xref: /openbmc/linux/fs/buffer.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * write_dirty_buffer() actually writes the
774 				 * current contents - it is a noop if I/O is
775 				 * still in flight on potentially older
776 				 * contents.
777 				 */
778 				write_dirty_buffer(bh, WRITE_SYNC_PLUG);
779 
780 				/*
781 				 * Kick off IO for the previous mapping. Note
782 				 * that we will not run the very last mapping,
783 				 * wait_on_buffer() will do that for us
784 				 * through sync_buffer().
785 				 */
786 				if (prev_mapping && prev_mapping != mapping)
787 					blk_run_address_space(prev_mapping);
788 				prev_mapping = mapping;
789 
790 				brelse(bh);
791 				spin_lock(lock);
792 			}
793 		}
794 	}
795 
796 	while (!list_empty(&tmp)) {
797 		bh = BH_ENTRY(tmp.prev);
798 		get_bh(bh);
799 		mapping = bh->b_assoc_map;
800 		__remove_assoc_queue(bh);
801 		/* Avoid race with mark_buffer_dirty_inode() which does
802 		 * a lockless check and we rely on seeing the dirty bit */
803 		smp_mb();
804 		if (buffer_dirty(bh)) {
805 			list_add(&bh->b_assoc_buffers,
806 				 &mapping->private_list);
807 			bh->b_assoc_map = mapping;
808 		}
809 		spin_unlock(lock);
810 		wait_on_buffer(bh);
811 		if (!buffer_uptodate(bh))
812 			err = -EIO;
813 		brelse(bh);
814 		spin_lock(lock);
815 	}
816 
817 	spin_unlock(lock);
818 	err2 = osync_buffers_list(lock, list);
819 	if (err)
820 		return err;
821 	else
822 		return err2;
823 }
824 
825 /*
826  * Invalidate any and all dirty buffers on a given inode.  We are
827  * probably unmounting the fs, but that doesn't mean we have already
828  * done a sync().  Just drop the buffers from the inode list.
829  *
830  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
831  * assumes that all the buffers are against the blockdev.  Not true
832  * for reiserfs.
833  */
834 void invalidate_inode_buffers(struct inode *inode)
835 {
836 	if (inode_has_buffers(inode)) {
837 		struct address_space *mapping = &inode->i_data;
838 		struct list_head *list = &mapping->private_list;
839 		struct address_space *buffer_mapping = mapping->assoc_mapping;
840 
841 		spin_lock(&buffer_mapping->private_lock);
842 		while (!list_empty(list))
843 			__remove_assoc_queue(BH_ENTRY(list->next));
844 		spin_unlock(&buffer_mapping->private_lock);
845 	}
846 }
847 EXPORT_SYMBOL(invalidate_inode_buffers);
848 
849 /*
850  * Remove any clean buffers from the inode's buffer list.  This is called
851  * when we're trying to free the inode itself.  Those buffers can pin it.
852  *
853  * Returns true if all buffers were removed.
854  */
855 int remove_inode_buffers(struct inode *inode)
856 {
857 	int ret = 1;
858 
859 	if (inode_has_buffers(inode)) {
860 		struct address_space *mapping = &inode->i_data;
861 		struct list_head *list = &mapping->private_list;
862 		struct address_space *buffer_mapping = mapping->assoc_mapping;
863 
864 		spin_lock(&buffer_mapping->private_lock);
865 		while (!list_empty(list)) {
866 			struct buffer_head *bh = BH_ENTRY(list->next);
867 			if (buffer_dirty(bh)) {
868 				ret = 0;
869 				break;
870 			}
871 			__remove_assoc_queue(bh);
872 		}
873 		spin_unlock(&buffer_mapping->private_lock);
874 	}
875 	return ret;
876 }
877 
878 /*
879  * Create the appropriate buffers when given a page for data area and
880  * the size of each buffer.. Use the bh->b_this_page linked list to
881  * follow the buffers created.  Return NULL if unable to create more
882  * buffers.
883  *
884  * The retry flag is used to differentiate async IO (paging, swapping)
885  * which may not fail from ordinary buffer allocations.
886  */
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 		int retry)
889 {
890 	struct buffer_head *bh, *head;
891 	long offset;
892 
893 try_again:
894 	head = NULL;
895 	offset = PAGE_SIZE;
896 	while ((offset -= size) >= 0) {
897 		bh = alloc_buffer_head(GFP_NOFS);
898 		if (!bh)
899 			goto no_grow;
900 
901 		bh->b_bdev = NULL;
902 		bh->b_this_page = head;
903 		bh->b_blocknr = -1;
904 		head = bh;
905 
906 		bh->b_state = 0;
907 		atomic_set(&bh->b_count, 0);
908 		bh->b_size = size;
909 
910 		/* Link the buffer to its page */
911 		set_bh_page(bh, page, offset);
912 
913 		init_buffer(bh, NULL, NULL);
914 	}
915 	return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920 	if (head) {
921 		do {
922 			bh = head;
923 			head = head->b_this_page;
924 			free_buffer_head(bh);
925 		} while (head);
926 	}
927 
928 	/*
929 	 * Return failure for non-async IO requests.  Async IO requests
930 	 * are not allowed to fail, so we have to wait until buffer heads
931 	 * become available.  But we don't want tasks sleeping with
932 	 * partially complete buffers, so all were released above.
933 	 */
934 	if (!retry)
935 		return NULL;
936 
937 	/* We're _really_ low on memory. Now we just
938 	 * wait for old buffer heads to become free due to
939 	 * finishing IO.  Since this is an async request and
940 	 * the reserve list is empty, we're sure there are
941 	 * async buffer heads in use.
942 	 */
943 	free_more_memory();
944 	goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951 	struct buffer_head *bh, *tail;
952 
953 	bh = head;
954 	do {
955 		tail = bh;
956 		bh = bh->b_this_page;
957 	} while (bh);
958 	tail->b_this_page = head;
959 	attach_page_buffers(page, head);
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 
973 	do {
974 		if (!buffer_mapped(bh)) {
975 			init_buffer(bh, NULL, NULL);
976 			bh->b_bdev = bdev;
977 			bh->b_blocknr = block;
978 			if (uptodate)
979 				set_buffer_uptodate(bh);
980 			set_buffer_mapped(bh);
981 		}
982 		block++;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 }
986 
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994 		pgoff_t index, int size)
995 {
996 	struct inode *inode = bdev->bd_inode;
997 	struct page *page;
998 	struct buffer_head *bh;
999 
1000 	page = find_or_create_page(inode->i_mapping, index,
1001 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 	if (!page)
1003 		return NULL;
1004 
1005 	BUG_ON(!PageLocked(page));
1006 
1007 	if (page_has_buffers(page)) {
1008 		bh = page_buffers(page);
1009 		if (bh->b_size == size) {
1010 			init_page_buffers(page, bdev, block, size);
1011 			return page;
1012 		}
1013 		if (!try_to_free_buffers(page))
1014 			goto failed;
1015 	}
1016 
1017 	/*
1018 	 * Allocate some buffers for this page
1019 	 */
1020 	bh = alloc_page_buffers(page, size, 0);
1021 	if (!bh)
1022 		goto failed;
1023 
1024 	/*
1025 	 * Link the page to the buffers and initialise them.  Take the
1026 	 * lock to be atomic wrt __find_get_block(), which does not
1027 	 * run under the page lock.
1028 	 */
1029 	spin_lock(&inode->i_mapping->private_lock);
1030 	link_dev_buffers(page, bh);
1031 	init_page_buffers(page, bdev, block, size);
1032 	spin_unlock(&inode->i_mapping->private_lock);
1033 	return page;
1034 
1035 failed:
1036 	BUG();
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049 	struct page *page;
1050 	pgoff_t index;
1051 	int sizebits;
1052 
1053 	sizebits = -1;
1054 	do {
1055 		sizebits++;
1056 	} while ((size << sizebits) < PAGE_SIZE);
1057 
1058 	index = block >> sizebits;
1059 
1060 	/*
1061 	 * Check for a block which wants to lie outside our maximum possible
1062 	 * pagecache index.  (this comparison is done using sector_t types).
1063 	 */
1064 	if (unlikely(index != block >> sizebits)) {
1065 		char b[BDEVNAME_SIZE];
1066 
1067 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 			"device %s\n",
1069 			__func__, (unsigned long long)block,
1070 			bdevname(bdev, b));
1071 		return -EIO;
1072 	}
1073 	block = index << sizebits;
1074 	/* Create a page with the proper size buffers.. */
1075 	page = grow_dev_page(bdev, block, index, size);
1076 	if (!page)
1077 		return 0;
1078 	unlock_page(page);
1079 	page_cache_release(page);
1080 	return 1;
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head * bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and the global inode_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	/*
1154 	 * Very *carefully* optimize the it-is-already-dirty case.
1155 	 *
1156 	 * Don't let the final "is it dirty" escape to before we
1157 	 * perhaps modified the buffer.
1158 	 */
1159 	if (buffer_dirty(bh)) {
1160 		smp_mb();
1161 		if (buffer_dirty(bh))
1162 			return;
1163 	}
1164 
1165 	if (!test_set_buffer_dirty(bh)) {
1166 		struct page *page = bh->b_page;
1167 		if (!TestSetPageDirty(page)) {
1168 			struct address_space *mapping = page_mapping(page);
1169 			if (mapping)
1170 				__set_page_dirty(page, mapping, 0);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175 
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185 	if (atomic_read(&buf->b_count)) {
1186 		put_bh(buf);
1187 		return;
1188 	}
1189 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192 
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199 	clear_buffer_dirty(bh);
1200 	if (bh->b_assoc_map) {
1201 		struct address_space *buffer_mapping = bh->b_page->mapping;
1202 
1203 		spin_lock(&buffer_mapping->private_lock);
1204 		list_del_init(&bh->b_assoc_buffers);
1205 		bh->b_assoc_map = NULL;
1206 		spin_unlock(&buffer_mapping->private_lock);
1207 	}
1208 	__brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211 
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214 	lock_buffer(bh);
1215 	if (buffer_uptodate(bh)) {
1216 		unlock_buffer(bh);
1217 		return bh;
1218 	} else {
1219 		get_bh(bh);
1220 		bh->b_end_io = end_buffer_read_sync;
1221 		submit_bh(READ, bh);
1222 		wait_on_buffer(bh);
1223 		if (buffer_uptodate(bh))
1224 			return bh;
1225 	}
1226 	brelse(bh);
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243 
1244 #define BH_LRU_SIZE	8
1245 
1246 struct bh_lru {
1247 	struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249 
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()	local_irq_disable()
1254 #define bh_lru_unlock()	local_irq_enable()
1255 #else
1256 #define bh_lru_lock()	preempt_disable()
1257 #define bh_lru_unlock()	preempt_enable()
1258 #endif
1259 
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263 	BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266 
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = NULL;
1273 	struct bh_lru *lru;
1274 
1275 	check_irqs_on();
1276 	bh_lru_lock();
1277 	lru = &__get_cpu_var(bh_lrus);
1278 	if (lru->bhs[0] != bh) {
1279 		struct buffer_head *bhs[BH_LRU_SIZE];
1280 		int in;
1281 		int out = 0;
1282 
1283 		get_bh(bh);
1284 		bhs[out++] = bh;
1285 		for (in = 0; in < BH_LRU_SIZE; in++) {
1286 			struct buffer_head *bh2 = lru->bhs[in];
1287 
1288 			if (bh2 == bh) {
1289 				__brelse(bh2);
1290 			} else {
1291 				if (out >= BH_LRU_SIZE) {
1292 					BUG_ON(evictee != NULL);
1293 					evictee = bh2;
1294 				} else {
1295 					bhs[out++] = bh2;
1296 				}
1297 			}
1298 		}
1299 		while (out < BH_LRU_SIZE)
1300 			bhs[out++] = NULL;
1301 		memcpy(lru->bhs, bhs, sizeof(bhs));
1302 	}
1303 	bh_lru_unlock();
1304 
1305 	if (evictee)
1306 		__brelse(evictee);
1307 }
1308 
1309 /*
1310  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1311  */
1312 static struct buffer_head *
1313 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314 {
1315 	struct buffer_head *ret = NULL;
1316 	struct bh_lru *lru;
1317 	unsigned int i;
1318 
1319 	check_irqs_on();
1320 	bh_lru_lock();
1321 	lru = &__get_cpu_var(bh_lrus);
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = lru->bhs[i];
1324 
1325 		if (bh && bh->b_bdev == bdev &&
1326 				bh->b_blocknr == block && bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					lru->bhs[i] = lru->bhs[i - 1];
1330 					i--;
1331 				}
1332 				lru->bhs[0] = bh;
1333 			}
1334 			get_bh(bh);
1335 			ret = bh;
1336 			break;
1337 		}
1338 	}
1339 	bh_lru_unlock();
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1345  * it in the LRU and mark it as accessed.  If it is not present then return
1346  * NULL
1347  */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352 
1353 	if (bh == NULL) {
1354 		bh = __find_get_block_slow(bdev, block);
1355 		if (bh)
1356 			bh_lru_install(bh);
1357 	}
1358 	if (bh)
1359 		touch_buffer(bh);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__find_get_block);
1363 
1364 /*
1365  * __getblk will locate (and, if necessary, create) the buffer_head
1366  * which corresponds to the passed block_device, block and size. The
1367  * returned buffer has its reference count incremented.
1368  *
1369  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1370  * illegal block number, __getblk() will happily return a buffer_head
1371  * which represents the non-existent block.  Very weird.
1372  *
1373  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374  * attempt is failing.  FIXME, perhaps?
1375  */
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 
1381 	might_sleep();
1382 	if (bh == NULL)
1383 		bh = __getblk_slow(bdev, block, size);
1384 	return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk);
1387 
1388 /*
1389  * Do async read-ahead on a buffer..
1390  */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 	struct buffer_head *bh = __getblk(bdev, block, size);
1394 	if (likely(bh)) {
1395 		ll_rw_block(READA, 1, &bh);
1396 		brelse(bh);
1397 	}
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400 
1401 /**
1402  *  __bread() - reads a specified block and returns the bh
1403  *  @bdev: the block_device to read from
1404  *  @block: number of block
1405  *  @size: size (in bytes) to read
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  It returns NULL if the block was unreadable.
1409  */
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413 	struct buffer_head *bh = __getblk(bdev, block, size);
1414 
1415 	if (likely(bh) && !buffer_uptodate(bh))
1416 		bh = __bread_slow(bh);
1417 	return bh;
1418 }
1419 EXPORT_SYMBOL(__bread);
1420 
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 	int i;
1430 
1431 	for (i = 0; i < BH_LRU_SIZE; i++) {
1432 		brelse(b->bhs[i]);
1433 		b->bhs[i] = NULL;
1434 	}
1435 	put_cpu_var(bh_lrus);
1436 }
1437 
1438 void invalidate_bh_lrus(void)
1439 {
1440 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 
1444 void set_bh_page(struct buffer_head *bh,
1445 		struct page *page, unsigned long offset)
1446 {
1447 	bh->b_page = page;
1448 	BUG_ON(offset >= PAGE_SIZE);
1449 	if (PageHighMem(page))
1450 		/*
1451 		 * This catches illegal uses and preserves the offset:
1452 		 */
1453 		bh->b_data = (char *)(0 + offset);
1454 	else
1455 		bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458 
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	lock_buffer(bh);
1465 	clear_buffer_dirty(bh);
1466 	bh->b_bdev = NULL;
1467 	clear_buffer_mapped(bh);
1468 	clear_buffer_req(bh);
1469 	clear_buffer_new(bh);
1470 	clear_buffer_delay(bh);
1471 	clear_buffer_unwritten(bh);
1472 	unlock_buffer(bh);
1473 }
1474 
1475 /**
1476  * block_invalidatepage - invalidate part of all of a buffer-backed page
1477  *
1478  * @page: the page which is affected
1479  * @offset: the index of the truncation point
1480  *
1481  * block_invalidatepage() is called when all or part of the page has become
1482  * invalidatedby a truncate operation.
1483  *
1484  * block_invalidatepage() does not have to release all buffers, but it must
1485  * ensure that no dirty buffer is left outside @offset and that no I/O
1486  * is underway against any of the blocks which are outside the truncation
1487  * point.  Because the caller is about to free (and possibly reuse) those
1488  * blocks on-disk.
1489  */
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1491 {
1492 	struct buffer_head *head, *bh, *next;
1493 	unsigned int curr_off = 0;
1494 
1495 	BUG_ON(!PageLocked(page));
1496 	if (!page_has_buffers(page))
1497 		goto out;
1498 
1499 	head = page_buffers(page);
1500 	bh = head;
1501 	do {
1502 		unsigned int next_off = curr_off + bh->b_size;
1503 		next = bh->b_this_page;
1504 
1505 		/*
1506 		 * is this block fully invalidated?
1507 		 */
1508 		if (offset <= curr_off)
1509 			discard_buffer(bh);
1510 		curr_off = next_off;
1511 		bh = next;
1512 	} while (bh != head);
1513 
1514 	/*
1515 	 * We release buffers only if the entire page is being invalidated.
1516 	 * The get_block cached value has been unconditionally invalidated,
1517 	 * so real IO is not possible anymore.
1518 	 */
1519 	if (offset == 0)
1520 		try_to_release_page(page, 0);
1521 out:
1522 	return;
1523 }
1524 EXPORT_SYMBOL(block_invalidatepage);
1525 
1526 /*
1527  * We attach and possibly dirty the buffers atomically wrt
1528  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1529  * is already excluded via the page lock.
1530  */
1531 void create_empty_buffers(struct page *page,
1532 			unsigned long blocksize, unsigned long b_state)
1533 {
1534 	struct buffer_head *bh, *head, *tail;
1535 
1536 	head = alloc_page_buffers(page, blocksize, 1);
1537 	bh = head;
1538 	do {
1539 		bh->b_state |= b_state;
1540 		tail = bh;
1541 		bh = bh->b_this_page;
1542 	} while (bh);
1543 	tail->b_this_page = head;
1544 
1545 	spin_lock(&page->mapping->private_lock);
1546 	if (PageUptodate(page) || PageDirty(page)) {
1547 		bh = head;
1548 		do {
1549 			if (PageDirty(page))
1550 				set_buffer_dirty(bh);
1551 			if (PageUptodate(page))
1552 				set_buffer_uptodate(bh);
1553 			bh = bh->b_this_page;
1554 		} while (bh != head);
1555 	}
1556 	attach_page_buffers(page, head);
1557 	spin_unlock(&page->mapping->private_lock);
1558 }
1559 EXPORT_SYMBOL(create_empty_buffers);
1560 
1561 /*
1562  * We are taking a block for data and we don't want any output from any
1563  * buffer-cache aliases starting from return from that function and
1564  * until the moment when something will explicitly mark the buffer
1565  * dirty (hopefully that will not happen until we will free that block ;-)
1566  * We don't even need to mark it not-uptodate - nobody can expect
1567  * anything from a newly allocated buffer anyway. We used to used
1568  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569  * don't want to mark the alias unmapped, for example - it would confuse
1570  * anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1573  * be writeout I/O going on against recently-freed buffers.  We don't
1574  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575  * only if we really need to.  That happens here.
1576  */
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 {
1579 	struct buffer_head *old_bh;
1580 
1581 	might_sleep();
1582 
1583 	old_bh = __find_get_block_slow(bdev, block);
1584 	if (old_bh) {
1585 		clear_buffer_dirty(old_bh);
1586 		wait_on_buffer(old_bh);
1587 		clear_buffer_req(old_bh);
1588 		__brelse(old_bh);
1589 	}
1590 }
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1592 
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *	Mapped	Uptodate	Meaning
1597  *
1598  *	No	No		"unknown" - must do get_block()
1599  *	No	Yes		"hole" - zero-filled
1600  *	Yes	No		"allocated" - allocated on disk, not read in
1601  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605 
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620  * causes the writes to be flagged as synchronous writes, but the
1621  * block device queue will NOT be unplugged, since usually many pages
1622  * will be pushed to the out before the higher-level caller actually
1623  * waits for the writes to be completed.  The various wait functions,
1624  * such as wait_on_writeback_range() will ultimately call sync_page()
1625  * which will ultimately call blk_run_backing_dev(), which will end up
1626  * unplugging the device queue.
1627  */
1628 static int __block_write_full_page(struct inode *inode, struct page *page,
1629 			get_block_t *get_block, struct writeback_control *wbc,
1630 			bh_end_io_t *handler)
1631 {
1632 	int err;
1633 	sector_t block;
1634 	sector_t last_block;
1635 	struct buffer_head *bh, *head;
1636 	const unsigned blocksize = 1 << inode->i_blkbits;
1637 	int nr_underway = 0;
1638 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 			WRITE_SYNC_PLUG : WRITE);
1640 
1641 	BUG_ON(!PageLocked(page));
1642 
1643 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644 
1645 	if (!page_has_buffers(page)) {
1646 		create_empty_buffers(page, blocksize,
1647 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1648 	}
1649 
1650 	/*
1651 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1652 	 * here, and the (potentially unmapped) buffers may become dirty at
1653 	 * any time.  If a buffer becomes dirty here after we've inspected it
1654 	 * then we just miss that fact, and the page stays dirty.
1655 	 *
1656 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 	 * handle that here by just cleaning them.
1658 	 */
1659 
1660 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1661 	head = page_buffers(page);
1662 	bh = head;
1663 
1664 	/*
1665 	 * Get all the dirty buffers mapped to disk addresses and
1666 	 * handle any aliases from the underlying blockdev's mapping.
1667 	 */
1668 	do {
1669 		if (block > last_block) {
1670 			/*
1671 			 * mapped buffers outside i_size will occur, because
1672 			 * this page can be outside i_size when there is a
1673 			 * truncate in progress.
1674 			 */
1675 			/*
1676 			 * The buffer was zeroed by block_write_full_page()
1677 			 */
1678 			clear_buffer_dirty(bh);
1679 			set_buffer_uptodate(bh);
1680 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 			   buffer_dirty(bh)) {
1682 			WARN_ON(bh->b_size != blocksize);
1683 			err = get_block(inode, block, bh, 1);
1684 			if (err)
1685 				goto recover;
1686 			clear_buffer_delay(bh);
1687 			if (buffer_new(bh)) {
1688 				/* blockdev mappings never come here */
1689 				clear_buffer_new(bh);
1690 				unmap_underlying_metadata(bh->b_bdev,
1691 							bh->b_blocknr);
1692 			}
1693 		}
1694 		bh = bh->b_this_page;
1695 		block++;
1696 	} while (bh != head);
1697 
1698 	do {
1699 		if (!buffer_mapped(bh))
1700 			continue;
1701 		/*
1702 		 * If it's a fully non-blocking write attempt and we cannot
1703 		 * lock the buffer then redirty the page.  Note that this can
1704 		 * potentially cause a busy-wait loop from writeback threads
1705 		 * and kswapd activity, but those code paths have their own
1706 		 * higher-level throttling.
1707 		 */
1708 		if (wbc->sync_mode != WB_SYNC_NONE) {
1709 			lock_buffer(bh);
1710 		} else if (!trylock_buffer(bh)) {
1711 			redirty_page_for_writepage(wbc, page);
1712 			continue;
1713 		}
1714 		if (test_clear_buffer_dirty(bh)) {
1715 			mark_buffer_async_write_endio(bh, handler);
1716 		} else {
1717 			unlock_buffer(bh);
1718 		}
1719 	} while ((bh = bh->b_this_page) != head);
1720 
1721 	/*
1722 	 * The page and its buffers are protected by PageWriteback(), so we can
1723 	 * drop the bh refcounts early.
1724 	 */
1725 	BUG_ON(PageWriteback(page));
1726 	set_page_writeback(page);
1727 
1728 	do {
1729 		struct buffer_head *next = bh->b_this_page;
1730 		if (buffer_async_write(bh)) {
1731 			submit_bh(write_op, bh);
1732 			nr_underway++;
1733 		}
1734 		bh = next;
1735 	} while (bh != head);
1736 	unlock_page(page);
1737 
1738 	err = 0;
1739 done:
1740 	if (nr_underway == 0) {
1741 		/*
1742 		 * The page was marked dirty, but the buffers were
1743 		 * clean.  Someone wrote them back by hand with
1744 		 * ll_rw_block/submit_bh.  A rare case.
1745 		 */
1746 		end_page_writeback(page);
1747 
1748 		/*
1749 		 * The page and buffer_heads can be released at any time from
1750 		 * here on.
1751 		 */
1752 	}
1753 	return err;
1754 
1755 recover:
1756 	/*
1757 	 * ENOSPC, or some other error.  We may already have added some
1758 	 * blocks to the file, so we need to write these out to avoid
1759 	 * exposing stale data.
1760 	 * The page is currently locked and not marked for writeback
1761 	 */
1762 	bh = head;
1763 	/* Recovery: lock and submit the mapped buffers */
1764 	do {
1765 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 		    !buffer_delay(bh)) {
1767 			lock_buffer(bh);
1768 			mark_buffer_async_write_endio(bh, handler);
1769 		} else {
1770 			/*
1771 			 * The buffer may have been set dirty during
1772 			 * attachment to a dirty page.
1773 			 */
1774 			clear_buffer_dirty(bh);
1775 		}
1776 	} while ((bh = bh->b_this_page) != head);
1777 	SetPageError(page);
1778 	BUG_ON(PageWriteback(page));
1779 	mapping_set_error(page->mapping, err);
1780 	set_page_writeback(page);
1781 	do {
1782 		struct buffer_head *next = bh->b_this_page;
1783 		if (buffer_async_write(bh)) {
1784 			clear_buffer_dirty(bh);
1785 			submit_bh(write_op, bh);
1786 			nr_underway++;
1787 		}
1788 		bh = next;
1789 	} while (bh != head);
1790 	unlock_page(page);
1791 	goto done;
1792 }
1793 
1794 /*
1795  * If a page has any new buffers, zero them out here, and mark them uptodate
1796  * and dirty so they'll be written out (in order to prevent uninitialised
1797  * block data from leaking). And clear the new bit.
1798  */
1799 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800 {
1801 	unsigned int block_start, block_end;
1802 	struct buffer_head *head, *bh;
1803 
1804 	BUG_ON(!PageLocked(page));
1805 	if (!page_has_buffers(page))
1806 		return;
1807 
1808 	bh = head = page_buffers(page);
1809 	block_start = 0;
1810 	do {
1811 		block_end = block_start + bh->b_size;
1812 
1813 		if (buffer_new(bh)) {
1814 			if (block_end > from && block_start < to) {
1815 				if (!PageUptodate(page)) {
1816 					unsigned start, size;
1817 
1818 					start = max(from, block_start);
1819 					size = min(to, block_end) - start;
1820 
1821 					zero_user(page, start, size);
1822 					set_buffer_uptodate(bh);
1823 				}
1824 
1825 				clear_buffer_new(bh);
1826 				mark_buffer_dirty(bh);
1827 			}
1828 		}
1829 
1830 		block_start = block_end;
1831 		bh = bh->b_this_page;
1832 	} while (bh != head);
1833 }
1834 EXPORT_SYMBOL(page_zero_new_buffers);
1835 
1836 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1837 		get_block_t *get_block)
1838 {
1839 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1840 	unsigned to = from + len;
1841 	struct inode *inode = page->mapping->host;
1842 	unsigned block_start, block_end;
1843 	sector_t block;
1844 	int err = 0;
1845 	unsigned blocksize, bbits;
1846 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1847 
1848 	BUG_ON(!PageLocked(page));
1849 	BUG_ON(from > PAGE_CACHE_SIZE);
1850 	BUG_ON(to > PAGE_CACHE_SIZE);
1851 	BUG_ON(from > to);
1852 
1853 	blocksize = 1 << inode->i_blkbits;
1854 	if (!page_has_buffers(page))
1855 		create_empty_buffers(page, blocksize, 0);
1856 	head = page_buffers(page);
1857 
1858 	bbits = inode->i_blkbits;
1859 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1860 
1861 	for(bh = head, block_start = 0; bh != head || !block_start;
1862 	    block++, block_start=block_end, bh = bh->b_this_page) {
1863 		block_end = block_start + blocksize;
1864 		if (block_end <= from || block_start >= to) {
1865 			if (PageUptodate(page)) {
1866 				if (!buffer_uptodate(bh))
1867 					set_buffer_uptodate(bh);
1868 			}
1869 			continue;
1870 		}
1871 		if (buffer_new(bh))
1872 			clear_buffer_new(bh);
1873 		if (!buffer_mapped(bh)) {
1874 			WARN_ON(bh->b_size != blocksize);
1875 			err = get_block(inode, block, bh, 1);
1876 			if (err)
1877 				break;
1878 			if (buffer_new(bh)) {
1879 				unmap_underlying_metadata(bh->b_bdev,
1880 							bh->b_blocknr);
1881 				if (PageUptodate(page)) {
1882 					clear_buffer_new(bh);
1883 					set_buffer_uptodate(bh);
1884 					mark_buffer_dirty(bh);
1885 					continue;
1886 				}
1887 				if (block_end > to || block_start < from)
1888 					zero_user_segments(page,
1889 						to, block_end,
1890 						block_start, from);
1891 				continue;
1892 			}
1893 		}
1894 		if (PageUptodate(page)) {
1895 			if (!buffer_uptodate(bh))
1896 				set_buffer_uptodate(bh);
1897 			continue;
1898 		}
1899 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1900 		    !buffer_unwritten(bh) &&
1901 		     (block_start < from || block_end > to)) {
1902 			ll_rw_block(READ, 1, &bh);
1903 			*wait_bh++=bh;
1904 		}
1905 	}
1906 	/*
1907 	 * If we issued read requests - let them complete.
1908 	 */
1909 	while(wait_bh > wait) {
1910 		wait_on_buffer(*--wait_bh);
1911 		if (!buffer_uptodate(*wait_bh))
1912 			err = -EIO;
1913 	}
1914 	if (unlikely(err)) {
1915 		page_zero_new_buffers(page, from, to);
1916 		ClearPageUptodate(page);
1917 	}
1918 	return err;
1919 }
1920 EXPORT_SYMBOL(__block_write_begin);
1921 
1922 static int __block_commit_write(struct inode *inode, struct page *page,
1923 		unsigned from, unsigned to)
1924 {
1925 	unsigned block_start, block_end;
1926 	int partial = 0;
1927 	unsigned blocksize;
1928 	struct buffer_head *bh, *head;
1929 
1930 	blocksize = 1 << inode->i_blkbits;
1931 
1932 	for(bh = head = page_buffers(page), block_start = 0;
1933 	    bh != head || !block_start;
1934 	    block_start=block_end, bh = bh->b_this_page) {
1935 		block_end = block_start + blocksize;
1936 		if (block_end <= from || block_start >= to) {
1937 			if (!buffer_uptodate(bh))
1938 				partial = 1;
1939 		} else {
1940 			set_buffer_uptodate(bh);
1941 			mark_buffer_dirty(bh);
1942 		}
1943 		clear_buffer_new(bh);
1944 	}
1945 
1946 	/*
1947 	 * If this is a partial write which happened to make all buffers
1948 	 * uptodate then we can optimize away a bogus readpage() for
1949 	 * the next read(). Here we 'discover' whether the page went
1950 	 * uptodate as a result of this (potentially partial) write.
1951 	 */
1952 	if (!partial)
1953 		SetPageUptodate(page);
1954 	return 0;
1955 }
1956 
1957 /*
1958  * block_write_begin takes care of the basic task of block allocation and
1959  * bringing partial write blocks uptodate first.
1960  *
1961  * The filesystem needs to handle block truncation upon failure.
1962  */
1963 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1964 		unsigned flags, struct page **pagep, get_block_t *get_block)
1965 {
1966 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1967 	struct page *page;
1968 	int status;
1969 
1970 	page = grab_cache_page_write_begin(mapping, index, flags);
1971 	if (!page)
1972 		return -ENOMEM;
1973 
1974 	status = __block_write_begin(page, pos, len, get_block);
1975 	if (unlikely(status)) {
1976 		unlock_page(page);
1977 		page_cache_release(page);
1978 		page = NULL;
1979 	}
1980 
1981 	*pagep = page;
1982 	return status;
1983 }
1984 EXPORT_SYMBOL(block_write_begin);
1985 
1986 int block_write_end(struct file *file, struct address_space *mapping,
1987 			loff_t pos, unsigned len, unsigned copied,
1988 			struct page *page, void *fsdata)
1989 {
1990 	struct inode *inode = mapping->host;
1991 	unsigned start;
1992 
1993 	start = pos & (PAGE_CACHE_SIZE - 1);
1994 
1995 	if (unlikely(copied < len)) {
1996 		/*
1997 		 * The buffers that were written will now be uptodate, so we
1998 		 * don't have to worry about a readpage reading them and
1999 		 * overwriting a partial write. However if we have encountered
2000 		 * a short write and only partially written into a buffer, it
2001 		 * will not be marked uptodate, so a readpage might come in and
2002 		 * destroy our partial write.
2003 		 *
2004 		 * Do the simplest thing, and just treat any short write to a
2005 		 * non uptodate page as a zero-length write, and force the
2006 		 * caller to redo the whole thing.
2007 		 */
2008 		if (!PageUptodate(page))
2009 			copied = 0;
2010 
2011 		page_zero_new_buffers(page, start+copied, start+len);
2012 	}
2013 	flush_dcache_page(page);
2014 
2015 	/* This could be a short (even 0-length) commit */
2016 	__block_commit_write(inode, page, start, start+copied);
2017 
2018 	return copied;
2019 }
2020 EXPORT_SYMBOL(block_write_end);
2021 
2022 int generic_write_end(struct file *file, struct address_space *mapping,
2023 			loff_t pos, unsigned len, unsigned copied,
2024 			struct page *page, void *fsdata)
2025 {
2026 	struct inode *inode = mapping->host;
2027 	int i_size_changed = 0;
2028 
2029 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2030 
2031 	/*
2032 	 * No need to use i_size_read() here, the i_size
2033 	 * cannot change under us because we hold i_mutex.
2034 	 *
2035 	 * But it's important to update i_size while still holding page lock:
2036 	 * page writeout could otherwise come in and zero beyond i_size.
2037 	 */
2038 	if (pos+copied > inode->i_size) {
2039 		i_size_write(inode, pos+copied);
2040 		i_size_changed = 1;
2041 	}
2042 
2043 	unlock_page(page);
2044 	page_cache_release(page);
2045 
2046 	/*
2047 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2048 	 * makes the holding time of page lock longer. Second, it forces lock
2049 	 * ordering of page lock and transaction start for journaling
2050 	 * filesystems.
2051 	 */
2052 	if (i_size_changed)
2053 		mark_inode_dirty(inode);
2054 
2055 	return copied;
2056 }
2057 EXPORT_SYMBOL(generic_write_end);
2058 
2059 /*
2060  * block_is_partially_uptodate checks whether buffers within a page are
2061  * uptodate or not.
2062  *
2063  * Returns true if all buffers which correspond to a file portion
2064  * we want to read are uptodate.
2065  */
2066 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2067 					unsigned long from)
2068 {
2069 	struct inode *inode = page->mapping->host;
2070 	unsigned block_start, block_end, blocksize;
2071 	unsigned to;
2072 	struct buffer_head *bh, *head;
2073 	int ret = 1;
2074 
2075 	if (!page_has_buffers(page))
2076 		return 0;
2077 
2078 	blocksize = 1 << inode->i_blkbits;
2079 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2080 	to = from + to;
2081 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2082 		return 0;
2083 
2084 	head = page_buffers(page);
2085 	bh = head;
2086 	block_start = 0;
2087 	do {
2088 		block_end = block_start + blocksize;
2089 		if (block_end > from && block_start < to) {
2090 			if (!buffer_uptodate(bh)) {
2091 				ret = 0;
2092 				break;
2093 			}
2094 			if (block_end >= to)
2095 				break;
2096 		}
2097 		block_start = block_end;
2098 		bh = bh->b_this_page;
2099 	} while (bh != head);
2100 
2101 	return ret;
2102 }
2103 EXPORT_SYMBOL(block_is_partially_uptodate);
2104 
2105 /*
2106  * Generic "read page" function for block devices that have the normal
2107  * get_block functionality. This is most of the block device filesystems.
2108  * Reads the page asynchronously --- the unlock_buffer() and
2109  * set/clear_buffer_uptodate() functions propagate buffer state into the
2110  * page struct once IO has completed.
2111  */
2112 int block_read_full_page(struct page *page, get_block_t *get_block)
2113 {
2114 	struct inode *inode = page->mapping->host;
2115 	sector_t iblock, lblock;
2116 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2117 	unsigned int blocksize;
2118 	int nr, i;
2119 	int fully_mapped = 1;
2120 
2121 	BUG_ON(!PageLocked(page));
2122 	blocksize = 1 << inode->i_blkbits;
2123 	if (!page_has_buffers(page))
2124 		create_empty_buffers(page, blocksize, 0);
2125 	head = page_buffers(page);
2126 
2127 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2128 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2129 	bh = head;
2130 	nr = 0;
2131 	i = 0;
2132 
2133 	do {
2134 		if (buffer_uptodate(bh))
2135 			continue;
2136 
2137 		if (!buffer_mapped(bh)) {
2138 			int err = 0;
2139 
2140 			fully_mapped = 0;
2141 			if (iblock < lblock) {
2142 				WARN_ON(bh->b_size != blocksize);
2143 				err = get_block(inode, iblock, bh, 0);
2144 				if (err)
2145 					SetPageError(page);
2146 			}
2147 			if (!buffer_mapped(bh)) {
2148 				zero_user(page, i * blocksize, blocksize);
2149 				if (!err)
2150 					set_buffer_uptodate(bh);
2151 				continue;
2152 			}
2153 			/*
2154 			 * get_block() might have updated the buffer
2155 			 * synchronously
2156 			 */
2157 			if (buffer_uptodate(bh))
2158 				continue;
2159 		}
2160 		arr[nr++] = bh;
2161 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2162 
2163 	if (fully_mapped)
2164 		SetPageMappedToDisk(page);
2165 
2166 	if (!nr) {
2167 		/*
2168 		 * All buffers are uptodate - we can set the page uptodate
2169 		 * as well. But not if get_block() returned an error.
2170 		 */
2171 		if (!PageError(page))
2172 			SetPageUptodate(page);
2173 		unlock_page(page);
2174 		return 0;
2175 	}
2176 
2177 	/* Stage two: lock the buffers */
2178 	for (i = 0; i < nr; i++) {
2179 		bh = arr[i];
2180 		lock_buffer(bh);
2181 		mark_buffer_async_read(bh);
2182 	}
2183 
2184 	/*
2185 	 * Stage 3: start the IO.  Check for uptodateness
2186 	 * inside the buffer lock in case another process reading
2187 	 * the underlying blockdev brought it uptodate (the sct fix).
2188 	 */
2189 	for (i = 0; i < nr; i++) {
2190 		bh = arr[i];
2191 		if (buffer_uptodate(bh))
2192 			end_buffer_async_read(bh, 1);
2193 		else
2194 			submit_bh(READ, bh);
2195 	}
2196 	return 0;
2197 }
2198 EXPORT_SYMBOL(block_read_full_page);
2199 
2200 /* utility function for filesystems that need to do work on expanding
2201  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2202  * deal with the hole.
2203  */
2204 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2205 {
2206 	struct address_space *mapping = inode->i_mapping;
2207 	struct page *page;
2208 	void *fsdata;
2209 	int err;
2210 
2211 	err = inode_newsize_ok(inode, size);
2212 	if (err)
2213 		goto out;
2214 
2215 	err = pagecache_write_begin(NULL, mapping, size, 0,
2216 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2217 				&page, &fsdata);
2218 	if (err)
2219 		goto out;
2220 
2221 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2222 	BUG_ON(err > 0);
2223 
2224 out:
2225 	return err;
2226 }
2227 EXPORT_SYMBOL(generic_cont_expand_simple);
2228 
2229 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2230 			    loff_t pos, loff_t *bytes)
2231 {
2232 	struct inode *inode = mapping->host;
2233 	unsigned blocksize = 1 << inode->i_blkbits;
2234 	struct page *page;
2235 	void *fsdata;
2236 	pgoff_t index, curidx;
2237 	loff_t curpos;
2238 	unsigned zerofrom, offset, len;
2239 	int err = 0;
2240 
2241 	index = pos >> PAGE_CACHE_SHIFT;
2242 	offset = pos & ~PAGE_CACHE_MASK;
2243 
2244 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2245 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2246 		if (zerofrom & (blocksize-1)) {
2247 			*bytes |= (blocksize-1);
2248 			(*bytes)++;
2249 		}
2250 		len = PAGE_CACHE_SIZE - zerofrom;
2251 
2252 		err = pagecache_write_begin(file, mapping, curpos, len,
2253 						AOP_FLAG_UNINTERRUPTIBLE,
2254 						&page, &fsdata);
2255 		if (err)
2256 			goto out;
2257 		zero_user(page, zerofrom, len);
2258 		err = pagecache_write_end(file, mapping, curpos, len, len,
2259 						page, fsdata);
2260 		if (err < 0)
2261 			goto out;
2262 		BUG_ON(err != len);
2263 		err = 0;
2264 
2265 		balance_dirty_pages_ratelimited(mapping);
2266 	}
2267 
2268 	/* page covers the boundary, find the boundary offset */
2269 	if (index == curidx) {
2270 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2271 		/* if we will expand the thing last block will be filled */
2272 		if (offset <= zerofrom) {
2273 			goto out;
2274 		}
2275 		if (zerofrom & (blocksize-1)) {
2276 			*bytes |= (blocksize-1);
2277 			(*bytes)++;
2278 		}
2279 		len = offset - zerofrom;
2280 
2281 		err = pagecache_write_begin(file, mapping, curpos, len,
2282 						AOP_FLAG_UNINTERRUPTIBLE,
2283 						&page, &fsdata);
2284 		if (err)
2285 			goto out;
2286 		zero_user(page, zerofrom, len);
2287 		err = pagecache_write_end(file, mapping, curpos, len, len,
2288 						page, fsdata);
2289 		if (err < 0)
2290 			goto out;
2291 		BUG_ON(err != len);
2292 		err = 0;
2293 	}
2294 out:
2295 	return err;
2296 }
2297 
2298 /*
2299  * For moronic filesystems that do not allow holes in file.
2300  * We may have to extend the file.
2301  */
2302 int cont_write_begin(struct file *file, struct address_space *mapping,
2303 			loff_t pos, unsigned len, unsigned flags,
2304 			struct page **pagep, void **fsdata,
2305 			get_block_t *get_block, loff_t *bytes)
2306 {
2307 	struct inode *inode = mapping->host;
2308 	unsigned blocksize = 1 << inode->i_blkbits;
2309 	unsigned zerofrom;
2310 	int err;
2311 
2312 	err = cont_expand_zero(file, mapping, pos, bytes);
2313 	if (err)
2314 		return err;
2315 
2316 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2317 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2318 		*bytes |= (blocksize-1);
2319 		(*bytes)++;
2320 	}
2321 
2322 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2323 }
2324 EXPORT_SYMBOL(cont_write_begin);
2325 
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2327 {
2328 	struct inode *inode = page->mapping->host;
2329 	__block_commit_write(inode,page,from,to);
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(block_commit_write);
2333 
2334 /*
2335  * block_page_mkwrite() is not allowed to change the file size as it gets
2336  * called from a page fault handler when a page is first dirtied. Hence we must
2337  * be careful to check for EOF conditions here. We set the page up correctly
2338  * for a written page which means we get ENOSPC checking when writing into
2339  * holes and correct delalloc and unwritten extent mapping on filesystems that
2340  * support these features.
2341  *
2342  * We are not allowed to take the i_mutex here so we have to play games to
2343  * protect against truncate races as the page could now be beyond EOF.  Because
2344  * truncate writes the inode size before removing pages, once we have the
2345  * page lock we can determine safely if the page is beyond EOF. If it is not
2346  * beyond EOF, then the page is guaranteed safe against truncation until we
2347  * unlock the page.
2348  */
2349 int
2350 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2351 		   get_block_t get_block)
2352 {
2353 	struct page *page = vmf->page;
2354 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2355 	unsigned long end;
2356 	loff_t size;
2357 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2358 
2359 	lock_page(page);
2360 	size = i_size_read(inode);
2361 	if ((page->mapping != inode->i_mapping) ||
2362 	    (page_offset(page) > size)) {
2363 		/* page got truncated out from underneath us */
2364 		unlock_page(page);
2365 		goto out;
2366 	}
2367 
2368 	/* page is wholly or partially inside EOF */
2369 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2370 		end = size & ~PAGE_CACHE_MASK;
2371 	else
2372 		end = PAGE_CACHE_SIZE;
2373 
2374 	ret = __block_write_begin(page, 0, end, get_block);
2375 	if (!ret)
2376 		ret = block_commit_write(page, 0, end);
2377 
2378 	if (unlikely(ret)) {
2379 		unlock_page(page);
2380 		if (ret == -ENOMEM)
2381 			ret = VM_FAULT_OOM;
2382 		else /* -ENOSPC, -EIO, etc */
2383 			ret = VM_FAULT_SIGBUS;
2384 	} else
2385 		ret = VM_FAULT_LOCKED;
2386 
2387 out:
2388 	return ret;
2389 }
2390 EXPORT_SYMBOL(block_page_mkwrite);
2391 
2392 /*
2393  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2394  * immediately, while under the page lock.  So it needs a special end_io
2395  * handler which does not touch the bh after unlocking it.
2396  */
2397 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2398 {
2399 	__end_buffer_read_notouch(bh, uptodate);
2400 }
2401 
2402 /*
2403  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2404  * the page (converting it to circular linked list and taking care of page
2405  * dirty races).
2406  */
2407 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2408 {
2409 	struct buffer_head *bh;
2410 
2411 	BUG_ON(!PageLocked(page));
2412 
2413 	spin_lock(&page->mapping->private_lock);
2414 	bh = head;
2415 	do {
2416 		if (PageDirty(page))
2417 			set_buffer_dirty(bh);
2418 		if (!bh->b_this_page)
2419 			bh->b_this_page = head;
2420 		bh = bh->b_this_page;
2421 	} while (bh != head);
2422 	attach_page_buffers(page, head);
2423 	spin_unlock(&page->mapping->private_lock);
2424 }
2425 
2426 /*
2427  * On entry, the page is fully not uptodate.
2428  * On exit the page is fully uptodate in the areas outside (from,to)
2429  * The filesystem needs to handle block truncation upon failure.
2430  */
2431 int nobh_write_begin(struct address_space *mapping,
2432 			loff_t pos, unsigned len, unsigned flags,
2433 			struct page **pagep, void **fsdata,
2434 			get_block_t *get_block)
2435 {
2436 	struct inode *inode = mapping->host;
2437 	const unsigned blkbits = inode->i_blkbits;
2438 	const unsigned blocksize = 1 << blkbits;
2439 	struct buffer_head *head, *bh;
2440 	struct page *page;
2441 	pgoff_t index;
2442 	unsigned from, to;
2443 	unsigned block_in_page;
2444 	unsigned block_start, block_end;
2445 	sector_t block_in_file;
2446 	int nr_reads = 0;
2447 	int ret = 0;
2448 	int is_mapped_to_disk = 1;
2449 
2450 	index = pos >> PAGE_CACHE_SHIFT;
2451 	from = pos & (PAGE_CACHE_SIZE - 1);
2452 	to = from + len;
2453 
2454 	page = grab_cache_page_write_begin(mapping, index, flags);
2455 	if (!page)
2456 		return -ENOMEM;
2457 	*pagep = page;
2458 	*fsdata = NULL;
2459 
2460 	if (page_has_buffers(page)) {
2461 		ret = __block_write_begin(page, pos, len, get_block);
2462 		if (unlikely(ret))
2463 			goto out_release;
2464 		return ret;
2465 	}
2466 
2467 	if (PageMappedToDisk(page))
2468 		return 0;
2469 
2470 	/*
2471 	 * Allocate buffers so that we can keep track of state, and potentially
2472 	 * attach them to the page if an error occurs. In the common case of
2473 	 * no error, they will just be freed again without ever being attached
2474 	 * to the page (which is all OK, because we're under the page lock).
2475 	 *
2476 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2477 	 * than the circular one we're used to.
2478 	 */
2479 	head = alloc_page_buffers(page, blocksize, 0);
2480 	if (!head) {
2481 		ret = -ENOMEM;
2482 		goto out_release;
2483 	}
2484 
2485 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2486 
2487 	/*
2488 	 * We loop across all blocks in the page, whether or not they are
2489 	 * part of the affected region.  This is so we can discover if the
2490 	 * page is fully mapped-to-disk.
2491 	 */
2492 	for (block_start = 0, block_in_page = 0, bh = head;
2493 		  block_start < PAGE_CACHE_SIZE;
2494 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2495 		int create;
2496 
2497 		block_end = block_start + blocksize;
2498 		bh->b_state = 0;
2499 		create = 1;
2500 		if (block_start >= to)
2501 			create = 0;
2502 		ret = get_block(inode, block_in_file + block_in_page,
2503 					bh, create);
2504 		if (ret)
2505 			goto failed;
2506 		if (!buffer_mapped(bh))
2507 			is_mapped_to_disk = 0;
2508 		if (buffer_new(bh))
2509 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2510 		if (PageUptodate(page)) {
2511 			set_buffer_uptodate(bh);
2512 			continue;
2513 		}
2514 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2515 			zero_user_segments(page, block_start, from,
2516 							to, block_end);
2517 			continue;
2518 		}
2519 		if (buffer_uptodate(bh))
2520 			continue;	/* reiserfs does this */
2521 		if (block_start < from || block_end > to) {
2522 			lock_buffer(bh);
2523 			bh->b_end_io = end_buffer_read_nobh;
2524 			submit_bh(READ, bh);
2525 			nr_reads++;
2526 		}
2527 	}
2528 
2529 	if (nr_reads) {
2530 		/*
2531 		 * The page is locked, so these buffers are protected from
2532 		 * any VM or truncate activity.  Hence we don't need to care
2533 		 * for the buffer_head refcounts.
2534 		 */
2535 		for (bh = head; bh; bh = bh->b_this_page) {
2536 			wait_on_buffer(bh);
2537 			if (!buffer_uptodate(bh))
2538 				ret = -EIO;
2539 		}
2540 		if (ret)
2541 			goto failed;
2542 	}
2543 
2544 	if (is_mapped_to_disk)
2545 		SetPageMappedToDisk(page);
2546 
2547 	*fsdata = head; /* to be released by nobh_write_end */
2548 
2549 	return 0;
2550 
2551 failed:
2552 	BUG_ON(!ret);
2553 	/*
2554 	 * Error recovery is a bit difficult. We need to zero out blocks that
2555 	 * were newly allocated, and dirty them to ensure they get written out.
2556 	 * Buffers need to be attached to the page at this point, otherwise
2557 	 * the handling of potential IO errors during writeout would be hard
2558 	 * (could try doing synchronous writeout, but what if that fails too?)
2559 	 */
2560 	attach_nobh_buffers(page, head);
2561 	page_zero_new_buffers(page, from, to);
2562 
2563 out_release:
2564 	unlock_page(page);
2565 	page_cache_release(page);
2566 	*pagep = NULL;
2567 
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(nobh_write_begin);
2571 
2572 int nobh_write_end(struct file *file, struct address_space *mapping,
2573 			loff_t pos, unsigned len, unsigned copied,
2574 			struct page *page, void *fsdata)
2575 {
2576 	struct inode *inode = page->mapping->host;
2577 	struct buffer_head *head = fsdata;
2578 	struct buffer_head *bh;
2579 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2580 
2581 	if (unlikely(copied < len) && head)
2582 		attach_nobh_buffers(page, head);
2583 	if (page_has_buffers(page))
2584 		return generic_write_end(file, mapping, pos, len,
2585 					copied, page, fsdata);
2586 
2587 	SetPageUptodate(page);
2588 	set_page_dirty(page);
2589 	if (pos+copied > inode->i_size) {
2590 		i_size_write(inode, pos+copied);
2591 		mark_inode_dirty(inode);
2592 	}
2593 
2594 	unlock_page(page);
2595 	page_cache_release(page);
2596 
2597 	while (head) {
2598 		bh = head;
2599 		head = head->b_this_page;
2600 		free_buffer_head(bh);
2601 	}
2602 
2603 	return copied;
2604 }
2605 EXPORT_SYMBOL(nobh_write_end);
2606 
2607 /*
2608  * nobh_writepage() - based on block_full_write_page() except
2609  * that it tries to operate without attaching bufferheads to
2610  * the page.
2611  */
2612 int nobh_writepage(struct page *page, get_block_t *get_block,
2613 			struct writeback_control *wbc)
2614 {
2615 	struct inode * const inode = page->mapping->host;
2616 	loff_t i_size = i_size_read(inode);
2617 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2618 	unsigned offset;
2619 	int ret;
2620 
2621 	/* Is the page fully inside i_size? */
2622 	if (page->index < end_index)
2623 		goto out;
2624 
2625 	/* Is the page fully outside i_size? (truncate in progress) */
2626 	offset = i_size & (PAGE_CACHE_SIZE-1);
2627 	if (page->index >= end_index+1 || !offset) {
2628 		/*
2629 		 * The page may have dirty, unmapped buffers.  For example,
2630 		 * they may have been added in ext3_writepage().  Make them
2631 		 * freeable here, so the page does not leak.
2632 		 */
2633 #if 0
2634 		/* Not really sure about this  - do we need this ? */
2635 		if (page->mapping->a_ops->invalidatepage)
2636 			page->mapping->a_ops->invalidatepage(page, offset);
2637 #endif
2638 		unlock_page(page);
2639 		return 0; /* don't care */
2640 	}
2641 
2642 	/*
2643 	 * The page straddles i_size.  It must be zeroed out on each and every
2644 	 * writepage invocation because it may be mmapped.  "A file is mapped
2645 	 * in multiples of the page size.  For a file that is not a multiple of
2646 	 * the  page size, the remaining memory is zeroed when mapped, and
2647 	 * writes to that region are not written out to the file."
2648 	 */
2649 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2650 out:
2651 	ret = mpage_writepage(page, get_block, wbc);
2652 	if (ret == -EAGAIN)
2653 		ret = __block_write_full_page(inode, page, get_block, wbc,
2654 					      end_buffer_async_write);
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL(nobh_writepage);
2658 
2659 int nobh_truncate_page(struct address_space *mapping,
2660 			loff_t from, get_block_t *get_block)
2661 {
2662 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2663 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2664 	unsigned blocksize;
2665 	sector_t iblock;
2666 	unsigned length, pos;
2667 	struct inode *inode = mapping->host;
2668 	struct page *page;
2669 	struct buffer_head map_bh;
2670 	int err;
2671 
2672 	blocksize = 1 << inode->i_blkbits;
2673 	length = offset & (blocksize - 1);
2674 
2675 	/* Block boundary? Nothing to do */
2676 	if (!length)
2677 		return 0;
2678 
2679 	length = blocksize - length;
2680 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2681 
2682 	page = grab_cache_page(mapping, index);
2683 	err = -ENOMEM;
2684 	if (!page)
2685 		goto out;
2686 
2687 	if (page_has_buffers(page)) {
2688 has_buffers:
2689 		unlock_page(page);
2690 		page_cache_release(page);
2691 		return block_truncate_page(mapping, from, get_block);
2692 	}
2693 
2694 	/* Find the buffer that contains "offset" */
2695 	pos = blocksize;
2696 	while (offset >= pos) {
2697 		iblock++;
2698 		pos += blocksize;
2699 	}
2700 
2701 	map_bh.b_size = blocksize;
2702 	map_bh.b_state = 0;
2703 	err = get_block(inode, iblock, &map_bh, 0);
2704 	if (err)
2705 		goto unlock;
2706 	/* unmapped? It's a hole - nothing to do */
2707 	if (!buffer_mapped(&map_bh))
2708 		goto unlock;
2709 
2710 	/* Ok, it's mapped. Make sure it's up-to-date */
2711 	if (!PageUptodate(page)) {
2712 		err = mapping->a_ops->readpage(NULL, page);
2713 		if (err) {
2714 			page_cache_release(page);
2715 			goto out;
2716 		}
2717 		lock_page(page);
2718 		if (!PageUptodate(page)) {
2719 			err = -EIO;
2720 			goto unlock;
2721 		}
2722 		if (page_has_buffers(page))
2723 			goto has_buffers;
2724 	}
2725 	zero_user(page, offset, length);
2726 	set_page_dirty(page);
2727 	err = 0;
2728 
2729 unlock:
2730 	unlock_page(page);
2731 	page_cache_release(page);
2732 out:
2733 	return err;
2734 }
2735 EXPORT_SYMBOL(nobh_truncate_page);
2736 
2737 int block_truncate_page(struct address_space *mapping,
2738 			loff_t from, get_block_t *get_block)
2739 {
2740 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2742 	unsigned blocksize;
2743 	sector_t iblock;
2744 	unsigned length, pos;
2745 	struct inode *inode = mapping->host;
2746 	struct page *page;
2747 	struct buffer_head *bh;
2748 	int err;
2749 
2750 	blocksize = 1 << inode->i_blkbits;
2751 	length = offset & (blocksize - 1);
2752 
2753 	/* Block boundary? Nothing to do */
2754 	if (!length)
2755 		return 0;
2756 
2757 	length = blocksize - length;
2758 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2759 
2760 	page = grab_cache_page(mapping, index);
2761 	err = -ENOMEM;
2762 	if (!page)
2763 		goto out;
2764 
2765 	if (!page_has_buffers(page))
2766 		create_empty_buffers(page, blocksize, 0);
2767 
2768 	/* Find the buffer that contains "offset" */
2769 	bh = page_buffers(page);
2770 	pos = blocksize;
2771 	while (offset >= pos) {
2772 		bh = bh->b_this_page;
2773 		iblock++;
2774 		pos += blocksize;
2775 	}
2776 
2777 	err = 0;
2778 	if (!buffer_mapped(bh)) {
2779 		WARN_ON(bh->b_size != blocksize);
2780 		err = get_block(inode, iblock, bh, 0);
2781 		if (err)
2782 			goto unlock;
2783 		/* unmapped? It's a hole - nothing to do */
2784 		if (!buffer_mapped(bh))
2785 			goto unlock;
2786 	}
2787 
2788 	/* Ok, it's mapped. Make sure it's up-to-date */
2789 	if (PageUptodate(page))
2790 		set_buffer_uptodate(bh);
2791 
2792 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2793 		err = -EIO;
2794 		ll_rw_block(READ, 1, &bh);
2795 		wait_on_buffer(bh);
2796 		/* Uhhuh. Read error. Complain and punt. */
2797 		if (!buffer_uptodate(bh))
2798 			goto unlock;
2799 	}
2800 
2801 	zero_user(page, offset, length);
2802 	mark_buffer_dirty(bh);
2803 	err = 0;
2804 
2805 unlock:
2806 	unlock_page(page);
2807 	page_cache_release(page);
2808 out:
2809 	return err;
2810 }
2811 EXPORT_SYMBOL(block_truncate_page);
2812 
2813 /*
2814  * The generic ->writepage function for buffer-backed address_spaces
2815  * this form passes in the end_io handler used to finish the IO.
2816  */
2817 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2818 			struct writeback_control *wbc, bh_end_io_t *handler)
2819 {
2820 	struct inode * const inode = page->mapping->host;
2821 	loff_t i_size = i_size_read(inode);
2822 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2823 	unsigned offset;
2824 
2825 	/* Is the page fully inside i_size? */
2826 	if (page->index < end_index)
2827 		return __block_write_full_page(inode, page, get_block, wbc,
2828 					       handler);
2829 
2830 	/* Is the page fully outside i_size? (truncate in progress) */
2831 	offset = i_size & (PAGE_CACHE_SIZE-1);
2832 	if (page->index >= end_index+1 || !offset) {
2833 		/*
2834 		 * The page may have dirty, unmapped buffers.  For example,
2835 		 * they may have been added in ext3_writepage().  Make them
2836 		 * freeable here, so the page does not leak.
2837 		 */
2838 		do_invalidatepage(page, 0);
2839 		unlock_page(page);
2840 		return 0; /* don't care */
2841 	}
2842 
2843 	/*
2844 	 * The page straddles i_size.  It must be zeroed out on each and every
2845 	 * writepage invocation because it may be mmapped.  "A file is mapped
2846 	 * in multiples of the page size.  For a file that is not a multiple of
2847 	 * the  page size, the remaining memory is zeroed when mapped, and
2848 	 * writes to that region are not written out to the file."
2849 	 */
2850 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2851 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2852 }
2853 EXPORT_SYMBOL(block_write_full_page_endio);
2854 
2855 /*
2856  * The generic ->writepage function for buffer-backed address_spaces
2857  */
2858 int block_write_full_page(struct page *page, get_block_t *get_block,
2859 			struct writeback_control *wbc)
2860 {
2861 	return block_write_full_page_endio(page, get_block, wbc,
2862 					   end_buffer_async_write);
2863 }
2864 EXPORT_SYMBOL(block_write_full_page);
2865 
2866 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2867 			    get_block_t *get_block)
2868 {
2869 	struct buffer_head tmp;
2870 	struct inode *inode = mapping->host;
2871 	tmp.b_state = 0;
2872 	tmp.b_blocknr = 0;
2873 	tmp.b_size = 1 << inode->i_blkbits;
2874 	get_block(inode, block, &tmp, 0);
2875 	return tmp.b_blocknr;
2876 }
2877 EXPORT_SYMBOL(generic_block_bmap);
2878 
2879 static void end_bio_bh_io_sync(struct bio *bio, int err)
2880 {
2881 	struct buffer_head *bh = bio->bi_private;
2882 
2883 	if (err == -EOPNOTSUPP) {
2884 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2885 	}
2886 
2887 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2888 		set_bit(BH_Quiet, &bh->b_state);
2889 
2890 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2891 	bio_put(bio);
2892 }
2893 
2894 int submit_bh(int rw, struct buffer_head * bh)
2895 {
2896 	struct bio *bio;
2897 	int ret = 0;
2898 
2899 	BUG_ON(!buffer_locked(bh));
2900 	BUG_ON(!buffer_mapped(bh));
2901 	BUG_ON(!bh->b_end_io);
2902 	BUG_ON(buffer_delay(bh));
2903 	BUG_ON(buffer_unwritten(bh));
2904 
2905 	/*
2906 	 * Only clear out a write error when rewriting
2907 	 */
2908 	if (test_set_buffer_req(bh) && (rw & WRITE))
2909 		clear_buffer_write_io_error(bh);
2910 
2911 	/*
2912 	 * from here on down, it's all bio -- do the initial mapping,
2913 	 * submit_bio -> generic_make_request may further map this bio around
2914 	 */
2915 	bio = bio_alloc(GFP_NOIO, 1);
2916 
2917 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2918 	bio->bi_bdev = bh->b_bdev;
2919 	bio->bi_io_vec[0].bv_page = bh->b_page;
2920 	bio->bi_io_vec[0].bv_len = bh->b_size;
2921 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2922 
2923 	bio->bi_vcnt = 1;
2924 	bio->bi_idx = 0;
2925 	bio->bi_size = bh->b_size;
2926 
2927 	bio->bi_end_io = end_bio_bh_io_sync;
2928 	bio->bi_private = bh;
2929 
2930 	bio_get(bio);
2931 	submit_bio(rw, bio);
2932 
2933 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2934 		ret = -EOPNOTSUPP;
2935 
2936 	bio_put(bio);
2937 	return ret;
2938 }
2939 EXPORT_SYMBOL(submit_bh);
2940 
2941 /**
2942  * ll_rw_block: low-level access to block devices (DEPRECATED)
2943  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2944  * @nr: number of &struct buffer_heads in the array
2945  * @bhs: array of pointers to &struct buffer_head
2946  *
2947  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2948  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2949  * %READA option is described in the documentation for generic_make_request()
2950  * which ll_rw_block() calls.
2951  *
2952  * This function drops any buffer that it cannot get a lock on (with the
2953  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2954  * request, and any buffer that appears to be up-to-date when doing read
2955  * request.  Further it marks as clean buffers that are processed for
2956  * writing (the buffer cache won't assume that they are actually clean
2957  * until the buffer gets unlocked).
2958  *
2959  * ll_rw_block sets b_end_io to simple completion handler that marks
2960  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2961  * any waiters.
2962  *
2963  * All of the buffers must be for the same device, and must also be a
2964  * multiple of the current approved size for the device.
2965  */
2966 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2967 {
2968 	int i;
2969 
2970 	for (i = 0; i < nr; i++) {
2971 		struct buffer_head *bh = bhs[i];
2972 
2973 		if (!trylock_buffer(bh))
2974 			continue;
2975 		if (rw == WRITE) {
2976 			if (test_clear_buffer_dirty(bh)) {
2977 				bh->b_end_io = end_buffer_write_sync;
2978 				get_bh(bh);
2979 				submit_bh(WRITE, bh);
2980 				continue;
2981 			}
2982 		} else {
2983 			if (!buffer_uptodate(bh)) {
2984 				bh->b_end_io = end_buffer_read_sync;
2985 				get_bh(bh);
2986 				submit_bh(rw, bh);
2987 				continue;
2988 			}
2989 		}
2990 		unlock_buffer(bh);
2991 	}
2992 }
2993 EXPORT_SYMBOL(ll_rw_block);
2994 
2995 void write_dirty_buffer(struct buffer_head *bh, int rw)
2996 {
2997 	lock_buffer(bh);
2998 	if (!test_clear_buffer_dirty(bh)) {
2999 		unlock_buffer(bh);
3000 		return;
3001 	}
3002 	bh->b_end_io = end_buffer_write_sync;
3003 	get_bh(bh);
3004 	submit_bh(rw, bh);
3005 }
3006 EXPORT_SYMBOL(write_dirty_buffer);
3007 
3008 /*
3009  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3010  * and then start new I/O and then wait upon it.  The caller must have a ref on
3011  * the buffer_head.
3012  */
3013 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3014 {
3015 	int ret = 0;
3016 
3017 	WARN_ON(atomic_read(&bh->b_count) < 1);
3018 	lock_buffer(bh);
3019 	if (test_clear_buffer_dirty(bh)) {
3020 		get_bh(bh);
3021 		bh->b_end_io = end_buffer_write_sync;
3022 		ret = submit_bh(rw, bh);
3023 		wait_on_buffer(bh);
3024 		if (!ret && !buffer_uptodate(bh))
3025 			ret = -EIO;
3026 	} else {
3027 		unlock_buffer(bh);
3028 	}
3029 	return ret;
3030 }
3031 EXPORT_SYMBOL(__sync_dirty_buffer);
3032 
3033 int sync_dirty_buffer(struct buffer_head *bh)
3034 {
3035 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3036 }
3037 EXPORT_SYMBOL(sync_dirty_buffer);
3038 
3039 /*
3040  * try_to_free_buffers() checks if all the buffers on this particular page
3041  * are unused, and releases them if so.
3042  *
3043  * Exclusion against try_to_free_buffers may be obtained by either
3044  * locking the page or by holding its mapping's private_lock.
3045  *
3046  * If the page is dirty but all the buffers are clean then we need to
3047  * be sure to mark the page clean as well.  This is because the page
3048  * may be against a block device, and a later reattachment of buffers
3049  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3050  * filesystem data on the same device.
3051  *
3052  * The same applies to regular filesystem pages: if all the buffers are
3053  * clean then we set the page clean and proceed.  To do that, we require
3054  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3055  * private_lock.
3056  *
3057  * try_to_free_buffers() is non-blocking.
3058  */
3059 static inline int buffer_busy(struct buffer_head *bh)
3060 {
3061 	return atomic_read(&bh->b_count) |
3062 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3063 }
3064 
3065 static int
3066 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3067 {
3068 	struct buffer_head *head = page_buffers(page);
3069 	struct buffer_head *bh;
3070 
3071 	bh = head;
3072 	do {
3073 		if (buffer_write_io_error(bh) && page->mapping)
3074 			set_bit(AS_EIO, &page->mapping->flags);
3075 		if (buffer_busy(bh))
3076 			goto failed;
3077 		bh = bh->b_this_page;
3078 	} while (bh != head);
3079 
3080 	do {
3081 		struct buffer_head *next = bh->b_this_page;
3082 
3083 		if (bh->b_assoc_map)
3084 			__remove_assoc_queue(bh);
3085 		bh = next;
3086 	} while (bh != head);
3087 	*buffers_to_free = head;
3088 	__clear_page_buffers(page);
3089 	return 1;
3090 failed:
3091 	return 0;
3092 }
3093 
3094 int try_to_free_buffers(struct page *page)
3095 {
3096 	struct address_space * const mapping = page->mapping;
3097 	struct buffer_head *buffers_to_free = NULL;
3098 	int ret = 0;
3099 
3100 	BUG_ON(!PageLocked(page));
3101 	if (PageWriteback(page))
3102 		return 0;
3103 
3104 	if (mapping == NULL) {		/* can this still happen? */
3105 		ret = drop_buffers(page, &buffers_to_free);
3106 		goto out;
3107 	}
3108 
3109 	spin_lock(&mapping->private_lock);
3110 	ret = drop_buffers(page, &buffers_to_free);
3111 
3112 	/*
3113 	 * If the filesystem writes its buffers by hand (eg ext3)
3114 	 * then we can have clean buffers against a dirty page.  We
3115 	 * clean the page here; otherwise the VM will never notice
3116 	 * that the filesystem did any IO at all.
3117 	 *
3118 	 * Also, during truncate, discard_buffer will have marked all
3119 	 * the page's buffers clean.  We discover that here and clean
3120 	 * the page also.
3121 	 *
3122 	 * private_lock must be held over this entire operation in order
3123 	 * to synchronise against __set_page_dirty_buffers and prevent the
3124 	 * dirty bit from being lost.
3125 	 */
3126 	if (ret)
3127 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3128 	spin_unlock(&mapping->private_lock);
3129 out:
3130 	if (buffers_to_free) {
3131 		struct buffer_head *bh = buffers_to_free;
3132 
3133 		do {
3134 			struct buffer_head *next = bh->b_this_page;
3135 			free_buffer_head(bh);
3136 			bh = next;
3137 		} while (bh != buffers_to_free);
3138 	}
3139 	return ret;
3140 }
3141 EXPORT_SYMBOL(try_to_free_buffers);
3142 
3143 void block_sync_page(struct page *page)
3144 {
3145 	struct address_space *mapping;
3146 
3147 	smp_mb();
3148 	mapping = page_mapping(page);
3149 	if (mapping)
3150 		blk_run_backing_dev(mapping->backing_dev_info, page);
3151 }
3152 EXPORT_SYMBOL(block_sync_page);
3153 
3154 /*
3155  * There are no bdflush tunables left.  But distributions are
3156  * still running obsolete flush daemons, so we terminate them here.
3157  *
3158  * Use of bdflush() is deprecated and will be removed in a future kernel.
3159  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3160  */
3161 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3162 {
3163 	static int msg_count;
3164 
3165 	if (!capable(CAP_SYS_ADMIN))
3166 		return -EPERM;
3167 
3168 	if (msg_count < 5) {
3169 		msg_count++;
3170 		printk(KERN_INFO
3171 			"warning: process `%s' used the obsolete bdflush"
3172 			" system call\n", current->comm);
3173 		printk(KERN_INFO "Fix your initscripts?\n");
3174 	}
3175 
3176 	if (func == 1)
3177 		do_exit(0);
3178 	return 0;
3179 }
3180 
3181 /*
3182  * Buffer-head allocation
3183  */
3184 static struct kmem_cache *bh_cachep;
3185 
3186 /*
3187  * Once the number of bh's in the machine exceeds this level, we start
3188  * stripping them in writeback.
3189  */
3190 static int max_buffer_heads;
3191 
3192 int buffer_heads_over_limit;
3193 
3194 struct bh_accounting {
3195 	int nr;			/* Number of live bh's */
3196 	int ratelimit;		/* Limit cacheline bouncing */
3197 };
3198 
3199 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3200 
3201 static void recalc_bh_state(void)
3202 {
3203 	int i;
3204 	int tot = 0;
3205 
3206 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3207 		return;
3208 	__get_cpu_var(bh_accounting).ratelimit = 0;
3209 	for_each_online_cpu(i)
3210 		tot += per_cpu(bh_accounting, i).nr;
3211 	buffer_heads_over_limit = (tot > max_buffer_heads);
3212 }
3213 
3214 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3215 {
3216 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3217 	if (ret) {
3218 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3219 		get_cpu_var(bh_accounting).nr++;
3220 		recalc_bh_state();
3221 		put_cpu_var(bh_accounting);
3222 	}
3223 	return ret;
3224 }
3225 EXPORT_SYMBOL(alloc_buffer_head);
3226 
3227 void free_buffer_head(struct buffer_head *bh)
3228 {
3229 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3230 	kmem_cache_free(bh_cachep, bh);
3231 	get_cpu_var(bh_accounting).nr--;
3232 	recalc_bh_state();
3233 	put_cpu_var(bh_accounting);
3234 }
3235 EXPORT_SYMBOL(free_buffer_head);
3236 
3237 static void buffer_exit_cpu(int cpu)
3238 {
3239 	int i;
3240 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3241 
3242 	for (i = 0; i < BH_LRU_SIZE; i++) {
3243 		brelse(b->bhs[i]);
3244 		b->bhs[i] = NULL;
3245 	}
3246 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3247 	per_cpu(bh_accounting, cpu).nr = 0;
3248 	put_cpu_var(bh_accounting);
3249 }
3250 
3251 static int buffer_cpu_notify(struct notifier_block *self,
3252 			      unsigned long action, void *hcpu)
3253 {
3254 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3255 		buffer_exit_cpu((unsigned long)hcpu);
3256 	return NOTIFY_OK;
3257 }
3258 
3259 /**
3260  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3261  * @bh: struct buffer_head
3262  *
3263  * Return true if the buffer is up-to-date and false,
3264  * with the buffer locked, if not.
3265  */
3266 int bh_uptodate_or_lock(struct buffer_head *bh)
3267 {
3268 	if (!buffer_uptodate(bh)) {
3269 		lock_buffer(bh);
3270 		if (!buffer_uptodate(bh))
3271 			return 0;
3272 		unlock_buffer(bh);
3273 	}
3274 	return 1;
3275 }
3276 EXPORT_SYMBOL(bh_uptodate_or_lock);
3277 
3278 /**
3279  * bh_submit_read - Submit a locked buffer for reading
3280  * @bh: struct buffer_head
3281  *
3282  * Returns zero on success and -EIO on error.
3283  */
3284 int bh_submit_read(struct buffer_head *bh)
3285 {
3286 	BUG_ON(!buffer_locked(bh));
3287 
3288 	if (buffer_uptodate(bh)) {
3289 		unlock_buffer(bh);
3290 		return 0;
3291 	}
3292 
3293 	get_bh(bh);
3294 	bh->b_end_io = end_buffer_read_sync;
3295 	submit_bh(READ, bh);
3296 	wait_on_buffer(bh);
3297 	if (buffer_uptodate(bh))
3298 		return 0;
3299 	return -EIO;
3300 }
3301 EXPORT_SYMBOL(bh_submit_read);
3302 
3303 void __init buffer_init(void)
3304 {
3305 	int nrpages;
3306 
3307 	bh_cachep = kmem_cache_create("buffer_head",
3308 			sizeof(struct buffer_head), 0,
3309 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3310 				SLAB_MEM_SPREAD),
3311 				NULL);
3312 
3313 	/*
3314 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3315 	 */
3316 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3317 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3318 	hotcpu_notifier(buffer_cpu_notify, 0);
3319 }
3320