xref: /openbmc/linux/fs/buffer.c (revision cc8bbe1a)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
46 
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 			 unsigned long bio_flags,
50 			 struct writeback_control *wbc);
51 
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53 
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55 {
56 	bh->b_end_io = handler;
57 	bh->b_private = private;
58 }
59 EXPORT_SYMBOL(init_buffer);
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the page has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the PageDirty information is stale. If
85  * any of the pages are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct page *page,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!PageLocked(page));
95 
96 	if (!page_has_buffers(page))
97 		return;
98 
99 	if (PageWriteback(page))
100 		*writeback = true;
101 
102 	head = page_buffers(page);
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void
128 __clear_page_buffers(struct page *page)
129 {
130 	ClearPagePrivate(page);
131 	set_page_private(page, 0);
132 	page_cache_release(page);
133 }
134 
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 {
137 	if (!test_bit(BH_Quiet, &bh->b_state))
138 		printk_ratelimited(KERN_ERR
139 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
140 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141 }
142 
143 /*
144  * End-of-IO handler helper function which does not touch the bh after
145  * unlocking it.
146  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147  * a race there is benign: unlock_buffer() only use the bh's address for
148  * hashing after unlocking the buffer, so it doesn't actually touch the bh
149  * itself.
150  */
151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 {
153 	if (uptodate) {
154 		set_buffer_uptodate(bh);
155 	} else {
156 		/* This happens, due to failed READA attempts. */
157 		clear_buffer_uptodate(bh);
158 	}
159 	unlock_buffer(bh);
160 }
161 
162 /*
163  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
164  * unlock the buffer. This is what ll_rw_block uses too.
165  */
166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 {
168 	__end_buffer_read_notouch(bh, uptodate);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_read_sync);
172 
173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 {
175 	if (uptodate) {
176 		set_buffer_uptodate(bh);
177 	} else {
178 		buffer_io_error(bh, ", lost sync page write");
179 		set_buffer_write_io_error(bh);
180 		clear_buffer_uptodate(bh);
181 	}
182 	unlock_buffer(bh);
183 	put_bh(bh);
184 }
185 EXPORT_SYMBOL(end_buffer_write_sync);
186 
187 /*
188  * Various filesystems appear to want __find_get_block to be non-blocking.
189  * But it's the page lock which protects the buffers.  To get around this,
190  * we get exclusion from try_to_free_buffers with the blockdev mapping's
191  * private_lock.
192  *
193  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194  * may be quite high.  This code could TryLock the page, and if that
195  * succeeds, there is no need to take private_lock. (But if
196  * private_lock is contended then so is mapping->tree_lock).
197  */
198 static struct buffer_head *
199 __find_get_block_slow(struct block_device *bdev, sector_t block)
200 {
201 	struct inode *bd_inode = bdev->bd_inode;
202 	struct address_space *bd_mapping = bd_inode->i_mapping;
203 	struct buffer_head *ret = NULL;
204 	pgoff_t index;
205 	struct buffer_head *bh;
206 	struct buffer_head *head;
207 	struct page *page;
208 	int all_mapped = 1;
209 
210 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
211 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212 	if (!page)
213 		goto out;
214 
215 	spin_lock(&bd_mapping->private_lock);
216 	if (!page_has_buffers(page))
217 		goto out_unlock;
218 	head = page_buffers(page);
219 	bh = head;
220 	do {
221 		if (!buffer_mapped(bh))
222 			all_mapped = 0;
223 		else if (bh->b_blocknr == block) {
224 			ret = bh;
225 			get_bh(bh);
226 			goto out_unlock;
227 		}
228 		bh = bh->b_this_page;
229 	} while (bh != head);
230 
231 	/* we might be here because some of the buffers on this page are
232 	 * not mapped.  This is due to various races between
233 	 * file io on the block device and getblk.  It gets dealt with
234 	 * elsewhere, don't buffer_error if we had some unmapped buffers
235 	 */
236 	if (all_mapped) {
237 		printk("__find_get_block_slow() failed. "
238 			"block=%llu, b_blocknr=%llu\n",
239 			(unsigned long long)block,
240 			(unsigned long long)bh->b_blocknr);
241 		printk("b_state=0x%08lx, b_size=%zu\n",
242 			bh->b_state, bh->b_size);
243 		printk("device %pg blocksize: %d\n", bdev,
244 			1 << bd_inode->i_blkbits);
245 	}
246 out_unlock:
247 	spin_unlock(&bd_mapping->private_lock);
248 	page_cache_release(page);
249 out:
250 	return ret;
251 }
252 
253 /*
254  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255  */
256 static void free_more_memory(void)
257 {
258 	struct zone *zone;
259 	int nid;
260 
261 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262 	yield();
263 
264 	for_each_online_node(nid) {
265 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266 						gfp_zone(GFP_NOFS), NULL,
267 						&zone);
268 		if (zone)
269 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270 						GFP_NOFS, NULL);
271 	}
272 }
273 
274 /*
275  * I/O completion handler for block_read_full_page() - pages
276  * which come unlocked at the end of I/O.
277  */
278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279 {
280 	unsigned long flags;
281 	struct buffer_head *first;
282 	struct buffer_head *tmp;
283 	struct page *page;
284 	int page_uptodate = 1;
285 
286 	BUG_ON(!buffer_async_read(bh));
287 
288 	page = bh->b_page;
289 	if (uptodate) {
290 		set_buffer_uptodate(bh);
291 	} else {
292 		clear_buffer_uptodate(bh);
293 		buffer_io_error(bh, ", async page read");
294 		SetPageError(page);
295 	}
296 
297 	/*
298 	 * Be _very_ careful from here on. Bad things can happen if
299 	 * two buffer heads end IO at almost the same time and both
300 	 * decide that the page is now completely done.
301 	 */
302 	first = page_buffers(page);
303 	local_irq_save(flags);
304 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305 	clear_buffer_async_read(bh);
306 	unlock_buffer(bh);
307 	tmp = bh;
308 	do {
309 		if (!buffer_uptodate(tmp))
310 			page_uptodate = 0;
311 		if (buffer_async_read(tmp)) {
312 			BUG_ON(!buffer_locked(tmp));
313 			goto still_busy;
314 		}
315 		tmp = tmp->b_this_page;
316 	} while (tmp != bh);
317 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 	local_irq_restore(flags);
319 
320 	/*
321 	 * If none of the buffers had errors and they are all
322 	 * uptodate then we can set the page uptodate.
323 	 */
324 	if (page_uptodate && !PageError(page))
325 		SetPageUptodate(page);
326 	unlock_page(page);
327 	return;
328 
329 still_busy:
330 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 	local_irq_restore(flags);
332 	return;
333 }
334 
335 /*
336  * Completion handler for block_write_full_page() - pages which are unlocked
337  * during I/O, and which have PageWriteback cleared upon I/O completion.
338  */
339 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340 {
341 	unsigned long flags;
342 	struct buffer_head *first;
343 	struct buffer_head *tmp;
344 	struct page *page;
345 
346 	BUG_ON(!buffer_async_write(bh));
347 
348 	page = bh->b_page;
349 	if (uptodate) {
350 		set_buffer_uptodate(bh);
351 	} else {
352 		buffer_io_error(bh, ", lost async page write");
353 		set_bit(AS_EIO, &page->mapping->flags);
354 		set_buffer_write_io_error(bh);
355 		clear_buffer_uptodate(bh);
356 		SetPageError(page);
357 	}
358 
359 	first = page_buffers(page);
360 	local_irq_save(flags);
361 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362 
363 	clear_buffer_async_write(bh);
364 	unlock_buffer(bh);
365 	tmp = bh->b_this_page;
366 	while (tmp != bh) {
367 		if (buffer_async_write(tmp)) {
368 			BUG_ON(!buffer_locked(tmp));
369 			goto still_busy;
370 		}
371 		tmp = tmp->b_this_page;
372 	}
373 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 	local_irq_restore(flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 	local_irq_restore(flags);
381 	return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384 
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408 	bh->b_end_io = end_buffer_async_read;
409 	set_buffer_async_read(bh);
410 }
411 
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 					  bh_end_io_t *handler)
414 {
415 	bh->b_end_io = handler;
416 	set_buffer_async_write(bh);
417 }
418 
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424 
425 
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474 
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480 	list_del_init(&bh->b_assoc_buffers);
481 	WARN_ON(!bh->b_assoc_map);
482 	if (buffer_write_io_error(bh))
483 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 	bh->b_assoc_map = NULL;
485 }
486 
487 int inode_has_buffers(struct inode *inode)
488 {
489 	return !list_empty(&inode->i_data.private_list);
490 }
491 
492 /*
493  * osync is designed to support O_SYNC io.  It waits synchronously for
494  * all already-submitted IO to complete, but does not queue any new
495  * writes to the disk.
496  *
497  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498  * you dirty the buffers, and then use osync_inode_buffers to wait for
499  * completion.  Any other dirty buffers which are not yet queued for
500  * write will not be flushed to disk by the osync.
501  */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504 	struct buffer_head *bh;
505 	struct list_head *p;
506 	int err = 0;
507 
508 	spin_lock(lock);
509 repeat:
510 	list_for_each_prev(p, list) {
511 		bh = BH_ENTRY(p);
512 		if (buffer_locked(bh)) {
513 			get_bh(bh);
514 			spin_unlock(lock);
515 			wait_on_buffer(bh);
516 			if (!buffer_uptodate(bh))
517 				err = -EIO;
518 			brelse(bh);
519 			spin_lock(lock);
520 			goto repeat;
521 		}
522 	}
523 	spin_unlock(lock);
524 	return err;
525 }
526 
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532 
533 static void do_thaw_all(struct work_struct *work)
534 {
535 	iterate_supers(do_thaw_one, NULL);
536 	kfree(work);
537 	printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539 
540 /**
541  * emergency_thaw_all -- forcibly thaw every frozen filesystem
542  *
543  * Used for emergency unfreeze of all filesystems via SysRq
544  */
545 void emergency_thaw_all(void)
546 {
547 	struct work_struct *work;
548 
549 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 	if (work) {
551 		INIT_WORK(work, do_thaw_all);
552 		schedule_work(work);
553 	}
554 }
555 
556 /**
557  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558  * @mapping: the mapping which wants those buffers written
559  *
560  * Starts I/O against the buffers at mapping->private_list, and waits upon
561  * that I/O.
562  *
563  * Basically, this is a convenience function for fsync().
564  * @mapping is a file or directory which needs those buffers to be written for
565  * a successful fsync().
566  */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569 	struct address_space *buffer_mapping = mapping->private_data;
570 
571 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 		return 0;
573 
574 	return fsync_buffers_list(&buffer_mapping->private_lock,
575 					&mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578 
579 /*
580  * Called when we've recently written block `bblock', and it is known that
581  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
582  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
583  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
584  */
585 void write_boundary_block(struct block_device *bdev,
586 			sector_t bblock, unsigned blocksize)
587 {
588 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 	if (bh) {
590 		if (buffer_dirty(bh))
591 			ll_rw_block(WRITE, 1, &bh);
592 		put_bh(bh);
593 	}
594 }
595 
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598 	struct address_space *mapping = inode->i_mapping;
599 	struct address_space *buffer_mapping = bh->b_page->mapping;
600 
601 	mark_buffer_dirty(bh);
602 	if (!mapping->private_data) {
603 		mapping->private_data = buffer_mapping;
604 	} else {
605 		BUG_ON(mapping->private_data != buffer_mapping);
606 	}
607 	if (!bh->b_assoc_map) {
608 		spin_lock(&buffer_mapping->private_lock);
609 		list_move_tail(&bh->b_assoc_buffers,
610 				&mapping->private_list);
611 		bh->b_assoc_map = mapping;
612 		spin_unlock(&buffer_mapping->private_lock);
613 	}
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616 
617 /*
618  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619  * dirty.
620  *
621  * If warn is true, then emit a warning if the page is not uptodate and has
622  * not been truncated.
623  *
624  * The caller must hold mem_cgroup_begin_page_stat() lock.
625  */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 			     struct mem_cgroup *memcg, int warn)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&mapping->tree_lock, flags);
632 	if (page->mapping) {	/* Race with truncate? */
633 		WARN_ON_ONCE(warn && !PageUptodate(page));
634 		account_page_dirtied(page, mapping, memcg);
635 		radix_tree_tag_set(&mapping->page_tree,
636 				page_index(page), PAGECACHE_TAG_DIRTY);
637 	}
638 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640 
641 /*
642  * Add a page to the dirty page list.
643  *
644  * It is a sad fact of life that this function is called from several places
645  * deeply under spinlocking.  It may not sleep.
646  *
647  * If the page has buffers, the uptodate buffers are set dirty, to preserve
648  * dirty-state coherency between the page and the buffers.  It the page does
649  * not have buffers then when they are later attached they will all be set
650  * dirty.
651  *
652  * The buffers are dirtied before the page is dirtied.  There's a small race
653  * window in which a writepage caller may see the page cleanness but not the
654  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
655  * before the buffers, a concurrent writepage caller could clear the page dirty
656  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657  * page on the dirty page list.
658  *
659  * We use private_lock to lock against try_to_free_buffers while using the
660  * page's buffer list.  Also use this to protect against clean buffers being
661  * added to the page after it was set dirty.
662  *
663  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
664  * address_space though.
665  */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668 	int newly_dirty;
669 	struct mem_cgroup *memcg;
670 	struct address_space *mapping = page_mapping(page);
671 
672 	if (unlikely(!mapping))
673 		return !TestSetPageDirty(page);
674 
675 	spin_lock(&mapping->private_lock);
676 	if (page_has_buffers(page)) {
677 		struct buffer_head *head = page_buffers(page);
678 		struct buffer_head *bh = head;
679 
680 		do {
681 			set_buffer_dirty(bh);
682 			bh = bh->b_this_page;
683 		} while (bh != head);
684 	}
685 	/*
686 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
687 	 * per-memcg dirty page counters.
688 	 */
689 	memcg = mem_cgroup_begin_page_stat(page);
690 	newly_dirty = !TestSetPageDirty(page);
691 	spin_unlock(&mapping->private_lock);
692 
693 	if (newly_dirty)
694 		__set_page_dirty(page, mapping, memcg, 1);
695 
696 	mem_cgroup_end_page_stat(memcg);
697 
698 	if (newly_dirty)
699 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700 
701 	return newly_dirty;
702 }
703 EXPORT_SYMBOL(__set_page_dirty_buffers);
704 
705 /*
706  * Write out and wait upon a list of buffers.
707  *
708  * We have conflicting pressures: we want to make sure that all
709  * initially dirty buffers get waited on, but that any subsequently
710  * dirtied buffers don't.  After all, we don't want fsync to last
711  * forever if somebody is actively writing to the file.
712  *
713  * Do this in two main stages: first we copy dirty buffers to a
714  * temporary inode list, queueing the writes as we go.  Then we clean
715  * up, waiting for those writes to complete.
716  *
717  * During this second stage, any subsequent updates to the file may end
718  * up refiling the buffer on the original inode's dirty list again, so
719  * there is a chance we will end up with a buffer queued for write but
720  * not yet completed on that list.  So, as a final cleanup we go through
721  * the osync code to catch these locked, dirty buffers without requeuing
722  * any newly dirty buffers for write.
723  */
724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726 	struct buffer_head *bh;
727 	struct list_head tmp;
728 	struct address_space *mapping;
729 	int err = 0, err2;
730 	struct blk_plug plug;
731 
732 	INIT_LIST_HEAD(&tmp);
733 	blk_start_plug(&plug);
734 
735 	spin_lock(lock);
736 	while (!list_empty(list)) {
737 		bh = BH_ENTRY(list->next);
738 		mapping = bh->b_assoc_map;
739 		__remove_assoc_queue(bh);
740 		/* Avoid race with mark_buffer_dirty_inode() which does
741 		 * a lockless check and we rely on seeing the dirty bit */
742 		smp_mb();
743 		if (buffer_dirty(bh) || buffer_locked(bh)) {
744 			list_add(&bh->b_assoc_buffers, &tmp);
745 			bh->b_assoc_map = mapping;
746 			if (buffer_dirty(bh)) {
747 				get_bh(bh);
748 				spin_unlock(lock);
749 				/*
750 				 * Ensure any pending I/O completes so that
751 				 * write_dirty_buffer() actually writes the
752 				 * current contents - it is a noop if I/O is
753 				 * still in flight on potentially older
754 				 * contents.
755 				 */
756 				write_dirty_buffer(bh, WRITE_SYNC);
757 
758 				/*
759 				 * Kick off IO for the previous mapping. Note
760 				 * that we will not run the very last mapping,
761 				 * wait_on_buffer() will do that for us
762 				 * through sync_buffer().
763 				 */
764 				brelse(bh);
765 				spin_lock(lock);
766 			}
767 		}
768 	}
769 
770 	spin_unlock(lock);
771 	blk_finish_plug(&plug);
772 	spin_lock(lock);
773 
774 	while (!list_empty(&tmp)) {
775 		bh = BH_ENTRY(tmp.prev);
776 		get_bh(bh);
777 		mapping = bh->b_assoc_map;
778 		__remove_assoc_queue(bh);
779 		/* Avoid race with mark_buffer_dirty_inode() which does
780 		 * a lockless check and we rely on seeing the dirty bit */
781 		smp_mb();
782 		if (buffer_dirty(bh)) {
783 			list_add(&bh->b_assoc_buffers,
784 				 &mapping->private_list);
785 			bh->b_assoc_map = mapping;
786 		}
787 		spin_unlock(lock);
788 		wait_on_buffer(bh);
789 		if (!buffer_uptodate(bh))
790 			err = -EIO;
791 		brelse(bh);
792 		spin_lock(lock);
793 	}
794 
795 	spin_unlock(lock);
796 	err2 = osync_buffers_list(lock, list);
797 	if (err)
798 		return err;
799 	else
800 		return err2;
801 }
802 
803 /*
804  * Invalidate any and all dirty buffers on a given inode.  We are
805  * probably unmounting the fs, but that doesn't mean we have already
806  * done a sync().  Just drop the buffers from the inode list.
807  *
808  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
809  * assumes that all the buffers are against the blockdev.  Not true
810  * for reiserfs.
811  */
812 void invalidate_inode_buffers(struct inode *inode)
813 {
814 	if (inode_has_buffers(inode)) {
815 		struct address_space *mapping = &inode->i_data;
816 		struct list_head *list = &mapping->private_list;
817 		struct address_space *buffer_mapping = mapping->private_data;
818 
819 		spin_lock(&buffer_mapping->private_lock);
820 		while (!list_empty(list))
821 			__remove_assoc_queue(BH_ENTRY(list->next));
822 		spin_unlock(&buffer_mapping->private_lock);
823 	}
824 }
825 EXPORT_SYMBOL(invalidate_inode_buffers);
826 
827 /*
828  * Remove any clean buffers from the inode's buffer list.  This is called
829  * when we're trying to free the inode itself.  Those buffers can pin it.
830  *
831  * Returns true if all buffers were removed.
832  */
833 int remove_inode_buffers(struct inode *inode)
834 {
835 	int ret = 1;
836 
837 	if (inode_has_buffers(inode)) {
838 		struct address_space *mapping = &inode->i_data;
839 		struct list_head *list = &mapping->private_list;
840 		struct address_space *buffer_mapping = mapping->private_data;
841 
842 		spin_lock(&buffer_mapping->private_lock);
843 		while (!list_empty(list)) {
844 			struct buffer_head *bh = BH_ENTRY(list->next);
845 			if (buffer_dirty(bh)) {
846 				ret = 0;
847 				break;
848 			}
849 			__remove_assoc_queue(bh);
850 		}
851 		spin_unlock(&buffer_mapping->private_lock);
852 	}
853 	return ret;
854 }
855 
856 /*
857  * Create the appropriate buffers when given a page for data area and
858  * the size of each buffer.. Use the bh->b_this_page linked list to
859  * follow the buffers created.  Return NULL if unable to create more
860  * buffers.
861  *
862  * The retry flag is used to differentiate async IO (paging, swapping)
863  * which may not fail from ordinary buffer allocations.
864  */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 		int retry)
867 {
868 	struct buffer_head *bh, *head;
869 	long offset;
870 
871 try_again:
872 	head = NULL;
873 	offset = PAGE_SIZE;
874 	while ((offset -= size) >= 0) {
875 		bh = alloc_buffer_head(GFP_NOFS);
876 		if (!bh)
877 			goto no_grow;
878 
879 		bh->b_this_page = head;
880 		bh->b_blocknr = -1;
881 		head = bh;
882 
883 		bh->b_size = size;
884 
885 		/* Link the buffer to its page */
886 		set_bh_page(bh, page, offset);
887 	}
888 	return head;
889 /*
890  * In case anything failed, we just free everything we got.
891  */
892 no_grow:
893 	if (head) {
894 		do {
895 			bh = head;
896 			head = head->b_this_page;
897 			free_buffer_head(bh);
898 		} while (head);
899 	}
900 
901 	/*
902 	 * Return failure for non-async IO requests.  Async IO requests
903 	 * are not allowed to fail, so we have to wait until buffer heads
904 	 * become available.  But we don't want tasks sleeping with
905 	 * partially complete buffers, so all were released above.
906 	 */
907 	if (!retry)
908 		return NULL;
909 
910 	/* We're _really_ low on memory. Now we just
911 	 * wait for old buffer heads to become free due to
912 	 * finishing IO.  Since this is an async request and
913 	 * the reserve list is empty, we're sure there are
914 	 * async buffer heads in use.
915 	 */
916 	free_more_memory();
917 	goto try_again;
918 }
919 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920 
921 static inline void
922 link_dev_buffers(struct page *page, struct buffer_head *head)
923 {
924 	struct buffer_head *bh, *tail;
925 
926 	bh = head;
927 	do {
928 		tail = bh;
929 		bh = bh->b_this_page;
930 	} while (bh);
931 	tail->b_this_page = head;
932 	attach_page_buffers(page, head);
933 }
934 
935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 {
937 	sector_t retval = ~((sector_t)0);
938 	loff_t sz = i_size_read(bdev->bd_inode);
939 
940 	if (sz) {
941 		unsigned int sizebits = blksize_bits(size);
942 		retval = (sz >> sizebits);
943 	}
944 	return retval;
945 }
946 
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */
950 static sector_t
951 init_page_buffers(struct page *page, struct block_device *bdev,
952 			sector_t block, int size)
953 {
954 	struct buffer_head *head = page_buffers(page);
955 	struct buffer_head *bh = head;
956 	int uptodate = PageUptodate(page);
957 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958 
959 	do {
960 		if (!buffer_mapped(bh)) {
961 			init_buffer(bh, NULL, NULL);
962 			bh->b_bdev = bdev;
963 			bh->b_blocknr = block;
964 			if (uptodate)
965 				set_buffer_uptodate(bh);
966 			if (block < end_block)
967 				set_buffer_mapped(bh);
968 		}
969 		block++;
970 		bh = bh->b_this_page;
971 	} while (bh != head);
972 
973 	/*
974 	 * Caller needs to validate requested block against end of device.
975 	 */
976 	return end_block;
977 }
978 
979 /*
980  * Create the page-cache page that contains the requested block.
981  *
982  * This is used purely for blockdev mappings.
983  */
984 static int
985 grow_dev_page(struct block_device *bdev, sector_t block,
986 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
987 {
988 	struct inode *inode = bdev->bd_inode;
989 	struct page *page;
990 	struct buffer_head *bh;
991 	sector_t end_block;
992 	int ret = 0;		/* Will call free_more_memory() */
993 	gfp_t gfp_mask;
994 
995 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996 
997 	/*
998 	 * XXX: __getblk_slow() can not really deal with failure and
999 	 * will endlessly loop on improvised global reclaim.  Prefer
1000 	 * looping in the allocator rather than here, at least that
1001 	 * code knows what it's doing.
1002 	 */
1003 	gfp_mask |= __GFP_NOFAIL;
1004 
1005 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006 	if (!page)
1007 		return ret;
1008 
1009 	BUG_ON(!PageLocked(page));
1010 
1011 	if (page_has_buffers(page)) {
1012 		bh = page_buffers(page);
1013 		if (bh->b_size == size) {
1014 			end_block = init_page_buffers(page, bdev,
1015 						(sector_t)index << sizebits,
1016 						size);
1017 			goto done;
1018 		}
1019 		if (!try_to_free_buffers(page))
1020 			goto failed;
1021 	}
1022 
1023 	/*
1024 	 * Allocate some buffers for this page
1025 	 */
1026 	bh = alloc_page_buffers(page, size, 0);
1027 	if (!bh)
1028 		goto failed;
1029 
1030 	/*
1031 	 * Link the page to the buffers and initialise them.  Take the
1032 	 * lock to be atomic wrt __find_get_block(), which does not
1033 	 * run under the page lock.
1034 	 */
1035 	spin_lock(&inode->i_mapping->private_lock);
1036 	link_dev_buffers(page, bh);
1037 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038 			size);
1039 	spin_unlock(&inode->i_mapping->private_lock);
1040 done:
1041 	ret = (block < end_block) ? 1 : -ENXIO;
1042 failed:
1043 	unlock_page(page);
1044 	page_cache_release(page);
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Create buffers for the specified block device block's page.  If
1050  * that page was dirty, the buffers are set dirty also.
1051  */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 {
1055 	pgoff_t index;
1056 	int sizebits;
1057 
1058 	sizebits = -1;
1059 	do {
1060 		sizebits++;
1061 	} while ((size << sizebits) < PAGE_SIZE);
1062 
1063 	index = block >> sizebits;
1064 
1065 	/*
1066 	 * Check for a block which wants to lie outside our maximum possible
1067 	 * pagecache index.  (this comparison is done using sector_t types).
1068 	 */
1069 	if (unlikely(index != block >> sizebits)) {
1070 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 			"device %pg\n",
1072 			__func__, (unsigned long long)block,
1073 			bdev);
1074 		return -EIO;
1075 	}
1076 
1077 	/* Create a page with the proper size buffers.. */
1078 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 }
1080 
1081 struct buffer_head *
1082 __getblk_slow(struct block_device *bdev, sector_t block,
1083 	     unsigned size, gfp_t gfp)
1084 {
1085 	/* Size must be multiple of hard sectorsize */
1086 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 			(size < 512 || size > PAGE_SIZE))) {
1088 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 					size);
1090 		printk(KERN_ERR "logical block size: %d\n",
1091 					bdev_logical_block_size(bdev));
1092 
1093 		dump_stack();
1094 		return NULL;
1095 	}
1096 
1097 	for (;;) {
1098 		struct buffer_head *bh;
1099 		int ret;
1100 
1101 		bh = __find_get_block(bdev, block, size);
1102 		if (bh)
1103 			return bh;
1104 
1105 		ret = grow_buffers(bdev, block, size, gfp);
1106 		if (ret < 0)
1107 			return NULL;
1108 		if (ret == 0)
1109 			free_more_memory();
1110 	}
1111 }
1112 EXPORT_SYMBOL(__getblk_slow);
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and mapping->host->i_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	trace_block_dirty_buffer(bh);
1154 
1155 	/*
1156 	 * Very *carefully* optimize the it-is-already-dirty case.
1157 	 *
1158 	 * Don't let the final "is it dirty" escape to before we
1159 	 * perhaps modified the buffer.
1160 	 */
1161 	if (buffer_dirty(bh)) {
1162 		smp_mb();
1163 		if (buffer_dirty(bh))
1164 			return;
1165 	}
1166 
1167 	if (!test_set_buffer_dirty(bh)) {
1168 		struct page *page = bh->b_page;
1169 		struct address_space *mapping = NULL;
1170 		struct mem_cgroup *memcg;
1171 
1172 		memcg = mem_cgroup_begin_page_stat(page);
1173 		if (!TestSetPageDirty(page)) {
1174 			mapping = page_mapping(page);
1175 			if (mapping)
1176 				__set_page_dirty(page, mapping, memcg, 0);
1177 		}
1178 		mem_cgroup_end_page_stat(memcg);
1179 		if (mapping)
1180 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181 	}
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184 
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194 	if (atomic_read(&buf->b_count)) {
1195 		put_bh(buf);
1196 		return;
1197 	}
1198 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201 
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208 	clear_buffer_dirty(bh);
1209 	if (bh->b_assoc_map) {
1210 		struct address_space *buffer_mapping = bh->b_page->mapping;
1211 
1212 		spin_lock(&buffer_mapping->private_lock);
1213 		list_del_init(&bh->b_assoc_buffers);
1214 		bh->b_assoc_map = NULL;
1215 		spin_unlock(&buffer_mapping->private_lock);
1216 	}
1217 	__brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220 
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223 	lock_buffer(bh);
1224 	if (buffer_uptodate(bh)) {
1225 		unlock_buffer(bh);
1226 		return bh;
1227 	} else {
1228 		get_bh(bh);
1229 		bh->b_end_io = end_buffer_read_sync;
1230 		submit_bh(READ, bh);
1231 		wait_on_buffer(bh);
1232 		if (buffer_uptodate(bh))
1233 			return bh;
1234 	}
1235 	brelse(bh);
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252 
1253 #define BH_LRU_SIZE	16
1254 
1255 struct bh_lru {
1256 	struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258 
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260 
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()	local_irq_disable()
1263 #define bh_lru_unlock()	local_irq_enable()
1264 #else
1265 #define bh_lru_lock()	preempt_disable()
1266 #define bh_lru_unlock()	preempt_enable()
1267 #endif
1268 
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272 	BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275 
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281 	struct buffer_head *evictee = NULL;
1282 
1283 	check_irqs_on();
1284 	bh_lru_lock();
1285 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286 		struct buffer_head *bhs[BH_LRU_SIZE];
1287 		int in;
1288 		int out = 0;
1289 
1290 		get_bh(bh);
1291 		bhs[out++] = bh;
1292 		for (in = 0; in < BH_LRU_SIZE; in++) {
1293 			struct buffer_head *bh2 =
1294 				__this_cpu_read(bh_lrus.bhs[in]);
1295 
1296 			if (bh2 == bh) {
1297 				__brelse(bh2);
1298 			} else {
1299 				if (out >= BH_LRU_SIZE) {
1300 					BUG_ON(evictee != NULL);
1301 					evictee = bh2;
1302 				} else {
1303 					bhs[out++] = bh2;
1304 				}
1305 			}
1306 		}
1307 		while (out < BH_LRU_SIZE)
1308 			bhs[out++] = NULL;
1309 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310 	}
1311 	bh_lru_unlock();
1312 
1313 	if (evictee)
1314 		__brelse(evictee);
1315 }
1316 
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 	struct buffer_head *ret = NULL;
1324 	unsigned int i;
1325 
1326 	check_irqs_on();
1327 	bh_lru_lock();
1328 	for (i = 0; i < BH_LRU_SIZE; i++) {
1329 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330 
1331 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332 		    bh->b_size == size) {
1333 			if (i) {
1334 				while (i) {
1335 					__this_cpu_write(bh_lrus.bhs[i],
1336 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1337 					i--;
1338 				}
1339 				__this_cpu_write(bh_lrus.bhs[0], bh);
1340 			}
1341 			get_bh(bh);
1342 			ret = bh;
1343 			break;
1344 		}
1345 	}
1346 	bh_lru_unlock();
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359 
1360 	if (bh == NULL) {
1361 		/* __find_get_block_slow will mark the page accessed */
1362 		bh = __find_get_block_slow(bdev, block);
1363 		if (bh)
1364 			bh_lru_install(bh);
1365 	} else
1366 		touch_buffer(bh);
1367 
1368 	return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371 
1372 /*
1373  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374  * which corresponds to the passed block_device, block and size. The
1375  * returned buffer has its reference count incremented.
1376  *
1377  * __getblk_gfp() will lock up the machine if grow_dev_page's
1378  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1379  */
1380 struct buffer_head *
1381 __getblk_gfp(struct block_device *bdev, sector_t block,
1382 	     unsigned size, gfp_t gfp)
1383 {
1384 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1385 
1386 	might_sleep();
1387 	if (bh == NULL)
1388 		bh = __getblk_slow(bdev, block, size, gfp);
1389 	return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk_gfp);
1392 
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398 	struct buffer_head *bh = __getblk(bdev, block, size);
1399 	if (likely(bh)) {
1400 		ll_rw_block(READA, 1, &bh);
1401 		brelse(bh);
1402 	}
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405 
1406 /**
1407  *  __bread_gfp() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  *  @gfp: page allocation flag
1412  *
1413  *  Reads a specified block, and returns buffer head that contains it.
1414  *  The page cache can be allocated from non-movable area
1415  *  not to prevent page migration if you set gfp to zero.
1416  *  It returns NULL if the block was unreadable.
1417  */
1418 struct buffer_head *
1419 __bread_gfp(struct block_device *bdev, sector_t block,
1420 		   unsigned size, gfp_t gfp)
1421 {
1422 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423 
1424 	if (likely(bh) && !buffer_uptodate(bh))
1425 		bh = __bread_slow(bh);
1426 	return bh;
1427 }
1428 EXPORT_SYMBOL(__bread_gfp);
1429 
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 	int i;
1439 
1440 	for (i = 0; i < BH_LRU_SIZE; i++) {
1441 		brelse(b->bhs[i]);
1442 		b->bhs[i] = NULL;
1443 	}
1444 	put_cpu_var(bh_lrus);
1445 }
1446 
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 	int i;
1451 
1452 	for (i = 0; i < BH_LRU_SIZE; i++) {
1453 		if (b->bhs[i])
1454 			return 1;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 void invalidate_bh_lrus(void)
1461 {
1462 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465 
1466 void set_bh_page(struct buffer_head *bh,
1467 		struct page *page, unsigned long offset)
1468 {
1469 	bh->b_page = page;
1470 	BUG_ON(offset >= PAGE_SIZE);
1471 	if (PageHighMem(page))
1472 		/*
1473 		 * This catches illegal uses and preserves the offset:
1474 		 */
1475 		bh->b_data = (char *)(0 + offset);
1476 	else
1477 		bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480 
1481 /*
1482  * Called when truncating a buffer on a page completely.
1483  */
1484 
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488 	 1 << BH_Delay | 1 << BH_Unwritten)
1489 
1490 static void discard_buffer(struct buffer_head * bh)
1491 {
1492 	unsigned long b_state, b_state_old;
1493 
1494 	lock_buffer(bh);
1495 	clear_buffer_dirty(bh);
1496 	bh->b_bdev = NULL;
1497 	b_state = bh->b_state;
1498 	for (;;) {
1499 		b_state_old = cmpxchg(&bh->b_state, b_state,
1500 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1501 		if (b_state_old == b_state)
1502 			break;
1503 		b_state = b_state_old;
1504 	}
1505 	unlock_buffer(bh);
1506 }
1507 
1508 /**
1509  * block_invalidatepage - invalidate part or all of a buffer-backed page
1510  *
1511  * @page: the page which is affected
1512  * @offset: start of the range to invalidate
1513  * @length: length of the range to invalidate
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidated by a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned int offset,
1525 			  unsigned int length)
1526 {
1527 	struct buffer_head *head, *bh, *next;
1528 	unsigned int curr_off = 0;
1529 	unsigned int stop = length + offset;
1530 
1531 	BUG_ON(!PageLocked(page));
1532 	if (!page_has_buffers(page))
1533 		goto out;
1534 
1535 	/*
1536 	 * Check for overflow
1537 	 */
1538 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1539 
1540 	head = page_buffers(page);
1541 	bh = head;
1542 	do {
1543 		unsigned int next_off = curr_off + bh->b_size;
1544 		next = bh->b_this_page;
1545 
1546 		/*
1547 		 * Are we still fully in range ?
1548 		 */
1549 		if (next_off > stop)
1550 			goto out;
1551 
1552 		/*
1553 		 * is this block fully invalidated?
1554 		 */
1555 		if (offset <= curr_off)
1556 			discard_buffer(bh);
1557 		curr_off = next_off;
1558 		bh = next;
1559 	} while (bh != head);
1560 
1561 	/*
1562 	 * We release buffers only if the entire page is being invalidated.
1563 	 * The get_block cached value has been unconditionally invalidated,
1564 	 * so real IO is not possible anymore.
1565 	 */
1566 	if (offset == 0)
1567 		try_to_release_page(page, 0);
1568 out:
1569 	return;
1570 }
1571 EXPORT_SYMBOL(block_invalidatepage);
1572 
1573 
1574 /*
1575  * We attach and possibly dirty the buffers atomically wrt
1576  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1577  * is already excluded via the page lock.
1578  */
1579 void create_empty_buffers(struct page *page,
1580 			unsigned long blocksize, unsigned long b_state)
1581 {
1582 	struct buffer_head *bh, *head, *tail;
1583 
1584 	head = alloc_page_buffers(page, blocksize, 1);
1585 	bh = head;
1586 	do {
1587 		bh->b_state |= b_state;
1588 		tail = bh;
1589 		bh = bh->b_this_page;
1590 	} while (bh);
1591 	tail->b_this_page = head;
1592 
1593 	spin_lock(&page->mapping->private_lock);
1594 	if (PageUptodate(page) || PageDirty(page)) {
1595 		bh = head;
1596 		do {
1597 			if (PageDirty(page))
1598 				set_buffer_dirty(bh);
1599 			if (PageUptodate(page))
1600 				set_buffer_uptodate(bh);
1601 			bh = bh->b_this_page;
1602 		} while (bh != head);
1603 	}
1604 	attach_page_buffers(page, head);
1605 	spin_unlock(&page->mapping->private_lock);
1606 }
1607 EXPORT_SYMBOL(create_empty_buffers);
1608 
1609 /*
1610  * We are taking a block for data and we don't want any output from any
1611  * buffer-cache aliases starting from return from that function and
1612  * until the moment when something will explicitly mark the buffer
1613  * dirty (hopefully that will not happen until we will free that block ;-)
1614  * We don't even need to mark it not-uptodate - nobody can expect
1615  * anything from a newly allocated buffer anyway. We used to used
1616  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1617  * don't want to mark the alias unmapped, for example - it would confuse
1618  * anyone who might pick it with bread() afterwards...
1619  *
1620  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1621  * be writeout I/O going on against recently-freed buffers.  We don't
1622  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1623  * only if we really need to.  That happens here.
1624  */
1625 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1626 {
1627 	struct buffer_head *old_bh;
1628 
1629 	might_sleep();
1630 
1631 	old_bh = __find_get_block_slow(bdev, block);
1632 	if (old_bh) {
1633 		clear_buffer_dirty(old_bh);
1634 		wait_on_buffer(old_bh);
1635 		clear_buffer_req(old_bh);
1636 		__brelse(old_bh);
1637 	}
1638 }
1639 EXPORT_SYMBOL(unmap_underlying_metadata);
1640 
1641 /*
1642  * Size is a power-of-two in the range 512..PAGE_SIZE,
1643  * and the case we care about most is PAGE_SIZE.
1644  *
1645  * So this *could* possibly be written with those
1646  * constraints in mind (relevant mostly if some
1647  * architecture has a slow bit-scan instruction)
1648  */
1649 static inline int block_size_bits(unsigned int blocksize)
1650 {
1651 	return ilog2(blocksize);
1652 }
1653 
1654 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1655 {
1656 	BUG_ON(!PageLocked(page));
1657 
1658 	if (!page_has_buffers(page))
1659 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1660 	return page_buffers(page);
1661 }
1662 
1663 /*
1664  * NOTE! All mapped/uptodate combinations are valid:
1665  *
1666  *	Mapped	Uptodate	Meaning
1667  *
1668  *	No	No		"unknown" - must do get_block()
1669  *	No	Yes		"hole" - zero-filled
1670  *	Yes	No		"allocated" - allocated on disk, not read in
1671  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1672  *
1673  * "Dirty" is valid only with the last case (mapped+uptodate).
1674  */
1675 
1676 /*
1677  * While block_write_full_page is writing back the dirty buffers under
1678  * the page lock, whoever dirtied the buffers may decide to clean them
1679  * again at any time.  We handle that by only looking at the buffer
1680  * state inside lock_buffer().
1681  *
1682  * If block_write_full_page() is called for regular writeback
1683  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1684  * locked buffer.   This only can happen if someone has written the buffer
1685  * directly, with submit_bh().  At the address_space level PageWriteback
1686  * prevents this contention from occurring.
1687  *
1688  * If block_write_full_page() is called with wbc->sync_mode ==
1689  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1690  * causes the writes to be flagged as synchronous writes.
1691  */
1692 static int __block_write_full_page(struct inode *inode, struct page *page,
1693 			get_block_t *get_block, struct writeback_control *wbc,
1694 			bh_end_io_t *handler)
1695 {
1696 	int err;
1697 	sector_t block;
1698 	sector_t last_block;
1699 	struct buffer_head *bh, *head;
1700 	unsigned int blocksize, bbits;
1701 	int nr_underway = 0;
1702 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1703 
1704 	head = create_page_buffers(page, inode,
1705 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1706 
1707 	/*
1708 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1709 	 * here, and the (potentially unmapped) buffers may become dirty at
1710 	 * any time.  If a buffer becomes dirty here after we've inspected it
1711 	 * then we just miss that fact, and the page stays dirty.
1712 	 *
1713 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1714 	 * handle that here by just cleaning them.
1715 	 */
1716 
1717 	bh = head;
1718 	blocksize = bh->b_size;
1719 	bbits = block_size_bits(blocksize);
1720 
1721 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1722 	last_block = (i_size_read(inode) - 1) >> bbits;
1723 
1724 	/*
1725 	 * Get all the dirty buffers mapped to disk addresses and
1726 	 * handle any aliases from the underlying blockdev's mapping.
1727 	 */
1728 	do {
1729 		if (block > last_block) {
1730 			/*
1731 			 * mapped buffers outside i_size will occur, because
1732 			 * this page can be outside i_size when there is a
1733 			 * truncate in progress.
1734 			 */
1735 			/*
1736 			 * The buffer was zeroed by block_write_full_page()
1737 			 */
1738 			clear_buffer_dirty(bh);
1739 			set_buffer_uptodate(bh);
1740 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1741 			   buffer_dirty(bh)) {
1742 			WARN_ON(bh->b_size != blocksize);
1743 			err = get_block(inode, block, bh, 1);
1744 			if (err)
1745 				goto recover;
1746 			clear_buffer_delay(bh);
1747 			if (buffer_new(bh)) {
1748 				/* blockdev mappings never come here */
1749 				clear_buffer_new(bh);
1750 				unmap_underlying_metadata(bh->b_bdev,
1751 							bh->b_blocknr);
1752 			}
1753 		}
1754 		bh = bh->b_this_page;
1755 		block++;
1756 	} while (bh != head);
1757 
1758 	do {
1759 		if (!buffer_mapped(bh))
1760 			continue;
1761 		/*
1762 		 * If it's a fully non-blocking write attempt and we cannot
1763 		 * lock the buffer then redirty the page.  Note that this can
1764 		 * potentially cause a busy-wait loop from writeback threads
1765 		 * and kswapd activity, but those code paths have their own
1766 		 * higher-level throttling.
1767 		 */
1768 		if (wbc->sync_mode != WB_SYNC_NONE) {
1769 			lock_buffer(bh);
1770 		} else if (!trylock_buffer(bh)) {
1771 			redirty_page_for_writepage(wbc, page);
1772 			continue;
1773 		}
1774 		if (test_clear_buffer_dirty(bh)) {
1775 			mark_buffer_async_write_endio(bh, handler);
1776 		} else {
1777 			unlock_buffer(bh);
1778 		}
1779 	} while ((bh = bh->b_this_page) != head);
1780 
1781 	/*
1782 	 * The page and its buffers are protected by PageWriteback(), so we can
1783 	 * drop the bh refcounts early.
1784 	 */
1785 	BUG_ON(PageWriteback(page));
1786 	set_page_writeback(page);
1787 
1788 	do {
1789 		struct buffer_head *next = bh->b_this_page;
1790 		if (buffer_async_write(bh)) {
1791 			submit_bh_wbc(write_op, bh, 0, wbc);
1792 			nr_underway++;
1793 		}
1794 		bh = next;
1795 	} while (bh != head);
1796 	unlock_page(page);
1797 
1798 	err = 0;
1799 done:
1800 	if (nr_underway == 0) {
1801 		/*
1802 		 * The page was marked dirty, but the buffers were
1803 		 * clean.  Someone wrote them back by hand with
1804 		 * ll_rw_block/submit_bh.  A rare case.
1805 		 */
1806 		end_page_writeback(page);
1807 
1808 		/*
1809 		 * The page and buffer_heads can be released at any time from
1810 		 * here on.
1811 		 */
1812 	}
1813 	return err;
1814 
1815 recover:
1816 	/*
1817 	 * ENOSPC, or some other error.  We may already have added some
1818 	 * blocks to the file, so we need to write these out to avoid
1819 	 * exposing stale data.
1820 	 * The page is currently locked and not marked for writeback
1821 	 */
1822 	bh = head;
1823 	/* Recovery: lock and submit the mapped buffers */
1824 	do {
1825 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1826 		    !buffer_delay(bh)) {
1827 			lock_buffer(bh);
1828 			mark_buffer_async_write_endio(bh, handler);
1829 		} else {
1830 			/*
1831 			 * The buffer may have been set dirty during
1832 			 * attachment to a dirty page.
1833 			 */
1834 			clear_buffer_dirty(bh);
1835 		}
1836 	} while ((bh = bh->b_this_page) != head);
1837 	SetPageError(page);
1838 	BUG_ON(PageWriteback(page));
1839 	mapping_set_error(page->mapping, err);
1840 	set_page_writeback(page);
1841 	do {
1842 		struct buffer_head *next = bh->b_this_page;
1843 		if (buffer_async_write(bh)) {
1844 			clear_buffer_dirty(bh);
1845 			submit_bh_wbc(write_op, bh, 0, wbc);
1846 			nr_underway++;
1847 		}
1848 		bh = next;
1849 	} while (bh != head);
1850 	unlock_page(page);
1851 	goto done;
1852 }
1853 
1854 /*
1855  * If a page has any new buffers, zero them out here, and mark them uptodate
1856  * and dirty so they'll be written out (in order to prevent uninitialised
1857  * block data from leaking). And clear the new bit.
1858  */
1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860 {
1861 	unsigned int block_start, block_end;
1862 	struct buffer_head *head, *bh;
1863 
1864 	BUG_ON(!PageLocked(page));
1865 	if (!page_has_buffers(page))
1866 		return;
1867 
1868 	bh = head = page_buffers(page);
1869 	block_start = 0;
1870 	do {
1871 		block_end = block_start + bh->b_size;
1872 
1873 		if (buffer_new(bh)) {
1874 			if (block_end > from && block_start < to) {
1875 				if (!PageUptodate(page)) {
1876 					unsigned start, size;
1877 
1878 					start = max(from, block_start);
1879 					size = min(to, block_end) - start;
1880 
1881 					zero_user(page, start, size);
1882 					set_buffer_uptodate(bh);
1883 				}
1884 
1885 				clear_buffer_new(bh);
1886 				mark_buffer_dirty(bh);
1887 			}
1888 		}
1889 
1890 		block_start = block_end;
1891 		bh = bh->b_this_page;
1892 	} while (bh != head);
1893 }
1894 EXPORT_SYMBOL(page_zero_new_buffers);
1895 
1896 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1897 		get_block_t *get_block)
1898 {
1899 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1900 	unsigned to = from + len;
1901 	struct inode *inode = page->mapping->host;
1902 	unsigned block_start, block_end;
1903 	sector_t block;
1904 	int err = 0;
1905 	unsigned blocksize, bbits;
1906 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1907 
1908 	BUG_ON(!PageLocked(page));
1909 	BUG_ON(from > PAGE_CACHE_SIZE);
1910 	BUG_ON(to > PAGE_CACHE_SIZE);
1911 	BUG_ON(from > to);
1912 
1913 	head = create_page_buffers(page, inode, 0);
1914 	blocksize = head->b_size;
1915 	bbits = block_size_bits(blocksize);
1916 
1917 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1918 
1919 	for(bh = head, block_start = 0; bh != head || !block_start;
1920 	    block++, block_start=block_end, bh = bh->b_this_page) {
1921 		block_end = block_start + blocksize;
1922 		if (block_end <= from || block_start >= to) {
1923 			if (PageUptodate(page)) {
1924 				if (!buffer_uptodate(bh))
1925 					set_buffer_uptodate(bh);
1926 			}
1927 			continue;
1928 		}
1929 		if (buffer_new(bh))
1930 			clear_buffer_new(bh);
1931 		if (!buffer_mapped(bh)) {
1932 			WARN_ON(bh->b_size != blocksize);
1933 			err = get_block(inode, block, bh, 1);
1934 			if (err)
1935 				break;
1936 			if (buffer_new(bh)) {
1937 				unmap_underlying_metadata(bh->b_bdev,
1938 							bh->b_blocknr);
1939 				if (PageUptodate(page)) {
1940 					clear_buffer_new(bh);
1941 					set_buffer_uptodate(bh);
1942 					mark_buffer_dirty(bh);
1943 					continue;
1944 				}
1945 				if (block_end > to || block_start < from)
1946 					zero_user_segments(page,
1947 						to, block_end,
1948 						block_start, from);
1949 				continue;
1950 			}
1951 		}
1952 		if (PageUptodate(page)) {
1953 			if (!buffer_uptodate(bh))
1954 				set_buffer_uptodate(bh);
1955 			continue;
1956 		}
1957 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1958 		    !buffer_unwritten(bh) &&
1959 		     (block_start < from || block_end > to)) {
1960 			ll_rw_block(READ, 1, &bh);
1961 			*wait_bh++=bh;
1962 		}
1963 	}
1964 	/*
1965 	 * If we issued read requests - let them complete.
1966 	 */
1967 	while(wait_bh > wait) {
1968 		wait_on_buffer(*--wait_bh);
1969 		if (!buffer_uptodate(*wait_bh))
1970 			err = -EIO;
1971 	}
1972 	if (unlikely(err))
1973 		page_zero_new_buffers(page, from, to);
1974 	return err;
1975 }
1976 EXPORT_SYMBOL(__block_write_begin);
1977 
1978 static int __block_commit_write(struct inode *inode, struct page *page,
1979 		unsigned from, unsigned to)
1980 {
1981 	unsigned block_start, block_end;
1982 	int partial = 0;
1983 	unsigned blocksize;
1984 	struct buffer_head *bh, *head;
1985 
1986 	bh = head = page_buffers(page);
1987 	blocksize = bh->b_size;
1988 
1989 	block_start = 0;
1990 	do {
1991 		block_end = block_start + blocksize;
1992 		if (block_end <= from || block_start >= to) {
1993 			if (!buffer_uptodate(bh))
1994 				partial = 1;
1995 		} else {
1996 			set_buffer_uptodate(bh);
1997 			mark_buffer_dirty(bh);
1998 		}
1999 		clear_buffer_new(bh);
2000 
2001 		block_start = block_end;
2002 		bh = bh->b_this_page;
2003 	} while (bh != head);
2004 
2005 	/*
2006 	 * If this is a partial write which happened to make all buffers
2007 	 * uptodate then we can optimize away a bogus readpage() for
2008 	 * the next read(). Here we 'discover' whether the page went
2009 	 * uptodate as a result of this (potentially partial) write.
2010 	 */
2011 	if (!partial)
2012 		SetPageUptodate(page);
2013 	return 0;
2014 }
2015 
2016 /*
2017  * block_write_begin takes care of the basic task of block allocation and
2018  * bringing partial write blocks uptodate first.
2019  *
2020  * The filesystem needs to handle block truncation upon failure.
2021  */
2022 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2023 		unsigned flags, struct page **pagep, get_block_t *get_block)
2024 {
2025 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2026 	struct page *page;
2027 	int status;
2028 
2029 	page = grab_cache_page_write_begin(mapping, index, flags);
2030 	if (!page)
2031 		return -ENOMEM;
2032 
2033 	status = __block_write_begin(page, pos, len, get_block);
2034 	if (unlikely(status)) {
2035 		unlock_page(page);
2036 		page_cache_release(page);
2037 		page = NULL;
2038 	}
2039 
2040 	*pagep = page;
2041 	return status;
2042 }
2043 EXPORT_SYMBOL(block_write_begin);
2044 
2045 int block_write_end(struct file *file, struct address_space *mapping,
2046 			loff_t pos, unsigned len, unsigned copied,
2047 			struct page *page, void *fsdata)
2048 {
2049 	struct inode *inode = mapping->host;
2050 	unsigned start;
2051 
2052 	start = pos & (PAGE_CACHE_SIZE - 1);
2053 
2054 	if (unlikely(copied < len)) {
2055 		/*
2056 		 * The buffers that were written will now be uptodate, so we
2057 		 * don't have to worry about a readpage reading them and
2058 		 * overwriting a partial write. However if we have encountered
2059 		 * a short write and only partially written into a buffer, it
2060 		 * will not be marked uptodate, so a readpage might come in and
2061 		 * destroy our partial write.
2062 		 *
2063 		 * Do the simplest thing, and just treat any short write to a
2064 		 * non uptodate page as a zero-length write, and force the
2065 		 * caller to redo the whole thing.
2066 		 */
2067 		if (!PageUptodate(page))
2068 			copied = 0;
2069 
2070 		page_zero_new_buffers(page, start+copied, start+len);
2071 	}
2072 	flush_dcache_page(page);
2073 
2074 	/* This could be a short (even 0-length) commit */
2075 	__block_commit_write(inode, page, start, start+copied);
2076 
2077 	return copied;
2078 }
2079 EXPORT_SYMBOL(block_write_end);
2080 
2081 int generic_write_end(struct file *file, struct address_space *mapping,
2082 			loff_t pos, unsigned len, unsigned copied,
2083 			struct page *page, void *fsdata)
2084 {
2085 	struct inode *inode = mapping->host;
2086 	loff_t old_size = inode->i_size;
2087 	int i_size_changed = 0;
2088 
2089 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2090 
2091 	/*
2092 	 * No need to use i_size_read() here, the i_size
2093 	 * cannot change under us because we hold i_mutex.
2094 	 *
2095 	 * But it's important to update i_size while still holding page lock:
2096 	 * page writeout could otherwise come in and zero beyond i_size.
2097 	 */
2098 	if (pos+copied > inode->i_size) {
2099 		i_size_write(inode, pos+copied);
2100 		i_size_changed = 1;
2101 	}
2102 
2103 	unlock_page(page);
2104 	page_cache_release(page);
2105 
2106 	if (old_size < pos)
2107 		pagecache_isize_extended(inode, old_size, pos);
2108 	/*
2109 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2110 	 * makes the holding time of page lock longer. Second, it forces lock
2111 	 * ordering of page lock and transaction start for journaling
2112 	 * filesystems.
2113 	 */
2114 	if (i_size_changed)
2115 		mark_inode_dirty(inode);
2116 
2117 	return copied;
2118 }
2119 EXPORT_SYMBOL(generic_write_end);
2120 
2121 /*
2122  * block_is_partially_uptodate checks whether buffers within a page are
2123  * uptodate or not.
2124  *
2125  * Returns true if all buffers which correspond to a file portion
2126  * we want to read are uptodate.
2127  */
2128 int block_is_partially_uptodate(struct page *page, unsigned long from,
2129 					unsigned long count)
2130 {
2131 	unsigned block_start, block_end, blocksize;
2132 	unsigned to;
2133 	struct buffer_head *bh, *head;
2134 	int ret = 1;
2135 
2136 	if (!page_has_buffers(page))
2137 		return 0;
2138 
2139 	head = page_buffers(page);
2140 	blocksize = head->b_size;
2141 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2142 	to = from + to;
2143 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2144 		return 0;
2145 
2146 	bh = head;
2147 	block_start = 0;
2148 	do {
2149 		block_end = block_start + blocksize;
2150 		if (block_end > from && block_start < to) {
2151 			if (!buffer_uptodate(bh)) {
2152 				ret = 0;
2153 				break;
2154 			}
2155 			if (block_end >= to)
2156 				break;
2157 		}
2158 		block_start = block_end;
2159 		bh = bh->b_this_page;
2160 	} while (bh != head);
2161 
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL(block_is_partially_uptodate);
2165 
2166 /*
2167  * Generic "read page" function for block devices that have the normal
2168  * get_block functionality. This is most of the block device filesystems.
2169  * Reads the page asynchronously --- the unlock_buffer() and
2170  * set/clear_buffer_uptodate() functions propagate buffer state into the
2171  * page struct once IO has completed.
2172  */
2173 int block_read_full_page(struct page *page, get_block_t *get_block)
2174 {
2175 	struct inode *inode = page->mapping->host;
2176 	sector_t iblock, lblock;
2177 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2178 	unsigned int blocksize, bbits;
2179 	int nr, i;
2180 	int fully_mapped = 1;
2181 
2182 	head = create_page_buffers(page, inode, 0);
2183 	blocksize = head->b_size;
2184 	bbits = block_size_bits(blocksize);
2185 
2186 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2187 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2188 	bh = head;
2189 	nr = 0;
2190 	i = 0;
2191 
2192 	do {
2193 		if (buffer_uptodate(bh))
2194 			continue;
2195 
2196 		if (!buffer_mapped(bh)) {
2197 			int err = 0;
2198 
2199 			fully_mapped = 0;
2200 			if (iblock < lblock) {
2201 				WARN_ON(bh->b_size != blocksize);
2202 				err = get_block(inode, iblock, bh, 0);
2203 				if (err)
2204 					SetPageError(page);
2205 			}
2206 			if (!buffer_mapped(bh)) {
2207 				zero_user(page, i * blocksize, blocksize);
2208 				if (!err)
2209 					set_buffer_uptodate(bh);
2210 				continue;
2211 			}
2212 			/*
2213 			 * get_block() might have updated the buffer
2214 			 * synchronously
2215 			 */
2216 			if (buffer_uptodate(bh))
2217 				continue;
2218 		}
2219 		arr[nr++] = bh;
2220 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2221 
2222 	if (fully_mapped)
2223 		SetPageMappedToDisk(page);
2224 
2225 	if (!nr) {
2226 		/*
2227 		 * All buffers are uptodate - we can set the page uptodate
2228 		 * as well. But not if get_block() returned an error.
2229 		 */
2230 		if (!PageError(page))
2231 			SetPageUptodate(page);
2232 		unlock_page(page);
2233 		return 0;
2234 	}
2235 
2236 	/* Stage two: lock the buffers */
2237 	for (i = 0; i < nr; i++) {
2238 		bh = arr[i];
2239 		lock_buffer(bh);
2240 		mark_buffer_async_read(bh);
2241 	}
2242 
2243 	/*
2244 	 * Stage 3: start the IO.  Check for uptodateness
2245 	 * inside the buffer lock in case another process reading
2246 	 * the underlying blockdev brought it uptodate (the sct fix).
2247 	 */
2248 	for (i = 0; i < nr; i++) {
2249 		bh = arr[i];
2250 		if (buffer_uptodate(bh))
2251 			end_buffer_async_read(bh, 1);
2252 		else
2253 			submit_bh(READ, bh);
2254 	}
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(block_read_full_page);
2258 
2259 /* utility function for filesystems that need to do work on expanding
2260  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2261  * deal with the hole.
2262  */
2263 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2264 {
2265 	struct address_space *mapping = inode->i_mapping;
2266 	struct page *page;
2267 	void *fsdata;
2268 	int err;
2269 
2270 	err = inode_newsize_ok(inode, size);
2271 	if (err)
2272 		goto out;
2273 
2274 	err = pagecache_write_begin(NULL, mapping, size, 0,
2275 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2276 				&page, &fsdata);
2277 	if (err)
2278 		goto out;
2279 
2280 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2281 	BUG_ON(err > 0);
2282 
2283 out:
2284 	return err;
2285 }
2286 EXPORT_SYMBOL(generic_cont_expand_simple);
2287 
2288 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2289 			    loff_t pos, loff_t *bytes)
2290 {
2291 	struct inode *inode = mapping->host;
2292 	unsigned blocksize = 1 << inode->i_blkbits;
2293 	struct page *page;
2294 	void *fsdata;
2295 	pgoff_t index, curidx;
2296 	loff_t curpos;
2297 	unsigned zerofrom, offset, len;
2298 	int err = 0;
2299 
2300 	index = pos >> PAGE_CACHE_SHIFT;
2301 	offset = pos & ~PAGE_CACHE_MASK;
2302 
2303 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2304 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2305 		if (zerofrom & (blocksize-1)) {
2306 			*bytes |= (blocksize-1);
2307 			(*bytes)++;
2308 		}
2309 		len = PAGE_CACHE_SIZE - zerofrom;
2310 
2311 		err = pagecache_write_begin(file, mapping, curpos, len,
2312 						AOP_FLAG_UNINTERRUPTIBLE,
2313 						&page, &fsdata);
2314 		if (err)
2315 			goto out;
2316 		zero_user(page, zerofrom, len);
2317 		err = pagecache_write_end(file, mapping, curpos, len, len,
2318 						page, fsdata);
2319 		if (err < 0)
2320 			goto out;
2321 		BUG_ON(err != len);
2322 		err = 0;
2323 
2324 		balance_dirty_pages_ratelimited(mapping);
2325 
2326 		if (unlikely(fatal_signal_pending(current))) {
2327 			err = -EINTR;
2328 			goto out;
2329 		}
2330 	}
2331 
2332 	/* page covers the boundary, find the boundary offset */
2333 	if (index == curidx) {
2334 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2335 		/* if we will expand the thing last block will be filled */
2336 		if (offset <= zerofrom) {
2337 			goto out;
2338 		}
2339 		if (zerofrom & (blocksize-1)) {
2340 			*bytes |= (blocksize-1);
2341 			(*bytes)++;
2342 		}
2343 		len = offset - zerofrom;
2344 
2345 		err = pagecache_write_begin(file, mapping, curpos, len,
2346 						AOP_FLAG_UNINTERRUPTIBLE,
2347 						&page, &fsdata);
2348 		if (err)
2349 			goto out;
2350 		zero_user(page, zerofrom, len);
2351 		err = pagecache_write_end(file, mapping, curpos, len, len,
2352 						page, fsdata);
2353 		if (err < 0)
2354 			goto out;
2355 		BUG_ON(err != len);
2356 		err = 0;
2357 	}
2358 out:
2359 	return err;
2360 }
2361 
2362 /*
2363  * For moronic filesystems that do not allow holes in file.
2364  * We may have to extend the file.
2365  */
2366 int cont_write_begin(struct file *file, struct address_space *mapping,
2367 			loff_t pos, unsigned len, unsigned flags,
2368 			struct page **pagep, void **fsdata,
2369 			get_block_t *get_block, loff_t *bytes)
2370 {
2371 	struct inode *inode = mapping->host;
2372 	unsigned blocksize = 1 << inode->i_blkbits;
2373 	unsigned zerofrom;
2374 	int err;
2375 
2376 	err = cont_expand_zero(file, mapping, pos, bytes);
2377 	if (err)
2378 		return err;
2379 
2380 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2381 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2382 		*bytes |= (blocksize-1);
2383 		(*bytes)++;
2384 	}
2385 
2386 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2387 }
2388 EXPORT_SYMBOL(cont_write_begin);
2389 
2390 int block_commit_write(struct page *page, unsigned from, unsigned to)
2391 {
2392 	struct inode *inode = page->mapping->host;
2393 	__block_commit_write(inode,page,from,to);
2394 	return 0;
2395 }
2396 EXPORT_SYMBOL(block_commit_write);
2397 
2398 /*
2399  * block_page_mkwrite() is not allowed to change the file size as it gets
2400  * called from a page fault handler when a page is first dirtied. Hence we must
2401  * be careful to check for EOF conditions here. We set the page up correctly
2402  * for a written page which means we get ENOSPC checking when writing into
2403  * holes and correct delalloc and unwritten extent mapping on filesystems that
2404  * support these features.
2405  *
2406  * We are not allowed to take the i_mutex here so we have to play games to
2407  * protect against truncate races as the page could now be beyond EOF.  Because
2408  * truncate writes the inode size before removing pages, once we have the
2409  * page lock we can determine safely if the page is beyond EOF. If it is not
2410  * beyond EOF, then the page is guaranteed safe against truncation until we
2411  * unlock the page.
2412  *
2413  * Direct callers of this function should protect against filesystem freezing
2414  * using sb_start_pagefault() - sb_end_pagefault() functions.
2415  */
2416 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2417 			 get_block_t get_block)
2418 {
2419 	struct page *page = vmf->page;
2420 	struct inode *inode = file_inode(vma->vm_file);
2421 	unsigned long end;
2422 	loff_t size;
2423 	int ret;
2424 
2425 	lock_page(page);
2426 	size = i_size_read(inode);
2427 	if ((page->mapping != inode->i_mapping) ||
2428 	    (page_offset(page) > size)) {
2429 		/* We overload EFAULT to mean page got truncated */
2430 		ret = -EFAULT;
2431 		goto out_unlock;
2432 	}
2433 
2434 	/* page is wholly or partially inside EOF */
2435 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2436 		end = size & ~PAGE_CACHE_MASK;
2437 	else
2438 		end = PAGE_CACHE_SIZE;
2439 
2440 	ret = __block_write_begin(page, 0, end, get_block);
2441 	if (!ret)
2442 		ret = block_commit_write(page, 0, end);
2443 
2444 	if (unlikely(ret < 0))
2445 		goto out_unlock;
2446 	set_page_dirty(page);
2447 	wait_for_stable_page(page);
2448 	return 0;
2449 out_unlock:
2450 	unlock_page(page);
2451 	return ret;
2452 }
2453 EXPORT_SYMBOL(block_page_mkwrite);
2454 
2455 /*
2456  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2457  * immediately, while under the page lock.  So it needs a special end_io
2458  * handler which does not touch the bh after unlocking it.
2459  */
2460 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2461 {
2462 	__end_buffer_read_notouch(bh, uptodate);
2463 }
2464 
2465 /*
2466  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2467  * the page (converting it to circular linked list and taking care of page
2468  * dirty races).
2469  */
2470 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2471 {
2472 	struct buffer_head *bh;
2473 
2474 	BUG_ON(!PageLocked(page));
2475 
2476 	spin_lock(&page->mapping->private_lock);
2477 	bh = head;
2478 	do {
2479 		if (PageDirty(page))
2480 			set_buffer_dirty(bh);
2481 		if (!bh->b_this_page)
2482 			bh->b_this_page = head;
2483 		bh = bh->b_this_page;
2484 	} while (bh != head);
2485 	attach_page_buffers(page, head);
2486 	spin_unlock(&page->mapping->private_lock);
2487 }
2488 
2489 /*
2490  * On entry, the page is fully not uptodate.
2491  * On exit the page is fully uptodate in the areas outside (from,to)
2492  * The filesystem needs to handle block truncation upon failure.
2493  */
2494 int nobh_write_begin(struct address_space *mapping,
2495 			loff_t pos, unsigned len, unsigned flags,
2496 			struct page **pagep, void **fsdata,
2497 			get_block_t *get_block)
2498 {
2499 	struct inode *inode = mapping->host;
2500 	const unsigned blkbits = inode->i_blkbits;
2501 	const unsigned blocksize = 1 << blkbits;
2502 	struct buffer_head *head, *bh;
2503 	struct page *page;
2504 	pgoff_t index;
2505 	unsigned from, to;
2506 	unsigned block_in_page;
2507 	unsigned block_start, block_end;
2508 	sector_t block_in_file;
2509 	int nr_reads = 0;
2510 	int ret = 0;
2511 	int is_mapped_to_disk = 1;
2512 
2513 	index = pos >> PAGE_CACHE_SHIFT;
2514 	from = pos & (PAGE_CACHE_SIZE - 1);
2515 	to = from + len;
2516 
2517 	page = grab_cache_page_write_begin(mapping, index, flags);
2518 	if (!page)
2519 		return -ENOMEM;
2520 	*pagep = page;
2521 	*fsdata = NULL;
2522 
2523 	if (page_has_buffers(page)) {
2524 		ret = __block_write_begin(page, pos, len, get_block);
2525 		if (unlikely(ret))
2526 			goto out_release;
2527 		return ret;
2528 	}
2529 
2530 	if (PageMappedToDisk(page))
2531 		return 0;
2532 
2533 	/*
2534 	 * Allocate buffers so that we can keep track of state, and potentially
2535 	 * attach them to the page if an error occurs. In the common case of
2536 	 * no error, they will just be freed again without ever being attached
2537 	 * to the page (which is all OK, because we're under the page lock).
2538 	 *
2539 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2540 	 * than the circular one we're used to.
2541 	 */
2542 	head = alloc_page_buffers(page, blocksize, 0);
2543 	if (!head) {
2544 		ret = -ENOMEM;
2545 		goto out_release;
2546 	}
2547 
2548 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2549 
2550 	/*
2551 	 * We loop across all blocks in the page, whether or not they are
2552 	 * part of the affected region.  This is so we can discover if the
2553 	 * page is fully mapped-to-disk.
2554 	 */
2555 	for (block_start = 0, block_in_page = 0, bh = head;
2556 		  block_start < PAGE_CACHE_SIZE;
2557 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2558 		int create;
2559 
2560 		block_end = block_start + blocksize;
2561 		bh->b_state = 0;
2562 		create = 1;
2563 		if (block_start >= to)
2564 			create = 0;
2565 		ret = get_block(inode, block_in_file + block_in_page,
2566 					bh, create);
2567 		if (ret)
2568 			goto failed;
2569 		if (!buffer_mapped(bh))
2570 			is_mapped_to_disk = 0;
2571 		if (buffer_new(bh))
2572 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2573 		if (PageUptodate(page)) {
2574 			set_buffer_uptodate(bh);
2575 			continue;
2576 		}
2577 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2578 			zero_user_segments(page, block_start, from,
2579 							to, block_end);
2580 			continue;
2581 		}
2582 		if (buffer_uptodate(bh))
2583 			continue;	/* reiserfs does this */
2584 		if (block_start < from || block_end > to) {
2585 			lock_buffer(bh);
2586 			bh->b_end_io = end_buffer_read_nobh;
2587 			submit_bh(READ, bh);
2588 			nr_reads++;
2589 		}
2590 	}
2591 
2592 	if (nr_reads) {
2593 		/*
2594 		 * The page is locked, so these buffers are protected from
2595 		 * any VM or truncate activity.  Hence we don't need to care
2596 		 * for the buffer_head refcounts.
2597 		 */
2598 		for (bh = head; bh; bh = bh->b_this_page) {
2599 			wait_on_buffer(bh);
2600 			if (!buffer_uptodate(bh))
2601 				ret = -EIO;
2602 		}
2603 		if (ret)
2604 			goto failed;
2605 	}
2606 
2607 	if (is_mapped_to_disk)
2608 		SetPageMappedToDisk(page);
2609 
2610 	*fsdata = head; /* to be released by nobh_write_end */
2611 
2612 	return 0;
2613 
2614 failed:
2615 	BUG_ON(!ret);
2616 	/*
2617 	 * Error recovery is a bit difficult. We need to zero out blocks that
2618 	 * were newly allocated, and dirty them to ensure they get written out.
2619 	 * Buffers need to be attached to the page at this point, otherwise
2620 	 * the handling of potential IO errors during writeout would be hard
2621 	 * (could try doing synchronous writeout, but what if that fails too?)
2622 	 */
2623 	attach_nobh_buffers(page, head);
2624 	page_zero_new_buffers(page, from, to);
2625 
2626 out_release:
2627 	unlock_page(page);
2628 	page_cache_release(page);
2629 	*pagep = NULL;
2630 
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL(nobh_write_begin);
2634 
2635 int nobh_write_end(struct file *file, struct address_space *mapping,
2636 			loff_t pos, unsigned len, unsigned copied,
2637 			struct page *page, void *fsdata)
2638 {
2639 	struct inode *inode = page->mapping->host;
2640 	struct buffer_head *head = fsdata;
2641 	struct buffer_head *bh;
2642 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2643 
2644 	if (unlikely(copied < len) && head)
2645 		attach_nobh_buffers(page, head);
2646 	if (page_has_buffers(page))
2647 		return generic_write_end(file, mapping, pos, len,
2648 					copied, page, fsdata);
2649 
2650 	SetPageUptodate(page);
2651 	set_page_dirty(page);
2652 	if (pos+copied > inode->i_size) {
2653 		i_size_write(inode, pos+copied);
2654 		mark_inode_dirty(inode);
2655 	}
2656 
2657 	unlock_page(page);
2658 	page_cache_release(page);
2659 
2660 	while (head) {
2661 		bh = head;
2662 		head = head->b_this_page;
2663 		free_buffer_head(bh);
2664 	}
2665 
2666 	return copied;
2667 }
2668 EXPORT_SYMBOL(nobh_write_end);
2669 
2670 /*
2671  * nobh_writepage() - based on block_full_write_page() except
2672  * that it tries to operate without attaching bufferheads to
2673  * the page.
2674  */
2675 int nobh_writepage(struct page *page, get_block_t *get_block,
2676 			struct writeback_control *wbc)
2677 {
2678 	struct inode * const inode = page->mapping->host;
2679 	loff_t i_size = i_size_read(inode);
2680 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2681 	unsigned offset;
2682 	int ret;
2683 
2684 	/* Is the page fully inside i_size? */
2685 	if (page->index < end_index)
2686 		goto out;
2687 
2688 	/* Is the page fully outside i_size? (truncate in progress) */
2689 	offset = i_size & (PAGE_CACHE_SIZE-1);
2690 	if (page->index >= end_index+1 || !offset) {
2691 		/*
2692 		 * The page may have dirty, unmapped buffers.  For example,
2693 		 * they may have been added in ext3_writepage().  Make them
2694 		 * freeable here, so the page does not leak.
2695 		 */
2696 #if 0
2697 		/* Not really sure about this  - do we need this ? */
2698 		if (page->mapping->a_ops->invalidatepage)
2699 			page->mapping->a_ops->invalidatepage(page, offset);
2700 #endif
2701 		unlock_page(page);
2702 		return 0; /* don't care */
2703 	}
2704 
2705 	/*
2706 	 * The page straddles i_size.  It must be zeroed out on each and every
2707 	 * writepage invocation because it may be mmapped.  "A file is mapped
2708 	 * in multiples of the page size.  For a file that is not a multiple of
2709 	 * the  page size, the remaining memory is zeroed when mapped, and
2710 	 * writes to that region are not written out to the file."
2711 	 */
2712 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2713 out:
2714 	ret = mpage_writepage(page, get_block, wbc);
2715 	if (ret == -EAGAIN)
2716 		ret = __block_write_full_page(inode, page, get_block, wbc,
2717 					      end_buffer_async_write);
2718 	return ret;
2719 }
2720 EXPORT_SYMBOL(nobh_writepage);
2721 
2722 int nobh_truncate_page(struct address_space *mapping,
2723 			loff_t from, get_block_t *get_block)
2724 {
2725 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2726 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2727 	unsigned blocksize;
2728 	sector_t iblock;
2729 	unsigned length, pos;
2730 	struct inode *inode = mapping->host;
2731 	struct page *page;
2732 	struct buffer_head map_bh;
2733 	int err;
2734 
2735 	blocksize = 1 << inode->i_blkbits;
2736 	length = offset & (blocksize - 1);
2737 
2738 	/* Block boundary? Nothing to do */
2739 	if (!length)
2740 		return 0;
2741 
2742 	length = blocksize - length;
2743 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2744 
2745 	page = grab_cache_page(mapping, index);
2746 	err = -ENOMEM;
2747 	if (!page)
2748 		goto out;
2749 
2750 	if (page_has_buffers(page)) {
2751 has_buffers:
2752 		unlock_page(page);
2753 		page_cache_release(page);
2754 		return block_truncate_page(mapping, from, get_block);
2755 	}
2756 
2757 	/* Find the buffer that contains "offset" */
2758 	pos = blocksize;
2759 	while (offset >= pos) {
2760 		iblock++;
2761 		pos += blocksize;
2762 	}
2763 
2764 	map_bh.b_size = blocksize;
2765 	map_bh.b_state = 0;
2766 	err = get_block(inode, iblock, &map_bh, 0);
2767 	if (err)
2768 		goto unlock;
2769 	/* unmapped? It's a hole - nothing to do */
2770 	if (!buffer_mapped(&map_bh))
2771 		goto unlock;
2772 
2773 	/* Ok, it's mapped. Make sure it's up-to-date */
2774 	if (!PageUptodate(page)) {
2775 		err = mapping->a_ops->readpage(NULL, page);
2776 		if (err) {
2777 			page_cache_release(page);
2778 			goto out;
2779 		}
2780 		lock_page(page);
2781 		if (!PageUptodate(page)) {
2782 			err = -EIO;
2783 			goto unlock;
2784 		}
2785 		if (page_has_buffers(page))
2786 			goto has_buffers;
2787 	}
2788 	zero_user(page, offset, length);
2789 	set_page_dirty(page);
2790 	err = 0;
2791 
2792 unlock:
2793 	unlock_page(page);
2794 	page_cache_release(page);
2795 out:
2796 	return err;
2797 }
2798 EXPORT_SYMBOL(nobh_truncate_page);
2799 
2800 int block_truncate_page(struct address_space *mapping,
2801 			loff_t from, get_block_t *get_block)
2802 {
2803 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2804 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2805 	unsigned blocksize;
2806 	sector_t iblock;
2807 	unsigned length, pos;
2808 	struct inode *inode = mapping->host;
2809 	struct page *page;
2810 	struct buffer_head *bh;
2811 	int err;
2812 
2813 	blocksize = 1 << inode->i_blkbits;
2814 	length = offset & (blocksize - 1);
2815 
2816 	/* Block boundary? Nothing to do */
2817 	if (!length)
2818 		return 0;
2819 
2820 	length = blocksize - length;
2821 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2822 
2823 	page = grab_cache_page(mapping, index);
2824 	err = -ENOMEM;
2825 	if (!page)
2826 		goto out;
2827 
2828 	if (!page_has_buffers(page))
2829 		create_empty_buffers(page, blocksize, 0);
2830 
2831 	/* Find the buffer that contains "offset" */
2832 	bh = page_buffers(page);
2833 	pos = blocksize;
2834 	while (offset >= pos) {
2835 		bh = bh->b_this_page;
2836 		iblock++;
2837 		pos += blocksize;
2838 	}
2839 
2840 	err = 0;
2841 	if (!buffer_mapped(bh)) {
2842 		WARN_ON(bh->b_size != blocksize);
2843 		err = get_block(inode, iblock, bh, 0);
2844 		if (err)
2845 			goto unlock;
2846 		/* unmapped? It's a hole - nothing to do */
2847 		if (!buffer_mapped(bh))
2848 			goto unlock;
2849 	}
2850 
2851 	/* Ok, it's mapped. Make sure it's up-to-date */
2852 	if (PageUptodate(page))
2853 		set_buffer_uptodate(bh);
2854 
2855 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2856 		err = -EIO;
2857 		ll_rw_block(READ, 1, &bh);
2858 		wait_on_buffer(bh);
2859 		/* Uhhuh. Read error. Complain and punt. */
2860 		if (!buffer_uptodate(bh))
2861 			goto unlock;
2862 	}
2863 
2864 	zero_user(page, offset, length);
2865 	mark_buffer_dirty(bh);
2866 	err = 0;
2867 
2868 unlock:
2869 	unlock_page(page);
2870 	page_cache_release(page);
2871 out:
2872 	return err;
2873 }
2874 EXPORT_SYMBOL(block_truncate_page);
2875 
2876 /*
2877  * The generic ->writepage function for buffer-backed address_spaces
2878  */
2879 int block_write_full_page(struct page *page, get_block_t *get_block,
2880 			struct writeback_control *wbc)
2881 {
2882 	struct inode * const inode = page->mapping->host;
2883 	loff_t i_size = i_size_read(inode);
2884 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2885 	unsigned offset;
2886 
2887 	/* Is the page fully inside i_size? */
2888 	if (page->index < end_index)
2889 		return __block_write_full_page(inode, page, get_block, wbc,
2890 					       end_buffer_async_write);
2891 
2892 	/* Is the page fully outside i_size? (truncate in progress) */
2893 	offset = i_size & (PAGE_CACHE_SIZE-1);
2894 	if (page->index >= end_index+1 || !offset) {
2895 		/*
2896 		 * The page may have dirty, unmapped buffers.  For example,
2897 		 * they may have been added in ext3_writepage().  Make them
2898 		 * freeable here, so the page does not leak.
2899 		 */
2900 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2901 		unlock_page(page);
2902 		return 0; /* don't care */
2903 	}
2904 
2905 	/*
2906 	 * The page straddles i_size.  It must be zeroed out on each and every
2907 	 * writepage invocation because it may be mmapped.  "A file is mapped
2908 	 * in multiples of the page size.  For a file that is not a multiple of
2909 	 * the  page size, the remaining memory is zeroed when mapped, and
2910 	 * writes to that region are not written out to the file."
2911 	 */
2912 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2913 	return __block_write_full_page(inode, page, get_block, wbc,
2914 							end_buffer_async_write);
2915 }
2916 EXPORT_SYMBOL(block_write_full_page);
2917 
2918 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2919 			    get_block_t *get_block)
2920 {
2921 	struct buffer_head tmp;
2922 	struct inode *inode = mapping->host;
2923 	tmp.b_state = 0;
2924 	tmp.b_blocknr = 0;
2925 	tmp.b_size = 1 << inode->i_blkbits;
2926 	get_block(inode, block, &tmp, 0);
2927 	return tmp.b_blocknr;
2928 }
2929 EXPORT_SYMBOL(generic_block_bmap);
2930 
2931 static void end_bio_bh_io_sync(struct bio *bio)
2932 {
2933 	struct buffer_head *bh = bio->bi_private;
2934 
2935 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2936 		set_bit(BH_Quiet, &bh->b_state);
2937 
2938 	bh->b_end_io(bh, !bio->bi_error);
2939 	bio_put(bio);
2940 }
2941 
2942 /*
2943  * This allows us to do IO even on the odd last sectors
2944  * of a device, even if the block size is some multiple
2945  * of the physical sector size.
2946  *
2947  * We'll just truncate the bio to the size of the device,
2948  * and clear the end of the buffer head manually.
2949  *
2950  * Truly out-of-range accesses will turn into actual IO
2951  * errors, this only handles the "we need to be able to
2952  * do IO at the final sector" case.
2953  */
2954 void guard_bio_eod(int rw, struct bio *bio)
2955 {
2956 	sector_t maxsector;
2957 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2958 	unsigned truncated_bytes;
2959 
2960 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2961 	if (!maxsector)
2962 		return;
2963 
2964 	/*
2965 	 * If the *whole* IO is past the end of the device,
2966 	 * let it through, and the IO layer will turn it into
2967 	 * an EIO.
2968 	 */
2969 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2970 		return;
2971 
2972 	maxsector -= bio->bi_iter.bi_sector;
2973 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2974 		return;
2975 
2976 	/* Uhhuh. We've got a bio that straddles the device size! */
2977 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2978 
2979 	/* Truncate the bio.. */
2980 	bio->bi_iter.bi_size -= truncated_bytes;
2981 	bvec->bv_len -= truncated_bytes;
2982 
2983 	/* ..and clear the end of the buffer for reads */
2984 	if ((rw & RW_MASK) == READ) {
2985 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2986 				truncated_bytes);
2987 	}
2988 }
2989 
2990 static int submit_bh_wbc(int rw, struct buffer_head *bh,
2991 			 unsigned long bio_flags, struct writeback_control *wbc)
2992 {
2993 	struct bio *bio;
2994 
2995 	BUG_ON(!buffer_locked(bh));
2996 	BUG_ON(!buffer_mapped(bh));
2997 	BUG_ON(!bh->b_end_io);
2998 	BUG_ON(buffer_delay(bh));
2999 	BUG_ON(buffer_unwritten(bh));
3000 
3001 	/*
3002 	 * Only clear out a write error when rewriting
3003 	 */
3004 	if (test_set_buffer_req(bh) && (rw & WRITE))
3005 		clear_buffer_write_io_error(bh);
3006 
3007 	/*
3008 	 * from here on down, it's all bio -- do the initial mapping,
3009 	 * submit_bio -> generic_make_request may further map this bio around
3010 	 */
3011 	bio = bio_alloc(GFP_NOIO, 1);
3012 
3013 	if (wbc) {
3014 		wbc_init_bio(wbc, bio);
3015 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3016 	}
3017 
3018 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3019 	bio->bi_bdev = bh->b_bdev;
3020 
3021 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3022 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3023 
3024 	bio->bi_end_io = end_bio_bh_io_sync;
3025 	bio->bi_private = bh;
3026 	bio->bi_flags |= bio_flags;
3027 
3028 	/* Take care of bh's that straddle the end of the device */
3029 	guard_bio_eod(rw, bio);
3030 
3031 	if (buffer_meta(bh))
3032 		rw |= REQ_META;
3033 	if (buffer_prio(bh))
3034 		rw |= REQ_PRIO;
3035 
3036 	submit_bio(rw, bio);
3037 	return 0;
3038 }
3039 
3040 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3041 {
3042 	return submit_bh_wbc(rw, bh, bio_flags, NULL);
3043 }
3044 EXPORT_SYMBOL_GPL(_submit_bh);
3045 
3046 int submit_bh(int rw, struct buffer_head *bh)
3047 {
3048 	return submit_bh_wbc(rw, bh, 0, NULL);
3049 }
3050 EXPORT_SYMBOL(submit_bh);
3051 
3052 /**
3053  * ll_rw_block: low-level access to block devices (DEPRECATED)
3054  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3055  * @nr: number of &struct buffer_heads in the array
3056  * @bhs: array of pointers to &struct buffer_head
3057  *
3058  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3059  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3060  * %READA option is described in the documentation for generic_make_request()
3061  * which ll_rw_block() calls.
3062  *
3063  * This function drops any buffer that it cannot get a lock on (with the
3064  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3065  * request, and any buffer that appears to be up-to-date when doing read
3066  * request.  Further it marks as clean buffers that are processed for
3067  * writing (the buffer cache won't assume that they are actually clean
3068  * until the buffer gets unlocked).
3069  *
3070  * ll_rw_block sets b_end_io to simple completion handler that marks
3071  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3072  * any waiters.
3073  *
3074  * All of the buffers must be for the same device, and must also be a
3075  * multiple of the current approved size for the device.
3076  */
3077 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3078 {
3079 	int i;
3080 
3081 	for (i = 0; i < nr; i++) {
3082 		struct buffer_head *bh = bhs[i];
3083 
3084 		if (!trylock_buffer(bh))
3085 			continue;
3086 		if (rw == WRITE) {
3087 			if (test_clear_buffer_dirty(bh)) {
3088 				bh->b_end_io = end_buffer_write_sync;
3089 				get_bh(bh);
3090 				submit_bh(WRITE, bh);
3091 				continue;
3092 			}
3093 		} else {
3094 			if (!buffer_uptodate(bh)) {
3095 				bh->b_end_io = end_buffer_read_sync;
3096 				get_bh(bh);
3097 				submit_bh(rw, bh);
3098 				continue;
3099 			}
3100 		}
3101 		unlock_buffer(bh);
3102 	}
3103 }
3104 EXPORT_SYMBOL(ll_rw_block);
3105 
3106 void write_dirty_buffer(struct buffer_head *bh, int rw)
3107 {
3108 	lock_buffer(bh);
3109 	if (!test_clear_buffer_dirty(bh)) {
3110 		unlock_buffer(bh);
3111 		return;
3112 	}
3113 	bh->b_end_io = end_buffer_write_sync;
3114 	get_bh(bh);
3115 	submit_bh(rw, bh);
3116 }
3117 EXPORT_SYMBOL(write_dirty_buffer);
3118 
3119 /*
3120  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3121  * and then start new I/O and then wait upon it.  The caller must have a ref on
3122  * the buffer_head.
3123  */
3124 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3125 {
3126 	int ret = 0;
3127 
3128 	WARN_ON(atomic_read(&bh->b_count) < 1);
3129 	lock_buffer(bh);
3130 	if (test_clear_buffer_dirty(bh)) {
3131 		get_bh(bh);
3132 		bh->b_end_io = end_buffer_write_sync;
3133 		ret = submit_bh(rw, bh);
3134 		wait_on_buffer(bh);
3135 		if (!ret && !buffer_uptodate(bh))
3136 			ret = -EIO;
3137 	} else {
3138 		unlock_buffer(bh);
3139 	}
3140 	return ret;
3141 }
3142 EXPORT_SYMBOL(__sync_dirty_buffer);
3143 
3144 int sync_dirty_buffer(struct buffer_head *bh)
3145 {
3146 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3147 }
3148 EXPORT_SYMBOL(sync_dirty_buffer);
3149 
3150 /*
3151  * try_to_free_buffers() checks if all the buffers on this particular page
3152  * are unused, and releases them if so.
3153  *
3154  * Exclusion against try_to_free_buffers may be obtained by either
3155  * locking the page or by holding its mapping's private_lock.
3156  *
3157  * If the page is dirty but all the buffers are clean then we need to
3158  * be sure to mark the page clean as well.  This is because the page
3159  * may be against a block device, and a later reattachment of buffers
3160  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3161  * filesystem data on the same device.
3162  *
3163  * The same applies to regular filesystem pages: if all the buffers are
3164  * clean then we set the page clean and proceed.  To do that, we require
3165  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3166  * private_lock.
3167  *
3168  * try_to_free_buffers() is non-blocking.
3169  */
3170 static inline int buffer_busy(struct buffer_head *bh)
3171 {
3172 	return atomic_read(&bh->b_count) |
3173 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3174 }
3175 
3176 static int
3177 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3178 {
3179 	struct buffer_head *head = page_buffers(page);
3180 	struct buffer_head *bh;
3181 
3182 	bh = head;
3183 	do {
3184 		if (buffer_write_io_error(bh) && page->mapping)
3185 			set_bit(AS_EIO, &page->mapping->flags);
3186 		if (buffer_busy(bh))
3187 			goto failed;
3188 		bh = bh->b_this_page;
3189 	} while (bh != head);
3190 
3191 	do {
3192 		struct buffer_head *next = bh->b_this_page;
3193 
3194 		if (bh->b_assoc_map)
3195 			__remove_assoc_queue(bh);
3196 		bh = next;
3197 	} while (bh != head);
3198 	*buffers_to_free = head;
3199 	__clear_page_buffers(page);
3200 	return 1;
3201 failed:
3202 	return 0;
3203 }
3204 
3205 int try_to_free_buffers(struct page *page)
3206 {
3207 	struct address_space * const mapping = page->mapping;
3208 	struct buffer_head *buffers_to_free = NULL;
3209 	int ret = 0;
3210 
3211 	BUG_ON(!PageLocked(page));
3212 	if (PageWriteback(page))
3213 		return 0;
3214 
3215 	if (mapping == NULL) {		/* can this still happen? */
3216 		ret = drop_buffers(page, &buffers_to_free);
3217 		goto out;
3218 	}
3219 
3220 	spin_lock(&mapping->private_lock);
3221 	ret = drop_buffers(page, &buffers_to_free);
3222 
3223 	/*
3224 	 * If the filesystem writes its buffers by hand (eg ext3)
3225 	 * then we can have clean buffers against a dirty page.  We
3226 	 * clean the page here; otherwise the VM will never notice
3227 	 * that the filesystem did any IO at all.
3228 	 *
3229 	 * Also, during truncate, discard_buffer will have marked all
3230 	 * the page's buffers clean.  We discover that here and clean
3231 	 * the page also.
3232 	 *
3233 	 * private_lock must be held over this entire operation in order
3234 	 * to synchronise against __set_page_dirty_buffers and prevent the
3235 	 * dirty bit from being lost.
3236 	 */
3237 	if (ret)
3238 		cancel_dirty_page(page);
3239 	spin_unlock(&mapping->private_lock);
3240 out:
3241 	if (buffers_to_free) {
3242 		struct buffer_head *bh = buffers_to_free;
3243 
3244 		do {
3245 			struct buffer_head *next = bh->b_this_page;
3246 			free_buffer_head(bh);
3247 			bh = next;
3248 		} while (bh != buffers_to_free);
3249 	}
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL(try_to_free_buffers);
3253 
3254 /*
3255  * There are no bdflush tunables left.  But distributions are
3256  * still running obsolete flush daemons, so we terminate them here.
3257  *
3258  * Use of bdflush() is deprecated and will be removed in a future kernel.
3259  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3260  */
3261 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3262 {
3263 	static int msg_count;
3264 
3265 	if (!capable(CAP_SYS_ADMIN))
3266 		return -EPERM;
3267 
3268 	if (msg_count < 5) {
3269 		msg_count++;
3270 		printk(KERN_INFO
3271 			"warning: process `%s' used the obsolete bdflush"
3272 			" system call\n", current->comm);
3273 		printk(KERN_INFO "Fix your initscripts?\n");
3274 	}
3275 
3276 	if (func == 1)
3277 		do_exit(0);
3278 	return 0;
3279 }
3280 
3281 /*
3282  * Buffer-head allocation
3283  */
3284 static struct kmem_cache *bh_cachep __read_mostly;
3285 
3286 /*
3287  * Once the number of bh's in the machine exceeds this level, we start
3288  * stripping them in writeback.
3289  */
3290 static unsigned long max_buffer_heads;
3291 
3292 int buffer_heads_over_limit;
3293 
3294 struct bh_accounting {
3295 	int nr;			/* Number of live bh's */
3296 	int ratelimit;		/* Limit cacheline bouncing */
3297 };
3298 
3299 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3300 
3301 static void recalc_bh_state(void)
3302 {
3303 	int i;
3304 	int tot = 0;
3305 
3306 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3307 		return;
3308 	__this_cpu_write(bh_accounting.ratelimit, 0);
3309 	for_each_online_cpu(i)
3310 		tot += per_cpu(bh_accounting, i).nr;
3311 	buffer_heads_over_limit = (tot > max_buffer_heads);
3312 }
3313 
3314 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3315 {
3316 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3317 	if (ret) {
3318 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3319 		preempt_disable();
3320 		__this_cpu_inc(bh_accounting.nr);
3321 		recalc_bh_state();
3322 		preempt_enable();
3323 	}
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL(alloc_buffer_head);
3327 
3328 void free_buffer_head(struct buffer_head *bh)
3329 {
3330 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3331 	kmem_cache_free(bh_cachep, bh);
3332 	preempt_disable();
3333 	__this_cpu_dec(bh_accounting.nr);
3334 	recalc_bh_state();
3335 	preempt_enable();
3336 }
3337 EXPORT_SYMBOL(free_buffer_head);
3338 
3339 static void buffer_exit_cpu(int cpu)
3340 {
3341 	int i;
3342 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3343 
3344 	for (i = 0; i < BH_LRU_SIZE; i++) {
3345 		brelse(b->bhs[i]);
3346 		b->bhs[i] = NULL;
3347 	}
3348 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3349 	per_cpu(bh_accounting, cpu).nr = 0;
3350 }
3351 
3352 static int buffer_cpu_notify(struct notifier_block *self,
3353 			      unsigned long action, void *hcpu)
3354 {
3355 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3356 		buffer_exit_cpu((unsigned long)hcpu);
3357 	return NOTIFY_OK;
3358 }
3359 
3360 /**
3361  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3362  * @bh: struct buffer_head
3363  *
3364  * Return true if the buffer is up-to-date and false,
3365  * with the buffer locked, if not.
3366  */
3367 int bh_uptodate_or_lock(struct buffer_head *bh)
3368 {
3369 	if (!buffer_uptodate(bh)) {
3370 		lock_buffer(bh);
3371 		if (!buffer_uptodate(bh))
3372 			return 0;
3373 		unlock_buffer(bh);
3374 	}
3375 	return 1;
3376 }
3377 EXPORT_SYMBOL(bh_uptodate_or_lock);
3378 
3379 /**
3380  * bh_submit_read - Submit a locked buffer for reading
3381  * @bh: struct buffer_head
3382  *
3383  * Returns zero on success and -EIO on error.
3384  */
3385 int bh_submit_read(struct buffer_head *bh)
3386 {
3387 	BUG_ON(!buffer_locked(bh));
3388 
3389 	if (buffer_uptodate(bh)) {
3390 		unlock_buffer(bh);
3391 		return 0;
3392 	}
3393 
3394 	get_bh(bh);
3395 	bh->b_end_io = end_buffer_read_sync;
3396 	submit_bh(READ, bh);
3397 	wait_on_buffer(bh);
3398 	if (buffer_uptodate(bh))
3399 		return 0;
3400 	return -EIO;
3401 }
3402 EXPORT_SYMBOL(bh_submit_read);
3403 
3404 void __init buffer_init(void)
3405 {
3406 	unsigned long nrpages;
3407 
3408 	bh_cachep = kmem_cache_create("buffer_head",
3409 			sizeof(struct buffer_head), 0,
3410 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3411 				SLAB_MEM_SPREAD),
3412 				NULL);
3413 
3414 	/*
3415 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3416 	 */
3417 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3418 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3419 	hotcpu_notifier(buffer_cpu_notify, 0);
3420 }
3421