1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 /* 915 * Initialise the state of a blockdev page's buffers. 916 */ 917 static void 918 init_page_buffers(struct page *page, struct block_device *bdev, 919 sector_t block, int size) 920 { 921 struct buffer_head *head = page_buffers(page); 922 struct buffer_head *bh = head; 923 int uptodate = PageUptodate(page); 924 925 do { 926 if (!buffer_mapped(bh)) { 927 init_buffer(bh, NULL, NULL); 928 bh->b_bdev = bdev; 929 bh->b_blocknr = block; 930 if (uptodate) 931 set_buffer_uptodate(bh); 932 set_buffer_mapped(bh); 933 } 934 block++; 935 bh = bh->b_this_page; 936 } while (bh != head); 937 } 938 939 /* 940 * Create the page-cache page that contains the requested block. 941 * 942 * This is user purely for blockdev mappings. 943 */ 944 static struct page * 945 grow_dev_page(struct block_device *bdev, sector_t block, 946 pgoff_t index, int size) 947 { 948 struct inode *inode = bdev->bd_inode; 949 struct page *page; 950 struct buffer_head *bh; 951 952 page = find_or_create_page(inode->i_mapping, index, 953 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 954 if (!page) 955 return NULL; 956 957 BUG_ON(!PageLocked(page)); 958 959 if (page_has_buffers(page)) { 960 bh = page_buffers(page); 961 if (bh->b_size == size) { 962 init_page_buffers(page, bdev, block, size); 963 return page; 964 } 965 if (!try_to_free_buffers(page)) 966 goto failed; 967 } 968 969 /* 970 * Allocate some buffers for this page 971 */ 972 bh = alloc_page_buffers(page, size, 0); 973 if (!bh) 974 goto failed; 975 976 /* 977 * Link the page to the buffers and initialise them. Take the 978 * lock to be atomic wrt __find_get_block(), which does not 979 * run under the page lock. 980 */ 981 spin_lock(&inode->i_mapping->private_lock); 982 link_dev_buffers(page, bh); 983 init_page_buffers(page, bdev, block, size); 984 spin_unlock(&inode->i_mapping->private_lock); 985 return page; 986 987 failed: 988 unlock_page(page); 989 page_cache_release(page); 990 return NULL; 991 } 992 993 /* 994 * Create buffers for the specified block device block's page. If 995 * that page was dirty, the buffers are set dirty also. 996 */ 997 static int 998 grow_buffers(struct block_device *bdev, sector_t block, int size) 999 { 1000 struct page *page; 1001 pgoff_t index; 1002 int sizebits; 1003 1004 sizebits = -1; 1005 do { 1006 sizebits++; 1007 } while ((size << sizebits) < PAGE_SIZE); 1008 1009 index = block >> sizebits; 1010 1011 /* 1012 * Check for a block which wants to lie outside our maximum possible 1013 * pagecache index. (this comparison is done using sector_t types). 1014 */ 1015 if (unlikely(index != block >> sizebits)) { 1016 char b[BDEVNAME_SIZE]; 1017 1018 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1019 "device %s\n", 1020 __func__, (unsigned long long)block, 1021 bdevname(bdev, b)); 1022 return -EIO; 1023 } 1024 block = index << sizebits; 1025 /* Create a page with the proper size buffers.. */ 1026 page = grow_dev_page(bdev, block, index, size); 1027 if (!page) 1028 return 0; 1029 unlock_page(page); 1030 page_cache_release(page); 1031 return 1; 1032 } 1033 1034 static struct buffer_head * 1035 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1036 { 1037 /* Size must be multiple of hard sectorsize */ 1038 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1039 (size < 512 || size > PAGE_SIZE))) { 1040 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1041 size); 1042 printk(KERN_ERR "logical block size: %d\n", 1043 bdev_logical_block_size(bdev)); 1044 1045 dump_stack(); 1046 return NULL; 1047 } 1048 1049 for (;;) { 1050 struct buffer_head * bh; 1051 int ret; 1052 1053 bh = __find_get_block(bdev, block, size); 1054 if (bh) 1055 return bh; 1056 1057 ret = grow_buffers(bdev, block, size); 1058 if (ret < 0) 1059 return NULL; 1060 if (ret == 0) 1061 free_more_memory(); 1062 } 1063 } 1064 1065 /* 1066 * The relationship between dirty buffers and dirty pages: 1067 * 1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1069 * the page is tagged dirty in its radix tree. 1070 * 1071 * At all times, the dirtiness of the buffers represents the dirtiness of 1072 * subsections of the page. If the page has buffers, the page dirty bit is 1073 * merely a hint about the true dirty state. 1074 * 1075 * When a page is set dirty in its entirety, all its buffers are marked dirty 1076 * (if the page has buffers). 1077 * 1078 * When a buffer is marked dirty, its page is dirtied, but the page's other 1079 * buffers are not. 1080 * 1081 * Also. When blockdev buffers are explicitly read with bread(), they 1082 * individually become uptodate. But their backing page remains not 1083 * uptodate - even if all of its buffers are uptodate. A subsequent 1084 * block_read_full_page() against that page will discover all the uptodate 1085 * buffers, will set the page uptodate and will perform no I/O. 1086 */ 1087 1088 /** 1089 * mark_buffer_dirty - mark a buffer_head as needing writeout 1090 * @bh: the buffer_head to mark dirty 1091 * 1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1093 * backing page dirty, then tag the page as dirty in its address_space's radix 1094 * tree and then attach the address_space's inode to its superblock's dirty 1095 * inode list. 1096 * 1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1098 * mapping->tree_lock and mapping->host->i_lock. 1099 */ 1100 void mark_buffer_dirty(struct buffer_head *bh) 1101 { 1102 WARN_ON_ONCE(!buffer_uptodate(bh)); 1103 1104 /* 1105 * Very *carefully* optimize the it-is-already-dirty case. 1106 * 1107 * Don't let the final "is it dirty" escape to before we 1108 * perhaps modified the buffer. 1109 */ 1110 if (buffer_dirty(bh)) { 1111 smp_mb(); 1112 if (buffer_dirty(bh)) 1113 return; 1114 } 1115 1116 if (!test_set_buffer_dirty(bh)) { 1117 struct page *page = bh->b_page; 1118 if (!TestSetPageDirty(page)) { 1119 struct address_space *mapping = page_mapping(page); 1120 if (mapping) 1121 __set_page_dirty(page, mapping, 0); 1122 } 1123 } 1124 } 1125 EXPORT_SYMBOL(mark_buffer_dirty); 1126 1127 /* 1128 * Decrement a buffer_head's reference count. If all buffers against a page 1129 * have zero reference count, are clean and unlocked, and if the page is clean 1130 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1131 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1132 * a page but it ends up not being freed, and buffers may later be reattached). 1133 */ 1134 void __brelse(struct buffer_head * buf) 1135 { 1136 if (atomic_read(&buf->b_count)) { 1137 put_bh(buf); 1138 return; 1139 } 1140 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1141 } 1142 EXPORT_SYMBOL(__brelse); 1143 1144 /* 1145 * bforget() is like brelse(), except it discards any 1146 * potentially dirty data. 1147 */ 1148 void __bforget(struct buffer_head *bh) 1149 { 1150 clear_buffer_dirty(bh); 1151 if (bh->b_assoc_map) { 1152 struct address_space *buffer_mapping = bh->b_page->mapping; 1153 1154 spin_lock(&buffer_mapping->private_lock); 1155 list_del_init(&bh->b_assoc_buffers); 1156 bh->b_assoc_map = NULL; 1157 spin_unlock(&buffer_mapping->private_lock); 1158 } 1159 __brelse(bh); 1160 } 1161 EXPORT_SYMBOL(__bforget); 1162 1163 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1164 { 1165 lock_buffer(bh); 1166 if (buffer_uptodate(bh)) { 1167 unlock_buffer(bh); 1168 return bh; 1169 } else { 1170 get_bh(bh); 1171 bh->b_end_io = end_buffer_read_sync; 1172 submit_bh(READ, bh); 1173 wait_on_buffer(bh); 1174 if (buffer_uptodate(bh)) 1175 return bh; 1176 } 1177 brelse(bh); 1178 return NULL; 1179 } 1180 1181 /* 1182 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1183 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1184 * refcount elevated by one when they're in an LRU. A buffer can only appear 1185 * once in a particular CPU's LRU. A single buffer can be present in multiple 1186 * CPU's LRUs at the same time. 1187 * 1188 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1189 * sb_find_get_block(). 1190 * 1191 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1192 * a local interrupt disable for that. 1193 */ 1194 1195 #define BH_LRU_SIZE 8 1196 1197 struct bh_lru { 1198 struct buffer_head *bhs[BH_LRU_SIZE]; 1199 }; 1200 1201 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1202 1203 #ifdef CONFIG_SMP 1204 #define bh_lru_lock() local_irq_disable() 1205 #define bh_lru_unlock() local_irq_enable() 1206 #else 1207 #define bh_lru_lock() preempt_disable() 1208 #define bh_lru_unlock() preempt_enable() 1209 #endif 1210 1211 static inline void check_irqs_on(void) 1212 { 1213 #ifdef irqs_disabled 1214 BUG_ON(irqs_disabled()); 1215 #endif 1216 } 1217 1218 /* 1219 * The LRU management algorithm is dopey-but-simple. Sorry. 1220 */ 1221 static void bh_lru_install(struct buffer_head *bh) 1222 { 1223 struct buffer_head *evictee = NULL; 1224 1225 check_irqs_on(); 1226 bh_lru_lock(); 1227 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1228 struct buffer_head *bhs[BH_LRU_SIZE]; 1229 int in; 1230 int out = 0; 1231 1232 get_bh(bh); 1233 bhs[out++] = bh; 1234 for (in = 0; in < BH_LRU_SIZE; in++) { 1235 struct buffer_head *bh2 = 1236 __this_cpu_read(bh_lrus.bhs[in]); 1237 1238 if (bh2 == bh) { 1239 __brelse(bh2); 1240 } else { 1241 if (out >= BH_LRU_SIZE) { 1242 BUG_ON(evictee != NULL); 1243 evictee = bh2; 1244 } else { 1245 bhs[out++] = bh2; 1246 } 1247 } 1248 } 1249 while (out < BH_LRU_SIZE) 1250 bhs[out++] = NULL; 1251 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1252 } 1253 bh_lru_unlock(); 1254 1255 if (evictee) 1256 __brelse(evictee); 1257 } 1258 1259 /* 1260 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1261 */ 1262 static struct buffer_head * 1263 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1264 { 1265 struct buffer_head *ret = NULL; 1266 unsigned int i; 1267 1268 check_irqs_on(); 1269 bh_lru_lock(); 1270 for (i = 0; i < BH_LRU_SIZE; i++) { 1271 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1272 1273 if (bh && bh->b_bdev == bdev && 1274 bh->b_blocknr == block && bh->b_size == size) { 1275 if (i) { 1276 while (i) { 1277 __this_cpu_write(bh_lrus.bhs[i], 1278 __this_cpu_read(bh_lrus.bhs[i - 1])); 1279 i--; 1280 } 1281 __this_cpu_write(bh_lrus.bhs[0], bh); 1282 } 1283 get_bh(bh); 1284 ret = bh; 1285 break; 1286 } 1287 } 1288 bh_lru_unlock(); 1289 return ret; 1290 } 1291 1292 /* 1293 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1294 * it in the LRU and mark it as accessed. If it is not present then return 1295 * NULL 1296 */ 1297 struct buffer_head * 1298 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1299 { 1300 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1301 1302 if (bh == NULL) { 1303 bh = __find_get_block_slow(bdev, block); 1304 if (bh) 1305 bh_lru_install(bh); 1306 } 1307 if (bh) 1308 touch_buffer(bh); 1309 return bh; 1310 } 1311 EXPORT_SYMBOL(__find_get_block); 1312 1313 /* 1314 * __getblk will locate (and, if necessary, create) the buffer_head 1315 * which corresponds to the passed block_device, block and size. The 1316 * returned buffer has its reference count incremented. 1317 * 1318 * __getblk() cannot fail - it just keeps trying. If you pass it an 1319 * illegal block number, __getblk() will happily return a buffer_head 1320 * which represents the non-existent block. Very weird. 1321 * 1322 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1323 * attempt is failing. FIXME, perhaps? 1324 */ 1325 struct buffer_head * 1326 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1327 { 1328 struct buffer_head *bh = __find_get_block(bdev, block, size); 1329 1330 might_sleep(); 1331 if (bh == NULL) 1332 bh = __getblk_slow(bdev, block, size); 1333 return bh; 1334 } 1335 EXPORT_SYMBOL(__getblk); 1336 1337 /* 1338 * Do async read-ahead on a buffer.. 1339 */ 1340 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1341 { 1342 struct buffer_head *bh = __getblk(bdev, block, size); 1343 if (likely(bh)) { 1344 ll_rw_block(READA, 1, &bh); 1345 brelse(bh); 1346 } 1347 } 1348 EXPORT_SYMBOL(__breadahead); 1349 1350 /** 1351 * __bread() - reads a specified block and returns the bh 1352 * @bdev: the block_device to read from 1353 * @block: number of block 1354 * @size: size (in bytes) to read 1355 * 1356 * Reads a specified block, and returns buffer head that contains it. 1357 * It returns NULL if the block was unreadable. 1358 */ 1359 struct buffer_head * 1360 __bread(struct block_device *bdev, sector_t block, unsigned size) 1361 { 1362 struct buffer_head *bh = __getblk(bdev, block, size); 1363 1364 if (likely(bh) && !buffer_uptodate(bh)) 1365 bh = __bread_slow(bh); 1366 return bh; 1367 } 1368 EXPORT_SYMBOL(__bread); 1369 1370 /* 1371 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1372 * This doesn't race because it runs in each cpu either in irq 1373 * or with preempt disabled. 1374 */ 1375 static void invalidate_bh_lru(void *arg) 1376 { 1377 struct bh_lru *b = &get_cpu_var(bh_lrus); 1378 int i; 1379 1380 for (i = 0; i < BH_LRU_SIZE; i++) { 1381 brelse(b->bhs[i]); 1382 b->bhs[i] = NULL; 1383 } 1384 put_cpu_var(bh_lrus); 1385 } 1386 1387 static bool has_bh_in_lru(int cpu, void *dummy) 1388 { 1389 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1390 int i; 1391 1392 for (i = 0; i < BH_LRU_SIZE; i++) { 1393 if (b->bhs[i]) 1394 return 1; 1395 } 1396 1397 return 0; 1398 } 1399 1400 void invalidate_bh_lrus(void) 1401 { 1402 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1403 } 1404 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1405 1406 void set_bh_page(struct buffer_head *bh, 1407 struct page *page, unsigned long offset) 1408 { 1409 bh->b_page = page; 1410 BUG_ON(offset >= PAGE_SIZE); 1411 if (PageHighMem(page)) 1412 /* 1413 * This catches illegal uses and preserves the offset: 1414 */ 1415 bh->b_data = (char *)(0 + offset); 1416 else 1417 bh->b_data = page_address(page) + offset; 1418 } 1419 EXPORT_SYMBOL(set_bh_page); 1420 1421 /* 1422 * Called when truncating a buffer on a page completely. 1423 */ 1424 static void discard_buffer(struct buffer_head * bh) 1425 { 1426 lock_buffer(bh); 1427 clear_buffer_dirty(bh); 1428 bh->b_bdev = NULL; 1429 clear_buffer_mapped(bh); 1430 clear_buffer_req(bh); 1431 clear_buffer_new(bh); 1432 clear_buffer_delay(bh); 1433 clear_buffer_unwritten(bh); 1434 unlock_buffer(bh); 1435 } 1436 1437 /** 1438 * block_invalidatepage - invalidate part or all of a buffer-backed page 1439 * 1440 * @page: the page which is affected 1441 * @offset: the index of the truncation point 1442 * 1443 * block_invalidatepage() is called when all or part of the page has become 1444 * invalidated by a truncate operation. 1445 * 1446 * block_invalidatepage() does not have to release all buffers, but it must 1447 * ensure that no dirty buffer is left outside @offset and that no I/O 1448 * is underway against any of the blocks which are outside the truncation 1449 * point. Because the caller is about to free (and possibly reuse) those 1450 * blocks on-disk. 1451 */ 1452 void block_invalidatepage(struct page *page, unsigned long offset) 1453 { 1454 struct buffer_head *head, *bh, *next; 1455 unsigned int curr_off = 0; 1456 1457 BUG_ON(!PageLocked(page)); 1458 if (!page_has_buffers(page)) 1459 goto out; 1460 1461 head = page_buffers(page); 1462 bh = head; 1463 do { 1464 unsigned int next_off = curr_off + bh->b_size; 1465 next = bh->b_this_page; 1466 1467 /* 1468 * is this block fully invalidated? 1469 */ 1470 if (offset <= curr_off) 1471 discard_buffer(bh); 1472 curr_off = next_off; 1473 bh = next; 1474 } while (bh != head); 1475 1476 /* 1477 * We release buffers only if the entire page is being invalidated. 1478 * The get_block cached value has been unconditionally invalidated, 1479 * so real IO is not possible anymore. 1480 */ 1481 if (offset == 0) 1482 try_to_release_page(page, 0); 1483 out: 1484 return; 1485 } 1486 EXPORT_SYMBOL(block_invalidatepage); 1487 1488 /* 1489 * We attach and possibly dirty the buffers atomically wrt 1490 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1491 * is already excluded via the page lock. 1492 */ 1493 void create_empty_buffers(struct page *page, 1494 unsigned long blocksize, unsigned long b_state) 1495 { 1496 struct buffer_head *bh, *head, *tail; 1497 1498 head = alloc_page_buffers(page, blocksize, 1); 1499 bh = head; 1500 do { 1501 bh->b_state |= b_state; 1502 tail = bh; 1503 bh = bh->b_this_page; 1504 } while (bh); 1505 tail->b_this_page = head; 1506 1507 spin_lock(&page->mapping->private_lock); 1508 if (PageUptodate(page) || PageDirty(page)) { 1509 bh = head; 1510 do { 1511 if (PageDirty(page)) 1512 set_buffer_dirty(bh); 1513 if (PageUptodate(page)) 1514 set_buffer_uptodate(bh); 1515 bh = bh->b_this_page; 1516 } while (bh != head); 1517 } 1518 attach_page_buffers(page, head); 1519 spin_unlock(&page->mapping->private_lock); 1520 } 1521 EXPORT_SYMBOL(create_empty_buffers); 1522 1523 /* 1524 * We are taking a block for data and we don't want any output from any 1525 * buffer-cache aliases starting from return from that function and 1526 * until the moment when something will explicitly mark the buffer 1527 * dirty (hopefully that will not happen until we will free that block ;-) 1528 * We don't even need to mark it not-uptodate - nobody can expect 1529 * anything from a newly allocated buffer anyway. We used to used 1530 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1531 * don't want to mark the alias unmapped, for example - it would confuse 1532 * anyone who might pick it with bread() afterwards... 1533 * 1534 * Also.. Note that bforget() doesn't lock the buffer. So there can 1535 * be writeout I/O going on against recently-freed buffers. We don't 1536 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1537 * only if we really need to. That happens here. 1538 */ 1539 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1540 { 1541 struct buffer_head *old_bh; 1542 1543 might_sleep(); 1544 1545 old_bh = __find_get_block_slow(bdev, block); 1546 if (old_bh) { 1547 clear_buffer_dirty(old_bh); 1548 wait_on_buffer(old_bh); 1549 clear_buffer_req(old_bh); 1550 __brelse(old_bh); 1551 } 1552 } 1553 EXPORT_SYMBOL(unmap_underlying_metadata); 1554 1555 /* 1556 * NOTE! All mapped/uptodate combinations are valid: 1557 * 1558 * Mapped Uptodate Meaning 1559 * 1560 * No No "unknown" - must do get_block() 1561 * No Yes "hole" - zero-filled 1562 * Yes No "allocated" - allocated on disk, not read in 1563 * Yes Yes "valid" - allocated and up-to-date in memory. 1564 * 1565 * "Dirty" is valid only with the last case (mapped+uptodate). 1566 */ 1567 1568 /* 1569 * While block_write_full_page is writing back the dirty buffers under 1570 * the page lock, whoever dirtied the buffers may decide to clean them 1571 * again at any time. We handle that by only looking at the buffer 1572 * state inside lock_buffer(). 1573 * 1574 * If block_write_full_page() is called for regular writeback 1575 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1576 * locked buffer. This only can happen if someone has written the buffer 1577 * directly, with submit_bh(). At the address_space level PageWriteback 1578 * prevents this contention from occurring. 1579 * 1580 * If block_write_full_page() is called with wbc->sync_mode == 1581 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1582 * causes the writes to be flagged as synchronous writes. 1583 */ 1584 static int __block_write_full_page(struct inode *inode, struct page *page, 1585 get_block_t *get_block, struct writeback_control *wbc, 1586 bh_end_io_t *handler) 1587 { 1588 int err; 1589 sector_t block; 1590 sector_t last_block; 1591 struct buffer_head *bh, *head; 1592 const unsigned blocksize = 1 << inode->i_blkbits; 1593 int nr_underway = 0; 1594 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1595 WRITE_SYNC : WRITE); 1596 1597 BUG_ON(!PageLocked(page)); 1598 1599 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1600 1601 if (!page_has_buffers(page)) { 1602 create_empty_buffers(page, blocksize, 1603 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1604 } 1605 1606 /* 1607 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1608 * here, and the (potentially unmapped) buffers may become dirty at 1609 * any time. If a buffer becomes dirty here after we've inspected it 1610 * then we just miss that fact, and the page stays dirty. 1611 * 1612 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1613 * handle that here by just cleaning them. 1614 */ 1615 1616 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1617 head = page_buffers(page); 1618 bh = head; 1619 1620 /* 1621 * Get all the dirty buffers mapped to disk addresses and 1622 * handle any aliases from the underlying blockdev's mapping. 1623 */ 1624 do { 1625 if (block > last_block) { 1626 /* 1627 * mapped buffers outside i_size will occur, because 1628 * this page can be outside i_size when there is a 1629 * truncate in progress. 1630 */ 1631 /* 1632 * The buffer was zeroed by block_write_full_page() 1633 */ 1634 clear_buffer_dirty(bh); 1635 set_buffer_uptodate(bh); 1636 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1637 buffer_dirty(bh)) { 1638 WARN_ON(bh->b_size != blocksize); 1639 err = get_block(inode, block, bh, 1); 1640 if (err) 1641 goto recover; 1642 clear_buffer_delay(bh); 1643 if (buffer_new(bh)) { 1644 /* blockdev mappings never come here */ 1645 clear_buffer_new(bh); 1646 unmap_underlying_metadata(bh->b_bdev, 1647 bh->b_blocknr); 1648 } 1649 } 1650 bh = bh->b_this_page; 1651 block++; 1652 } while (bh != head); 1653 1654 do { 1655 if (!buffer_mapped(bh)) 1656 continue; 1657 /* 1658 * If it's a fully non-blocking write attempt and we cannot 1659 * lock the buffer then redirty the page. Note that this can 1660 * potentially cause a busy-wait loop from writeback threads 1661 * and kswapd activity, but those code paths have their own 1662 * higher-level throttling. 1663 */ 1664 if (wbc->sync_mode != WB_SYNC_NONE) { 1665 lock_buffer(bh); 1666 } else if (!trylock_buffer(bh)) { 1667 redirty_page_for_writepage(wbc, page); 1668 continue; 1669 } 1670 if (test_clear_buffer_dirty(bh)) { 1671 mark_buffer_async_write_endio(bh, handler); 1672 } else { 1673 unlock_buffer(bh); 1674 } 1675 } while ((bh = bh->b_this_page) != head); 1676 1677 /* 1678 * The page and its buffers are protected by PageWriteback(), so we can 1679 * drop the bh refcounts early. 1680 */ 1681 BUG_ON(PageWriteback(page)); 1682 set_page_writeback(page); 1683 1684 do { 1685 struct buffer_head *next = bh->b_this_page; 1686 if (buffer_async_write(bh)) { 1687 submit_bh(write_op, bh); 1688 nr_underway++; 1689 } 1690 bh = next; 1691 } while (bh != head); 1692 unlock_page(page); 1693 1694 err = 0; 1695 done: 1696 if (nr_underway == 0) { 1697 /* 1698 * The page was marked dirty, but the buffers were 1699 * clean. Someone wrote them back by hand with 1700 * ll_rw_block/submit_bh. A rare case. 1701 */ 1702 end_page_writeback(page); 1703 1704 /* 1705 * The page and buffer_heads can be released at any time from 1706 * here on. 1707 */ 1708 } 1709 return err; 1710 1711 recover: 1712 /* 1713 * ENOSPC, or some other error. We may already have added some 1714 * blocks to the file, so we need to write these out to avoid 1715 * exposing stale data. 1716 * The page is currently locked and not marked for writeback 1717 */ 1718 bh = head; 1719 /* Recovery: lock and submit the mapped buffers */ 1720 do { 1721 if (buffer_mapped(bh) && buffer_dirty(bh) && 1722 !buffer_delay(bh)) { 1723 lock_buffer(bh); 1724 mark_buffer_async_write_endio(bh, handler); 1725 } else { 1726 /* 1727 * The buffer may have been set dirty during 1728 * attachment to a dirty page. 1729 */ 1730 clear_buffer_dirty(bh); 1731 } 1732 } while ((bh = bh->b_this_page) != head); 1733 SetPageError(page); 1734 BUG_ON(PageWriteback(page)); 1735 mapping_set_error(page->mapping, err); 1736 set_page_writeback(page); 1737 do { 1738 struct buffer_head *next = bh->b_this_page; 1739 if (buffer_async_write(bh)) { 1740 clear_buffer_dirty(bh); 1741 submit_bh(write_op, bh); 1742 nr_underway++; 1743 } 1744 bh = next; 1745 } while (bh != head); 1746 unlock_page(page); 1747 goto done; 1748 } 1749 1750 /* 1751 * If a page has any new buffers, zero them out here, and mark them uptodate 1752 * and dirty so they'll be written out (in order to prevent uninitialised 1753 * block data from leaking). And clear the new bit. 1754 */ 1755 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1756 { 1757 unsigned int block_start, block_end; 1758 struct buffer_head *head, *bh; 1759 1760 BUG_ON(!PageLocked(page)); 1761 if (!page_has_buffers(page)) 1762 return; 1763 1764 bh = head = page_buffers(page); 1765 block_start = 0; 1766 do { 1767 block_end = block_start + bh->b_size; 1768 1769 if (buffer_new(bh)) { 1770 if (block_end > from && block_start < to) { 1771 if (!PageUptodate(page)) { 1772 unsigned start, size; 1773 1774 start = max(from, block_start); 1775 size = min(to, block_end) - start; 1776 1777 zero_user(page, start, size); 1778 set_buffer_uptodate(bh); 1779 } 1780 1781 clear_buffer_new(bh); 1782 mark_buffer_dirty(bh); 1783 } 1784 } 1785 1786 block_start = block_end; 1787 bh = bh->b_this_page; 1788 } while (bh != head); 1789 } 1790 EXPORT_SYMBOL(page_zero_new_buffers); 1791 1792 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1793 get_block_t *get_block) 1794 { 1795 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1796 unsigned to = from + len; 1797 struct inode *inode = page->mapping->host; 1798 unsigned block_start, block_end; 1799 sector_t block; 1800 int err = 0; 1801 unsigned blocksize, bbits; 1802 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1803 1804 BUG_ON(!PageLocked(page)); 1805 BUG_ON(from > PAGE_CACHE_SIZE); 1806 BUG_ON(to > PAGE_CACHE_SIZE); 1807 BUG_ON(from > to); 1808 1809 blocksize = 1 << inode->i_blkbits; 1810 if (!page_has_buffers(page)) 1811 create_empty_buffers(page, blocksize, 0); 1812 head = page_buffers(page); 1813 1814 bbits = inode->i_blkbits; 1815 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1816 1817 for(bh = head, block_start = 0; bh != head || !block_start; 1818 block++, block_start=block_end, bh = bh->b_this_page) { 1819 block_end = block_start + blocksize; 1820 if (block_end <= from || block_start >= to) { 1821 if (PageUptodate(page)) { 1822 if (!buffer_uptodate(bh)) 1823 set_buffer_uptodate(bh); 1824 } 1825 continue; 1826 } 1827 if (buffer_new(bh)) 1828 clear_buffer_new(bh); 1829 if (!buffer_mapped(bh)) { 1830 WARN_ON(bh->b_size != blocksize); 1831 err = get_block(inode, block, bh, 1); 1832 if (err) 1833 break; 1834 if (buffer_new(bh)) { 1835 unmap_underlying_metadata(bh->b_bdev, 1836 bh->b_blocknr); 1837 if (PageUptodate(page)) { 1838 clear_buffer_new(bh); 1839 set_buffer_uptodate(bh); 1840 mark_buffer_dirty(bh); 1841 continue; 1842 } 1843 if (block_end > to || block_start < from) 1844 zero_user_segments(page, 1845 to, block_end, 1846 block_start, from); 1847 continue; 1848 } 1849 } 1850 if (PageUptodate(page)) { 1851 if (!buffer_uptodate(bh)) 1852 set_buffer_uptodate(bh); 1853 continue; 1854 } 1855 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1856 !buffer_unwritten(bh) && 1857 (block_start < from || block_end > to)) { 1858 ll_rw_block(READ, 1, &bh); 1859 *wait_bh++=bh; 1860 } 1861 } 1862 /* 1863 * If we issued read requests - let them complete. 1864 */ 1865 while(wait_bh > wait) { 1866 wait_on_buffer(*--wait_bh); 1867 if (!buffer_uptodate(*wait_bh)) 1868 err = -EIO; 1869 } 1870 if (unlikely(err)) 1871 page_zero_new_buffers(page, from, to); 1872 return err; 1873 } 1874 EXPORT_SYMBOL(__block_write_begin); 1875 1876 static int __block_commit_write(struct inode *inode, struct page *page, 1877 unsigned from, unsigned to) 1878 { 1879 unsigned block_start, block_end; 1880 int partial = 0; 1881 unsigned blocksize; 1882 struct buffer_head *bh, *head; 1883 1884 blocksize = 1 << inode->i_blkbits; 1885 1886 for(bh = head = page_buffers(page), block_start = 0; 1887 bh != head || !block_start; 1888 block_start=block_end, bh = bh->b_this_page) { 1889 block_end = block_start + blocksize; 1890 if (block_end <= from || block_start >= to) { 1891 if (!buffer_uptodate(bh)) 1892 partial = 1; 1893 } else { 1894 set_buffer_uptodate(bh); 1895 mark_buffer_dirty(bh); 1896 } 1897 clear_buffer_new(bh); 1898 } 1899 1900 /* 1901 * If this is a partial write which happened to make all buffers 1902 * uptodate then we can optimize away a bogus readpage() for 1903 * the next read(). Here we 'discover' whether the page went 1904 * uptodate as a result of this (potentially partial) write. 1905 */ 1906 if (!partial) 1907 SetPageUptodate(page); 1908 return 0; 1909 } 1910 1911 /* 1912 * block_write_begin takes care of the basic task of block allocation and 1913 * bringing partial write blocks uptodate first. 1914 * 1915 * The filesystem needs to handle block truncation upon failure. 1916 */ 1917 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1918 unsigned flags, struct page **pagep, get_block_t *get_block) 1919 { 1920 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1921 struct page *page; 1922 int status; 1923 1924 page = grab_cache_page_write_begin(mapping, index, flags); 1925 if (!page) 1926 return -ENOMEM; 1927 1928 status = __block_write_begin(page, pos, len, get_block); 1929 if (unlikely(status)) { 1930 unlock_page(page); 1931 page_cache_release(page); 1932 page = NULL; 1933 } 1934 1935 *pagep = page; 1936 return status; 1937 } 1938 EXPORT_SYMBOL(block_write_begin); 1939 1940 int block_write_end(struct file *file, struct address_space *mapping, 1941 loff_t pos, unsigned len, unsigned copied, 1942 struct page *page, void *fsdata) 1943 { 1944 struct inode *inode = mapping->host; 1945 unsigned start; 1946 1947 start = pos & (PAGE_CACHE_SIZE - 1); 1948 1949 if (unlikely(copied < len)) { 1950 /* 1951 * The buffers that were written will now be uptodate, so we 1952 * don't have to worry about a readpage reading them and 1953 * overwriting a partial write. However if we have encountered 1954 * a short write and only partially written into a buffer, it 1955 * will not be marked uptodate, so a readpage might come in and 1956 * destroy our partial write. 1957 * 1958 * Do the simplest thing, and just treat any short write to a 1959 * non uptodate page as a zero-length write, and force the 1960 * caller to redo the whole thing. 1961 */ 1962 if (!PageUptodate(page)) 1963 copied = 0; 1964 1965 page_zero_new_buffers(page, start+copied, start+len); 1966 } 1967 flush_dcache_page(page); 1968 1969 /* This could be a short (even 0-length) commit */ 1970 __block_commit_write(inode, page, start, start+copied); 1971 1972 return copied; 1973 } 1974 EXPORT_SYMBOL(block_write_end); 1975 1976 int generic_write_end(struct file *file, struct address_space *mapping, 1977 loff_t pos, unsigned len, unsigned copied, 1978 struct page *page, void *fsdata) 1979 { 1980 struct inode *inode = mapping->host; 1981 int i_size_changed = 0; 1982 1983 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1984 1985 /* 1986 * No need to use i_size_read() here, the i_size 1987 * cannot change under us because we hold i_mutex. 1988 * 1989 * But it's important to update i_size while still holding page lock: 1990 * page writeout could otherwise come in and zero beyond i_size. 1991 */ 1992 if (pos+copied > inode->i_size) { 1993 i_size_write(inode, pos+copied); 1994 i_size_changed = 1; 1995 } 1996 1997 unlock_page(page); 1998 page_cache_release(page); 1999 2000 /* 2001 * Don't mark the inode dirty under page lock. First, it unnecessarily 2002 * makes the holding time of page lock longer. Second, it forces lock 2003 * ordering of page lock and transaction start for journaling 2004 * filesystems. 2005 */ 2006 if (i_size_changed) 2007 mark_inode_dirty(inode); 2008 2009 return copied; 2010 } 2011 EXPORT_SYMBOL(generic_write_end); 2012 2013 /* 2014 * block_is_partially_uptodate checks whether buffers within a page are 2015 * uptodate or not. 2016 * 2017 * Returns true if all buffers which correspond to a file portion 2018 * we want to read are uptodate. 2019 */ 2020 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2021 unsigned long from) 2022 { 2023 struct inode *inode = page->mapping->host; 2024 unsigned block_start, block_end, blocksize; 2025 unsigned to; 2026 struct buffer_head *bh, *head; 2027 int ret = 1; 2028 2029 if (!page_has_buffers(page)) 2030 return 0; 2031 2032 blocksize = 1 << inode->i_blkbits; 2033 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2034 to = from + to; 2035 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2036 return 0; 2037 2038 head = page_buffers(page); 2039 bh = head; 2040 block_start = 0; 2041 do { 2042 block_end = block_start + blocksize; 2043 if (block_end > from && block_start < to) { 2044 if (!buffer_uptodate(bh)) { 2045 ret = 0; 2046 break; 2047 } 2048 if (block_end >= to) 2049 break; 2050 } 2051 block_start = block_end; 2052 bh = bh->b_this_page; 2053 } while (bh != head); 2054 2055 return ret; 2056 } 2057 EXPORT_SYMBOL(block_is_partially_uptodate); 2058 2059 /* 2060 * Generic "read page" function for block devices that have the normal 2061 * get_block functionality. This is most of the block device filesystems. 2062 * Reads the page asynchronously --- the unlock_buffer() and 2063 * set/clear_buffer_uptodate() functions propagate buffer state into the 2064 * page struct once IO has completed. 2065 */ 2066 int block_read_full_page(struct page *page, get_block_t *get_block) 2067 { 2068 struct inode *inode = page->mapping->host; 2069 sector_t iblock, lblock; 2070 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2071 unsigned int blocksize; 2072 int nr, i; 2073 int fully_mapped = 1; 2074 2075 BUG_ON(!PageLocked(page)); 2076 blocksize = 1 << inode->i_blkbits; 2077 if (!page_has_buffers(page)) 2078 create_empty_buffers(page, blocksize, 0); 2079 head = page_buffers(page); 2080 2081 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2082 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2083 bh = head; 2084 nr = 0; 2085 i = 0; 2086 2087 do { 2088 if (buffer_uptodate(bh)) 2089 continue; 2090 2091 if (!buffer_mapped(bh)) { 2092 int err = 0; 2093 2094 fully_mapped = 0; 2095 if (iblock < lblock) { 2096 WARN_ON(bh->b_size != blocksize); 2097 err = get_block(inode, iblock, bh, 0); 2098 if (err) 2099 SetPageError(page); 2100 } 2101 if (!buffer_mapped(bh)) { 2102 zero_user(page, i * blocksize, blocksize); 2103 if (!err) 2104 set_buffer_uptodate(bh); 2105 continue; 2106 } 2107 /* 2108 * get_block() might have updated the buffer 2109 * synchronously 2110 */ 2111 if (buffer_uptodate(bh)) 2112 continue; 2113 } 2114 arr[nr++] = bh; 2115 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2116 2117 if (fully_mapped) 2118 SetPageMappedToDisk(page); 2119 2120 if (!nr) { 2121 /* 2122 * All buffers are uptodate - we can set the page uptodate 2123 * as well. But not if get_block() returned an error. 2124 */ 2125 if (!PageError(page)) 2126 SetPageUptodate(page); 2127 unlock_page(page); 2128 return 0; 2129 } 2130 2131 /* Stage two: lock the buffers */ 2132 for (i = 0; i < nr; i++) { 2133 bh = arr[i]; 2134 lock_buffer(bh); 2135 mark_buffer_async_read(bh); 2136 } 2137 2138 /* 2139 * Stage 3: start the IO. Check for uptodateness 2140 * inside the buffer lock in case another process reading 2141 * the underlying blockdev brought it uptodate (the sct fix). 2142 */ 2143 for (i = 0; i < nr; i++) { 2144 bh = arr[i]; 2145 if (buffer_uptodate(bh)) 2146 end_buffer_async_read(bh, 1); 2147 else 2148 submit_bh(READ, bh); 2149 } 2150 return 0; 2151 } 2152 EXPORT_SYMBOL(block_read_full_page); 2153 2154 /* utility function for filesystems that need to do work on expanding 2155 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2156 * deal with the hole. 2157 */ 2158 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2159 { 2160 struct address_space *mapping = inode->i_mapping; 2161 struct page *page; 2162 void *fsdata; 2163 int err; 2164 2165 err = inode_newsize_ok(inode, size); 2166 if (err) 2167 goto out; 2168 2169 err = pagecache_write_begin(NULL, mapping, size, 0, 2170 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2171 &page, &fsdata); 2172 if (err) 2173 goto out; 2174 2175 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2176 BUG_ON(err > 0); 2177 2178 out: 2179 return err; 2180 } 2181 EXPORT_SYMBOL(generic_cont_expand_simple); 2182 2183 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2184 loff_t pos, loff_t *bytes) 2185 { 2186 struct inode *inode = mapping->host; 2187 unsigned blocksize = 1 << inode->i_blkbits; 2188 struct page *page; 2189 void *fsdata; 2190 pgoff_t index, curidx; 2191 loff_t curpos; 2192 unsigned zerofrom, offset, len; 2193 int err = 0; 2194 2195 index = pos >> PAGE_CACHE_SHIFT; 2196 offset = pos & ~PAGE_CACHE_MASK; 2197 2198 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2199 zerofrom = curpos & ~PAGE_CACHE_MASK; 2200 if (zerofrom & (blocksize-1)) { 2201 *bytes |= (blocksize-1); 2202 (*bytes)++; 2203 } 2204 len = PAGE_CACHE_SIZE - zerofrom; 2205 2206 err = pagecache_write_begin(file, mapping, curpos, len, 2207 AOP_FLAG_UNINTERRUPTIBLE, 2208 &page, &fsdata); 2209 if (err) 2210 goto out; 2211 zero_user(page, zerofrom, len); 2212 err = pagecache_write_end(file, mapping, curpos, len, len, 2213 page, fsdata); 2214 if (err < 0) 2215 goto out; 2216 BUG_ON(err != len); 2217 err = 0; 2218 2219 balance_dirty_pages_ratelimited(mapping); 2220 } 2221 2222 /* page covers the boundary, find the boundary offset */ 2223 if (index == curidx) { 2224 zerofrom = curpos & ~PAGE_CACHE_MASK; 2225 /* if we will expand the thing last block will be filled */ 2226 if (offset <= zerofrom) { 2227 goto out; 2228 } 2229 if (zerofrom & (blocksize-1)) { 2230 *bytes |= (blocksize-1); 2231 (*bytes)++; 2232 } 2233 len = offset - zerofrom; 2234 2235 err = pagecache_write_begin(file, mapping, curpos, len, 2236 AOP_FLAG_UNINTERRUPTIBLE, 2237 &page, &fsdata); 2238 if (err) 2239 goto out; 2240 zero_user(page, zerofrom, len); 2241 err = pagecache_write_end(file, mapping, curpos, len, len, 2242 page, fsdata); 2243 if (err < 0) 2244 goto out; 2245 BUG_ON(err != len); 2246 err = 0; 2247 } 2248 out: 2249 return err; 2250 } 2251 2252 /* 2253 * For moronic filesystems that do not allow holes in file. 2254 * We may have to extend the file. 2255 */ 2256 int cont_write_begin(struct file *file, struct address_space *mapping, 2257 loff_t pos, unsigned len, unsigned flags, 2258 struct page **pagep, void **fsdata, 2259 get_block_t *get_block, loff_t *bytes) 2260 { 2261 struct inode *inode = mapping->host; 2262 unsigned blocksize = 1 << inode->i_blkbits; 2263 unsigned zerofrom; 2264 int err; 2265 2266 err = cont_expand_zero(file, mapping, pos, bytes); 2267 if (err) 2268 return err; 2269 2270 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2271 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2272 *bytes |= (blocksize-1); 2273 (*bytes)++; 2274 } 2275 2276 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2277 } 2278 EXPORT_SYMBOL(cont_write_begin); 2279 2280 int block_commit_write(struct page *page, unsigned from, unsigned to) 2281 { 2282 struct inode *inode = page->mapping->host; 2283 __block_commit_write(inode,page,from,to); 2284 return 0; 2285 } 2286 EXPORT_SYMBOL(block_commit_write); 2287 2288 /* 2289 * block_page_mkwrite() is not allowed to change the file size as it gets 2290 * called from a page fault handler when a page is first dirtied. Hence we must 2291 * be careful to check for EOF conditions here. We set the page up correctly 2292 * for a written page which means we get ENOSPC checking when writing into 2293 * holes and correct delalloc and unwritten extent mapping on filesystems that 2294 * support these features. 2295 * 2296 * We are not allowed to take the i_mutex here so we have to play games to 2297 * protect against truncate races as the page could now be beyond EOF. Because 2298 * truncate writes the inode size before removing pages, once we have the 2299 * page lock we can determine safely if the page is beyond EOF. If it is not 2300 * beyond EOF, then the page is guaranteed safe against truncation until we 2301 * unlock the page. 2302 * 2303 * Direct callers of this function should call vfs_check_frozen() so that page 2304 * fault does not busyloop until the fs is thawed. 2305 */ 2306 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2307 get_block_t get_block) 2308 { 2309 struct page *page = vmf->page; 2310 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2311 unsigned long end; 2312 loff_t size; 2313 int ret; 2314 2315 lock_page(page); 2316 size = i_size_read(inode); 2317 if ((page->mapping != inode->i_mapping) || 2318 (page_offset(page) > size)) { 2319 /* We overload EFAULT to mean page got truncated */ 2320 ret = -EFAULT; 2321 goto out_unlock; 2322 } 2323 2324 /* page is wholly or partially inside EOF */ 2325 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2326 end = size & ~PAGE_CACHE_MASK; 2327 else 2328 end = PAGE_CACHE_SIZE; 2329 2330 ret = __block_write_begin(page, 0, end, get_block); 2331 if (!ret) 2332 ret = block_commit_write(page, 0, end); 2333 2334 if (unlikely(ret < 0)) 2335 goto out_unlock; 2336 /* 2337 * Freezing in progress? We check after the page is marked dirty and 2338 * with page lock held so if the test here fails, we are sure freezing 2339 * code will wait during syncing until the page fault is done - at that 2340 * point page will be dirty and unlocked so freezing code will write it 2341 * and writeprotect it again. 2342 */ 2343 set_page_dirty(page); 2344 if (inode->i_sb->s_frozen != SB_UNFROZEN) { 2345 ret = -EAGAIN; 2346 goto out_unlock; 2347 } 2348 wait_on_page_writeback(page); 2349 return 0; 2350 out_unlock: 2351 unlock_page(page); 2352 return ret; 2353 } 2354 EXPORT_SYMBOL(__block_page_mkwrite); 2355 2356 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2357 get_block_t get_block) 2358 { 2359 int ret; 2360 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2361 2362 /* 2363 * This check is racy but catches the common case. The check in 2364 * __block_page_mkwrite() is reliable. 2365 */ 2366 vfs_check_frozen(sb, SB_FREEZE_WRITE); 2367 ret = __block_page_mkwrite(vma, vmf, get_block); 2368 return block_page_mkwrite_return(ret); 2369 } 2370 EXPORT_SYMBOL(block_page_mkwrite); 2371 2372 /* 2373 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2374 * immediately, while under the page lock. So it needs a special end_io 2375 * handler which does not touch the bh after unlocking it. 2376 */ 2377 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2378 { 2379 __end_buffer_read_notouch(bh, uptodate); 2380 } 2381 2382 /* 2383 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2384 * the page (converting it to circular linked list and taking care of page 2385 * dirty races). 2386 */ 2387 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2388 { 2389 struct buffer_head *bh; 2390 2391 BUG_ON(!PageLocked(page)); 2392 2393 spin_lock(&page->mapping->private_lock); 2394 bh = head; 2395 do { 2396 if (PageDirty(page)) 2397 set_buffer_dirty(bh); 2398 if (!bh->b_this_page) 2399 bh->b_this_page = head; 2400 bh = bh->b_this_page; 2401 } while (bh != head); 2402 attach_page_buffers(page, head); 2403 spin_unlock(&page->mapping->private_lock); 2404 } 2405 2406 /* 2407 * On entry, the page is fully not uptodate. 2408 * On exit the page is fully uptodate in the areas outside (from,to) 2409 * The filesystem needs to handle block truncation upon failure. 2410 */ 2411 int nobh_write_begin(struct address_space *mapping, 2412 loff_t pos, unsigned len, unsigned flags, 2413 struct page **pagep, void **fsdata, 2414 get_block_t *get_block) 2415 { 2416 struct inode *inode = mapping->host; 2417 const unsigned blkbits = inode->i_blkbits; 2418 const unsigned blocksize = 1 << blkbits; 2419 struct buffer_head *head, *bh; 2420 struct page *page; 2421 pgoff_t index; 2422 unsigned from, to; 2423 unsigned block_in_page; 2424 unsigned block_start, block_end; 2425 sector_t block_in_file; 2426 int nr_reads = 0; 2427 int ret = 0; 2428 int is_mapped_to_disk = 1; 2429 2430 index = pos >> PAGE_CACHE_SHIFT; 2431 from = pos & (PAGE_CACHE_SIZE - 1); 2432 to = from + len; 2433 2434 page = grab_cache_page_write_begin(mapping, index, flags); 2435 if (!page) 2436 return -ENOMEM; 2437 *pagep = page; 2438 *fsdata = NULL; 2439 2440 if (page_has_buffers(page)) { 2441 ret = __block_write_begin(page, pos, len, get_block); 2442 if (unlikely(ret)) 2443 goto out_release; 2444 return ret; 2445 } 2446 2447 if (PageMappedToDisk(page)) 2448 return 0; 2449 2450 /* 2451 * Allocate buffers so that we can keep track of state, and potentially 2452 * attach them to the page if an error occurs. In the common case of 2453 * no error, they will just be freed again without ever being attached 2454 * to the page (which is all OK, because we're under the page lock). 2455 * 2456 * Be careful: the buffer linked list is a NULL terminated one, rather 2457 * than the circular one we're used to. 2458 */ 2459 head = alloc_page_buffers(page, blocksize, 0); 2460 if (!head) { 2461 ret = -ENOMEM; 2462 goto out_release; 2463 } 2464 2465 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2466 2467 /* 2468 * We loop across all blocks in the page, whether or not they are 2469 * part of the affected region. This is so we can discover if the 2470 * page is fully mapped-to-disk. 2471 */ 2472 for (block_start = 0, block_in_page = 0, bh = head; 2473 block_start < PAGE_CACHE_SIZE; 2474 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2475 int create; 2476 2477 block_end = block_start + blocksize; 2478 bh->b_state = 0; 2479 create = 1; 2480 if (block_start >= to) 2481 create = 0; 2482 ret = get_block(inode, block_in_file + block_in_page, 2483 bh, create); 2484 if (ret) 2485 goto failed; 2486 if (!buffer_mapped(bh)) 2487 is_mapped_to_disk = 0; 2488 if (buffer_new(bh)) 2489 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2490 if (PageUptodate(page)) { 2491 set_buffer_uptodate(bh); 2492 continue; 2493 } 2494 if (buffer_new(bh) || !buffer_mapped(bh)) { 2495 zero_user_segments(page, block_start, from, 2496 to, block_end); 2497 continue; 2498 } 2499 if (buffer_uptodate(bh)) 2500 continue; /* reiserfs does this */ 2501 if (block_start < from || block_end > to) { 2502 lock_buffer(bh); 2503 bh->b_end_io = end_buffer_read_nobh; 2504 submit_bh(READ, bh); 2505 nr_reads++; 2506 } 2507 } 2508 2509 if (nr_reads) { 2510 /* 2511 * The page is locked, so these buffers are protected from 2512 * any VM or truncate activity. Hence we don't need to care 2513 * for the buffer_head refcounts. 2514 */ 2515 for (bh = head; bh; bh = bh->b_this_page) { 2516 wait_on_buffer(bh); 2517 if (!buffer_uptodate(bh)) 2518 ret = -EIO; 2519 } 2520 if (ret) 2521 goto failed; 2522 } 2523 2524 if (is_mapped_to_disk) 2525 SetPageMappedToDisk(page); 2526 2527 *fsdata = head; /* to be released by nobh_write_end */ 2528 2529 return 0; 2530 2531 failed: 2532 BUG_ON(!ret); 2533 /* 2534 * Error recovery is a bit difficult. We need to zero out blocks that 2535 * were newly allocated, and dirty them to ensure they get written out. 2536 * Buffers need to be attached to the page at this point, otherwise 2537 * the handling of potential IO errors during writeout would be hard 2538 * (could try doing synchronous writeout, but what if that fails too?) 2539 */ 2540 attach_nobh_buffers(page, head); 2541 page_zero_new_buffers(page, from, to); 2542 2543 out_release: 2544 unlock_page(page); 2545 page_cache_release(page); 2546 *pagep = NULL; 2547 2548 return ret; 2549 } 2550 EXPORT_SYMBOL(nobh_write_begin); 2551 2552 int nobh_write_end(struct file *file, struct address_space *mapping, 2553 loff_t pos, unsigned len, unsigned copied, 2554 struct page *page, void *fsdata) 2555 { 2556 struct inode *inode = page->mapping->host; 2557 struct buffer_head *head = fsdata; 2558 struct buffer_head *bh; 2559 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2560 2561 if (unlikely(copied < len) && head) 2562 attach_nobh_buffers(page, head); 2563 if (page_has_buffers(page)) 2564 return generic_write_end(file, mapping, pos, len, 2565 copied, page, fsdata); 2566 2567 SetPageUptodate(page); 2568 set_page_dirty(page); 2569 if (pos+copied > inode->i_size) { 2570 i_size_write(inode, pos+copied); 2571 mark_inode_dirty(inode); 2572 } 2573 2574 unlock_page(page); 2575 page_cache_release(page); 2576 2577 while (head) { 2578 bh = head; 2579 head = head->b_this_page; 2580 free_buffer_head(bh); 2581 } 2582 2583 return copied; 2584 } 2585 EXPORT_SYMBOL(nobh_write_end); 2586 2587 /* 2588 * nobh_writepage() - based on block_full_write_page() except 2589 * that it tries to operate without attaching bufferheads to 2590 * the page. 2591 */ 2592 int nobh_writepage(struct page *page, get_block_t *get_block, 2593 struct writeback_control *wbc) 2594 { 2595 struct inode * const inode = page->mapping->host; 2596 loff_t i_size = i_size_read(inode); 2597 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2598 unsigned offset; 2599 int ret; 2600 2601 /* Is the page fully inside i_size? */ 2602 if (page->index < end_index) 2603 goto out; 2604 2605 /* Is the page fully outside i_size? (truncate in progress) */ 2606 offset = i_size & (PAGE_CACHE_SIZE-1); 2607 if (page->index >= end_index+1 || !offset) { 2608 /* 2609 * The page may have dirty, unmapped buffers. For example, 2610 * they may have been added in ext3_writepage(). Make them 2611 * freeable here, so the page does not leak. 2612 */ 2613 #if 0 2614 /* Not really sure about this - do we need this ? */ 2615 if (page->mapping->a_ops->invalidatepage) 2616 page->mapping->a_ops->invalidatepage(page, offset); 2617 #endif 2618 unlock_page(page); 2619 return 0; /* don't care */ 2620 } 2621 2622 /* 2623 * The page straddles i_size. It must be zeroed out on each and every 2624 * writepage invocation because it may be mmapped. "A file is mapped 2625 * in multiples of the page size. For a file that is not a multiple of 2626 * the page size, the remaining memory is zeroed when mapped, and 2627 * writes to that region are not written out to the file." 2628 */ 2629 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2630 out: 2631 ret = mpage_writepage(page, get_block, wbc); 2632 if (ret == -EAGAIN) 2633 ret = __block_write_full_page(inode, page, get_block, wbc, 2634 end_buffer_async_write); 2635 return ret; 2636 } 2637 EXPORT_SYMBOL(nobh_writepage); 2638 2639 int nobh_truncate_page(struct address_space *mapping, 2640 loff_t from, get_block_t *get_block) 2641 { 2642 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2643 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2644 unsigned blocksize; 2645 sector_t iblock; 2646 unsigned length, pos; 2647 struct inode *inode = mapping->host; 2648 struct page *page; 2649 struct buffer_head map_bh; 2650 int err; 2651 2652 blocksize = 1 << inode->i_blkbits; 2653 length = offset & (blocksize - 1); 2654 2655 /* Block boundary? Nothing to do */ 2656 if (!length) 2657 return 0; 2658 2659 length = blocksize - length; 2660 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2661 2662 page = grab_cache_page(mapping, index); 2663 err = -ENOMEM; 2664 if (!page) 2665 goto out; 2666 2667 if (page_has_buffers(page)) { 2668 has_buffers: 2669 unlock_page(page); 2670 page_cache_release(page); 2671 return block_truncate_page(mapping, from, get_block); 2672 } 2673 2674 /* Find the buffer that contains "offset" */ 2675 pos = blocksize; 2676 while (offset >= pos) { 2677 iblock++; 2678 pos += blocksize; 2679 } 2680 2681 map_bh.b_size = blocksize; 2682 map_bh.b_state = 0; 2683 err = get_block(inode, iblock, &map_bh, 0); 2684 if (err) 2685 goto unlock; 2686 /* unmapped? It's a hole - nothing to do */ 2687 if (!buffer_mapped(&map_bh)) 2688 goto unlock; 2689 2690 /* Ok, it's mapped. Make sure it's up-to-date */ 2691 if (!PageUptodate(page)) { 2692 err = mapping->a_ops->readpage(NULL, page); 2693 if (err) { 2694 page_cache_release(page); 2695 goto out; 2696 } 2697 lock_page(page); 2698 if (!PageUptodate(page)) { 2699 err = -EIO; 2700 goto unlock; 2701 } 2702 if (page_has_buffers(page)) 2703 goto has_buffers; 2704 } 2705 zero_user(page, offset, length); 2706 set_page_dirty(page); 2707 err = 0; 2708 2709 unlock: 2710 unlock_page(page); 2711 page_cache_release(page); 2712 out: 2713 return err; 2714 } 2715 EXPORT_SYMBOL(nobh_truncate_page); 2716 2717 int block_truncate_page(struct address_space *mapping, 2718 loff_t from, get_block_t *get_block) 2719 { 2720 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2721 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2722 unsigned blocksize; 2723 sector_t iblock; 2724 unsigned length, pos; 2725 struct inode *inode = mapping->host; 2726 struct page *page; 2727 struct buffer_head *bh; 2728 int err; 2729 2730 blocksize = 1 << inode->i_blkbits; 2731 length = offset & (blocksize - 1); 2732 2733 /* Block boundary? Nothing to do */ 2734 if (!length) 2735 return 0; 2736 2737 length = blocksize - length; 2738 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2739 2740 page = grab_cache_page(mapping, index); 2741 err = -ENOMEM; 2742 if (!page) 2743 goto out; 2744 2745 if (!page_has_buffers(page)) 2746 create_empty_buffers(page, blocksize, 0); 2747 2748 /* Find the buffer that contains "offset" */ 2749 bh = page_buffers(page); 2750 pos = blocksize; 2751 while (offset >= pos) { 2752 bh = bh->b_this_page; 2753 iblock++; 2754 pos += blocksize; 2755 } 2756 2757 err = 0; 2758 if (!buffer_mapped(bh)) { 2759 WARN_ON(bh->b_size != blocksize); 2760 err = get_block(inode, iblock, bh, 0); 2761 if (err) 2762 goto unlock; 2763 /* unmapped? It's a hole - nothing to do */ 2764 if (!buffer_mapped(bh)) 2765 goto unlock; 2766 } 2767 2768 /* Ok, it's mapped. Make sure it's up-to-date */ 2769 if (PageUptodate(page)) 2770 set_buffer_uptodate(bh); 2771 2772 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2773 err = -EIO; 2774 ll_rw_block(READ, 1, &bh); 2775 wait_on_buffer(bh); 2776 /* Uhhuh. Read error. Complain and punt. */ 2777 if (!buffer_uptodate(bh)) 2778 goto unlock; 2779 } 2780 2781 zero_user(page, offset, length); 2782 mark_buffer_dirty(bh); 2783 err = 0; 2784 2785 unlock: 2786 unlock_page(page); 2787 page_cache_release(page); 2788 out: 2789 return err; 2790 } 2791 EXPORT_SYMBOL(block_truncate_page); 2792 2793 /* 2794 * The generic ->writepage function for buffer-backed address_spaces 2795 * this form passes in the end_io handler used to finish the IO. 2796 */ 2797 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2798 struct writeback_control *wbc, bh_end_io_t *handler) 2799 { 2800 struct inode * const inode = page->mapping->host; 2801 loff_t i_size = i_size_read(inode); 2802 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2803 unsigned offset; 2804 2805 /* Is the page fully inside i_size? */ 2806 if (page->index < end_index) 2807 return __block_write_full_page(inode, page, get_block, wbc, 2808 handler); 2809 2810 /* Is the page fully outside i_size? (truncate in progress) */ 2811 offset = i_size & (PAGE_CACHE_SIZE-1); 2812 if (page->index >= end_index+1 || !offset) { 2813 /* 2814 * The page may have dirty, unmapped buffers. For example, 2815 * they may have been added in ext3_writepage(). Make them 2816 * freeable here, so the page does not leak. 2817 */ 2818 do_invalidatepage(page, 0); 2819 unlock_page(page); 2820 return 0; /* don't care */ 2821 } 2822 2823 /* 2824 * The page straddles i_size. It must be zeroed out on each and every 2825 * writepage invocation because it may be mmapped. "A file is mapped 2826 * in multiples of the page size. For a file that is not a multiple of 2827 * the page size, the remaining memory is zeroed when mapped, and 2828 * writes to that region are not written out to the file." 2829 */ 2830 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2831 return __block_write_full_page(inode, page, get_block, wbc, handler); 2832 } 2833 EXPORT_SYMBOL(block_write_full_page_endio); 2834 2835 /* 2836 * The generic ->writepage function for buffer-backed address_spaces 2837 */ 2838 int block_write_full_page(struct page *page, get_block_t *get_block, 2839 struct writeback_control *wbc) 2840 { 2841 return block_write_full_page_endio(page, get_block, wbc, 2842 end_buffer_async_write); 2843 } 2844 EXPORT_SYMBOL(block_write_full_page); 2845 2846 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2847 get_block_t *get_block) 2848 { 2849 struct buffer_head tmp; 2850 struct inode *inode = mapping->host; 2851 tmp.b_state = 0; 2852 tmp.b_blocknr = 0; 2853 tmp.b_size = 1 << inode->i_blkbits; 2854 get_block(inode, block, &tmp, 0); 2855 return tmp.b_blocknr; 2856 } 2857 EXPORT_SYMBOL(generic_block_bmap); 2858 2859 static void end_bio_bh_io_sync(struct bio *bio, int err) 2860 { 2861 struct buffer_head *bh = bio->bi_private; 2862 2863 if (err == -EOPNOTSUPP) { 2864 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2865 } 2866 2867 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2868 set_bit(BH_Quiet, &bh->b_state); 2869 2870 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2871 bio_put(bio); 2872 } 2873 2874 int submit_bh(int rw, struct buffer_head * bh) 2875 { 2876 struct bio *bio; 2877 int ret = 0; 2878 2879 BUG_ON(!buffer_locked(bh)); 2880 BUG_ON(!buffer_mapped(bh)); 2881 BUG_ON(!bh->b_end_io); 2882 BUG_ON(buffer_delay(bh)); 2883 BUG_ON(buffer_unwritten(bh)); 2884 2885 /* 2886 * Only clear out a write error when rewriting 2887 */ 2888 if (test_set_buffer_req(bh) && (rw & WRITE)) 2889 clear_buffer_write_io_error(bh); 2890 2891 /* 2892 * from here on down, it's all bio -- do the initial mapping, 2893 * submit_bio -> generic_make_request may further map this bio around 2894 */ 2895 bio = bio_alloc(GFP_NOIO, 1); 2896 2897 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2898 bio->bi_bdev = bh->b_bdev; 2899 bio->bi_io_vec[0].bv_page = bh->b_page; 2900 bio->bi_io_vec[0].bv_len = bh->b_size; 2901 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2902 2903 bio->bi_vcnt = 1; 2904 bio->bi_idx = 0; 2905 bio->bi_size = bh->b_size; 2906 2907 bio->bi_end_io = end_bio_bh_io_sync; 2908 bio->bi_private = bh; 2909 2910 bio_get(bio); 2911 submit_bio(rw, bio); 2912 2913 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2914 ret = -EOPNOTSUPP; 2915 2916 bio_put(bio); 2917 return ret; 2918 } 2919 EXPORT_SYMBOL(submit_bh); 2920 2921 /** 2922 * ll_rw_block: low-level access to block devices (DEPRECATED) 2923 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2924 * @nr: number of &struct buffer_heads in the array 2925 * @bhs: array of pointers to &struct buffer_head 2926 * 2927 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2928 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2929 * %READA option is described in the documentation for generic_make_request() 2930 * which ll_rw_block() calls. 2931 * 2932 * This function drops any buffer that it cannot get a lock on (with the 2933 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2934 * request, and any buffer that appears to be up-to-date when doing read 2935 * request. Further it marks as clean buffers that are processed for 2936 * writing (the buffer cache won't assume that they are actually clean 2937 * until the buffer gets unlocked). 2938 * 2939 * ll_rw_block sets b_end_io to simple completion handler that marks 2940 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2941 * any waiters. 2942 * 2943 * All of the buffers must be for the same device, and must also be a 2944 * multiple of the current approved size for the device. 2945 */ 2946 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2947 { 2948 int i; 2949 2950 for (i = 0; i < nr; i++) { 2951 struct buffer_head *bh = bhs[i]; 2952 2953 if (!trylock_buffer(bh)) 2954 continue; 2955 if (rw == WRITE) { 2956 if (test_clear_buffer_dirty(bh)) { 2957 bh->b_end_io = end_buffer_write_sync; 2958 get_bh(bh); 2959 submit_bh(WRITE, bh); 2960 continue; 2961 } 2962 } else { 2963 if (!buffer_uptodate(bh)) { 2964 bh->b_end_io = end_buffer_read_sync; 2965 get_bh(bh); 2966 submit_bh(rw, bh); 2967 continue; 2968 } 2969 } 2970 unlock_buffer(bh); 2971 } 2972 } 2973 EXPORT_SYMBOL(ll_rw_block); 2974 2975 void write_dirty_buffer(struct buffer_head *bh, int rw) 2976 { 2977 lock_buffer(bh); 2978 if (!test_clear_buffer_dirty(bh)) { 2979 unlock_buffer(bh); 2980 return; 2981 } 2982 bh->b_end_io = end_buffer_write_sync; 2983 get_bh(bh); 2984 submit_bh(rw, bh); 2985 } 2986 EXPORT_SYMBOL(write_dirty_buffer); 2987 2988 /* 2989 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2990 * and then start new I/O and then wait upon it. The caller must have a ref on 2991 * the buffer_head. 2992 */ 2993 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 2994 { 2995 int ret = 0; 2996 2997 WARN_ON(atomic_read(&bh->b_count) < 1); 2998 lock_buffer(bh); 2999 if (test_clear_buffer_dirty(bh)) { 3000 get_bh(bh); 3001 bh->b_end_io = end_buffer_write_sync; 3002 ret = submit_bh(rw, bh); 3003 wait_on_buffer(bh); 3004 if (!ret && !buffer_uptodate(bh)) 3005 ret = -EIO; 3006 } else { 3007 unlock_buffer(bh); 3008 } 3009 return ret; 3010 } 3011 EXPORT_SYMBOL(__sync_dirty_buffer); 3012 3013 int sync_dirty_buffer(struct buffer_head *bh) 3014 { 3015 return __sync_dirty_buffer(bh, WRITE_SYNC); 3016 } 3017 EXPORT_SYMBOL(sync_dirty_buffer); 3018 3019 /* 3020 * try_to_free_buffers() checks if all the buffers on this particular page 3021 * are unused, and releases them if so. 3022 * 3023 * Exclusion against try_to_free_buffers may be obtained by either 3024 * locking the page or by holding its mapping's private_lock. 3025 * 3026 * If the page is dirty but all the buffers are clean then we need to 3027 * be sure to mark the page clean as well. This is because the page 3028 * may be against a block device, and a later reattachment of buffers 3029 * to a dirty page will set *all* buffers dirty. Which would corrupt 3030 * filesystem data on the same device. 3031 * 3032 * The same applies to regular filesystem pages: if all the buffers are 3033 * clean then we set the page clean and proceed. To do that, we require 3034 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3035 * private_lock. 3036 * 3037 * try_to_free_buffers() is non-blocking. 3038 */ 3039 static inline int buffer_busy(struct buffer_head *bh) 3040 { 3041 return atomic_read(&bh->b_count) | 3042 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3043 } 3044 3045 static int 3046 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3047 { 3048 struct buffer_head *head = page_buffers(page); 3049 struct buffer_head *bh; 3050 3051 bh = head; 3052 do { 3053 if (buffer_write_io_error(bh) && page->mapping) 3054 set_bit(AS_EIO, &page->mapping->flags); 3055 if (buffer_busy(bh)) 3056 goto failed; 3057 bh = bh->b_this_page; 3058 } while (bh != head); 3059 3060 do { 3061 struct buffer_head *next = bh->b_this_page; 3062 3063 if (bh->b_assoc_map) 3064 __remove_assoc_queue(bh); 3065 bh = next; 3066 } while (bh != head); 3067 *buffers_to_free = head; 3068 __clear_page_buffers(page); 3069 return 1; 3070 failed: 3071 return 0; 3072 } 3073 3074 int try_to_free_buffers(struct page *page) 3075 { 3076 struct address_space * const mapping = page->mapping; 3077 struct buffer_head *buffers_to_free = NULL; 3078 int ret = 0; 3079 3080 BUG_ON(!PageLocked(page)); 3081 if (PageWriteback(page)) 3082 return 0; 3083 3084 if (mapping == NULL) { /* can this still happen? */ 3085 ret = drop_buffers(page, &buffers_to_free); 3086 goto out; 3087 } 3088 3089 spin_lock(&mapping->private_lock); 3090 ret = drop_buffers(page, &buffers_to_free); 3091 3092 /* 3093 * If the filesystem writes its buffers by hand (eg ext3) 3094 * then we can have clean buffers against a dirty page. We 3095 * clean the page here; otherwise the VM will never notice 3096 * that the filesystem did any IO at all. 3097 * 3098 * Also, during truncate, discard_buffer will have marked all 3099 * the page's buffers clean. We discover that here and clean 3100 * the page also. 3101 * 3102 * private_lock must be held over this entire operation in order 3103 * to synchronise against __set_page_dirty_buffers and prevent the 3104 * dirty bit from being lost. 3105 */ 3106 if (ret) 3107 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3108 spin_unlock(&mapping->private_lock); 3109 out: 3110 if (buffers_to_free) { 3111 struct buffer_head *bh = buffers_to_free; 3112 3113 do { 3114 struct buffer_head *next = bh->b_this_page; 3115 free_buffer_head(bh); 3116 bh = next; 3117 } while (bh != buffers_to_free); 3118 } 3119 return ret; 3120 } 3121 EXPORT_SYMBOL(try_to_free_buffers); 3122 3123 /* 3124 * There are no bdflush tunables left. But distributions are 3125 * still running obsolete flush daemons, so we terminate them here. 3126 * 3127 * Use of bdflush() is deprecated and will be removed in a future kernel. 3128 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3129 */ 3130 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3131 { 3132 static int msg_count; 3133 3134 if (!capable(CAP_SYS_ADMIN)) 3135 return -EPERM; 3136 3137 if (msg_count < 5) { 3138 msg_count++; 3139 printk(KERN_INFO 3140 "warning: process `%s' used the obsolete bdflush" 3141 " system call\n", current->comm); 3142 printk(KERN_INFO "Fix your initscripts?\n"); 3143 } 3144 3145 if (func == 1) 3146 do_exit(0); 3147 return 0; 3148 } 3149 3150 /* 3151 * Buffer-head allocation 3152 */ 3153 static struct kmem_cache *bh_cachep; 3154 3155 /* 3156 * Once the number of bh's in the machine exceeds this level, we start 3157 * stripping them in writeback. 3158 */ 3159 static int max_buffer_heads; 3160 3161 int buffer_heads_over_limit; 3162 3163 struct bh_accounting { 3164 int nr; /* Number of live bh's */ 3165 int ratelimit; /* Limit cacheline bouncing */ 3166 }; 3167 3168 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3169 3170 static void recalc_bh_state(void) 3171 { 3172 int i; 3173 int tot = 0; 3174 3175 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3176 return; 3177 __this_cpu_write(bh_accounting.ratelimit, 0); 3178 for_each_online_cpu(i) 3179 tot += per_cpu(bh_accounting, i).nr; 3180 buffer_heads_over_limit = (tot > max_buffer_heads); 3181 } 3182 3183 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3184 { 3185 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3186 if (ret) { 3187 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3188 preempt_disable(); 3189 __this_cpu_inc(bh_accounting.nr); 3190 recalc_bh_state(); 3191 preempt_enable(); 3192 } 3193 return ret; 3194 } 3195 EXPORT_SYMBOL(alloc_buffer_head); 3196 3197 void free_buffer_head(struct buffer_head *bh) 3198 { 3199 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3200 kmem_cache_free(bh_cachep, bh); 3201 preempt_disable(); 3202 __this_cpu_dec(bh_accounting.nr); 3203 recalc_bh_state(); 3204 preempt_enable(); 3205 } 3206 EXPORT_SYMBOL(free_buffer_head); 3207 3208 static void buffer_exit_cpu(int cpu) 3209 { 3210 int i; 3211 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3212 3213 for (i = 0; i < BH_LRU_SIZE; i++) { 3214 brelse(b->bhs[i]); 3215 b->bhs[i] = NULL; 3216 } 3217 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3218 per_cpu(bh_accounting, cpu).nr = 0; 3219 } 3220 3221 static int buffer_cpu_notify(struct notifier_block *self, 3222 unsigned long action, void *hcpu) 3223 { 3224 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3225 buffer_exit_cpu((unsigned long)hcpu); 3226 return NOTIFY_OK; 3227 } 3228 3229 /** 3230 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3231 * @bh: struct buffer_head 3232 * 3233 * Return true if the buffer is up-to-date and false, 3234 * with the buffer locked, if not. 3235 */ 3236 int bh_uptodate_or_lock(struct buffer_head *bh) 3237 { 3238 if (!buffer_uptodate(bh)) { 3239 lock_buffer(bh); 3240 if (!buffer_uptodate(bh)) 3241 return 0; 3242 unlock_buffer(bh); 3243 } 3244 return 1; 3245 } 3246 EXPORT_SYMBOL(bh_uptodate_or_lock); 3247 3248 /** 3249 * bh_submit_read - Submit a locked buffer for reading 3250 * @bh: struct buffer_head 3251 * 3252 * Returns zero on success and -EIO on error. 3253 */ 3254 int bh_submit_read(struct buffer_head *bh) 3255 { 3256 BUG_ON(!buffer_locked(bh)); 3257 3258 if (buffer_uptodate(bh)) { 3259 unlock_buffer(bh); 3260 return 0; 3261 } 3262 3263 get_bh(bh); 3264 bh->b_end_io = end_buffer_read_sync; 3265 submit_bh(READ, bh); 3266 wait_on_buffer(bh); 3267 if (buffer_uptodate(bh)) 3268 return 0; 3269 return -EIO; 3270 } 3271 EXPORT_SYMBOL(bh_submit_read); 3272 3273 void __init buffer_init(void) 3274 { 3275 int nrpages; 3276 3277 bh_cachep = kmem_cache_create("buffer_head", 3278 sizeof(struct buffer_head), 0, 3279 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3280 SLAB_MEM_SPREAD), 3281 NULL); 3282 3283 /* 3284 * Limit the bh occupancy to 10% of ZONE_NORMAL 3285 */ 3286 nrpages = (nr_free_buffer_pages() * 10) / 100; 3287 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3288 hotcpu_notifier(buffer_cpu_notify, 0); 3289 } 3290