xref: /openbmc/linux/fs/buffer.c (revision c4ee0af3)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91 				     bool *dirty, bool *writeback)
92 {
93 	struct buffer_head *head, *bh;
94 	*dirty = false;
95 	*writeback = false;
96 
97 	BUG_ON(!PageLocked(page));
98 
99 	if (!page_has_buffers(page))
100 		return;
101 
102 	if (PageWriteback(page))
103 		*writeback = true;
104 
105 	head = page_buffers(page);
106 	bh = head;
107 	do {
108 		if (buffer_locked(bh))
109 			*writeback = true;
110 
111 		if (buffer_dirty(bh))
112 			*dirty = true;
113 
114 		bh = bh->b_this_page;
115 	} while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118 
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129 
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 	ClearPagePrivate(page);
134 	set_page_private(page, 0);
135 	page_cache_release(page);
136 }
137 
138 
139 static int quiet_error(struct buffer_head *bh)
140 {
141 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 		return 0;
143 	return 1;
144 }
145 
146 
147 static void buffer_io_error(struct buffer_head *bh)
148 {
149 	char b[BDEVNAME_SIZE];
150 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 			bdevname(bh->b_bdev, b),
152 			(unsigned long long)bh->b_blocknr);
153 }
154 
155 /*
156  * End-of-IO handler helper function which does not touch the bh after
157  * unlocking it.
158  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159  * a race there is benign: unlock_buffer() only use the bh's address for
160  * hashing after unlocking the buffer, so it doesn't actually touch the bh
161  * itself.
162  */
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
164 {
165 	if (uptodate) {
166 		set_buffer_uptodate(bh);
167 	} else {
168 		/* This happens, due to failed READA attempts. */
169 		clear_buffer_uptodate(bh);
170 	}
171 	unlock_buffer(bh);
172 }
173 
174 /*
175  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
176  * unlock the buffer. This is what ll_rw_block uses too.
177  */
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179 {
180 	__end_buffer_read_notouch(bh, uptodate);
181 	put_bh(bh);
182 }
183 EXPORT_SYMBOL(end_buffer_read_sync);
184 
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186 {
187 	char b[BDEVNAME_SIZE];
188 
189 	if (uptodate) {
190 		set_buffer_uptodate(bh);
191 	} else {
192 		if (!quiet_error(bh)) {
193 			buffer_io_error(bh);
194 			printk(KERN_WARNING "lost page write due to "
195 					"I/O error on %s\n",
196 				       bdevname(bh->b_bdev, b));
197 		}
198 		set_buffer_write_io_error(bh);
199 		clear_buffer_uptodate(bh);
200 	}
201 	unlock_buffer(bh);
202 	put_bh(bh);
203 }
204 EXPORT_SYMBOL(end_buffer_write_sync);
205 
206 /*
207  * Various filesystems appear to want __find_get_block to be non-blocking.
208  * But it's the page lock which protects the buffers.  To get around this,
209  * we get exclusion from try_to_free_buffers with the blockdev mapping's
210  * private_lock.
211  *
212  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213  * may be quite high.  This code could TryLock the page, and if that
214  * succeeds, there is no need to take private_lock. (But if
215  * private_lock is contended then so is mapping->tree_lock).
216  */
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
219 {
220 	struct inode *bd_inode = bdev->bd_inode;
221 	struct address_space *bd_mapping = bd_inode->i_mapping;
222 	struct buffer_head *ret = NULL;
223 	pgoff_t index;
224 	struct buffer_head *bh;
225 	struct buffer_head *head;
226 	struct page *page;
227 	int all_mapped = 1;
228 
229 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 	page = find_get_page(bd_mapping, index);
231 	if (!page)
232 		goto out;
233 
234 	spin_lock(&bd_mapping->private_lock);
235 	if (!page_has_buffers(page))
236 		goto out_unlock;
237 	head = page_buffers(page);
238 	bh = head;
239 	do {
240 		if (!buffer_mapped(bh))
241 			all_mapped = 0;
242 		else if (bh->b_blocknr == block) {
243 			ret = bh;
244 			get_bh(bh);
245 			goto out_unlock;
246 		}
247 		bh = bh->b_this_page;
248 	} while (bh != head);
249 
250 	/* we might be here because some of the buffers on this page are
251 	 * not mapped.  This is due to various races between
252 	 * file io on the block device and getblk.  It gets dealt with
253 	 * elsewhere, don't buffer_error if we had some unmapped buffers
254 	 */
255 	if (all_mapped) {
256 		char b[BDEVNAME_SIZE];
257 
258 		printk("__find_get_block_slow() failed. "
259 			"block=%llu, b_blocknr=%llu\n",
260 			(unsigned long long)block,
261 			(unsigned long long)bh->b_blocknr);
262 		printk("b_state=0x%08lx, b_size=%zu\n",
263 			bh->b_state, bh->b_size);
264 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 			1 << bd_inode->i_blkbits);
266 	}
267 out_unlock:
268 	spin_unlock(&bd_mapping->private_lock);
269 	page_cache_release(page);
270 out:
271 	return ret;
272 }
273 
274 /*
275  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
276  */
277 static void free_more_memory(void)
278 {
279 	struct zone *zone;
280 	int nid;
281 
282 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 	yield();
284 
285 	for_each_online_node(nid) {
286 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 						gfp_zone(GFP_NOFS), NULL,
288 						&zone);
289 		if (zone)
290 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 						GFP_NOFS, NULL);
292 	}
293 }
294 
295 /*
296  * I/O completion handler for block_read_full_page() - pages
297  * which come unlocked at the end of I/O.
298  */
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300 {
301 	unsigned long flags;
302 	struct buffer_head *first;
303 	struct buffer_head *tmp;
304 	struct page *page;
305 	int page_uptodate = 1;
306 
307 	BUG_ON(!buffer_async_read(bh));
308 
309 	page = bh->b_page;
310 	if (uptodate) {
311 		set_buffer_uptodate(bh);
312 	} else {
313 		clear_buffer_uptodate(bh);
314 		if (!quiet_error(bh))
315 			buffer_io_error(bh);
316 		SetPageError(page);
317 	}
318 
319 	/*
320 	 * Be _very_ careful from here on. Bad things can happen if
321 	 * two buffer heads end IO at almost the same time and both
322 	 * decide that the page is now completely done.
323 	 */
324 	first = page_buffers(page);
325 	local_irq_save(flags);
326 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 	clear_buffer_async_read(bh);
328 	unlock_buffer(bh);
329 	tmp = bh;
330 	do {
331 		if (!buffer_uptodate(tmp))
332 			page_uptodate = 0;
333 		if (buffer_async_read(tmp)) {
334 			BUG_ON(!buffer_locked(tmp));
335 			goto still_busy;
336 		}
337 		tmp = tmp->b_this_page;
338 	} while (tmp != bh);
339 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 	local_irq_restore(flags);
341 
342 	/*
343 	 * If none of the buffers had errors and they are all
344 	 * uptodate then we can set the page uptodate.
345 	 */
346 	if (page_uptodate && !PageError(page))
347 		SetPageUptodate(page);
348 	unlock_page(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 
357 /*
358  * Completion handler for block_write_full_page() - pages which are unlocked
359  * during I/O, and which have PageWriteback cleared upon I/O completion.
360  */
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
362 {
363 	char b[BDEVNAME_SIZE];
364 	unsigned long flags;
365 	struct buffer_head *first;
366 	struct buffer_head *tmp;
367 	struct page *page;
368 
369 	BUG_ON(!buffer_async_write(bh));
370 
371 	page = bh->b_page;
372 	if (uptodate) {
373 		set_buffer_uptodate(bh);
374 	} else {
375 		if (!quiet_error(bh)) {
376 			buffer_io_error(bh);
377 			printk(KERN_WARNING "lost page write due to "
378 					"I/O error on %s\n",
379 			       bdevname(bh->b_bdev, b));
380 		}
381 		set_bit(AS_EIO, &page->mapping->flags);
382 		set_buffer_write_io_error(bh);
383 		clear_buffer_uptodate(bh);
384 		SetPageError(page);
385 	}
386 
387 	first = page_buffers(page);
388 	local_irq_save(flags);
389 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390 
391 	clear_buffer_async_write(bh);
392 	unlock_buffer(bh);
393 	tmp = bh->b_this_page;
394 	while (tmp != bh) {
395 		if (buffer_async_write(tmp)) {
396 			BUG_ON(!buffer_locked(tmp));
397 			goto still_busy;
398 		}
399 		tmp = tmp->b_this_page;
400 	}
401 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 	local_irq_restore(flags);
403 	end_page_writeback(page);
404 	return;
405 
406 still_busy:
407 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 	local_irq_restore(flags);
409 	return;
410 }
411 EXPORT_SYMBOL(end_buffer_async_write);
412 
413 /*
414  * If a page's buffers are under async readin (end_buffer_async_read
415  * completion) then there is a possibility that another thread of
416  * control could lock one of the buffers after it has completed
417  * but while some of the other buffers have not completed.  This
418  * locked buffer would confuse end_buffer_async_read() into not unlocking
419  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
420  * that this buffer is not under async I/O.
421  *
422  * The page comes unlocked when it has no locked buffer_async buffers
423  * left.
424  *
425  * PageLocked prevents anyone starting new async I/O reads any of
426  * the buffers.
427  *
428  * PageWriteback is used to prevent simultaneous writeout of the same
429  * page.
430  *
431  * PageLocked prevents anyone from starting writeback of a page which is
432  * under read I/O (PageWriteback is only ever set against a locked page).
433  */
434 static void mark_buffer_async_read(struct buffer_head *bh)
435 {
436 	bh->b_end_io = end_buffer_async_read;
437 	set_buffer_async_read(bh);
438 }
439 
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 					  bh_end_io_t *handler)
442 {
443 	bh->b_end_io = handler;
444 	set_buffer_async_write(bh);
445 }
446 
447 void mark_buffer_async_write(struct buffer_head *bh)
448 {
449 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
450 }
451 EXPORT_SYMBOL(mark_buffer_async_write);
452 
453 
454 /*
455  * fs/buffer.c contains helper functions for buffer-backed address space's
456  * fsync functions.  A common requirement for buffer-based filesystems is
457  * that certain data from the backing blockdev needs to be written out for
458  * a successful fsync().  For example, ext2 indirect blocks need to be
459  * written back and waited upon before fsync() returns.
460  *
461  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463  * management of a list of dependent buffers at ->i_mapping->private_list.
464  *
465  * Locking is a little subtle: try_to_free_buffers() will remove buffers
466  * from their controlling inode's queue when they are being freed.  But
467  * try_to_free_buffers() will be operating against the *blockdev* mapping
468  * at the time, not against the S_ISREG file which depends on those buffers.
469  * So the locking for private_list is via the private_lock in the address_space
470  * which backs the buffers.  Which is different from the address_space
471  * against which the buffers are listed.  So for a particular address_space,
472  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
473  * mapping->private_list will always be protected by the backing blockdev's
474  * ->private_lock.
475  *
476  * Which introduces a requirement: all buffers on an address_space's
477  * ->private_list must be from the same address_space: the blockdev's.
478  *
479  * address_spaces which do not place buffers at ->private_list via these
480  * utility functions are free to use private_lock and private_list for
481  * whatever they want.  The only requirement is that list_empty(private_list)
482  * be true at clear_inode() time.
483  *
484  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
485  * filesystems should do that.  invalidate_inode_buffers() should just go
486  * BUG_ON(!list_empty).
487  *
488  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
489  * take an address_space, not an inode.  And it should be called
490  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491  * queued up.
492  *
493  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494  * list if it is already on a list.  Because if the buffer is on a list,
495  * it *must* already be on the right one.  If not, the filesystem is being
496  * silly.  This will save a ton of locking.  But first we have to ensure
497  * that buffers are taken *off* the old inode's list when they are freed
498  * (presumably in truncate).  That requires careful auditing of all
499  * filesystems (do it inside bforget()).  It could also be done by bringing
500  * b_inode back.
501  */
502 
503 /*
504  * The buffer's backing address_space's private_lock must be held
505  */
506 static void __remove_assoc_queue(struct buffer_head *bh)
507 {
508 	list_del_init(&bh->b_assoc_buffers);
509 	WARN_ON(!bh->b_assoc_map);
510 	if (buffer_write_io_error(bh))
511 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 	bh->b_assoc_map = NULL;
513 }
514 
515 int inode_has_buffers(struct inode *inode)
516 {
517 	return !list_empty(&inode->i_data.private_list);
518 }
519 
520 /*
521  * osync is designed to support O_SYNC io.  It waits synchronously for
522  * all already-submitted IO to complete, but does not queue any new
523  * writes to the disk.
524  *
525  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526  * you dirty the buffers, and then use osync_inode_buffers to wait for
527  * completion.  Any other dirty buffers which are not yet queued for
528  * write will not be flushed to disk by the osync.
529  */
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531 {
532 	struct buffer_head *bh;
533 	struct list_head *p;
534 	int err = 0;
535 
536 	spin_lock(lock);
537 repeat:
538 	list_for_each_prev(p, list) {
539 		bh = BH_ENTRY(p);
540 		if (buffer_locked(bh)) {
541 			get_bh(bh);
542 			spin_unlock(lock);
543 			wait_on_buffer(bh);
544 			if (!buffer_uptodate(bh))
545 				err = -EIO;
546 			brelse(bh);
547 			spin_lock(lock);
548 			goto repeat;
549 		}
550 	}
551 	spin_unlock(lock);
552 	return err;
553 }
554 
555 static void do_thaw_one(struct super_block *sb, void *unused)
556 {
557 	char b[BDEVNAME_SIZE];
558 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 		printk(KERN_WARNING "Emergency Thaw on %s\n",
560 		       bdevname(sb->s_bdev, b));
561 }
562 
563 static void do_thaw_all(struct work_struct *work)
564 {
565 	iterate_supers(do_thaw_one, NULL);
566 	kfree(work);
567 	printk(KERN_WARNING "Emergency Thaw complete\n");
568 }
569 
570 /**
571  * emergency_thaw_all -- forcibly thaw every frozen filesystem
572  *
573  * Used for emergency unfreeze of all filesystems via SysRq
574  */
575 void emergency_thaw_all(void)
576 {
577 	struct work_struct *work;
578 
579 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 	if (work) {
581 		INIT_WORK(work, do_thaw_all);
582 		schedule_work(work);
583 	}
584 }
585 
586 /**
587  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588  * @mapping: the mapping which wants those buffers written
589  *
590  * Starts I/O against the buffers at mapping->private_list, and waits upon
591  * that I/O.
592  *
593  * Basically, this is a convenience function for fsync().
594  * @mapping is a file or directory which needs those buffers to be written for
595  * a successful fsync().
596  */
597 int sync_mapping_buffers(struct address_space *mapping)
598 {
599 	struct address_space *buffer_mapping = mapping->private_data;
600 
601 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 		return 0;
603 
604 	return fsync_buffers_list(&buffer_mapping->private_lock,
605 					&mapping->private_list);
606 }
607 EXPORT_SYMBOL(sync_mapping_buffers);
608 
609 /*
610  * Called when we've recently written block `bblock', and it is known that
611  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
612  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
613  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
614  */
615 void write_boundary_block(struct block_device *bdev,
616 			sector_t bblock, unsigned blocksize)
617 {
618 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 	if (bh) {
620 		if (buffer_dirty(bh))
621 			ll_rw_block(WRITE, 1, &bh);
622 		put_bh(bh);
623 	}
624 }
625 
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct address_space *buffer_mapping = bh->b_page->mapping;
630 
631 	mark_buffer_dirty(bh);
632 	if (!mapping->private_data) {
633 		mapping->private_data = buffer_mapping;
634 	} else {
635 		BUG_ON(mapping->private_data != buffer_mapping);
636 	}
637 	if (!bh->b_assoc_map) {
638 		spin_lock(&buffer_mapping->private_lock);
639 		list_move_tail(&bh->b_assoc_buffers,
640 				&mapping->private_list);
641 		bh->b_assoc_map = mapping;
642 		spin_unlock(&buffer_mapping->private_lock);
643 	}
644 }
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
646 
647 /*
648  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649  * dirty.
650  *
651  * If warn is true, then emit a warning if the page is not uptodate and has
652  * not been truncated.
653  */
654 static void __set_page_dirty(struct page *page,
655 		struct address_space *mapping, int warn)
656 {
657 	spin_lock_irq(&mapping->tree_lock);
658 	if (page->mapping) {	/* Race with truncate? */
659 		WARN_ON_ONCE(warn && !PageUptodate(page));
660 		account_page_dirtied(page, mapping);
661 		radix_tree_tag_set(&mapping->page_tree,
662 				page_index(page), PAGECACHE_TAG_DIRTY);
663 	}
664 	spin_unlock_irq(&mapping->tree_lock);
665 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
666 }
667 
668 /*
669  * Add a page to the dirty page list.
670  *
671  * It is a sad fact of life that this function is called from several places
672  * deeply under spinlocking.  It may not sleep.
673  *
674  * If the page has buffers, the uptodate buffers are set dirty, to preserve
675  * dirty-state coherency between the page and the buffers.  It the page does
676  * not have buffers then when they are later attached they will all be set
677  * dirty.
678  *
679  * The buffers are dirtied before the page is dirtied.  There's a small race
680  * window in which a writepage caller may see the page cleanness but not the
681  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
682  * before the buffers, a concurrent writepage caller could clear the page dirty
683  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
684  * page on the dirty page list.
685  *
686  * We use private_lock to lock against try_to_free_buffers while using the
687  * page's buffer list.  Also use this to protect against clean buffers being
688  * added to the page after it was set dirty.
689  *
690  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
691  * address_space though.
692  */
693 int __set_page_dirty_buffers(struct page *page)
694 {
695 	int newly_dirty;
696 	struct address_space *mapping = page_mapping(page);
697 
698 	if (unlikely(!mapping))
699 		return !TestSetPageDirty(page);
700 
701 	spin_lock(&mapping->private_lock);
702 	if (page_has_buffers(page)) {
703 		struct buffer_head *head = page_buffers(page);
704 		struct buffer_head *bh = head;
705 
706 		do {
707 			set_buffer_dirty(bh);
708 			bh = bh->b_this_page;
709 		} while (bh != head);
710 	}
711 	newly_dirty = !TestSetPageDirty(page);
712 	spin_unlock(&mapping->private_lock);
713 
714 	if (newly_dirty)
715 		__set_page_dirty(page, mapping, 1);
716 	return newly_dirty;
717 }
718 EXPORT_SYMBOL(__set_page_dirty_buffers);
719 
720 /*
721  * Write out and wait upon a list of buffers.
722  *
723  * We have conflicting pressures: we want to make sure that all
724  * initially dirty buffers get waited on, but that any subsequently
725  * dirtied buffers don't.  After all, we don't want fsync to last
726  * forever if somebody is actively writing to the file.
727  *
728  * Do this in two main stages: first we copy dirty buffers to a
729  * temporary inode list, queueing the writes as we go.  Then we clean
730  * up, waiting for those writes to complete.
731  *
732  * During this second stage, any subsequent updates to the file may end
733  * up refiling the buffer on the original inode's dirty list again, so
734  * there is a chance we will end up with a buffer queued for write but
735  * not yet completed on that list.  So, as a final cleanup we go through
736  * the osync code to catch these locked, dirty buffers without requeuing
737  * any newly dirty buffers for write.
738  */
739 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
740 {
741 	struct buffer_head *bh;
742 	struct list_head tmp;
743 	struct address_space *mapping;
744 	int err = 0, err2;
745 	struct blk_plug plug;
746 
747 	INIT_LIST_HEAD(&tmp);
748 	blk_start_plug(&plug);
749 
750 	spin_lock(lock);
751 	while (!list_empty(list)) {
752 		bh = BH_ENTRY(list->next);
753 		mapping = bh->b_assoc_map;
754 		__remove_assoc_queue(bh);
755 		/* Avoid race with mark_buffer_dirty_inode() which does
756 		 * a lockless check and we rely on seeing the dirty bit */
757 		smp_mb();
758 		if (buffer_dirty(bh) || buffer_locked(bh)) {
759 			list_add(&bh->b_assoc_buffers, &tmp);
760 			bh->b_assoc_map = mapping;
761 			if (buffer_dirty(bh)) {
762 				get_bh(bh);
763 				spin_unlock(lock);
764 				/*
765 				 * Ensure any pending I/O completes so that
766 				 * write_dirty_buffer() actually writes the
767 				 * current contents - it is a noop if I/O is
768 				 * still in flight on potentially older
769 				 * contents.
770 				 */
771 				write_dirty_buffer(bh, WRITE_SYNC);
772 
773 				/*
774 				 * Kick off IO for the previous mapping. Note
775 				 * that we will not run the very last mapping,
776 				 * wait_on_buffer() will do that for us
777 				 * through sync_buffer().
778 				 */
779 				brelse(bh);
780 				spin_lock(lock);
781 			}
782 		}
783 	}
784 
785 	spin_unlock(lock);
786 	blk_finish_plug(&plug);
787 	spin_lock(lock);
788 
789 	while (!list_empty(&tmp)) {
790 		bh = BH_ENTRY(tmp.prev);
791 		get_bh(bh);
792 		mapping = bh->b_assoc_map;
793 		__remove_assoc_queue(bh);
794 		/* Avoid race with mark_buffer_dirty_inode() which does
795 		 * a lockless check and we rely on seeing the dirty bit */
796 		smp_mb();
797 		if (buffer_dirty(bh)) {
798 			list_add(&bh->b_assoc_buffers,
799 				 &mapping->private_list);
800 			bh->b_assoc_map = mapping;
801 		}
802 		spin_unlock(lock);
803 		wait_on_buffer(bh);
804 		if (!buffer_uptodate(bh))
805 			err = -EIO;
806 		brelse(bh);
807 		spin_lock(lock);
808 	}
809 
810 	spin_unlock(lock);
811 	err2 = osync_buffers_list(lock, list);
812 	if (err)
813 		return err;
814 	else
815 		return err2;
816 }
817 
818 /*
819  * Invalidate any and all dirty buffers on a given inode.  We are
820  * probably unmounting the fs, but that doesn't mean we have already
821  * done a sync().  Just drop the buffers from the inode list.
822  *
823  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
824  * assumes that all the buffers are against the blockdev.  Not true
825  * for reiserfs.
826  */
827 void invalidate_inode_buffers(struct inode *inode)
828 {
829 	if (inode_has_buffers(inode)) {
830 		struct address_space *mapping = &inode->i_data;
831 		struct list_head *list = &mapping->private_list;
832 		struct address_space *buffer_mapping = mapping->private_data;
833 
834 		spin_lock(&buffer_mapping->private_lock);
835 		while (!list_empty(list))
836 			__remove_assoc_queue(BH_ENTRY(list->next));
837 		spin_unlock(&buffer_mapping->private_lock);
838 	}
839 }
840 EXPORT_SYMBOL(invalidate_inode_buffers);
841 
842 /*
843  * Remove any clean buffers from the inode's buffer list.  This is called
844  * when we're trying to free the inode itself.  Those buffers can pin it.
845  *
846  * Returns true if all buffers were removed.
847  */
848 int remove_inode_buffers(struct inode *inode)
849 {
850 	int ret = 1;
851 
852 	if (inode_has_buffers(inode)) {
853 		struct address_space *mapping = &inode->i_data;
854 		struct list_head *list = &mapping->private_list;
855 		struct address_space *buffer_mapping = mapping->private_data;
856 
857 		spin_lock(&buffer_mapping->private_lock);
858 		while (!list_empty(list)) {
859 			struct buffer_head *bh = BH_ENTRY(list->next);
860 			if (buffer_dirty(bh)) {
861 				ret = 0;
862 				break;
863 			}
864 			__remove_assoc_queue(bh);
865 		}
866 		spin_unlock(&buffer_mapping->private_lock);
867 	}
868 	return ret;
869 }
870 
871 /*
872  * Create the appropriate buffers when given a page for data area and
873  * the size of each buffer.. Use the bh->b_this_page linked list to
874  * follow the buffers created.  Return NULL if unable to create more
875  * buffers.
876  *
877  * The retry flag is used to differentiate async IO (paging, swapping)
878  * which may not fail from ordinary buffer allocations.
879  */
880 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
881 		int retry)
882 {
883 	struct buffer_head *bh, *head;
884 	long offset;
885 
886 try_again:
887 	head = NULL;
888 	offset = PAGE_SIZE;
889 	while ((offset -= size) >= 0) {
890 		bh = alloc_buffer_head(GFP_NOFS);
891 		if (!bh)
892 			goto no_grow;
893 
894 		bh->b_this_page = head;
895 		bh->b_blocknr = -1;
896 		head = bh;
897 
898 		bh->b_size = size;
899 
900 		/* Link the buffer to its page */
901 		set_bh_page(bh, page, offset);
902 	}
903 	return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908 	if (head) {
909 		do {
910 			bh = head;
911 			head = head->b_this_page;
912 			free_buffer_head(bh);
913 		} while (head);
914 	}
915 
916 	/*
917 	 * Return failure for non-async IO requests.  Async IO requests
918 	 * are not allowed to fail, so we have to wait until buffer heads
919 	 * become available.  But we don't want tasks sleeping with
920 	 * partially complete buffers, so all were released above.
921 	 */
922 	if (!retry)
923 		return NULL;
924 
925 	/* We're _really_ low on memory. Now we just
926 	 * wait for old buffer heads to become free due to
927 	 * finishing IO.  Since this is an async request and
928 	 * the reserve list is empty, we're sure there are
929 	 * async buffer heads in use.
930 	 */
931 	free_more_memory();
932 	goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935 
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939 	struct buffer_head *bh, *tail;
940 
941 	bh = head;
942 	do {
943 		tail = bh;
944 		bh = bh->b_this_page;
945 	} while (bh);
946 	tail->b_this_page = head;
947 	attach_page_buffers(page, head);
948 }
949 
950 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
951 {
952 	sector_t retval = ~((sector_t)0);
953 	loff_t sz = i_size_read(bdev->bd_inode);
954 
955 	if (sz) {
956 		unsigned int sizebits = blksize_bits(size);
957 		retval = (sz >> sizebits);
958 	}
959 	return retval;
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static sector_t
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
973 
974 	do {
975 		if (!buffer_mapped(bh)) {
976 			init_buffer(bh, NULL, NULL);
977 			bh->b_bdev = bdev;
978 			bh->b_blocknr = block;
979 			if (uptodate)
980 				set_buffer_uptodate(bh);
981 			if (block < end_block)
982 				set_buffer_mapped(bh);
983 		}
984 		block++;
985 		bh = bh->b_this_page;
986 	} while (bh != head);
987 
988 	/*
989 	 * Caller needs to validate requested block against end of device.
990 	 */
991 	return end_block;
992 }
993 
994 /*
995  * Create the page-cache page that contains the requested block.
996  *
997  * This is used purely for blockdev mappings.
998  */
999 static int
1000 grow_dev_page(struct block_device *bdev, sector_t block,
1001 		pgoff_t index, int size, int sizebits)
1002 {
1003 	struct inode *inode = bdev->bd_inode;
1004 	struct page *page;
1005 	struct buffer_head *bh;
1006 	sector_t end_block;
1007 	int ret = 0;		/* Will call free_more_memory() */
1008 	gfp_t gfp_mask;
1009 
1010 	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1011 	gfp_mask |= __GFP_MOVABLE;
1012 	/*
1013 	 * XXX: __getblk_slow() can not really deal with failure and
1014 	 * will endlessly loop on improvised global reclaim.  Prefer
1015 	 * looping in the allocator rather than here, at least that
1016 	 * code knows what it's doing.
1017 	 */
1018 	gfp_mask |= __GFP_NOFAIL;
1019 
1020 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1021 	if (!page)
1022 		return ret;
1023 
1024 	BUG_ON(!PageLocked(page));
1025 
1026 	if (page_has_buffers(page)) {
1027 		bh = page_buffers(page);
1028 		if (bh->b_size == size) {
1029 			end_block = init_page_buffers(page, bdev,
1030 						index << sizebits, size);
1031 			goto done;
1032 		}
1033 		if (!try_to_free_buffers(page))
1034 			goto failed;
1035 	}
1036 
1037 	/*
1038 	 * Allocate some buffers for this page
1039 	 */
1040 	bh = alloc_page_buffers(page, size, 0);
1041 	if (!bh)
1042 		goto failed;
1043 
1044 	/*
1045 	 * Link the page to the buffers and initialise them.  Take the
1046 	 * lock to be atomic wrt __find_get_block(), which does not
1047 	 * run under the page lock.
1048 	 */
1049 	spin_lock(&inode->i_mapping->private_lock);
1050 	link_dev_buffers(page, bh);
1051 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1052 	spin_unlock(&inode->i_mapping->private_lock);
1053 done:
1054 	ret = (block < end_block) ? 1 : -ENXIO;
1055 failed:
1056 	unlock_page(page);
1057 	page_cache_release(page);
1058 	return ret;
1059 }
1060 
1061 /*
1062  * Create buffers for the specified block device block's page.  If
1063  * that page was dirty, the buffers are set dirty also.
1064  */
1065 static int
1066 grow_buffers(struct block_device *bdev, sector_t block, int size)
1067 {
1068 	pgoff_t index;
1069 	int sizebits;
1070 
1071 	sizebits = -1;
1072 	do {
1073 		sizebits++;
1074 	} while ((size << sizebits) < PAGE_SIZE);
1075 
1076 	index = block >> sizebits;
1077 
1078 	/*
1079 	 * Check for a block which wants to lie outside our maximum possible
1080 	 * pagecache index.  (this comparison is done using sector_t types).
1081 	 */
1082 	if (unlikely(index != block >> sizebits)) {
1083 		char b[BDEVNAME_SIZE];
1084 
1085 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086 			"device %s\n",
1087 			__func__, (unsigned long long)block,
1088 			bdevname(bdev, b));
1089 		return -EIO;
1090 	}
1091 
1092 	/* Create a page with the proper size buffers.. */
1093 	return grow_dev_page(bdev, block, index, size, sizebits);
1094 }
1095 
1096 static struct buffer_head *
1097 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1098 {
1099 	/* Size must be multiple of hard sectorsize */
1100 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1101 			(size < 512 || size > PAGE_SIZE))) {
1102 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1103 					size);
1104 		printk(KERN_ERR "logical block size: %d\n",
1105 					bdev_logical_block_size(bdev));
1106 
1107 		dump_stack();
1108 		return NULL;
1109 	}
1110 
1111 	for (;;) {
1112 		struct buffer_head *bh;
1113 		int ret;
1114 
1115 		bh = __find_get_block(bdev, block, size);
1116 		if (bh)
1117 			return bh;
1118 
1119 		ret = grow_buffers(bdev, block, size);
1120 		if (ret < 0)
1121 			return NULL;
1122 		if (ret == 0)
1123 			free_more_memory();
1124 	}
1125 }
1126 
1127 /*
1128  * The relationship between dirty buffers and dirty pages:
1129  *
1130  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1131  * the page is tagged dirty in its radix tree.
1132  *
1133  * At all times, the dirtiness of the buffers represents the dirtiness of
1134  * subsections of the page.  If the page has buffers, the page dirty bit is
1135  * merely a hint about the true dirty state.
1136  *
1137  * When a page is set dirty in its entirety, all its buffers are marked dirty
1138  * (if the page has buffers).
1139  *
1140  * When a buffer is marked dirty, its page is dirtied, but the page's other
1141  * buffers are not.
1142  *
1143  * Also.  When blockdev buffers are explicitly read with bread(), they
1144  * individually become uptodate.  But their backing page remains not
1145  * uptodate - even if all of its buffers are uptodate.  A subsequent
1146  * block_read_full_page() against that page will discover all the uptodate
1147  * buffers, will set the page uptodate and will perform no I/O.
1148  */
1149 
1150 /**
1151  * mark_buffer_dirty - mark a buffer_head as needing writeout
1152  * @bh: the buffer_head to mark dirty
1153  *
1154  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1155  * backing page dirty, then tag the page as dirty in its address_space's radix
1156  * tree and then attach the address_space's inode to its superblock's dirty
1157  * inode list.
1158  *
1159  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1160  * mapping->tree_lock and mapping->host->i_lock.
1161  */
1162 void mark_buffer_dirty(struct buffer_head *bh)
1163 {
1164 	WARN_ON_ONCE(!buffer_uptodate(bh));
1165 
1166 	trace_block_dirty_buffer(bh);
1167 
1168 	/*
1169 	 * Very *carefully* optimize the it-is-already-dirty case.
1170 	 *
1171 	 * Don't let the final "is it dirty" escape to before we
1172 	 * perhaps modified the buffer.
1173 	 */
1174 	if (buffer_dirty(bh)) {
1175 		smp_mb();
1176 		if (buffer_dirty(bh))
1177 			return;
1178 	}
1179 
1180 	if (!test_set_buffer_dirty(bh)) {
1181 		struct page *page = bh->b_page;
1182 		if (!TestSetPageDirty(page)) {
1183 			struct address_space *mapping = page_mapping(page);
1184 			if (mapping)
1185 				__set_page_dirty(page, mapping, 0);
1186 		}
1187 	}
1188 }
1189 EXPORT_SYMBOL(mark_buffer_dirty);
1190 
1191 /*
1192  * Decrement a buffer_head's reference count.  If all buffers against a page
1193  * have zero reference count, are clean and unlocked, and if the page is clean
1194  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1195  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1196  * a page but it ends up not being freed, and buffers may later be reattached).
1197  */
1198 void __brelse(struct buffer_head * buf)
1199 {
1200 	if (atomic_read(&buf->b_count)) {
1201 		put_bh(buf);
1202 		return;
1203 	}
1204 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1205 }
1206 EXPORT_SYMBOL(__brelse);
1207 
1208 /*
1209  * bforget() is like brelse(), except it discards any
1210  * potentially dirty data.
1211  */
1212 void __bforget(struct buffer_head *bh)
1213 {
1214 	clear_buffer_dirty(bh);
1215 	if (bh->b_assoc_map) {
1216 		struct address_space *buffer_mapping = bh->b_page->mapping;
1217 
1218 		spin_lock(&buffer_mapping->private_lock);
1219 		list_del_init(&bh->b_assoc_buffers);
1220 		bh->b_assoc_map = NULL;
1221 		spin_unlock(&buffer_mapping->private_lock);
1222 	}
1223 	__brelse(bh);
1224 }
1225 EXPORT_SYMBOL(__bforget);
1226 
1227 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1228 {
1229 	lock_buffer(bh);
1230 	if (buffer_uptodate(bh)) {
1231 		unlock_buffer(bh);
1232 		return bh;
1233 	} else {
1234 		get_bh(bh);
1235 		bh->b_end_io = end_buffer_read_sync;
1236 		submit_bh(READ, bh);
1237 		wait_on_buffer(bh);
1238 		if (buffer_uptodate(bh))
1239 			return bh;
1240 	}
1241 	brelse(bh);
1242 	return NULL;
1243 }
1244 
1245 /*
1246  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1247  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1248  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1249  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1250  * CPU's LRUs at the same time.
1251  *
1252  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1253  * sb_find_get_block().
1254  *
1255  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1256  * a local interrupt disable for that.
1257  */
1258 
1259 #define BH_LRU_SIZE	8
1260 
1261 struct bh_lru {
1262 	struct buffer_head *bhs[BH_LRU_SIZE];
1263 };
1264 
1265 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1266 
1267 #ifdef CONFIG_SMP
1268 #define bh_lru_lock()	local_irq_disable()
1269 #define bh_lru_unlock()	local_irq_enable()
1270 #else
1271 #define bh_lru_lock()	preempt_disable()
1272 #define bh_lru_unlock()	preempt_enable()
1273 #endif
1274 
1275 static inline void check_irqs_on(void)
1276 {
1277 #ifdef irqs_disabled
1278 	BUG_ON(irqs_disabled());
1279 #endif
1280 }
1281 
1282 /*
1283  * The LRU management algorithm is dopey-but-simple.  Sorry.
1284  */
1285 static void bh_lru_install(struct buffer_head *bh)
1286 {
1287 	struct buffer_head *evictee = NULL;
1288 
1289 	check_irqs_on();
1290 	bh_lru_lock();
1291 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1292 		struct buffer_head *bhs[BH_LRU_SIZE];
1293 		int in;
1294 		int out = 0;
1295 
1296 		get_bh(bh);
1297 		bhs[out++] = bh;
1298 		for (in = 0; in < BH_LRU_SIZE; in++) {
1299 			struct buffer_head *bh2 =
1300 				__this_cpu_read(bh_lrus.bhs[in]);
1301 
1302 			if (bh2 == bh) {
1303 				__brelse(bh2);
1304 			} else {
1305 				if (out >= BH_LRU_SIZE) {
1306 					BUG_ON(evictee != NULL);
1307 					evictee = bh2;
1308 				} else {
1309 					bhs[out++] = bh2;
1310 				}
1311 			}
1312 		}
1313 		while (out < BH_LRU_SIZE)
1314 			bhs[out++] = NULL;
1315 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1316 	}
1317 	bh_lru_unlock();
1318 
1319 	if (evictee)
1320 		__brelse(evictee);
1321 }
1322 
1323 /*
1324  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1325  */
1326 static struct buffer_head *
1327 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1328 {
1329 	struct buffer_head *ret = NULL;
1330 	unsigned int i;
1331 
1332 	check_irqs_on();
1333 	bh_lru_lock();
1334 	for (i = 0; i < BH_LRU_SIZE; i++) {
1335 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1336 
1337 		if (bh && bh->b_bdev == bdev &&
1338 				bh->b_blocknr == block && bh->b_size == size) {
1339 			if (i) {
1340 				while (i) {
1341 					__this_cpu_write(bh_lrus.bhs[i],
1342 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1343 					i--;
1344 				}
1345 				__this_cpu_write(bh_lrus.bhs[0], bh);
1346 			}
1347 			get_bh(bh);
1348 			ret = bh;
1349 			break;
1350 		}
1351 	}
1352 	bh_lru_unlock();
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1358  * it in the LRU and mark it as accessed.  If it is not present then return
1359  * NULL
1360  */
1361 struct buffer_head *
1362 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1365 
1366 	if (bh == NULL) {
1367 		bh = __find_get_block_slow(bdev, block);
1368 		if (bh)
1369 			bh_lru_install(bh);
1370 	}
1371 	if (bh)
1372 		touch_buffer(bh);
1373 	return bh;
1374 }
1375 EXPORT_SYMBOL(__find_get_block);
1376 
1377 /*
1378  * __getblk will locate (and, if necessary, create) the buffer_head
1379  * which corresponds to the passed block_device, block and size. The
1380  * returned buffer has its reference count incremented.
1381  *
1382  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1383  * attempt is failing.  FIXME, perhaps?
1384  */
1385 struct buffer_head *
1386 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1389 
1390 	might_sleep();
1391 	if (bh == NULL)
1392 		bh = __getblk_slow(bdev, block, size);
1393 	return bh;
1394 }
1395 EXPORT_SYMBOL(__getblk);
1396 
1397 /*
1398  * Do async read-ahead on a buffer..
1399  */
1400 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1401 {
1402 	struct buffer_head *bh = __getblk(bdev, block, size);
1403 	if (likely(bh)) {
1404 		ll_rw_block(READA, 1, &bh);
1405 		brelse(bh);
1406 	}
1407 }
1408 EXPORT_SYMBOL(__breadahead);
1409 
1410 /**
1411  *  __bread() - reads a specified block and returns the bh
1412  *  @bdev: the block_device to read from
1413  *  @block: number of block
1414  *  @size: size (in bytes) to read
1415  *
1416  *  Reads a specified block, and returns buffer head that contains it.
1417  *  It returns NULL if the block was unreadable.
1418  */
1419 struct buffer_head *
1420 __bread(struct block_device *bdev, sector_t block, unsigned size)
1421 {
1422 	struct buffer_head *bh = __getblk(bdev, block, size);
1423 
1424 	if (likely(bh) && !buffer_uptodate(bh))
1425 		bh = __bread_slow(bh);
1426 	return bh;
1427 }
1428 EXPORT_SYMBOL(__bread);
1429 
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 	int i;
1439 
1440 	for (i = 0; i < BH_LRU_SIZE; i++) {
1441 		brelse(b->bhs[i]);
1442 		b->bhs[i] = NULL;
1443 	}
1444 	put_cpu_var(bh_lrus);
1445 }
1446 
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 	int i;
1451 
1452 	for (i = 0; i < BH_LRU_SIZE; i++) {
1453 		if (b->bhs[i])
1454 			return 1;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 void invalidate_bh_lrus(void)
1461 {
1462 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465 
1466 void set_bh_page(struct buffer_head *bh,
1467 		struct page *page, unsigned long offset)
1468 {
1469 	bh->b_page = page;
1470 	BUG_ON(offset >= PAGE_SIZE);
1471 	if (PageHighMem(page))
1472 		/*
1473 		 * This catches illegal uses and preserves the offset:
1474 		 */
1475 		bh->b_data = (char *)(0 + offset);
1476 	else
1477 		bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480 
1481 /*
1482  * Called when truncating a buffer on a page completely.
1483  */
1484 static void discard_buffer(struct buffer_head * bh)
1485 {
1486 	lock_buffer(bh);
1487 	clear_buffer_dirty(bh);
1488 	bh->b_bdev = NULL;
1489 	clear_buffer_mapped(bh);
1490 	clear_buffer_req(bh);
1491 	clear_buffer_new(bh);
1492 	clear_buffer_delay(bh);
1493 	clear_buffer_unwritten(bh);
1494 	unlock_buffer(bh);
1495 }
1496 
1497 /**
1498  * block_invalidatepage - invalidate part or all of a buffer-backed page
1499  *
1500  * @page: the page which is affected
1501  * @offset: start of the range to invalidate
1502  * @length: length of the range to invalidate
1503  *
1504  * block_invalidatepage() is called when all or part of the page has become
1505  * invalidated by a truncate operation.
1506  *
1507  * block_invalidatepage() does not have to release all buffers, but it must
1508  * ensure that no dirty buffer is left outside @offset and that no I/O
1509  * is underway against any of the blocks which are outside the truncation
1510  * point.  Because the caller is about to free (and possibly reuse) those
1511  * blocks on-disk.
1512  */
1513 void block_invalidatepage(struct page *page, unsigned int offset,
1514 			  unsigned int length)
1515 {
1516 	struct buffer_head *head, *bh, *next;
1517 	unsigned int curr_off = 0;
1518 	unsigned int stop = length + offset;
1519 
1520 	BUG_ON(!PageLocked(page));
1521 	if (!page_has_buffers(page))
1522 		goto out;
1523 
1524 	/*
1525 	 * Check for overflow
1526 	 */
1527 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1528 
1529 	head = page_buffers(page);
1530 	bh = head;
1531 	do {
1532 		unsigned int next_off = curr_off + bh->b_size;
1533 		next = bh->b_this_page;
1534 
1535 		/*
1536 		 * Are we still fully in range ?
1537 		 */
1538 		if (next_off > stop)
1539 			goto out;
1540 
1541 		/*
1542 		 * is this block fully invalidated?
1543 		 */
1544 		if (offset <= curr_off)
1545 			discard_buffer(bh);
1546 		curr_off = next_off;
1547 		bh = next;
1548 	} while (bh != head);
1549 
1550 	/*
1551 	 * We release buffers only if the entire page is being invalidated.
1552 	 * The get_block cached value has been unconditionally invalidated,
1553 	 * so real IO is not possible anymore.
1554 	 */
1555 	if (offset == 0)
1556 		try_to_release_page(page, 0);
1557 out:
1558 	return;
1559 }
1560 EXPORT_SYMBOL(block_invalidatepage);
1561 
1562 
1563 /*
1564  * We attach and possibly dirty the buffers atomically wrt
1565  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1566  * is already excluded via the page lock.
1567  */
1568 void create_empty_buffers(struct page *page,
1569 			unsigned long blocksize, unsigned long b_state)
1570 {
1571 	struct buffer_head *bh, *head, *tail;
1572 
1573 	head = alloc_page_buffers(page, blocksize, 1);
1574 	bh = head;
1575 	do {
1576 		bh->b_state |= b_state;
1577 		tail = bh;
1578 		bh = bh->b_this_page;
1579 	} while (bh);
1580 	tail->b_this_page = head;
1581 
1582 	spin_lock(&page->mapping->private_lock);
1583 	if (PageUptodate(page) || PageDirty(page)) {
1584 		bh = head;
1585 		do {
1586 			if (PageDirty(page))
1587 				set_buffer_dirty(bh);
1588 			if (PageUptodate(page))
1589 				set_buffer_uptodate(bh);
1590 			bh = bh->b_this_page;
1591 		} while (bh != head);
1592 	}
1593 	attach_page_buffers(page, head);
1594 	spin_unlock(&page->mapping->private_lock);
1595 }
1596 EXPORT_SYMBOL(create_empty_buffers);
1597 
1598 /*
1599  * We are taking a block for data and we don't want any output from any
1600  * buffer-cache aliases starting from return from that function and
1601  * until the moment when something will explicitly mark the buffer
1602  * dirty (hopefully that will not happen until we will free that block ;-)
1603  * We don't even need to mark it not-uptodate - nobody can expect
1604  * anything from a newly allocated buffer anyway. We used to used
1605  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1606  * don't want to mark the alias unmapped, for example - it would confuse
1607  * anyone who might pick it with bread() afterwards...
1608  *
1609  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1610  * be writeout I/O going on against recently-freed buffers.  We don't
1611  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1612  * only if we really need to.  That happens here.
1613  */
1614 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1615 {
1616 	struct buffer_head *old_bh;
1617 
1618 	might_sleep();
1619 
1620 	old_bh = __find_get_block_slow(bdev, block);
1621 	if (old_bh) {
1622 		clear_buffer_dirty(old_bh);
1623 		wait_on_buffer(old_bh);
1624 		clear_buffer_req(old_bh);
1625 		__brelse(old_bh);
1626 	}
1627 }
1628 EXPORT_SYMBOL(unmap_underlying_metadata);
1629 
1630 /*
1631  * Size is a power-of-two in the range 512..PAGE_SIZE,
1632  * and the case we care about most is PAGE_SIZE.
1633  *
1634  * So this *could* possibly be written with those
1635  * constraints in mind (relevant mostly if some
1636  * architecture has a slow bit-scan instruction)
1637  */
1638 static inline int block_size_bits(unsigned int blocksize)
1639 {
1640 	return ilog2(blocksize);
1641 }
1642 
1643 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1644 {
1645 	BUG_ON(!PageLocked(page));
1646 
1647 	if (!page_has_buffers(page))
1648 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1649 	return page_buffers(page);
1650 }
1651 
1652 /*
1653  * NOTE! All mapped/uptodate combinations are valid:
1654  *
1655  *	Mapped	Uptodate	Meaning
1656  *
1657  *	No	No		"unknown" - must do get_block()
1658  *	No	Yes		"hole" - zero-filled
1659  *	Yes	No		"allocated" - allocated on disk, not read in
1660  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1661  *
1662  * "Dirty" is valid only with the last case (mapped+uptodate).
1663  */
1664 
1665 /*
1666  * While block_write_full_page is writing back the dirty buffers under
1667  * the page lock, whoever dirtied the buffers may decide to clean them
1668  * again at any time.  We handle that by only looking at the buffer
1669  * state inside lock_buffer().
1670  *
1671  * If block_write_full_page() is called for regular writeback
1672  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1673  * locked buffer.   This only can happen if someone has written the buffer
1674  * directly, with submit_bh().  At the address_space level PageWriteback
1675  * prevents this contention from occurring.
1676  *
1677  * If block_write_full_page() is called with wbc->sync_mode ==
1678  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1679  * causes the writes to be flagged as synchronous writes.
1680  */
1681 static int __block_write_full_page(struct inode *inode, struct page *page,
1682 			get_block_t *get_block, struct writeback_control *wbc,
1683 			bh_end_io_t *handler)
1684 {
1685 	int err;
1686 	sector_t block;
1687 	sector_t last_block;
1688 	struct buffer_head *bh, *head;
1689 	unsigned int blocksize, bbits;
1690 	int nr_underway = 0;
1691 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1692 			WRITE_SYNC : WRITE);
1693 
1694 	head = create_page_buffers(page, inode,
1695 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1696 
1697 	/*
1698 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1699 	 * here, and the (potentially unmapped) buffers may become dirty at
1700 	 * any time.  If a buffer becomes dirty here after we've inspected it
1701 	 * then we just miss that fact, and the page stays dirty.
1702 	 *
1703 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1704 	 * handle that here by just cleaning them.
1705 	 */
1706 
1707 	bh = head;
1708 	blocksize = bh->b_size;
1709 	bbits = block_size_bits(blocksize);
1710 
1711 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1712 	last_block = (i_size_read(inode) - 1) >> bbits;
1713 
1714 	/*
1715 	 * Get all the dirty buffers mapped to disk addresses and
1716 	 * handle any aliases from the underlying blockdev's mapping.
1717 	 */
1718 	do {
1719 		if (block > last_block) {
1720 			/*
1721 			 * mapped buffers outside i_size will occur, because
1722 			 * this page can be outside i_size when there is a
1723 			 * truncate in progress.
1724 			 */
1725 			/*
1726 			 * The buffer was zeroed by block_write_full_page()
1727 			 */
1728 			clear_buffer_dirty(bh);
1729 			set_buffer_uptodate(bh);
1730 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1731 			   buffer_dirty(bh)) {
1732 			WARN_ON(bh->b_size != blocksize);
1733 			err = get_block(inode, block, bh, 1);
1734 			if (err)
1735 				goto recover;
1736 			clear_buffer_delay(bh);
1737 			if (buffer_new(bh)) {
1738 				/* blockdev mappings never come here */
1739 				clear_buffer_new(bh);
1740 				unmap_underlying_metadata(bh->b_bdev,
1741 							bh->b_blocknr);
1742 			}
1743 		}
1744 		bh = bh->b_this_page;
1745 		block++;
1746 	} while (bh != head);
1747 
1748 	do {
1749 		if (!buffer_mapped(bh))
1750 			continue;
1751 		/*
1752 		 * If it's a fully non-blocking write attempt and we cannot
1753 		 * lock the buffer then redirty the page.  Note that this can
1754 		 * potentially cause a busy-wait loop from writeback threads
1755 		 * and kswapd activity, but those code paths have their own
1756 		 * higher-level throttling.
1757 		 */
1758 		if (wbc->sync_mode != WB_SYNC_NONE) {
1759 			lock_buffer(bh);
1760 		} else if (!trylock_buffer(bh)) {
1761 			redirty_page_for_writepage(wbc, page);
1762 			continue;
1763 		}
1764 		if (test_clear_buffer_dirty(bh)) {
1765 			mark_buffer_async_write_endio(bh, handler);
1766 		} else {
1767 			unlock_buffer(bh);
1768 		}
1769 	} while ((bh = bh->b_this_page) != head);
1770 
1771 	/*
1772 	 * The page and its buffers are protected by PageWriteback(), so we can
1773 	 * drop the bh refcounts early.
1774 	 */
1775 	BUG_ON(PageWriteback(page));
1776 	set_page_writeback(page);
1777 
1778 	do {
1779 		struct buffer_head *next = bh->b_this_page;
1780 		if (buffer_async_write(bh)) {
1781 			submit_bh(write_op, bh);
1782 			nr_underway++;
1783 		}
1784 		bh = next;
1785 	} while (bh != head);
1786 	unlock_page(page);
1787 
1788 	err = 0;
1789 done:
1790 	if (nr_underway == 0) {
1791 		/*
1792 		 * The page was marked dirty, but the buffers were
1793 		 * clean.  Someone wrote them back by hand with
1794 		 * ll_rw_block/submit_bh.  A rare case.
1795 		 */
1796 		end_page_writeback(page);
1797 
1798 		/*
1799 		 * The page and buffer_heads can be released at any time from
1800 		 * here on.
1801 		 */
1802 	}
1803 	return err;
1804 
1805 recover:
1806 	/*
1807 	 * ENOSPC, or some other error.  We may already have added some
1808 	 * blocks to the file, so we need to write these out to avoid
1809 	 * exposing stale data.
1810 	 * The page is currently locked and not marked for writeback
1811 	 */
1812 	bh = head;
1813 	/* Recovery: lock and submit the mapped buffers */
1814 	do {
1815 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1816 		    !buffer_delay(bh)) {
1817 			lock_buffer(bh);
1818 			mark_buffer_async_write_endio(bh, handler);
1819 		} else {
1820 			/*
1821 			 * The buffer may have been set dirty during
1822 			 * attachment to a dirty page.
1823 			 */
1824 			clear_buffer_dirty(bh);
1825 		}
1826 	} while ((bh = bh->b_this_page) != head);
1827 	SetPageError(page);
1828 	BUG_ON(PageWriteback(page));
1829 	mapping_set_error(page->mapping, err);
1830 	set_page_writeback(page);
1831 	do {
1832 		struct buffer_head *next = bh->b_this_page;
1833 		if (buffer_async_write(bh)) {
1834 			clear_buffer_dirty(bh);
1835 			submit_bh(write_op, bh);
1836 			nr_underway++;
1837 		}
1838 		bh = next;
1839 	} while (bh != head);
1840 	unlock_page(page);
1841 	goto done;
1842 }
1843 
1844 /*
1845  * If a page has any new buffers, zero them out here, and mark them uptodate
1846  * and dirty so they'll be written out (in order to prevent uninitialised
1847  * block data from leaking). And clear the new bit.
1848  */
1849 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1850 {
1851 	unsigned int block_start, block_end;
1852 	struct buffer_head *head, *bh;
1853 
1854 	BUG_ON(!PageLocked(page));
1855 	if (!page_has_buffers(page))
1856 		return;
1857 
1858 	bh = head = page_buffers(page);
1859 	block_start = 0;
1860 	do {
1861 		block_end = block_start + bh->b_size;
1862 
1863 		if (buffer_new(bh)) {
1864 			if (block_end > from && block_start < to) {
1865 				if (!PageUptodate(page)) {
1866 					unsigned start, size;
1867 
1868 					start = max(from, block_start);
1869 					size = min(to, block_end) - start;
1870 
1871 					zero_user(page, start, size);
1872 					set_buffer_uptodate(bh);
1873 				}
1874 
1875 				clear_buffer_new(bh);
1876 				mark_buffer_dirty(bh);
1877 			}
1878 		}
1879 
1880 		block_start = block_end;
1881 		bh = bh->b_this_page;
1882 	} while (bh != head);
1883 }
1884 EXPORT_SYMBOL(page_zero_new_buffers);
1885 
1886 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1887 		get_block_t *get_block)
1888 {
1889 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1890 	unsigned to = from + len;
1891 	struct inode *inode = page->mapping->host;
1892 	unsigned block_start, block_end;
1893 	sector_t block;
1894 	int err = 0;
1895 	unsigned blocksize, bbits;
1896 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1897 
1898 	BUG_ON(!PageLocked(page));
1899 	BUG_ON(from > PAGE_CACHE_SIZE);
1900 	BUG_ON(to > PAGE_CACHE_SIZE);
1901 	BUG_ON(from > to);
1902 
1903 	head = create_page_buffers(page, inode, 0);
1904 	blocksize = head->b_size;
1905 	bbits = block_size_bits(blocksize);
1906 
1907 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1908 
1909 	for(bh = head, block_start = 0; bh != head || !block_start;
1910 	    block++, block_start=block_end, bh = bh->b_this_page) {
1911 		block_end = block_start + blocksize;
1912 		if (block_end <= from || block_start >= to) {
1913 			if (PageUptodate(page)) {
1914 				if (!buffer_uptodate(bh))
1915 					set_buffer_uptodate(bh);
1916 			}
1917 			continue;
1918 		}
1919 		if (buffer_new(bh))
1920 			clear_buffer_new(bh);
1921 		if (!buffer_mapped(bh)) {
1922 			WARN_ON(bh->b_size != blocksize);
1923 			err = get_block(inode, block, bh, 1);
1924 			if (err)
1925 				break;
1926 			if (buffer_new(bh)) {
1927 				unmap_underlying_metadata(bh->b_bdev,
1928 							bh->b_blocknr);
1929 				if (PageUptodate(page)) {
1930 					clear_buffer_new(bh);
1931 					set_buffer_uptodate(bh);
1932 					mark_buffer_dirty(bh);
1933 					continue;
1934 				}
1935 				if (block_end > to || block_start < from)
1936 					zero_user_segments(page,
1937 						to, block_end,
1938 						block_start, from);
1939 				continue;
1940 			}
1941 		}
1942 		if (PageUptodate(page)) {
1943 			if (!buffer_uptodate(bh))
1944 				set_buffer_uptodate(bh);
1945 			continue;
1946 		}
1947 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1948 		    !buffer_unwritten(bh) &&
1949 		     (block_start < from || block_end > to)) {
1950 			ll_rw_block(READ, 1, &bh);
1951 			*wait_bh++=bh;
1952 		}
1953 	}
1954 	/*
1955 	 * If we issued read requests - let them complete.
1956 	 */
1957 	while(wait_bh > wait) {
1958 		wait_on_buffer(*--wait_bh);
1959 		if (!buffer_uptodate(*wait_bh))
1960 			err = -EIO;
1961 	}
1962 	if (unlikely(err))
1963 		page_zero_new_buffers(page, from, to);
1964 	return err;
1965 }
1966 EXPORT_SYMBOL(__block_write_begin);
1967 
1968 static int __block_commit_write(struct inode *inode, struct page *page,
1969 		unsigned from, unsigned to)
1970 {
1971 	unsigned block_start, block_end;
1972 	int partial = 0;
1973 	unsigned blocksize;
1974 	struct buffer_head *bh, *head;
1975 
1976 	bh = head = page_buffers(page);
1977 	blocksize = bh->b_size;
1978 
1979 	block_start = 0;
1980 	do {
1981 		block_end = block_start + blocksize;
1982 		if (block_end <= from || block_start >= to) {
1983 			if (!buffer_uptodate(bh))
1984 				partial = 1;
1985 		} else {
1986 			set_buffer_uptodate(bh);
1987 			mark_buffer_dirty(bh);
1988 		}
1989 		clear_buffer_new(bh);
1990 
1991 		block_start = block_end;
1992 		bh = bh->b_this_page;
1993 	} while (bh != head);
1994 
1995 	/*
1996 	 * If this is a partial write which happened to make all buffers
1997 	 * uptodate then we can optimize away a bogus readpage() for
1998 	 * the next read(). Here we 'discover' whether the page went
1999 	 * uptodate as a result of this (potentially partial) write.
2000 	 */
2001 	if (!partial)
2002 		SetPageUptodate(page);
2003 	return 0;
2004 }
2005 
2006 /*
2007  * block_write_begin takes care of the basic task of block allocation and
2008  * bringing partial write blocks uptodate first.
2009  *
2010  * The filesystem needs to handle block truncation upon failure.
2011  */
2012 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2013 		unsigned flags, struct page **pagep, get_block_t *get_block)
2014 {
2015 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2016 	struct page *page;
2017 	int status;
2018 
2019 	page = grab_cache_page_write_begin(mapping, index, flags);
2020 	if (!page)
2021 		return -ENOMEM;
2022 
2023 	status = __block_write_begin(page, pos, len, get_block);
2024 	if (unlikely(status)) {
2025 		unlock_page(page);
2026 		page_cache_release(page);
2027 		page = NULL;
2028 	}
2029 
2030 	*pagep = page;
2031 	return status;
2032 }
2033 EXPORT_SYMBOL(block_write_begin);
2034 
2035 int block_write_end(struct file *file, struct address_space *mapping,
2036 			loff_t pos, unsigned len, unsigned copied,
2037 			struct page *page, void *fsdata)
2038 {
2039 	struct inode *inode = mapping->host;
2040 	unsigned start;
2041 
2042 	start = pos & (PAGE_CACHE_SIZE - 1);
2043 
2044 	if (unlikely(copied < len)) {
2045 		/*
2046 		 * The buffers that were written will now be uptodate, so we
2047 		 * don't have to worry about a readpage reading them and
2048 		 * overwriting a partial write. However if we have encountered
2049 		 * a short write and only partially written into a buffer, it
2050 		 * will not be marked uptodate, so a readpage might come in and
2051 		 * destroy our partial write.
2052 		 *
2053 		 * Do the simplest thing, and just treat any short write to a
2054 		 * non uptodate page as a zero-length write, and force the
2055 		 * caller to redo the whole thing.
2056 		 */
2057 		if (!PageUptodate(page))
2058 			copied = 0;
2059 
2060 		page_zero_new_buffers(page, start+copied, start+len);
2061 	}
2062 	flush_dcache_page(page);
2063 
2064 	/* This could be a short (even 0-length) commit */
2065 	__block_commit_write(inode, page, start, start+copied);
2066 
2067 	return copied;
2068 }
2069 EXPORT_SYMBOL(block_write_end);
2070 
2071 int generic_write_end(struct file *file, struct address_space *mapping,
2072 			loff_t pos, unsigned len, unsigned copied,
2073 			struct page *page, void *fsdata)
2074 {
2075 	struct inode *inode = mapping->host;
2076 	int i_size_changed = 0;
2077 
2078 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2079 
2080 	/*
2081 	 * No need to use i_size_read() here, the i_size
2082 	 * cannot change under us because we hold i_mutex.
2083 	 *
2084 	 * But it's important to update i_size while still holding page lock:
2085 	 * page writeout could otherwise come in and zero beyond i_size.
2086 	 */
2087 	if (pos+copied > inode->i_size) {
2088 		i_size_write(inode, pos+copied);
2089 		i_size_changed = 1;
2090 	}
2091 
2092 	unlock_page(page);
2093 	page_cache_release(page);
2094 
2095 	/*
2096 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2097 	 * makes the holding time of page lock longer. Second, it forces lock
2098 	 * ordering of page lock and transaction start for journaling
2099 	 * filesystems.
2100 	 */
2101 	if (i_size_changed)
2102 		mark_inode_dirty(inode);
2103 
2104 	return copied;
2105 }
2106 EXPORT_SYMBOL(generic_write_end);
2107 
2108 /*
2109  * block_is_partially_uptodate checks whether buffers within a page are
2110  * uptodate or not.
2111  *
2112  * Returns true if all buffers which correspond to a file portion
2113  * we want to read are uptodate.
2114  */
2115 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2116 					unsigned long from)
2117 {
2118 	unsigned block_start, block_end, blocksize;
2119 	unsigned to;
2120 	struct buffer_head *bh, *head;
2121 	int ret = 1;
2122 
2123 	if (!page_has_buffers(page))
2124 		return 0;
2125 
2126 	head = page_buffers(page);
2127 	blocksize = head->b_size;
2128 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2129 	to = from + to;
2130 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2131 		return 0;
2132 
2133 	bh = head;
2134 	block_start = 0;
2135 	do {
2136 		block_end = block_start + blocksize;
2137 		if (block_end > from && block_start < to) {
2138 			if (!buffer_uptodate(bh)) {
2139 				ret = 0;
2140 				break;
2141 			}
2142 			if (block_end >= to)
2143 				break;
2144 		}
2145 		block_start = block_end;
2146 		bh = bh->b_this_page;
2147 	} while (bh != head);
2148 
2149 	return ret;
2150 }
2151 EXPORT_SYMBOL(block_is_partially_uptodate);
2152 
2153 /*
2154  * Generic "read page" function for block devices that have the normal
2155  * get_block functionality. This is most of the block device filesystems.
2156  * Reads the page asynchronously --- the unlock_buffer() and
2157  * set/clear_buffer_uptodate() functions propagate buffer state into the
2158  * page struct once IO has completed.
2159  */
2160 int block_read_full_page(struct page *page, get_block_t *get_block)
2161 {
2162 	struct inode *inode = page->mapping->host;
2163 	sector_t iblock, lblock;
2164 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2165 	unsigned int blocksize, bbits;
2166 	int nr, i;
2167 	int fully_mapped = 1;
2168 
2169 	head = create_page_buffers(page, inode, 0);
2170 	blocksize = head->b_size;
2171 	bbits = block_size_bits(blocksize);
2172 
2173 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2174 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2175 	bh = head;
2176 	nr = 0;
2177 	i = 0;
2178 
2179 	do {
2180 		if (buffer_uptodate(bh))
2181 			continue;
2182 
2183 		if (!buffer_mapped(bh)) {
2184 			int err = 0;
2185 
2186 			fully_mapped = 0;
2187 			if (iblock < lblock) {
2188 				WARN_ON(bh->b_size != blocksize);
2189 				err = get_block(inode, iblock, bh, 0);
2190 				if (err)
2191 					SetPageError(page);
2192 			}
2193 			if (!buffer_mapped(bh)) {
2194 				zero_user(page, i * blocksize, blocksize);
2195 				if (!err)
2196 					set_buffer_uptodate(bh);
2197 				continue;
2198 			}
2199 			/*
2200 			 * get_block() might have updated the buffer
2201 			 * synchronously
2202 			 */
2203 			if (buffer_uptodate(bh))
2204 				continue;
2205 		}
2206 		arr[nr++] = bh;
2207 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2208 
2209 	if (fully_mapped)
2210 		SetPageMappedToDisk(page);
2211 
2212 	if (!nr) {
2213 		/*
2214 		 * All buffers are uptodate - we can set the page uptodate
2215 		 * as well. But not if get_block() returned an error.
2216 		 */
2217 		if (!PageError(page))
2218 			SetPageUptodate(page);
2219 		unlock_page(page);
2220 		return 0;
2221 	}
2222 
2223 	/* Stage two: lock the buffers */
2224 	for (i = 0; i < nr; i++) {
2225 		bh = arr[i];
2226 		lock_buffer(bh);
2227 		mark_buffer_async_read(bh);
2228 	}
2229 
2230 	/*
2231 	 * Stage 3: start the IO.  Check for uptodateness
2232 	 * inside the buffer lock in case another process reading
2233 	 * the underlying blockdev brought it uptodate (the sct fix).
2234 	 */
2235 	for (i = 0; i < nr; i++) {
2236 		bh = arr[i];
2237 		if (buffer_uptodate(bh))
2238 			end_buffer_async_read(bh, 1);
2239 		else
2240 			submit_bh(READ, bh);
2241 	}
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL(block_read_full_page);
2245 
2246 /* utility function for filesystems that need to do work on expanding
2247  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2248  * deal with the hole.
2249  */
2250 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2251 {
2252 	struct address_space *mapping = inode->i_mapping;
2253 	struct page *page;
2254 	void *fsdata;
2255 	int err;
2256 
2257 	err = inode_newsize_ok(inode, size);
2258 	if (err)
2259 		goto out;
2260 
2261 	err = pagecache_write_begin(NULL, mapping, size, 0,
2262 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2263 				&page, &fsdata);
2264 	if (err)
2265 		goto out;
2266 
2267 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2268 	BUG_ON(err > 0);
2269 
2270 out:
2271 	return err;
2272 }
2273 EXPORT_SYMBOL(generic_cont_expand_simple);
2274 
2275 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2276 			    loff_t pos, loff_t *bytes)
2277 {
2278 	struct inode *inode = mapping->host;
2279 	unsigned blocksize = 1 << inode->i_blkbits;
2280 	struct page *page;
2281 	void *fsdata;
2282 	pgoff_t index, curidx;
2283 	loff_t curpos;
2284 	unsigned zerofrom, offset, len;
2285 	int err = 0;
2286 
2287 	index = pos >> PAGE_CACHE_SHIFT;
2288 	offset = pos & ~PAGE_CACHE_MASK;
2289 
2290 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2291 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2292 		if (zerofrom & (blocksize-1)) {
2293 			*bytes |= (blocksize-1);
2294 			(*bytes)++;
2295 		}
2296 		len = PAGE_CACHE_SIZE - zerofrom;
2297 
2298 		err = pagecache_write_begin(file, mapping, curpos, len,
2299 						AOP_FLAG_UNINTERRUPTIBLE,
2300 						&page, &fsdata);
2301 		if (err)
2302 			goto out;
2303 		zero_user(page, zerofrom, len);
2304 		err = pagecache_write_end(file, mapping, curpos, len, len,
2305 						page, fsdata);
2306 		if (err < 0)
2307 			goto out;
2308 		BUG_ON(err != len);
2309 		err = 0;
2310 
2311 		balance_dirty_pages_ratelimited(mapping);
2312 	}
2313 
2314 	/* page covers the boundary, find the boundary offset */
2315 	if (index == curidx) {
2316 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2317 		/* if we will expand the thing last block will be filled */
2318 		if (offset <= zerofrom) {
2319 			goto out;
2320 		}
2321 		if (zerofrom & (blocksize-1)) {
2322 			*bytes |= (blocksize-1);
2323 			(*bytes)++;
2324 		}
2325 		len = offset - zerofrom;
2326 
2327 		err = pagecache_write_begin(file, mapping, curpos, len,
2328 						AOP_FLAG_UNINTERRUPTIBLE,
2329 						&page, &fsdata);
2330 		if (err)
2331 			goto out;
2332 		zero_user(page, zerofrom, len);
2333 		err = pagecache_write_end(file, mapping, curpos, len, len,
2334 						page, fsdata);
2335 		if (err < 0)
2336 			goto out;
2337 		BUG_ON(err != len);
2338 		err = 0;
2339 	}
2340 out:
2341 	return err;
2342 }
2343 
2344 /*
2345  * For moronic filesystems that do not allow holes in file.
2346  * We may have to extend the file.
2347  */
2348 int cont_write_begin(struct file *file, struct address_space *mapping,
2349 			loff_t pos, unsigned len, unsigned flags,
2350 			struct page **pagep, void **fsdata,
2351 			get_block_t *get_block, loff_t *bytes)
2352 {
2353 	struct inode *inode = mapping->host;
2354 	unsigned blocksize = 1 << inode->i_blkbits;
2355 	unsigned zerofrom;
2356 	int err;
2357 
2358 	err = cont_expand_zero(file, mapping, pos, bytes);
2359 	if (err)
2360 		return err;
2361 
2362 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2363 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2364 		*bytes |= (blocksize-1);
2365 		(*bytes)++;
2366 	}
2367 
2368 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2369 }
2370 EXPORT_SYMBOL(cont_write_begin);
2371 
2372 int block_commit_write(struct page *page, unsigned from, unsigned to)
2373 {
2374 	struct inode *inode = page->mapping->host;
2375 	__block_commit_write(inode,page,from,to);
2376 	return 0;
2377 }
2378 EXPORT_SYMBOL(block_commit_write);
2379 
2380 /*
2381  * block_page_mkwrite() is not allowed to change the file size as it gets
2382  * called from a page fault handler when a page is first dirtied. Hence we must
2383  * be careful to check for EOF conditions here. We set the page up correctly
2384  * for a written page which means we get ENOSPC checking when writing into
2385  * holes and correct delalloc and unwritten extent mapping on filesystems that
2386  * support these features.
2387  *
2388  * We are not allowed to take the i_mutex here so we have to play games to
2389  * protect against truncate races as the page could now be beyond EOF.  Because
2390  * truncate writes the inode size before removing pages, once we have the
2391  * page lock we can determine safely if the page is beyond EOF. If it is not
2392  * beyond EOF, then the page is guaranteed safe against truncation until we
2393  * unlock the page.
2394  *
2395  * Direct callers of this function should protect against filesystem freezing
2396  * using sb_start_write() - sb_end_write() functions.
2397  */
2398 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2399 			 get_block_t get_block)
2400 {
2401 	struct page *page = vmf->page;
2402 	struct inode *inode = file_inode(vma->vm_file);
2403 	unsigned long end;
2404 	loff_t size;
2405 	int ret;
2406 
2407 	lock_page(page);
2408 	size = i_size_read(inode);
2409 	if ((page->mapping != inode->i_mapping) ||
2410 	    (page_offset(page) > size)) {
2411 		/* We overload EFAULT to mean page got truncated */
2412 		ret = -EFAULT;
2413 		goto out_unlock;
2414 	}
2415 
2416 	/* page is wholly or partially inside EOF */
2417 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2418 		end = size & ~PAGE_CACHE_MASK;
2419 	else
2420 		end = PAGE_CACHE_SIZE;
2421 
2422 	ret = __block_write_begin(page, 0, end, get_block);
2423 	if (!ret)
2424 		ret = block_commit_write(page, 0, end);
2425 
2426 	if (unlikely(ret < 0))
2427 		goto out_unlock;
2428 	set_page_dirty(page);
2429 	wait_for_stable_page(page);
2430 	return 0;
2431 out_unlock:
2432 	unlock_page(page);
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL(__block_page_mkwrite);
2436 
2437 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2438 		   get_block_t get_block)
2439 {
2440 	int ret;
2441 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2442 
2443 	sb_start_pagefault(sb);
2444 
2445 	/*
2446 	 * Update file times before taking page lock. We may end up failing the
2447 	 * fault so this update may be superfluous but who really cares...
2448 	 */
2449 	file_update_time(vma->vm_file);
2450 
2451 	ret = __block_page_mkwrite(vma, vmf, get_block);
2452 	sb_end_pagefault(sb);
2453 	return block_page_mkwrite_return(ret);
2454 }
2455 EXPORT_SYMBOL(block_page_mkwrite);
2456 
2457 /*
2458  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2459  * immediately, while under the page lock.  So it needs a special end_io
2460  * handler which does not touch the bh after unlocking it.
2461  */
2462 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2463 {
2464 	__end_buffer_read_notouch(bh, uptodate);
2465 }
2466 
2467 /*
2468  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2469  * the page (converting it to circular linked list and taking care of page
2470  * dirty races).
2471  */
2472 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2473 {
2474 	struct buffer_head *bh;
2475 
2476 	BUG_ON(!PageLocked(page));
2477 
2478 	spin_lock(&page->mapping->private_lock);
2479 	bh = head;
2480 	do {
2481 		if (PageDirty(page))
2482 			set_buffer_dirty(bh);
2483 		if (!bh->b_this_page)
2484 			bh->b_this_page = head;
2485 		bh = bh->b_this_page;
2486 	} while (bh != head);
2487 	attach_page_buffers(page, head);
2488 	spin_unlock(&page->mapping->private_lock);
2489 }
2490 
2491 /*
2492  * On entry, the page is fully not uptodate.
2493  * On exit the page is fully uptodate in the areas outside (from,to)
2494  * The filesystem needs to handle block truncation upon failure.
2495  */
2496 int nobh_write_begin(struct address_space *mapping,
2497 			loff_t pos, unsigned len, unsigned flags,
2498 			struct page **pagep, void **fsdata,
2499 			get_block_t *get_block)
2500 {
2501 	struct inode *inode = mapping->host;
2502 	const unsigned blkbits = inode->i_blkbits;
2503 	const unsigned blocksize = 1 << blkbits;
2504 	struct buffer_head *head, *bh;
2505 	struct page *page;
2506 	pgoff_t index;
2507 	unsigned from, to;
2508 	unsigned block_in_page;
2509 	unsigned block_start, block_end;
2510 	sector_t block_in_file;
2511 	int nr_reads = 0;
2512 	int ret = 0;
2513 	int is_mapped_to_disk = 1;
2514 
2515 	index = pos >> PAGE_CACHE_SHIFT;
2516 	from = pos & (PAGE_CACHE_SIZE - 1);
2517 	to = from + len;
2518 
2519 	page = grab_cache_page_write_begin(mapping, index, flags);
2520 	if (!page)
2521 		return -ENOMEM;
2522 	*pagep = page;
2523 	*fsdata = NULL;
2524 
2525 	if (page_has_buffers(page)) {
2526 		ret = __block_write_begin(page, pos, len, get_block);
2527 		if (unlikely(ret))
2528 			goto out_release;
2529 		return ret;
2530 	}
2531 
2532 	if (PageMappedToDisk(page))
2533 		return 0;
2534 
2535 	/*
2536 	 * Allocate buffers so that we can keep track of state, and potentially
2537 	 * attach them to the page if an error occurs. In the common case of
2538 	 * no error, they will just be freed again without ever being attached
2539 	 * to the page (which is all OK, because we're under the page lock).
2540 	 *
2541 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2542 	 * than the circular one we're used to.
2543 	 */
2544 	head = alloc_page_buffers(page, blocksize, 0);
2545 	if (!head) {
2546 		ret = -ENOMEM;
2547 		goto out_release;
2548 	}
2549 
2550 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2551 
2552 	/*
2553 	 * We loop across all blocks in the page, whether or not they are
2554 	 * part of the affected region.  This is so we can discover if the
2555 	 * page is fully mapped-to-disk.
2556 	 */
2557 	for (block_start = 0, block_in_page = 0, bh = head;
2558 		  block_start < PAGE_CACHE_SIZE;
2559 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2560 		int create;
2561 
2562 		block_end = block_start + blocksize;
2563 		bh->b_state = 0;
2564 		create = 1;
2565 		if (block_start >= to)
2566 			create = 0;
2567 		ret = get_block(inode, block_in_file + block_in_page,
2568 					bh, create);
2569 		if (ret)
2570 			goto failed;
2571 		if (!buffer_mapped(bh))
2572 			is_mapped_to_disk = 0;
2573 		if (buffer_new(bh))
2574 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2575 		if (PageUptodate(page)) {
2576 			set_buffer_uptodate(bh);
2577 			continue;
2578 		}
2579 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2580 			zero_user_segments(page, block_start, from,
2581 							to, block_end);
2582 			continue;
2583 		}
2584 		if (buffer_uptodate(bh))
2585 			continue;	/* reiserfs does this */
2586 		if (block_start < from || block_end > to) {
2587 			lock_buffer(bh);
2588 			bh->b_end_io = end_buffer_read_nobh;
2589 			submit_bh(READ, bh);
2590 			nr_reads++;
2591 		}
2592 	}
2593 
2594 	if (nr_reads) {
2595 		/*
2596 		 * The page is locked, so these buffers are protected from
2597 		 * any VM or truncate activity.  Hence we don't need to care
2598 		 * for the buffer_head refcounts.
2599 		 */
2600 		for (bh = head; bh; bh = bh->b_this_page) {
2601 			wait_on_buffer(bh);
2602 			if (!buffer_uptodate(bh))
2603 				ret = -EIO;
2604 		}
2605 		if (ret)
2606 			goto failed;
2607 	}
2608 
2609 	if (is_mapped_to_disk)
2610 		SetPageMappedToDisk(page);
2611 
2612 	*fsdata = head; /* to be released by nobh_write_end */
2613 
2614 	return 0;
2615 
2616 failed:
2617 	BUG_ON(!ret);
2618 	/*
2619 	 * Error recovery is a bit difficult. We need to zero out blocks that
2620 	 * were newly allocated, and dirty them to ensure they get written out.
2621 	 * Buffers need to be attached to the page at this point, otherwise
2622 	 * the handling of potential IO errors during writeout would be hard
2623 	 * (could try doing synchronous writeout, but what if that fails too?)
2624 	 */
2625 	attach_nobh_buffers(page, head);
2626 	page_zero_new_buffers(page, from, to);
2627 
2628 out_release:
2629 	unlock_page(page);
2630 	page_cache_release(page);
2631 	*pagep = NULL;
2632 
2633 	return ret;
2634 }
2635 EXPORT_SYMBOL(nobh_write_begin);
2636 
2637 int nobh_write_end(struct file *file, struct address_space *mapping,
2638 			loff_t pos, unsigned len, unsigned copied,
2639 			struct page *page, void *fsdata)
2640 {
2641 	struct inode *inode = page->mapping->host;
2642 	struct buffer_head *head = fsdata;
2643 	struct buffer_head *bh;
2644 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2645 
2646 	if (unlikely(copied < len) && head)
2647 		attach_nobh_buffers(page, head);
2648 	if (page_has_buffers(page))
2649 		return generic_write_end(file, mapping, pos, len,
2650 					copied, page, fsdata);
2651 
2652 	SetPageUptodate(page);
2653 	set_page_dirty(page);
2654 	if (pos+copied > inode->i_size) {
2655 		i_size_write(inode, pos+copied);
2656 		mark_inode_dirty(inode);
2657 	}
2658 
2659 	unlock_page(page);
2660 	page_cache_release(page);
2661 
2662 	while (head) {
2663 		bh = head;
2664 		head = head->b_this_page;
2665 		free_buffer_head(bh);
2666 	}
2667 
2668 	return copied;
2669 }
2670 EXPORT_SYMBOL(nobh_write_end);
2671 
2672 /*
2673  * nobh_writepage() - based on block_full_write_page() except
2674  * that it tries to operate without attaching bufferheads to
2675  * the page.
2676  */
2677 int nobh_writepage(struct page *page, get_block_t *get_block,
2678 			struct writeback_control *wbc)
2679 {
2680 	struct inode * const inode = page->mapping->host;
2681 	loff_t i_size = i_size_read(inode);
2682 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2683 	unsigned offset;
2684 	int ret;
2685 
2686 	/* Is the page fully inside i_size? */
2687 	if (page->index < end_index)
2688 		goto out;
2689 
2690 	/* Is the page fully outside i_size? (truncate in progress) */
2691 	offset = i_size & (PAGE_CACHE_SIZE-1);
2692 	if (page->index >= end_index+1 || !offset) {
2693 		/*
2694 		 * The page may have dirty, unmapped buffers.  For example,
2695 		 * they may have been added in ext3_writepage().  Make them
2696 		 * freeable here, so the page does not leak.
2697 		 */
2698 #if 0
2699 		/* Not really sure about this  - do we need this ? */
2700 		if (page->mapping->a_ops->invalidatepage)
2701 			page->mapping->a_ops->invalidatepage(page, offset);
2702 #endif
2703 		unlock_page(page);
2704 		return 0; /* don't care */
2705 	}
2706 
2707 	/*
2708 	 * The page straddles i_size.  It must be zeroed out on each and every
2709 	 * writepage invocation because it may be mmapped.  "A file is mapped
2710 	 * in multiples of the page size.  For a file that is not a multiple of
2711 	 * the  page size, the remaining memory is zeroed when mapped, and
2712 	 * writes to that region are not written out to the file."
2713 	 */
2714 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2715 out:
2716 	ret = mpage_writepage(page, get_block, wbc);
2717 	if (ret == -EAGAIN)
2718 		ret = __block_write_full_page(inode, page, get_block, wbc,
2719 					      end_buffer_async_write);
2720 	return ret;
2721 }
2722 EXPORT_SYMBOL(nobh_writepage);
2723 
2724 int nobh_truncate_page(struct address_space *mapping,
2725 			loff_t from, get_block_t *get_block)
2726 {
2727 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2728 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2729 	unsigned blocksize;
2730 	sector_t iblock;
2731 	unsigned length, pos;
2732 	struct inode *inode = mapping->host;
2733 	struct page *page;
2734 	struct buffer_head map_bh;
2735 	int err;
2736 
2737 	blocksize = 1 << inode->i_blkbits;
2738 	length = offset & (blocksize - 1);
2739 
2740 	/* Block boundary? Nothing to do */
2741 	if (!length)
2742 		return 0;
2743 
2744 	length = blocksize - length;
2745 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2746 
2747 	page = grab_cache_page(mapping, index);
2748 	err = -ENOMEM;
2749 	if (!page)
2750 		goto out;
2751 
2752 	if (page_has_buffers(page)) {
2753 has_buffers:
2754 		unlock_page(page);
2755 		page_cache_release(page);
2756 		return block_truncate_page(mapping, from, get_block);
2757 	}
2758 
2759 	/* Find the buffer that contains "offset" */
2760 	pos = blocksize;
2761 	while (offset >= pos) {
2762 		iblock++;
2763 		pos += blocksize;
2764 	}
2765 
2766 	map_bh.b_size = blocksize;
2767 	map_bh.b_state = 0;
2768 	err = get_block(inode, iblock, &map_bh, 0);
2769 	if (err)
2770 		goto unlock;
2771 	/* unmapped? It's a hole - nothing to do */
2772 	if (!buffer_mapped(&map_bh))
2773 		goto unlock;
2774 
2775 	/* Ok, it's mapped. Make sure it's up-to-date */
2776 	if (!PageUptodate(page)) {
2777 		err = mapping->a_ops->readpage(NULL, page);
2778 		if (err) {
2779 			page_cache_release(page);
2780 			goto out;
2781 		}
2782 		lock_page(page);
2783 		if (!PageUptodate(page)) {
2784 			err = -EIO;
2785 			goto unlock;
2786 		}
2787 		if (page_has_buffers(page))
2788 			goto has_buffers;
2789 	}
2790 	zero_user(page, offset, length);
2791 	set_page_dirty(page);
2792 	err = 0;
2793 
2794 unlock:
2795 	unlock_page(page);
2796 	page_cache_release(page);
2797 out:
2798 	return err;
2799 }
2800 EXPORT_SYMBOL(nobh_truncate_page);
2801 
2802 int block_truncate_page(struct address_space *mapping,
2803 			loff_t from, get_block_t *get_block)
2804 {
2805 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2806 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2807 	unsigned blocksize;
2808 	sector_t iblock;
2809 	unsigned length, pos;
2810 	struct inode *inode = mapping->host;
2811 	struct page *page;
2812 	struct buffer_head *bh;
2813 	int err;
2814 
2815 	blocksize = 1 << inode->i_blkbits;
2816 	length = offset & (blocksize - 1);
2817 
2818 	/* Block boundary? Nothing to do */
2819 	if (!length)
2820 		return 0;
2821 
2822 	length = blocksize - length;
2823 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2824 
2825 	page = grab_cache_page(mapping, index);
2826 	err = -ENOMEM;
2827 	if (!page)
2828 		goto out;
2829 
2830 	if (!page_has_buffers(page))
2831 		create_empty_buffers(page, blocksize, 0);
2832 
2833 	/* Find the buffer that contains "offset" */
2834 	bh = page_buffers(page);
2835 	pos = blocksize;
2836 	while (offset >= pos) {
2837 		bh = bh->b_this_page;
2838 		iblock++;
2839 		pos += blocksize;
2840 	}
2841 
2842 	err = 0;
2843 	if (!buffer_mapped(bh)) {
2844 		WARN_ON(bh->b_size != blocksize);
2845 		err = get_block(inode, iblock, bh, 0);
2846 		if (err)
2847 			goto unlock;
2848 		/* unmapped? It's a hole - nothing to do */
2849 		if (!buffer_mapped(bh))
2850 			goto unlock;
2851 	}
2852 
2853 	/* Ok, it's mapped. Make sure it's up-to-date */
2854 	if (PageUptodate(page))
2855 		set_buffer_uptodate(bh);
2856 
2857 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2858 		err = -EIO;
2859 		ll_rw_block(READ, 1, &bh);
2860 		wait_on_buffer(bh);
2861 		/* Uhhuh. Read error. Complain and punt. */
2862 		if (!buffer_uptodate(bh))
2863 			goto unlock;
2864 	}
2865 
2866 	zero_user(page, offset, length);
2867 	mark_buffer_dirty(bh);
2868 	err = 0;
2869 
2870 unlock:
2871 	unlock_page(page);
2872 	page_cache_release(page);
2873 out:
2874 	return err;
2875 }
2876 EXPORT_SYMBOL(block_truncate_page);
2877 
2878 /*
2879  * The generic ->writepage function for buffer-backed address_spaces
2880  * this form passes in the end_io handler used to finish the IO.
2881  */
2882 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2883 			struct writeback_control *wbc, bh_end_io_t *handler)
2884 {
2885 	struct inode * const inode = page->mapping->host;
2886 	loff_t i_size = i_size_read(inode);
2887 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2888 	unsigned offset;
2889 
2890 	/* Is the page fully inside i_size? */
2891 	if (page->index < end_index)
2892 		return __block_write_full_page(inode, page, get_block, wbc,
2893 					       handler);
2894 
2895 	/* Is the page fully outside i_size? (truncate in progress) */
2896 	offset = i_size & (PAGE_CACHE_SIZE-1);
2897 	if (page->index >= end_index+1 || !offset) {
2898 		/*
2899 		 * The page may have dirty, unmapped buffers.  For example,
2900 		 * they may have been added in ext3_writepage().  Make them
2901 		 * freeable here, so the page does not leak.
2902 		 */
2903 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2904 		unlock_page(page);
2905 		return 0; /* don't care */
2906 	}
2907 
2908 	/*
2909 	 * The page straddles i_size.  It must be zeroed out on each and every
2910 	 * writepage invocation because it may be mmapped.  "A file is mapped
2911 	 * in multiples of the page size.  For a file that is not a multiple of
2912 	 * the  page size, the remaining memory is zeroed when mapped, and
2913 	 * writes to that region are not written out to the file."
2914 	 */
2915 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2916 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2917 }
2918 EXPORT_SYMBOL(block_write_full_page_endio);
2919 
2920 /*
2921  * The generic ->writepage function for buffer-backed address_spaces
2922  */
2923 int block_write_full_page(struct page *page, get_block_t *get_block,
2924 			struct writeback_control *wbc)
2925 {
2926 	return block_write_full_page_endio(page, get_block, wbc,
2927 					   end_buffer_async_write);
2928 }
2929 EXPORT_SYMBOL(block_write_full_page);
2930 
2931 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2932 			    get_block_t *get_block)
2933 {
2934 	struct buffer_head tmp;
2935 	struct inode *inode = mapping->host;
2936 	tmp.b_state = 0;
2937 	tmp.b_blocknr = 0;
2938 	tmp.b_size = 1 << inode->i_blkbits;
2939 	get_block(inode, block, &tmp, 0);
2940 	return tmp.b_blocknr;
2941 }
2942 EXPORT_SYMBOL(generic_block_bmap);
2943 
2944 static void end_bio_bh_io_sync(struct bio *bio, int err)
2945 {
2946 	struct buffer_head *bh = bio->bi_private;
2947 
2948 	if (err == -EOPNOTSUPP) {
2949 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2950 	}
2951 
2952 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2953 		set_bit(BH_Quiet, &bh->b_state);
2954 
2955 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2956 	bio_put(bio);
2957 }
2958 
2959 /*
2960  * This allows us to do IO even on the odd last sectors
2961  * of a device, even if the bh block size is some multiple
2962  * of the physical sector size.
2963  *
2964  * We'll just truncate the bio to the size of the device,
2965  * and clear the end of the buffer head manually.
2966  *
2967  * Truly out-of-range accesses will turn into actual IO
2968  * errors, this only handles the "we need to be able to
2969  * do IO at the final sector" case.
2970  */
2971 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2972 {
2973 	sector_t maxsector;
2974 	unsigned bytes;
2975 
2976 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2977 	if (!maxsector)
2978 		return;
2979 
2980 	/*
2981 	 * If the *whole* IO is past the end of the device,
2982 	 * let it through, and the IO layer will turn it into
2983 	 * an EIO.
2984 	 */
2985 	if (unlikely(bio->bi_sector >= maxsector))
2986 		return;
2987 
2988 	maxsector -= bio->bi_sector;
2989 	bytes = bio->bi_size;
2990 	if (likely((bytes >> 9) <= maxsector))
2991 		return;
2992 
2993 	/* Uhhuh. We've got a bh that straddles the device size! */
2994 	bytes = maxsector << 9;
2995 
2996 	/* Truncate the bio.. */
2997 	bio->bi_size = bytes;
2998 	bio->bi_io_vec[0].bv_len = bytes;
2999 
3000 	/* ..and clear the end of the buffer for reads */
3001 	if ((rw & RW_MASK) == READ) {
3002 		void *kaddr = kmap_atomic(bh->b_page);
3003 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3004 		kunmap_atomic(kaddr);
3005 		flush_dcache_page(bh->b_page);
3006 	}
3007 }
3008 
3009 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3010 {
3011 	struct bio *bio;
3012 	int ret = 0;
3013 
3014 	BUG_ON(!buffer_locked(bh));
3015 	BUG_ON(!buffer_mapped(bh));
3016 	BUG_ON(!bh->b_end_io);
3017 	BUG_ON(buffer_delay(bh));
3018 	BUG_ON(buffer_unwritten(bh));
3019 
3020 	/*
3021 	 * Only clear out a write error when rewriting
3022 	 */
3023 	if (test_set_buffer_req(bh) && (rw & WRITE))
3024 		clear_buffer_write_io_error(bh);
3025 
3026 	/*
3027 	 * from here on down, it's all bio -- do the initial mapping,
3028 	 * submit_bio -> generic_make_request may further map this bio around
3029 	 */
3030 	bio = bio_alloc(GFP_NOIO, 1);
3031 
3032 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3033 	bio->bi_bdev = bh->b_bdev;
3034 	bio->bi_io_vec[0].bv_page = bh->b_page;
3035 	bio->bi_io_vec[0].bv_len = bh->b_size;
3036 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3037 
3038 	bio->bi_vcnt = 1;
3039 	bio->bi_size = bh->b_size;
3040 
3041 	bio->bi_end_io = end_bio_bh_io_sync;
3042 	bio->bi_private = bh;
3043 	bio->bi_flags |= bio_flags;
3044 
3045 	/* Take care of bh's that straddle the end of the device */
3046 	guard_bh_eod(rw, bio, bh);
3047 
3048 	if (buffer_meta(bh))
3049 		rw |= REQ_META;
3050 	if (buffer_prio(bh))
3051 		rw |= REQ_PRIO;
3052 
3053 	bio_get(bio);
3054 	submit_bio(rw, bio);
3055 
3056 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3057 		ret = -EOPNOTSUPP;
3058 
3059 	bio_put(bio);
3060 	return ret;
3061 }
3062 EXPORT_SYMBOL_GPL(_submit_bh);
3063 
3064 int submit_bh(int rw, struct buffer_head *bh)
3065 {
3066 	return _submit_bh(rw, bh, 0);
3067 }
3068 EXPORT_SYMBOL(submit_bh);
3069 
3070 /**
3071  * ll_rw_block: low-level access to block devices (DEPRECATED)
3072  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3073  * @nr: number of &struct buffer_heads in the array
3074  * @bhs: array of pointers to &struct buffer_head
3075  *
3076  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3077  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3078  * %READA option is described in the documentation for generic_make_request()
3079  * which ll_rw_block() calls.
3080  *
3081  * This function drops any buffer that it cannot get a lock on (with the
3082  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3083  * request, and any buffer that appears to be up-to-date when doing read
3084  * request.  Further it marks as clean buffers that are processed for
3085  * writing (the buffer cache won't assume that they are actually clean
3086  * until the buffer gets unlocked).
3087  *
3088  * ll_rw_block sets b_end_io to simple completion handler that marks
3089  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3090  * any waiters.
3091  *
3092  * All of the buffers must be for the same device, and must also be a
3093  * multiple of the current approved size for the device.
3094  */
3095 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3096 {
3097 	int i;
3098 
3099 	for (i = 0; i < nr; i++) {
3100 		struct buffer_head *bh = bhs[i];
3101 
3102 		if (!trylock_buffer(bh))
3103 			continue;
3104 		if (rw == WRITE) {
3105 			if (test_clear_buffer_dirty(bh)) {
3106 				bh->b_end_io = end_buffer_write_sync;
3107 				get_bh(bh);
3108 				submit_bh(WRITE, bh);
3109 				continue;
3110 			}
3111 		} else {
3112 			if (!buffer_uptodate(bh)) {
3113 				bh->b_end_io = end_buffer_read_sync;
3114 				get_bh(bh);
3115 				submit_bh(rw, bh);
3116 				continue;
3117 			}
3118 		}
3119 		unlock_buffer(bh);
3120 	}
3121 }
3122 EXPORT_SYMBOL(ll_rw_block);
3123 
3124 void write_dirty_buffer(struct buffer_head *bh, int rw)
3125 {
3126 	lock_buffer(bh);
3127 	if (!test_clear_buffer_dirty(bh)) {
3128 		unlock_buffer(bh);
3129 		return;
3130 	}
3131 	bh->b_end_io = end_buffer_write_sync;
3132 	get_bh(bh);
3133 	submit_bh(rw, bh);
3134 }
3135 EXPORT_SYMBOL(write_dirty_buffer);
3136 
3137 /*
3138  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3139  * and then start new I/O and then wait upon it.  The caller must have a ref on
3140  * the buffer_head.
3141  */
3142 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3143 {
3144 	int ret = 0;
3145 
3146 	WARN_ON(atomic_read(&bh->b_count) < 1);
3147 	lock_buffer(bh);
3148 	if (test_clear_buffer_dirty(bh)) {
3149 		get_bh(bh);
3150 		bh->b_end_io = end_buffer_write_sync;
3151 		ret = submit_bh(rw, bh);
3152 		wait_on_buffer(bh);
3153 		if (!ret && !buffer_uptodate(bh))
3154 			ret = -EIO;
3155 	} else {
3156 		unlock_buffer(bh);
3157 	}
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL(__sync_dirty_buffer);
3161 
3162 int sync_dirty_buffer(struct buffer_head *bh)
3163 {
3164 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3165 }
3166 EXPORT_SYMBOL(sync_dirty_buffer);
3167 
3168 /*
3169  * try_to_free_buffers() checks if all the buffers on this particular page
3170  * are unused, and releases them if so.
3171  *
3172  * Exclusion against try_to_free_buffers may be obtained by either
3173  * locking the page or by holding its mapping's private_lock.
3174  *
3175  * If the page is dirty but all the buffers are clean then we need to
3176  * be sure to mark the page clean as well.  This is because the page
3177  * may be against a block device, and a later reattachment of buffers
3178  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3179  * filesystem data on the same device.
3180  *
3181  * The same applies to regular filesystem pages: if all the buffers are
3182  * clean then we set the page clean and proceed.  To do that, we require
3183  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3184  * private_lock.
3185  *
3186  * try_to_free_buffers() is non-blocking.
3187  */
3188 static inline int buffer_busy(struct buffer_head *bh)
3189 {
3190 	return atomic_read(&bh->b_count) |
3191 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3192 }
3193 
3194 static int
3195 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3196 {
3197 	struct buffer_head *head = page_buffers(page);
3198 	struct buffer_head *bh;
3199 
3200 	bh = head;
3201 	do {
3202 		if (buffer_write_io_error(bh) && page->mapping)
3203 			set_bit(AS_EIO, &page->mapping->flags);
3204 		if (buffer_busy(bh))
3205 			goto failed;
3206 		bh = bh->b_this_page;
3207 	} while (bh != head);
3208 
3209 	do {
3210 		struct buffer_head *next = bh->b_this_page;
3211 
3212 		if (bh->b_assoc_map)
3213 			__remove_assoc_queue(bh);
3214 		bh = next;
3215 	} while (bh != head);
3216 	*buffers_to_free = head;
3217 	__clear_page_buffers(page);
3218 	return 1;
3219 failed:
3220 	return 0;
3221 }
3222 
3223 int try_to_free_buffers(struct page *page)
3224 {
3225 	struct address_space * const mapping = page->mapping;
3226 	struct buffer_head *buffers_to_free = NULL;
3227 	int ret = 0;
3228 
3229 	BUG_ON(!PageLocked(page));
3230 	if (PageWriteback(page))
3231 		return 0;
3232 
3233 	if (mapping == NULL) {		/* can this still happen? */
3234 		ret = drop_buffers(page, &buffers_to_free);
3235 		goto out;
3236 	}
3237 
3238 	spin_lock(&mapping->private_lock);
3239 	ret = drop_buffers(page, &buffers_to_free);
3240 
3241 	/*
3242 	 * If the filesystem writes its buffers by hand (eg ext3)
3243 	 * then we can have clean buffers against a dirty page.  We
3244 	 * clean the page here; otherwise the VM will never notice
3245 	 * that the filesystem did any IO at all.
3246 	 *
3247 	 * Also, during truncate, discard_buffer will have marked all
3248 	 * the page's buffers clean.  We discover that here and clean
3249 	 * the page also.
3250 	 *
3251 	 * private_lock must be held over this entire operation in order
3252 	 * to synchronise against __set_page_dirty_buffers and prevent the
3253 	 * dirty bit from being lost.
3254 	 */
3255 	if (ret)
3256 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3257 	spin_unlock(&mapping->private_lock);
3258 out:
3259 	if (buffers_to_free) {
3260 		struct buffer_head *bh = buffers_to_free;
3261 
3262 		do {
3263 			struct buffer_head *next = bh->b_this_page;
3264 			free_buffer_head(bh);
3265 			bh = next;
3266 		} while (bh != buffers_to_free);
3267 	}
3268 	return ret;
3269 }
3270 EXPORT_SYMBOL(try_to_free_buffers);
3271 
3272 /*
3273  * There are no bdflush tunables left.  But distributions are
3274  * still running obsolete flush daemons, so we terminate them here.
3275  *
3276  * Use of bdflush() is deprecated and will be removed in a future kernel.
3277  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3278  */
3279 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3280 {
3281 	static int msg_count;
3282 
3283 	if (!capable(CAP_SYS_ADMIN))
3284 		return -EPERM;
3285 
3286 	if (msg_count < 5) {
3287 		msg_count++;
3288 		printk(KERN_INFO
3289 			"warning: process `%s' used the obsolete bdflush"
3290 			" system call\n", current->comm);
3291 		printk(KERN_INFO "Fix your initscripts?\n");
3292 	}
3293 
3294 	if (func == 1)
3295 		do_exit(0);
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Buffer-head allocation
3301  */
3302 static struct kmem_cache *bh_cachep __read_mostly;
3303 
3304 /*
3305  * Once the number of bh's in the machine exceeds this level, we start
3306  * stripping them in writeback.
3307  */
3308 static unsigned long max_buffer_heads;
3309 
3310 int buffer_heads_over_limit;
3311 
3312 struct bh_accounting {
3313 	int nr;			/* Number of live bh's */
3314 	int ratelimit;		/* Limit cacheline bouncing */
3315 };
3316 
3317 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3318 
3319 static void recalc_bh_state(void)
3320 {
3321 	int i;
3322 	int tot = 0;
3323 
3324 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3325 		return;
3326 	__this_cpu_write(bh_accounting.ratelimit, 0);
3327 	for_each_online_cpu(i)
3328 		tot += per_cpu(bh_accounting, i).nr;
3329 	buffer_heads_over_limit = (tot > max_buffer_heads);
3330 }
3331 
3332 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3333 {
3334 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3335 	if (ret) {
3336 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3337 		preempt_disable();
3338 		__this_cpu_inc(bh_accounting.nr);
3339 		recalc_bh_state();
3340 		preempt_enable();
3341 	}
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL(alloc_buffer_head);
3345 
3346 void free_buffer_head(struct buffer_head *bh)
3347 {
3348 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3349 	kmem_cache_free(bh_cachep, bh);
3350 	preempt_disable();
3351 	__this_cpu_dec(bh_accounting.nr);
3352 	recalc_bh_state();
3353 	preempt_enable();
3354 }
3355 EXPORT_SYMBOL(free_buffer_head);
3356 
3357 static void buffer_exit_cpu(int cpu)
3358 {
3359 	int i;
3360 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3361 
3362 	for (i = 0; i < BH_LRU_SIZE; i++) {
3363 		brelse(b->bhs[i]);
3364 		b->bhs[i] = NULL;
3365 	}
3366 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3367 	per_cpu(bh_accounting, cpu).nr = 0;
3368 }
3369 
3370 static int buffer_cpu_notify(struct notifier_block *self,
3371 			      unsigned long action, void *hcpu)
3372 {
3373 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3374 		buffer_exit_cpu((unsigned long)hcpu);
3375 	return NOTIFY_OK;
3376 }
3377 
3378 /**
3379  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3380  * @bh: struct buffer_head
3381  *
3382  * Return true if the buffer is up-to-date and false,
3383  * with the buffer locked, if not.
3384  */
3385 int bh_uptodate_or_lock(struct buffer_head *bh)
3386 {
3387 	if (!buffer_uptodate(bh)) {
3388 		lock_buffer(bh);
3389 		if (!buffer_uptodate(bh))
3390 			return 0;
3391 		unlock_buffer(bh);
3392 	}
3393 	return 1;
3394 }
3395 EXPORT_SYMBOL(bh_uptodate_or_lock);
3396 
3397 /**
3398  * bh_submit_read - Submit a locked buffer for reading
3399  * @bh: struct buffer_head
3400  *
3401  * Returns zero on success and -EIO on error.
3402  */
3403 int bh_submit_read(struct buffer_head *bh)
3404 {
3405 	BUG_ON(!buffer_locked(bh));
3406 
3407 	if (buffer_uptodate(bh)) {
3408 		unlock_buffer(bh);
3409 		return 0;
3410 	}
3411 
3412 	get_bh(bh);
3413 	bh->b_end_io = end_buffer_read_sync;
3414 	submit_bh(READ, bh);
3415 	wait_on_buffer(bh);
3416 	if (buffer_uptodate(bh))
3417 		return 0;
3418 	return -EIO;
3419 }
3420 EXPORT_SYMBOL(bh_submit_read);
3421 
3422 void __init buffer_init(void)
3423 {
3424 	unsigned long nrpages;
3425 
3426 	bh_cachep = kmem_cache_create("buffer_head",
3427 			sizeof(struct buffer_head), 0,
3428 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3429 				SLAB_MEM_SPREAD),
3430 				NULL);
3431 
3432 	/*
3433 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3434 	 */
3435 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3436 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3437 	hotcpu_notifier(buffer_cpu_notify, 0);
3438 }
3439