1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Add a page to the dirty page list. 593 * 594 * It is a sad fact of life that this function is called from several places 595 * deeply under spinlocking. It may not sleep. 596 * 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve 598 * dirty-state coherency between the page and the buffers. It the page does 599 * not have buffers then when they are later attached they will all be set 600 * dirty. 601 * 602 * The buffers are dirtied before the page is dirtied. There's a small race 603 * window in which a writepage caller may see the page cleanness but not the 604 * buffer dirtiness. That's fine. If this code were to set the page dirty 605 * before the buffers, a concurrent writepage caller could clear the page dirty 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 607 * page on the dirty page list. 608 * 609 * We use private_lock to lock against try_to_free_buffers while using the 610 * page's buffer list. Also use this to protect against clean buffers being 611 * added to the page after it was set dirty. 612 * 613 * FIXME: may need to call ->reservepage here as well. That's rather up to the 614 * address_space though. 615 */ 616 int __set_page_dirty_buffers(struct page *page) 617 { 618 int newly_dirty; 619 struct address_space *mapping = page_mapping(page); 620 621 if (unlikely(!mapping)) 622 return !TestSetPageDirty(page); 623 624 spin_lock(&mapping->private_lock); 625 if (page_has_buffers(page)) { 626 struct buffer_head *head = page_buffers(page); 627 struct buffer_head *bh = head; 628 629 do { 630 set_buffer_dirty(bh); 631 bh = bh->b_this_page; 632 } while (bh != head); 633 } 634 /* 635 * Lock out page's memcg migration to keep PageDirty 636 * synchronized with per-memcg dirty page counters. 637 */ 638 lock_page_memcg(page); 639 newly_dirty = !TestSetPageDirty(page); 640 spin_unlock(&mapping->private_lock); 641 642 if (newly_dirty) 643 __set_page_dirty(page, mapping, 1); 644 645 unlock_page_memcg(page); 646 647 if (newly_dirty) 648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 649 650 return newly_dirty; 651 } 652 EXPORT_SYMBOL(__set_page_dirty_buffers); 653 654 /* 655 * Write out and wait upon a list of buffers. 656 * 657 * We have conflicting pressures: we want to make sure that all 658 * initially dirty buffers get waited on, but that any subsequently 659 * dirtied buffers don't. After all, we don't want fsync to last 660 * forever if somebody is actively writing to the file. 661 * 662 * Do this in two main stages: first we copy dirty buffers to a 663 * temporary inode list, queueing the writes as we go. Then we clean 664 * up, waiting for those writes to complete. 665 * 666 * During this second stage, any subsequent updates to the file may end 667 * up refiling the buffer on the original inode's dirty list again, so 668 * there is a chance we will end up with a buffer queued for write but 669 * not yet completed on that list. So, as a final cleanup we go through 670 * the osync code to catch these locked, dirty buffers without requeuing 671 * any newly dirty buffers for write. 672 */ 673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 674 { 675 struct buffer_head *bh; 676 struct list_head tmp; 677 struct address_space *mapping; 678 int err = 0, err2; 679 struct blk_plug plug; 680 681 INIT_LIST_HEAD(&tmp); 682 blk_start_plug(&plug); 683 684 spin_lock(lock); 685 while (!list_empty(list)) { 686 bh = BH_ENTRY(list->next); 687 mapping = bh->b_assoc_map; 688 __remove_assoc_queue(bh); 689 /* Avoid race with mark_buffer_dirty_inode() which does 690 * a lockless check and we rely on seeing the dirty bit */ 691 smp_mb(); 692 if (buffer_dirty(bh) || buffer_locked(bh)) { 693 list_add(&bh->b_assoc_buffers, &tmp); 694 bh->b_assoc_map = mapping; 695 if (buffer_dirty(bh)) { 696 get_bh(bh); 697 spin_unlock(lock); 698 /* 699 * Ensure any pending I/O completes so that 700 * write_dirty_buffer() actually writes the 701 * current contents - it is a noop if I/O is 702 * still in flight on potentially older 703 * contents. 704 */ 705 write_dirty_buffer(bh, REQ_SYNC); 706 707 /* 708 * Kick off IO for the previous mapping. Note 709 * that we will not run the very last mapping, 710 * wait_on_buffer() will do that for us 711 * through sync_buffer(). 712 */ 713 brelse(bh); 714 spin_lock(lock); 715 } 716 } 717 } 718 719 spin_unlock(lock); 720 blk_finish_plug(&plug); 721 spin_lock(lock); 722 723 while (!list_empty(&tmp)) { 724 bh = BH_ENTRY(tmp.prev); 725 get_bh(bh); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh)) { 732 list_add(&bh->b_assoc_buffers, 733 &mapping->private_list); 734 bh->b_assoc_map = mapping; 735 } 736 spin_unlock(lock); 737 wait_on_buffer(bh); 738 if (!buffer_uptodate(bh)) 739 err = -EIO; 740 brelse(bh); 741 spin_lock(lock); 742 } 743 744 spin_unlock(lock); 745 err2 = osync_buffers_list(lock, list); 746 if (err) 747 return err; 748 else 749 return err2; 750 } 751 752 /* 753 * Invalidate any and all dirty buffers on a given inode. We are 754 * probably unmounting the fs, but that doesn't mean we have already 755 * done a sync(). Just drop the buffers from the inode list. 756 * 757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 758 * assumes that all the buffers are against the blockdev. Not true 759 * for reiserfs. 760 */ 761 void invalidate_inode_buffers(struct inode *inode) 762 { 763 if (inode_has_buffers(inode)) { 764 struct address_space *mapping = &inode->i_data; 765 struct list_head *list = &mapping->private_list; 766 struct address_space *buffer_mapping = mapping->private_data; 767 768 spin_lock(&buffer_mapping->private_lock); 769 while (!list_empty(list)) 770 __remove_assoc_queue(BH_ENTRY(list->next)); 771 spin_unlock(&buffer_mapping->private_lock); 772 } 773 } 774 EXPORT_SYMBOL(invalidate_inode_buffers); 775 776 /* 777 * Remove any clean buffers from the inode's buffer list. This is called 778 * when we're trying to free the inode itself. Those buffers can pin it. 779 * 780 * Returns true if all buffers were removed. 781 */ 782 int remove_inode_buffers(struct inode *inode) 783 { 784 int ret = 1; 785 786 if (inode_has_buffers(inode)) { 787 struct address_space *mapping = &inode->i_data; 788 struct list_head *list = &mapping->private_list; 789 struct address_space *buffer_mapping = mapping->private_data; 790 791 spin_lock(&buffer_mapping->private_lock); 792 while (!list_empty(list)) { 793 struct buffer_head *bh = BH_ENTRY(list->next); 794 if (buffer_dirty(bh)) { 795 ret = 0; 796 break; 797 } 798 __remove_assoc_queue(bh); 799 } 800 spin_unlock(&buffer_mapping->private_lock); 801 } 802 return ret; 803 } 804 805 /* 806 * Create the appropriate buffers when given a page for data area and 807 * the size of each buffer.. Use the bh->b_this_page linked list to 808 * follow the buffers created. Return NULL if unable to create more 809 * buffers. 810 * 811 * The retry flag is used to differentiate async IO (paging, swapping) 812 * which may not fail from ordinary buffer allocations. 813 */ 814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 815 bool retry) 816 { 817 struct buffer_head *bh, *head; 818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 819 long offset; 820 struct mem_cgroup *memcg, *old_memcg; 821 822 if (retry) 823 gfp |= __GFP_NOFAIL; 824 825 /* The page lock pins the memcg */ 826 memcg = page_memcg(page); 827 old_memcg = set_active_memcg(memcg); 828 829 head = NULL; 830 offset = PAGE_SIZE; 831 while ((offset -= size) >= 0) { 832 bh = alloc_buffer_head(gfp); 833 if (!bh) 834 goto no_grow; 835 836 bh->b_this_page = head; 837 bh->b_blocknr = -1; 838 head = bh; 839 840 bh->b_size = size; 841 842 /* Link the buffer to its page */ 843 set_bh_page(bh, page, offset); 844 } 845 out: 846 set_active_memcg(old_memcg); 847 return head; 848 /* 849 * In case anything failed, we just free everything we got. 850 */ 851 no_grow: 852 if (head) { 853 do { 854 bh = head; 855 head = head->b_this_page; 856 free_buffer_head(bh); 857 } while (head); 858 } 859 860 goto out; 861 } 862 EXPORT_SYMBOL_GPL(alloc_page_buffers); 863 864 static inline void 865 link_dev_buffers(struct page *page, struct buffer_head *head) 866 { 867 struct buffer_head *bh, *tail; 868 869 bh = head; 870 do { 871 tail = bh; 872 bh = bh->b_this_page; 873 } while (bh); 874 tail->b_this_page = head; 875 attach_page_private(page, head); 876 } 877 878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 879 { 880 sector_t retval = ~((sector_t)0); 881 loff_t sz = bdev_nr_bytes(bdev); 882 883 if (sz) { 884 unsigned int sizebits = blksize_bits(size); 885 retval = (sz >> sizebits); 886 } 887 return retval; 888 } 889 890 /* 891 * Initialise the state of a blockdev page's buffers. 892 */ 893 static sector_t 894 init_page_buffers(struct page *page, struct block_device *bdev, 895 sector_t block, int size) 896 { 897 struct buffer_head *head = page_buffers(page); 898 struct buffer_head *bh = head; 899 int uptodate = PageUptodate(page); 900 sector_t end_block = blkdev_max_block(bdev, size); 901 902 do { 903 if (!buffer_mapped(bh)) { 904 bh->b_end_io = NULL; 905 bh->b_private = NULL; 906 bh->b_bdev = bdev; 907 bh->b_blocknr = block; 908 if (uptodate) 909 set_buffer_uptodate(bh); 910 if (block < end_block) 911 set_buffer_mapped(bh); 912 } 913 block++; 914 bh = bh->b_this_page; 915 } while (bh != head); 916 917 /* 918 * Caller needs to validate requested block against end of device. 919 */ 920 return end_block; 921 } 922 923 /* 924 * Create the page-cache page that contains the requested block. 925 * 926 * This is used purely for blockdev mappings. 927 */ 928 static int 929 grow_dev_page(struct block_device *bdev, sector_t block, 930 pgoff_t index, int size, int sizebits, gfp_t gfp) 931 { 932 struct inode *inode = bdev->bd_inode; 933 struct page *page; 934 struct buffer_head *bh; 935 sector_t end_block; 936 int ret = 0; 937 gfp_t gfp_mask; 938 939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 940 941 /* 942 * XXX: __getblk_slow() can not really deal with failure and 943 * will endlessly loop on improvised global reclaim. Prefer 944 * looping in the allocator rather than here, at least that 945 * code knows what it's doing. 946 */ 947 gfp_mask |= __GFP_NOFAIL; 948 949 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 950 951 BUG_ON(!PageLocked(page)); 952 953 if (page_has_buffers(page)) { 954 bh = page_buffers(page); 955 if (bh->b_size == size) { 956 end_block = init_page_buffers(page, bdev, 957 (sector_t)index << sizebits, 958 size); 959 goto done; 960 } 961 if (!try_to_free_buffers(page)) 962 goto failed; 963 } 964 965 /* 966 * Allocate some buffers for this page 967 */ 968 bh = alloc_page_buffers(page, size, true); 969 970 /* 971 * Link the page to the buffers and initialise them. Take the 972 * lock to be atomic wrt __find_get_block(), which does not 973 * run under the page lock. 974 */ 975 spin_lock(&inode->i_mapping->private_lock); 976 link_dev_buffers(page, bh); 977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 978 size); 979 spin_unlock(&inode->i_mapping->private_lock); 980 done: 981 ret = (block < end_block) ? 1 : -ENXIO; 982 failed: 983 unlock_page(page); 984 put_page(page); 985 return ret; 986 } 987 988 /* 989 * Create buffers for the specified block device block's page. If 990 * that page was dirty, the buffers are set dirty also. 991 */ 992 static int 993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 994 { 995 pgoff_t index; 996 int sizebits; 997 998 sizebits = PAGE_SHIFT - __ffs(size); 999 index = block >> sizebits; 1000 1001 /* 1002 * Check for a block which wants to lie outside our maximum possible 1003 * pagecache index. (this comparison is done using sector_t types). 1004 */ 1005 if (unlikely(index != block >> sizebits)) { 1006 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1007 "device %pg\n", 1008 __func__, (unsigned long long)block, 1009 bdev); 1010 return -EIO; 1011 } 1012 1013 /* Create a page with the proper size buffers.. */ 1014 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1015 } 1016 1017 static struct buffer_head * 1018 __getblk_slow(struct block_device *bdev, sector_t block, 1019 unsigned size, gfp_t gfp) 1020 { 1021 /* Size must be multiple of hard sectorsize */ 1022 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1023 (size < 512 || size > PAGE_SIZE))) { 1024 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1025 size); 1026 printk(KERN_ERR "logical block size: %d\n", 1027 bdev_logical_block_size(bdev)); 1028 1029 dump_stack(); 1030 return NULL; 1031 } 1032 1033 for (;;) { 1034 struct buffer_head *bh; 1035 int ret; 1036 1037 bh = __find_get_block(bdev, block, size); 1038 if (bh) 1039 return bh; 1040 1041 ret = grow_buffers(bdev, block, size, gfp); 1042 if (ret < 0) 1043 return NULL; 1044 } 1045 } 1046 1047 /* 1048 * The relationship between dirty buffers and dirty pages: 1049 * 1050 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1051 * the page is tagged dirty in the page cache. 1052 * 1053 * At all times, the dirtiness of the buffers represents the dirtiness of 1054 * subsections of the page. If the page has buffers, the page dirty bit is 1055 * merely a hint about the true dirty state. 1056 * 1057 * When a page is set dirty in its entirety, all its buffers are marked dirty 1058 * (if the page has buffers). 1059 * 1060 * When a buffer is marked dirty, its page is dirtied, but the page's other 1061 * buffers are not. 1062 * 1063 * Also. When blockdev buffers are explicitly read with bread(), they 1064 * individually become uptodate. But their backing page remains not 1065 * uptodate - even if all of its buffers are uptodate. A subsequent 1066 * block_read_full_page() against that page will discover all the uptodate 1067 * buffers, will set the page uptodate and will perform no I/O. 1068 */ 1069 1070 /** 1071 * mark_buffer_dirty - mark a buffer_head as needing writeout 1072 * @bh: the buffer_head to mark dirty 1073 * 1074 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1075 * its backing page dirty, then tag the page as dirty in the page cache 1076 * and then attach the address_space's inode to its superblock's dirty 1077 * inode list. 1078 * 1079 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1080 * i_pages lock and mapping->host->i_lock. 1081 */ 1082 void mark_buffer_dirty(struct buffer_head *bh) 1083 { 1084 WARN_ON_ONCE(!buffer_uptodate(bh)); 1085 1086 trace_block_dirty_buffer(bh); 1087 1088 /* 1089 * Very *carefully* optimize the it-is-already-dirty case. 1090 * 1091 * Don't let the final "is it dirty" escape to before we 1092 * perhaps modified the buffer. 1093 */ 1094 if (buffer_dirty(bh)) { 1095 smp_mb(); 1096 if (buffer_dirty(bh)) 1097 return; 1098 } 1099 1100 if (!test_set_buffer_dirty(bh)) { 1101 struct page *page = bh->b_page; 1102 struct address_space *mapping = NULL; 1103 1104 lock_page_memcg(page); 1105 if (!TestSetPageDirty(page)) { 1106 mapping = page_mapping(page); 1107 if (mapping) 1108 __set_page_dirty(page, mapping, 0); 1109 } 1110 unlock_page_memcg(page); 1111 if (mapping) 1112 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1113 } 1114 } 1115 EXPORT_SYMBOL(mark_buffer_dirty); 1116 1117 void mark_buffer_write_io_error(struct buffer_head *bh) 1118 { 1119 struct super_block *sb; 1120 1121 set_buffer_write_io_error(bh); 1122 /* FIXME: do we need to set this in both places? */ 1123 if (bh->b_page && bh->b_page->mapping) 1124 mapping_set_error(bh->b_page->mapping, -EIO); 1125 if (bh->b_assoc_map) 1126 mapping_set_error(bh->b_assoc_map, -EIO); 1127 rcu_read_lock(); 1128 sb = READ_ONCE(bh->b_bdev->bd_super); 1129 if (sb) 1130 errseq_set(&sb->s_wb_err, -EIO); 1131 rcu_read_unlock(); 1132 } 1133 EXPORT_SYMBOL(mark_buffer_write_io_error); 1134 1135 /* 1136 * Decrement a buffer_head's reference count. If all buffers against a page 1137 * have zero reference count, are clean and unlocked, and if the page is clean 1138 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1139 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1140 * a page but it ends up not being freed, and buffers may later be reattached). 1141 */ 1142 void __brelse(struct buffer_head * buf) 1143 { 1144 if (atomic_read(&buf->b_count)) { 1145 put_bh(buf); 1146 return; 1147 } 1148 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1149 } 1150 EXPORT_SYMBOL(__brelse); 1151 1152 /* 1153 * bforget() is like brelse(), except it discards any 1154 * potentially dirty data. 1155 */ 1156 void __bforget(struct buffer_head *bh) 1157 { 1158 clear_buffer_dirty(bh); 1159 if (bh->b_assoc_map) { 1160 struct address_space *buffer_mapping = bh->b_page->mapping; 1161 1162 spin_lock(&buffer_mapping->private_lock); 1163 list_del_init(&bh->b_assoc_buffers); 1164 bh->b_assoc_map = NULL; 1165 spin_unlock(&buffer_mapping->private_lock); 1166 } 1167 __brelse(bh); 1168 } 1169 EXPORT_SYMBOL(__bforget); 1170 1171 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1172 { 1173 lock_buffer(bh); 1174 if (buffer_uptodate(bh)) { 1175 unlock_buffer(bh); 1176 return bh; 1177 } else { 1178 get_bh(bh); 1179 bh->b_end_io = end_buffer_read_sync; 1180 submit_bh(REQ_OP_READ, 0, bh); 1181 wait_on_buffer(bh); 1182 if (buffer_uptodate(bh)) 1183 return bh; 1184 } 1185 brelse(bh); 1186 return NULL; 1187 } 1188 1189 /* 1190 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1191 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1192 * refcount elevated by one when they're in an LRU. A buffer can only appear 1193 * once in a particular CPU's LRU. A single buffer can be present in multiple 1194 * CPU's LRUs at the same time. 1195 * 1196 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1197 * sb_find_get_block(). 1198 * 1199 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1200 * a local interrupt disable for that. 1201 */ 1202 1203 #define BH_LRU_SIZE 16 1204 1205 struct bh_lru { 1206 struct buffer_head *bhs[BH_LRU_SIZE]; 1207 }; 1208 1209 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1210 1211 #ifdef CONFIG_SMP 1212 #define bh_lru_lock() local_irq_disable() 1213 #define bh_lru_unlock() local_irq_enable() 1214 #else 1215 #define bh_lru_lock() preempt_disable() 1216 #define bh_lru_unlock() preempt_enable() 1217 #endif 1218 1219 static inline void check_irqs_on(void) 1220 { 1221 #ifdef irqs_disabled 1222 BUG_ON(irqs_disabled()); 1223 #endif 1224 } 1225 1226 /* 1227 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1228 * inserted at the front, and the buffer_head at the back if any is evicted. 1229 * Or, if already in the LRU it is moved to the front. 1230 */ 1231 static void bh_lru_install(struct buffer_head *bh) 1232 { 1233 struct buffer_head *evictee = bh; 1234 struct bh_lru *b; 1235 int i; 1236 1237 check_irqs_on(); 1238 bh_lru_lock(); 1239 1240 /* 1241 * the refcount of buffer_head in bh_lru prevents dropping the 1242 * attached page(i.e., try_to_free_buffers) so it could cause 1243 * failing page migration. 1244 * Skip putting upcoming bh into bh_lru until migration is done. 1245 */ 1246 if (lru_cache_disabled()) { 1247 bh_lru_unlock(); 1248 return; 1249 } 1250 1251 b = this_cpu_ptr(&bh_lrus); 1252 for (i = 0; i < BH_LRU_SIZE; i++) { 1253 swap(evictee, b->bhs[i]); 1254 if (evictee == bh) { 1255 bh_lru_unlock(); 1256 return; 1257 } 1258 } 1259 1260 get_bh(bh); 1261 bh_lru_unlock(); 1262 brelse(evictee); 1263 } 1264 1265 /* 1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1267 */ 1268 static struct buffer_head * 1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1270 { 1271 struct buffer_head *ret = NULL; 1272 unsigned int i; 1273 1274 check_irqs_on(); 1275 bh_lru_lock(); 1276 for (i = 0; i < BH_LRU_SIZE; i++) { 1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1278 1279 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1280 bh->b_size == size) { 1281 if (i) { 1282 while (i) { 1283 __this_cpu_write(bh_lrus.bhs[i], 1284 __this_cpu_read(bh_lrus.bhs[i - 1])); 1285 i--; 1286 } 1287 __this_cpu_write(bh_lrus.bhs[0], bh); 1288 } 1289 get_bh(bh); 1290 ret = bh; 1291 break; 1292 } 1293 } 1294 bh_lru_unlock(); 1295 return ret; 1296 } 1297 1298 /* 1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1300 * it in the LRU and mark it as accessed. If it is not present then return 1301 * NULL 1302 */ 1303 struct buffer_head * 1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1305 { 1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1307 1308 if (bh == NULL) { 1309 /* __find_get_block_slow will mark the page accessed */ 1310 bh = __find_get_block_slow(bdev, block); 1311 if (bh) 1312 bh_lru_install(bh); 1313 } else 1314 touch_buffer(bh); 1315 1316 return bh; 1317 } 1318 EXPORT_SYMBOL(__find_get_block); 1319 1320 /* 1321 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1322 * which corresponds to the passed block_device, block and size. The 1323 * returned buffer has its reference count incremented. 1324 * 1325 * __getblk_gfp() will lock up the machine if grow_dev_page's 1326 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1327 */ 1328 struct buffer_head * 1329 __getblk_gfp(struct block_device *bdev, sector_t block, 1330 unsigned size, gfp_t gfp) 1331 { 1332 struct buffer_head *bh = __find_get_block(bdev, block, size); 1333 1334 might_sleep(); 1335 if (bh == NULL) 1336 bh = __getblk_slow(bdev, block, size, gfp); 1337 return bh; 1338 } 1339 EXPORT_SYMBOL(__getblk_gfp); 1340 1341 /* 1342 * Do async read-ahead on a buffer.. 1343 */ 1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = __getblk(bdev, block, size); 1347 if (likely(bh)) { 1348 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1349 brelse(bh); 1350 } 1351 } 1352 EXPORT_SYMBOL(__breadahead); 1353 1354 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1355 gfp_t gfp) 1356 { 1357 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1358 if (likely(bh)) { 1359 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1360 brelse(bh); 1361 } 1362 } 1363 EXPORT_SYMBOL(__breadahead_gfp); 1364 1365 /** 1366 * __bread_gfp() - reads a specified block and returns the bh 1367 * @bdev: the block_device to read from 1368 * @block: number of block 1369 * @size: size (in bytes) to read 1370 * @gfp: page allocation flag 1371 * 1372 * Reads a specified block, and returns buffer head that contains it. 1373 * The page cache can be allocated from non-movable area 1374 * not to prevent page migration if you set gfp to zero. 1375 * It returns NULL if the block was unreadable. 1376 */ 1377 struct buffer_head * 1378 __bread_gfp(struct block_device *bdev, sector_t block, 1379 unsigned size, gfp_t gfp) 1380 { 1381 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1382 1383 if (likely(bh) && !buffer_uptodate(bh)) 1384 bh = __bread_slow(bh); 1385 return bh; 1386 } 1387 EXPORT_SYMBOL(__bread_gfp); 1388 1389 static void __invalidate_bh_lrus(struct bh_lru *b) 1390 { 1391 int i; 1392 1393 for (i = 0; i < BH_LRU_SIZE; i++) { 1394 brelse(b->bhs[i]); 1395 b->bhs[i] = NULL; 1396 } 1397 } 1398 /* 1399 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1400 * This doesn't race because it runs in each cpu either in irq 1401 * or with preempt disabled. 1402 */ 1403 static void invalidate_bh_lru(void *arg) 1404 { 1405 struct bh_lru *b = &get_cpu_var(bh_lrus); 1406 1407 __invalidate_bh_lrus(b); 1408 put_cpu_var(bh_lrus); 1409 } 1410 1411 bool has_bh_in_lru(int cpu, void *dummy) 1412 { 1413 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1414 int i; 1415 1416 for (i = 0; i < BH_LRU_SIZE; i++) { 1417 if (b->bhs[i]) 1418 return true; 1419 } 1420 1421 return false; 1422 } 1423 1424 void invalidate_bh_lrus(void) 1425 { 1426 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1427 } 1428 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1429 1430 /* 1431 * It's called from workqueue context so we need a bh_lru_lock to close 1432 * the race with preemption/irq. 1433 */ 1434 void invalidate_bh_lrus_cpu(void) 1435 { 1436 struct bh_lru *b; 1437 1438 bh_lru_lock(); 1439 b = this_cpu_ptr(&bh_lrus); 1440 __invalidate_bh_lrus(b); 1441 bh_lru_unlock(); 1442 } 1443 1444 void set_bh_page(struct buffer_head *bh, 1445 struct page *page, unsigned long offset) 1446 { 1447 bh->b_page = page; 1448 BUG_ON(offset >= PAGE_SIZE); 1449 if (PageHighMem(page)) 1450 /* 1451 * This catches illegal uses and preserves the offset: 1452 */ 1453 bh->b_data = (char *)(0 + offset); 1454 else 1455 bh->b_data = page_address(page) + offset; 1456 } 1457 EXPORT_SYMBOL(set_bh_page); 1458 1459 /* 1460 * Called when truncating a buffer on a page completely. 1461 */ 1462 1463 /* Bits that are cleared during an invalidate */ 1464 #define BUFFER_FLAGS_DISCARD \ 1465 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1466 1 << BH_Delay | 1 << BH_Unwritten) 1467 1468 static void discard_buffer(struct buffer_head * bh) 1469 { 1470 unsigned long b_state, b_state_old; 1471 1472 lock_buffer(bh); 1473 clear_buffer_dirty(bh); 1474 bh->b_bdev = NULL; 1475 b_state = bh->b_state; 1476 for (;;) { 1477 b_state_old = cmpxchg(&bh->b_state, b_state, 1478 (b_state & ~BUFFER_FLAGS_DISCARD)); 1479 if (b_state_old == b_state) 1480 break; 1481 b_state = b_state_old; 1482 } 1483 unlock_buffer(bh); 1484 } 1485 1486 /** 1487 * block_invalidatepage - invalidate part or all of a buffer-backed page 1488 * 1489 * @page: the page which is affected 1490 * @offset: start of the range to invalidate 1491 * @length: length of the range to invalidate 1492 * 1493 * block_invalidatepage() is called when all or part of the page has become 1494 * invalidated by a truncate operation. 1495 * 1496 * block_invalidatepage() does not have to release all buffers, but it must 1497 * ensure that no dirty buffer is left outside @offset and that no I/O 1498 * is underway against any of the blocks which are outside the truncation 1499 * point. Because the caller is about to free (and possibly reuse) those 1500 * blocks on-disk. 1501 */ 1502 void block_invalidatepage(struct page *page, unsigned int offset, 1503 unsigned int length) 1504 { 1505 struct buffer_head *head, *bh, *next; 1506 unsigned int curr_off = 0; 1507 unsigned int stop = length + offset; 1508 1509 BUG_ON(!PageLocked(page)); 1510 if (!page_has_buffers(page)) 1511 goto out; 1512 1513 /* 1514 * Check for overflow 1515 */ 1516 BUG_ON(stop > PAGE_SIZE || stop < length); 1517 1518 head = page_buffers(page); 1519 bh = head; 1520 do { 1521 unsigned int next_off = curr_off + bh->b_size; 1522 next = bh->b_this_page; 1523 1524 /* 1525 * Are we still fully in range ? 1526 */ 1527 if (next_off > stop) 1528 goto out; 1529 1530 /* 1531 * is this block fully invalidated? 1532 */ 1533 if (offset <= curr_off) 1534 discard_buffer(bh); 1535 curr_off = next_off; 1536 bh = next; 1537 } while (bh != head); 1538 1539 /* 1540 * We release buffers only if the entire page is being invalidated. 1541 * The get_block cached value has been unconditionally invalidated, 1542 * so real IO is not possible anymore. 1543 */ 1544 if (length == PAGE_SIZE) 1545 try_to_release_page(page, 0); 1546 out: 1547 return; 1548 } 1549 EXPORT_SYMBOL(block_invalidatepage); 1550 1551 1552 /* 1553 * We attach and possibly dirty the buffers atomically wrt 1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1555 * is already excluded via the page lock. 1556 */ 1557 void create_empty_buffers(struct page *page, 1558 unsigned long blocksize, unsigned long b_state) 1559 { 1560 struct buffer_head *bh, *head, *tail; 1561 1562 head = alloc_page_buffers(page, blocksize, true); 1563 bh = head; 1564 do { 1565 bh->b_state |= b_state; 1566 tail = bh; 1567 bh = bh->b_this_page; 1568 } while (bh); 1569 tail->b_this_page = head; 1570 1571 spin_lock(&page->mapping->private_lock); 1572 if (PageUptodate(page) || PageDirty(page)) { 1573 bh = head; 1574 do { 1575 if (PageDirty(page)) 1576 set_buffer_dirty(bh); 1577 if (PageUptodate(page)) 1578 set_buffer_uptodate(bh); 1579 bh = bh->b_this_page; 1580 } while (bh != head); 1581 } 1582 attach_page_private(page, head); 1583 spin_unlock(&page->mapping->private_lock); 1584 } 1585 EXPORT_SYMBOL(create_empty_buffers); 1586 1587 /** 1588 * clean_bdev_aliases: clean a range of buffers in block device 1589 * @bdev: Block device to clean buffers in 1590 * @block: Start of a range of blocks to clean 1591 * @len: Number of blocks to clean 1592 * 1593 * We are taking a range of blocks for data and we don't want writeback of any 1594 * buffer-cache aliases starting from return from this function and until the 1595 * moment when something will explicitly mark the buffer dirty (hopefully that 1596 * will not happen until we will free that block ;-) We don't even need to mark 1597 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1598 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1599 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1600 * would confuse anyone who might pick it with bread() afterwards... 1601 * 1602 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1603 * writeout I/O going on against recently-freed buffers. We don't wait on that 1604 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1605 * need to. That happens here. 1606 */ 1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1608 { 1609 struct inode *bd_inode = bdev->bd_inode; 1610 struct address_space *bd_mapping = bd_inode->i_mapping; 1611 struct pagevec pvec; 1612 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1613 pgoff_t end; 1614 int i, count; 1615 struct buffer_head *bh; 1616 struct buffer_head *head; 1617 1618 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1619 pagevec_init(&pvec); 1620 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1621 count = pagevec_count(&pvec); 1622 for (i = 0; i < count; i++) { 1623 struct page *page = pvec.pages[i]; 1624 1625 if (!page_has_buffers(page)) 1626 continue; 1627 /* 1628 * We use page lock instead of bd_mapping->private_lock 1629 * to pin buffers here since we can afford to sleep and 1630 * it scales better than a global spinlock lock. 1631 */ 1632 lock_page(page); 1633 /* Recheck when the page is locked which pins bhs */ 1634 if (!page_has_buffers(page)) 1635 goto unlock_page; 1636 head = page_buffers(page); 1637 bh = head; 1638 do { 1639 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1640 goto next; 1641 if (bh->b_blocknr >= block + len) 1642 break; 1643 clear_buffer_dirty(bh); 1644 wait_on_buffer(bh); 1645 clear_buffer_req(bh); 1646 next: 1647 bh = bh->b_this_page; 1648 } while (bh != head); 1649 unlock_page: 1650 unlock_page(page); 1651 } 1652 pagevec_release(&pvec); 1653 cond_resched(); 1654 /* End of range already reached? */ 1655 if (index > end || !index) 1656 break; 1657 } 1658 } 1659 EXPORT_SYMBOL(clean_bdev_aliases); 1660 1661 /* 1662 * Size is a power-of-two in the range 512..PAGE_SIZE, 1663 * and the case we care about most is PAGE_SIZE. 1664 * 1665 * So this *could* possibly be written with those 1666 * constraints in mind (relevant mostly if some 1667 * architecture has a slow bit-scan instruction) 1668 */ 1669 static inline int block_size_bits(unsigned int blocksize) 1670 { 1671 return ilog2(blocksize); 1672 } 1673 1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1675 { 1676 BUG_ON(!PageLocked(page)); 1677 1678 if (!page_has_buffers(page)) 1679 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1680 b_state); 1681 return page_buffers(page); 1682 } 1683 1684 /* 1685 * NOTE! All mapped/uptodate combinations are valid: 1686 * 1687 * Mapped Uptodate Meaning 1688 * 1689 * No No "unknown" - must do get_block() 1690 * No Yes "hole" - zero-filled 1691 * Yes No "allocated" - allocated on disk, not read in 1692 * Yes Yes "valid" - allocated and up-to-date in memory. 1693 * 1694 * "Dirty" is valid only with the last case (mapped+uptodate). 1695 */ 1696 1697 /* 1698 * While block_write_full_page is writing back the dirty buffers under 1699 * the page lock, whoever dirtied the buffers may decide to clean them 1700 * again at any time. We handle that by only looking at the buffer 1701 * state inside lock_buffer(). 1702 * 1703 * If block_write_full_page() is called for regular writeback 1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1705 * locked buffer. This only can happen if someone has written the buffer 1706 * directly, with submit_bh(). At the address_space level PageWriteback 1707 * prevents this contention from occurring. 1708 * 1709 * If block_write_full_page() is called with wbc->sync_mode == 1710 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1711 * causes the writes to be flagged as synchronous writes. 1712 */ 1713 int __block_write_full_page(struct inode *inode, struct page *page, 1714 get_block_t *get_block, struct writeback_control *wbc, 1715 bh_end_io_t *handler) 1716 { 1717 int err; 1718 sector_t block; 1719 sector_t last_block; 1720 struct buffer_head *bh, *head; 1721 unsigned int blocksize, bbits; 1722 int nr_underway = 0; 1723 int write_flags = wbc_to_write_flags(wbc); 1724 1725 head = create_page_buffers(page, inode, 1726 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1727 1728 /* 1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1730 * here, and the (potentially unmapped) buffers may become dirty at 1731 * any time. If a buffer becomes dirty here after we've inspected it 1732 * then we just miss that fact, and the page stays dirty. 1733 * 1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1735 * handle that here by just cleaning them. 1736 */ 1737 1738 bh = head; 1739 blocksize = bh->b_size; 1740 bbits = block_size_bits(blocksize); 1741 1742 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1743 last_block = (i_size_read(inode) - 1) >> bbits; 1744 1745 /* 1746 * Get all the dirty buffers mapped to disk addresses and 1747 * handle any aliases from the underlying blockdev's mapping. 1748 */ 1749 do { 1750 if (block > last_block) { 1751 /* 1752 * mapped buffers outside i_size will occur, because 1753 * this page can be outside i_size when there is a 1754 * truncate in progress. 1755 */ 1756 /* 1757 * The buffer was zeroed by block_write_full_page() 1758 */ 1759 clear_buffer_dirty(bh); 1760 set_buffer_uptodate(bh); 1761 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1762 buffer_dirty(bh)) { 1763 WARN_ON(bh->b_size != blocksize); 1764 err = get_block(inode, block, bh, 1); 1765 if (err) 1766 goto recover; 1767 clear_buffer_delay(bh); 1768 if (buffer_new(bh)) { 1769 /* blockdev mappings never come here */ 1770 clear_buffer_new(bh); 1771 clean_bdev_bh_alias(bh); 1772 } 1773 } 1774 bh = bh->b_this_page; 1775 block++; 1776 } while (bh != head); 1777 1778 do { 1779 if (!buffer_mapped(bh)) 1780 continue; 1781 /* 1782 * If it's a fully non-blocking write attempt and we cannot 1783 * lock the buffer then redirty the page. Note that this can 1784 * potentially cause a busy-wait loop from writeback threads 1785 * and kswapd activity, but those code paths have their own 1786 * higher-level throttling. 1787 */ 1788 if (wbc->sync_mode != WB_SYNC_NONE) { 1789 lock_buffer(bh); 1790 } else if (!trylock_buffer(bh)) { 1791 redirty_page_for_writepage(wbc, page); 1792 continue; 1793 } 1794 if (test_clear_buffer_dirty(bh)) { 1795 mark_buffer_async_write_endio(bh, handler); 1796 } else { 1797 unlock_buffer(bh); 1798 } 1799 } while ((bh = bh->b_this_page) != head); 1800 1801 /* 1802 * The page and its buffers are protected by PageWriteback(), so we can 1803 * drop the bh refcounts early. 1804 */ 1805 BUG_ON(PageWriteback(page)); 1806 set_page_writeback(page); 1807 1808 do { 1809 struct buffer_head *next = bh->b_this_page; 1810 if (buffer_async_write(bh)) { 1811 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1812 inode->i_write_hint, wbc); 1813 nr_underway++; 1814 } 1815 bh = next; 1816 } while (bh != head); 1817 unlock_page(page); 1818 1819 err = 0; 1820 done: 1821 if (nr_underway == 0) { 1822 /* 1823 * The page was marked dirty, but the buffers were 1824 * clean. Someone wrote them back by hand with 1825 * ll_rw_block/submit_bh. A rare case. 1826 */ 1827 end_page_writeback(page); 1828 1829 /* 1830 * The page and buffer_heads can be released at any time from 1831 * here on. 1832 */ 1833 } 1834 return err; 1835 1836 recover: 1837 /* 1838 * ENOSPC, or some other error. We may already have added some 1839 * blocks to the file, so we need to write these out to avoid 1840 * exposing stale data. 1841 * The page is currently locked and not marked for writeback 1842 */ 1843 bh = head; 1844 /* Recovery: lock and submit the mapped buffers */ 1845 do { 1846 if (buffer_mapped(bh) && buffer_dirty(bh) && 1847 !buffer_delay(bh)) { 1848 lock_buffer(bh); 1849 mark_buffer_async_write_endio(bh, handler); 1850 } else { 1851 /* 1852 * The buffer may have been set dirty during 1853 * attachment to a dirty page. 1854 */ 1855 clear_buffer_dirty(bh); 1856 } 1857 } while ((bh = bh->b_this_page) != head); 1858 SetPageError(page); 1859 BUG_ON(PageWriteback(page)); 1860 mapping_set_error(page->mapping, err); 1861 set_page_writeback(page); 1862 do { 1863 struct buffer_head *next = bh->b_this_page; 1864 if (buffer_async_write(bh)) { 1865 clear_buffer_dirty(bh); 1866 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1867 inode->i_write_hint, wbc); 1868 nr_underway++; 1869 } 1870 bh = next; 1871 } while (bh != head); 1872 unlock_page(page); 1873 goto done; 1874 } 1875 EXPORT_SYMBOL(__block_write_full_page); 1876 1877 /* 1878 * If a page has any new buffers, zero them out here, and mark them uptodate 1879 * and dirty so they'll be written out (in order to prevent uninitialised 1880 * block data from leaking). And clear the new bit. 1881 */ 1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1883 { 1884 unsigned int block_start, block_end; 1885 struct buffer_head *head, *bh; 1886 1887 BUG_ON(!PageLocked(page)); 1888 if (!page_has_buffers(page)) 1889 return; 1890 1891 bh = head = page_buffers(page); 1892 block_start = 0; 1893 do { 1894 block_end = block_start + bh->b_size; 1895 1896 if (buffer_new(bh)) { 1897 if (block_end > from && block_start < to) { 1898 if (!PageUptodate(page)) { 1899 unsigned start, size; 1900 1901 start = max(from, block_start); 1902 size = min(to, block_end) - start; 1903 1904 zero_user(page, start, size); 1905 set_buffer_uptodate(bh); 1906 } 1907 1908 clear_buffer_new(bh); 1909 mark_buffer_dirty(bh); 1910 } 1911 } 1912 1913 block_start = block_end; 1914 bh = bh->b_this_page; 1915 } while (bh != head); 1916 } 1917 EXPORT_SYMBOL(page_zero_new_buffers); 1918 1919 static void 1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1921 const struct iomap *iomap) 1922 { 1923 loff_t offset = block << inode->i_blkbits; 1924 1925 bh->b_bdev = iomap->bdev; 1926 1927 /* 1928 * Block points to offset in file we need to map, iomap contains 1929 * the offset at which the map starts. If the map ends before the 1930 * current block, then do not map the buffer and let the caller 1931 * handle it. 1932 */ 1933 BUG_ON(offset >= iomap->offset + iomap->length); 1934 1935 switch (iomap->type) { 1936 case IOMAP_HOLE: 1937 /* 1938 * If the buffer is not up to date or beyond the current EOF, 1939 * we need to mark it as new to ensure sub-block zeroing is 1940 * executed if necessary. 1941 */ 1942 if (!buffer_uptodate(bh) || 1943 (offset >= i_size_read(inode))) 1944 set_buffer_new(bh); 1945 break; 1946 case IOMAP_DELALLOC: 1947 if (!buffer_uptodate(bh) || 1948 (offset >= i_size_read(inode))) 1949 set_buffer_new(bh); 1950 set_buffer_uptodate(bh); 1951 set_buffer_mapped(bh); 1952 set_buffer_delay(bh); 1953 break; 1954 case IOMAP_UNWRITTEN: 1955 /* 1956 * For unwritten regions, we always need to ensure that regions 1957 * in the block we are not writing to are zeroed. Mark the 1958 * buffer as new to ensure this. 1959 */ 1960 set_buffer_new(bh); 1961 set_buffer_unwritten(bh); 1962 fallthrough; 1963 case IOMAP_MAPPED: 1964 if ((iomap->flags & IOMAP_F_NEW) || 1965 offset >= i_size_read(inode)) 1966 set_buffer_new(bh); 1967 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1968 inode->i_blkbits; 1969 set_buffer_mapped(bh); 1970 break; 1971 } 1972 } 1973 1974 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 1975 get_block_t *get_block, const struct iomap *iomap) 1976 { 1977 unsigned from = pos & (PAGE_SIZE - 1); 1978 unsigned to = from + len; 1979 struct inode *inode = folio->mapping->host; 1980 unsigned block_start, block_end; 1981 sector_t block; 1982 int err = 0; 1983 unsigned blocksize, bbits; 1984 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1985 1986 BUG_ON(!folio_test_locked(folio)); 1987 BUG_ON(from > PAGE_SIZE); 1988 BUG_ON(to > PAGE_SIZE); 1989 BUG_ON(from > to); 1990 1991 head = create_page_buffers(&folio->page, inode, 0); 1992 blocksize = head->b_size; 1993 bbits = block_size_bits(blocksize); 1994 1995 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1996 1997 for(bh = head, block_start = 0; bh != head || !block_start; 1998 block++, block_start=block_end, bh = bh->b_this_page) { 1999 block_end = block_start + blocksize; 2000 if (block_end <= from || block_start >= to) { 2001 if (folio_test_uptodate(folio)) { 2002 if (!buffer_uptodate(bh)) 2003 set_buffer_uptodate(bh); 2004 } 2005 continue; 2006 } 2007 if (buffer_new(bh)) 2008 clear_buffer_new(bh); 2009 if (!buffer_mapped(bh)) { 2010 WARN_ON(bh->b_size != blocksize); 2011 if (get_block) { 2012 err = get_block(inode, block, bh, 1); 2013 if (err) 2014 break; 2015 } else { 2016 iomap_to_bh(inode, block, bh, iomap); 2017 } 2018 2019 if (buffer_new(bh)) { 2020 clean_bdev_bh_alias(bh); 2021 if (folio_test_uptodate(folio)) { 2022 clear_buffer_new(bh); 2023 set_buffer_uptodate(bh); 2024 mark_buffer_dirty(bh); 2025 continue; 2026 } 2027 if (block_end > to || block_start < from) 2028 folio_zero_segments(folio, 2029 to, block_end, 2030 block_start, from); 2031 continue; 2032 } 2033 } 2034 if (folio_test_uptodate(folio)) { 2035 if (!buffer_uptodate(bh)) 2036 set_buffer_uptodate(bh); 2037 continue; 2038 } 2039 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2040 !buffer_unwritten(bh) && 2041 (block_start < from || block_end > to)) { 2042 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2043 *wait_bh++=bh; 2044 } 2045 } 2046 /* 2047 * If we issued read requests - let them complete. 2048 */ 2049 while(wait_bh > wait) { 2050 wait_on_buffer(*--wait_bh); 2051 if (!buffer_uptodate(*wait_bh)) 2052 err = -EIO; 2053 } 2054 if (unlikely(err)) 2055 page_zero_new_buffers(&folio->page, from, to); 2056 return err; 2057 } 2058 2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2060 get_block_t *get_block) 2061 { 2062 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2063 NULL); 2064 } 2065 EXPORT_SYMBOL(__block_write_begin); 2066 2067 static int __block_commit_write(struct inode *inode, struct page *page, 2068 unsigned from, unsigned to) 2069 { 2070 unsigned block_start, block_end; 2071 int partial = 0; 2072 unsigned blocksize; 2073 struct buffer_head *bh, *head; 2074 2075 bh = head = page_buffers(page); 2076 blocksize = bh->b_size; 2077 2078 block_start = 0; 2079 do { 2080 block_end = block_start + blocksize; 2081 if (block_end <= from || block_start >= to) { 2082 if (!buffer_uptodate(bh)) 2083 partial = 1; 2084 } else { 2085 set_buffer_uptodate(bh); 2086 mark_buffer_dirty(bh); 2087 } 2088 if (buffer_new(bh)) 2089 clear_buffer_new(bh); 2090 2091 block_start = block_end; 2092 bh = bh->b_this_page; 2093 } while (bh != head); 2094 2095 /* 2096 * If this is a partial write which happened to make all buffers 2097 * uptodate then we can optimize away a bogus readpage() for 2098 * the next read(). Here we 'discover' whether the page went 2099 * uptodate as a result of this (potentially partial) write. 2100 */ 2101 if (!partial) 2102 SetPageUptodate(page); 2103 return 0; 2104 } 2105 2106 /* 2107 * block_write_begin takes care of the basic task of block allocation and 2108 * bringing partial write blocks uptodate first. 2109 * 2110 * The filesystem needs to handle block truncation upon failure. 2111 */ 2112 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2113 unsigned flags, struct page **pagep, get_block_t *get_block) 2114 { 2115 pgoff_t index = pos >> PAGE_SHIFT; 2116 struct page *page; 2117 int status; 2118 2119 page = grab_cache_page_write_begin(mapping, index, flags); 2120 if (!page) 2121 return -ENOMEM; 2122 2123 status = __block_write_begin(page, pos, len, get_block); 2124 if (unlikely(status)) { 2125 unlock_page(page); 2126 put_page(page); 2127 page = NULL; 2128 } 2129 2130 *pagep = page; 2131 return status; 2132 } 2133 EXPORT_SYMBOL(block_write_begin); 2134 2135 int block_write_end(struct file *file, struct address_space *mapping, 2136 loff_t pos, unsigned len, unsigned copied, 2137 struct page *page, void *fsdata) 2138 { 2139 struct inode *inode = mapping->host; 2140 unsigned start; 2141 2142 start = pos & (PAGE_SIZE - 1); 2143 2144 if (unlikely(copied < len)) { 2145 /* 2146 * The buffers that were written will now be uptodate, so we 2147 * don't have to worry about a readpage reading them and 2148 * overwriting a partial write. However if we have encountered 2149 * a short write and only partially written into a buffer, it 2150 * will not be marked uptodate, so a readpage might come in and 2151 * destroy our partial write. 2152 * 2153 * Do the simplest thing, and just treat any short write to a 2154 * non uptodate page as a zero-length write, and force the 2155 * caller to redo the whole thing. 2156 */ 2157 if (!PageUptodate(page)) 2158 copied = 0; 2159 2160 page_zero_new_buffers(page, start+copied, start+len); 2161 } 2162 flush_dcache_page(page); 2163 2164 /* This could be a short (even 0-length) commit */ 2165 __block_commit_write(inode, page, start, start+copied); 2166 2167 return copied; 2168 } 2169 EXPORT_SYMBOL(block_write_end); 2170 2171 int generic_write_end(struct file *file, struct address_space *mapping, 2172 loff_t pos, unsigned len, unsigned copied, 2173 struct page *page, void *fsdata) 2174 { 2175 struct inode *inode = mapping->host; 2176 loff_t old_size = inode->i_size; 2177 bool i_size_changed = false; 2178 2179 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2180 2181 /* 2182 * No need to use i_size_read() here, the i_size cannot change under us 2183 * because we hold i_rwsem. 2184 * 2185 * But it's important to update i_size while still holding page lock: 2186 * page writeout could otherwise come in and zero beyond i_size. 2187 */ 2188 if (pos + copied > inode->i_size) { 2189 i_size_write(inode, pos + copied); 2190 i_size_changed = true; 2191 } 2192 2193 unlock_page(page); 2194 put_page(page); 2195 2196 if (old_size < pos) 2197 pagecache_isize_extended(inode, old_size, pos); 2198 /* 2199 * Don't mark the inode dirty under page lock. First, it unnecessarily 2200 * makes the holding time of page lock longer. Second, it forces lock 2201 * ordering of page lock and transaction start for journaling 2202 * filesystems. 2203 */ 2204 if (i_size_changed) 2205 mark_inode_dirty(inode); 2206 return copied; 2207 } 2208 EXPORT_SYMBOL(generic_write_end); 2209 2210 /* 2211 * block_is_partially_uptodate checks whether buffers within a page are 2212 * uptodate or not. 2213 * 2214 * Returns true if all buffers which correspond to a file portion 2215 * we want to read are uptodate. 2216 */ 2217 int block_is_partially_uptodate(struct page *page, unsigned long from, 2218 unsigned long count) 2219 { 2220 unsigned block_start, block_end, blocksize; 2221 unsigned to; 2222 struct buffer_head *bh, *head; 2223 int ret = 1; 2224 2225 if (!page_has_buffers(page)) 2226 return 0; 2227 2228 head = page_buffers(page); 2229 blocksize = head->b_size; 2230 to = min_t(unsigned, PAGE_SIZE - from, count); 2231 to = from + to; 2232 if (from < blocksize && to > PAGE_SIZE - blocksize) 2233 return 0; 2234 2235 bh = head; 2236 block_start = 0; 2237 do { 2238 block_end = block_start + blocksize; 2239 if (block_end > from && block_start < to) { 2240 if (!buffer_uptodate(bh)) { 2241 ret = 0; 2242 break; 2243 } 2244 if (block_end >= to) 2245 break; 2246 } 2247 block_start = block_end; 2248 bh = bh->b_this_page; 2249 } while (bh != head); 2250 2251 return ret; 2252 } 2253 EXPORT_SYMBOL(block_is_partially_uptodate); 2254 2255 /* 2256 * Generic "read page" function for block devices that have the normal 2257 * get_block functionality. This is most of the block device filesystems. 2258 * Reads the page asynchronously --- the unlock_buffer() and 2259 * set/clear_buffer_uptodate() functions propagate buffer state into the 2260 * page struct once IO has completed. 2261 */ 2262 int block_read_full_page(struct page *page, get_block_t *get_block) 2263 { 2264 struct inode *inode = page->mapping->host; 2265 sector_t iblock, lblock; 2266 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2267 unsigned int blocksize, bbits; 2268 int nr, i; 2269 int fully_mapped = 1; 2270 2271 head = create_page_buffers(page, inode, 0); 2272 blocksize = head->b_size; 2273 bbits = block_size_bits(blocksize); 2274 2275 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2276 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2277 bh = head; 2278 nr = 0; 2279 i = 0; 2280 2281 do { 2282 if (buffer_uptodate(bh)) 2283 continue; 2284 2285 if (!buffer_mapped(bh)) { 2286 int err = 0; 2287 2288 fully_mapped = 0; 2289 if (iblock < lblock) { 2290 WARN_ON(bh->b_size != blocksize); 2291 err = get_block(inode, iblock, bh, 0); 2292 if (err) 2293 SetPageError(page); 2294 } 2295 if (!buffer_mapped(bh)) { 2296 zero_user(page, i * blocksize, blocksize); 2297 if (!err) 2298 set_buffer_uptodate(bh); 2299 continue; 2300 } 2301 /* 2302 * get_block() might have updated the buffer 2303 * synchronously 2304 */ 2305 if (buffer_uptodate(bh)) 2306 continue; 2307 } 2308 arr[nr++] = bh; 2309 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2310 2311 if (fully_mapped) 2312 SetPageMappedToDisk(page); 2313 2314 if (!nr) { 2315 /* 2316 * All buffers are uptodate - we can set the page uptodate 2317 * as well. But not if get_block() returned an error. 2318 */ 2319 if (!PageError(page)) 2320 SetPageUptodate(page); 2321 unlock_page(page); 2322 return 0; 2323 } 2324 2325 /* Stage two: lock the buffers */ 2326 for (i = 0; i < nr; i++) { 2327 bh = arr[i]; 2328 lock_buffer(bh); 2329 mark_buffer_async_read(bh); 2330 } 2331 2332 /* 2333 * Stage 3: start the IO. Check for uptodateness 2334 * inside the buffer lock in case another process reading 2335 * the underlying blockdev brought it uptodate (the sct fix). 2336 */ 2337 for (i = 0; i < nr; i++) { 2338 bh = arr[i]; 2339 if (buffer_uptodate(bh)) 2340 end_buffer_async_read(bh, 1); 2341 else 2342 submit_bh(REQ_OP_READ, 0, bh); 2343 } 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(block_read_full_page); 2347 2348 /* utility function for filesystems that need to do work on expanding 2349 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2350 * deal with the hole. 2351 */ 2352 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2353 { 2354 struct address_space *mapping = inode->i_mapping; 2355 struct page *page; 2356 void *fsdata; 2357 int err; 2358 2359 err = inode_newsize_ok(inode, size); 2360 if (err) 2361 goto out; 2362 2363 err = pagecache_write_begin(NULL, mapping, size, 0, 2364 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2365 if (err) 2366 goto out; 2367 2368 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2369 BUG_ON(err > 0); 2370 2371 out: 2372 return err; 2373 } 2374 EXPORT_SYMBOL(generic_cont_expand_simple); 2375 2376 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2377 loff_t pos, loff_t *bytes) 2378 { 2379 struct inode *inode = mapping->host; 2380 unsigned int blocksize = i_blocksize(inode); 2381 struct page *page; 2382 void *fsdata; 2383 pgoff_t index, curidx; 2384 loff_t curpos; 2385 unsigned zerofrom, offset, len; 2386 int err = 0; 2387 2388 index = pos >> PAGE_SHIFT; 2389 offset = pos & ~PAGE_MASK; 2390 2391 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2392 zerofrom = curpos & ~PAGE_MASK; 2393 if (zerofrom & (blocksize-1)) { 2394 *bytes |= (blocksize-1); 2395 (*bytes)++; 2396 } 2397 len = PAGE_SIZE - zerofrom; 2398 2399 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2400 &page, &fsdata); 2401 if (err) 2402 goto out; 2403 zero_user(page, zerofrom, len); 2404 err = pagecache_write_end(file, mapping, curpos, len, len, 2405 page, fsdata); 2406 if (err < 0) 2407 goto out; 2408 BUG_ON(err != len); 2409 err = 0; 2410 2411 balance_dirty_pages_ratelimited(mapping); 2412 2413 if (fatal_signal_pending(current)) { 2414 err = -EINTR; 2415 goto out; 2416 } 2417 } 2418 2419 /* page covers the boundary, find the boundary offset */ 2420 if (index == curidx) { 2421 zerofrom = curpos & ~PAGE_MASK; 2422 /* if we will expand the thing last block will be filled */ 2423 if (offset <= zerofrom) { 2424 goto out; 2425 } 2426 if (zerofrom & (blocksize-1)) { 2427 *bytes |= (blocksize-1); 2428 (*bytes)++; 2429 } 2430 len = offset - zerofrom; 2431 2432 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2433 &page, &fsdata); 2434 if (err) 2435 goto out; 2436 zero_user(page, zerofrom, len); 2437 err = pagecache_write_end(file, mapping, curpos, len, len, 2438 page, fsdata); 2439 if (err < 0) 2440 goto out; 2441 BUG_ON(err != len); 2442 err = 0; 2443 } 2444 out: 2445 return err; 2446 } 2447 2448 /* 2449 * For moronic filesystems that do not allow holes in file. 2450 * We may have to extend the file. 2451 */ 2452 int cont_write_begin(struct file *file, struct address_space *mapping, 2453 loff_t pos, unsigned len, unsigned flags, 2454 struct page **pagep, void **fsdata, 2455 get_block_t *get_block, loff_t *bytes) 2456 { 2457 struct inode *inode = mapping->host; 2458 unsigned int blocksize = i_blocksize(inode); 2459 unsigned int zerofrom; 2460 int err; 2461 2462 err = cont_expand_zero(file, mapping, pos, bytes); 2463 if (err) 2464 return err; 2465 2466 zerofrom = *bytes & ~PAGE_MASK; 2467 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2468 *bytes |= (blocksize-1); 2469 (*bytes)++; 2470 } 2471 2472 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2473 } 2474 EXPORT_SYMBOL(cont_write_begin); 2475 2476 int block_commit_write(struct page *page, unsigned from, unsigned to) 2477 { 2478 struct inode *inode = page->mapping->host; 2479 __block_commit_write(inode,page,from,to); 2480 return 0; 2481 } 2482 EXPORT_SYMBOL(block_commit_write); 2483 2484 /* 2485 * block_page_mkwrite() is not allowed to change the file size as it gets 2486 * called from a page fault handler when a page is first dirtied. Hence we must 2487 * be careful to check for EOF conditions here. We set the page up correctly 2488 * for a written page which means we get ENOSPC checking when writing into 2489 * holes and correct delalloc and unwritten extent mapping on filesystems that 2490 * support these features. 2491 * 2492 * We are not allowed to take the i_mutex here so we have to play games to 2493 * protect against truncate races as the page could now be beyond EOF. Because 2494 * truncate writes the inode size before removing pages, once we have the 2495 * page lock we can determine safely if the page is beyond EOF. If it is not 2496 * beyond EOF, then the page is guaranteed safe against truncation until we 2497 * unlock the page. 2498 * 2499 * Direct callers of this function should protect against filesystem freezing 2500 * using sb_start_pagefault() - sb_end_pagefault() functions. 2501 */ 2502 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2503 get_block_t get_block) 2504 { 2505 struct page *page = vmf->page; 2506 struct inode *inode = file_inode(vma->vm_file); 2507 unsigned long end; 2508 loff_t size; 2509 int ret; 2510 2511 lock_page(page); 2512 size = i_size_read(inode); 2513 if ((page->mapping != inode->i_mapping) || 2514 (page_offset(page) > size)) { 2515 /* We overload EFAULT to mean page got truncated */ 2516 ret = -EFAULT; 2517 goto out_unlock; 2518 } 2519 2520 /* page is wholly or partially inside EOF */ 2521 if (((page->index + 1) << PAGE_SHIFT) > size) 2522 end = size & ~PAGE_MASK; 2523 else 2524 end = PAGE_SIZE; 2525 2526 ret = __block_write_begin(page, 0, end, get_block); 2527 if (!ret) 2528 ret = block_commit_write(page, 0, end); 2529 2530 if (unlikely(ret < 0)) 2531 goto out_unlock; 2532 set_page_dirty(page); 2533 wait_for_stable_page(page); 2534 return 0; 2535 out_unlock: 2536 unlock_page(page); 2537 return ret; 2538 } 2539 EXPORT_SYMBOL(block_page_mkwrite); 2540 2541 /* 2542 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2543 * immediately, while under the page lock. So it needs a special end_io 2544 * handler which does not touch the bh after unlocking it. 2545 */ 2546 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2547 { 2548 __end_buffer_read_notouch(bh, uptodate); 2549 } 2550 2551 /* 2552 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2553 * the page (converting it to circular linked list and taking care of page 2554 * dirty races). 2555 */ 2556 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2557 { 2558 struct buffer_head *bh; 2559 2560 BUG_ON(!PageLocked(page)); 2561 2562 spin_lock(&page->mapping->private_lock); 2563 bh = head; 2564 do { 2565 if (PageDirty(page)) 2566 set_buffer_dirty(bh); 2567 if (!bh->b_this_page) 2568 bh->b_this_page = head; 2569 bh = bh->b_this_page; 2570 } while (bh != head); 2571 attach_page_private(page, head); 2572 spin_unlock(&page->mapping->private_lock); 2573 } 2574 2575 /* 2576 * On entry, the page is fully not uptodate. 2577 * On exit the page is fully uptodate in the areas outside (from,to) 2578 * The filesystem needs to handle block truncation upon failure. 2579 */ 2580 int nobh_write_begin(struct address_space *mapping, 2581 loff_t pos, unsigned len, unsigned flags, 2582 struct page **pagep, void **fsdata, 2583 get_block_t *get_block) 2584 { 2585 struct inode *inode = mapping->host; 2586 const unsigned blkbits = inode->i_blkbits; 2587 const unsigned blocksize = 1 << blkbits; 2588 struct buffer_head *head, *bh; 2589 struct page *page; 2590 pgoff_t index; 2591 unsigned from, to; 2592 unsigned block_in_page; 2593 unsigned block_start, block_end; 2594 sector_t block_in_file; 2595 int nr_reads = 0; 2596 int ret = 0; 2597 int is_mapped_to_disk = 1; 2598 2599 index = pos >> PAGE_SHIFT; 2600 from = pos & (PAGE_SIZE - 1); 2601 to = from + len; 2602 2603 page = grab_cache_page_write_begin(mapping, index, flags); 2604 if (!page) 2605 return -ENOMEM; 2606 *pagep = page; 2607 *fsdata = NULL; 2608 2609 if (page_has_buffers(page)) { 2610 ret = __block_write_begin(page, pos, len, get_block); 2611 if (unlikely(ret)) 2612 goto out_release; 2613 return ret; 2614 } 2615 2616 if (PageMappedToDisk(page)) 2617 return 0; 2618 2619 /* 2620 * Allocate buffers so that we can keep track of state, and potentially 2621 * attach them to the page if an error occurs. In the common case of 2622 * no error, they will just be freed again without ever being attached 2623 * to the page (which is all OK, because we're under the page lock). 2624 * 2625 * Be careful: the buffer linked list is a NULL terminated one, rather 2626 * than the circular one we're used to. 2627 */ 2628 head = alloc_page_buffers(page, blocksize, false); 2629 if (!head) { 2630 ret = -ENOMEM; 2631 goto out_release; 2632 } 2633 2634 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2635 2636 /* 2637 * We loop across all blocks in the page, whether or not they are 2638 * part of the affected region. This is so we can discover if the 2639 * page is fully mapped-to-disk. 2640 */ 2641 for (block_start = 0, block_in_page = 0, bh = head; 2642 block_start < PAGE_SIZE; 2643 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2644 int create; 2645 2646 block_end = block_start + blocksize; 2647 bh->b_state = 0; 2648 create = 1; 2649 if (block_start >= to) 2650 create = 0; 2651 ret = get_block(inode, block_in_file + block_in_page, 2652 bh, create); 2653 if (ret) 2654 goto failed; 2655 if (!buffer_mapped(bh)) 2656 is_mapped_to_disk = 0; 2657 if (buffer_new(bh)) 2658 clean_bdev_bh_alias(bh); 2659 if (PageUptodate(page)) { 2660 set_buffer_uptodate(bh); 2661 continue; 2662 } 2663 if (buffer_new(bh) || !buffer_mapped(bh)) { 2664 zero_user_segments(page, block_start, from, 2665 to, block_end); 2666 continue; 2667 } 2668 if (buffer_uptodate(bh)) 2669 continue; /* reiserfs does this */ 2670 if (block_start < from || block_end > to) { 2671 lock_buffer(bh); 2672 bh->b_end_io = end_buffer_read_nobh; 2673 submit_bh(REQ_OP_READ, 0, bh); 2674 nr_reads++; 2675 } 2676 } 2677 2678 if (nr_reads) { 2679 /* 2680 * The page is locked, so these buffers are protected from 2681 * any VM or truncate activity. Hence we don't need to care 2682 * for the buffer_head refcounts. 2683 */ 2684 for (bh = head; bh; bh = bh->b_this_page) { 2685 wait_on_buffer(bh); 2686 if (!buffer_uptodate(bh)) 2687 ret = -EIO; 2688 } 2689 if (ret) 2690 goto failed; 2691 } 2692 2693 if (is_mapped_to_disk) 2694 SetPageMappedToDisk(page); 2695 2696 *fsdata = head; /* to be released by nobh_write_end */ 2697 2698 return 0; 2699 2700 failed: 2701 BUG_ON(!ret); 2702 /* 2703 * Error recovery is a bit difficult. We need to zero out blocks that 2704 * were newly allocated, and dirty them to ensure they get written out. 2705 * Buffers need to be attached to the page at this point, otherwise 2706 * the handling of potential IO errors during writeout would be hard 2707 * (could try doing synchronous writeout, but what if that fails too?) 2708 */ 2709 attach_nobh_buffers(page, head); 2710 page_zero_new_buffers(page, from, to); 2711 2712 out_release: 2713 unlock_page(page); 2714 put_page(page); 2715 *pagep = NULL; 2716 2717 return ret; 2718 } 2719 EXPORT_SYMBOL(nobh_write_begin); 2720 2721 int nobh_write_end(struct file *file, struct address_space *mapping, 2722 loff_t pos, unsigned len, unsigned copied, 2723 struct page *page, void *fsdata) 2724 { 2725 struct inode *inode = page->mapping->host; 2726 struct buffer_head *head = fsdata; 2727 struct buffer_head *bh; 2728 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2729 2730 if (unlikely(copied < len) && head) 2731 attach_nobh_buffers(page, head); 2732 if (page_has_buffers(page)) 2733 return generic_write_end(file, mapping, pos, len, 2734 copied, page, fsdata); 2735 2736 SetPageUptodate(page); 2737 set_page_dirty(page); 2738 if (pos+copied > inode->i_size) { 2739 i_size_write(inode, pos+copied); 2740 mark_inode_dirty(inode); 2741 } 2742 2743 unlock_page(page); 2744 put_page(page); 2745 2746 while (head) { 2747 bh = head; 2748 head = head->b_this_page; 2749 free_buffer_head(bh); 2750 } 2751 2752 return copied; 2753 } 2754 EXPORT_SYMBOL(nobh_write_end); 2755 2756 /* 2757 * nobh_writepage() - based on block_full_write_page() except 2758 * that it tries to operate without attaching bufferheads to 2759 * the page. 2760 */ 2761 int nobh_writepage(struct page *page, get_block_t *get_block, 2762 struct writeback_control *wbc) 2763 { 2764 struct inode * const inode = page->mapping->host; 2765 loff_t i_size = i_size_read(inode); 2766 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2767 unsigned offset; 2768 int ret; 2769 2770 /* Is the page fully inside i_size? */ 2771 if (page->index < end_index) 2772 goto out; 2773 2774 /* Is the page fully outside i_size? (truncate in progress) */ 2775 offset = i_size & (PAGE_SIZE-1); 2776 if (page->index >= end_index+1 || !offset) { 2777 unlock_page(page); 2778 return 0; /* don't care */ 2779 } 2780 2781 /* 2782 * The page straddles i_size. It must be zeroed out on each and every 2783 * writepage invocation because it may be mmapped. "A file is mapped 2784 * in multiples of the page size. For a file that is not a multiple of 2785 * the page size, the remaining memory is zeroed when mapped, and 2786 * writes to that region are not written out to the file." 2787 */ 2788 zero_user_segment(page, offset, PAGE_SIZE); 2789 out: 2790 ret = mpage_writepage(page, get_block, wbc); 2791 if (ret == -EAGAIN) 2792 ret = __block_write_full_page(inode, page, get_block, wbc, 2793 end_buffer_async_write); 2794 return ret; 2795 } 2796 EXPORT_SYMBOL(nobh_writepage); 2797 2798 int nobh_truncate_page(struct address_space *mapping, 2799 loff_t from, get_block_t *get_block) 2800 { 2801 pgoff_t index = from >> PAGE_SHIFT; 2802 unsigned offset = from & (PAGE_SIZE-1); 2803 unsigned blocksize; 2804 sector_t iblock; 2805 unsigned length, pos; 2806 struct inode *inode = mapping->host; 2807 struct page *page; 2808 struct buffer_head map_bh; 2809 int err; 2810 2811 blocksize = i_blocksize(inode); 2812 length = offset & (blocksize - 1); 2813 2814 /* Block boundary? Nothing to do */ 2815 if (!length) 2816 return 0; 2817 2818 length = blocksize - length; 2819 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2820 2821 page = grab_cache_page(mapping, index); 2822 err = -ENOMEM; 2823 if (!page) 2824 goto out; 2825 2826 if (page_has_buffers(page)) { 2827 has_buffers: 2828 unlock_page(page); 2829 put_page(page); 2830 return block_truncate_page(mapping, from, get_block); 2831 } 2832 2833 /* Find the buffer that contains "offset" */ 2834 pos = blocksize; 2835 while (offset >= pos) { 2836 iblock++; 2837 pos += blocksize; 2838 } 2839 2840 map_bh.b_size = blocksize; 2841 map_bh.b_state = 0; 2842 err = get_block(inode, iblock, &map_bh, 0); 2843 if (err) 2844 goto unlock; 2845 /* unmapped? It's a hole - nothing to do */ 2846 if (!buffer_mapped(&map_bh)) 2847 goto unlock; 2848 2849 /* Ok, it's mapped. Make sure it's up-to-date */ 2850 if (!PageUptodate(page)) { 2851 err = mapping->a_ops->readpage(NULL, page); 2852 if (err) { 2853 put_page(page); 2854 goto out; 2855 } 2856 lock_page(page); 2857 if (!PageUptodate(page)) { 2858 err = -EIO; 2859 goto unlock; 2860 } 2861 if (page_has_buffers(page)) 2862 goto has_buffers; 2863 } 2864 zero_user(page, offset, length); 2865 set_page_dirty(page); 2866 err = 0; 2867 2868 unlock: 2869 unlock_page(page); 2870 put_page(page); 2871 out: 2872 return err; 2873 } 2874 EXPORT_SYMBOL(nobh_truncate_page); 2875 2876 int block_truncate_page(struct address_space *mapping, 2877 loff_t from, get_block_t *get_block) 2878 { 2879 pgoff_t index = from >> PAGE_SHIFT; 2880 unsigned offset = from & (PAGE_SIZE-1); 2881 unsigned blocksize; 2882 sector_t iblock; 2883 unsigned length, pos; 2884 struct inode *inode = mapping->host; 2885 struct page *page; 2886 struct buffer_head *bh; 2887 int err; 2888 2889 blocksize = i_blocksize(inode); 2890 length = offset & (blocksize - 1); 2891 2892 /* Block boundary? Nothing to do */ 2893 if (!length) 2894 return 0; 2895 2896 length = blocksize - length; 2897 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2898 2899 page = grab_cache_page(mapping, index); 2900 err = -ENOMEM; 2901 if (!page) 2902 goto out; 2903 2904 if (!page_has_buffers(page)) 2905 create_empty_buffers(page, blocksize, 0); 2906 2907 /* Find the buffer that contains "offset" */ 2908 bh = page_buffers(page); 2909 pos = blocksize; 2910 while (offset >= pos) { 2911 bh = bh->b_this_page; 2912 iblock++; 2913 pos += blocksize; 2914 } 2915 2916 err = 0; 2917 if (!buffer_mapped(bh)) { 2918 WARN_ON(bh->b_size != blocksize); 2919 err = get_block(inode, iblock, bh, 0); 2920 if (err) 2921 goto unlock; 2922 /* unmapped? It's a hole - nothing to do */ 2923 if (!buffer_mapped(bh)) 2924 goto unlock; 2925 } 2926 2927 /* Ok, it's mapped. Make sure it's up-to-date */ 2928 if (PageUptodate(page)) 2929 set_buffer_uptodate(bh); 2930 2931 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2932 err = -EIO; 2933 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2934 wait_on_buffer(bh); 2935 /* Uhhuh. Read error. Complain and punt. */ 2936 if (!buffer_uptodate(bh)) 2937 goto unlock; 2938 } 2939 2940 zero_user(page, offset, length); 2941 mark_buffer_dirty(bh); 2942 err = 0; 2943 2944 unlock: 2945 unlock_page(page); 2946 put_page(page); 2947 out: 2948 return err; 2949 } 2950 EXPORT_SYMBOL(block_truncate_page); 2951 2952 /* 2953 * The generic ->writepage function for buffer-backed address_spaces 2954 */ 2955 int block_write_full_page(struct page *page, get_block_t *get_block, 2956 struct writeback_control *wbc) 2957 { 2958 struct inode * const inode = page->mapping->host; 2959 loff_t i_size = i_size_read(inode); 2960 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2961 unsigned offset; 2962 2963 /* Is the page fully inside i_size? */ 2964 if (page->index < end_index) 2965 return __block_write_full_page(inode, page, get_block, wbc, 2966 end_buffer_async_write); 2967 2968 /* Is the page fully outside i_size? (truncate in progress) */ 2969 offset = i_size & (PAGE_SIZE-1); 2970 if (page->index >= end_index+1 || !offset) { 2971 unlock_page(page); 2972 return 0; /* don't care */ 2973 } 2974 2975 /* 2976 * The page straddles i_size. It must be zeroed out on each and every 2977 * writepage invocation because it may be mmapped. "A file is mapped 2978 * in multiples of the page size. For a file that is not a multiple of 2979 * the page size, the remaining memory is zeroed when mapped, and 2980 * writes to that region are not written out to the file." 2981 */ 2982 zero_user_segment(page, offset, PAGE_SIZE); 2983 return __block_write_full_page(inode, page, get_block, wbc, 2984 end_buffer_async_write); 2985 } 2986 EXPORT_SYMBOL(block_write_full_page); 2987 2988 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2989 get_block_t *get_block) 2990 { 2991 struct inode *inode = mapping->host; 2992 struct buffer_head tmp = { 2993 .b_size = i_blocksize(inode), 2994 }; 2995 2996 get_block(inode, block, &tmp, 0); 2997 return tmp.b_blocknr; 2998 } 2999 EXPORT_SYMBOL(generic_block_bmap); 3000 3001 static void end_bio_bh_io_sync(struct bio *bio) 3002 { 3003 struct buffer_head *bh = bio->bi_private; 3004 3005 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3006 set_bit(BH_Quiet, &bh->b_state); 3007 3008 bh->b_end_io(bh, !bio->bi_status); 3009 bio_put(bio); 3010 } 3011 3012 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3013 enum rw_hint write_hint, struct writeback_control *wbc) 3014 { 3015 struct bio *bio; 3016 3017 BUG_ON(!buffer_locked(bh)); 3018 BUG_ON(!buffer_mapped(bh)); 3019 BUG_ON(!bh->b_end_io); 3020 BUG_ON(buffer_delay(bh)); 3021 BUG_ON(buffer_unwritten(bh)); 3022 3023 /* 3024 * Only clear out a write error when rewriting 3025 */ 3026 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3027 clear_buffer_write_io_error(bh); 3028 3029 bio = bio_alloc(GFP_NOIO, 1); 3030 3031 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3032 3033 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3034 bio_set_dev(bio, bh->b_bdev); 3035 bio->bi_write_hint = write_hint; 3036 3037 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3038 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3039 3040 bio->bi_end_io = end_bio_bh_io_sync; 3041 bio->bi_private = bh; 3042 3043 if (buffer_meta(bh)) 3044 op_flags |= REQ_META; 3045 if (buffer_prio(bh)) 3046 op_flags |= REQ_PRIO; 3047 bio_set_op_attrs(bio, op, op_flags); 3048 3049 /* Take care of bh's that straddle the end of the device */ 3050 guard_bio_eod(bio); 3051 3052 if (wbc) { 3053 wbc_init_bio(wbc, bio); 3054 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3055 } 3056 3057 submit_bio(bio); 3058 return 0; 3059 } 3060 3061 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3062 { 3063 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3064 } 3065 EXPORT_SYMBOL(submit_bh); 3066 3067 /** 3068 * ll_rw_block: low-level access to block devices (DEPRECATED) 3069 * @op: whether to %READ or %WRITE 3070 * @op_flags: req_flag_bits 3071 * @nr: number of &struct buffer_heads in the array 3072 * @bhs: array of pointers to &struct buffer_head 3073 * 3074 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3075 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3076 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3077 * %REQ_RAHEAD. 3078 * 3079 * This function drops any buffer that it cannot get a lock on (with the 3080 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3081 * request, and any buffer that appears to be up-to-date when doing read 3082 * request. Further it marks as clean buffers that are processed for 3083 * writing (the buffer cache won't assume that they are actually clean 3084 * until the buffer gets unlocked). 3085 * 3086 * ll_rw_block sets b_end_io to simple completion handler that marks 3087 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3088 * any waiters. 3089 * 3090 * All of the buffers must be for the same device, and must also be a 3091 * multiple of the current approved size for the device. 3092 */ 3093 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3094 { 3095 int i; 3096 3097 for (i = 0; i < nr; i++) { 3098 struct buffer_head *bh = bhs[i]; 3099 3100 if (!trylock_buffer(bh)) 3101 continue; 3102 if (op == WRITE) { 3103 if (test_clear_buffer_dirty(bh)) { 3104 bh->b_end_io = end_buffer_write_sync; 3105 get_bh(bh); 3106 submit_bh(op, op_flags, bh); 3107 continue; 3108 } 3109 } else { 3110 if (!buffer_uptodate(bh)) { 3111 bh->b_end_io = end_buffer_read_sync; 3112 get_bh(bh); 3113 submit_bh(op, op_flags, bh); 3114 continue; 3115 } 3116 } 3117 unlock_buffer(bh); 3118 } 3119 } 3120 EXPORT_SYMBOL(ll_rw_block); 3121 3122 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3123 { 3124 lock_buffer(bh); 3125 if (!test_clear_buffer_dirty(bh)) { 3126 unlock_buffer(bh); 3127 return; 3128 } 3129 bh->b_end_io = end_buffer_write_sync; 3130 get_bh(bh); 3131 submit_bh(REQ_OP_WRITE, op_flags, bh); 3132 } 3133 EXPORT_SYMBOL(write_dirty_buffer); 3134 3135 /* 3136 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3137 * and then start new I/O and then wait upon it. The caller must have a ref on 3138 * the buffer_head. 3139 */ 3140 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3141 { 3142 int ret = 0; 3143 3144 WARN_ON(atomic_read(&bh->b_count) < 1); 3145 lock_buffer(bh); 3146 if (test_clear_buffer_dirty(bh)) { 3147 /* 3148 * The bh should be mapped, but it might not be if the 3149 * device was hot-removed. Not much we can do but fail the I/O. 3150 */ 3151 if (!buffer_mapped(bh)) { 3152 unlock_buffer(bh); 3153 return -EIO; 3154 } 3155 3156 get_bh(bh); 3157 bh->b_end_io = end_buffer_write_sync; 3158 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3159 wait_on_buffer(bh); 3160 if (!ret && !buffer_uptodate(bh)) 3161 ret = -EIO; 3162 } else { 3163 unlock_buffer(bh); 3164 } 3165 return ret; 3166 } 3167 EXPORT_SYMBOL(__sync_dirty_buffer); 3168 3169 int sync_dirty_buffer(struct buffer_head *bh) 3170 { 3171 return __sync_dirty_buffer(bh, REQ_SYNC); 3172 } 3173 EXPORT_SYMBOL(sync_dirty_buffer); 3174 3175 /* 3176 * try_to_free_buffers() checks if all the buffers on this particular page 3177 * are unused, and releases them if so. 3178 * 3179 * Exclusion against try_to_free_buffers may be obtained by either 3180 * locking the page or by holding its mapping's private_lock. 3181 * 3182 * If the page is dirty but all the buffers are clean then we need to 3183 * be sure to mark the page clean as well. This is because the page 3184 * may be against a block device, and a later reattachment of buffers 3185 * to a dirty page will set *all* buffers dirty. Which would corrupt 3186 * filesystem data on the same device. 3187 * 3188 * The same applies to regular filesystem pages: if all the buffers are 3189 * clean then we set the page clean and proceed. To do that, we require 3190 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3191 * private_lock. 3192 * 3193 * try_to_free_buffers() is non-blocking. 3194 */ 3195 static inline int buffer_busy(struct buffer_head *bh) 3196 { 3197 return atomic_read(&bh->b_count) | 3198 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3199 } 3200 3201 static int 3202 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3203 { 3204 struct buffer_head *head = page_buffers(page); 3205 struct buffer_head *bh; 3206 3207 bh = head; 3208 do { 3209 if (buffer_busy(bh)) 3210 goto failed; 3211 bh = bh->b_this_page; 3212 } while (bh != head); 3213 3214 do { 3215 struct buffer_head *next = bh->b_this_page; 3216 3217 if (bh->b_assoc_map) 3218 __remove_assoc_queue(bh); 3219 bh = next; 3220 } while (bh != head); 3221 *buffers_to_free = head; 3222 detach_page_private(page); 3223 return 1; 3224 failed: 3225 return 0; 3226 } 3227 3228 int try_to_free_buffers(struct page *page) 3229 { 3230 struct address_space * const mapping = page->mapping; 3231 struct buffer_head *buffers_to_free = NULL; 3232 int ret = 0; 3233 3234 BUG_ON(!PageLocked(page)); 3235 if (PageWriteback(page)) 3236 return 0; 3237 3238 if (mapping == NULL) { /* can this still happen? */ 3239 ret = drop_buffers(page, &buffers_to_free); 3240 goto out; 3241 } 3242 3243 spin_lock(&mapping->private_lock); 3244 ret = drop_buffers(page, &buffers_to_free); 3245 3246 /* 3247 * If the filesystem writes its buffers by hand (eg ext3) 3248 * then we can have clean buffers against a dirty page. We 3249 * clean the page here; otherwise the VM will never notice 3250 * that the filesystem did any IO at all. 3251 * 3252 * Also, during truncate, discard_buffer will have marked all 3253 * the page's buffers clean. We discover that here and clean 3254 * the page also. 3255 * 3256 * private_lock must be held over this entire operation in order 3257 * to synchronise against __set_page_dirty_buffers and prevent the 3258 * dirty bit from being lost. 3259 */ 3260 if (ret) 3261 cancel_dirty_page(page); 3262 spin_unlock(&mapping->private_lock); 3263 out: 3264 if (buffers_to_free) { 3265 struct buffer_head *bh = buffers_to_free; 3266 3267 do { 3268 struct buffer_head *next = bh->b_this_page; 3269 free_buffer_head(bh); 3270 bh = next; 3271 } while (bh != buffers_to_free); 3272 } 3273 return ret; 3274 } 3275 EXPORT_SYMBOL(try_to_free_buffers); 3276 3277 /* 3278 * Buffer-head allocation 3279 */ 3280 static struct kmem_cache *bh_cachep __read_mostly; 3281 3282 /* 3283 * Once the number of bh's in the machine exceeds this level, we start 3284 * stripping them in writeback. 3285 */ 3286 static unsigned long max_buffer_heads; 3287 3288 int buffer_heads_over_limit; 3289 3290 struct bh_accounting { 3291 int nr; /* Number of live bh's */ 3292 int ratelimit; /* Limit cacheline bouncing */ 3293 }; 3294 3295 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3296 3297 static void recalc_bh_state(void) 3298 { 3299 int i; 3300 int tot = 0; 3301 3302 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3303 return; 3304 __this_cpu_write(bh_accounting.ratelimit, 0); 3305 for_each_online_cpu(i) 3306 tot += per_cpu(bh_accounting, i).nr; 3307 buffer_heads_over_limit = (tot > max_buffer_heads); 3308 } 3309 3310 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3311 { 3312 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3313 if (ret) { 3314 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3315 spin_lock_init(&ret->b_uptodate_lock); 3316 preempt_disable(); 3317 __this_cpu_inc(bh_accounting.nr); 3318 recalc_bh_state(); 3319 preempt_enable(); 3320 } 3321 return ret; 3322 } 3323 EXPORT_SYMBOL(alloc_buffer_head); 3324 3325 void free_buffer_head(struct buffer_head *bh) 3326 { 3327 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3328 kmem_cache_free(bh_cachep, bh); 3329 preempt_disable(); 3330 __this_cpu_dec(bh_accounting.nr); 3331 recalc_bh_state(); 3332 preempt_enable(); 3333 } 3334 EXPORT_SYMBOL(free_buffer_head); 3335 3336 static int buffer_exit_cpu_dead(unsigned int cpu) 3337 { 3338 int i; 3339 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3340 3341 for (i = 0; i < BH_LRU_SIZE; i++) { 3342 brelse(b->bhs[i]); 3343 b->bhs[i] = NULL; 3344 } 3345 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3346 per_cpu(bh_accounting, cpu).nr = 0; 3347 return 0; 3348 } 3349 3350 /** 3351 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3352 * @bh: struct buffer_head 3353 * 3354 * Return true if the buffer is up-to-date and false, 3355 * with the buffer locked, if not. 3356 */ 3357 int bh_uptodate_or_lock(struct buffer_head *bh) 3358 { 3359 if (!buffer_uptodate(bh)) { 3360 lock_buffer(bh); 3361 if (!buffer_uptodate(bh)) 3362 return 0; 3363 unlock_buffer(bh); 3364 } 3365 return 1; 3366 } 3367 EXPORT_SYMBOL(bh_uptodate_or_lock); 3368 3369 /** 3370 * bh_submit_read - Submit a locked buffer for reading 3371 * @bh: struct buffer_head 3372 * 3373 * Returns zero on success and -EIO on error. 3374 */ 3375 int bh_submit_read(struct buffer_head *bh) 3376 { 3377 BUG_ON(!buffer_locked(bh)); 3378 3379 if (buffer_uptodate(bh)) { 3380 unlock_buffer(bh); 3381 return 0; 3382 } 3383 3384 get_bh(bh); 3385 bh->b_end_io = end_buffer_read_sync; 3386 submit_bh(REQ_OP_READ, 0, bh); 3387 wait_on_buffer(bh); 3388 if (buffer_uptodate(bh)) 3389 return 0; 3390 return -EIO; 3391 } 3392 EXPORT_SYMBOL(bh_submit_read); 3393 3394 void __init buffer_init(void) 3395 { 3396 unsigned long nrpages; 3397 int ret; 3398 3399 bh_cachep = kmem_cache_create("buffer_head", 3400 sizeof(struct buffer_head), 0, 3401 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3402 SLAB_MEM_SPREAD), 3403 NULL); 3404 3405 /* 3406 * Limit the bh occupancy to 10% of ZONE_NORMAL 3407 */ 3408 nrpages = (nr_free_buffer_pages() * 10) / 100; 3409 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3410 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3411 NULL, buffer_exit_cpu_dead); 3412 WARN_ON(ret < 0); 3413 } 3414