754 
2755 	/* Block boundary? Nothing to do */
2756 	if (!length)
2757 		return 0;
2758 
2759 	length = blocksize - length;
2760 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761 
2762 	page = grab_cache_page(mapping, index);
2763 	err = -ENOMEM;
2764 	if (!page)
2765 		goto out;
2766 
2767 	if (!page_has_buffers(page))
2768 		create_empty_buffers(page, blocksize, 0);
2769 
2770 	/* Find the buffer that contains "offset" */
2771 	bh = page_buffers(page);
2772 	pos = blocksize;
2773 	while (offset >= pos) {
2774 		bh = bh->b_this_page;
2775 		iblock++;
2776 		pos += blocksize;
2777 	}
2778 
2779 	err = 0;
2780 	if (!buffer_mapped(bh)) {
2781 		WARN_ON(bh->b_size != blocksize);
2782 		err = get_block(inode, iblock, bh, 0);
2783 		if (err)
2784 			goto unlock;
2785 		/* unmapped? It's a hole - nothing to do */
2786 		if (!buffer_mapped(bh))
2787 			goto unlock;
2788 	}
2789 
2790 	/* Ok, it's mapped. Make sure it's up-to-date */
2791 	if (PageUptodate(page))
2792 		set_buffer_uptodate(bh);
2793 
2794 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795 		err = -EIO;
2796 		ll_rw_block(READ, 1, &bh);
2797 		wait_on_buffer(bh);
2798 		/* Uhhuh. Read error. Complain and punt. */
2799 		if (!buffer_uptodate(bh))
2800 			goto unlock;
2801 	}
2802 
2803 	zero_user(page, offset, length);
2804 	mark_buffer_dirty(bh);
2805 	err = 0;
2806 
2807 unlock:
2808 	unlock_page(page);
2809 	page_cache_release(page);
2810 out:
2811 	return err;
2812 }
2813 EXPORT_SYMBOL(block_truncate_page);
2814 
2815 /*
2816  * The generic ->writepage function for buffer-backed address_spaces
2817  * this form passes in the end_io handler used to finish the IO.
2818  */
2819 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2820 			struct writeback_control *wbc, bh_end_io_t *handler)
2821 {
2822 	struct inode * const inode = page->mapping->host;
2823 	loff_t i_size = i_size_read(inode);
2824 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2825 	unsigned offset;
2826 
2827 	/* Is the page fully inside i_size? */
2828 	if (page->index < end_index)
2829 		return __block_write_full_page(inode, page, get_block, wbc,
2830 					       handler);
2831 
2832 	/* Is the page fully outside i_size? (truncate in progress) */
2833 	offset = i_size & (PAGE_CACHE_SIZE-1);
2834 	if (page->index >= end_index+1 || !offset) {
2835 		/*
2836 		 * The page may have dirty, unmapped buffers.  For example,
2837 		 * they may have been added in ext3_writepage().  Make them
2838 		 * freeable here, so the page does not leak.
2839 		 */
2840 		do_invalidatepage(page, 0);
2841 		unlock_page(page);
2842 		return 0; /* don't care */
2843 	}
2844 
2845 	/*
2846 	 * The page straddles i_size.  It must be zeroed out on each and every
2847 	 * writepage invocation because it may be mmapped.  "A file is mapped
2848 	 * in multiples of the page size.  For a file that is not a multiple of
2849 	 * the  page size, the remaining memory is zeroed when mapped, and
2850 	 * writes to that region are not written out to the file."
2851 	 */
2852 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2853 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2854 }
2855 EXPORT_SYMBOL(block_write_full_page_endio);
2856 
2857 /*
2858  * The generic ->writepage function for buffer-backed address_spaces
2859  */
2860 int block_write_full_page(struct page *page, get_block_t *get_block,
2861 			struct writeback_control *wbc)
2862 {
2863 	return block_write_full_page_endio(page, get_block, wbc,
2864 					   end_buffer_async_write);
2865 }
2866 EXPORT_SYMBOL(block_write_full_page);
2867 
2868 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2869 			    get_block_t *get_block)
2870 {
2871 	struct buffer_head tmp;
2872 	struct inode *inode = mapping->host;
2873 	tmp.b_state = 0;
2874 	tmp.b_blocknr = 0;
2875 	tmp.b_size = 1 << inode->i_blkbits;
2876 	get_block(inode, block, &tmp, 0);
2877 	return tmp.b_blocknr;
2878 }
2879 EXPORT_SYMBOL(generic_block_bmap);
2880 
2881 static void end_bio_bh_io_sync(struct bio *bio, int err)
2882 {
2883 	struct buffer_head *bh = bio->bi_private;
2884 
2885 	if (err == -EOPNOTSUPP) {
2886 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2887 	}
2888 
2889 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2890 		set_bit(BH_Quiet, &bh->b_state);
2891 
2892 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2893 	bio_put(bio);
2894 }
2895 
2896 int submit_bh(int rw, struct buffer_head * bh)
2897 {
2898 	struct bio *bio;
2899 	int ret = 0;
2900 
2901 	BUG_ON(!buffer_locked(bh));
2902 	BUG_ON(!buffer_mapped(bh));
2903 	BUG_ON(!bh->b_end_io);
2904 	BUG_ON(buffer_delay(bh));
2905 	BUG_ON(buffer_unwritten(bh));
2906 
2907 	/*
2908 	 * Only clear out a write error when rewriting
2909 	 */
2910 	if (test_set_buffer_req(bh) && (rw & WRITE))
2911 		clear_buffer_write_io_error(bh);
2912 
2913 	/*
2914 	 * from here on down, it's all bio -- do the initial mapping,
2915 	 * submit_bio -> generic_make_request may further map this bio around
2916 	 */
2917 	bio = bio_alloc(GFP_NOIO, 1);
2918 
2919 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2920 	bio->bi_bdev = bh->b_bdev;
2921 	bio->bi_io_vec[0].bv_page = bh->b_page;
2922 	bio->bi_io_vec[0].bv_len = bh->b_size;
2923 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2924 
2925 	bio->bi_vcnt = 1;
2926 	bio->bi_idx = 0;
2927 	bio->bi_size = bh->b_size;
2928 
2929 	bio->bi_end_io = end_bio_bh_io_sync;
2930 	bio->bi_private = bh;
2931 
2932 	bio_get(bio);
2933 	submit_bio(rw, bio);
2934 
2935 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2936 		ret = -EOPNOTSUPP;
2937 
2938 	bio_put(bio);
2939 	return ret;
2940 }
2941 EXPORT_SYMBOL(submit_bh);
2942 
2943 /**
2944  * ll_rw_block: low-level access to block devices (DEPRECATED)
2945  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2946  * @nr: number of &struct buffer_heads in the array
2947  * @bhs: array of pointers to &struct buffer_head
2948  *
2949  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2950  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2951  * %READA option is described in the documentation for generic_make_request()
2952  * which ll_rw_block() calls.
2953  *
2954  * This function drops any buffer that it cannot get a lock on (with the
2955  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2956  * request, and any buffer that appears to be up-to-date when doing read
2957  * request.  Further it marks as clean buffers that are processed for
2958  * writing (the buffer cache won't assume that they are actually clean
2959  * until the buffer gets unlocked).
2960  *
2961  * ll_rw_block sets b_end_io to simple completion handler that marks
2962  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2963  * any waiters.
2964  *
2965  * All of the buffers must be for the same device, and must also be a
2966  * multiple of the current approved size for the device.
2967  */
2968 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2969 {
2970 	int i;
2971 
2972 	for (i = 0; i < nr; i++) {
2973 		struct buffer_head *bh = bhs[i];
2974 
2975 		if (!trylock_buffer(bh))
2976 			continue;
2977 		if (rw == WRITE) {
2978 			if (test_clear_buffer_dirty(bh)) {
2979 				bh->b_end_io = end_buffer_write_sync;
2980 				get_bh(bh);
2981 				submit_bh(WRITE, bh);
2982 				continue;
2983 			}
2984 		} else {
2985 			if (!buffer_uptodate(bh)) {
2986 				bh->b_end_io = end_buffer_read_sync;
2987 				get_bh(bh);
2988 				submit_bh(rw, bh);
2989 				continue;
2990 			}
2991 		}
2992 		unlock_buffer(bh);
2993 	}
2994 }
2995 EXPORT_SYMBOL(ll_rw_block);
2996 
2997 void write_dirty_buffer(struct buffer_head *bh, int rw)
2998 {
2999 	lock_buffer(bh);
3000 	if (!test_clear_buffer_dirty(bh)) {
3001 		unlock_buffer(bh);
3002 		return;
3003 	}
3004 	bh->b_end_io = end_buffer_write_sync;
3005 	get_bh(bh);
3006 	submit_bh(rw, bh);
3007 }
3008 EXPORT_SYMBOL(write_dirty_buffer);
3009 
3010 /*
3011  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3012  * and then start new I/O and then wait upon it.  The caller must have a ref on
3013  * the buffer_head.
3014  */
3015 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3016 {
3017 	int ret = 0;
3018 
3019 	WARN_ON(atomic_read(&bh->b_count) < 1);
3020 	lock_buffer(bh);
3021 	if (test_clear_buffer_dirty(bh)) {
3022 		get_bh(bh);
3023 		bh->b_end_io = end_buffer_write_sync;
3024 		ret = submit_bh(rw, bh);
3025 		wait_on_buffer(bh);
3026 		if (!ret && !buffer_uptodate(bh))
3027 			ret = -EIO;
3028 	} else {
3029 		unlock_buffer(bh);
3030 	}
3031 	return ret;
3032 }
3033 EXPORT_SYMBOL(__sync_dirty_buffer);
3034 
3035 int sync_dirty_buffer(struct buffer_head *bh)
3036 {
3037 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3038 }
3039 EXPORT_SYMBOL(sync_dirty_buffer);
3040 
3041 /*
3042  * try_to_free_buffers() checks if all the buffers on this particular page
3043  * are unused, and releases them if so.
3044  *
3045  * Exclusion against try_to_free_buffers may be obtained by either
3046  * locking the page or by holding its mapping's private_lock.
3047  *
3048  * If the page is dirty but all the buffers are clean then we need to
3049  * be sure to mark the page clean as well.  This is because the page
3050  * may be against a block device, and a later reattachment of buffers
3051  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3052  * filesystem data on the same device.
3053  *
3054  * The same applies to regular filesystem pages: if all the buffers are
3055  * clean then we set the page clean and proceed.  To do that, we require
3056  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3057  * private_lock.
3058  *
3059  * try_to_free_buffers() is non-blocking.
3060  */
3061 static inline int buffer_busy(struct buffer_head *bh)
3062 {
3063 	return atomic_read(&bh->b_count) |
3064 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3065 }
3066 
3067 static int
3068 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3069 {
3070 	struct buffer_head *head = page_buffers(page);
3071 	struct buffer_head *bh;
3072 
3073 	bh = head;
3074 	do {
3075 		if (buffer_write_io_error(bh) && page->mapping)
3076 			set_bit(AS_EIO, &page->mapping->flags);
3077 		if (buffer_busy(bh))
3078 			goto failed;
3079 		bh = bh->b_this_page;
3080 	} while (bh != head);
3081 
3082 	do {
3083 		struct buffer_head *next = bh->b_this_page;
3084 
3085 		if (bh->b_assoc_map)
3086 			__remove_assoc_queue(bh);
3087 		bh = next;
3088 	} while (bh != head);
3089 	*buffers_to_free = head;
3090 	__clear_page_buffers(page);
3091 	return 1;
3092 failed:
3093 	return 0;
3094 }
3095 
3096 int try_to_free_buffers(struct page *page)
3097 {
3098 	struct address_space * const mapping = page->mapping;
3099 	struct buffer_head *buffers_to_free = NULL;
3100 	int ret = 0;
3101 
3102 	BUG_ON(!PageLocked(page));
3103 	if (PageWriteback(page))
3104 		return 0;
3105 
3106 	if (mapping == NULL) {		/* can this still happen? */
3107 		ret = drop_buffers(page, &buffers_to_free);
3108 		goto out;
3109 	}
3110 
3111 	spin_lock(&mapping->private_lock);
3112 	ret = drop_buffers(page, &buffers_to_free);
3113 
3114 	/*
3115 	 * If the filesystem writes its buffers by hand (eg ext3)
3116 	 * then we can have clean buffers against a dirty page.  We
3117 	 * clean the page here; otherwise the VM will never notice
3118 	 * that the filesystem did any IO at all.
3119 	 *
3120 	 * Also, during truncate, discard_buffer will have marked all
3121 	 * the page's buffers clean.  We discover that here and clean
3122 	 * the page also.
3123 	 *
3124 	 * private_lock must be held over this entire operation in order
3125 	 * to synchronise against __set_page_dirty_buffers and prevent the
3126 	 * dirty bit from being lost.
3127 	 */
3128 	if (ret)
3129 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3130 	spin_unlock(&mapping->private_lock);
3131 out:
3132 	if (buffers_to_free) {
3133 		struct buffer_head *bh = buffers_to_free;
3134 
3135 		do {
3136 			struct buffer_head *next = bh->b_this_page;
3137 			free_buffer_head(bh);
3138 			bh = next;
3139 		} while (bh != buffers_to_free);
3140 	}
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL(try_to_free_buffers);
3144 
3145 /*
3146  * There are no bdflush tunables left.  But distributions are
3147  * still running obsolete flush daemons, so we terminate them here.
3148  *
3149  * Use of bdflush() is deprecated and will be removed in a future kernel.
3150  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3151  */
3152 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3153 {
3154 	static int msg_count;
3155 
3156 	if (!capable(CAP_SYS_ADMIN))
3157 		return -EPERM;
3158 
3159 	if (msg_count < 5) {
3160 		msg_count++;
3161 		printk(KERN_INFO
3162 			"warning: process `%s' used the obsolete bdflush"
3163 			" system call\n", current->comm);
3164 		printk(KERN_INFO "Fix your initscripts?\n");
3165 	}
3166 
3167 	if (func == 1)
3168 		do_exit(0);
3169 	return 0;
3170 }
3171 
3172 /*
3173  * Buffer-head allocation
3174  */
3175 static struct kmem_cache *bh_cachep __read_mostly;
3176 
3177 /*
3178  * Once the number of bh's in the machine exceeds this level, we start
3179  * stripping them in writeback.
3180  */
3181 static int max_buffer_heads;
3182 
3183 int buffer_heads_over_limit;
3184 
3185 struct bh_accounting {
3186 	int nr;			/* Number of live bh's */
3187 	int ratelimit;		/* Limit cacheline bouncing */
3188 };
3189 
3190 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3191 
3192 static void recalc_bh_state(void)
3193 {
3194 	int i;
3195 	int tot = 0;
3196 
3197 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3198 		return;
3199 	__this_cpu_write(bh_accounting.ratelimit, 0);
3200 	for_each_online_cpu(i)
3201 		tot += per_cpu(bh_accounting, i).nr;
3202 	buffer_heads_over_limit = (tot > max_buffer_heads);
3203 }
3204 
3205 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3206 {
3207 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3208 	if (ret) {
3209 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3210 		preempt_disable();
3211 		__this_cpu_inc(bh_accounting.nr);
3212 		recalc_bh_state();
3213 		preempt_enable();
3214 	}
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL(alloc_buffer_head);
3218 
3219 void free_buffer_head(struct buffer_head *bh)
3220 {
3221 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3222 	kmem_cache_free(bh_cachep, bh);
3223 	preempt_disable();
3224 	__this_cpu_dec(bh_accounting.nr);
3225 	recalc_bh_state();
3226 	preempt_enable();
3227 }
3228 EXPORT_SYMBOL(free_buffer_head);
3229 
3230 static void buffer_exit_cpu(int cpu)
3231 {
3232 	int i;
3233 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3234 
3235 	for (i = 0; i < BH_LRU_SIZE; i++) {
3236 		brelse(b->bhs[i]);
3237 		b->bhs[i] = NULL;
3238 	}
3239 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3240 	per_cpu(bh_accounting, cpu).nr = 0;
3241 }
3242 
3243 static int buffer_cpu_notify(struct notifier_block *self,
3244 			      unsigned long action, void *hcpu)
3245 {
3246 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3247 		buffer_exit_cpu((unsigned long)hcpu);
3248 	return NOTIFY_OK;
3249 }
3250 
3251 /**
3252  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3253  * @bh: struct buffer_head
3254  *
3255  * Return true if the buffer is up-to-date and false,
3256  * with the buffer locked, if not.
3257  */
3258 int bh_uptodate_or_lock(struct buffer_head *bh)
3259 {
3260 	if (!buffer_uptodate(bh)) {
3261 		lock_buffer(bh);
3262 		if (!buffer_uptodate(bh))
3263 			return 0;
3264 		unlock_buffer(bh);
3265 	}
3266 	return 1;
3267 }
3268 EXPORT_SYMBOL(bh_uptodate_or_lock);
3269 
3270 /**
3271  * bh_submit_read - Submit a locked buffer for reading
3272  * @bh: struct buffer_head
3273  *
3274  * Returns zero on success and -EIO on error.
3275  */
3276 int bh_submit_read(struct buffer_head *bh)
3277 {
3278 	BUG_ON(!buffer_locked(bh));
3279 
3280 	if (buffer_uptodate(bh)) {
3281 		unlock_buffer(bh);
3282 		return 0;
3283 	}
3284 
3285 	get_bh(bh);
3286 	bh->b_end_io = end_buffer_read_sync;
3287 	submit_bh(READ, bh);
3288 	wait_on_buffer(bh);
3289 	if (buffer_uptodate(bh))
3290 		return 0;
3291 	return -EIO;
3292 }
3293 EXPORT_SYMBOL(bh_submit_read);
3294 
3295 void __init buffer_init(void)
3296 {
3297 	int nrpages;
3298 
3299 	bh_cachep = kmem_cache_create("buffer_head",
3300 			sizeof(struct buffer_head), 0,
3301 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3302 				SLAB_MEM_SPREAD),
3303 				NULL);
3304 
3305 	/*
3306 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3307 	 */
3308 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3309 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3310 	hotcpu_notifier(buffer_cpu_notify, 0);
3311 }
3312