1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 56 struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the folio has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the folio_test_dirty information is stale. If 84 * any of the buffers are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct folio *folio, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!folio_test_locked(folio)); 94 95 head = folio_buffers(folio); 96 if (!head) 97 return; 98 99 if (folio_test_writeback(folio)) 100 *writeback = true; 101 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If all of the buffers are uptodate then we can set the page 286 * uptodate. 287 */ 288 if (page_uptodate) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_folio() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 495 * as you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 write_dirty_buffer(bh, 0); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Add a page to the dirty page list. 593 * 594 * It is a sad fact of life that this function is called from several places 595 * deeply under spinlocking. It may not sleep. 596 * 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve 598 * dirty-state coherency between the page and the buffers. It the page does 599 * not have buffers then when they are later attached they will all be set 600 * dirty. 601 * 602 * The buffers are dirtied before the page is dirtied. There's a small race 603 * window in which a writepage caller may see the page cleanness but not the 604 * buffer dirtiness. That's fine. If this code were to set the page dirty 605 * before the buffers, a concurrent writepage caller could clear the page dirty 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 607 * page on the dirty page list. 608 * 609 * We use private_lock to lock against try_to_free_buffers while using the 610 * page's buffer list. Also use this to protect against clean buffers being 611 * added to the page after it was set dirty. 612 * 613 * FIXME: may need to call ->reservepage here as well. That's rather up to the 614 * address_space though. 615 */ 616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 617 { 618 struct buffer_head *head; 619 bool newly_dirty; 620 621 spin_lock(&mapping->private_lock); 622 head = folio_buffers(folio); 623 if (head) { 624 struct buffer_head *bh = head; 625 626 do { 627 set_buffer_dirty(bh); 628 bh = bh->b_this_page; 629 } while (bh != head); 630 } 631 /* 632 * Lock out page's memcg migration to keep PageDirty 633 * synchronized with per-memcg dirty page counters. 634 */ 635 folio_memcg_lock(folio); 636 newly_dirty = !folio_test_set_dirty(folio); 637 spin_unlock(&mapping->private_lock); 638 639 if (newly_dirty) 640 __folio_mark_dirty(folio, mapping, 1); 641 642 folio_memcg_unlock(folio); 643 644 if (newly_dirty) 645 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 646 647 return newly_dirty; 648 } 649 EXPORT_SYMBOL(block_dirty_folio); 650 651 /* 652 * Write out and wait upon a list of buffers. 653 * 654 * We have conflicting pressures: we want to make sure that all 655 * initially dirty buffers get waited on, but that any subsequently 656 * dirtied buffers don't. After all, we don't want fsync to last 657 * forever if somebody is actively writing to the file. 658 * 659 * Do this in two main stages: first we copy dirty buffers to a 660 * temporary inode list, queueing the writes as we go. Then we clean 661 * up, waiting for those writes to complete. 662 * 663 * During this second stage, any subsequent updates to the file may end 664 * up refiling the buffer on the original inode's dirty list again, so 665 * there is a chance we will end up with a buffer queued for write but 666 * not yet completed on that list. So, as a final cleanup we go through 667 * the osync code to catch these locked, dirty buffers without requeuing 668 * any newly dirty buffers for write. 669 */ 670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 671 { 672 struct buffer_head *bh; 673 struct list_head tmp; 674 struct address_space *mapping; 675 int err = 0, err2; 676 struct blk_plug plug; 677 678 INIT_LIST_HEAD(&tmp); 679 blk_start_plug(&plug); 680 681 spin_lock(lock); 682 while (!list_empty(list)) { 683 bh = BH_ENTRY(list->next); 684 mapping = bh->b_assoc_map; 685 __remove_assoc_queue(bh); 686 /* Avoid race with mark_buffer_dirty_inode() which does 687 * a lockless check and we rely on seeing the dirty bit */ 688 smp_mb(); 689 if (buffer_dirty(bh) || buffer_locked(bh)) { 690 list_add(&bh->b_assoc_buffers, &tmp); 691 bh->b_assoc_map = mapping; 692 if (buffer_dirty(bh)) { 693 get_bh(bh); 694 spin_unlock(lock); 695 /* 696 * Ensure any pending I/O completes so that 697 * write_dirty_buffer() actually writes the 698 * current contents - it is a noop if I/O is 699 * still in flight on potentially older 700 * contents. 701 */ 702 write_dirty_buffer(bh, REQ_SYNC); 703 704 /* 705 * Kick off IO for the previous mapping. Note 706 * that we will not run the very last mapping, 707 * wait_on_buffer() will do that for us 708 * through sync_buffer(). 709 */ 710 brelse(bh); 711 spin_lock(lock); 712 } 713 } 714 } 715 716 spin_unlock(lock); 717 blk_finish_plug(&plug); 718 spin_lock(lock); 719 720 while (!list_empty(&tmp)) { 721 bh = BH_ENTRY(tmp.prev); 722 get_bh(bh); 723 mapping = bh->b_assoc_map; 724 __remove_assoc_queue(bh); 725 /* Avoid race with mark_buffer_dirty_inode() which does 726 * a lockless check and we rely on seeing the dirty bit */ 727 smp_mb(); 728 if (buffer_dirty(bh)) { 729 list_add(&bh->b_assoc_buffers, 730 &mapping->private_list); 731 bh->b_assoc_map = mapping; 732 } 733 spin_unlock(lock); 734 wait_on_buffer(bh); 735 if (!buffer_uptodate(bh)) 736 err = -EIO; 737 brelse(bh); 738 spin_lock(lock); 739 } 740 741 spin_unlock(lock); 742 err2 = osync_buffers_list(lock, list); 743 if (err) 744 return err; 745 else 746 return err2; 747 } 748 749 /* 750 * Invalidate any and all dirty buffers on a given inode. We are 751 * probably unmounting the fs, but that doesn't mean we have already 752 * done a sync(). Just drop the buffers from the inode list. 753 * 754 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 755 * assumes that all the buffers are against the blockdev. Not true 756 * for reiserfs. 757 */ 758 void invalidate_inode_buffers(struct inode *inode) 759 { 760 if (inode_has_buffers(inode)) { 761 struct address_space *mapping = &inode->i_data; 762 struct list_head *list = &mapping->private_list; 763 struct address_space *buffer_mapping = mapping->private_data; 764 765 spin_lock(&buffer_mapping->private_lock); 766 while (!list_empty(list)) 767 __remove_assoc_queue(BH_ENTRY(list->next)); 768 spin_unlock(&buffer_mapping->private_lock); 769 } 770 } 771 EXPORT_SYMBOL(invalidate_inode_buffers); 772 773 /* 774 * Remove any clean buffers from the inode's buffer list. This is called 775 * when we're trying to free the inode itself. Those buffers can pin it. 776 * 777 * Returns true if all buffers were removed. 778 */ 779 int remove_inode_buffers(struct inode *inode) 780 { 781 int ret = 1; 782 783 if (inode_has_buffers(inode)) { 784 struct address_space *mapping = &inode->i_data; 785 struct list_head *list = &mapping->private_list; 786 struct address_space *buffer_mapping = mapping->private_data; 787 788 spin_lock(&buffer_mapping->private_lock); 789 while (!list_empty(list)) { 790 struct buffer_head *bh = BH_ENTRY(list->next); 791 if (buffer_dirty(bh)) { 792 ret = 0; 793 break; 794 } 795 __remove_assoc_queue(bh); 796 } 797 spin_unlock(&buffer_mapping->private_lock); 798 } 799 return ret; 800 } 801 802 /* 803 * Create the appropriate buffers when given a page for data area and 804 * the size of each buffer.. Use the bh->b_this_page linked list to 805 * follow the buffers created. Return NULL if unable to create more 806 * buffers. 807 * 808 * The retry flag is used to differentiate async IO (paging, swapping) 809 * which may not fail from ordinary buffer allocations. 810 */ 811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 812 bool retry) 813 { 814 struct buffer_head *bh, *head; 815 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 816 long offset; 817 struct mem_cgroup *memcg, *old_memcg; 818 819 if (retry) 820 gfp |= __GFP_NOFAIL; 821 822 /* The page lock pins the memcg */ 823 memcg = page_memcg(page); 824 old_memcg = set_active_memcg(memcg); 825 826 head = NULL; 827 offset = PAGE_SIZE; 828 while ((offset -= size) >= 0) { 829 bh = alloc_buffer_head(gfp); 830 if (!bh) 831 goto no_grow; 832 833 bh->b_this_page = head; 834 bh->b_blocknr = -1; 835 head = bh; 836 837 bh->b_size = size; 838 839 /* Link the buffer to its page */ 840 set_bh_page(bh, page, offset); 841 } 842 out: 843 set_active_memcg(old_memcg); 844 return head; 845 /* 846 * In case anything failed, we just free everything we got. 847 */ 848 no_grow: 849 if (head) { 850 do { 851 bh = head; 852 head = head->b_this_page; 853 free_buffer_head(bh); 854 } while (head); 855 } 856 857 goto out; 858 } 859 EXPORT_SYMBOL_GPL(alloc_page_buffers); 860 861 static inline void 862 link_dev_buffers(struct page *page, struct buffer_head *head) 863 { 864 struct buffer_head *bh, *tail; 865 866 bh = head; 867 do { 868 tail = bh; 869 bh = bh->b_this_page; 870 } while (bh); 871 tail->b_this_page = head; 872 attach_page_private(page, head); 873 } 874 875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 876 { 877 sector_t retval = ~((sector_t)0); 878 loff_t sz = bdev_nr_bytes(bdev); 879 880 if (sz) { 881 unsigned int sizebits = blksize_bits(size); 882 retval = (sz >> sizebits); 883 } 884 return retval; 885 } 886 887 /* 888 * Initialise the state of a blockdev page's buffers. 889 */ 890 static sector_t 891 init_page_buffers(struct page *page, struct block_device *bdev, 892 sector_t block, int size) 893 { 894 struct buffer_head *head = page_buffers(page); 895 struct buffer_head *bh = head; 896 int uptodate = PageUptodate(page); 897 sector_t end_block = blkdev_max_block(bdev, size); 898 899 do { 900 if (!buffer_mapped(bh)) { 901 bh->b_end_io = NULL; 902 bh->b_private = NULL; 903 bh->b_bdev = bdev; 904 bh->b_blocknr = block; 905 if (uptodate) 906 set_buffer_uptodate(bh); 907 if (block < end_block) 908 set_buffer_mapped(bh); 909 } 910 block++; 911 bh = bh->b_this_page; 912 } while (bh != head); 913 914 /* 915 * Caller needs to validate requested block against end of device. 916 */ 917 return end_block; 918 } 919 920 /* 921 * Create the page-cache page that contains the requested block. 922 * 923 * This is used purely for blockdev mappings. 924 */ 925 static int 926 grow_dev_page(struct block_device *bdev, sector_t block, 927 pgoff_t index, int size, int sizebits, gfp_t gfp) 928 { 929 struct inode *inode = bdev->bd_inode; 930 struct page *page; 931 struct buffer_head *bh; 932 sector_t end_block; 933 int ret = 0; 934 gfp_t gfp_mask; 935 936 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 937 938 /* 939 * XXX: __getblk_slow() can not really deal with failure and 940 * will endlessly loop on improvised global reclaim. Prefer 941 * looping in the allocator rather than here, at least that 942 * code knows what it's doing. 943 */ 944 gfp_mask |= __GFP_NOFAIL; 945 946 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 947 948 BUG_ON(!PageLocked(page)); 949 950 if (page_has_buffers(page)) { 951 bh = page_buffers(page); 952 if (bh->b_size == size) { 953 end_block = init_page_buffers(page, bdev, 954 (sector_t)index << sizebits, 955 size); 956 goto done; 957 } 958 if (!try_to_free_buffers(page_folio(page))) 959 goto failed; 960 } 961 962 /* 963 * Allocate some buffers for this page 964 */ 965 bh = alloc_page_buffers(page, size, true); 966 967 /* 968 * Link the page to the buffers and initialise them. Take the 969 * lock to be atomic wrt __find_get_block(), which does not 970 * run under the page lock. 971 */ 972 spin_lock(&inode->i_mapping->private_lock); 973 link_dev_buffers(page, bh); 974 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 975 size); 976 spin_unlock(&inode->i_mapping->private_lock); 977 done: 978 ret = (block < end_block) ? 1 : -ENXIO; 979 failed: 980 unlock_page(page); 981 put_page(page); 982 return ret; 983 } 984 985 /* 986 * Create buffers for the specified block device block's page. If 987 * that page was dirty, the buffers are set dirty also. 988 */ 989 static int 990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 991 { 992 pgoff_t index; 993 int sizebits; 994 995 sizebits = PAGE_SHIFT - __ffs(size); 996 index = block >> sizebits; 997 998 /* 999 * Check for a block which wants to lie outside our maximum possible 1000 * pagecache index. (this comparison is done using sector_t types). 1001 */ 1002 if (unlikely(index != block >> sizebits)) { 1003 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1004 "device %pg\n", 1005 __func__, (unsigned long long)block, 1006 bdev); 1007 return -EIO; 1008 } 1009 1010 /* Create a page with the proper size buffers.. */ 1011 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1012 } 1013 1014 static struct buffer_head * 1015 __getblk_slow(struct block_device *bdev, sector_t block, 1016 unsigned size, gfp_t gfp) 1017 { 1018 /* Size must be multiple of hard sectorsize */ 1019 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1020 (size < 512 || size > PAGE_SIZE))) { 1021 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1022 size); 1023 printk(KERN_ERR "logical block size: %d\n", 1024 bdev_logical_block_size(bdev)); 1025 1026 dump_stack(); 1027 return NULL; 1028 } 1029 1030 for (;;) { 1031 struct buffer_head *bh; 1032 int ret; 1033 1034 bh = __find_get_block(bdev, block, size); 1035 if (bh) 1036 return bh; 1037 1038 ret = grow_buffers(bdev, block, size, gfp); 1039 if (ret < 0) 1040 return NULL; 1041 } 1042 } 1043 1044 /* 1045 * The relationship between dirty buffers and dirty pages: 1046 * 1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1048 * the page is tagged dirty in the page cache. 1049 * 1050 * At all times, the dirtiness of the buffers represents the dirtiness of 1051 * subsections of the page. If the page has buffers, the page dirty bit is 1052 * merely a hint about the true dirty state. 1053 * 1054 * When a page is set dirty in its entirety, all its buffers are marked dirty 1055 * (if the page has buffers). 1056 * 1057 * When a buffer is marked dirty, its page is dirtied, but the page's other 1058 * buffers are not. 1059 * 1060 * Also. When blockdev buffers are explicitly read with bread(), they 1061 * individually become uptodate. But their backing page remains not 1062 * uptodate - even if all of its buffers are uptodate. A subsequent 1063 * block_read_full_folio() against that folio will discover all the uptodate 1064 * buffers, will set the folio uptodate and will perform no I/O. 1065 */ 1066 1067 /** 1068 * mark_buffer_dirty - mark a buffer_head as needing writeout 1069 * @bh: the buffer_head to mark dirty 1070 * 1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1072 * its backing page dirty, then tag the page as dirty in the page cache 1073 * and then attach the address_space's inode to its superblock's dirty 1074 * inode list. 1075 * 1076 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1077 * i_pages lock and mapping->host->i_lock. 1078 */ 1079 void mark_buffer_dirty(struct buffer_head *bh) 1080 { 1081 WARN_ON_ONCE(!buffer_uptodate(bh)); 1082 1083 trace_block_dirty_buffer(bh); 1084 1085 /* 1086 * Very *carefully* optimize the it-is-already-dirty case. 1087 * 1088 * Don't let the final "is it dirty" escape to before we 1089 * perhaps modified the buffer. 1090 */ 1091 if (buffer_dirty(bh)) { 1092 smp_mb(); 1093 if (buffer_dirty(bh)) 1094 return; 1095 } 1096 1097 if (!test_set_buffer_dirty(bh)) { 1098 struct page *page = bh->b_page; 1099 struct address_space *mapping = NULL; 1100 1101 lock_page_memcg(page); 1102 if (!TestSetPageDirty(page)) { 1103 mapping = page_mapping(page); 1104 if (mapping) 1105 __set_page_dirty(page, mapping, 0); 1106 } 1107 unlock_page_memcg(page); 1108 if (mapping) 1109 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1110 } 1111 } 1112 EXPORT_SYMBOL(mark_buffer_dirty); 1113 1114 void mark_buffer_write_io_error(struct buffer_head *bh) 1115 { 1116 struct super_block *sb; 1117 1118 set_buffer_write_io_error(bh); 1119 /* FIXME: do we need to set this in both places? */ 1120 if (bh->b_page && bh->b_page->mapping) 1121 mapping_set_error(bh->b_page->mapping, -EIO); 1122 if (bh->b_assoc_map) 1123 mapping_set_error(bh->b_assoc_map, -EIO); 1124 rcu_read_lock(); 1125 sb = READ_ONCE(bh->b_bdev->bd_super); 1126 if (sb) 1127 errseq_set(&sb->s_wb_err, -EIO); 1128 rcu_read_unlock(); 1129 } 1130 EXPORT_SYMBOL(mark_buffer_write_io_error); 1131 1132 /* 1133 * Decrement a buffer_head's reference count. If all buffers against a page 1134 * have zero reference count, are clean and unlocked, and if the page is clean 1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1137 * a page but it ends up not being freed, and buffers may later be reattached). 1138 */ 1139 void __brelse(struct buffer_head * buf) 1140 { 1141 if (atomic_read(&buf->b_count)) { 1142 put_bh(buf); 1143 return; 1144 } 1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1146 } 1147 EXPORT_SYMBOL(__brelse); 1148 1149 /* 1150 * bforget() is like brelse(), except it discards any 1151 * potentially dirty data. 1152 */ 1153 void __bforget(struct buffer_head *bh) 1154 { 1155 clear_buffer_dirty(bh); 1156 if (bh->b_assoc_map) { 1157 struct address_space *buffer_mapping = bh->b_page->mapping; 1158 1159 spin_lock(&buffer_mapping->private_lock); 1160 list_del_init(&bh->b_assoc_buffers); 1161 bh->b_assoc_map = NULL; 1162 spin_unlock(&buffer_mapping->private_lock); 1163 } 1164 __brelse(bh); 1165 } 1166 EXPORT_SYMBOL(__bforget); 1167 1168 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1169 { 1170 lock_buffer(bh); 1171 if (buffer_uptodate(bh)) { 1172 unlock_buffer(bh); 1173 return bh; 1174 } else { 1175 get_bh(bh); 1176 bh->b_end_io = end_buffer_read_sync; 1177 submit_bh(REQ_OP_READ, bh); 1178 wait_on_buffer(bh); 1179 if (buffer_uptodate(bh)) 1180 return bh; 1181 } 1182 brelse(bh); 1183 return NULL; 1184 } 1185 1186 /* 1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1189 * refcount elevated by one when they're in an LRU. A buffer can only appear 1190 * once in a particular CPU's LRU. A single buffer can be present in multiple 1191 * CPU's LRUs at the same time. 1192 * 1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1194 * sb_find_get_block(). 1195 * 1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1197 * a local interrupt disable for that. 1198 */ 1199 1200 #define BH_LRU_SIZE 16 1201 1202 struct bh_lru { 1203 struct buffer_head *bhs[BH_LRU_SIZE]; 1204 }; 1205 1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1207 1208 #ifdef CONFIG_SMP 1209 #define bh_lru_lock() local_irq_disable() 1210 #define bh_lru_unlock() local_irq_enable() 1211 #else 1212 #define bh_lru_lock() preempt_disable() 1213 #define bh_lru_unlock() preempt_enable() 1214 #endif 1215 1216 static inline void check_irqs_on(void) 1217 { 1218 #ifdef irqs_disabled 1219 BUG_ON(irqs_disabled()); 1220 #endif 1221 } 1222 1223 /* 1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1225 * inserted at the front, and the buffer_head at the back if any is evicted. 1226 * Or, if already in the LRU it is moved to the front. 1227 */ 1228 static void bh_lru_install(struct buffer_head *bh) 1229 { 1230 struct buffer_head *evictee = bh; 1231 struct bh_lru *b; 1232 int i; 1233 1234 check_irqs_on(); 1235 bh_lru_lock(); 1236 1237 /* 1238 * the refcount of buffer_head in bh_lru prevents dropping the 1239 * attached page(i.e., try_to_free_buffers) so it could cause 1240 * failing page migration. 1241 * Skip putting upcoming bh into bh_lru until migration is done. 1242 */ 1243 if (lru_cache_disabled()) { 1244 bh_lru_unlock(); 1245 return; 1246 } 1247 1248 b = this_cpu_ptr(&bh_lrus); 1249 for (i = 0; i < BH_LRU_SIZE; i++) { 1250 swap(evictee, b->bhs[i]); 1251 if (evictee == bh) { 1252 bh_lru_unlock(); 1253 return; 1254 } 1255 } 1256 1257 get_bh(bh); 1258 bh_lru_unlock(); 1259 brelse(evictee); 1260 } 1261 1262 /* 1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1264 */ 1265 static struct buffer_head * 1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1267 { 1268 struct buffer_head *ret = NULL; 1269 unsigned int i; 1270 1271 check_irqs_on(); 1272 bh_lru_lock(); 1273 for (i = 0; i < BH_LRU_SIZE; i++) { 1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1275 1276 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1277 bh->b_size == size) { 1278 if (i) { 1279 while (i) { 1280 __this_cpu_write(bh_lrus.bhs[i], 1281 __this_cpu_read(bh_lrus.bhs[i - 1])); 1282 i--; 1283 } 1284 __this_cpu_write(bh_lrus.bhs[0], bh); 1285 } 1286 get_bh(bh); 1287 ret = bh; 1288 break; 1289 } 1290 } 1291 bh_lru_unlock(); 1292 return ret; 1293 } 1294 1295 /* 1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1297 * it in the LRU and mark it as accessed. If it is not present then return 1298 * NULL 1299 */ 1300 struct buffer_head * 1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1302 { 1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1304 1305 if (bh == NULL) { 1306 /* __find_get_block_slow will mark the page accessed */ 1307 bh = __find_get_block_slow(bdev, block); 1308 if (bh) 1309 bh_lru_install(bh); 1310 } else 1311 touch_buffer(bh); 1312 1313 return bh; 1314 } 1315 EXPORT_SYMBOL(__find_get_block); 1316 1317 /* 1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1319 * which corresponds to the passed block_device, block and size. The 1320 * returned buffer has its reference count incremented. 1321 * 1322 * __getblk_gfp() will lock up the machine if grow_dev_page's 1323 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1324 */ 1325 struct buffer_head * 1326 __getblk_gfp(struct block_device *bdev, sector_t block, 1327 unsigned size, gfp_t gfp) 1328 { 1329 struct buffer_head *bh = __find_get_block(bdev, block, size); 1330 1331 might_sleep(); 1332 if (bh == NULL) 1333 bh = __getblk_slow(bdev, block, size, gfp); 1334 return bh; 1335 } 1336 EXPORT_SYMBOL(__getblk_gfp); 1337 1338 /* 1339 * Do async read-ahead on a buffer.. 1340 */ 1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1342 { 1343 struct buffer_head *bh = __getblk(bdev, block, size); 1344 if (likely(bh)) { 1345 bh_readahead(bh, REQ_RAHEAD); 1346 brelse(bh); 1347 } 1348 } 1349 EXPORT_SYMBOL(__breadahead); 1350 1351 /** 1352 * __bread_gfp() - reads a specified block and returns the bh 1353 * @bdev: the block_device to read from 1354 * @block: number of block 1355 * @size: size (in bytes) to read 1356 * @gfp: page allocation flag 1357 * 1358 * Reads a specified block, and returns buffer head that contains it. 1359 * The page cache can be allocated from non-movable area 1360 * not to prevent page migration if you set gfp to zero. 1361 * It returns NULL if the block was unreadable. 1362 */ 1363 struct buffer_head * 1364 __bread_gfp(struct block_device *bdev, sector_t block, 1365 unsigned size, gfp_t gfp) 1366 { 1367 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1368 1369 if (likely(bh) && !buffer_uptodate(bh)) 1370 bh = __bread_slow(bh); 1371 return bh; 1372 } 1373 EXPORT_SYMBOL(__bread_gfp); 1374 1375 static void __invalidate_bh_lrus(struct bh_lru *b) 1376 { 1377 int i; 1378 1379 for (i = 0; i < BH_LRU_SIZE; i++) { 1380 brelse(b->bhs[i]); 1381 b->bhs[i] = NULL; 1382 } 1383 } 1384 /* 1385 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1386 * This doesn't race because it runs in each cpu either in irq 1387 * or with preempt disabled. 1388 */ 1389 static void invalidate_bh_lru(void *arg) 1390 { 1391 struct bh_lru *b = &get_cpu_var(bh_lrus); 1392 1393 __invalidate_bh_lrus(b); 1394 put_cpu_var(bh_lrus); 1395 } 1396 1397 bool has_bh_in_lru(int cpu, void *dummy) 1398 { 1399 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1400 int i; 1401 1402 for (i = 0; i < BH_LRU_SIZE; i++) { 1403 if (b->bhs[i]) 1404 return true; 1405 } 1406 1407 return false; 1408 } 1409 1410 void invalidate_bh_lrus(void) 1411 { 1412 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1413 } 1414 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1415 1416 /* 1417 * It's called from workqueue context so we need a bh_lru_lock to close 1418 * the race with preemption/irq. 1419 */ 1420 void invalidate_bh_lrus_cpu(void) 1421 { 1422 struct bh_lru *b; 1423 1424 bh_lru_lock(); 1425 b = this_cpu_ptr(&bh_lrus); 1426 __invalidate_bh_lrus(b); 1427 bh_lru_unlock(); 1428 } 1429 1430 void set_bh_page(struct buffer_head *bh, 1431 struct page *page, unsigned long offset) 1432 { 1433 bh->b_page = page; 1434 BUG_ON(offset >= PAGE_SIZE); 1435 if (PageHighMem(page)) 1436 /* 1437 * This catches illegal uses and preserves the offset: 1438 */ 1439 bh->b_data = (char *)(0 + offset); 1440 else 1441 bh->b_data = page_address(page) + offset; 1442 } 1443 EXPORT_SYMBOL(set_bh_page); 1444 1445 /* 1446 * Called when truncating a buffer on a page completely. 1447 */ 1448 1449 /* Bits that are cleared during an invalidate */ 1450 #define BUFFER_FLAGS_DISCARD \ 1451 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1452 1 << BH_Delay | 1 << BH_Unwritten) 1453 1454 static void discard_buffer(struct buffer_head * bh) 1455 { 1456 unsigned long b_state, b_state_old; 1457 1458 lock_buffer(bh); 1459 clear_buffer_dirty(bh); 1460 bh->b_bdev = NULL; 1461 b_state = bh->b_state; 1462 for (;;) { 1463 b_state_old = cmpxchg(&bh->b_state, b_state, 1464 (b_state & ~BUFFER_FLAGS_DISCARD)); 1465 if (b_state_old == b_state) 1466 break; 1467 b_state = b_state_old; 1468 } 1469 unlock_buffer(bh); 1470 } 1471 1472 /** 1473 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1474 * @folio: The folio which is affected. 1475 * @offset: start of the range to invalidate 1476 * @length: length of the range to invalidate 1477 * 1478 * block_invalidate_folio() is called when all or part of the folio has been 1479 * invalidated by a truncate operation. 1480 * 1481 * block_invalidate_folio() does not have to release all buffers, but it must 1482 * ensure that no dirty buffer is left outside @offset and that no I/O 1483 * is underway against any of the blocks which are outside the truncation 1484 * point. Because the caller is about to free (and possibly reuse) those 1485 * blocks on-disk. 1486 */ 1487 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1488 { 1489 struct buffer_head *head, *bh, *next; 1490 size_t curr_off = 0; 1491 size_t stop = length + offset; 1492 1493 BUG_ON(!folio_test_locked(folio)); 1494 1495 /* 1496 * Check for overflow 1497 */ 1498 BUG_ON(stop > folio_size(folio) || stop < length); 1499 1500 head = folio_buffers(folio); 1501 if (!head) 1502 return; 1503 1504 bh = head; 1505 do { 1506 size_t next_off = curr_off + bh->b_size; 1507 next = bh->b_this_page; 1508 1509 /* 1510 * Are we still fully in range ? 1511 */ 1512 if (next_off > stop) 1513 goto out; 1514 1515 /* 1516 * is this block fully invalidated? 1517 */ 1518 if (offset <= curr_off) 1519 discard_buffer(bh); 1520 curr_off = next_off; 1521 bh = next; 1522 } while (bh != head); 1523 1524 /* 1525 * We release buffers only if the entire folio is being invalidated. 1526 * The get_block cached value has been unconditionally invalidated, 1527 * so real IO is not possible anymore. 1528 */ 1529 if (length == folio_size(folio)) 1530 filemap_release_folio(folio, 0); 1531 out: 1532 return; 1533 } 1534 EXPORT_SYMBOL(block_invalidate_folio); 1535 1536 1537 /* 1538 * We attach and possibly dirty the buffers atomically wrt 1539 * block_dirty_folio() via private_lock. try_to_free_buffers 1540 * is already excluded via the page lock. 1541 */ 1542 void create_empty_buffers(struct page *page, 1543 unsigned long blocksize, unsigned long b_state) 1544 { 1545 struct buffer_head *bh, *head, *tail; 1546 1547 head = alloc_page_buffers(page, blocksize, true); 1548 bh = head; 1549 do { 1550 bh->b_state |= b_state; 1551 tail = bh; 1552 bh = bh->b_this_page; 1553 } while (bh); 1554 tail->b_this_page = head; 1555 1556 spin_lock(&page->mapping->private_lock); 1557 if (PageUptodate(page) || PageDirty(page)) { 1558 bh = head; 1559 do { 1560 if (PageDirty(page)) 1561 set_buffer_dirty(bh); 1562 if (PageUptodate(page)) 1563 set_buffer_uptodate(bh); 1564 bh = bh->b_this_page; 1565 } while (bh != head); 1566 } 1567 attach_page_private(page, head); 1568 spin_unlock(&page->mapping->private_lock); 1569 } 1570 EXPORT_SYMBOL(create_empty_buffers); 1571 1572 /** 1573 * clean_bdev_aliases: clean a range of buffers in block device 1574 * @bdev: Block device to clean buffers in 1575 * @block: Start of a range of blocks to clean 1576 * @len: Number of blocks to clean 1577 * 1578 * We are taking a range of blocks for data and we don't want writeback of any 1579 * buffer-cache aliases starting from return from this function and until the 1580 * moment when something will explicitly mark the buffer dirty (hopefully that 1581 * will not happen until we will free that block ;-) We don't even need to mark 1582 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1583 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1584 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1585 * would confuse anyone who might pick it with bread() afterwards... 1586 * 1587 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1588 * writeout I/O going on against recently-freed buffers. We don't wait on that 1589 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1590 * need to. That happens here. 1591 */ 1592 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1593 { 1594 struct inode *bd_inode = bdev->bd_inode; 1595 struct address_space *bd_mapping = bd_inode->i_mapping; 1596 struct folio_batch fbatch; 1597 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1598 pgoff_t end; 1599 int i, count; 1600 struct buffer_head *bh; 1601 struct buffer_head *head; 1602 1603 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1604 folio_batch_init(&fbatch); 1605 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1606 count = folio_batch_count(&fbatch); 1607 for (i = 0; i < count; i++) { 1608 struct folio *folio = fbatch.folios[i]; 1609 1610 if (!folio_buffers(folio)) 1611 continue; 1612 /* 1613 * We use folio lock instead of bd_mapping->private_lock 1614 * to pin buffers here since we can afford to sleep and 1615 * it scales better than a global spinlock lock. 1616 */ 1617 folio_lock(folio); 1618 /* Recheck when the folio is locked which pins bhs */ 1619 head = folio_buffers(folio); 1620 if (!head) 1621 goto unlock_page; 1622 bh = head; 1623 do { 1624 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1625 goto next; 1626 if (bh->b_blocknr >= block + len) 1627 break; 1628 clear_buffer_dirty(bh); 1629 wait_on_buffer(bh); 1630 clear_buffer_req(bh); 1631 next: 1632 bh = bh->b_this_page; 1633 } while (bh != head); 1634 unlock_page: 1635 folio_unlock(folio); 1636 } 1637 folio_batch_release(&fbatch); 1638 cond_resched(); 1639 /* End of range already reached? */ 1640 if (index > end || !index) 1641 break; 1642 } 1643 } 1644 EXPORT_SYMBOL(clean_bdev_aliases); 1645 1646 /* 1647 * Size is a power-of-two in the range 512..PAGE_SIZE, 1648 * and the case we care about most is PAGE_SIZE. 1649 * 1650 * So this *could* possibly be written with those 1651 * constraints in mind (relevant mostly if some 1652 * architecture has a slow bit-scan instruction) 1653 */ 1654 static inline int block_size_bits(unsigned int blocksize) 1655 { 1656 return ilog2(blocksize); 1657 } 1658 1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1660 { 1661 BUG_ON(!PageLocked(page)); 1662 1663 if (!page_has_buffers(page)) 1664 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1665 b_state); 1666 return page_buffers(page); 1667 } 1668 1669 /* 1670 * NOTE! All mapped/uptodate combinations are valid: 1671 * 1672 * Mapped Uptodate Meaning 1673 * 1674 * No No "unknown" - must do get_block() 1675 * No Yes "hole" - zero-filled 1676 * Yes No "allocated" - allocated on disk, not read in 1677 * Yes Yes "valid" - allocated and up-to-date in memory. 1678 * 1679 * "Dirty" is valid only with the last case (mapped+uptodate). 1680 */ 1681 1682 /* 1683 * While block_write_full_page is writing back the dirty buffers under 1684 * the page lock, whoever dirtied the buffers may decide to clean them 1685 * again at any time. We handle that by only looking at the buffer 1686 * state inside lock_buffer(). 1687 * 1688 * If block_write_full_page() is called for regular writeback 1689 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1690 * locked buffer. This only can happen if someone has written the buffer 1691 * directly, with submit_bh(). At the address_space level PageWriteback 1692 * prevents this contention from occurring. 1693 * 1694 * If block_write_full_page() is called with wbc->sync_mode == 1695 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1696 * causes the writes to be flagged as synchronous writes. 1697 */ 1698 int __block_write_full_page(struct inode *inode, struct page *page, 1699 get_block_t *get_block, struct writeback_control *wbc, 1700 bh_end_io_t *handler) 1701 { 1702 int err; 1703 sector_t block; 1704 sector_t last_block; 1705 struct buffer_head *bh, *head; 1706 unsigned int blocksize, bbits; 1707 int nr_underway = 0; 1708 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1709 1710 head = create_page_buffers(page, inode, 1711 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1712 1713 /* 1714 * Be very careful. We have no exclusion from block_dirty_folio 1715 * here, and the (potentially unmapped) buffers may become dirty at 1716 * any time. If a buffer becomes dirty here after we've inspected it 1717 * then we just miss that fact, and the page stays dirty. 1718 * 1719 * Buffers outside i_size may be dirtied by block_dirty_folio; 1720 * handle that here by just cleaning them. 1721 */ 1722 1723 bh = head; 1724 blocksize = bh->b_size; 1725 bbits = block_size_bits(blocksize); 1726 1727 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1728 last_block = (i_size_read(inode) - 1) >> bbits; 1729 1730 /* 1731 * Get all the dirty buffers mapped to disk addresses and 1732 * handle any aliases from the underlying blockdev's mapping. 1733 */ 1734 do { 1735 if (block > last_block) { 1736 /* 1737 * mapped buffers outside i_size will occur, because 1738 * this page can be outside i_size when there is a 1739 * truncate in progress. 1740 */ 1741 /* 1742 * The buffer was zeroed by block_write_full_page() 1743 */ 1744 clear_buffer_dirty(bh); 1745 set_buffer_uptodate(bh); 1746 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1747 buffer_dirty(bh)) { 1748 WARN_ON(bh->b_size != blocksize); 1749 err = get_block(inode, block, bh, 1); 1750 if (err) 1751 goto recover; 1752 clear_buffer_delay(bh); 1753 if (buffer_new(bh)) { 1754 /* blockdev mappings never come here */ 1755 clear_buffer_new(bh); 1756 clean_bdev_bh_alias(bh); 1757 } 1758 } 1759 bh = bh->b_this_page; 1760 block++; 1761 } while (bh != head); 1762 1763 do { 1764 if (!buffer_mapped(bh)) 1765 continue; 1766 /* 1767 * If it's a fully non-blocking write attempt and we cannot 1768 * lock the buffer then redirty the page. Note that this can 1769 * potentially cause a busy-wait loop from writeback threads 1770 * and kswapd activity, but those code paths have their own 1771 * higher-level throttling. 1772 */ 1773 if (wbc->sync_mode != WB_SYNC_NONE) { 1774 lock_buffer(bh); 1775 } else if (!trylock_buffer(bh)) { 1776 redirty_page_for_writepage(wbc, page); 1777 continue; 1778 } 1779 if (test_clear_buffer_dirty(bh)) { 1780 mark_buffer_async_write_endio(bh, handler); 1781 } else { 1782 unlock_buffer(bh); 1783 } 1784 } while ((bh = bh->b_this_page) != head); 1785 1786 /* 1787 * The page and its buffers are protected by PageWriteback(), so we can 1788 * drop the bh refcounts early. 1789 */ 1790 BUG_ON(PageWriteback(page)); 1791 set_page_writeback(page); 1792 1793 do { 1794 struct buffer_head *next = bh->b_this_page; 1795 if (buffer_async_write(bh)) { 1796 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1797 nr_underway++; 1798 } 1799 bh = next; 1800 } while (bh != head); 1801 unlock_page(page); 1802 1803 err = 0; 1804 done: 1805 if (nr_underway == 0) { 1806 /* 1807 * The page was marked dirty, but the buffers were 1808 * clean. Someone wrote them back by hand with 1809 * write_dirty_buffer/submit_bh. A rare case. 1810 */ 1811 end_page_writeback(page); 1812 1813 /* 1814 * The page and buffer_heads can be released at any time from 1815 * here on. 1816 */ 1817 } 1818 return err; 1819 1820 recover: 1821 /* 1822 * ENOSPC, or some other error. We may already have added some 1823 * blocks to the file, so we need to write these out to avoid 1824 * exposing stale data. 1825 * The page is currently locked and not marked for writeback 1826 */ 1827 bh = head; 1828 /* Recovery: lock and submit the mapped buffers */ 1829 do { 1830 if (buffer_mapped(bh) && buffer_dirty(bh) && 1831 !buffer_delay(bh)) { 1832 lock_buffer(bh); 1833 mark_buffer_async_write_endio(bh, handler); 1834 } else { 1835 /* 1836 * The buffer may have been set dirty during 1837 * attachment to a dirty page. 1838 */ 1839 clear_buffer_dirty(bh); 1840 } 1841 } while ((bh = bh->b_this_page) != head); 1842 SetPageError(page); 1843 BUG_ON(PageWriteback(page)); 1844 mapping_set_error(page->mapping, err); 1845 set_page_writeback(page); 1846 do { 1847 struct buffer_head *next = bh->b_this_page; 1848 if (buffer_async_write(bh)) { 1849 clear_buffer_dirty(bh); 1850 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1851 nr_underway++; 1852 } 1853 bh = next; 1854 } while (bh != head); 1855 unlock_page(page); 1856 goto done; 1857 } 1858 EXPORT_SYMBOL(__block_write_full_page); 1859 1860 /* 1861 * If a page has any new buffers, zero them out here, and mark them uptodate 1862 * and dirty so they'll be written out (in order to prevent uninitialised 1863 * block data from leaking). And clear the new bit. 1864 */ 1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1866 { 1867 unsigned int block_start, block_end; 1868 struct buffer_head *head, *bh; 1869 1870 BUG_ON(!PageLocked(page)); 1871 if (!page_has_buffers(page)) 1872 return; 1873 1874 bh = head = page_buffers(page); 1875 block_start = 0; 1876 do { 1877 block_end = block_start + bh->b_size; 1878 1879 if (buffer_new(bh)) { 1880 if (block_end > from && block_start < to) { 1881 if (!PageUptodate(page)) { 1882 unsigned start, size; 1883 1884 start = max(from, block_start); 1885 size = min(to, block_end) - start; 1886 1887 zero_user(page, start, size); 1888 set_buffer_uptodate(bh); 1889 } 1890 1891 clear_buffer_new(bh); 1892 mark_buffer_dirty(bh); 1893 } 1894 } 1895 1896 block_start = block_end; 1897 bh = bh->b_this_page; 1898 } while (bh != head); 1899 } 1900 EXPORT_SYMBOL(page_zero_new_buffers); 1901 1902 static void 1903 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1904 const struct iomap *iomap) 1905 { 1906 loff_t offset = block << inode->i_blkbits; 1907 1908 bh->b_bdev = iomap->bdev; 1909 1910 /* 1911 * Block points to offset in file we need to map, iomap contains 1912 * the offset at which the map starts. If the map ends before the 1913 * current block, then do not map the buffer and let the caller 1914 * handle it. 1915 */ 1916 BUG_ON(offset >= iomap->offset + iomap->length); 1917 1918 switch (iomap->type) { 1919 case IOMAP_HOLE: 1920 /* 1921 * If the buffer is not up to date or beyond the current EOF, 1922 * we need to mark it as new to ensure sub-block zeroing is 1923 * executed if necessary. 1924 */ 1925 if (!buffer_uptodate(bh) || 1926 (offset >= i_size_read(inode))) 1927 set_buffer_new(bh); 1928 break; 1929 case IOMAP_DELALLOC: 1930 if (!buffer_uptodate(bh) || 1931 (offset >= i_size_read(inode))) 1932 set_buffer_new(bh); 1933 set_buffer_uptodate(bh); 1934 set_buffer_mapped(bh); 1935 set_buffer_delay(bh); 1936 break; 1937 case IOMAP_UNWRITTEN: 1938 /* 1939 * For unwritten regions, we always need to ensure that regions 1940 * in the block we are not writing to are zeroed. Mark the 1941 * buffer as new to ensure this. 1942 */ 1943 set_buffer_new(bh); 1944 set_buffer_unwritten(bh); 1945 fallthrough; 1946 case IOMAP_MAPPED: 1947 if ((iomap->flags & IOMAP_F_NEW) || 1948 offset >= i_size_read(inode)) 1949 set_buffer_new(bh); 1950 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1951 inode->i_blkbits; 1952 set_buffer_mapped(bh); 1953 break; 1954 } 1955 } 1956 1957 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 1958 get_block_t *get_block, const struct iomap *iomap) 1959 { 1960 unsigned from = pos & (PAGE_SIZE - 1); 1961 unsigned to = from + len; 1962 struct inode *inode = folio->mapping->host; 1963 unsigned block_start, block_end; 1964 sector_t block; 1965 int err = 0; 1966 unsigned blocksize, bbits; 1967 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1968 1969 BUG_ON(!folio_test_locked(folio)); 1970 BUG_ON(from > PAGE_SIZE); 1971 BUG_ON(to > PAGE_SIZE); 1972 BUG_ON(from > to); 1973 1974 head = create_page_buffers(&folio->page, inode, 0); 1975 blocksize = head->b_size; 1976 bbits = block_size_bits(blocksize); 1977 1978 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1979 1980 for(bh = head, block_start = 0; bh != head || !block_start; 1981 block++, block_start=block_end, bh = bh->b_this_page) { 1982 block_end = block_start + blocksize; 1983 if (block_end <= from || block_start >= to) { 1984 if (folio_test_uptodate(folio)) { 1985 if (!buffer_uptodate(bh)) 1986 set_buffer_uptodate(bh); 1987 } 1988 continue; 1989 } 1990 if (buffer_new(bh)) 1991 clear_buffer_new(bh); 1992 if (!buffer_mapped(bh)) { 1993 WARN_ON(bh->b_size != blocksize); 1994 if (get_block) { 1995 err = get_block(inode, block, bh, 1); 1996 if (err) 1997 break; 1998 } else { 1999 iomap_to_bh(inode, block, bh, iomap); 2000 } 2001 2002 if (buffer_new(bh)) { 2003 clean_bdev_bh_alias(bh); 2004 if (folio_test_uptodate(folio)) { 2005 clear_buffer_new(bh); 2006 set_buffer_uptodate(bh); 2007 mark_buffer_dirty(bh); 2008 continue; 2009 } 2010 if (block_end > to || block_start < from) 2011 folio_zero_segments(folio, 2012 to, block_end, 2013 block_start, from); 2014 continue; 2015 } 2016 } 2017 if (folio_test_uptodate(folio)) { 2018 if (!buffer_uptodate(bh)) 2019 set_buffer_uptodate(bh); 2020 continue; 2021 } 2022 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2023 !buffer_unwritten(bh) && 2024 (block_start < from || block_end > to)) { 2025 bh_read_nowait(bh, 0); 2026 *wait_bh++=bh; 2027 } 2028 } 2029 /* 2030 * If we issued read requests - let them complete. 2031 */ 2032 while(wait_bh > wait) { 2033 wait_on_buffer(*--wait_bh); 2034 if (!buffer_uptodate(*wait_bh)) 2035 err = -EIO; 2036 } 2037 if (unlikely(err)) 2038 page_zero_new_buffers(&folio->page, from, to); 2039 return err; 2040 } 2041 2042 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2043 get_block_t *get_block) 2044 { 2045 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2046 NULL); 2047 } 2048 EXPORT_SYMBOL(__block_write_begin); 2049 2050 static int __block_commit_write(struct inode *inode, struct page *page, 2051 unsigned from, unsigned to) 2052 { 2053 unsigned block_start, block_end; 2054 int partial = 0; 2055 unsigned blocksize; 2056 struct buffer_head *bh, *head; 2057 2058 bh = head = page_buffers(page); 2059 blocksize = bh->b_size; 2060 2061 block_start = 0; 2062 do { 2063 block_end = block_start + blocksize; 2064 if (block_end <= from || block_start >= to) { 2065 if (!buffer_uptodate(bh)) 2066 partial = 1; 2067 } else { 2068 set_buffer_uptodate(bh); 2069 mark_buffer_dirty(bh); 2070 } 2071 if (buffer_new(bh)) 2072 clear_buffer_new(bh); 2073 2074 block_start = block_end; 2075 bh = bh->b_this_page; 2076 } while (bh != head); 2077 2078 /* 2079 * If this is a partial write which happened to make all buffers 2080 * uptodate then we can optimize away a bogus read_folio() for 2081 * the next read(). Here we 'discover' whether the page went 2082 * uptodate as a result of this (potentially partial) write. 2083 */ 2084 if (!partial) 2085 SetPageUptodate(page); 2086 return 0; 2087 } 2088 2089 /* 2090 * block_write_begin takes care of the basic task of block allocation and 2091 * bringing partial write blocks uptodate first. 2092 * 2093 * The filesystem needs to handle block truncation upon failure. 2094 */ 2095 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2096 struct page **pagep, get_block_t *get_block) 2097 { 2098 pgoff_t index = pos >> PAGE_SHIFT; 2099 struct page *page; 2100 int status; 2101 2102 page = grab_cache_page_write_begin(mapping, index); 2103 if (!page) 2104 return -ENOMEM; 2105 2106 status = __block_write_begin(page, pos, len, get_block); 2107 if (unlikely(status)) { 2108 unlock_page(page); 2109 put_page(page); 2110 page = NULL; 2111 } 2112 2113 *pagep = page; 2114 return status; 2115 } 2116 EXPORT_SYMBOL(block_write_begin); 2117 2118 int block_write_end(struct file *file, struct address_space *mapping, 2119 loff_t pos, unsigned len, unsigned copied, 2120 struct page *page, void *fsdata) 2121 { 2122 struct inode *inode = mapping->host; 2123 unsigned start; 2124 2125 start = pos & (PAGE_SIZE - 1); 2126 2127 if (unlikely(copied < len)) { 2128 /* 2129 * The buffers that were written will now be uptodate, so 2130 * we don't have to worry about a read_folio reading them 2131 * and overwriting a partial write. However if we have 2132 * encountered a short write and only partially written 2133 * into a buffer, it will not be marked uptodate, so a 2134 * read_folio might come in and destroy our partial write. 2135 * 2136 * Do the simplest thing, and just treat any short write to a 2137 * non uptodate page as a zero-length write, and force the 2138 * caller to redo the whole thing. 2139 */ 2140 if (!PageUptodate(page)) 2141 copied = 0; 2142 2143 page_zero_new_buffers(page, start+copied, start+len); 2144 } 2145 flush_dcache_page(page); 2146 2147 /* This could be a short (even 0-length) commit */ 2148 __block_commit_write(inode, page, start, start+copied); 2149 2150 return copied; 2151 } 2152 EXPORT_SYMBOL(block_write_end); 2153 2154 int generic_write_end(struct file *file, struct address_space *mapping, 2155 loff_t pos, unsigned len, unsigned copied, 2156 struct page *page, void *fsdata) 2157 { 2158 struct inode *inode = mapping->host; 2159 loff_t old_size = inode->i_size; 2160 bool i_size_changed = false; 2161 2162 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2163 2164 /* 2165 * No need to use i_size_read() here, the i_size cannot change under us 2166 * because we hold i_rwsem. 2167 * 2168 * But it's important to update i_size while still holding page lock: 2169 * page writeout could otherwise come in and zero beyond i_size. 2170 */ 2171 if (pos + copied > inode->i_size) { 2172 i_size_write(inode, pos + copied); 2173 i_size_changed = true; 2174 } 2175 2176 unlock_page(page); 2177 put_page(page); 2178 2179 if (old_size < pos) 2180 pagecache_isize_extended(inode, old_size, pos); 2181 /* 2182 * Don't mark the inode dirty under page lock. First, it unnecessarily 2183 * makes the holding time of page lock longer. Second, it forces lock 2184 * ordering of page lock and transaction start for journaling 2185 * filesystems. 2186 */ 2187 if (i_size_changed) 2188 mark_inode_dirty(inode); 2189 return copied; 2190 } 2191 EXPORT_SYMBOL(generic_write_end); 2192 2193 /* 2194 * block_is_partially_uptodate checks whether buffers within a folio are 2195 * uptodate or not. 2196 * 2197 * Returns true if all buffers which correspond to the specified part 2198 * of the folio are uptodate. 2199 */ 2200 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2201 { 2202 unsigned block_start, block_end, blocksize; 2203 unsigned to; 2204 struct buffer_head *bh, *head; 2205 bool ret = true; 2206 2207 head = folio_buffers(folio); 2208 if (!head) 2209 return false; 2210 blocksize = head->b_size; 2211 to = min_t(unsigned, folio_size(folio) - from, count); 2212 to = from + to; 2213 if (from < blocksize && to > folio_size(folio) - blocksize) 2214 return false; 2215 2216 bh = head; 2217 block_start = 0; 2218 do { 2219 block_end = block_start + blocksize; 2220 if (block_end > from && block_start < to) { 2221 if (!buffer_uptodate(bh)) { 2222 ret = false; 2223 break; 2224 } 2225 if (block_end >= to) 2226 break; 2227 } 2228 block_start = block_end; 2229 bh = bh->b_this_page; 2230 } while (bh != head); 2231 2232 return ret; 2233 } 2234 EXPORT_SYMBOL(block_is_partially_uptodate); 2235 2236 /* 2237 * Generic "read_folio" function for block devices that have the normal 2238 * get_block functionality. This is most of the block device filesystems. 2239 * Reads the folio asynchronously --- the unlock_buffer() and 2240 * set/clear_buffer_uptodate() functions propagate buffer state into the 2241 * folio once IO has completed. 2242 */ 2243 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2244 { 2245 struct inode *inode = folio->mapping->host; 2246 sector_t iblock, lblock; 2247 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2248 unsigned int blocksize, bbits; 2249 int nr, i; 2250 int fully_mapped = 1; 2251 bool page_error = false; 2252 2253 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2254 2255 head = create_page_buffers(&folio->page, inode, 0); 2256 blocksize = head->b_size; 2257 bbits = block_size_bits(blocksize); 2258 2259 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2260 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2261 bh = head; 2262 nr = 0; 2263 i = 0; 2264 2265 do { 2266 if (buffer_uptodate(bh)) 2267 continue; 2268 2269 if (!buffer_mapped(bh)) { 2270 int err = 0; 2271 2272 fully_mapped = 0; 2273 if (iblock < lblock) { 2274 WARN_ON(bh->b_size != blocksize); 2275 err = get_block(inode, iblock, bh, 0); 2276 if (err) { 2277 folio_set_error(folio); 2278 page_error = true; 2279 } 2280 } 2281 if (!buffer_mapped(bh)) { 2282 folio_zero_range(folio, i * blocksize, 2283 blocksize); 2284 if (!err) 2285 set_buffer_uptodate(bh); 2286 continue; 2287 } 2288 /* 2289 * get_block() might have updated the buffer 2290 * synchronously 2291 */ 2292 if (buffer_uptodate(bh)) 2293 continue; 2294 } 2295 arr[nr++] = bh; 2296 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2297 2298 if (fully_mapped) 2299 folio_set_mappedtodisk(folio); 2300 2301 if (!nr) { 2302 /* 2303 * All buffers are uptodate - we can set the folio uptodate 2304 * as well. But not if get_block() returned an error. 2305 */ 2306 if (!page_error) 2307 folio_mark_uptodate(folio); 2308 folio_unlock(folio); 2309 return 0; 2310 } 2311 2312 /* Stage two: lock the buffers */ 2313 for (i = 0; i < nr; i++) { 2314 bh = arr[i]; 2315 lock_buffer(bh); 2316 mark_buffer_async_read(bh); 2317 } 2318 2319 /* 2320 * Stage 3: start the IO. Check for uptodateness 2321 * inside the buffer lock in case another process reading 2322 * the underlying blockdev brought it uptodate (the sct fix). 2323 */ 2324 for (i = 0; i < nr; i++) { 2325 bh = arr[i]; 2326 if (buffer_uptodate(bh)) 2327 end_buffer_async_read(bh, 1); 2328 else 2329 submit_bh(REQ_OP_READ, bh); 2330 } 2331 return 0; 2332 } 2333 EXPORT_SYMBOL(block_read_full_folio); 2334 2335 /* utility function for filesystems that need to do work on expanding 2336 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2337 * deal with the hole. 2338 */ 2339 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2340 { 2341 struct address_space *mapping = inode->i_mapping; 2342 const struct address_space_operations *aops = mapping->a_ops; 2343 struct page *page; 2344 void *fsdata = NULL; 2345 int err; 2346 2347 err = inode_newsize_ok(inode, size); 2348 if (err) 2349 goto out; 2350 2351 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2352 if (err) 2353 goto out; 2354 2355 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2356 BUG_ON(err > 0); 2357 2358 out: 2359 return err; 2360 } 2361 EXPORT_SYMBOL(generic_cont_expand_simple); 2362 2363 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2364 loff_t pos, loff_t *bytes) 2365 { 2366 struct inode *inode = mapping->host; 2367 const struct address_space_operations *aops = mapping->a_ops; 2368 unsigned int blocksize = i_blocksize(inode); 2369 struct page *page; 2370 void *fsdata = NULL; 2371 pgoff_t index, curidx; 2372 loff_t curpos; 2373 unsigned zerofrom, offset, len; 2374 int err = 0; 2375 2376 index = pos >> PAGE_SHIFT; 2377 offset = pos & ~PAGE_MASK; 2378 2379 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2380 zerofrom = curpos & ~PAGE_MASK; 2381 if (zerofrom & (blocksize-1)) { 2382 *bytes |= (blocksize-1); 2383 (*bytes)++; 2384 } 2385 len = PAGE_SIZE - zerofrom; 2386 2387 err = aops->write_begin(file, mapping, curpos, len, 2388 &page, &fsdata); 2389 if (err) 2390 goto out; 2391 zero_user(page, zerofrom, len); 2392 err = aops->write_end(file, mapping, curpos, len, len, 2393 page, fsdata); 2394 if (err < 0) 2395 goto out; 2396 BUG_ON(err != len); 2397 err = 0; 2398 2399 balance_dirty_pages_ratelimited(mapping); 2400 2401 if (fatal_signal_pending(current)) { 2402 err = -EINTR; 2403 goto out; 2404 } 2405 } 2406 2407 /* page covers the boundary, find the boundary offset */ 2408 if (index == curidx) { 2409 zerofrom = curpos & ~PAGE_MASK; 2410 /* if we will expand the thing last block will be filled */ 2411 if (offset <= zerofrom) { 2412 goto out; 2413 } 2414 if (zerofrom & (blocksize-1)) { 2415 *bytes |= (blocksize-1); 2416 (*bytes)++; 2417 } 2418 len = offset - zerofrom; 2419 2420 err = aops->write_begin(file, mapping, curpos, len, 2421 &page, &fsdata); 2422 if (err) 2423 goto out; 2424 zero_user(page, zerofrom, len); 2425 err = aops->write_end(file, mapping, curpos, len, len, 2426 page, fsdata); 2427 if (err < 0) 2428 goto out; 2429 BUG_ON(err != len); 2430 err = 0; 2431 } 2432 out: 2433 return err; 2434 } 2435 2436 /* 2437 * For moronic filesystems that do not allow holes in file. 2438 * We may have to extend the file. 2439 */ 2440 int cont_write_begin(struct file *file, struct address_space *mapping, 2441 loff_t pos, unsigned len, 2442 struct page **pagep, void **fsdata, 2443 get_block_t *get_block, loff_t *bytes) 2444 { 2445 struct inode *inode = mapping->host; 2446 unsigned int blocksize = i_blocksize(inode); 2447 unsigned int zerofrom; 2448 int err; 2449 2450 err = cont_expand_zero(file, mapping, pos, bytes); 2451 if (err) 2452 return err; 2453 2454 zerofrom = *bytes & ~PAGE_MASK; 2455 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2456 *bytes |= (blocksize-1); 2457 (*bytes)++; 2458 } 2459 2460 return block_write_begin(mapping, pos, len, pagep, get_block); 2461 } 2462 EXPORT_SYMBOL(cont_write_begin); 2463 2464 int block_commit_write(struct page *page, unsigned from, unsigned to) 2465 { 2466 struct inode *inode = page->mapping->host; 2467 __block_commit_write(inode,page,from,to); 2468 return 0; 2469 } 2470 EXPORT_SYMBOL(block_commit_write); 2471 2472 /* 2473 * block_page_mkwrite() is not allowed to change the file size as it gets 2474 * called from a page fault handler when a page is first dirtied. Hence we must 2475 * be careful to check for EOF conditions here. We set the page up correctly 2476 * for a written page which means we get ENOSPC checking when writing into 2477 * holes and correct delalloc and unwritten extent mapping on filesystems that 2478 * support these features. 2479 * 2480 * We are not allowed to take the i_mutex here so we have to play games to 2481 * protect against truncate races as the page could now be beyond EOF. Because 2482 * truncate writes the inode size before removing pages, once we have the 2483 * page lock we can determine safely if the page is beyond EOF. If it is not 2484 * beyond EOF, then the page is guaranteed safe against truncation until we 2485 * unlock the page. 2486 * 2487 * Direct callers of this function should protect against filesystem freezing 2488 * using sb_start_pagefault() - sb_end_pagefault() functions. 2489 */ 2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2491 get_block_t get_block) 2492 { 2493 struct page *page = vmf->page; 2494 struct inode *inode = file_inode(vma->vm_file); 2495 unsigned long end; 2496 loff_t size; 2497 int ret; 2498 2499 lock_page(page); 2500 size = i_size_read(inode); 2501 if ((page->mapping != inode->i_mapping) || 2502 (page_offset(page) > size)) { 2503 /* We overload EFAULT to mean page got truncated */ 2504 ret = -EFAULT; 2505 goto out_unlock; 2506 } 2507 2508 /* page is wholly or partially inside EOF */ 2509 if (((page->index + 1) << PAGE_SHIFT) > size) 2510 end = size & ~PAGE_MASK; 2511 else 2512 end = PAGE_SIZE; 2513 2514 ret = __block_write_begin(page, 0, end, get_block); 2515 if (!ret) 2516 ret = block_commit_write(page, 0, end); 2517 2518 if (unlikely(ret < 0)) 2519 goto out_unlock; 2520 set_page_dirty(page); 2521 wait_for_stable_page(page); 2522 return 0; 2523 out_unlock: 2524 unlock_page(page); 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(block_page_mkwrite); 2528 2529 int block_truncate_page(struct address_space *mapping, 2530 loff_t from, get_block_t *get_block) 2531 { 2532 pgoff_t index = from >> PAGE_SHIFT; 2533 unsigned offset = from & (PAGE_SIZE-1); 2534 unsigned blocksize; 2535 sector_t iblock; 2536 unsigned length, pos; 2537 struct inode *inode = mapping->host; 2538 struct page *page; 2539 struct buffer_head *bh; 2540 int err; 2541 2542 blocksize = i_blocksize(inode); 2543 length = offset & (blocksize - 1); 2544 2545 /* Block boundary? Nothing to do */ 2546 if (!length) 2547 return 0; 2548 2549 length = blocksize - length; 2550 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2551 2552 page = grab_cache_page(mapping, index); 2553 err = -ENOMEM; 2554 if (!page) 2555 goto out; 2556 2557 if (!page_has_buffers(page)) 2558 create_empty_buffers(page, blocksize, 0); 2559 2560 /* Find the buffer that contains "offset" */ 2561 bh = page_buffers(page); 2562 pos = blocksize; 2563 while (offset >= pos) { 2564 bh = bh->b_this_page; 2565 iblock++; 2566 pos += blocksize; 2567 } 2568 2569 err = 0; 2570 if (!buffer_mapped(bh)) { 2571 WARN_ON(bh->b_size != blocksize); 2572 err = get_block(inode, iblock, bh, 0); 2573 if (err) 2574 goto unlock; 2575 /* unmapped? It's a hole - nothing to do */ 2576 if (!buffer_mapped(bh)) 2577 goto unlock; 2578 } 2579 2580 /* Ok, it's mapped. Make sure it's up-to-date */ 2581 if (PageUptodate(page)) 2582 set_buffer_uptodate(bh); 2583 2584 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2585 err = bh_read(bh, 0); 2586 /* Uhhuh. Read error. Complain and punt. */ 2587 if (err < 0) 2588 goto unlock; 2589 } 2590 2591 zero_user(page, offset, length); 2592 mark_buffer_dirty(bh); 2593 err = 0; 2594 2595 unlock: 2596 unlock_page(page); 2597 put_page(page); 2598 out: 2599 return err; 2600 } 2601 EXPORT_SYMBOL(block_truncate_page); 2602 2603 /* 2604 * The generic ->writepage function for buffer-backed address_spaces 2605 */ 2606 int block_write_full_page(struct page *page, get_block_t *get_block, 2607 struct writeback_control *wbc) 2608 { 2609 struct inode * const inode = page->mapping->host; 2610 loff_t i_size = i_size_read(inode); 2611 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2612 unsigned offset; 2613 2614 /* Is the page fully inside i_size? */ 2615 if (page->index < end_index) 2616 return __block_write_full_page(inode, page, get_block, wbc, 2617 end_buffer_async_write); 2618 2619 /* Is the page fully outside i_size? (truncate in progress) */ 2620 offset = i_size & (PAGE_SIZE-1); 2621 if (page->index >= end_index+1 || !offset) { 2622 unlock_page(page); 2623 return 0; /* don't care */ 2624 } 2625 2626 /* 2627 * The page straddles i_size. It must be zeroed out on each and every 2628 * writepage invocation because it may be mmapped. "A file is mapped 2629 * in multiples of the page size. For a file that is not a multiple of 2630 * the page size, the remaining memory is zeroed when mapped, and 2631 * writes to that region are not written out to the file." 2632 */ 2633 zero_user_segment(page, offset, PAGE_SIZE); 2634 return __block_write_full_page(inode, page, get_block, wbc, 2635 end_buffer_async_write); 2636 } 2637 EXPORT_SYMBOL(block_write_full_page); 2638 2639 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2640 get_block_t *get_block) 2641 { 2642 struct inode *inode = mapping->host; 2643 struct buffer_head tmp = { 2644 .b_size = i_blocksize(inode), 2645 }; 2646 2647 get_block(inode, block, &tmp, 0); 2648 return tmp.b_blocknr; 2649 } 2650 EXPORT_SYMBOL(generic_block_bmap); 2651 2652 static void end_bio_bh_io_sync(struct bio *bio) 2653 { 2654 struct buffer_head *bh = bio->bi_private; 2655 2656 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2657 set_bit(BH_Quiet, &bh->b_state); 2658 2659 bh->b_end_io(bh, !bio->bi_status); 2660 bio_put(bio); 2661 } 2662 2663 static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2664 struct writeback_control *wbc) 2665 { 2666 const enum req_op op = opf & REQ_OP_MASK; 2667 struct bio *bio; 2668 2669 BUG_ON(!buffer_locked(bh)); 2670 BUG_ON(!buffer_mapped(bh)); 2671 BUG_ON(!bh->b_end_io); 2672 BUG_ON(buffer_delay(bh)); 2673 BUG_ON(buffer_unwritten(bh)); 2674 2675 /* 2676 * Only clear out a write error when rewriting 2677 */ 2678 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2679 clear_buffer_write_io_error(bh); 2680 2681 if (buffer_meta(bh)) 2682 opf |= REQ_META; 2683 if (buffer_prio(bh)) 2684 opf |= REQ_PRIO; 2685 2686 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2687 2688 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2689 2690 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2691 2692 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2693 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 2694 2695 bio->bi_end_io = end_bio_bh_io_sync; 2696 bio->bi_private = bh; 2697 2698 /* Take care of bh's that straddle the end of the device */ 2699 guard_bio_eod(bio); 2700 2701 if (wbc) { 2702 wbc_init_bio(wbc, bio); 2703 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2704 } 2705 2706 submit_bio(bio); 2707 return 0; 2708 } 2709 2710 int submit_bh(blk_opf_t opf, struct buffer_head *bh) 2711 { 2712 return submit_bh_wbc(opf, bh, NULL); 2713 } 2714 EXPORT_SYMBOL(submit_bh); 2715 2716 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2717 { 2718 lock_buffer(bh); 2719 if (!test_clear_buffer_dirty(bh)) { 2720 unlock_buffer(bh); 2721 return; 2722 } 2723 bh->b_end_io = end_buffer_write_sync; 2724 get_bh(bh); 2725 submit_bh(REQ_OP_WRITE | op_flags, bh); 2726 } 2727 EXPORT_SYMBOL(write_dirty_buffer); 2728 2729 /* 2730 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2731 * and then start new I/O and then wait upon it. The caller must have a ref on 2732 * the buffer_head. 2733 */ 2734 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2735 { 2736 int ret = 0; 2737 2738 WARN_ON(atomic_read(&bh->b_count) < 1); 2739 lock_buffer(bh); 2740 if (test_clear_buffer_dirty(bh)) { 2741 /* 2742 * The bh should be mapped, but it might not be if the 2743 * device was hot-removed. Not much we can do but fail the I/O. 2744 */ 2745 if (!buffer_mapped(bh)) { 2746 unlock_buffer(bh); 2747 return -EIO; 2748 } 2749 2750 get_bh(bh); 2751 bh->b_end_io = end_buffer_write_sync; 2752 ret = submit_bh(REQ_OP_WRITE | op_flags, bh); 2753 wait_on_buffer(bh); 2754 if (!ret && !buffer_uptodate(bh)) 2755 ret = -EIO; 2756 } else { 2757 unlock_buffer(bh); 2758 } 2759 return ret; 2760 } 2761 EXPORT_SYMBOL(__sync_dirty_buffer); 2762 2763 int sync_dirty_buffer(struct buffer_head *bh) 2764 { 2765 return __sync_dirty_buffer(bh, REQ_SYNC); 2766 } 2767 EXPORT_SYMBOL(sync_dirty_buffer); 2768 2769 /* 2770 * try_to_free_buffers() checks if all the buffers on this particular folio 2771 * are unused, and releases them if so. 2772 * 2773 * Exclusion against try_to_free_buffers may be obtained by either 2774 * locking the folio or by holding its mapping's private_lock. 2775 * 2776 * If the folio is dirty but all the buffers are clean then we need to 2777 * be sure to mark the folio clean as well. This is because the folio 2778 * may be against a block device, and a later reattachment of buffers 2779 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2780 * filesystem data on the same device. 2781 * 2782 * The same applies to regular filesystem folios: if all the buffers are 2783 * clean then we set the folio clean and proceed. To do that, we require 2784 * total exclusion from block_dirty_folio(). That is obtained with 2785 * private_lock. 2786 * 2787 * try_to_free_buffers() is non-blocking. 2788 */ 2789 static inline int buffer_busy(struct buffer_head *bh) 2790 { 2791 return atomic_read(&bh->b_count) | 2792 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2793 } 2794 2795 static bool 2796 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2797 { 2798 struct buffer_head *head = folio_buffers(folio); 2799 struct buffer_head *bh; 2800 2801 bh = head; 2802 do { 2803 if (buffer_busy(bh)) 2804 goto failed; 2805 bh = bh->b_this_page; 2806 } while (bh != head); 2807 2808 do { 2809 struct buffer_head *next = bh->b_this_page; 2810 2811 if (bh->b_assoc_map) 2812 __remove_assoc_queue(bh); 2813 bh = next; 2814 } while (bh != head); 2815 *buffers_to_free = head; 2816 folio_detach_private(folio); 2817 return true; 2818 failed: 2819 return false; 2820 } 2821 2822 bool try_to_free_buffers(struct folio *folio) 2823 { 2824 struct address_space * const mapping = folio->mapping; 2825 struct buffer_head *buffers_to_free = NULL; 2826 bool ret = 0; 2827 2828 BUG_ON(!folio_test_locked(folio)); 2829 if (folio_test_writeback(folio)) 2830 return false; 2831 2832 if (mapping == NULL) { /* can this still happen? */ 2833 ret = drop_buffers(folio, &buffers_to_free); 2834 goto out; 2835 } 2836 2837 spin_lock(&mapping->private_lock); 2838 ret = drop_buffers(folio, &buffers_to_free); 2839 2840 /* 2841 * If the filesystem writes its buffers by hand (eg ext3) 2842 * then we can have clean buffers against a dirty folio. We 2843 * clean the folio here; otherwise the VM will never notice 2844 * that the filesystem did any IO at all. 2845 * 2846 * Also, during truncate, discard_buffer will have marked all 2847 * the folio's buffers clean. We discover that here and clean 2848 * the folio also. 2849 * 2850 * private_lock must be held over this entire operation in order 2851 * to synchronise against block_dirty_folio and prevent the 2852 * dirty bit from being lost. 2853 */ 2854 if (ret) 2855 folio_cancel_dirty(folio); 2856 spin_unlock(&mapping->private_lock); 2857 out: 2858 if (buffers_to_free) { 2859 struct buffer_head *bh = buffers_to_free; 2860 2861 do { 2862 struct buffer_head *next = bh->b_this_page; 2863 free_buffer_head(bh); 2864 bh = next; 2865 } while (bh != buffers_to_free); 2866 } 2867 return ret; 2868 } 2869 EXPORT_SYMBOL(try_to_free_buffers); 2870 2871 /* 2872 * Buffer-head allocation 2873 */ 2874 static struct kmem_cache *bh_cachep __read_mostly; 2875 2876 /* 2877 * Once the number of bh's in the machine exceeds this level, we start 2878 * stripping them in writeback. 2879 */ 2880 static unsigned long max_buffer_heads; 2881 2882 int buffer_heads_over_limit; 2883 2884 struct bh_accounting { 2885 int nr; /* Number of live bh's */ 2886 int ratelimit; /* Limit cacheline bouncing */ 2887 }; 2888 2889 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2890 2891 static void recalc_bh_state(void) 2892 { 2893 int i; 2894 int tot = 0; 2895 2896 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2897 return; 2898 __this_cpu_write(bh_accounting.ratelimit, 0); 2899 for_each_online_cpu(i) 2900 tot += per_cpu(bh_accounting, i).nr; 2901 buffer_heads_over_limit = (tot > max_buffer_heads); 2902 } 2903 2904 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2905 { 2906 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2907 if (ret) { 2908 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2909 spin_lock_init(&ret->b_uptodate_lock); 2910 preempt_disable(); 2911 __this_cpu_inc(bh_accounting.nr); 2912 recalc_bh_state(); 2913 preempt_enable(); 2914 } 2915 return ret; 2916 } 2917 EXPORT_SYMBOL(alloc_buffer_head); 2918 2919 void free_buffer_head(struct buffer_head *bh) 2920 { 2921 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2922 kmem_cache_free(bh_cachep, bh); 2923 preempt_disable(); 2924 __this_cpu_dec(bh_accounting.nr); 2925 recalc_bh_state(); 2926 preempt_enable(); 2927 } 2928 EXPORT_SYMBOL(free_buffer_head); 2929 2930 static int buffer_exit_cpu_dead(unsigned int cpu) 2931 { 2932 int i; 2933 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2934 2935 for (i = 0; i < BH_LRU_SIZE; i++) { 2936 brelse(b->bhs[i]); 2937 b->bhs[i] = NULL; 2938 } 2939 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 2940 per_cpu(bh_accounting, cpu).nr = 0; 2941 return 0; 2942 } 2943 2944 /** 2945 * bh_uptodate_or_lock - Test whether the buffer is uptodate 2946 * @bh: struct buffer_head 2947 * 2948 * Return true if the buffer is up-to-date and false, 2949 * with the buffer locked, if not. 2950 */ 2951 int bh_uptodate_or_lock(struct buffer_head *bh) 2952 { 2953 if (!buffer_uptodate(bh)) { 2954 lock_buffer(bh); 2955 if (!buffer_uptodate(bh)) 2956 return 0; 2957 unlock_buffer(bh); 2958 } 2959 return 1; 2960 } 2961 EXPORT_SYMBOL(bh_uptodate_or_lock); 2962 2963 /** 2964 * __bh_read - Submit read for a locked buffer 2965 * @bh: struct buffer_head 2966 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 2967 * @wait: wait until reading finish 2968 * 2969 * Returns zero on success or don't wait, and -EIO on error. 2970 */ 2971 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 2972 { 2973 int ret = 0; 2974 2975 BUG_ON(!buffer_locked(bh)); 2976 2977 get_bh(bh); 2978 bh->b_end_io = end_buffer_read_sync; 2979 submit_bh(REQ_OP_READ | op_flags, bh); 2980 if (wait) { 2981 wait_on_buffer(bh); 2982 if (!buffer_uptodate(bh)) 2983 ret = -EIO; 2984 } 2985 return ret; 2986 } 2987 EXPORT_SYMBOL(__bh_read); 2988 2989 /** 2990 * __bh_read_batch - Submit read for a batch of unlocked buffers 2991 * @nr: entry number of the buffer batch 2992 * @bhs: a batch of struct buffer_head 2993 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 2994 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 2995 * buffer that cannot lock. 2996 * 2997 * Returns zero on success or don't wait, and -EIO on error. 2998 */ 2999 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3000 blk_opf_t op_flags, bool force_lock) 3001 { 3002 int i; 3003 3004 for (i = 0; i < nr; i++) { 3005 struct buffer_head *bh = bhs[i]; 3006 3007 if (buffer_uptodate(bh)) 3008 continue; 3009 3010 if (force_lock) 3011 lock_buffer(bh); 3012 else 3013 if (!trylock_buffer(bh)) 3014 continue; 3015 3016 if (buffer_uptodate(bh)) { 3017 unlock_buffer(bh); 3018 continue; 3019 } 3020 3021 bh->b_end_io = end_buffer_read_sync; 3022 get_bh(bh); 3023 submit_bh(REQ_OP_READ | op_flags, bh); 3024 } 3025 } 3026 EXPORT_SYMBOL(__bh_read_batch); 3027 3028 void __init buffer_init(void) 3029 { 3030 unsigned long nrpages; 3031 int ret; 3032 3033 bh_cachep = kmem_cache_create("buffer_head", 3034 sizeof(struct buffer_head), 0, 3035 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3036 SLAB_MEM_SPREAD), 3037 NULL); 3038 3039 /* 3040 * Limit the bh occupancy to 10% of ZONE_NORMAL 3041 */ 3042 nrpages = (nr_free_buffer_pages() * 10) / 100; 3043 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3044 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3045 NULL, buffer_exit_cpu_dead); 3046 WARN_ON(ret < 0); 3047 } 3048