xref: /openbmc/linux/fs/buffer.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	set_page_private(page, 0);
99 	page_cache_release(page);
100 }
101 
102 
103 static int quiet_error(struct buffer_head *bh)
104 {
105 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 		return 0;
107 	return 1;
108 }
109 
110 
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113 	char b[BDEVNAME_SIZE];
114 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 			bdevname(bh->b_bdev, b),
116 			(unsigned long long)bh->b_blocknr);
117 }
118 
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129 	if (uptodate) {
130 		set_buffer_uptodate(bh);
131 	} else {
132 		/* This happens, due to failed READA attempts. */
133 		clear_buffer_uptodate(bh);
134 	}
135 	unlock_buffer(bh);
136 }
137 
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144 	__end_buffer_read_notouch(bh, uptodate);
145 	put_bh(bh);
146 }
147 
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150 	char b[BDEVNAME_SIZE];
151 
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 			buffer_io_error(bh);
157 			printk(KERN_WARNING "lost page write due to "
158 					"I/O error on %s\n",
159 				       bdevname(bh->b_bdev, b));
160 		}
161 		set_buffer_write_io_error(bh);
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 	put_bh(bh);
166 }
167 
168 /*
169  * Various filesystems appear to want __find_get_block to be non-blocking.
170  * But it's the page lock which protects the buffers.  To get around this,
171  * we get exclusion from try_to_free_buffers with the blockdev mapping's
172  * private_lock.
173  *
174  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175  * may be quite high.  This code could TryLock the page, and if that
176  * succeeds, there is no need to take private_lock. (But if
177  * private_lock is contended then so is mapping->tree_lock).
178  */
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
181 {
182 	struct inode *bd_inode = bdev->bd_inode;
183 	struct address_space *bd_mapping = bd_inode->i_mapping;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct page *page;
189 	int all_mapped = 1;
190 
191 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 	page = find_get_page(bd_mapping, index);
193 	if (!page)
194 		goto out;
195 
196 	spin_lock(&bd_mapping->private_lock);
197 	if (!page_has_buffers(page))
198 		goto out_unlock;
199 	head = page_buffers(page);
200 	bh = head;
201 	do {
202 		if (bh->b_blocknr == block) {
203 			ret = bh;
204 			get_bh(bh);
205 			goto out_unlock;
206 		}
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		bh = bh->b_this_page;
210 	} while (bh != head);
211 
212 	/* we might be here because some of the buffers on this page are
213 	 * not mapped.  This is due to various races between
214 	 * file io on the block device and getblk.  It gets dealt with
215 	 * elsewhere, don't buffer_error if we had some unmapped buffers
216 	 */
217 	if (all_mapped) {
218 		printk("__find_get_block_slow() failed. "
219 			"block=%llu, b_blocknr=%llu\n",
220 			(unsigned long long)block,
221 			(unsigned long long)bh->b_blocknr);
222 		printk("b_state=0x%08lx, b_size=%zu\n",
223 			bh->b_state, bh->b_size);
224 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234    of fs corruption is going on. Trashing dirty data always imply losing
235    information that was supposed to be just stored on the physical layer
236    by the user.
237 
238    Thus invalidate_buffers in general usage is not allwowed to trash
239    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240    be preserved.  These buffers are simply skipped.
241 
242    We also skip buffers which are still in use.  For example this can
243    happen if a userspace program is reading the block device.
244 
245    NOTE: In the case where the user removed a removable-media-disk even if
246    there's still dirty data not synced on disk (due a bug in the device driver
247    or due an error of the user), by not destroying the dirty buffers we could
248    generate corruption also on the next media inserted, thus a parameter is
249    necessary to handle this case in the most safe way possible (trying
250    to not corrupt also the new disk inserted with the data belonging to
251    the old now corrupted disk). Also for the ramdisk the natural thing
252    to do in order to release the ramdisk memory is to destroy dirty buffers.
253 
254    These are two special cases. Normal usage imply the device driver
255    to issue a sync on the device (without waiting I/O completion) and
256    then an invalidate_buffers call that doesn't trash dirty buffers.
257 
258    For handling cache coherency with the blkdev pagecache the 'update' case
259    is been introduced. It is needed to re-read from disk any pinned
260    buffer. NOTE: re-reading from disk is destructive so we can do it only
261    when we assume nobody is changing the buffercache under our I/O and when
262    we think the disk contains more recent information than the buffercache.
263    The update == 1 pass marks the buffers we need to update, the update == 2
264    pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
266 {
267 	struct address_space *mapping = bdev->bd_inode->i_mapping;
268 
269 	if (mapping->nrpages == 0)
270 		return;
271 
272 	invalidate_bh_lrus();
273 	invalidate_mapping_pages(mapping, 0, -1);
274 }
275 
276 /*
277  * Kick pdflush then try to free up some ZONE_NORMAL memory.
278  */
279 static void free_more_memory(void)
280 {
281 	struct zone *zone;
282 	int nid;
283 
284 	wakeup_pdflush(1024);
285 	yield();
286 
287 	for_each_online_node(nid) {
288 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 						gfp_zone(GFP_NOFS), NULL,
290 						&zone);
291 		if (zone)
292 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 						GFP_NOFS, NULL);
294 	}
295 }
296 
297 /*
298  * I/O completion handler for block_read_full_page() - pages
299  * which come unlocked at the end of I/O.
300  */
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 {
303 	unsigned long flags;
304 	struct buffer_head *first;
305 	struct buffer_head *tmp;
306 	struct page *page;
307 	int page_uptodate = 1;
308 
309 	BUG_ON(!buffer_async_read(bh));
310 
311 	page = bh->b_page;
312 	if (uptodate) {
313 		set_buffer_uptodate(bh);
314 	} else {
315 		clear_buffer_uptodate(bh);
316 		if (!quiet_error(bh))
317 			buffer_io_error(bh);
318 		SetPageError(page);
319 	}
320 
321 	/*
322 	 * Be _very_ careful from here on. Bad things can happen if
323 	 * two buffer heads end IO at almost the same time and both
324 	 * decide that the page is now completely done.
325 	 */
326 	first = page_buffers(page);
327 	local_irq_save(flags);
328 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 	clear_buffer_async_read(bh);
330 	unlock_buffer(bh);
331 	tmp = bh;
332 	do {
333 		if (!buffer_uptodate(tmp))
334 			page_uptodate = 0;
335 		if (buffer_async_read(tmp)) {
336 			BUG_ON(!buffer_locked(tmp));
337 			goto still_busy;
338 		}
339 		tmp = tmp->b_this_page;
340 	} while (tmp != bh);
341 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 	local_irq_restore(flags);
343 
344 	/*
345 	 * If none of the buffers had errors and they are all
346 	 * uptodate then we can set the page uptodate.
347 	 */
348 	if (page_uptodate && !PageError(page))
349 		SetPageUptodate(page);
350 	unlock_page(page);
351 	return;
352 
353 still_busy:
354 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 	local_irq_restore(flags);
356 	return;
357 }
358 
359 /*
360  * Completion handler for block_write_full_page() - pages which are unlocked
361  * during I/O, and which have PageWriteback cleared upon I/O completion.
362  */
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 {
365 	char b[BDEVNAME_SIZE];
366 	unsigned long flags;
367 	struct buffer_head *first;
368 	struct buffer_head *tmp;
369 	struct page *page;
370 
371 	BUG_ON(!buffer_async_write(bh));
372 
373 	page = bh->b_page;
374 	if (uptodate) {
375 		set_buffer_uptodate(bh);
376 	} else {
377 		if (!quiet_error(bh)) {
378 			buffer_io_error(bh);
379 			printk(KERN_WARNING "lost page write due to "
380 					"I/O error on %s\n",
381 			       bdevname(bh->b_bdev, b));
382 		}
383 		set_bit(AS_EIO, &page->mapping->flags);
384 		set_buffer_write_io_error(bh);
385 		clear_buffer_uptodate(bh);
386 		SetPageError(page);
387 	}
388 
389 	first = page_buffers(page);
390 	local_irq_save(flags);
391 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392 
393 	clear_buffer_async_write(bh);
394 	unlock_buffer(bh);
395 	tmp = bh->b_this_page;
396 	while (tmp != bh) {
397 		if (buffer_async_write(tmp)) {
398 			BUG_ON(!buffer_locked(tmp));
399 			goto still_busy;
400 		}
401 		tmp = tmp->b_this_page;
402 	}
403 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 	local_irq_restore(flags);
405 	end_page_writeback(page);
406 	return;
407 
408 still_busy:
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 	return;
412 }
413 
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437 	bh->b_end_io = end_buffer_async_read;
438 	set_buffer_async_read(bh);
439 }
440 
441 void mark_buffer_async_write(struct buffer_head *bh)
442 {
443 	bh->b_end_io = end_buffer_async_write;
444 	set_buffer_async_write(bh);
445 }
446 EXPORT_SYMBOL(mark_buffer_async_write);
447 
448 
449 /*
450  * fs/buffer.c contains helper functions for buffer-backed address space's
451  * fsync functions.  A common requirement for buffer-based filesystems is
452  * that certain data from the backing blockdev needs to be written out for
453  * a successful fsync().  For example, ext2 indirect blocks need to be
454  * written back and waited upon before fsync() returns.
455  *
456  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458  * management of a list of dependent buffers at ->i_mapping->private_list.
459  *
460  * Locking is a little subtle: try_to_free_buffers() will remove buffers
461  * from their controlling inode's queue when they are being freed.  But
462  * try_to_free_buffers() will be operating against the *blockdev* mapping
463  * at the time, not against the S_ISREG file which depends on those buffers.
464  * So the locking for private_list is via the private_lock in the address_space
465  * which backs the buffers.  Which is different from the address_space
466  * against which the buffers are listed.  So for a particular address_space,
467  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
468  * mapping->private_list will always be protected by the backing blockdev's
469  * ->private_lock.
470  *
471  * Which introduces a requirement: all buffers on an address_space's
472  * ->private_list must be from the same address_space: the blockdev's.
473  *
474  * address_spaces which do not place buffers at ->private_list via these
475  * utility functions are free to use private_lock and private_list for
476  * whatever they want.  The only requirement is that list_empty(private_list)
477  * be true at clear_inode() time.
478  *
479  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
480  * filesystems should do that.  invalidate_inode_buffers() should just go
481  * BUG_ON(!list_empty).
482  *
483  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
484  * take an address_space, not an inode.  And it should be called
485  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486  * queued up.
487  *
488  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489  * list if it is already on a list.  Because if the buffer is on a list,
490  * it *must* already be on the right one.  If not, the filesystem is being
491  * silly.  This will save a ton of locking.  But first we have to ensure
492  * that buffers are taken *off* the old inode's list when they are freed
493  * (presumably in truncate).  That requires careful auditing of all
494  * filesystems (do it inside bforget()).  It could also be done by bringing
495  * b_inode back.
496  */
497 
498 /*
499  * The buffer's backing address_space's private_lock must be held
500  */
501 static void __remove_assoc_queue(struct buffer_head *bh)
502 {
503 	list_del_init(&bh->b_assoc_buffers);
504 	WARN_ON(!bh->b_assoc_map);
505 	if (buffer_write_io_error(bh))
506 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 	bh->b_assoc_map = NULL;
508 }
509 
510 int inode_has_buffers(struct inode *inode)
511 {
512 	return !list_empty(&inode->i_data.private_list);
513 }
514 
515 /*
516  * osync is designed to support O_SYNC io.  It waits synchronously for
517  * all already-submitted IO to complete, but does not queue any new
518  * writes to the disk.
519  *
520  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521  * you dirty the buffers, and then use osync_inode_buffers to wait for
522  * completion.  Any other dirty buffers which are not yet queued for
523  * write will not be flushed to disk by the osync.
524  */
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526 {
527 	struct buffer_head *bh;
528 	struct list_head *p;
529 	int err = 0;
530 
531 	spin_lock(lock);
532 repeat:
533 	list_for_each_prev(p, list) {
534 		bh = BH_ENTRY(p);
535 		if (buffer_locked(bh)) {
536 			get_bh(bh);
537 			spin_unlock(lock);
538 			wait_on_buffer(bh);
539 			if (!buffer_uptodate(bh))
540 				err = -EIO;
541 			brelse(bh);
542 			spin_lock(lock);
543 			goto repeat;
544 		}
545 	}
546 	spin_unlock(lock);
547 	return err;
548 }
549 
550 void do_thaw_all(unsigned long unused)
551 {
552 	struct super_block *sb;
553 	char b[BDEVNAME_SIZE];
554 
555 	spin_lock(&sb_lock);
556 restart:
557 	list_for_each_entry(sb, &super_blocks, s_list) {
558 		sb->s_count++;
559 		spin_unlock(&sb_lock);
560 		down_read(&sb->s_umount);
561 		while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
562 			printk(KERN_WARNING "Emergency Thaw on %s\n",
563 			       bdevname(sb->s_bdev, b));
564 		up_read(&sb->s_umount);
565 		spin_lock(&sb_lock);
566 		if (__put_super_and_need_restart(sb))
567 			goto restart;
568 	}
569 	spin_unlock(&sb_lock);
570 	printk(KERN_WARNING "Emergency Thaw complete\n");
571 }
572 
573 /**
574  * emergency_thaw_all -- forcibly thaw every frozen filesystem
575  *
576  * Used for emergency unfreeze of all filesystems via SysRq
577  */
578 void emergency_thaw_all(void)
579 {
580 	pdflush_operation(do_thaw_all, 0);
581 }
582 
583 /**
584  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
585  * @mapping: the mapping which wants those buffers written
586  *
587  * Starts I/O against the buffers at mapping->private_list, and waits upon
588  * that I/O.
589  *
590  * Basically, this is a convenience function for fsync().
591  * @mapping is a file or directory which needs those buffers to be written for
592  * a successful fsync().
593  */
594 int sync_mapping_buffers(struct address_space *mapping)
595 {
596 	struct address_space *buffer_mapping = mapping->assoc_mapping;
597 
598 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
599 		return 0;
600 
601 	return fsync_buffers_list(&buffer_mapping->private_lock,
602 					&mapping->private_list);
603 }
604 EXPORT_SYMBOL(sync_mapping_buffers);
605 
606 /*
607  * Called when we've recently written block `bblock', and it is known that
608  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
609  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
610  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
611  */
612 void write_boundary_block(struct block_device *bdev,
613 			sector_t bblock, unsigned blocksize)
614 {
615 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
616 	if (bh) {
617 		if (buffer_dirty(bh))
618 			ll_rw_block(WRITE, 1, &bh);
619 		put_bh(bh);
620 	}
621 }
622 
623 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
624 {
625 	struct address_space *mapping = inode->i_mapping;
626 	struct address_space *buffer_mapping = bh->b_page->mapping;
627 
628 	mark_buffer_dirty(bh);
629 	if (!mapping->assoc_mapping) {
630 		mapping->assoc_mapping = buffer_mapping;
631 	} else {
632 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
633 	}
634 	if (!bh->b_assoc_map) {
635 		spin_lock(&buffer_mapping->private_lock);
636 		list_move_tail(&bh->b_assoc_buffers,
637 				&mapping->private_list);
638 		bh->b_assoc_map = mapping;
639 		spin_unlock(&buffer_mapping->private_lock);
640 	}
641 }
642 EXPORT_SYMBOL(mark_buffer_dirty_inode);
643 
644 /*
645  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
646  * dirty.
647  *
648  * If warn is true, then emit a warning if the page is not uptodate and has
649  * not been truncated.
650  */
651 static void __set_page_dirty(struct page *page,
652 		struct address_space *mapping, int warn)
653 {
654 	spin_lock_irq(&mapping->tree_lock);
655 	if (page->mapping) {	/* Race with truncate? */
656 		WARN_ON_ONCE(warn && !PageUptodate(page));
657 		account_page_dirtied(page, mapping);
658 		radix_tree_tag_set(&mapping->page_tree,
659 				page_index(page), PAGECACHE_TAG_DIRTY);
660 	}
661 	spin_unlock_irq(&mapping->tree_lock);
662 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
663 }
664 
665 /*
666  * Add a page to the dirty page list.
667  *
668  * It is a sad fact of life that this function is called from several places
669  * deeply under spinlocking.  It may not sleep.
670  *
671  * If the page has buffers, the uptodate buffers are set dirty, to preserve
672  * dirty-state coherency between the page and the buffers.  It the page does
673  * not have buffers then when they are later attached they will all be set
674  * dirty.
675  *
676  * The buffers are dirtied before the page is dirtied.  There's a small race
677  * window in which a writepage caller may see the page cleanness but not the
678  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
679  * before the buffers, a concurrent writepage caller could clear the page dirty
680  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
681  * page on the dirty page list.
682  *
683  * We use private_lock to lock against try_to_free_buffers while using the
684  * page's buffer list.  Also use this to protect against clean buffers being
685  * added to the page after it was set dirty.
686  *
687  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
688  * address_space though.
689  */
690 int __set_page_dirty_buffers(struct page *page)
691 {
692 	int newly_dirty;
693 	struct address_space *mapping = page_mapping(page);
694 
695 	if (unlikely(!mapping))
696 		return !TestSetPageDirty(page);
697 
698 	spin_lock(&mapping->private_lock);
699 	if (page_has_buffers(page)) {
700 		struct buffer_head *head = page_buffers(page);
701 		struct buffer_head *bh = head;
702 
703 		do {
704 			set_buffer_dirty(bh);
705 			bh = bh->b_this_page;
706 		} while (bh != head);
707 	}
708 	newly_dirty = !TestSetPageDirty(page);
709 	spin_unlock(&mapping->private_lock);
710 
711 	if (newly_dirty)
712 		__set_page_dirty(page, mapping, 1);
713 	return newly_dirty;
714 }
715 EXPORT_SYMBOL(__set_page_dirty_buffers);
716 
717 /*
718  * Write out and wait upon a list of buffers.
719  *
720  * We have conflicting pressures: we want to make sure that all
721  * initially dirty buffers get waited on, but that any subsequently
722  * dirtied buffers don't.  After all, we don't want fsync to last
723  * forever if somebody is actively writing to the file.
724  *
725  * Do this in two main stages: first we copy dirty buffers to a
726  * temporary inode list, queueing the writes as we go.  Then we clean
727  * up, waiting for those writes to complete.
728  *
729  * During this second stage, any subsequent updates to the file may end
730  * up refiling the buffer on the original inode's dirty list again, so
731  * there is a chance we will end up with a buffer queued for write but
732  * not yet completed on that list.  So, as a final cleanup we go through
733  * the osync code to catch these locked, dirty buffers without requeuing
734  * any newly dirty buffers for write.
735  */
736 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
737 {
738 	struct buffer_head *bh;
739 	struct list_head tmp;
740 	struct address_space *mapping;
741 	int err = 0, err2;
742 
743 	INIT_LIST_HEAD(&tmp);
744 
745 	spin_lock(lock);
746 	while (!list_empty(list)) {
747 		bh = BH_ENTRY(list->next);
748 		mapping = bh->b_assoc_map;
749 		__remove_assoc_queue(bh);
750 		/* Avoid race with mark_buffer_dirty_inode() which does
751 		 * a lockless check and we rely on seeing the dirty bit */
752 		smp_mb();
753 		if (buffer_dirty(bh) || buffer_locked(bh)) {
754 			list_add(&bh->b_assoc_buffers, &tmp);
755 			bh->b_assoc_map = mapping;
756 			if (buffer_dirty(bh)) {
757 				get_bh(bh);
758 				spin_unlock(lock);
759 				/*
760 				 * Ensure any pending I/O completes so that
761 				 * ll_rw_block() actually writes the current
762 				 * contents - it is a noop if I/O is still in
763 				 * flight on potentially older contents.
764 				 */
765 				ll_rw_block(SWRITE_SYNC, 1, &bh);
766 				brelse(bh);
767 				spin_lock(lock);
768 			}
769 		}
770 	}
771 
772 	while (!list_empty(&tmp)) {
773 		bh = BH_ENTRY(tmp.prev);
774 		get_bh(bh);
775 		mapping = bh->b_assoc_map;
776 		__remove_assoc_queue(bh);
777 		/* Avoid race with mark_buffer_dirty_inode() which does
778 		 * a lockless check and we rely on seeing the dirty bit */
779 		smp_mb();
780 		if (buffer_dirty(bh)) {
781 			list_add(&bh->b_assoc_buffers,
782 				 &mapping->private_list);
783 			bh->b_assoc_map = mapping;
784 		}
785 		spin_unlock(lock);
786 		wait_on_buffer(bh);
787 		if (!buffer_uptodate(bh))
788 			err = -EIO;
789 		brelse(bh);
790 		spin_lock(lock);
791 	}
792 
793 	spin_unlock(lock);
794 	err2 = osync_buffers_list(lock, list);
795 	if (err)
796 		return err;
797 	else
798 		return err2;
799 }
800 
801 /*
802  * Invalidate any and all dirty buffers on a given inode.  We are
803  * probably unmounting the fs, but that doesn't mean we have already
804  * done a sync().  Just drop the buffers from the inode list.
805  *
806  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
807  * assumes that all the buffers are against the blockdev.  Not true
808  * for reiserfs.
809  */
810 void invalidate_inode_buffers(struct inode *inode)
811 {
812 	if (inode_has_buffers(inode)) {
813 		struct address_space *mapping = &inode->i_data;
814 		struct list_head *list = &mapping->private_list;
815 		struct address_space *buffer_mapping = mapping->assoc_mapping;
816 
817 		spin_lock(&buffer_mapping->private_lock);
818 		while (!list_empty(list))
819 			__remove_assoc_queue(BH_ENTRY(list->next));
820 		spin_unlock(&buffer_mapping->private_lock);
821 	}
822 }
823 EXPORT_SYMBOL(invalidate_inode_buffers);
824 
825 /*
826  * Remove any clean buffers from the inode's buffer list.  This is called
827  * when we're trying to free the inode itself.  Those buffers can pin it.
828  *
829  * Returns true if all buffers were removed.
830  */
831 int remove_inode_buffers(struct inode *inode)
832 {
833 	int ret = 1;
834 
835 	if (inode_has_buffers(inode)) {
836 		struct address_space *mapping = &inode->i_data;
837 		struct list_head *list = &mapping->private_list;
838 		struct address_space *buffer_mapping = mapping->assoc_mapping;
839 
840 		spin_lock(&buffer_mapping->private_lock);
841 		while (!list_empty(list)) {
842 			struct buffer_head *bh = BH_ENTRY(list->next);
843 			if (buffer_dirty(bh)) {
844 				ret = 0;
845 				break;
846 			}
847 			__remove_assoc_queue(bh);
848 		}
849 		spin_unlock(&buffer_mapping->private_lock);
850 	}
851 	return ret;
852 }
853 
854 /*
855  * Create the appropriate buffers when given a page for data area and
856  * the size of each buffer.. Use the bh->b_this_page linked list to
857  * follow the buffers created.  Return NULL if unable to create more
858  * buffers.
859  *
860  * The retry flag is used to differentiate async IO (paging, swapping)
861  * which may not fail from ordinary buffer allocations.
862  */
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 		int retry)
865 {
866 	struct buffer_head *bh, *head;
867 	long offset;
868 
869 try_again:
870 	head = NULL;
871 	offset = PAGE_SIZE;
872 	while ((offset -= size) >= 0) {
873 		bh = alloc_buffer_head(GFP_NOFS);
874 		if (!bh)
875 			goto no_grow;
876 
877 		bh->b_bdev = NULL;
878 		bh->b_this_page = head;
879 		bh->b_blocknr = -1;
880 		head = bh;
881 
882 		bh->b_state = 0;
883 		atomic_set(&bh->b_count, 0);
884 		bh->b_private = NULL;
885 		bh->b_size = size;
886 
887 		/* Link the buffer to its page */
888 		set_bh_page(bh, page, offset);
889 
890 		init_buffer(bh, NULL, NULL);
891 	}
892 	return head;
893 /*
894  * In case anything failed, we just free everything we got.
895  */
896 no_grow:
897 	if (head) {
898 		do {
899 			bh = head;
900 			head = head->b_this_page;
901 			free_buffer_head(bh);
902 		} while (head);
903 	}
904 
905 	/*
906 	 * Return failure for non-async IO requests.  Async IO requests
907 	 * are not allowed to fail, so we have to wait until buffer heads
908 	 * become available.  But we don't want tasks sleeping with
909 	 * partially complete buffers, so all were released above.
910 	 */
911 	if (!retry)
912 		return NULL;
913 
914 	/* We're _really_ low on memory. Now we just
915 	 * wait for old buffer heads to become free due to
916 	 * finishing IO.  Since this is an async request and
917 	 * the reserve list is empty, we're sure there are
918 	 * async buffer heads in use.
919 	 */
920 	free_more_memory();
921 	goto try_again;
922 }
923 EXPORT_SYMBOL_GPL(alloc_page_buffers);
924 
925 static inline void
926 link_dev_buffers(struct page *page, struct buffer_head *head)
927 {
928 	struct buffer_head *bh, *tail;
929 
930 	bh = head;
931 	do {
932 		tail = bh;
933 		bh = bh->b_this_page;
934 	} while (bh);
935 	tail->b_this_page = head;
936 	attach_page_buffers(page, head);
937 }
938 
939 /*
940  * Initialise the state of a blockdev page's buffers.
941  */
942 static void
943 init_page_buffers(struct page *page, struct block_device *bdev,
944 			sector_t block, int size)
945 {
946 	struct buffer_head *head = page_buffers(page);
947 	struct buffer_head *bh = head;
948 	int uptodate = PageUptodate(page);
949 
950 	do {
951 		if (!buffer_mapped(bh)) {
952 			init_buffer(bh, NULL, NULL);
953 			bh->b_bdev = bdev;
954 			bh->b_blocknr = block;
955 			if (uptodate)
956 				set_buffer_uptodate(bh);
957 			set_buffer_mapped(bh);
958 		}
959 		block++;
960 		bh = bh->b_this_page;
961 	} while (bh != head);
962 }
963 
964 /*
965  * Create the page-cache page that contains the requested block.
966  *
967  * This is user purely for blockdev mappings.
968  */
969 static struct page *
970 grow_dev_page(struct block_device *bdev, sector_t block,
971 		pgoff_t index, int size)
972 {
973 	struct inode *inode = bdev->bd_inode;
974 	struct page *page;
975 	struct buffer_head *bh;
976 
977 	page = find_or_create_page(inode->i_mapping, index,
978 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
979 	if (!page)
980 		return NULL;
981 
982 	BUG_ON(!PageLocked(page));
983 
984 	if (page_has_buffers(page)) {
985 		bh = page_buffers(page);
986 		if (bh->b_size == size) {
987 			init_page_buffers(page, bdev, block, size);
988 			return page;
989 		}
990 		if (!try_to_free_buffers(page))
991 			goto failed;
992 	}
993 
994 	/*
995 	 * Allocate some buffers for this page
996 	 */
997 	bh = alloc_page_buffers(page, size, 0);
998 	if (!bh)
999 		goto failed;
1000 
1001 	/*
1002 	 * Link the page to the buffers and initialise them.  Take the
1003 	 * lock to be atomic wrt __find_get_block(), which does not
1004 	 * run under the page lock.
1005 	 */
1006 	spin_lock(&inode->i_mapping->private_lock);
1007 	link_dev_buffers(page, bh);
1008 	init_page_buffers(page, bdev, block, size);
1009 	spin_unlock(&inode->i_mapping->private_lock);
1010 	return page;
1011 
1012 failed:
1013 	BUG();
1014 	unlock_page(page);
1015 	page_cache_release(page);
1016 	return NULL;
1017 }
1018 
1019 /*
1020  * Create buffers for the specified block device block's page.  If
1021  * that page was dirty, the buffers are set dirty also.
1022  */
1023 static int
1024 grow_buffers(struct block_device *bdev, sector_t block, int size)
1025 {
1026 	struct page *page;
1027 	pgoff_t index;
1028 	int sizebits;
1029 
1030 	sizebits = -1;
1031 	do {
1032 		sizebits++;
1033 	} while ((size << sizebits) < PAGE_SIZE);
1034 
1035 	index = block >> sizebits;
1036 
1037 	/*
1038 	 * Check for a block which wants to lie outside our maximum possible
1039 	 * pagecache index.  (this comparison is done using sector_t types).
1040 	 */
1041 	if (unlikely(index != block >> sizebits)) {
1042 		char b[BDEVNAME_SIZE];
1043 
1044 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045 			"device %s\n",
1046 			__func__, (unsigned long long)block,
1047 			bdevname(bdev, b));
1048 		return -EIO;
1049 	}
1050 	block = index << sizebits;
1051 	/* Create a page with the proper size buffers.. */
1052 	page = grow_dev_page(bdev, block, index, size);
1053 	if (!page)
1054 		return 0;
1055 	unlock_page(page);
1056 	page_cache_release(page);
1057 	return 1;
1058 }
1059 
1060 static struct buffer_head *
1061 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1062 {
1063 	/* Size must be multiple of hard sectorsize */
1064 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1065 			(size < 512 || size > PAGE_SIZE))) {
1066 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1067 					size);
1068 		printk(KERN_ERR "hardsect size: %d\n",
1069 					bdev_hardsect_size(bdev));
1070 
1071 		dump_stack();
1072 		return NULL;
1073 	}
1074 
1075 	for (;;) {
1076 		struct buffer_head * bh;
1077 		int ret;
1078 
1079 		bh = __find_get_block(bdev, block, size);
1080 		if (bh)
1081 			return bh;
1082 
1083 		ret = grow_buffers(bdev, block, size);
1084 		if (ret < 0)
1085 			return NULL;
1086 		if (ret == 0)
1087 			free_more_memory();
1088 	}
1089 }
1090 
1091 /*
1092  * The relationship between dirty buffers and dirty pages:
1093  *
1094  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095  * the page is tagged dirty in its radix tree.
1096  *
1097  * At all times, the dirtiness of the buffers represents the dirtiness of
1098  * subsections of the page.  If the page has buffers, the page dirty bit is
1099  * merely a hint about the true dirty state.
1100  *
1101  * When a page is set dirty in its entirety, all its buffers are marked dirty
1102  * (if the page has buffers).
1103  *
1104  * When a buffer is marked dirty, its page is dirtied, but the page's other
1105  * buffers are not.
1106  *
1107  * Also.  When blockdev buffers are explicitly read with bread(), they
1108  * individually become uptodate.  But their backing page remains not
1109  * uptodate - even if all of its buffers are uptodate.  A subsequent
1110  * block_read_full_page() against that page will discover all the uptodate
1111  * buffers, will set the page uptodate and will perform no I/O.
1112  */
1113 
1114 /**
1115  * mark_buffer_dirty - mark a buffer_head as needing writeout
1116  * @bh: the buffer_head to mark dirty
1117  *
1118  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1119  * backing page dirty, then tag the page as dirty in its address_space's radix
1120  * tree and then attach the address_space's inode to its superblock's dirty
1121  * inode list.
1122  *
1123  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1124  * mapping->tree_lock and the global inode_lock.
1125  */
1126 void mark_buffer_dirty(struct buffer_head *bh)
1127 {
1128 	WARN_ON_ONCE(!buffer_uptodate(bh));
1129 
1130 	/*
1131 	 * Very *carefully* optimize the it-is-already-dirty case.
1132 	 *
1133 	 * Don't let the final "is it dirty" escape to before we
1134 	 * perhaps modified the buffer.
1135 	 */
1136 	if (buffer_dirty(bh)) {
1137 		smp_mb();
1138 		if (buffer_dirty(bh))
1139 			return;
1140 	}
1141 
1142 	if (!test_set_buffer_dirty(bh)) {
1143 		struct page *page = bh->b_page;
1144 		if (!TestSetPageDirty(page))
1145 			__set_page_dirty(page, page_mapping(page), 0);
1146 	}
1147 }
1148 
1149 /*
1150  * Decrement a buffer_head's reference count.  If all buffers against a page
1151  * have zero reference count, are clean and unlocked, and if the page is clean
1152  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154  * a page but it ends up not being freed, and buffers may later be reattached).
1155  */
1156 void __brelse(struct buffer_head * buf)
1157 {
1158 	if (atomic_read(&buf->b_count)) {
1159 		put_bh(buf);
1160 		return;
1161 	}
1162 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1163 }
1164 
1165 /*
1166  * bforget() is like brelse(), except it discards any
1167  * potentially dirty data.
1168  */
1169 void __bforget(struct buffer_head *bh)
1170 {
1171 	clear_buffer_dirty(bh);
1172 	if (bh->b_assoc_map) {
1173 		struct address_space *buffer_mapping = bh->b_page->mapping;
1174 
1175 		spin_lock(&buffer_mapping->private_lock);
1176 		list_del_init(&bh->b_assoc_buffers);
1177 		bh->b_assoc_map = NULL;
1178 		spin_unlock(&buffer_mapping->private_lock);
1179 	}
1180 	__brelse(bh);
1181 }
1182 
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185 	lock_buffer(bh);
1186 	if (buffer_uptodate(bh)) {
1187 		unlock_buffer(bh);
1188 		return bh;
1189 	} else {
1190 		get_bh(bh);
1191 		bh->b_end_io = end_buffer_read_sync;
1192 		submit_bh(READ, bh);
1193 		wait_on_buffer(bh);
1194 		if (buffer_uptodate(bh))
1195 			return bh;
1196 	}
1197 	brelse(bh);
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1203  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1204  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1205  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1206  * CPU's LRUs at the same time.
1207  *
1208  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209  * sb_find_get_block().
1210  *
1211  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1212  * a local interrupt disable for that.
1213  */
1214 
1215 #define BH_LRU_SIZE	8
1216 
1217 struct bh_lru {
1218 	struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220 
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222 
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock()	local_irq_disable()
1225 #define bh_lru_unlock()	local_irq_enable()
1226 #else
1227 #define bh_lru_lock()	preempt_disable()
1228 #define bh_lru_unlock()	preempt_enable()
1229 #endif
1230 
1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234 	BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237 
1238 /*
1239  * The LRU management algorithm is dopey-but-simple.  Sorry.
1240  */
1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243 	struct buffer_head *evictee = NULL;
1244 	struct bh_lru *lru;
1245 
1246 	check_irqs_on();
1247 	bh_lru_lock();
1248 	lru = &__get_cpu_var(bh_lrus);
1249 	if (lru->bhs[0] != bh) {
1250 		struct buffer_head *bhs[BH_LRU_SIZE];
1251 		int in;
1252 		int out = 0;
1253 
1254 		get_bh(bh);
1255 		bhs[out++] = bh;
1256 		for (in = 0; in < BH_LRU_SIZE; in++) {
1257 			struct buffer_head *bh2 = lru->bhs[in];
1258 
1259 			if (bh2 == bh) {
1260 				__brelse(bh2);
1261 			} else {
1262 				if (out >= BH_LRU_SIZE) {
1263 					BUG_ON(evictee != NULL);
1264 					evictee = bh2;
1265 				} else {
1266 					bhs[out++] = bh2;
1267 				}
1268 			}
1269 		}
1270 		while (out < BH_LRU_SIZE)
1271 			bhs[out++] = NULL;
1272 		memcpy(lru->bhs, bhs, sizeof(bhs));
1273 	}
1274 	bh_lru_unlock();
1275 
1276 	if (evictee)
1277 		__brelse(evictee);
1278 }
1279 
1280 /*
1281  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1282  */
1283 static struct buffer_head *
1284 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1285 {
1286 	struct buffer_head *ret = NULL;
1287 	struct bh_lru *lru;
1288 	unsigned int i;
1289 
1290 	check_irqs_on();
1291 	bh_lru_lock();
1292 	lru = &__get_cpu_var(bh_lrus);
1293 	for (i = 0; i < BH_LRU_SIZE; i++) {
1294 		struct buffer_head *bh = lru->bhs[i];
1295 
1296 		if (bh && bh->b_bdev == bdev &&
1297 				bh->b_blocknr == block && bh->b_size == size) {
1298 			if (i) {
1299 				while (i) {
1300 					lru->bhs[i] = lru->bhs[i - 1];
1301 					i--;
1302 				}
1303 				lru->bhs[0] = bh;
1304 			}
1305 			get_bh(bh);
1306 			ret = bh;
1307 			break;
1308 		}
1309 	}
1310 	bh_lru_unlock();
1311 	return ret;
1312 }
1313 
1314 /*
1315  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1316  * it in the LRU and mark it as accessed.  If it is not present then return
1317  * NULL
1318  */
1319 struct buffer_head *
1320 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1323 
1324 	if (bh == NULL) {
1325 		bh = __find_get_block_slow(bdev, block);
1326 		if (bh)
1327 			bh_lru_install(bh);
1328 	}
1329 	if (bh)
1330 		touch_buffer(bh);
1331 	return bh;
1332 }
1333 EXPORT_SYMBOL(__find_get_block);
1334 
1335 /*
1336  * __getblk will locate (and, if necessary, create) the buffer_head
1337  * which corresponds to the passed block_device, block and size. The
1338  * returned buffer has its reference count incremented.
1339  *
1340  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1341  * illegal block number, __getblk() will happily return a buffer_head
1342  * which represents the non-existent block.  Very weird.
1343  *
1344  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1345  * attempt is failing.  FIXME, perhaps?
1346  */
1347 struct buffer_head *
1348 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1349 {
1350 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1351 
1352 	might_sleep();
1353 	if (bh == NULL)
1354 		bh = __getblk_slow(bdev, block, size);
1355 	return bh;
1356 }
1357 EXPORT_SYMBOL(__getblk);
1358 
1359 /*
1360  * Do async read-ahead on a buffer..
1361  */
1362 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 	struct buffer_head *bh = __getblk(bdev, block, size);
1365 	if (likely(bh)) {
1366 		ll_rw_block(READA, 1, &bh);
1367 		brelse(bh);
1368 	}
1369 }
1370 EXPORT_SYMBOL(__breadahead);
1371 
1372 /**
1373  *  __bread() - reads a specified block and returns the bh
1374  *  @bdev: the block_device to read from
1375  *  @block: number of block
1376  *  @size: size (in bytes) to read
1377  *
1378  *  Reads a specified block, and returns buffer head that contains it.
1379  *  It returns NULL if the block was unreadable.
1380  */
1381 struct buffer_head *
1382 __bread(struct block_device *bdev, sector_t block, unsigned size)
1383 {
1384 	struct buffer_head *bh = __getblk(bdev, block, size);
1385 
1386 	if (likely(bh) && !buffer_uptodate(bh))
1387 		bh = __bread_slow(bh);
1388 	return bh;
1389 }
1390 EXPORT_SYMBOL(__bread);
1391 
1392 /*
1393  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1394  * This doesn't race because it runs in each cpu either in irq
1395  * or with preempt disabled.
1396  */
1397 static void invalidate_bh_lru(void *arg)
1398 {
1399 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1400 	int i;
1401 
1402 	for (i = 0; i < BH_LRU_SIZE; i++) {
1403 		brelse(b->bhs[i]);
1404 		b->bhs[i] = NULL;
1405 	}
1406 	put_cpu_var(bh_lrus);
1407 }
1408 
1409 void invalidate_bh_lrus(void)
1410 {
1411 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1412 }
1413 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1414 
1415 void set_bh_page(struct buffer_head *bh,
1416 		struct page *page, unsigned long offset)
1417 {
1418 	bh->b_page = page;
1419 	BUG_ON(offset >= PAGE_SIZE);
1420 	if (PageHighMem(page))
1421 		/*
1422 		 * This catches illegal uses and preserves the offset:
1423 		 */
1424 		bh->b_data = (char *)(0 + offset);
1425 	else
1426 		bh->b_data = page_address(page) + offset;
1427 }
1428 EXPORT_SYMBOL(set_bh_page);
1429 
1430 /*
1431  * Called when truncating a buffer on a page completely.
1432  */
1433 static void discard_buffer(struct buffer_head * bh)
1434 {
1435 	lock_buffer(bh);
1436 	clear_buffer_dirty(bh);
1437 	bh->b_bdev = NULL;
1438 	clear_buffer_mapped(bh);
1439 	clear_buffer_req(bh);
1440 	clear_buffer_new(bh);
1441 	clear_buffer_delay(bh);
1442 	clear_buffer_unwritten(bh);
1443 	unlock_buffer(bh);
1444 }
1445 
1446 /**
1447  * block_invalidatepage - invalidate part of all of a buffer-backed page
1448  *
1449  * @page: the page which is affected
1450  * @offset: the index of the truncation point
1451  *
1452  * block_invalidatepage() is called when all or part of the page has become
1453  * invalidatedby a truncate operation.
1454  *
1455  * block_invalidatepage() does not have to release all buffers, but it must
1456  * ensure that no dirty buffer is left outside @offset and that no I/O
1457  * is underway against any of the blocks which are outside the truncation
1458  * point.  Because the caller is about to free (and possibly reuse) those
1459  * blocks on-disk.
1460  */
1461 void block_invalidatepage(struct page *page, unsigned long offset)
1462 {
1463 	struct buffer_head *head, *bh, *next;
1464 	unsigned int curr_off = 0;
1465 
1466 	BUG_ON(!PageLocked(page));
1467 	if (!page_has_buffers(page))
1468 		goto out;
1469 
1470 	head = page_buffers(page);
1471 	bh = head;
1472 	do {
1473 		unsigned int next_off = curr_off + bh->b_size;
1474 		next = bh->b_this_page;
1475 
1476 		/*
1477 		 * is this block fully invalidated?
1478 		 */
1479 		if (offset <= curr_off)
1480 			discard_buffer(bh);
1481 		curr_off = next_off;
1482 		bh = next;
1483 	} while (bh != head);
1484 
1485 	/*
1486 	 * We release buffers only if the entire page is being invalidated.
1487 	 * The get_block cached value has been unconditionally invalidated,
1488 	 * so real IO is not possible anymore.
1489 	 */
1490 	if (offset == 0)
1491 		try_to_release_page(page, 0);
1492 out:
1493 	return;
1494 }
1495 EXPORT_SYMBOL(block_invalidatepage);
1496 
1497 /*
1498  * We attach and possibly dirty the buffers atomically wrt
1499  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1500  * is already excluded via the page lock.
1501  */
1502 void create_empty_buffers(struct page *page,
1503 			unsigned long blocksize, unsigned long b_state)
1504 {
1505 	struct buffer_head *bh, *head, *tail;
1506 
1507 	head = alloc_page_buffers(page, blocksize, 1);
1508 	bh = head;
1509 	do {
1510 		bh->b_state |= b_state;
1511 		tail = bh;
1512 		bh = bh->b_this_page;
1513 	} while (bh);
1514 	tail->b_this_page = head;
1515 
1516 	spin_lock(&page->mapping->private_lock);
1517 	if (PageUptodate(page) || PageDirty(page)) {
1518 		bh = head;
1519 		do {
1520 			if (PageDirty(page))
1521 				set_buffer_dirty(bh);
1522 			if (PageUptodate(page))
1523 				set_buffer_uptodate(bh);
1524 			bh = bh->b_this_page;
1525 		} while (bh != head);
1526 	}
1527 	attach_page_buffers(page, head);
1528 	spin_unlock(&page->mapping->private_lock);
1529 }
1530 EXPORT_SYMBOL(create_empty_buffers);
1531 
1532 /*
1533  * We are taking a block for data and we don't want any output from any
1534  * buffer-cache aliases starting from return from that function and
1535  * until the moment when something will explicitly mark the buffer
1536  * dirty (hopefully that will not happen until we will free that block ;-)
1537  * We don't even need to mark it not-uptodate - nobody can expect
1538  * anything from a newly allocated buffer anyway. We used to used
1539  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1540  * don't want to mark the alias unmapped, for example - it would confuse
1541  * anyone who might pick it with bread() afterwards...
1542  *
1543  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1544  * be writeout I/O going on against recently-freed buffers.  We don't
1545  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1546  * only if we really need to.  That happens here.
1547  */
1548 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1549 {
1550 	struct buffer_head *old_bh;
1551 
1552 	might_sleep();
1553 
1554 	old_bh = __find_get_block_slow(bdev, block);
1555 	if (old_bh) {
1556 		clear_buffer_dirty(old_bh);
1557 		wait_on_buffer(old_bh);
1558 		clear_buffer_req(old_bh);
1559 		__brelse(old_bh);
1560 	}
1561 }
1562 EXPORT_SYMBOL(unmap_underlying_metadata);
1563 
1564 /*
1565  * NOTE! All mapped/uptodate combinations are valid:
1566  *
1567  *	Mapped	Uptodate	Meaning
1568  *
1569  *	No	No		"unknown" - must do get_block()
1570  *	No	Yes		"hole" - zero-filled
1571  *	Yes	No		"allocated" - allocated on disk, not read in
1572  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1573  *
1574  * "Dirty" is valid only with the last case (mapped+uptodate).
1575  */
1576 
1577 /*
1578  * While block_write_full_page is writing back the dirty buffers under
1579  * the page lock, whoever dirtied the buffers may decide to clean them
1580  * again at any time.  We handle that by only looking at the buffer
1581  * state inside lock_buffer().
1582  *
1583  * If block_write_full_page() is called for regular writeback
1584  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1585  * locked buffer.   This only can happen if someone has written the buffer
1586  * directly, with submit_bh().  At the address_space level PageWriteback
1587  * prevents this contention from occurring.
1588  */
1589 static int __block_write_full_page(struct inode *inode, struct page *page,
1590 			get_block_t *get_block, struct writeback_control *wbc)
1591 {
1592 	int err;
1593 	sector_t block;
1594 	sector_t last_block;
1595 	struct buffer_head *bh, *head;
1596 	const unsigned blocksize = 1 << inode->i_blkbits;
1597 	int nr_underway = 0;
1598 
1599 	BUG_ON(!PageLocked(page));
1600 
1601 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1602 
1603 	if (!page_has_buffers(page)) {
1604 		create_empty_buffers(page, blocksize,
1605 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1606 	}
1607 
1608 	/*
1609 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1610 	 * here, and the (potentially unmapped) buffers may become dirty at
1611 	 * any time.  If a buffer becomes dirty here after we've inspected it
1612 	 * then we just miss that fact, and the page stays dirty.
1613 	 *
1614 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1615 	 * handle that here by just cleaning them.
1616 	 */
1617 
1618 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1619 	head = page_buffers(page);
1620 	bh = head;
1621 
1622 	/*
1623 	 * Get all the dirty buffers mapped to disk addresses and
1624 	 * handle any aliases from the underlying blockdev's mapping.
1625 	 */
1626 	do {
1627 		if (block > last_block) {
1628 			/*
1629 			 * mapped buffers outside i_size will occur, because
1630 			 * this page can be outside i_size when there is a
1631 			 * truncate in progress.
1632 			 */
1633 			/*
1634 			 * The buffer was zeroed by block_write_full_page()
1635 			 */
1636 			clear_buffer_dirty(bh);
1637 			set_buffer_uptodate(bh);
1638 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1639 			   buffer_dirty(bh)) {
1640 			WARN_ON(bh->b_size != blocksize);
1641 			err = get_block(inode, block, bh, 1);
1642 			if (err)
1643 				goto recover;
1644 			clear_buffer_delay(bh);
1645 			if (buffer_new(bh)) {
1646 				/* blockdev mappings never come here */
1647 				clear_buffer_new(bh);
1648 				unmap_underlying_metadata(bh->b_bdev,
1649 							bh->b_blocknr);
1650 			}
1651 		}
1652 		bh = bh->b_this_page;
1653 		block++;
1654 	} while (bh != head);
1655 
1656 	do {
1657 		if (!buffer_mapped(bh))
1658 			continue;
1659 		/*
1660 		 * If it's a fully non-blocking write attempt and we cannot
1661 		 * lock the buffer then redirty the page.  Note that this can
1662 		 * potentially cause a busy-wait loop from pdflush and kswapd
1663 		 * activity, but those code paths have their own higher-level
1664 		 * throttling.
1665 		 */
1666 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1667 			lock_buffer(bh);
1668 		} else if (!trylock_buffer(bh)) {
1669 			redirty_page_for_writepage(wbc, page);
1670 			continue;
1671 		}
1672 		if (test_clear_buffer_dirty(bh)) {
1673 			mark_buffer_async_write(bh);
1674 		} else {
1675 			unlock_buffer(bh);
1676 		}
1677 	} while ((bh = bh->b_this_page) != head);
1678 
1679 	/*
1680 	 * The page and its buffers are protected by PageWriteback(), so we can
1681 	 * drop the bh refcounts early.
1682 	 */
1683 	BUG_ON(PageWriteback(page));
1684 	set_page_writeback(page);
1685 
1686 	do {
1687 		struct buffer_head *next = bh->b_this_page;
1688 		if (buffer_async_write(bh)) {
1689 			submit_bh(WRITE, bh);
1690 			nr_underway++;
1691 		}
1692 		bh = next;
1693 	} while (bh != head);
1694 	unlock_page(page);
1695 
1696 	err = 0;
1697 done:
1698 	if (nr_underway == 0) {
1699 		/*
1700 		 * The page was marked dirty, but the buffers were
1701 		 * clean.  Someone wrote them back by hand with
1702 		 * ll_rw_block/submit_bh.  A rare case.
1703 		 */
1704 		end_page_writeback(page);
1705 
1706 		/*
1707 		 * The page and buffer_heads can be released at any time from
1708 		 * here on.
1709 		 */
1710 	}
1711 	return err;
1712 
1713 recover:
1714 	/*
1715 	 * ENOSPC, or some other error.  We may already have added some
1716 	 * blocks to the file, so we need to write these out to avoid
1717 	 * exposing stale data.
1718 	 * The page is currently locked and not marked for writeback
1719 	 */
1720 	bh = head;
1721 	/* Recovery: lock and submit the mapped buffers */
1722 	do {
1723 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1724 		    !buffer_delay(bh)) {
1725 			lock_buffer(bh);
1726 			mark_buffer_async_write(bh);
1727 		} else {
1728 			/*
1729 			 * The buffer may have been set dirty during
1730 			 * attachment to a dirty page.
1731 			 */
1732 			clear_buffer_dirty(bh);
1733 		}
1734 	} while ((bh = bh->b_this_page) != head);
1735 	SetPageError(page);
1736 	BUG_ON(PageWriteback(page));
1737 	mapping_set_error(page->mapping, err);
1738 	set_page_writeback(page);
1739 	do {
1740 		struct buffer_head *next = bh->b_this_page;
1741 		if (buffer_async_write(bh)) {
1742 			clear_buffer_dirty(bh);
1743 			submit_bh(WRITE, bh);
1744 			nr_underway++;
1745 		}
1746 		bh = next;
1747 	} while (bh != head);
1748 	unlock_page(page);
1749 	goto done;
1750 }
1751 
1752 /*
1753  * If a page has any new buffers, zero them out here, and mark them uptodate
1754  * and dirty so they'll be written out (in order to prevent uninitialised
1755  * block data from leaking). And clear the new bit.
1756  */
1757 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1758 {
1759 	unsigned int block_start, block_end;
1760 	struct buffer_head *head, *bh;
1761 
1762 	BUG_ON(!PageLocked(page));
1763 	if (!page_has_buffers(page))
1764 		return;
1765 
1766 	bh = head = page_buffers(page);
1767 	block_start = 0;
1768 	do {
1769 		block_end = block_start + bh->b_size;
1770 
1771 		if (buffer_new(bh)) {
1772 			if (block_end > from && block_start < to) {
1773 				if (!PageUptodate(page)) {
1774 					unsigned start, size;
1775 
1776 					start = max(from, block_start);
1777 					size = min(to, block_end) - start;
1778 
1779 					zero_user(page, start, size);
1780 					set_buffer_uptodate(bh);
1781 				}
1782 
1783 				clear_buffer_new(bh);
1784 				mark_buffer_dirty(bh);
1785 			}
1786 		}
1787 
1788 		block_start = block_end;
1789 		bh = bh->b_this_page;
1790 	} while (bh != head);
1791 }
1792 EXPORT_SYMBOL(page_zero_new_buffers);
1793 
1794 static int __block_prepare_write(struct inode *inode, struct page *page,
1795 		unsigned from, unsigned to, get_block_t *get_block)
1796 {
1797 	unsigned block_start, block_end;
1798 	sector_t block;
1799 	int err = 0;
1800 	unsigned blocksize, bbits;
1801 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1802 
1803 	BUG_ON(!PageLocked(page));
1804 	BUG_ON(from > PAGE_CACHE_SIZE);
1805 	BUG_ON(to > PAGE_CACHE_SIZE);
1806 	BUG_ON(from > to);
1807 
1808 	blocksize = 1 << inode->i_blkbits;
1809 	if (!page_has_buffers(page))
1810 		create_empty_buffers(page, blocksize, 0);
1811 	head = page_buffers(page);
1812 
1813 	bbits = inode->i_blkbits;
1814 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1815 
1816 	for(bh = head, block_start = 0; bh != head || !block_start;
1817 	    block++, block_start=block_end, bh = bh->b_this_page) {
1818 		block_end = block_start + blocksize;
1819 		if (block_end <= from || block_start >= to) {
1820 			if (PageUptodate(page)) {
1821 				if (!buffer_uptodate(bh))
1822 					set_buffer_uptodate(bh);
1823 			}
1824 			continue;
1825 		}
1826 		if (buffer_new(bh))
1827 			clear_buffer_new(bh);
1828 		if (!buffer_mapped(bh)) {
1829 			WARN_ON(bh->b_size != blocksize);
1830 			err = get_block(inode, block, bh, 1);
1831 			if (err)
1832 				break;
1833 			if (buffer_new(bh)) {
1834 				unmap_underlying_metadata(bh->b_bdev,
1835 							bh->b_blocknr);
1836 				if (PageUptodate(page)) {
1837 					clear_buffer_new(bh);
1838 					set_buffer_uptodate(bh);
1839 					mark_buffer_dirty(bh);
1840 					continue;
1841 				}
1842 				if (block_end > to || block_start < from)
1843 					zero_user_segments(page,
1844 						to, block_end,
1845 						block_start, from);
1846 				continue;
1847 			}
1848 		}
1849 		if (PageUptodate(page)) {
1850 			if (!buffer_uptodate(bh))
1851 				set_buffer_uptodate(bh);
1852 			continue;
1853 		}
1854 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1855 		    !buffer_unwritten(bh) &&
1856 		     (block_start < from || block_end > to)) {
1857 			ll_rw_block(READ, 1, &bh);
1858 			*wait_bh++=bh;
1859 		}
1860 	}
1861 	/*
1862 	 * If we issued read requests - let them complete.
1863 	 */
1864 	while(wait_bh > wait) {
1865 		wait_on_buffer(*--wait_bh);
1866 		if (!buffer_uptodate(*wait_bh))
1867 			err = -EIO;
1868 	}
1869 	if (unlikely(err))
1870 		page_zero_new_buffers(page, from, to);
1871 	return err;
1872 }
1873 
1874 static int __block_commit_write(struct inode *inode, struct page *page,
1875 		unsigned from, unsigned to)
1876 {
1877 	unsigned block_start, block_end;
1878 	int partial = 0;
1879 	unsigned blocksize;
1880 	struct buffer_head *bh, *head;
1881 
1882 	blocksize = 1 << inode->i_blkbits;
1883 
1884 	for(bh = head = page_buffers(page), block_start = 0;
1885 	    bh != head || !block_start;
1886 	    block_start=block_end, bh = bh->b_this_page) {
1887 		block_end = block_start + blocksize;
1888 		if (block_end <= from || block_start >= to) {
1889 			if (!buffer_uptodate(bh))
1890 				partial = 1;
1891 		} else {
1892 			set_buffer_uptodate(bh);
1893 			mark_buffer_dirty(bh);
1894 		}
1895 		clear_buffer_new(bh);
1896 	}
1897 
1898 	/*
1899 	 * If this is a partial write which happened to make all buffers
1900 	 * uptodate then we can optimize away a bogus readpage() for
1901 	 * the next read(). Here we 'discover' whether the page went
1902 	 * uptodate as a result of this (potentially partial) write.
1903 	 */
1904 	if (!partial)
1905 		SetPageUptodate(page);
1906 	return 0;
1907 }
1908 
1909 /*
1910  * block_write_begin takes care of the basic task of block allocation and
1911  * bringing partial write blocks uptodate first.
1912  *
1913  * If *pagep is not NULL, then block_write_begin uses the locked page
1914  * at *pagep rather than allocating its own. In this case, the page will
1915  * not be unlocked or deallocated on failure.
1916  */
1917 int block_write_begin(struct file *file, struct address_space *mapping,
1918 			loff_t pos, unsigned len, unsigned flags,
1919 			struct page **pagep, void **fsdata,
1920 			get_block_t *get_block)
1921 {
1922 	struct inode *inode = mapping->host;
1923 	int status = 0;
1924 	struct page *page;
1925 	pgoff_t index;
1926 	unsigned start, end;
1927 	int ownpage = 0;
1928 
1929 	index = pos >> PAGE_CACHE_SHIFT;
1930 	start = pos & (PAGE_CACHE_SIZE - 1);
1931 	end = start + len;
1932 
1933 	page = *pagep;
1934 	if (page == NULL) {
1935 		ownpage = 1;
1936 		page = grab_cache_page_write_begin(mapping, index, flags);
1937 		if (!page) {
1938 			status = -ENOMEM;
1939 			goto out;
1940 		}
1941 		*pagep = page;
1942 	} else
1943 		BUG_ON(!PageLocked(page));
1944 
1945 	status = __block_prepare_write(inode, page, start, end, get_block);
1946 	if (unlikely(status)) {
1947 		ClearPageUptodate(page);
1948 
1949 		if (ownpage) {
1950 			unlock_page(page);
1951 			page_cache_release(page);
1952 			*pagep = NULL;
1953 
1954 			/*
1955 			 * prepare_write() may have instantiated a few blocks
1956 			 * outside i_size.  Trim these off again. Don't need
1957 			 * i_size_read because we hold i_mutex.
1958 			 */
1959 			if (pos + len > inode->i_size)
1960 				vmtruncate(inode, inode->i_size);
1961 		}
1962 	}
1963 
1964 out:
1965 	return status;
1966 }
1967 EXPORT_SYMBOL(block_write_begin);
1968 
1969 int block_write_end(struct file *file, struct address_space *mapping,
1970 			loff_t pos, unsigned len, unsigned copied,
1971 			struct page *page, void *fsdata)
1972 {
1973 	struct inode *inode = mapping->host;
1974 	unsigned start;
1975 
1976 	start = pos & (PAGE_CACHE_SIZE - 1);
1977 
1978 	if (unlikely(copied < len)) {
1979 		/*
1980 		 * The buffers that were written will now be uptodate, so we
1981 		 * don't have to worry about a readpage reading them and
1982 		 * overwriting a partial write. However if we have encountered
1983 		 * a short write and only partially written into a buffer, it
1984 		 * will not be marked uptodate, so a readpage might come in and
1985 		 * destroy our partial write.
1986 		 *
1987 		 * Do the simplest thing, and just treat any short write to a
1988 		 * non uptodate page as a zero-length write, and force the
1989 		 * caller to redo the whole thing.
1990 		 */
1991 		if (!PageUptodate(page))
1992 			copied = 0;
1993 
1994 		page_zero_new_buffers(page, start+copied, start+len);
1995 	}
1996 	flush_dcache_page(page);
1997 
1998 	/* This could be a short (even 0-length) commit */
1999 	__block_commit_write(inode, page, start, start+copied);
2000 
2001 	return copied;
2002 }
2003 EXPORT_SYMBOL(block_write_end);
2004 
2005 int generic_write_end(struct file *file, struct address_space *mapping,
2006 			loff_t pos, unsigned len, unsigned copied,
2007 			struct page *page, void *fsdata)
2008 {
2009 	struct inode *inode = mapping->host;
2010 	int i_size_changed = 0;
2011 
2012 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2013 
2014 	/*
2015 	 * No need to use i_size_read() here, the i_size
2016 	 * cannot change under us because we hold i_mutex.
2017 	 *
2018 	 * But it's important to update i_size while still holding page lock:
2019 	 * page writeout could otherwise come in and zero beyond i_size.
2020 	 */
2021 	if (pos+copied > inode->i_size) {
2022 		i_size_write(inode, pos+copied);
2023 		i_size_changed = 1;
2024 	}
2025 
2026 	unlock_page(page);
2027 	page_cache_release(page);
2028 
2029 	/*
2030 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2031 	 * makes the holding time of page lock longer. Second, it forces lock
2032 	 * ordering of page lock and transaction start for journaling
2033 	 * filesystems.
2034 	 */
2035 	if (i_size_changed)
2036 		mark_inode_dirty(inode);
2037 
2038 	return copied;
2039 }
2040 EXPORT_SYMBOL(generic_write_end);
2041 
2042 /*
2043  * block_is_partially_uptodate checks whether buffers within a page are
2044  * uptodate or not.
2045  *
2046  * Returns true if all buffers which correspond to a file portion
2047  * we want to read are uptodate.
2048  */
2049 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2050 					unsigned long from)
2051 {
2052 	struct inode *inode = page->mapping->host;
2053 	unsigned block_start, block_end, blocksize;
2054 	unsigned to;
2055 	struct buffer_head *bh, *head;
2056 	int ret = 1;
2057 
2058 	if (!page_has_buffers(page))
2059 		return 0;
2060 
2061 	blocksize = 1 << inode->i_blkbits;
2062 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2063 	to = from + to;
2064 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2065 		return 0;
2066 
2067 	head = page_buffers(page);
2068 	bh = head;
2069 	block_start = 0;
2070 	do {
2071 		block_end = block_start + blocksize;
2072 		if (block_end > from && block_start < to) {
2073 			if (!buffer_uptodate(bh)) {
2074 				ret = 0;
2075 				break;
2076 			}
2077 			if (block_end >= to)
2078 				break;
2079 		}
2080 		block_start = block_end;
2081 		bh = bh->b_this_page;
2082 	} while (bh != head);
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(block_is_partially_uptodate);
2087 
2088 /*
2089  * Generic "read page" function for block devices that have the normal
2090  * get_block functionality. This is most of the block device filesystems.
2091  * Reads the page asynchronously --- the unlock_buffer() and
2092  * set/clear_buffer_uptodate() functions propagate buffer state into the
2093  * page struct once IO has completed.
2094  */
2095 int block_read_full_page(struct page *page, get_block_t *get_block)
2096 {
2097 	struct inode *inode = page->mapping->host;
2098 	sector_t iblock, lblock;
2099 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2100 	unsigned int blocksize;
2101 	int nr, i;
2102 	int fully_mapped = 1;
2103 
2104 	BUG_ON(!PageLocked(page));
2105 	blocksize = 1 << inode->i_blkbits;
2106 	if (!page_has_buffers(page))
2107 		create_empty_buffers(page, blocksize, 0);
2108 	head = page_buffers(page);
2109 
2110 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2111 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2112 	bh = head;
2113 	nr = 0;
2114 	i = 0;
2115 
2116 	do {
2117 		if (buffer_uptodate(bh))
2118 			continue;
2119 
2120 		if (!buffer_mapped(bh)) {
2121 			int err = 0;
2122 
2123 			fully_mapped = 0;
2124 			if (iblock < lblock) {
2125 				WARN_ON(bh->b_size != blocksize);
2126 				err = get_block(inode, iblock, bh, 0);
2127 				if (err)
2128 					SetPageError(page);
2129 			}
2130 			if (!buffer_mapped(bh)) {
2131 				zero_user(page, i * blocksize, blocksize);
2132 				if (!err)
2133 					set_buffer_uptodate(bh);
2134 				continue;
2135 			}
2136 			/*
2137 			 * get_block() might have updated the buffer
2138 			 * synchronously
2139 			 */
2140 			if (buffer_uptodate(bh))
2141 				continue;
2142 		}
2143 		arr[nr++] = bh;
2144 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2145 
2146 	if (fully_mapped)
2147 		SetPageMappedToDisk(page);
2148 
2149 	if (!nr) {
2150 		/*
2151 		 * All buffers are uptodate - we can set the page uptodate
2152 		 * as well. But not if get_block() returned an error.
2153 		 */
2154 		if (!PageError(page))
2155 			SetPageUptodate(page);
2156 		unlock_page(page);
2157 		return 0;
2158 	}
2159 
2160 	/* Stage two: lock the buffers */
2161 	for (i = 0; i < nr; i++) {
2162 		bh = arr[i];
2163 		lock_buffer(bh);
2164 		mark_buffer_async_read(bh);
2165 	}
2166 
2167 	/*
2168 	 * Stage 3: start the IO.  Check for uptodateness
2169 	 * inside the buffer lock in case another process reading
2170 	 * the underlying blockdev brought it uptodate (the sct fix).
2171 	 */
2172 	for (i = 0; i < nr; i++) {
2173 		bh = arr[i];
2174 		if (buffer_uptodate(bh))
2175 			end_buffer_async_read(bh, 1);
2176 		else
2177 			submit_bh(READ, bh);
2178 	}
2179 	return 0;
2180 }
2181 
2182 /* utility function for filesystems that need to do work on expanding
2183  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2184  * deal with the hole.
2185  */
2186 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2187 {
2188 	struct address_space *mapping = inode->i_mapping;
2189 	struct page *page;
2190 	void *fsdata;
2191 	unsigned long limit;
2192 	int err;
2193 
2194 	err = -EFBIG;
2195         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2196 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2197 		send_sig(SIGXFSZ, current, 0);
2198 		goto out;
2199 	}
2200 	if (size > inode->i_sb->s_maxbytes)
2201 		goto out;
2202 
2203 	err = pagecache_write_begin(NULL, mapping, size, 0,
2204 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2205 				&page, &fsdata);
2206 	if (err)
2207 		goto out;
2208 
2209 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2210 	BUG_ON(err > 0);
2211 
2212 out:
2213 	return err;
2214 }
2215 
2216 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2217 			    loff_t pos, loff_t *bytes)
2218 {
2219 	struct inode *inode = mapping->host;
2220 	unsigned blocksize = 1 << inode->i_blkbits;
2221 	struct page *page;
2222 	void *fsdata;
2223 	pgoff_t index, curidx;
2224 	loff_t curpos;
2225 	unsigned zerofrom, offset, len;
2226 	int err = 0;
2227 
2228 	index = pos >> PAGE_CACHE_SHIFT;
2229 	offset = pos & ~PAGE_CACHE_MASK;
2230 
2231 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2232 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2233 		if (zerofrom & (blocksize-1)) {
2234 			*bytes |= (blocksize-1);
2235 			(*bytes)++;
2236 		}
2237 		len = PAGE_CACHE_SIZE - zerofrom;
2238 
2239 		err = pagecache_write_begin(file, mapping, curpos, len,
2240 						AOP_FLAG_UNINTERRUPTIBLE,
2241 						&page, &fsdata);
2242 		if (err)
2243 			goto out;
2244 		zero_user(page, zerofrom, len);
2245 		err = pagecache_write_end(file, mapping, curpos, len, len,
2246 						page, fsdata);
2247 		if (err < 0)
2248 			goto out;
2249 		BUG_ON(err != len);
2250 		err = 0;
2251 
2252 		balance_dirty_pages_ratelimited(mapping);
2253 	}
2254 
2255 	/* page covers the boundary, find the boundary offset */
2256 	if (index == curidx) {
2257 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2258 		/* if we will expand the thing last block will be filled */
2259 		if (offset <= zerofrom) {
2260 			goto out;
2261 		}
2262 		if (zerofrom & (blocksize-1)) {
2263 			*bytes |= (blocksize-1);
2264 			(*bytes)++;
2265 		}
2266 		len = offset - zerofrom;
2267 
2268 		err = pagecache_write_begin(file, mapping, curpos, len,
2269 						AOP_FLAG_UNINTERRUPTIBLE,
2270 						&page, &fsdata);
2271 		if (err)
2272 			goto out;
2273 		zero_user(page, zerofrom, len);
2274 		err = pagecache_write_end(file, mapping, curpos, len, len,
2275 						page, fsdata);
2276 		if (err < 0)
2277 			goto out;
2278 		BUG_ON(err != len);
2279 		err = 0;
2280 	}
2281 out:
2282 	return err;
2283 }
2284 
2285 /*
2286  * For moronic filesystems that do not allow holes in file.
2287  * We may have to extend the file.
2288  */
2289 int cont_write_begin(struct file *file, struct address_space *mapping,
2290 			loff_t pos, unsigned len, unsigned flags,
2291 			struct page **pagep, void **fsdata,
2292 			get_block_t *get_block, loff_t *bytes)
2293 {
2294 	struct inode *inode = mapping->host;
2295 	unsigned blocksize = 1 << inode->i_blkbits;
2296 	unsigned zerofrom;
2297 	int err;
2298 
2299 	err = cont_expand_zero(file, mapping, pos, bytes);
2300 	if (err)
2301 		goto out;
2302 
2303 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2304 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2305 		*bytes |= (blocksize-1);
2306 		(*bytes)++;
2307 	}
2308 
2309 	*pagep = NULL;
2310 	err = block_write_begin(file, mapping, pos, len,
2311 				flags, pagep, fsdata, get_block);
2312 out:
2313 	return err;
2314 }
2315 
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317 			get_block_t *get_block)
2318 {
2319 	struct inode *inode = page->mapping->host;
2320 	int err = __block_prepare_write(inode, page, from, to, get_block);
2321 	if (err)
2322 		ClearPageUptodate(page);
2323 	return err;
2324 }
2325 
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2327 {
2328 	struct inode *inode = page->mapping->host;
2329 	__block_commit_write(inode,page,from,to);
2330 	return 0;
2331 }
2332 
2333 /*
2334  * block_page_mkwrite() is not allowed to change the file size as it gets
2335  * called from a page fault handler when a page is first dirtied. Hence we must
2336  * be careful to check for EOF conditions here. We set the page up correctly
2337  * for a written page which means we get ENOSPC checking when writing into
2338  * holes and correct delalloc and unwritten extent mapping on filesystems that
2339  * support these features.
2340  *
2341  * We are not allowed to take the i_mutex here so we have to play games to
2342  * protect against truncate races as the page could now be beyond EOF.  Because
2343  * vmtruncate() writes the inode size before removing pages, once we have the
2344  * page lock we can determine safely if the page is beyond EOF. If it is not
2345  * beyond EOF, then the page is guaranteed safe against truncation until we
2346  * unlock the page.
2347  */
2348 int
2349 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2350 		   get_block_t get_block)
2351 {
2352 	struct page *page = vmf->page;
2353 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2354 	unsigned long end;
2355 	loff_t size;
2356 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2357 
2358 	lock_page(page);
2359 	size = i_size_read(inode);
2360 	if ((page->mapping != inode->i_mapping) ||
2361 	    (page_offset(page) > size)) {
2362 		/* page got truncated out from underneath us */
2363 		goto out_unlock;
2364 	}
2365 
2366 	/* page is wholly or partially inside EOF */
2367 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2368 		end = size & ~PAGE_CACHE_MASK;
2369 	else
2370 		end = PAGE_CACHE_SIZE;
2371 
2372 	ret = block_prepare_write(page, 0, end, get_block);
2373 	if (!ret)
2374 		ret = block_commit_write(page, 0, end);
2375 
2376 	if (unlikely(ret)) {
2377 		if (ret == -ENOMEM)
2378 			ret = VM_FAULT_OOM;
2379 		else /* -ENOSPC, -EIO, etc */
2380 			ret = VM_FAULT_SIGBUS;
2381 	}
2382 
2383 out_unlock:
2384 	unlock_page(page);
2385 	return ret;
2386 }
2387 
2388 /*
2389  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2390  * immediately, while under the page lock.  So it needs a special end_io
2391  * handler which does not touch the bh after unlocking it.
2392  */
2393 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2394 {
2395 	__end_buffer_read_notouch(bh, uptodate);
2396 }
2397 
2398 /*
2399  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2400  * the page (converting it to circular linked list and taking care of page
2401  * dirty races).
2402  */
2403 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2404 {
2405 	struct buffer_head *bh;
2406 
2407 	BUG_ON(!PageLocked(page));
2408 
2409 	spin_lock(&page->mapping->private_lock);
2410 	bh = head;
2411 	do {
2412 		if (PageDirty(page))
2413 			set_buffer_dirty(bh);
2414 		if (!bh->b_this_page)
2415 			bh->b_this_page = head;
2416 		bh = bh->b_this_page;
2417 	} while (bh != head);
2418 	attach_page_buffers(page, head);
2419 	spin_unlock(&page->mapping->private_lock);
2420 }
2421 
2422 /*
2423  * On entry, the page is fully not uptodate.
2424  * On exit the page is fully uptodate in the areas outside (from,to)
2425  */
2426 int nobh_write_begin(struct file *file, struct address_space *mapping,
2427 			loff_t pos, unsigned len, unsigned flags,
2428 			struct page **pagep, void **fsdata,
2429 			get_block_t *get_block)
2430 {
2431 	struct inode *inode = mapping->host;
2432 	const unsigned blkbits = inode->i_blkbits;
2433 	const unsigned blocksize = 1 << blkbits;
2434 	struct buffer_head *head, *bh;
2435 	struct page *page;
2436 	pgoff_t index;
2437 	unsigned from, to;
2438 	unsigned block_in_page;
2439 	unsigned block_start, block_end;
2440 	sector_t block_in_file;
2441 	int nr_reads = 0;
2442 	int ret = 0;
2443 	int is_mapped_to_disk = 1;
2444 
2445 	index = pos >> PAGE_CACHE_SHIFT;
2446 	from = pos & (PAGE_CACHE_SIZE - 1);
2447 	to = from + len;
2448 
2449 	page = grab_cache_page_write_begin(mapping, index, flags);
2450 	if (!page)
2451 		return -ENOMEM;
2452 	*pagep = page;
2453 	*fsdata = NULL;
2454 
2455 	if (page_has_buffers(page)) {
2456 		unlock_page(page);
2457 		page_cache_release(page);
2458 		*pagep = NULL;
2459 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2460 					fsdata, get_block);
2461 	}
2462 
2463 	if (PageMappedToDisk(page))
2464 		return 0;
2465 
2466 	/*
2467 	 * Allocate buffers so that we can keep track of state, and potentially
2468 	 * attach them to the page if an error occurs. In the common case of
2469 	 * no error, they will just be freed again without ever being attached
2470 	 * to the page (which is all OK, because we're under the page lock).
2471 	 *
2472 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2473 	 * than the circular one we're used to.
2474 	 */
2475 	head = alloc_page_buffers(page, blocksize, 0);
2476 	if (!head) {
2477 		ret = -ENOMEM;
2478 		goto out_release;
2479 	}
2480 
2481 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2482 
2483 	/*
2484 	 * We loop across all blocks in the page, whether or not they are
2485 	 * part of the affected region.  This is so we can discover if the
2486 	 * page is fully mapped-to-disk.
2487 	 */
2488 	for (block_start = 0, block_in_page = 0, bh = head;
2489 		  block_start < PAGE_CACHE_SIZE;
2490 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2491 		int create;
2492 
2493 		block_end = block_start + blocksize;
2494 		bh->b_state = 0;
2495 		create = 1;
2496 		if (block_start >= to)
2497 			create = 0;
2498 		ret = get_block(inode, block_in_file + block_in_page,
2499 					bh, create);
2500 		if (ret)
2501 			goto failed;
2502 		if (!buffer_mapped(bh))
2503 			is_mapped_to_disk = 0;
2504 		if (buffer_new(bh))
2505 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2506 		if (PageUptodate(page)) {
2507 			set_buffer_uptodate(bh);
2508 			continue;
2509 		}
2510 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2511 			zero_user_segments(page, block_start, from,
2512 							to, block_end);
2513 			continue;
2514 		}
2515 		if (buffer_uptodate(bh))
2516 			continue;	/* reiserfs does this */
2517 		if (block_start < from || block_end > to) {
2518 			lock_buffer(bh);
2519 			bh->b_end_io = end_buffer_read_nobh;
2520 			submit_bh(READ, bh);
2521 			nr_reads++;
2522 		}
2523 	}
2524 
2525 	if (nr_reads) {
2526 		/*
2527 		 * The page is locked, so these buffers are protected from
2528 		 * any VM or truncate activity.  Hence we don't need to care
2529 		 * for the buffer_head refcounts.
2530 		 */
2531 		for (bh = head; bh; bh = bh->b_this_page) {
2532 			wait_on_buffer(bh);
2533 			if (!buffer_uptodate(bh))
2534 				ret = -EIO;
2535 		}
2536 		if (ret)
2537 			goto failed;
2538 	}
2539 
2540 	if (is_mapped_to_disk)
2541 		SetPageMappedToDisk(page);
2542 
2543 	*fsdata = head; /* to be released by nobh_write_end */
2544 
2545 	return 0;
2546 
2547 failed:
2548 	BUG_ON(!ret);
2549 	/*
2550 	 * Error recovery is a bit difficult. We need to zero out blocks that
2551 	 * were newly allocated, and dirty them to ensure they get written out.
2552 	 * Buffers need to be attached to the page at this point, otherwise
2553 	 * the handling of potential IO errors during writeout would be hard
2554 	 * (could try doing synchronous writeout, but what if that fails too?)
2555 	 */
2556 	attach_nobh_buffers(page, head);
2557 	page_zero_new_buffers(page, from, to);
2558 
2559 out_release:
2560 	unlock_page(page);
2561 	page_cache_release(page);
2562 	*pagep = NULL;
2563 
2564 	if (pos + len > inode->i_size)
2565 		vmtruncate(inode, inode->i_size);
2566 
2567 	return ret;
2568 }
2569 EXPORT_SYMBOL(nobh_write_begin);
2570 
2571 int nobh_write_end(struct file *file, struct address_space *mapping,
2572 			loff_t pos, unsigned len, unsigned copied,
2573 			struct page *page, void *fsdata)
2574 {
2575 	struct inode *inode = page->mapping->host;
2576 	struct buffer_head *head = fsdata;
2577 	struct buffer_head *bh;
2578 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2579 
2580 	if (unlikely(copied < len) && head)
2581 		attach_nobh_buffers(page, head);
2582 	if (page_has_buffers(page))
2583 		return generic_write_end(file, mapping, pos, len,
2584 					copied, page, fsdata);
2585 
2586 	SetPageUptodate(page);
2587 	set_page_dirty(page);
2588 	if (pos+copied > inode->i_size) {
2589 		i_size_write(inode, pos+copied);
2590 		mark_inode_dirty(inode);
2591 	}
2592 
2593 	unlock_page(page);
2594 	page_cache_release(page);
2595 
2596 	while (head) {
2597 		bh = head;
2598 		head = head->b_this_page;
2599 		free_buffer_head(bh);
2600 	}
2601 
2602 	return copied;
2603 }
2604 EXPORT_SYMBOL(nobh_write_end);
2605 
2606 /*
2607  * nobh_writepage() - based on block_full_write_page() except
2608  * that it tries to operate without attaching bufferheads to
2609  * the page.
2610  */
2611 int nobh_writepage(struct page *page, get_block_t *get_block,
2612 			struct writeback_control *wbc)
2613 {
2614 	struct inode * const inode = page->mapping->host;
2615 	loff_t i_size = i_size_read(inode);
2616 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2617 	unsigned offset;
2618 	int ret;
2619 
2620 	/* Is the page fully inside i_size? */
2621 	if (page->index < end_index)
2622 		goto out;
2623 
2624 	/* Is the page fully outside i_size? (truncate in progress) */
2625 	offset = i_size & (PAGE_CACHE_SIZE-1);
2626 	if (page->index >= end_index+1 || !offset) {
2627 		/*
2628 		 * The page may have dirty, unmapped buffers.  For example,
2629 		 * they may have been added in ext3_writepage().  Make them
2630 		 * freeable here, so the page does not leak.
2631 		 */
2632 #if 0
2633 		/* Not really sure about this  - do we need this ? */
2634 		if (page->mapping->a_ops->invalidatepage)
2635 			page->mapping->a_ops->invalidatepage(page, offset);
2636 #endif
2637 		unlock_page(page);
2638 		return 0; /* don't care */
2639 	}
2640 
2641 	/*
2642 	 * The page straddles i_size.  It must be zeroed out on each and every
2643 	 * writepage invocation because it may be mmapped.  "A file is mapped
2644 	 * in multiples of the page size.  For a file that is not a multiple of
2645 	 * the  page size, the remaining memory is zeroed when mapped, and
2646 	 * writes to that region are not written out to the file."
2647 	 */
2648 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2649 out:
2650 	ret = mpage_writepage(page, get_block, wbc);
2651 	if (ret == -EAGAIN)
2652 		ret = __block_write_full_page(inode, page, get_block, wbc);
2653 	return ret;
2654 }
2655 EXPORT_SYMBOL(nobh_writepage);
2656 
2657 int nobh_truncate_page(struct address_space *mapping,
2658 			loff_t from, get_block_t *get_block)
2659 {
2660 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2661 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2662 	unsigned blocksize;
2663 	sector_t iblock;
2664 	unsigned length, pos;
2665 	struct inode *inode = mapping->host;
2666 	struct page *page;
2667 	struct buffer_head map_bh;
2668 	int err;
2669 
2670 	blocksize = 1 << inode->i_blkbits;
2671 	length = offset & (blocksize - 1);
2672 
2673 	/* Block boundary? Nothing to do */
2674 	if (!length)
2675 		return 0;
2676 
2677 	length = blocksize - length;
2678 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2679 
2680 	page = grab_cache_page(mapping, index);
2681 	err = -ENOMEM;
2682 	if (!page)
2683 		goto out;
2684 
2685 	if (page_has_buffers(page)) {
2686 has_buffers:
2687 		unlock_page(page);
2688 		page_cache_release(page);
2689 		return block_truncate_page(mapping, from, get_block);
2690 	}
2691 
2692 	/* Find the buffer that contains "offset" */
2693 	pos = blocksize;
2694 	while (offset >= pos) {
2695 		iblock++;
2696 		pos += blocksize;
2697 	}
2698 
2699 	err = get_block(inode, iblock, &map_bh, 0);
2700 	if (err)
2701 		goto unlock;
2702 	/* unmapped? It's a hole - nothing to do */
2703 	if (!buffer_mapped(&map_bh))
2704 		goto unlock;
2705 
2706 	/* Ok, it's mapped. Make sure it's up-to-date */
2707 	if (!PageUptodate(page)) {
2708 		err = mapping->a_ops->readpage(NULL, page);
2709 		if (err) {
2710 			page_cache_release(page);
2711 			goto out;
2712 		}
2713 		lock_page(page);
2714 		if (!PageUptodate(page)) {
2715 			err = -EIO;
2716 			goto unlock;
2717 		}
2718 		if (page_has_buffers(page))
2719 			goto has_buffers;
2720 	}
2721 	zero_user(page, offset, length);
2722 	set_page_dirty(page);
2723 	err = 0;
2724 
2725 unlock:
2726 	unlock_page(page);
2727 	page_cache_release(page);
2728 out:
2729 	return err;
2730 }
2731 EXPORT_SYMBOL(nobh_truncate_page);
2732 
2733 int block_truncate_page(struct address_space *mapping,
2734 			loff_t from, get_block_t *get_block)
2735 {
2736 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2737 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2738 	unsigned blocksize;
2739 	sector_t iblock;
2740 	unsigned length, pos;
2741 	struct inode *inode = mapping->host;
2742 	struct page *page;
2743 	struct buffer_head *bh;
2744 	int err;
2745 
2746 	blocksize = 1 << inode->i_blkbits;
2747 	length = offset & (blocksize - 1);
2748 
2749 	/* Block boundary? Nothing to do */
2750 	if (!length)
2751 		return 0;
2752 
2753 	length = blocksize - length;
2754 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2755 
2756 	page = grab_cache_page(mapping, index);
2757 	err = -ENOMEM;
2758 	if (!page)
2759 		goto out;
2760 
2761 	if (!page_has_buffers(page))
2762 		create_empty_buffers(page, blocksize, 0);
2763 
2764 	/* Find the buffer that contains "offset" */
2765 	bh = page_buffers(page);
2766 	pos = blocksize;
2767 	while (offset >= pos) {
2768 		bh = bh->b_this_page;
2769 		iblock++;
2770 		pos += blocksize;
2771 	}
2772 
2773 	err = 0;
2774 	if (!buffer_mapped(bh)) {
2775 		WARN_ON(bh->b_size != blocksize);
2776 		err = get_block(inode, iblock, bh, 0);
2777 		if (err)
2778 			goto unlock;
2779 		/* unmapped? It's a hole - nothing to do */
2780 		if (!buffer_mapped(bh))
2781 			goto unlock;
2782 	}
2783 
2784 	/* Ok, it's mapped. Make sure it's up-to-date */
2785 	if (PageUptodate(page))
2786 		set_buffer_uptodate(bh);
2787 
2788 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2789 		err = -EIO;
2790 		ll_rw_block(READ, 1, &bh);
2791 		wait_on_buffer(bh);
2792 		/* Uhhuh. Read error. Complain and punt. */
2793 		if (!buffer_uptodate(bh))
2794 			goto unlock;
2795 	}
2796 
2797 	zero_user(page, offset, length);
2798 	mark_buffer_dirty(bh);
2799 	err = 0;
2800 
2801 unlock:
2802 	unlock_page(page);
2803 	page_cache_release(page);
2804 out:
2805 	return err;
2806 }
2807 
2808 /*
2809  * The generic ->writepage function for buffer-backed address_spaces
2810  */
2811 int block_write_full_page(struct page *page, get_block_t *get_block,
2812 			struct writeback_control *wbc)
2813 {
2814 	struct inode * const inode = page->mapping->host;
2815 	loff_t i_size = i_size_read(inode);
2816 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2817 	unsigned offset;
2818 
2819 	/* Is the page fully inside i_size? */
2820 	if (page->index < end_index)
2821 		return __block_write_full_page(inode, page, get_block, wbc);
2822 
2823 	/* Is the page fully outside i_size? (truncate in progress) */
2824 	offset = i_size & (PAGE_CACHE_SIZE-1);
2825 	if (page->index >= end_index+1 || !offset) {
2826 		/*
2827 		 * The page may have dirty, unmapped buffers.  For example,
2828 		 * they may have been added in ext3_writepage().  Make them
2829 		 * freeable here, so the page does not leak.
2830 		 */
2831 		do_invalidatepage(page, 0);
2832 		unlock_page(page);
2833 		return 0; /* don't care */
2834 	}
2835 
2836 	/*
2837 	 * The page straddles i_size.  It must be zeroed out on each and every
2838 	 * writepage invokation because it may be mmapped.  "A file is mapped
2839 	 * in multiples of the page size.  For a file that is not a multiple of
2840 	 * the  page size, the remaining memory is zeroed when mapped, and
2841 	 * writes to that region are not written out to the file."
2842 	 */
2843 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2844 	return __block_write_full_page(inode, page, get_block, wbc);
2845 }
2846 
2847 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2848 			    get_block_t *get_block)
2849 {
2850 	struct buffer_head tmp;
2851 	struct inode *inode = mapping->host;
2852 	tmp.b_state = 0;
2853 	tmp.b_blocknr = 0;
2854 	tmp.b_size = 1 << inode->i_blkbits;
2855 	get_block(inode, block, &tmp, 0);
2856 	return tmp.b_blocknr;
2857 }
2858 
2859 static void end_bio_bh_io_sync(struct bio *bio, int err)
2860 {
2861 	struct buffer_head *bh = bio->bi_private;
2862 
2863 	if (err == -EOPNOTSUPP) {
2864 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2865 		set_bit(BH_Eopnotsupp, &bh->b_state);
2866 	}
2867 
2868 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2869 		set_bit(BH_Quiet, &bh->b_state);
2870 
2871 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2872 	bio_put(bio);
2873 }
2874 
2875 int submit_bh(int rw, struct buffer_head * bh)
2876 {
2877 	struct bio *bio;
2878 	int ret = 0;
2879 
2880 	BUG_ON(!buffer_locked(bh));
2881 	BUG_ON(!buffer_mapped(bh));
2882 	BUG_ON(!bh->b_end_io);
2883 
2884 	/*
2885 	 * Mask in barrier bit for a write (could be either a WRITE or a
2886 	 * WRITE_SYNC
2887 	 */
2888 	if (buffer_ordered(bh) && (rw & WRITE))
2889 		rw |= WRITE_BARRIER;
2890 
2891 	/*
2892 	 * Only clear out a write error when rewriting
2893 	 */
2894 	if (test_set_buffer_req(bh) && (rw & WRITE))
2895 		clear_buffer_write_io_error(bh);
2896 
2897 	/*
2898 	 * from here on down, it's all bio -- do the initial mapping,
2899 	 * submit_bio -> generic_make_request may further map this bio around
2900 	 */
2901 	bio = bio_alloc(GFP_NOIO, 1);
2902 
2903 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2904 	bio->bi_bdev = bh->b_bdev;
2905 	bio->bi_io_vec[0].bv_page = bh->b_page;
2906 	bio->bi_io_vec[0].bv_len = bh->b_size;
2907 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2908 
2909 	bio->bi_vcnt = 1;
2910 	bio->bi_idx = 0;
2911 	bio->bi_size = bh->b_size;
2912 
2913 	bio->bi_end_io = end_bio_bh_io_sync;
2914 	bio->bi_private = bh;
2915 
2916 	bio_get(bio);
2917 	submit_bio(rw, bio);
2918 
2919 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2920 		ret = -EOPNOTSUPP;
2921 
2922 	bio_put(bio);
2923 	return ret;
2924 }
2925 
2926 /**
2927  * ll_rw_block: low-level access to block devices (DEPRECATED)
2928  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2929  * @nr: number of &struct buffer_heads in the array
2930  * @bhs: array of pointers to &struct buffer_head
2931  *
2932  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2933  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2934  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2935  * are sent to disk. The fourth %READA option is described in the documentation
2936  * for generic_make_request() which ll_rw_block() calls.
2937  *
2938  * This function drops any buffer that it cannot get a lock on (with the
2939  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2940  * clean when doing a write request, and any buffer that appears to be
2941  * up-to-date when doing read request.  Further it marks as clean buffers that
2942  * are processed for writing (the buffer cache won't assume that they are
2943  * actually clean until the buffer gets unlocked).
2944  *
2945  * ll_rw_block sets b_end_io to simple completion handler that marks
2946  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2947  * any waiters.
2948  *
2949  * All of the buffers must be for the same device, and must also be a
2950  * multiple of the current approved size for the device.
2951  */
2952 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2953 {
2954 	int i;
2955 
2956 	for (i = 0; i < nr; i++) {
2957 		struct buffer_head *bh = bhs[i];
2958 
2959 		if (rw == SWRITE || rw == SWRITE_SYNC)
2960 			lock_buffer(bh);
2961 		else if (!trylock_buffer(bh))
2962 			continue;
2963 
2964 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
2965 			if (test_clear_buffer_dirty(bh)) {
2966 				bh->b_end_io = end_buffer_write_sync;
2967 				get_bh(bh);
2968 				if (rw == SWRITE_SYNC)
2969 					submit_bh(WRITE_SYNC, bh);
2970 				else
2971 					submit_bh(WRITE, bh);
2972 				continue;
2973 			}
2974 		} else {
2975 			if (!buffer_uptodate(bh)) {
2976 				bh->b_end_io = end_buffer_read_sync;
2977 				get_bh(bh);
2978 				submit_bh(rw, bh);
2979 				continue;
2980 			}
2981 		}
2982 		unlock_buffer(bh);
2983 	}
2984 }
2985 
2986 /*
2987  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2988  * and then start new I/O and then wait upon it.  The caller must have a ref on
2989  * the buffer_head.
2990  */
2991 int sync_dirty_buffer(struct buffer_head *bh)
2992 {
2993 	int ret = 0;
2994 
2995 	WARN_ON(atomic_read(&bh->b_count) < 1);
2996 	lock_buffer(bh);
2997 	if (test_clear_buffer_dirty(bh)) {
2998 		get_bh(bh);
2999 		bh->b_end_io = end_buffer_write_sync;
3000 		ret = submit_bh(WRITE, bh);
3001 		wait_on_buffer(bh);
3002 		if (buffer_eopnotsupp(bh)) {
3003 			clear_buffer_eopnotsupp(bh);
3004 			ret = -EOPNOTSUPP;
3005 		}
3006 		if (!ret && !buffer_uptodate(bh))
3007 			ret = -EIO;
3008 	} else {
3009 		unlock_buffer(bh);
3010 	}
3011 	return ret;
3012 }
3013 
3014 /*
3015  * try_to_free_buffers() checks if all the buffers on this particular page
3016  * are unused, and releases them if so.
3017  *
3018  * Exclusion against try_to_free_buffers may be obtained by either
3019  * locking the page or by holding its mapping's private_lock.
3020  *
3021  * If the page is dirty but all the buffers are clean then we need to
3022  * be sure to mark the page clean as well.  This is because the page
3023  * may be against a block device, and a later reattachment of buffers
3024  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3025  * filesystem data on the same device.
3026  *
3027  * The same applies to regular filesystem pages: if all the buffers are
3028  * clean then we set the page clean and proceed.  To do that, we require
3029  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3030  * private_lock.
3031  *
3032  * try_to_free_buffers() is non-blocking.
3033  */
3034 static inline int buffer_busy(struct buffer_head *bh)
3035 {
3036 	return atomic_read(&bh->b_count) |
3037 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3038 }
3039 
3040 static int
3041 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3042 {
3043 	struct buffer_head *head = page_buffers(page);
3044 	struct buffer_head *bh;
3045 
3046 	bh = head;
3047 	do {
3048 		if (buffer_write_io_error(bh) && page->mapping)
3049 			set_bit(AS_EIO, &page->mapping->flags);
3050 		if (buffer_busy(bh))
3051 			goto failed;
3052 		bh = bh->b_this_page;
3053 	} while (bh != head);
3054 
3055 	do {
3056 		struct buffer_head *next = bh->b_this_page;
3057 
3058 		if (bh->b_assoc_map)
3059 			__remove_assoc_queue(bh);
3060 		bh = next;
3061 	} while (bh != head);
3062 	*buffers_to_free = head;
3063 	__clear_page_buffers(page);
3064 	return 1;
3065 failed:
3066 	return 0;
3067 }
3068 
3069 int try_to_free_buffers(struct page *page)
3070 {
3071 	struct address_space * const mapping = page->mapping;
3072 	struct buffer_head *buffers_to_free = NULL;
3073 	int ret = 0;
3074 
3075 	BUG_ON(!PageLocked(page));
3076 	if (PageWriteback(page))
3077 		return 0;
3078 
3079 	if (mapping == NULL) {		/* can this still happen? */
3080 		ret = drop_buffers(page, &buffers_to_free);
3081 		goto out;
3082 	}
3083 
3084 	spin_lock(&mapping->private_lock);
3085 	ret = drop_buffers(page, &buffers_to_free);
3086 
3087 	/*
3088 	 * If the filesystem writes its buffers by hand (eg ext3)
3089 	 * then we can have clean buffers against a dirty page.  We
3090 	 * clean the page here; otherwise the VM will never notice
3091 	 * that the filesystem did any IO at all.
3092 	 *
3093 	 * Also, during truncate, discard_buffer will have marked all
3094 	 * the page's buffers clean.  We discover that here and clean
3095 	 * the page also.
3096 	 *
3097 	 * private_lock must be held over this entire operation in order
3098 	 * to synchronise against __set_page_dirty_buffers and prevent the
3099 	 * dirty bit from being lost.
3100 	 */
3101 	if (ret)
3102 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3103 	spin_unlock(&mapping->private_lock);
3104 out:
3105 	if (buffers_to_free) {
3106 		struct buffer_head *bh = buffers_to_free;
3107 
3108 		do {
3109 			struct buffer_head *next = bh->b_this_page;
3110 			free_buffer_head(bh);
3111 			bh = next;
3112 		} while (bh != buffers_to_free);
3113 	}
3114 	return ret;
3115 }
3116 EXPORT_SYMBOL(try_to_free_buffers);
3117 
3118 void block_sync_page(struct page *page)
3119 {
3120 	struct address_space *mapping;
3121 
3122 	smp_mb();
3123 	mapping = page_mapping(page);
3124 	if (mapping)
3125 		blk_run_backing_dev(mapping->backing_dev_info, page);
3126 }
3127 
3128 /*
3129  * There are no bdflush tunables left.  But distributions are
3130  * still running obsolete flush daemons, so we terminate them here.
3131  *
3132  * Use of bdflush() is deprecated and will be removed in a future kernel.
3133  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3134  */
3135 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3136 {
3137 	static int msg_count;
3138 
3139 	if (!capable(CAP_SYS_ADMIN))
3140 		return -EPERM;
3141 
3142 	if (msg_count < 5) {
3143 		msg_count++;
3144 		printk(KERN_INFO
3145 			"warning: process `%s' used the obsolete bdflush"
3146 			" system call\n", current->comm);
3147 		printk(KERN_INFO "Fix your initscripts?\n");
3148 	}
3149 
3150 	if (func == 1)
3151 		do_exit(0);
3152 	return 0;
3153 }
3154 
3155 /*
3156  * Buffer-head allocation
3157  */
3158 static struct kmem_cache *bh_cachep;
3159 
3160 /*
3161  * Once the number of bh's in the machine exceeds this level, we start
3162  * stripping them in writeback.
3163  */
3164 static int max_buffer_heads;
3165 
3166 int buffer_heads_over_limit;
3167 
3168 struct bh_accounting {
3169 	int nr;			/* Number of live bh's */
3170 	int ratelimit;		/* Limit cacheline bouncing */
3171 };
3172 
3173 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3174 
3175 static void recalc_bh_state(void)
3176 {
3177 	int i;
3178 	int tot = 0;
3179 
3180 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3181 		return;
3182 	__get_cpu_var(bh_accounting).ratelimit = 0;
3183 	for_each_online_cpu(i)
3184 		tot += per_cpu(bh_accounting, i).nr;
3185 	buffer_heads_over_limit = (tot > max_buffer_heads);
3186 }
3187 
3188 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3189 {
3190 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3191 	if (ret) {
3192 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3193 		get_cpu_var(bh_accounting).nr++;
3194 		recalc_bh_state();
3195 		put_cpu_var(bh_accounting);
3196 	}
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL(alloc_buffer_head);
3200 
3201 void free_buffer_head(struct buffer_head *bh)
3202 {
3203 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3204 	kmem_cache_free(bh_cachep, bh);
3205 	get_cpu_var(bh_accounting).nr--;
3206 	recalc_bh_state();
3207 	put_cpu_var(bh_accounting);
3208 }
3209 EXPORT_SYMBOL(free_buffer_head);
3210 
3211 static void buffer_exit_cpu(int cpu)
3212 {
3213 	int i;
3214 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3215 
3216 	for (i = 0; i < BH_LRU_SIZE; i++) {
3217 		brelse(b->bhs[i]);
3218 		b->bhs[i] = NULL;
3219 	}
3220 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3221 	per_cpu(bh_accounting, cpu).nr = 0;
3222 	put_cpu_var(bh_accounting);
3223 }
3224 
3225 static int buffer_cpu_notify(struct notifier_block *self,
3226 			      unsigned long action, void *hcpu)
3227 {
3228 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3229 		buffer_exit_cpu((unsigned long)hcpu);
3230 	return NOTIFY_OK;
3231 }
3232 
3233 /**
3234  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3235  * @bh: struct buffer_head
3236  *
3237  * Return true if the buffer is up-to-date and false,
3238  * with the buffer locked, if not.
3239  */
3240 int bh_uptodate_or_lock(struct buffer_head *bh)
3241 {
3242 	if (!buffer_uptodate(bh)) {
3243 		lock_buffer(bh);
3244 		if (!buffer_uptodate(bh))
3245 			return 0;
3246 		unlock_buffer(bh);
3247 	}
3248 	return 1;
3249 }
3250 EXPORT_SYMBOL(bh_uptodate_or_lock);
3251 
3252 /**
3253  * bh_submit_read - Submit a locked buffer for reading
3254  * @bh: struct buffer_head
3255  *
3256  * Returns zero on success and -EIO on error.
3257  */
3258 int bh_submit_read(struct buffer_head *bh)
3259 {
3260 	BUG_ON(!buffer_locked(bh));
3261 
3262 	if (buffer_uptodate(bh)) {
3263 		unlock_buffer(bh);
3264 		return 0;
3265 	}
3266 
3267 	get_bh(bh);
3268 	bh->b_end_io = end_buffer_read_sync;
3269 	submit_bh(READ, bh);
3270 	wait_on_buffer(bh);
3271 	if (buffer_uptodate(bh))
3272 		return 0;
3273 	return -EIO;
3274 }
3275 EXPORT_SYMBOL(bh_submit_read);
3276 
3277 static void
3278 init_buffer_head(void *data)
3279 {
3280 	struct buffer_head *bh = data;
3281 
3282 	memset(bh, 0, sizeof(*bh));
3283 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3284 }
3285 
3286 void __init buffer_init(void)
3287 {
3288 	int nrpages;
3289 
3290 	bh_cachep = kmem_cache_create("buffer_head",
3291 			sizeof(struct buffer_head), 0,
3292 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3293 				SLAB_MEM_SPREAD),
3294 				init_buffer_head);
3295 
3296 	/*
3297 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3298 	 */
3299 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3300 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3301 	hotcpu_notifier(buffer_cpu_notify, 0);
3302 }
3303 
3304 EXPORT_SYMBOL(__bforget);
3305 EXPORT_SYMBOL(__brelse);
3306 EXPORT_SYMBOL(__wait_on_buffer);
3307 EXPORT_SYMBOL(block_commit_write);
3308 EXPORT_SYMBOL(block_prepare_write);
3309 EXPORT_SYMBOL(block_page_mkwrite);
3310 EXPORT_SYMBOL(block_read_full_page);
3311 EXPORT_SYMBOL(block_sync_page);
3312 EXPORT_SYMBOL(block_truncate_page);
3313 EXPORT_SYMBOL(block_write_full_page);
3314 EXPORT_SYMBOL(cont_write_begin);
3315 EXPORT_SYMBOL(end_buffer_read_sync);
3316 EXPORT_SYMBOL(end_buffer_write_sync);
3317 EXPORT_SYMBOL(file_fsync);
3318 EXPORT_SYMBOL(fsync_bdev);
3319 EXPORT_SYMBOL(generic_block_bmap);
3320 EXPORT_SYMBOL(generic_cont_expand_simple);
3321 EXPORT_SYMBOL(init_buffer);
3322 EXPORT_SYMBOL(invalidate_bdev);
3323 EXPORT_SYMBOL(ll_rw_block);
3324 EXPORT_SYMBOL(mark_buffer_dirty);
3325 EXPORT_SYMBOL(submit_bh);
3326 EXPORT_SYMBOL(sync_dirty_buffer);
3327 EXPORT_SYMBOL(unlock_buffer);
3328