xref: /openbmc/linux/fs/buffer.c (revision b8b6ff01)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 unsigned long bio_flags,
53 			 struct writeback_control *wbc);
54 
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 
57 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 {
59 	bh->b_end_io = handler;
60 	bh->b_private = private;
61 }
62 EXPORT_SYMBOL(init_buffer);
63 
64 inline void touch_buffer(struct buffer_head *bh)
65 {
66 	trace_block_touch_buffer(bh);
67 	mark_page_accessed(bh->b_page);
68 }
69 EXPORT_SYMBOL(touch_buffer);
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_atomic();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91 				     bool *dirty, bool *writeback)
92 {
93 	struct buffer_head *head, *bh;
94 	*dirty = false;
95 	*writeback = false;
96 
97 	BUG_ON(!PageLocked(page));
98 
99 	if (!page_has_buffers(page))
100 		return;
101 
102 	if (PageWriteback(page))
103 		*writeback = true;
104 
105 	head = page_buffers(page);
106 	bh = head;
107 	do {
108 		if (buffer_locked(bh))
109 			*writeback = true;
110 
111 		if (buffer_dirty(bh))
112 			*dirty = true;
113 
114 		bh = bh->b_this_page;
115 	} while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118 
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129 
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 	ClearPagePrivate(page);
134 	set_page_private(page, 0);
135 	put_page(page);
136 }
137 
138 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 {
140 	if (!test_bit(BH_Quiet, &bh->b_state))
141 		printk_ratelimited(KERN_ERR
142 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
143 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
144 }
145 
146 /*
147  * End-of-IO handler helper function which does not touch the bh after
148  * unlocking it.
149  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150  * a race there is benign: unlock_buffer() only use the bh's address for
151  * hashing after unlocking the buffer, so it doesn't actually touch the bh
152  * itself.
153  */
154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 {
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		/* This happens, due to failed read-ahead attempts. */
160 		clear_buffer_uptodate(bh);
161 	}
162 	unlock_buffer(bh);
163 }
164 
165 /*
166  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
167  * unlock the buffer. This is what ll_rw_block uses too.
168  */
169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 {
171 	__end_buffer_read_notouch(bh, uptodate);
172 	put_bh(bh);
173 }
174 EXPORT_SYMBOL(end_buffer_read_sync);
175 
176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 {
178 	if (uptodate) {
179 		set_buffer_uptodate(bh);
180 	} else {
181 		buffer_io_error(bh, ", lost sync page write");
182 		set_buffer_write_io_error(bh);
183 		clear_buffer_uptodate(bh);
184 	}
185 	unlock_buffer(bh);
186 	put_bh(bh);
187 }
188 EXPORT_SYMBOL(end_buffer_write_sync);
189 
190 /*
191  * Various filesystems appear to want __find_get_block to be non-blocking.
192  * But it's the page lock which protects the buffers.  To get around this,
193  * we get exclusion from try_to_free_buffers with the blockdev mapping's
194  * private_lock.
195  *
196  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197  * may be quite high.  This code could TryLock the page, and if that
198  * succeeds, there is no need to take private_lock. (But if
199  * private_lock is contended then so is mapping->tree_lock).
200  */
201 static struct buffer_head *
202 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 {
204 	struct inode *bd_inode = bdev->bd_inode;
205 	struct address_space *bd_mapping = bd_inode->i_mapping;
206 	struct buffer_head *ret = NULL;
207 	pgoff_t index;
208 	struct buffer_head *bh;
209 	struct buffer_head *head;
210 	struct page *page;
211 	int all_mapped = 1;
212 
213 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 	if (!page)
216 		goto out;
217 
218 	spin_lock(&bd_mapping->private_lock);
219 	if (!page_has_buffers(page))
220 		goto out_unlock;
221 	head = page_buffers(page);
222 	bh = head;
223 	do {
224 		if (!buffer_mapped(bh))
225 			all_mapped = 0;
226 		else if (bh->b_blocknr == block) {
227 			ret = bh;
228 			get_bh(bh);
229 			goto out_unlock;
230 		}
231 		bh = bh->b_this_page;
232 	} while (bh != head);
233 
234 	/* we might be here because some of the buffers on this page are
235 	 * not mapped.  This is due to various races between
236 	 * file io on the block device and getblk.  It gets dealt with
237 	 * elsewhere, don't buffer_error if we had some unmapped buffers
238 	 */
239 	if (all_mapped) {
240 		printk("__find_get_block_slow() failed. "
241 			"block=%llu, b_blocknr=%llu\n",
242 			(unsigned long long)block,
243 			(unsigned long long)bh->b_blocknr);
244 		printk("b_state=0x%08lx, b_size=%zu\n",
245 			bh->b_state, bh->b_size);
246 		printk("device %pg blocksize: %d\n", bdev,
247 			1 << bd_inode->i_blkbits);
248 	}
249 out_unlock:
250 	spin_unlock(&bd_mapping->private_lock);
251 	put_page(page);
252 out:
253 	return ret;
254 }
255 
256 /*
257  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258  */
259 static void free_more_memory(void)
260 {
261 	struct zoneref *z;
262 	int nid;
263 
264 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
265 	yield();
266 
267 	for_each_online_node(nid) {
268 
269 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
270 						gfp_zone(GFP_NOFS), NULL);
271 		if (z->zone)
272 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
273 						GFP_NOFS, NULL);
274 	}
275 }
276 
277 /*
278  * I/O completion handler for block_read_full_page() - pages
279  * which come unlocked at the end of I/O.
280  */
281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 {
283 	unsigned long flags;
284 	struct buffer_head *first;
285 	struct buffer_head *tmp;
286 	struct page *page;
287 	int page_uptodate = 1;
288 
289 	BUG_ON(!buffer_async_read(bh));
290 
291 	page = bh->b_page;
292 	if (uptodate) {
293 		set_buffer_uptodate(bh);
294 	} else {
295 		clear_buffer_uptodate(bh);
296 		buffer_io_error(bh, ", async page read");
297 		SetPageError(page);
298 	}
299 
300 	/*
301 	 * Be _very_ careful from here on. Bad things can happen if
302 	 * two buffer heads end IO at almost the same time and both
303 	 * decide that the page is now completely done.
304 	 */
305 	first = page_buffers(page);
306 	local_irq_save(flags);
307 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
308 	clear_buffer_async_read(bh);
309 	unlock_buffer(bh);
310 	tmp = bh;
311 	do {
312 		if (!buffer_uptodate(tmp))
313 			page_uptodate = 0;
314 		if (buffer_async_read(tmp)) {
315 			BUG_ON(!buffer_locked(tmp));
316 			goto still_busy;
317 		}
318 		tmp = tmp->b_this_page;
319 	} while (tmp != bh);
320 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
321 	local_irq_restore(flags);
322 
323 	/*
324 	 * If none of the buffers had errors and they are all
325 	 * uptodate then we can set the page uptodate.
326 	 */
327 	if (page_uptodate && !PageError(page))
328 		SetPageUptodate(page);
329 	unlock_page(page);
330 	return;
331 
332 still_busy:
333 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
334 	local_irq_restore(flags);
335 	return;
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mapping_set_error(page->mapping, -EIO);
357 		set_buffer_write_io_error(bh);
358 		clear_buffer_uptodate(bh);
359 		SetPageError(page);
360 	}
361 
362 	first = page_buffers(page);
363 	local_irq_save(flags);
364 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
365 
366 	clear_buffer_async_write(bh);
367 	unlock_buffer(bh);
368 	tmp = bh->b_this_page;
369 	while (tmp != bh) {
370 		if (buffer_async_write(tmp)) {
371 			BUG_ON(!buffer_locked(tmp));
372 			goto still_busy;
373 		}
374 		tmp = tmp->b_this_page;
375 	}
376 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
377 	local_irq_restore(flags);
378 	end_page_writeback(page);
379 	return;
380 
381 still_busy:
382 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
383 	local_irq_restore(flags);
384 	return;
385 }
386 EXPORT_SYMBOL(end_buffer_async_write);
387 
388 /*
389  * If a page's buffers are under async readin (end_buffer_async_read
390  * completion) then there is a possibility that another thread of
391  * control could lock one of the buffers after it has completed
392  * but while some of the other buffers have not completed.  This
393  * locked buffer would confuse end_buffer_async_read() into not unlocking
394  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
395  * that this buffer is not under async I/O.
396  *
397  * The page comes unlocked when it has no locked buffer_async buffers
398  * left.
399  *
400  * PageLocked prevents anyone starting new async I/O reads any of
401  * the buffers.
402  *
403  * PageWriteback is used to prevent simultaneous writeout of the same
404  * page.
405  *
406  * PageLocked prevents anyone from starting writeback of a page which is
407  * under read I/O (PageWriteback is only ever set against a locked page).
408  */
409 static void mark_buffer_async_read(struct buffer_head *bh)
410 {
411 	bh->b_end_io = end_buffer_async_read;
412 	set_buffer_async_read(bh);
413 }
414 
415 static void mark_buffer_async_write_endio(struct buffer_head *bh,
416 					  bh_end_io_t *handler)
417 {
418 	bh->b_end_io = handler;
419 	set_buffer_async_write(bh);
420 }
421 
422 void mark_buffer_async_write(struct buffer_head *bh)
423 {
424 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
425 }
426 EXPORT_SYMBOL(mark_buffer_async_write);
427 
428 
429 /*
430  * fs/buffer.c contains helper functions for buffer-backed address space's
431  * fsync functions.  A common requirement for buffer-based filesystems is
432  * that certain data from the backing blockdev needs to be written out for
433  * a successful fsync().  For example, ext2 indirect blocks need to be
434  * written back and waited upon before fsync() returns.
435  *
436  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
437  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
438  * management of a list of dependent buffers at ->i_mapping->private_list.
439  *
440  * Locking is a little subtle: try_to_free_buffers() will remove buffers
441  * from their controlling inode's queue when they are being freed.  But
442  * try_to_free_buffers() will be operating against the *blockdev* mapping
443  * at the time, not against the S_ISREG file which depends on those buffers.
444  * So the locking for private_list is via the private_lock in the address_space
445  * which backs the buffers.  Which is different from the address_space
446  * against which the buffers are listed.  So for a particular address_space,
447  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
448  * mapping->private_list will always be protected by the backing blockdev's
449  * ->private_lock.
450  *
451  * Which introduces a requirement: all buffers on an address_space's
452  * ->private_list must be from the same address_space: the blockdev's.
453  *
454  * address_spaces which do not place buffers at ->private_list via these
455  * utility functions are free to use private_lock and private_list for
456  * whatever they want.  The only requirement is that list_empty(private_list)
457  * be true at clear_inode() time.
458  *
459  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
460  * filesystems should do that.  invalidate_inode_buffers() should just go
461  * BUG_ON(!list_empty).
462  *
463  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
464  * take an address_space, not an inode.  And it should be called
465  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466  * queued up.
467  *
468  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
469  * list if it is already on a list.  Because if the buffer is on a list,
470  * it *must* already be on the right one.  If not, the filesystem is being
471  * silly.  This will save a ton of locking.  But first we have to ensure
472  * that buffers are taken *off* the old inode's list when they are freed
473  * (presumably in truncate).  That requires careful auditing of all
474  * filesystems (do it inside bforget()).  It could also be done by bringing
475  * b_inode back.
476  */
477 
478 /*
479  * The buffer's backing address_space's private_lock must be held
480  */
481 static void __remove_assoc_queue(struct buffer_head *bh)
482 {
483 	list_del_init(&bh->b_assoc_buffers);
484 	WARN_ON(!bh->b_assoc_map);
485 	if (buffer_write_io_error(bh))
486 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
487 	bh->b_assoc_map = NULL;
488 }
489 
490 int inode_has_buffers(struct inode *inode)
491 {
492 	return !list_empty(&inode->i_data.private_list);
493 }
494 
495 /*
496  * osync is designed to support O_SYNC io.  It waits synchronously for
497  * all already-submitted IO to complete, but does not queue any new
498  * writes to the disk.
499  *
500  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
501  * you dirty the buffers, and then use osync_inode_buffers to wait for
502  * completion.  Any other dirty buffers which are not yet queued for
503  * write will not be flushed to disk by the osync.
504  */
505 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
506 {
507 	struct buffer_head *bh;
508 	struct list_head *p;
509 	int err = 0;
510 
511 	spin_lock(lock);
512 repeat:
513 	list_for_each_prev(p, list) {
514 		bh = BH_ENTRY(p);
515 		if (buffer_locked(bh)) {
516 			get_bh(bh);
517 			spin_unlock(lock);
518 			wait_on_buffer(bh);
519 			if (!buffer_uptodate(bh))
520 				err = -EIO;
521 			brelse(bh);
522 			spin_lock(lock);
523 			goto repeat;
524 		}
525 	}
526 	spin_unlock(lock);
527 	return err;
528 }
529 
530 static void do_thaw_one(struct super_block *sb, void *unused)
531 {
532 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
533 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
534 }
535 
536 static void do_thaw_all(struct work_struct *work)
537 {
538 	iterate_supers(do_thaw_one, NULL);
539 	kfree(work);
540 	printk(KERN_WARNING "Emergency Thaw complete\n");
541 }
542 
543 /**
544  * emergency_thaw_all -- forcibly thaw every frozen filesystem
545  *
546  * Used for emergency unfreeze of all filesystems via SysRq
547  */
548 void emergency_thaw_all(void)
549 {
550 	struct work_struct *work;
551 
552 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 	if (work) {
554 		INIT_WORK(work, do_thaw_all);
555 		schedule_work(work);
556 	}
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->private_lock,
578 					&mapping->private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /*
583  * Called when we've recently written block `bblock', and it is known that
584  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
585  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
586  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
587  */
588 void write_boundary_block(struct block_device *bdev,
589 			sector_t bblock, unsigned blocksize)
590 {
591 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592 	if (bh) {
593 		if (buffer_dirty(bh))
594 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
595 		put_bh(bh);
596 	}
597 }
598 
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 {
601 	struct address_space *mapping = inode->i_mapping;
602 	struct address_space *buffer_mapping = bh->b_page->mapping;
603 
604 	mark_buffer_dirty(bh);
605 	if (!mapping->private_data) {
606 		mapping->private_data = buffer_mapping;
607 	} else {
608 		BUG_ON(mapping->private_data != buffer_mapping);
609 	}
610 	if (!bh->b_assoc_map) {
611 		spin_lock(&buffer_mapping->private_lock);
612 		list_move_tail(&bh->b_assoc_buffers,
613 				&mapping->private_list);
614 		bh->b_assoc_map = mapping;
615 		spin_unlock(&buffer_mapping->private_lock);
616 	}
617 }
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
619 
620 /*
621  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622  * dirty.
623  *
624  * If warn is true, then emit a warning if the page is not uptodate and has
625  * not been truncated.
626  *
627  * The caller must hold lock_page_memcg().
628  */
629 static void __set_page_dirty(struct page *page, struct address_space *mapping,
630 			     int warn)
631 {
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&mapping->tree_lock, flags);
635 	if (page->mapping) {	/* Race with truncate? */
636 		WARN_ON_ONCE(warn && !PageUptodate(page));
637 		account_page_dirtied(page, mapping);
638 		radix_tree_tag_set(&mapping->page_tree,
639 				page_index(page), PAGECACHE_TAG_DIRTY);
640 	}
641 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 }
643 
644 /*
645  * Add a page to the dirty page list.
646  *
647  * It is a sad fact of life that this function is called from several places
648  * deeply under spinlocking.  It may not sleep.
649  *
650  * If the page has buffers, the uptodate buffers are set dirty, to preserve
651  * dirty-state coherency between the page and the buffers.  It the page does
652  * not have buffers then when they are later attached they will all be set
653  * dirty.
654  *
655  * The buffers are dirtied before the page is dirtied.  There's a small race
656  * window in which a writepage caller may see the page cleanness but not the
657  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
658  * before the buffers, a concurrent writepage caller could clear the page dirty
659  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
660  * page on the dirty page list.
661  *
662  * We use private_lock to lock against try_to_free_buffers while using the
663  * page's buffer list.  Also use this to protect against clean buffers being
664  * added to the page after it was set dirty.
665  *
666  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
667  * address_space though.
668  */
669 int __set_page_dirty_buffers(struct page *page)
670 {
671 	int newly_dirty;
672 	struct address_space *mapping = page_mapping(page);
673 
674 	if (unlikely(!mapping))
675 		return !TestSetPageDirty(page);
676 
677 	spin_lock(&mapping->private_lock);
678 	if (page_has_buffers(page)) {
679 		struct buffer_head *head = page_buffers(page);
680 		struct buffer_head *bh = head;
681 
682 		do {
683 			set_buffer_dirty(bh);
684 			bh = bh->b_this_page;
685 		} while (bh != head);
686 	}
687 	/*
688 	 * Lock out page->mem_cgroup migration to keep PageDirty
689 	 * synchronized with per-memcg dirty page counters.
690 	 */
691 	lock_page_memcg(page);
692 	newly_dirty = !TestSetPageDirty(page);
693 	spin_unlock(&mapping->private_lock);
694 
695 	if (newly_dirty)
696 		__set_page_dirty(page, mapping, 1);
697 
698 	unlock_page_memcg(page);
699 
700 	if (newly_dirty)
701 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
702 
703 	return newly_dirty;
704 }
705 EXPORT_SYMBOL(__set_page_dirty_buffers);
706 
707 /*
708  * Write out and wait upon a list of buffers.
709  *
710  * We have conflicting pressures: we want to make sure that all
711  * initially dirty buffers get waited on, but that any subsequently
712  * dirtied buffers don't.  After all, we don't want fsync to last
713  * forever if somebody is actively writing to the file.
714  *
715  * Do this in two main stages: first we copy dirty buffers to a
716  * temporary inode list, queueing the writes as we go.  Then we clean
717  * up, waiting for those writes to complete.
718  *
719  * During this second stage, any subsequent updates to the file may end
720  * up refiling the buffer on the original inode's dirty list again, so
721  * there is a chance we will end up with a buffer queued for write but
722  * not yet completed on that list.  So, as a final cleanup we go through
723  * the osync code to catch these locked, dirty buffers without requeuing
724  * any newly dirty buffers for write.
725  */
726 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728 	struct buffer_head *bh;
729 	struct list_head tmp;
730 	struct address_space *mapping;
731 	int err = 0, err2;
732 	struct blk_plug plug;
733 
734 	INIT_LIST_HEAD(&tmp);
735 	blk_start_plug(&plug);
736 
737 	spin_lock(lock);
738 	while (!list_empty(list)) {
739 		bh = BH_ENTRY(list->next);
740 		mapping = bh->b_assoc_map;
741 		__remove_assoc_queue(bh);
742 		/* Avoid race with mark_buffer_dirty_inode() which does
743 		 * a lockless check and we rely on seeing the dirty bit */
744 		smp_mb();
745 		if (buffer_dirty(bh) || buffer_locked(bh)) {
746 			list_add(&bh->b_assoc_buffers, &tmp);
747 			bh->b_assoc_map = mapping;
748 			if (buffer_dirty(bh)) {
749 				get_bh(bh);
750 				spin_unlock(lock);
751 				/*
752 				 * Ensure any pending I/O completes so that
753 				 * write_dirty_buffer() actually writes the
754 				 * current contents - it is a noop if I/O is
755 				 * still in flight on potentially older
756 				 * contents.
757 				 */
758 				write_dirty_buffer(bh, REQ_SYNC);
759 
760 				/*
761 				 * Kick off IO for the previous mapping. Note
762 				 * that we will not run the very last mapping,
763 				 * wait_on_buffer() will do that for us
764 				 * through sync_buffer().
765 				 */
766 				brelse(bh);
767 				spin_lock(lock);
768 			}
769 		}
770 	}
771 
772 	spin_unlock(lock);
773 	blk_finish_plug(&plug);
774 	spin_lock(lock);
775 
776 	while (!list_empty(&tmp)) {
777 		bh = BH_ENTRY(tmp.prev);
778 		get_bh(bh);
779 		mapping = bh->b_assoc_map;
780 		__remove_assoc_queue(bh);
781 		/* Avoid race with mark_buffer_dirty_inode() which does
782 		 * a lockless check and we rely on seeing the dirty bit */
783 		smp_mb();
784 		if (buffer_dirty(bh)) {
785 			list_add(&bh->b_assoc_buffers,
786 				 &mapping->private_list);
787 			bh->b_assoc_map = mapping;
788 		}
789 		spin_unlock(lock);
790 		wait_on_buffer(bh);
791 		if (!buffer_uptodate(bh))
792 			err = -EIO;
793 		brelse(bh);
794 		spin_lock(lock);
795 	}
796 
797 	spin_unlock(lock);
798 	err2 = osync_buffers_list(lock, list);
799 	if (err)
800 		return err;
801 	else
802 		return err2;
803 }
804 
805 /*
806  * Invalidate any and all dirty buffers on a given inode.  We are
807  * probably unmounting the fs, but that doesn't mean we have already
808  * done a sync().  Just drop the buffers from the inode list.
809  *
810  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
811  * assumes that all the buffers are against the blockdev.  Not true
812  * for reiserfs.
813  */
814 void invalidate_inode_buffers(struct inode *inode)
815 {
816 	if (inode_has_buffers(inode)) {
817 		struct address_space *mapping = &inode->i_data;
818 		struct list_head *list = &mapping->private_list;
819 		struct address_space *buffer_mapping = mapping->private_data;
820 
821 		spin_lock(&buffer_mapping->private_lock);
822 		while (!list_empty(list))
823 			__remove_assoc_queue(BH_ENTRY(list->next));
824 		spin_unlock(&buffer_mapping->private_lock);
825 	}
826 }
827 EXPORT_SYMBOL(invalidate_inode_buffers);
828 
829 /*
830  * Remove any clean buffers from the inode's buffer list.  This is called
831  * when we're trying to free the inode itself.  Those buffers can pin it.
832  *
833  * Returns true if all buffers were removed.
834  */
835 int remove_inode_buffers(struct inode *inode)
836 {
837 	int ret = 1;
838 
839 	if (inode_has_buffers(inode)) {
840 		struct address_space *mapping = &inode->i_data;
841 		struct list_head *list = &mapping->private_list;
842 		struct address_space *buffer_mapping = mapping->private_data;
843 
844 		spin_lock(&buffer_mapping->private_lock);
845 		while (!list_empty(list)) {
846 			struct buffer_head *bh = BH_ENTRY(list->next);
847 			if (buffer_dirty(bh)) {
848 				ret = 0;
849 				break;
850 			}
851 			__remove_assoc_queue(bh);
852 		}
853 		spin_unlock(&buffer_mapping->private_lock);
854 	}
855 	return ret;
856 }
857 
858 /*
859  * Create the appropriate buffers when given a page for data area and
860  * the size of each buffer.. Use the bh->b_this_page linked list to
861  * follow the buffers created.  Return NULL if unable to create more
862  * buffers.
863  *
864  * The retry flag is used to differentiate async IO (paging, swapping)
865  * which may not fail from ordinary buffer allocations.
866  */
867 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
868 		int retry)
869 {
870 	struct buffer_head *bh, *head;
871 	long offset;
872 
873 try_again:
874 	head = NULL;
875 	offset = PAGE_SIZE;
876 	while ((offset -= size) >= 0) {
877 		bh = alloc_buffer_head(GFP_NOFS);
878 		if (!bh)
879 			goto no_grow;
880 
881 		bh->b_this_page = head;
882 		bh->b_blocknr = -1;
883 		head = bh;
884 
885 		bh->b_size = size;
886 
887 		/* Link the buffer to its page */
888 		set_bh_page(bh, page, offset);
889 	}
890 	return head;
891 /*
892  * In case anything failed, we just free everything we got.
893  */
894 no_grow:
895 	if (head) {
896 		do {
897 			bh = head;
898 			head = head->b_this_page;
899 			free_buffer_head(bh);
900 		} while (head);
901 	}
902 
903 	/*
904 	 * Return failure for non-async IO requests.  Async IO requests
905 	 * are not allowed to fail, so we have to wait until buffer heads
906 	 * become available.  But we don't want tasks sleeping with
907 	 * partially complete buffers, so all were released above.
908 	 */
909 	if (!retry)
910 		return NULL;
911 
912 	/* We're _really_ low on memory. Now we just
913 	 * wait for old buffer heads to become free due to
914 	 * finishing IO.  Since this is an async request and
915 	 * the reserve list is empty, we're sure there are
916 	 * async buffer heads in use.
917 	 */
918 	free_more_memory();
919 	goto try_again;
920 }
921 EXPORT_SYMBOL_GPL(alloc_page_buffers);
922 
923 static inline void
924 link_dev_buffers(struct page *page, struct buffer_head *head)
925 {
926 	struct buffer_head *bh, *tail;
927 
928 	bh = head;
929 	do {
930 		tail = bh;
931 		bh = bh->b_this_page;
932 	} while (bh);
933 	tail->b_this_page = head;
934 	attach_page_buffers(page, head);
935 }
936 
937 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
938 {
939 	sector_t retval = ~((sector_t)0);
940 	loff_t sz = i_size_read(bdev->bd_inode);
941 
942 	if (sz) {
943 		unsigned int sizebits = blksize_bits(size);
944 		retval = (sz >> sizebits);
945 	}
946 	return retval;
947 }
948 
949 /*
950  * Initialise the state of a blockdev page's buffers.
951  */
952 static sector_t
953 init_page_buffers(struct page *page, struct block_device *bdev,
954 			sector_t block, int size)
955 {
956 	struct buffer_head *head = page_buffers(page);
957 	struct buffer_head *bh = head;
958 	int uptodate = PageUptodate(page);
959 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
960 
961 	do {
962 		if (!buffer_mapped(bh)) {
963 			init_buffer(bh, NULL, NULL);
964 			bh->b_bdev = bdev;
965 			bh->b_blocknr = block;
966 			if (uptodate)
967 				set_buffer_uptodate(bh);
968 			if (block < end_block)
969 				set_buffer_mapped(bh);
970 		}
971 		block++;
972 		bh = bh->b_this_page;
973 	} while (bh != head);
974 
975 	/*
976 	 * Caller needs to validate requested block against end of device.
977 	 */
978 	return end_block;
979 }
980 
981 /*
982  * Create the page-cache page that contains the requested block.
983  *
984  * This is used purely for blockdev mappings.
985  */
986 static int
987 grow_dev_page(struct block_device *bdev, sector_t block,
988 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
989 {
990 	struct inode *inode = bdev->bd_inode;
991 	struct page *page;
992 	struct buffer_head *bh;
993 	sector_t end_block;
994 	int ret = 0;		/* Will call free_more_memory() */
995 	gfp_t gfp_mask;
996 
997 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
998 
999 	/*
1000 	 * XXX: __getblk_slow() can not really deal with failure and
1001 	 * will endlessly loop on improvised global reclaim.  Prefer
1002 	 * looping in the allocator rather than here, at least that
1003 	 * code knows what it's doing.
1004 	 */
1005 	gfp_mask |= __GFP_NOFAIL;
1006 
1007 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1008 	if (!page)
1009 		return ret;
1010 
1011 	BUG_ON(!PageLocked(page));
1012 
1013 	if (page_has_buffers(page)) {
1014 		bh = page_buffers(page);
1015 		if (bh->b_size == size) {
1016 			end_block = init_page_buffers(page, bdev,
1017 						(sector_t)index << sizebits,
1018 						size);
1019 			goto done;
1020 		}
1021 		if (!try_to_free_buffers(page))
1022 			goto failed;
1023 	}
1024 
1025 	/*
1026 	 * Allocate some buffers for this page
1027 	 */
1028 	bh = alloc_page_buffers(page, size, 0);
1029 	if (!bh)
1030 		goto failed;
1031 
1032 	/*
1033 	 * Link the page to the buffers and initialise them.  Take the
1034 	 * lock to be atomic wrt __find_get_block(), which does not
1035 	 * run under the page lock.
1036 	 */
1037 	spin_lock(&inode->i_mapping->private_lock);
1038 	link_dev_buffers(page, bh);
1039 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1040 			size);
1041 	spin_unlock(&inode->i_mapping->private_lock);
1042 done:
1043 	ret = (block < end_block) ? 1 : -ENXIO;
1044 failed:
1045 	unlock_page(page);
1046 	put_page(page);
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Create buffers for the specified block device block's page.  If
1052  * that page was dirty, the buffers are set dirty also.
1053  */
1054 static int
1055 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1056 {
1057 	pgoff_t index;
1058 	int sizebits;
1059 
1060 	sizebits = -1;
1061 	do {
1062 		sizebits++;
1063 	} while ((size << sizebits) < PAGE_SIZE);
1064 
1065 	index = block >> sizebits;
1066 
1067 	/*
1068 	 * Check for a block which wants to lie outside our maximum possible
1069 	 * pagecache index.  (this comparison is done using sector_t types).
1070 	 */
1071 	if (unlikely(index != block >> sizebits)) {
1072 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1073 			"device %pg\n",
1074 			__func__, (unsigned long long)block,
1075 			bdev);
1076 		return -EIO;
1077 	}
1078 
1079 	/* Create a page with the proper size buffers.. */
1080 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block,
1085 	     unsigned size, gfp_t gfp)
1086 {
1087 	/* Size must be multiple of hard sectorsize */
1088 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089 			(size < 512 || size > PAGE_SIZE))) {
1090 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091 					size);
1092 		printk(KERN_ERR "logical block size: %d\n",
1093 					bdev_logical_block_size(bdev));
1094 
1095 		dump_stack();
1096 		return NULL;
1097 	}
1098 
1099 	for (;;) {
1100 		struct buffer_head *bh;
1101 		int ret;
1102 
1103 		bh = __find_get_block(bdev, block, size);
1104 		if (bh)
1105 			return bh;
1106 
1107 		ret = grow_buffers(bdev, block, size, gfp);
1108 		if (ret < 0)
1109 			return NULL;
1110 		if (ret == 0)
1111 			free_more_memory();
1112 	}
1113 }
1114 
1115 /*
1116  * The relationship between dirty buffers and dirty pages:
1117  *
1118  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119  * the page is tagged dirty in its radix tree.
1120  *
1121  * At all times, the dirtiness of the buffers represents the dirtiness of
1122  * subsections of the page.  If the page has buffers, the page dirty bit is
1123  * merely a hint about the true dirty state.
1124  *
1125  * When a page is set dirty in its entirety, all its buffers are marked dirty
1126  * (if the page has buffers).
1127  *
1128  * When a buffer is marked dirty, its page is dirtied, but the page's other
1129  * buffers are not.
1130  *
1131  * Also.  When blockdev buffers are explicitly read with bread(), they
1132  * individually become uptodate.  But their backing page remains not
1133  * uptodate - even if all of its buffers are uptodate.  A subsequent
1134  * block_read_full_page() against that page will discover all the uptodate
1135  * buffers, will set the page uptodate and will perform no I/O.
1136  */
1137 
1138 /**
1139  * mark_buffer_dirty - mark a buffer_head as needing writeout
1140  * @bh: the buffer_head to mark dirty
1141  *
1142  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143  * backing page dirty, then tag the page as dirty in its address_space's radix
1144  * tree and then attach the address_space's inode to its superblock's dirty
1145  * inode list.
1146  *
1147  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1148  * mapping->tree_lock and mapping->host->i_lock.
1149  */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152 	WARN_ON_ONCE(!buffer_uptodate(bh));
1153 
1154 	trace_block_dirty_buffer(bh);
1155 
1156 	/*
1157 	 * Very *carefully* optimize the it-is-already-dirty case.
1158 	 *
1159 	 * Don't let the final "is it dirty" escape to before we
1160 	 * perhaps modified the buffer.
1161 	 */
1162 	if (buffer_dirty(bh)) {
1163 		smp_mb();
1164 		if (buffer_dirty(bh))
1165 			return;
1166 	}
1167 
1168 	if (!test_set_buffer_dirty(bh)) {
1169 		struct page *page = bh->b_page;
1170 		struct address_space *mapping = NULL;
1171 
1172 		lock_page_memcg(page);
1173 		if (!TestSetPageDirty(page)) {
1174 			mapping = page_mapping(page);
1175 			if (mapping)
1176 				__set_page_dirty(page, mapping, 0);
1177 		}
1178 		unlock_page_memcg(page);
1179 		if (mapping)
1180 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181 	}
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184 
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194 	if (atomic_read(&buf->b_count)) {
1195 		put_bh(buf);
1196 		return;
1197 	}
1198 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201 
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208 	clear_buffer_dirty(bh);
1209 	if (bh->b_assoc_map) {
1210 		struct address_space *buffer_mapping = bh->b_page->mapping;
1211 
1212 		spin_lock(&buffer_mapping->private_lock);
1213 		list_del_init(&bh->b_assoc_buffers);
1214 		bh->b_assoc_map = NULL;
1215 		spin_unlock(&buffer_mapping->private_lock);
1216 	}
1217 	__brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220 
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223 	lock_buffer(bh);
1224 	if (buffer_uptodate(bh)) {
1225 		unlock_buffer(bh);
1226 		return bh;
1227 	} else {
1228 		get_bh(bh);
1229 		bh->b_end_io = end_buffer_read_sync;
1230 		submit_bh(REQ_OP_READ, 0, bh);
1231 		wait_on_buffer(bh);
1232 		if (buffer_uptodate(bh))
1233 			return bh;
1234 	}
1235 	brelse(bh);
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252 
1253 #define BH_LRU_SIZE	16
1254 
1255 struct bh_lru {
1256 	struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258 
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260 
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()	local_irq_disable()
1263 #define bh_lru_unlock()	local_irq_enable()
1264 #else
1265 #define bh_lru_lock()	preempt_disable()
1266 #define bh_lru_unlock()	preempt_enable()
1267 #endif
1268 
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272 	BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275 
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281 	struct buffer_head *evictee = NULL;
1282 
1283 	check_irqs_on();
1284 	bh_lru_lock();
1285 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286 		struct buffer_head *bhs[BH_LRU_SIZE];
1287 		int in;
1288 		int out = 0;
1289 
1290 		get_bh(bh);
1291 		bhs[out++] = bh;
1292 		for (in = 0; in < BH_LRU_SIZE; in++) {
1293 			struct buffer_head *bh2 =
1294 				__this_cpu_read(bh_lrus.bhs[in]);
1295 
1296 			if (bh2 == bh) {
1297 				__brelse(bh2);
1298 			} else {
1299 				if (out >= BH_LRU_SIZE) {
1300 					BUG_ON(evictee != NULL);
1301 					evictee = bh2;
1302 				} else {
1303 					bhs[out++] = bh2;
1304 				}
1305 			}
1306 		}
1307 		while (out < BH_LRU_SIZE)
1308 			bhs[out++] = NULL;
1309 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310 	}
1311 	bh_lru_unlock();
1312 
1313 	if (evictee)
1314 		__brelse(evictee);
1315 }
1316 
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 	struct buffer_head *ret = NULL;
1324 	unsigned int i;
1325 
1326 	check_irqs_on();
1327 	bh_lru_lock();
1328 	for (i = 0; i < BH_LRU_SIZE; i++) {
1329 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330 
1331 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332 		    bh->b_size == size) {
1333 			if (i) {
1334 				while (i) {
1335 					__this_cpu_write(bh_lrus.bhs[i],
1336 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1337 					i--;
1338 				}
1339 				__this_cpu_write(bh_lrus.bhs[0], bh);
1340 			}
1341 			get_bh(bh);
1342 			ret = bh;
1343 			break;
1344 		}
1345 	}
1346 	bh_lru_unlock();
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359 
1360 	if (bh == NULL) {
1361 		/* __find_get_block_slow will mark the page accessed */
1362 		bh = __find_get_block_slow(bdev, block);
1363 		if (bh)
1364 			bh_lru_install(bh);
1365 	} else
1366 		touch_buffer(bh);
1367 
1368 	return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371 
1372 /*
1373  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374  * which corresponds to the passed block_device, block and size. The
1375  * returned buffer has its reference count incremented.
1376  *
1377  * __getblk_gfp() will lock up the machine if grow_dev_page's
1378  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1379  */
1380 struct buffer_head *
1381 __getblk_gfp(struct block_device *bdev, sector_t block,
1382 	     unsigned size, gfp_t gfp)
1383 {
1384 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1385 
1386 	might_sleep();
1387 	if (bh == NULL)
1388 		bh = __getblk_slow(bdev, block, size, gfp);
1389 	return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk_gfp);
1392 
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398 	struct buffer_head *bh = __getblk(bdev, block, size);
1399 	if (likely(bh)) {
1400 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1401 		brelse(bh);
1402 	}
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405 
1406 /**
1407  *  __bread_gfp() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  *  @gfp: page allocation flag
1412  *
1413  *  Reads a specified block, and returns buffer head that contains it.
1414  *  The page cache can be allocated from non-movable area
1415  *  not to prevent page migration if you set gfp to zero.
1416  *  It returns NULL if the block was unreadable.
1417  */
1418 struct buffer_head *
1419 __bread_gfp(struct block_device *bdev, sector_t block,
1420 		   unsigned size, gfp_t gfp)
1421 {
1422 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423 
1424 	if (likely(bh) && !buffer_uptodate(bh))
1425 		bh = __bread_slow(bh);
1426 	return bh;
1427 }
1428 EXPORT_SYMBOL(__bread_gfp);
1429 
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 	int i;
1439 
1440 	for (i = 0; i < BH_LRU_SIZE; i++) {
1441 		brelse(b->bhs[i]);
1442 		b->bhs[i] = NULL;
1443 	}
1444 	put_cpu_var(bh_lrus);
1445 }
1446 
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 	int i;
1451 
1452 	for (i = 0; i < BH_LRU_SIZE; i++) {
1453 		if (b->bhs[i])
1454 			return 1;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 void invalidate_bh_lrus(void)
1461 {
1462 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465 
1466 void set_bh_page(struct buffer_head *bh,
1467 		struct page *page, unsigned long offset)
1468 {
1469 	bh->b_page = page;
1470 	BUG_ON(offset >= PAGE_SIZE);
1471 	if (PageHighMem(page))
1472 		/*
1473 		 * This catches illegal uses and preserves the offset:
1474 		 */
1475 		bh->b_data = (char *)(0 + offset);
1476 	else
1477 		bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480 
1481 /*
1482  * Called when truncating a buffer on a page completely.
1483  */
1484 
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488 	 1 << BH_Delay | 1 << BH_Unwritten)
1489 
1490 static void discard_buffer(struct buffer_head * bh)
1491 {
1492 	unsigned long b_state, b_state_old;
1493 
1494 	lock_buffer(bh);
1495 	clear_buffer_dirty(bh);
1496 	bh->b_bdev = NULL;
1497 	b_state = bh->b_state;
1498 	for (;;) {
1499 		b_state_old = cmpxchg(&bh->b_state, b_state,
1500 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1501 		if (b_state_old == b_state)
1502 			break;
1503 		b_state = b_state_old;
1504 	}
1505 	unlock_buffer(bh);
1506 }
1507 
1508 /**
1509  * block_invalidatepage - invalidate part or all of a buffer-backed page
1510  *
1511  * @page: the page which is affected
1512  * @offset: start of the range to invalidate
1513  * @length: length of the range to invalidate
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidated by a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned int offset,
1525 			  unsigned int length)
1526 {
1527 	struct buffer_head *head, *bh, *next;
1528 	unsigned int curr_off = 0;
1529 	unsigned int stop = length + offset;
1530 
1531 	BUG_ON(!PageLocked(page));
1532 	if (!page_has_buffers(page))
1533 		goto out;
1534 
1535 	/*
1536 	 * Check for overflow
1537 	 */
1538 	BUG_ON(stop > PAGE_SIZE || stop < length);
1539 
1540 	head = page_buffers(page);
1541 	bh = head;
1542 	do {
1543 		unsigned int next_off = curr_off + bh->b_size;
1544 		next = bh->b_this_page;
1545 
1546 		/*
1547 		 * Are we still fully in range ?
1548 		 */
1549 		if (next_off > stop)
1550 			goto out;
1551 
1552 		/*
1553 		 * is this block fully invalidated?
1554 		 */
1555 		if (offset <= curr_off)
1556 			discard_buffer(bh);
1557 		curr_off = next_off;
1558 		bh = next;
1559 	} while (bh != head);
1560 
1561 	/*
1562 	 * We release buffers only if the entire page is being invalidated.
1563 	 * The get_block cached value has been unconditionally invalidated,
1564 	 * so real IO is not possible anymore.
1565 	 */
1566 	if (offset == 0)
1567 		try_to_release_page(page, 0);
1568 out:
1569 	return;
1570 }
1571 EXPORT_SYMBOL(block_invalidatepage);
1572 
1573 
1574 /*
1575  * We attach and possibly dirty the buffers atomically wrt
1576  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1577  * is already excluded via the page lock.
1578  */
1579 void create_empty_buffers(struct page *page,
1580 			unsigned long blocksize, unsigned long b_state)
1581 {
1582 	struct buffer_head *bh, *head, *tail;
1583 
1584 	head = alloc_page_buffers(page, blocksize, 1);
1585 	bh = head;
1586 	do {
1587 		bh->b_state |= b_state;
1588 		tail = bh;
1589 		bh = bh->b_this_page;
1590 	} while (bh);
1591 	tail->b_this_page = head;
1592 
1593 	spin_lock(&page->mapping->private_lock);
1594 	if (PageUptodate(page) || PageDirty(page)) {
1595 		bh = head;
1596 		do {
1597 			if (PageDirty(page))
1598 				set_buffer_dirty(bh);
1599 			if (PageUptodate(page))
1600 				set_buffer_uptodate(bh);
1601 			bh = bh->b_this_page;
1602 		} while (bh != head);
1603 	}
1604 	attach_page_buffers(page, head);
1605 	spin_unlock(&page->mapping->private_lock);
1606 }
1607 EXPORT_SYMBOL(create_empty_buffers);
1608 
1609 /**
1610  * clean_bdev_aliases: clean a range of buffers in block device
1611  * @bdev: Block device to clean buffers in
1612  * @block: Start of a range of blocks to clean
1613  * @len: Number of blocks to clean
1614  *
1615  * We are taking a range of blocks for data and we don't want writeback of any
1616  * buffer-cache aliases starting from return from this function and until the
1617  * moment when something will explicitly mark the buffer dirty (hopefully that
1618  * will not happen until we will free that block ;-) We don't even need to mark
1619  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1620  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1621  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1622  * would confuse anyone who might pick it with bread() afterwards...
1623  *
1624  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1625  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1626  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1627  * need to.  That happens here.
1628  */
1629 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1630 {
1631 	struct inode *bd_inode = bdev->bd_inode;
1632 	struct address_space *bd_mapping = bd_inode->i_mapping;
1633 	struct pagevec pvec;
1634 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 	pgoff_t end;
1636 	int i;
1637 	struct buffer_head *bh;
1638 	struct buffer_head *head;
1639 
1640 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1641 	pagevec_init(&pvec, 0);
1642 	while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1643 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1644 		for (i = 0; i < pagevec_count(&pvec); i++) {
1645 			struct page *page = pvec.pages[i];
1646 
1647 			index = page->index;
1648 			if (index > end)
1649 				break;
1650 			if (!page_has_buffers(page))
1651 				continue;
1652 			/*
1653 			 * We use page lock instead of bd_mapping->private_lock
1654 			 * to pin buffers here since we can afford to sleep and
1655 			 * it scales better than a global spinlock lock.
1656 			 */
1657 			lock_page(page);
1658 			/* Recheck when the page is locked which pins bhs */
1659 			if (!page_has_buffers(page))
1660 				goto unlock_page;
1661 			head = page_buffers(page);
1662 			bh = head;
1663 			do {
1664 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1665 					goto next;
1666 				if (bh->b_blocknr >= block + len)
1667 					break;
1668 				clear_buffer_dirty(bh);
1669 				wait_on_buffer(bh);
1670 				clear_buffer_req(bh);
1671 next:
1672 				bh = bh->b_this_page;
1673 			} while (bh != head);
1674 unlock_page:
1675 			unlock_page(page);
1676 		}
1677 		pagevec_release(&pvec);
1678 		cond_resched();
1679 		index++;
1680 	}
1681 }
1682 EXPORT_SYMBOL(clean_bdev_aliases);
1683 
1684 /*
1685  * Size is a power-of-two in the range 512..PAGE_SIZE,
1686  * and the case we care about most is PAGE_SIZE.
1687  *
1688  * So this *could* possibly be written with those
1689  * constraints in mind (relevant mostly if some
1690  * architecture has a slow bit-scan instruction)
1691  */
1692 static inline int block_size_bits(unsigned int blocksize)
1693 {
1694 	return ilog2(blocksize);
1695 }
1696 
1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 {
1699 	BUG_ON(!PageLocked(page));
1700 
1701 	if (!page_has_buffers(page))
1702 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1703 	return page_buffers(page);
1704 }
1705 
1706 /*
1707  * NOTE! All mapped/uptodate combinations are valid:
1708  *
1709  *	Mapped	Uptodate	Meaning
1710  *
1711  *	No	No		"unknown" - must do get_block()
1712  *	No	Yes		"hole" - zero-filled
1713  *	Yes	No		"allocated" - allocated on disk, not read in
1714  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1715  *
1716  * "Dirty" is valid only with the last case (mapped+uptodate).
1717  */
1718 
1719 /*
1720  * While block_write_full_page is writing back the dirty buffers under
1721  * the page lock, whoever dirtied the buffers may decide to clean them
1722  * again at any time.  We handle that by only looking at the buffer
1723  * state inside lock_buffer().
1724  *
1725  * If block_write_full_page() is called for regular writeback
1726  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727  * locked buffer.   This only can happen if someone has written the buffer
1728  * directly, with submit_bh().  At the address_space level PageWriteback
1729  * prevents this contention from occurring.
1730  *
1731  * If block_write_full_page() is called with wbc->sync_mode ==
1732  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1733  * causes the writes to be flagged as synchronous writes.
1734  */
1735 int __block_write_full_page(struct inode *inode, struct page *page,
1736 			get_block_t *get_block, struct writeback_control *wbc,
1737 			bh_end_io_t *handler)
1738 {
1739 	int err;
1740 	sector_t block;
1741 	sector_t last_block;
1742 	struct buffer_head *bh, *head;
1743 	unsigned int blocksize, bbits;
1744 	int nr_underway = 0;
1745 	int write_flags = wbc_to_write_flags(wbc);
1746 
1747 	head = create_page_buffers(page, inode,
1748 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1749 
1750 	/*
1751 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1752 	 * here, and the (potentially unmapped) buffers may become dirty at
1753 	 * any time.  If a buffer becomes dirty here after we've inspected it
1754 	 * then we just miss that fact, and the page stays dirty.
1755 	 *
1756 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 	 * handle that here by just cleaning them.
1758 	 */
1759 
1760 	bh = head;
1761 	blocksize = bh->b_size;
1762 	bbits = block_size_bits(blocksize);
1763 
1764 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1765 	last_block = (i_size_read(inode) - 1) >> bbits;
1766 
1767 	/*
1768 	 * Get all the dirty buffers mapped to disk addresses and
1769 	 * handle any aliases from the underlying blockdev's mapping.
1770 	 */
1771 	do {
1772 		if (block > last_block) {
1773 			/*
1774 			 * mapped buffers outside i_size will occur, because
1775 			 * this page can be outside i_size when there is a
1776 			 * truncate in progress.
1777 			 */
1778 			/*
1779 			 * The buffer was zeroed by block_write_full_page()
1780 			 */
1781 			clear_buffer_dirty(bh);
1782 			set_buffer_uptodate(bh);
1783 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1784 			   buffer_dirty(bh)) {
1785 			WARN_ON(bh->b_size != blocksize);
1786 			err = get_block(inode, block, bh, 1);
1787 			if (err)
1788 				goto recover;
1789 			clear_buffer_delay(bh);
1790 			if (buffer_new(bh)) {
1791 				/* blockdev mappings never come here */
1792 				clear_buffer_new(bh);
1793 				clean_bdev_bh_alias(bh);
1794 			}
1795 		}
1796 		bh = bh->b_this_page;
1797 		block++;
1798 	} while (bh != head);
1799 
1800 	do {
1801 		if (!buffer_mapped(bh))
1802 			continue;
1803 		/*
1804 		 * If it's a fully non-blocking write attempt and we cannot
1805 		 * lock the buffer then redirty the page.  Note that this can
1806 		 * potentially cause a busy-wait loop from writeback threads
1807 		 * and kswapd activity, but those code paths have their own
1808 		 * higher-level throttling.
1809 		 */
1810 		if (wbc->sync_mode != WB_SYNC_NONE) {
1811 			lock_buffer(bh);
1812 		} else if (!trylock_buffer(bh)) {
1813 			redirty_page_for_writepage(wbc, page);
1814 			continue;
1815 		}
1816 		if (test_clear_buffer_dirty(bh)) {
1817 			mark_buffer_async_write_endio(bh, handler);
1818 		} else {
1819 			unlock_buffer(bh);
1820 		}
1821 	} while ((bh = bh->b_this_page) != head);
1822 
1823 	/*
1824 	 * The page and its buffers are protected by PageWriteback(), so we can
1825 	 * drop the bh refcounts early.
1826 	 */
1827 	BUG_ON(PageWriteback(page));
1828 	set_page_writeback(page);
1829 
1830 	do {
1831 		struct buffer_head *next = bh->b_this_page;
1832 		if (buffer_async_write(bh)) {
1833 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1834 			nr_underway++;
1835 		}
1836 		bh = next;
1837 	} while (bh != head);
1838 	unlock_page(page);
1839 
1840 	err = 0;
1841 done:
1842 	if (nr_underway == 0) {
1843 		/*
1844 		 * The page was marked dirty, but the buffers were
1845 		 * clean.  Someone wrote them back by hand with
1846 		 * ll_rw_block/submit_bh.  A rare case.
1847 		 */
1848 		end_page_writeback(page);
1849 
1850 		/*
1851 		 * The page and buffer_heads can be released at any time from
1852 		 * here on.
1853 		 */
1854 	}
1855 	return err;
1856 
1857 recover:
1858 	/*
1859 	 * ENOSPC, or some other error.  We may already have added some
1860 	 * blocks to the file, so we need to write these out to avoid
1861 	 * exposing stale data.
1862 	 * The page is currently locked and not marked for writeback
1863 	 */
1864 	bh = head;
1865 	/* Recovery: lock and submit the mapped buffers */
1866 	do {
1867 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1868 		    !buffer_delay(bh)) {
1869 			lock_buffer(bh);
1870 			mark_buffer_async_write_endio(bh, handler);
1871 		} else {
1872 			/*
1873 			 * The buffer may have been set dirty during
1874 			 * attachment to a dirty page.
1875 			 */
1876 			clear_buffer_dirty(bh);
1877 		}
1878 	} while ((bh = bh->b_this_page) != head);
1879 	SetPageError(page);
1880 	BUG_ON(PageWriteback(page));
1881 	mapping_set_error(page->mapping, err);
1882 	set_page_writeback(page);
1883 	do {
1884 		struct buffer_head *next = bh->b_this_page;
1885 		if (buffer_async_write(bh)) {
1886 			clear_buffer_dirty(bh);
1887 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1888 			nr_underway++;
1889 		}
1890 		bh = next;
1891 	} while (bh != head);
1892 	unlock_page(page);
1893 	goto done;
1894 }
1895 EXPORT_SYMBOL(__block_write_full_page);
1896 
1897 /*
1898  * If a page has any new buffers, zero them out here, and mark them uptodate
1899  * and dirty so they'll be written out (in order to prevent uninitialised
1900  * block data from leaking). And clear the new bit.
1901  */
1902 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1903 {
1904 	unsigned int block_start, block_end;
1905 	struct buffer_head *head, *bh;
1906 
1907 	BUG_ON(!PageLocked(page));
1908 	if (!page_has_buffers(page))
1909 		return;
1910 
1911 	bh = head = page_buffers(page);
1912 	block_start = 0;
1913 	do {
1914 		block_end = block_start + bh->b_size;
1915 
1916 		if (buffer_new(bh)) {
1917 			if (block_end > from && block_start < to) {
1918 				if (!PageUptodate(page)) {
1919 					unsigned start, size;
1920 
1921 					start = max(from, block_start);
1922 					size = min(to, block_end) - start;
1923 
1924 					zero_user(page, start, size);
1925 					set_buffer_uptodate(bh);
1926 				}
1927 
1928 				clear_buffer_new(bh);
1929 				mark_buffer_dirty(bh);
1930 			}
1931 		}
1932 
1933 		block_start = block_end;
1934 		bh = bh->b_this_page;
1935 	} while (bh != head);
1936 }
1937 EXPORT_SYMBOL(page_zero_new_buffers);
1938 
1939 static void
1940 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1941 		struct iomap *iomap)
1942 {
1943 	loff_t offset = block << inode->i_blkbits;
1944 
1945 	bh->b_bdev = iomap->bdev;
1946 
1947 	/*
1948 	 * Block points to offset in file we need to map, iomap contains
1949 	 * the offset at which the map starts. If the map ends before the
1950 	 * current block, then do not map the buffer and let the caller
1951 	 * handle it.
1952 	 */
1953 	BUG_ON(offset >= iomap->offset + iomap->length);
1954 
1955 	switch (iomap->type) {
1956 	case IOMAP_HOLE:
1957 		/*
1958 		 * If the buffer is not up to date or beyond the current EOF,
1959 		 * we need to mark it as new to ensure sub-block zeroing is
1960 		 * executed if necessary.
1961 		 */
1962 		if (!buffer_uptodate(bh) ||
1963 		    (offset >= i_size_read(inode)))
1964 			set_buffer_new(bh);
1965 		break;
1966 	case IOMAP_DELALLOC:
1967 		if (!buffer_uptodate(bh) ||
1968 		    (offset >= i_size_read(inode)))
1969 			set_buffer_new(bh);
1970 		set_buffer_uptodate(bh);
1971 		set_buffer_mapped(bh);
1972 		set_buffer_delay(bh);
1973 		break;
1974 	case IOMAP_UNWRITTEN:
1975 		/*
1976 		 * For unwritten regions, we always need to ensure that
1977 		 * sub-block writes cause the regions in the block we are not
1978 		 * writing to are zeroed. Set the buffer as new to ensure this.
1979 		 */
1980 		set_buffer_new(bh);
1981 		set_buffer_unwritten(bh);
1982 		/* FALLTHRU */
1983 	case IOMAP_MAPPED:
1984 		if (offset >= i_size_read(inode))
1985 			set_buffer_new(bh);
1986 		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1987 				((offset - iomap->offset) >> inode->i_blkbits);
1988 		set_buffer_mapped(bh);
1989 		break;
1990 	}
1991 }
1992 
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994 		get_block_t *get_block, struct iomap *iomap)
1995 {
1996 	unsigned from = pos & (PAGE_SIZE - 1);
1997 	unsigned to = from + len;
1998 	struct inode *inode = page->mapping->host;
1999 	unsigned block_start, block_end;
2000 	sector_t block;
2001 	int err = 0;
2002 	unsigned blocksize, bbits;
2003 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004 
2005 	BUG_ON(!PageLocked(page));
2006 	BUG_ON(from > PAGE_SIZE);
2007 	BUG_ON(to > PAGE_SIZE);
2008 	BUG_ON(from > to);
2009 
2010 	head = create_page_buffers(page, inode, 0);
2011 	blocksize = head->b_size;
2012 	bbits = block_size_bits(blocksize);
2013 
2014 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015 
2016 	for(bh = head, block_start = 0; bh != head || !block_start;
2017 	    block++, block_start=block_end, bh = bh->b_this_page) {
2018 		block_end = block_start + blocksize;
2019 		if (block_end <= from || block_start >= to) {
2020 			if (PageUptodate(page)) {
2021 				if (!buffer_uptodate(bh))
2022 					set_buffer_uptodate(bh);
2023 			}
2024 			continue;
2025 		}
2026 		if (buffer_new(bh))
2027 			clear_buffer_new(bh);
2028 		if (!buffer_mapped(bh)) {
2029 			WARN_ON(bh->b_size != blocksize);
2030 			if (get_block) {
2031 				err = get_block(inode, block, bh, 1);
2032 				if (err)
2033 					break;
2034 			} else {
2035 				iomap_to_bh(inode, block, bh, iomap);
2036 			}
2037 
2038 			if (buffer_new(bh)) {
2039 				clean_bdev_bh_alias(bh);
2040 				if (PageUptodate(page)) {
2041 					clear_buffer_new(bh);
2042 					set_buffer_uptodate(bh);
2043 					mark_buffer_dirty(bh);
2044 					continue;
2045 				}
2046 				if (block_end > to || block_start < from)
2047 					zero_user_segments(page,
2048 						to, block_end,
2049 						block_start, from);
2050 				continue;
2051 			}
2052 		}
2053 		if (PageUptodate(page)) {
2054 			if (!buffer_uptodate(bh))
2055 				set_buffer_uptodate(bh);
2056 			continue;
2057 		}
2058 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059 		    !buffer_unwritten(bh) &&
2060 		     (block_start < from || block_end > to)) {
2061 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062 			*wait_bh++=bh;
2063 		}
2064 	}
2065 	/*
2066 	 * If we issued read requests - let them complete.
2067 	 */
2068 	while(wait_bh > wait) {
2069 		wait_on_buffer(*--wait_bh);
2070 		if (!buffer_uptodate(*wait_bh))
2071 			err = -EIO;
2072 	}
2073 	if (unlikely(err))
2074 		page_zero_new_buffers(page, from, to);
2075 	return err;
2076 }
2077 
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079 		get_block_t *get_block)
2080 {
2081 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084 
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086 		unsigned from, unsigned to)
2087 {
2088 	unsigned block_start, block_end;
2089 	int partial = 0;
2090 	unsigned blocksize;
2091 	struct buffer_head *bh, *head;
2092 
2093 	bh = head = page_buffers(page);
2094 	blocksize = bh->b_size;
2095 
2096 	block_start = 0;
2097 	do {
2098 		block_end = block_start + blocksize;
2099 		if (block_end <= from || block_start >= to) {
2100 			if (!buffer_uptodate(bh))
2101 				partial = 1;
2102 		} else {
2103 			set_buffer_uptodate(bh);
2104 			mark_buffer_dirty(bh);
2105 		}
2106 		clear_buffer_new(bh);
2107 
2108 		block_start = block_end;
2109 		bh = bh->b_this_page;
2110 	} while (bh != head);
2111 
2112 	/*
2113 	 * If this is a partial write which happened to make all buffers
2114 	 * uptodate then we can optimize away a bogus readpage() for
2115 	 * the next read(). Here we 'discover' whether the page went
2116 	 * uptodate as a result of this (potentially partial) write.
2117 	 */
2118 	if (!partial)
2119 		SetPageUptodate(page);
2120 	return 0;
2121 }
2122 
2123 /*
2124  * block_write_begin takes care of the basic task of block allocation and
2125  * bringing partial write blocks uptodate first.
2126  *
2127  * The filesystem needs to handle block truncation upon failure.
2128  */
2129 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2130 		unsigned flags, struct page **pagep, get_block_t *get_block)
2131 {
2132 	pgoff_t index = pos >> PAGE_SHIFT;
2133 	struct page *page;
2134 	int status;
2135 
2136 	page = grab_cache_page_write_begin(mapping, index, flags);
2137 	if (!page)
2138 		return -ENOMEM;
2139 
2140 	status = __block_write_begin(page, pos, len, get_block);
2141 	if (unlikely(status)) {
2142 		unlock_page(page);
2143 		put_page(page);
2144 		page = NULL;
2145 	}
2146 
2147 	*pagep = page;
2148 	return status;
2149 }
2150 EXPORT_SYMBOL(block_write_begin);
2151 
2152 int block_write_end(struct file *file, struct address_space *mapping,
2153 			loff_t pos, unsigned len, unsigned copied,
2154 			struct page *page, void *fsdata)
2155 {
2156 	struct inode *inode = mapping->host;
2157 	unsigned start;
2158 
2159 	start = pos & (PAGE_SIZE - 1);
2160 
2161 	if (unlikely(copied < len)) {
2162 		/*
2163 		 * The buffers that were written will now be uptodate, so we
2164 		 * don't have to worry about a readpage reading them and
2165 		 * overwriting a partial write. However if we have encountered
2166 		 * a short write and only partially written into a buffer, it
2167 		 * will not be marked uptodate, so a readpage might come in and
2168 		 * destroy our partial write.
2169 		 *
2170 		 * Do the simplest thing, and just treat any short write to a
2171 		 * non uptodate page as a zero-length write, and force the
2172 		 * caller to redo the whole thing.
2173 		 */
2174 		if (!PageUptodate(page))
2175 			copied = 0;
2176 
2177 		page_zero_new_buffers(page, start+copied, start+len);
2178 	}
2179 	flush_dcache_page(page);
2180 
2181 	/* This could be a short (even 0-length) commit */
2182 	__block_commit_write(inode, page, start, start+copied);
2183 
2184 	return copied;
2185 }
2186 EXPORT_SYMBOL(block_write_end);
2187 
2188 int generic_write_end(struct file *file, struct address_space *mapping,
2189 			loff_t pos, unsigned len, unsigned copied,
2190 			struct page *page, void *fsdata)
2191 {
2192 	struct inode *inode = mapping->host;
2193 	loff_t old_size = inode->i_size;
2194 	int i_size_changed = 0;
2195 
2196 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2197 
2198 	/*
2199 	 * No need to use i_size_read() here, the i_size
2200 	 * cannot change under us because we hold i_mutex.
2201 	 *
2202 	 * But it's important to update i_size while still holding page lock:
2203 	 * page writeout could otherwise come in and zero beyond i_size.
2204 	 */
2205 	if (pos+copied > inode->i_size) {
2206 		i_size_write(inode, pos+copied);
2207 		i_size_changed = 1;
2208 	}
2209 
2210 	unlock_page(page);
2211 	put_page(page);
2212 
2213 	if (old_size < pos)
2214 		pagecache_isize_extended(inode, old_size, pos);
2215 	/*
2216 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2217 	 * makes the holding time of page lock longer. Second, it forces lock
2218 	 * ordering of page lock and transaction start for journaling
2219 	 * filesystems.
2220 	 */
2221 	if (i_size_changed)
2222 		mark_inode_dirty(inode);
2223 
2224 	return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227 
2228 /*
2229  * block_is_partially_uptodate checks whether buffers within a page are
2230  * uptodate or not.
2231  *
2232  * Returns true if all buffers which correspond to a file portion
2233  * we want to read are uptodate.
2234  */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236 					unsigned long count)
2237 {
2238 	unsigned block_start, block_end, blocksize;
2239 	unsigned to;
2240 	struct buffer_head *bh, *head;
2241 	int ret = 1;
2242 
2243 	if (!page_has_buffers(page))
2244 		return 0;
2245 
2246 	head = page_buffers(page);
2247 	blocksize = head->b_size;
2248 	to = min_t(unsigned, PAGE_SIZE - from, count);
2249 	to = from + to;
2250 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2251 		return 0;
2252 
2253 	bh = head;
2254 	block_start = 0;
2255 	do {
2256 		block_end = block_start + blocksize;
2257 		if (block_end > from && block_start < to) {
2258 			if (!buffer_uptodate(bh)) {
2259 				ret = 0;
2260 				break;
2261 			}
2262 			if (block_end >= to)
2263 				break;
2264 		}
2265 		block_start = block_end;
2266 		bh = bh->b_this_page;
2267 	} while (bh != head);
2268 
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272 
2273 /*
2274  * Generic "read page" function for block devices that have the normal
2275  * get_block functionality. This is most of the block device filesystems.
2276  * Reads the page asynchronously --- the unlock_buffer() and
2277  * set/clear_buffer_uptodate() functions propagate buffer state into the
2278  * page struct once IO has completed.
2279  */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282 	struct inode *inode = page->mapping->host;
2283 	sector_t iblock, lblock;
2284 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285 	unsigned int blocksize, bbits;
2286 	int nr, i;
2287 	int fully_mapped = 1;
2288 
2289 	head = create_page_buffers(page, inode, 0);
2290 	blocksize = head->b_size;
2291 	bbits = block_size_bits(blocksize);
2292 
2293 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295 	bh = head;
2296 	nr = 0;
2297 	i = 0;
2298 
2299 	do {
2300 		if (buffer_uptodate(bh))
2301 			continue;
2302 
2303 		if (!buffer_mapped(bh)) {
2304 			int err = 0;
2305 
2306 			fully_mapped = 0;
2307 			if (iblock < lblock) {
2308 				WARN_ON(bh->b_size != blocksize);
2309 				err = get_block(inode, iblock, bh, 0);
2310 				if (err)
2311 					SetPageError(page);
2312 			}
2313 			if (!buffer_mapped(bh)) {
2314 				zero_user(page, i * blocksize, blocksize);
2315 				if (!err)
2316 					set_buffer_uptodate(bh);
2317 				continue;
2318 			}
2319 			/*
2320 			 * get_block() might have updated the buffer
2321 			 * synchronously
2322 			 */
2323 			if (buffer_uptodate(bh))
2324 				continue;
2325 		}
2326 		arr[nr++] = bh;
2327 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2328 
2329 	if (fully_mapped)
2330 		SetPageMappedToDisk(page);
2331 
2332 	if (!nr) {
2333 		/*
2334 		 * All buffers are uptodate - we can set the page uptodate
2335 		 * as well. But not if get_block() returned an error.
2336 		 */
2337 		if (!PageError(page))
2338 			SetPageUptodate(page);
2339 		unlock_page(page);
2340 		return 0;
2341 	}
2342 
2343 	/* Stage two: lock the buffers */
2344 	for (i = 0; i < nr; i++) {
2345 		bh = arr[i];
2346 		lock_buffer(bh);
2347 		mark_buffer_async_read(bh);
2348 	}
2349 
2350 	/*
2351 	 * Stage 3: start the IO.  Check for uptodateness
2352 	 * inside the buffer lock in case another process reading
2353 	 * the underlying blockdev brought it uptodate (the sct fix).
2354 	 */
2355 	for (i = 0; i < nr; i++) {
2356 		bh = arr[i];
2357 		if (buffer_uptodate(bh))
2358 			end_buffer_async_read(bh, 1);
2359 		else
2360 			submit_bh(REQ_OP_READ, 0, bh);
2361 	}
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365 
2366 /* utility function for filesystems that need to do work on expanding
2367  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2368  * deal with the hole.
2369  */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372 	struct address_space *mapping = inode->i_mapping;
2373 	struct page *page;
2374 	void *fsdata;
2375 	int err;
2376 
2377 	err = inode_newsize_ok(inode, size);
2378 	if (err)
2379 		goto out;
2380 
2381 	err = pagecache_write_begin(NULL, mapping, size, 0,
2382 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2383 				&page, &fsdata);
2384 	if (err)
2385 		goto out;
2386 
2387 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2388 	BUG_ON(err > 0);
2389 
2390 out:
2391 	return err;
2392 }
2393 EXPORT_SYMBOL(generic_cont_expand_simple);
2394 
2395 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2396 			    loff_t pos, loff_t *bytes)
2397 {
2398 	struct inode *inode = mapping->host;
2399 	unsigned int blocksize = i_blocksize(inode);
2400 	struct page *page;
2401 	void *fsdata;
2402 	pgoff_t index, curidx;
2403 	loff_t curpos;
2404 	unsigned zerofrom, offset, len;
2405 	int err = 0;
2406 
2407 	index = pos >> PAGE_SHIFT;
2408 	offset = pos & ~PAGE_MASK;
2409 
2410 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2411 		zerofrom = curpos & ~PAGE_MASK;
2412 		if (zerofrom & (blocksize-1)) {
2413 			*bytes |= (blocksize-1);
2414 			(*bytes)++;
2415 		}
2416 		len = PAGE_SIZE - zerofrom;
2417 
2418 		err = pagecache_write_begin(file, mapping, curpos, len,
2419 						AOP_FLAG_UNINTERRUPTIBLE,
2420 						&page, &fsdata);
2421 		if (err)
2422 			goto out;
2423 		zero_user(page, zerofrom, len);
2424 		err = pagecache_write_end(file, mapping, curpos, len, len,
2425 						page, fsdata);
2426 		if (err < 0)
2427 			goto out;
2428 		BUG_ON(err != len);
2429 		err = 0;
2430 
2431 		balance_dirty_pages_ratelimited(mapping);
2432 
2433 		if (unlikely(fatal_signal_pending(current))) {
2434 			err = -EINTR;
2435 			goto out;
2436 		}
2437 	}
2438 
2439 	/* page covers the boundary, find the boundary offset */
2440 	if (index == curidx) {
2441 		zerofrom = curpos & ~PAGE_MASK;
2442 		/* if we will expand the thing last block will be filled */
2443 		if (offset <= zerofrom) {
2444 			goto out;
2445 		}
2446 		if (zerofrom & (blocksize-1)) {
2447 			*bytes |= (blocksize-1);
2448 			(*bytes)++;
2449 		}
2450 		len = offset - zerofrom;
2451 
2452 		err = pagecache_write_begin(file, mapping, curpos, len,
2453 						AOP_FLAG_UNINTERRUPTIBLE,
2454 						&page, &fsdata);
2455 		if (err)
2456 			goto out;
2457 		zero_user(page, zerofrom, len);
2458 		err = pagecache_write_end(file, mapping, curpos, len, len,
2459 						page, fsdata);
2460 		if (err < 0)
2461 			goto out;
2462 		BUG_ON(err != len);
2463 		err = 0;
2464 	}
2465 out:
2466 	return err;
2467 }
2468 
2469 /*
2470  * For moronic filesystems that do not allow holes in file.
2471  * We may have to extend the file.
2472  */
2473 int cont_write_begin(struct file *file, struct address_space *mapping,
2474 			loff_t pos, unsigned len, unsigned flags,
2475 			struct page **pagep, void **fsdata,
2476 			get_block_t *get_block, loff_t *bytes)
2477 {
2478 	struct inode *inode = mapping->host;
2479 	unsigned int blocksize = i_blocksize(inode);
2480 	unsigned int zerofrom;
2481 	int err;
2482 
2483 	err = cont_expand_zero(file, mapping, pos, bytes);
2484 	if (err)
2485 		return err;
2486 
2487 	zerofrom = *bytes & ~PAGE_MASK;
2488 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2489 		*bytes |= (blocksize-1);
2490 		(*bytes)++;
2491 	}
2492 
2493 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2494 }
2495 EXPORT_SYMBOL(cont_write_begin);
2496 
2497 int block_commit_write(struct page *page, unsigned from, unsigned to)
2498 {
2499 	struct inode *inode = page->mapping->host;
2500 	__block_commit_write(inode,page,from,to);
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(block_commit_write);
2504 
2505 /*
2506  * block_page_mkwrite() is not allowed to change the file size as it gets
2507  * called from a page fault handler when a page is first dirtied. Hence we must
2508  * be careful to check for EOF conditions here. We set the page up correctly
2509  * for a written page which means we get ENOSPC checking when writing into
2510  * holes and correct delalloc and unwritten extent mapping on filesystems that
2511  * support these features.
2512  *
2513  * We are not allowed to take the i_mutex here so we have to play games to
2514  * protect against truncate races as the page could now be beyond EOF.  Because
2515  * truncate writes the inode size before removing pages, once we have the
2516  * page lock we can determine safely if the page is beyond EOF. If it is not
2517  * beyond EOF, then the page is guaranteed safe against truncation until we
2518  * unlock the page.
2519  *
2520  * Direct callers of this function should protect against filesystem freezing
2521  * using sb_start_pagefault() - sb_end_pagefault() functions.
2522  */
2523 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2524 			 get_block_t get_block)
2525 {
2526 	struct page *page = vmf->page;
2527 	struct inode *inode = file_inode(vma->vm_file);
2528 	unsigned long end;
2529 	loff_t size;
2530 	int ret;
2531 
2532 	lock_page(page);
2533 	size = i_size_read(inode);
2534 	if ((page->mapping != inode->i_mapping) ||
2535 	    (page_offset(page) > size)) {
2536 		/* We overload EFAULT to mean page got truncated */
2537 		ret = -EFAULT;
2538 		goto out_unlock;
2539 	}
2540 
2541 	/* page is wholly or partially inside EOF */
2542 	if (((page->index + 1) << PAGE_SHIFT) > size)
2543 		end = size & ~PAGE_MASK;
2544 	else
2545 		end = PAGE_SIZE;
2546 
2547 	ret = __block_write_begin(page, 0, end, get_block);
2548 	if (!ret)
2549 		ret = block_commit_write(page, 0, end);
2550 
2551 	if (unlikely(ret < 0))
2552 		goto out_unlock;
2553 	set_page_dirty(page);
2554 	wait_for_stable_page(page);
2555 	return 0;
2556 out_unlock:
2557 	unlock_page(page);
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL(block_page_mkwrite);
2561 
2562 /*
2563  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2564  * immediately, while under the page lock.  So it needs a special end_io
2565  * handler which does not touch the bh after unlocking it.
2566  */
2567 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2568 {
2569 	__end_buffer_read_notouch(bh, uptodate);
2570 }
2571 
2572 /*
2573  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2574  * the page (converting it to circular linked list and taking care of page
2575  * dirty races).
2576  */
2577 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2578 {
2579 	struct buffer_head *bh;
2580 
2581 	BUG_ON(!PageLocked(page));
2582 
2583 	spin_lock(&page->mapping->private_lock);
2584 	bh = head;
2585 	do {
2586 		if (PageDirty(page))
2587 			set_buffer_dirty(bh);
2588 		if (!bh->b_this_page)
2589 			bh->b_this_page = head;
2590 		bh = bh->b_this_page;
2591 	} while (bh != head);
2592 	attach_page_buffers(page, head);
2593 	spin_unlock(&page->mapping->private_lock);
2594 }
2595 
2596 /*
2597  * On entry, the page is fully not uptodate.
2598  * On exit the page is fully uptodate in the areas outside (from,to)
2599  * The filesystem needs to handle block truncation upon failure.
2600  */
2601 int nobh_write_begin(struct address_space *mapping,
2602 			loff_t pos, unsigned len, unsigned flags,
2603 			struct page **pagep, void **fsdata,
2604 			get_block_t *get_block)
2605 {
2606 	struct inode *inode = mapping->host;
2607 	const unsigned blkbits = inode->i_blkbits;
2608 	const unsigned blocksize = 1 << blkbits;
2609 	struct buffer_head *head, *bh;
2610 	struct page *page;
2611 	pgoff_t index;
2612 	unsigned from, to;
2613 	unsigned block_in_page;
2614 	unsigned block_start, block_end;
2615 	sector_t block_in_file;
2616 	int nr_reads = 0;
2617 	int ret = 0;
2618 	int is_mapped_to_disk = 1;
2619 
2620 	index = pos >> PAGE_SHIFT;
2621 	from = pos & (PAGE_SIZE - 1);
2622 	to = from + len;
2623 
2624 	page = grab_cache_page_write_begin(mapping, index, flags);
2625 	if (!page)
2626 		return -ENOMEM;
2627 	*pagep = page;
2628 	*fsdata = NULL;
2629 
2630 	if (page_has_buffers(page)) {
2631 		ret = __block_write_begin(page, pos, len, get_block);
2632 		if (unlikely(ret))
2633 			goto out_release;
2634 		return ret;
2635 	}
2636 
2637 	if (PageMappedToDisk(page))
2638 		return 0;
2639 
2640 	/*
2641 	 * Allocate buffers so that we can keep track of state, and potentially
2642 	 * attach them to the page if an error occurs. In the common case of
2643 	 * no error, they will just be freed again without ever being attached
2644 	 * to the page (which is all OK, because we're under the page lock).
2645 	 *
2646 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2647 	 * than the circular one we're used to.
2648 	 */
2649 	head = alloc_page_buffers(page, blocksize, 0);
2650 	if (!head) {
2651 		ret = -ENOMEM;
2652 		goto out_release;
2653 	}
2654 
2655 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2656 
2657 	/*
2658 	 * We loop across all blocks in the page, whether or not they are
2659 	 * part of the affected region.  This is so we can discover if the
2660 	 * page is fully mapped-to-disk.
2661 	 */
2662 	for (block_start = 0, block_in_page = 0, bh = head;
2663 		  block_start < PAGE_SIZE;
2664 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2665 		int create;
2666 
2667 		block_end = block_start + blocksize;
2668 		bh->b_state = 0;
2669 		create = 1;
2670 		if (block_start >= to)
2671 			create = 0;
2672 		ret = get_block(inode, block_in_file + block_in_page,
2673 					bh, create);
2674 		if (ret)
2675 			goto failed;
2676 		if (!buffer_mapped(bh))
2677 			is_mapped_to_disk = 0;
2678 		if (buffer_new(bh))
2679 			clean_bdev_bh_alias(bh);
2680 		if (PageUptodate(page)) {
2681 			set_buffer_uptodate(bh);
2682 			continue;
2683 		}
2684 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2685 			zero_user_segments(page, block_start, from,
2686 							to, block_end);
2687 			continue;
2688 		}
2689 		if (buffer_uptodate(bh))
2690 			continue;	/* reiserfs does this */
2691 		if (block_start < from || block_end > to) {
2692 			lock_buffer(bh);
2693 			bh->b_end_io = end_buffer_read_nobh;
2694 			submit_bh(REQ_OP_READ, 0, bh);
2695 			nr_reads++;
2696 		}
2697 	}
2698 
2699 	if (nr_reads) {
2700 		/*
2701 		 * The page is locked, so these buffers are protected from
2702 		 * any VM or truncate activity.  Hence we don't need to care
2703 		 * for the buffer_head refcounts.
2704 		 */
2705 		for (bh = head; bh; bh = bh->b_this_page) {
2706 			wait_on_buffer(bh);
2707 			if (!buffer_uptodate(bh))
2708 				ret = -EIO;
2709 		}
2710 		if (ret)
2711 			goto failed;
2712 	}
2713 
2714 	if (is_mapped_to_disk)
2715 		SetPageMappedToDisk(page);
2716 
2717 	*fsdata = head; /* to be released by nobh_write_end */
2718 
2719 	return 0;
2720 
2721 failed:
2722 	BUG_ON(!ret);
2723 	/*
2724 	 * Error recovery is a bit difficult. We need to zero out blocks that
2725 	 * were newly allocated, and dirty them to ensure they get written out.
2726 	 * Buffers need to be attached to the page at this point, otherwise
2727 	 * the handling of potential IO errors during writeout would be hard
2728 	 * (could try doing synchronous writeout, but what if that fails too?)
2729 	 */
2730 	attach_nobh_buffers(page, head);
2731 	page_zero_new_buffers(page, from, to);
2732 
2733 out_release:
2734 	unlock_page(page);
2735 	put_page(page);
2736 	*pagep = NULL;
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(nobh_write_begin);
2741 
2742 int nobh_write_end(struct file *file, struct address_space *mapping,
2743 			loff_t pos, unsigned len, unsigned copied,
2744 			struct page *page, void *fsdata)
2745 {
2746 	struct inode *inode = page->mapping->host;
2747 	struct buffer_head *head = fsdata;
2748 	struct buffer_head *bh;
2749 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2750 
2751 	if (unlikely(copied < len) && head)
2752 		attach_nobh_buffers(page, head);
2753 	if (page_has_buffers(page))
2754 		return generic_write_end(file, mapping, pos, len,
2755 					copied, page, fsdata);
2756 
2757 	SetPageUptodate(page);
2758 	set_page_dirty(page);
2759 	if (pos+copied > inode->i_size) {
2760 		i_size_write(inode, pos+copied);
2761 		mark_inode_dirty(inode);
2762 	}
2763 
2764 	unlock_page(page);
2765 	put_page(page);
2766 
2767 	while (head) {
2768 		bh = head;
2769 		head = head->b_this_page;
2770 		free_buffer_head(bh);
2771 	}
2772 
2773 	return copied;
2774 }
2775 EXPORT_SYMBOL(nobh_write_end);
2776 
2777 /*
2778  * nobh_writepage() - based on block_full_write_page() except
2779  * that it tries to operate without attaching bufferheads to
2780  * the page.
2781  */
2782 int nobh_writepage(struct page *page, get_block_t *get_block,
2783 			struct writeback_control *wbc)
2784 {
2785 	struct inode * const inode = page->mapping->host;
2786 	loff_t i_size = i_size_read(inode);
2787 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2788 	unsigned offset;
2789 	int ret;
2790 
2791 	/* Is the page fully inside i_size? */
2792 	if (page->index < end_index)
2793 		goto out;
2794 
2795 	/* Is the page fully outside i_size? (truncate in progress) */
2796 	offset = i_size & (PAGE_SIZE-1);
2797 	if (page->index >= end_index+1 || !offset) {
2798 		/*
2799 		 * The page may have dirty, unmapped buffers.  For example,
2800 		 * they may have been added in ext3_writepage().  Make them
2801 		 * freeable here, so the page does not leak.
2802 		 */
2803 #if 0
2804 		/* Not really sure about this  - do we need this ? */
2805 		if (page->mapping->a_ops->invalidatepage)
2806 			page->mapping->a_ops->invalidatepage(page, offset);
2807 #endif
2808 		unlock_page(page);
2809 		return 0; /* don't care */
2810 	}
2811 
2812 	/*
2813 	 * The page straddles i_size.  It must be zeroed out on each and every
2814 	 * writepage invocation because it may be mmapped.  "A file is mapped
2815 	 * in multiples of the page size.  For a file that is not a multiple of
2816 	 * the  page size, the remaining memory is zeroed when mapped, and
2817 	 * writes to that region are not written out to the file."
2818 	 */
2819 	zero_user_segment(page, offset, PAGE_SIZE);
2820 out:
2821 	ret = mpage_writepage(page, get_block, wbc);
2822 	if (ret == -EAGAIN)
2823 		ret = __block_write_full_page(inode, page, get_block, wbc,
2824 					      end_buffer_async_write);
2825 	return ret;
2826 }
2827 EXPORT_SYMBOL(nobh_writepage);
2828 
2829 int nobh_truncate_page(struct address_space *mapping,
2830 			loff_t from, get_block_t *get_block)
2831 {
2832 	pgoff_t index = from >> PAGE_SHIFT;
2833 	unsigned offset = from & (PAGE_SIZE-1);
2834 	unsigned blocksize;
2835 	sector_t iblock;
2836 	unsigned length, pos;
2837 	struct inode *inode = mapping->host;
2838 	struct page *page;
2839 	struct buffer_head map_bh;
2840 	int err;
2841 
2842 	blocksize = i_blocksize(inode);
2843 	length = offset & (blocksize - 1);
2844 
2845 	/* Block boundary? Nothing to do */
2846 	if (!length)
2847 		return 0;
2848 
2849 	length = blocksize - length;
2850 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2851 
2852 	page = grab_cache_page(mapping, index);
2853 	err = -ENOMEM;
2854 	if (!page)
2855 		goto out;
2856 
2857 	if (page_has_buffers(page)) {
2858 has_buffers:
2859 		unlock_page(page);
2860 		put_page(page);
2861 		return block_truncate_page(mapping, from, get_block);
2862 	}
2863 
2864 	/* Find the buffer that contains "offset" */
2865 	pos = blocksize;
2866 	while (offset >= pos) {
2867 		iblock++;
2868 		pos += blocksize;
2869 	}
2870 
2871 	map_bh.b_size = blocksize;
2872 	map_bh.b_state = 0;
2873 	err = get_block(inode, iblock, &map_bh, 0);
2874 	if (err)
2875 		goto unlock;
2876 	/* unmapped? It's a hole - nothing to do */
2877 	if (!buffer_mapped(&map_bh))
2878 		goto unlock;
2879 
2880 	/* Ok, it's mapped. Make sure it's up-to-date */
2881 	if (!PageUptodate(page)) {
2882 		err = mapping->a_ops->readpage(NULL, page);
2883 		if (err) {
2884 			put_page(page);
2885 			goto out;
2886 		}
2887 		lock_page(page);
2888 		if (!PageUptodate(page)) {
2889 			err = -EIO;
2890 			goto unlock;
2891 		}
2892 		if (page_has_buffers(page))
2893 			goto has_buffers;
2894 	}
2895 	zero_user(page, offset, length);
2896 	set_page_dirty(page);
2897 	err = 0;
2898 
2899 unlock:
2900 	unlock_page(page);
2901 	put_page(page);
2902 out:
2903 	return err;
2904 }
2905 EXPORT_SYMBOL(nobh_truncate_page);
2906 
2907 int block_truncate_page(struct address_space *mapping,
2908 			loff_t from, get_block_t *get_block)
2909 {
2910 	pgoff_t index = from >> PAGE_SHIFT;
2911 	unsigned offset = from & (PAGE_SIZE-1);
2912 	unsigned blocksize;
2913 	sector_t iblock;
2914 	unsigned length, pos;
2915 	struct inode *inode = mapping->host;
2916 	struct page *page;
2917 	struct buffer_head *bh;
2918 	int err;
2919 
2920 	blocksize = i_blocksize(inode);
2921 	length = offset & (blocksize - 1);
2922 
2923 	/* Block boundary? Nothing to do */
2924 	if (!length)
2925 		return 0;
2926 
2927 	length = blocksize - length;
2928 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2929 
2930 	page = grab_cache_page(mapping, index);
2931 	err = -ENOMEM;
2932 	if (!page)
2933 		goto out;
2934 
2935 	if (!page_has_buffers(page))
2936 		create_empty_buffers(page, blocksize, 0);
2937 
2938 	/* Find the buffer that contains "offset" */
2939 	bh = page_buffers(page);
2940 	pos = blocksize;
2941 	while (offset >= pos) {
2942 		bh = bh->b_this_page;
2943 		iblock++;
2944 		pos += blocksize;
2945 	}
2946 
2947 	err = 0;
2948 	if (!buffer_mapped(bh)) {
2949 		WARN_ON(bh->b_size != blocksize);
2950 		err = get_block(inode, iblock, bh, 0);
2951 		if (err)
2952 			goto unlock;
2953 		/* unmapped? It's a hole - nothing to do */
2954 		if (!buffer_mapped(bh))
2955 			goto unlock;
2956 	}
2957 
2958 	/* Ok, it's mapped. Make sure it's up-to-date */
2959 	if (PageUptodate(page))
2960 		set_buffer_uptodate(bh);
2961 
2962 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2963 		err = -EIO;
2964 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2965 		wait_on_buffer(bh);
2966 		/* Uhhuh. Read error. Complain and punt. */
2967 		if (!buffer_uptodate(bh))
2968 			goto unlock;
2969 	}
2970 
2971 	zero_user(page, offset, length);
2972 	mark_buffer_dirty(bh);
2973 	err = 0;
2974 
2975 unlock:
2976 	unlock_page(page);
2977 	put_page(page);
2978 out:
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(block_truncate_page);
2982 
2983 /*
2984  * The generic ->writepage function for buffer-backed address_spaces
2985  */
2986 int block_write_full_page(struct page *page, get_block_t *get_block,
2987 			struct writeback_control *wbc)
2988 {
2989 	struct inode * const inode = page->mapping->host;
2990 	loff_t i_size = i_size_read(inode);
2991 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2992 	unsigned offset;
2993 
2994 	/* Is the page fully inside i_size? */
2995 	if (page->index < end_index)
2996 		return __block_write_full_page(inode, page, get_block, wbc,
2997 					       end_buffer_async_write);
2998 
2999 	/* Is the page fully outside i_size? (truncate in progress) */
3000 	offset = i_size & (PAGE_SIZE-1);
3001 	if (page->index >= end_index+1 || !offset) {
3002 		/*
3003 		 * The page may have dirty, unmapped buffers.  For example,
3004 		 * they may have been added in ext3_writepage().  Make them
3005 		 * freeable here, so the page does not leak.
3006 		 */
3007 		do_invalidatepage(page, 0, PAGE_SIZE);
3008 		unlock_page(page);
3009 		return 0; /* don't care */
3010 	}
3011 
3012 	/*
3013 	 * The page straddles i_size.  It must be zeroed out on each and every
3014 	 * writepage invocation because it may be mmapped.  "A file is mapped
3015 	 * in multiples of the page size.  For a file that is not a multiple of
3016 	 * the  page size, the remaining memory is zeroed when mapped, and
3017 	 * writes to that region are not written out to the file."
3018 	 */
3019 	zero_user_segment(page, offset, PAGE_SIZE);
3020 	return __block_write_full_page(inode, page, get_block, wbc,
3021 							end_buffer_async_write);
3022 }
3023 EXPORT_SYMBOL(block_write_full_page);
3024 
3025 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3026 			    get_block_t *get_block)
3027 {
3028 	struct buffer_head tmp;
3029 	struct inode *inode = mapping->host;
3030 	tmp.b_state = 0;
3031 	tmp.b_blocknr = 0;
3032 	tmp.b_size = i_blocksize(inode);
3033 	get_block(inode, block, &tmp, 0);
3034 	return tmp.b_blocknr;
3035 }
3036 EXPORT_SYMBOL(generic_block_bmap);
3037 
3038 static void end_bio_bh_io_sync(struct bio *bio)
3039 {
3040 	struct buffer_head *bh = bio->bi_private;
3041 
3042 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3043 		set_bit(BH_Quiet, &bh->b_state);
3044 
3045 	bh->b_end_io(bh, !bio->bi_error);
3046 	bio_put(bio);
3047 }
3048 
3049 /*
3050  * This allows us to do IO even on the odd last sectors
3051  * of a device, even if the block size is some multiple
3052  * of the physical sector size.
3053  *
3054  * We'll just truncate the bio to the size of the device,
3055  * and clear the end of the buffer head manually.
3056  *
3057  * Truly out-of-range accesses will turn into actual IO
3058  * errors, this only handles the "we need to be able to
3059  * do IO at the final sector" case.
3060  */
3061 void guard_bio_eod(int op, struct bio *bio)
3062 {
3063 	sector_t maxsector;
3064 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3065 	unsigned truncated_bytes;
3066 
3067 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3068 	if (!maxsector)
3069 		return;
3070 
3071 	/*
3072 	 * If the *whole* IO is past the end of the device,
3073 	 * let it through, and the IO layer will turn it into
3074 	 * an EIO.
3075 	 */
3076 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3077 		return;
3078 
3079 	maxsector -= bio->bi_iter.bi_sector;
3080 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3081 		return;
3082 
3083 	/* Uhhuh. We've got a bio that straddles the device size! */
3084 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3085 
3086 	/* Truncate the bio.. */
3087 	bio->bi_iter.bi_size -= truncated_bytes;
3088 	bvec->bv_len -= truncated_bytes;
3089 
3090 	/* ..and clear the end of the buffer for reads */
3091 	if (op == REQ_OP_READ) {
3092 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3093 				truncated_bytes);
3094 	}
3095 }
3096 
3097 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3098 			 unsigned long bio_flags, struct writeback_control *wbc)
3099 {
3100 	struct bio *bio;
3101 
3102 	BUG_ON(!buffer_locked(bh));
3103 	BUG_ON(!buffer_mapped(bh));
3104 	BUG_ON(!bh->b_end_io);
3105 	BUG_ON(buffer_delay(bh));
3106 	BUG_ON(buffer_unwritten(bh));
3107 
3108 	/*
3109 	 * Only clear out a write error when rewriting
3110 	 */
3111 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3112 		clear_buffer_write_io_error(bh);
3113 
3114 	/*
3115 	 * from here on down, it's all bio -- do the initial mapping,
3116 	 * submit_bio -> generic_make_request may further map this bio around
3117 	 */
3118 	bio = bio_alloc(GFP_NOIO, 1);
3119 
3120 	if (wbc) {
3121 		wbc_init_bio(wbc, bio);
3122 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3123 	}
3124 
3125 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3126 	bio->bi_bdev = bh->b_bdev;
3127 
3128 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3129 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3130 
3131 	bio->bi_end_io = end_bio_bh_io_sync;
3132 	bio->bi_private = bh;
3133 	bio->bi_flags |= bio_flags;
3134 
3135 	/* Take care of bh's that straddle the end of the device */
3136 	guard_bio_eod(op, bio);
3137 
3138 	if (buffer_meta(bh))
3139 		op_flags |= REQ_META;
3140 	if (buffer_prio(bh))
3141 		op_flags |= REQ_PRIO;
3142 	bio_set_op_attrs(bio, op, op_flags);
3143 
3144 	submit_bio(bio);
3145 	return 0;
3146 }
3147 
3148 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3149 	       unsigned long bio_flags)
3150 {
3151 	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3152 }
3153 EXPORT_SYMBOL_GPL(_submit_bh);
3154 
3155 int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3156 {
3157 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3158 }
3159 EXPORT_SYMBOL(submit_bh);
3160 
3161 /**
3162  * ll_rw_block: low-level access to block devices (DEPRECATED)
3163  * @op: whether to %READ or %WRITE
3164  * @op_flags: req_flag_bits
3165  * @nr: number of &struct buffer_heads in the array
3166  * @bhs: array of pointers to &struct buffer_head
3167  *
3168  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3169  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3170  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3171  * %REQ_RAHEAD.
3172  *
3173  * This function drops any buffer that it cannot get a lock on (with the
3174  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3175  * request, and any buffer that appears to be up-to-date when doing read
3176  * request.  Further it marks as clean buffers that are processed for
3177  * writing (the buffer cache won't assume that they are actually clean
3178  * until the buffer gets unlocked).
3179  *
3180  * ll_rw_block sets b_end_io to simple completion handler that marks
3181  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3182  * any waiters.
3183  *
3184  * All of the buffers must be for the same device, and must also be a
3185  * multiple of the current approved size for the device.
3186  */
3187 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3188 {
3189 	int i;
3190 
3191 	for (i = 0; i < nr; i++) {
3192 		struct buffer_head *bh = bhs[i];
3193 
3194 		if (!trylock_buffer(bh))
3195 			continue;
3196 		if (op == WRITE) {
3197 			if (test_clear_buffer_dirty(bh)) {
3198 				bh->b_end_io = end_buffer_write_sync;
3199 				get_bh(bh);
3200 				submit_bh(op, op_flags, bh);
3201 				continue;
3202 			}
3203 		} else {
3204 			if (!buffer_uptodate(bh)) {
3205 				bh->b_end_io = end_buffer_read_sync;
3206 				get_bh(bh);
3207 				submit_bh(op, op_flags, bh);
3208 				continue;
3209 			}
3210 		}
3211 		unlock_buffer(bh);
3212 	}
3213 }
3214 EXPORT_SYMBOL(ll_rw_block);
3215 
3216 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3217 {
3218 	lock_buffer(bh);
3219 	if (!test_clear_buffer_dirty(bh)) {
3220 		unlock_buffer(bh);
3221 		return;
3222 	}
3223 	bh->b_end_io = end_buffer_write_sync;
3224 	get_bh(bh);
3225 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3226 }
3227 EXPORT_SYMBOL(write_dirty_buffer);
3228 
3229 /*
3230  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3231  * and then start new I/O and then wait upon it.  The caller must have a ref on
3232  * the buffer_head.
3233  */
3234 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3235 {
3236 	int ret = 0;
3237 
3238 	WARN_ON(atomic_read(&bh->b_count) < 1);
3239 	lock_buffer(bh);
3240 	if (test_clear_buffer_dirty(bh)) {
3241 		get_bh(bh);
3242 		bh->b_end_io = end_buffer_write_sync;
3243 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3244 		wait_on_buffer(bh);
3245 		if (!ret && !buffer_uptodate(bh))
3246 			ret = -EIO;
3247 	} else {
3248 		unlock_buffer(bh);
3249 	}
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL(__sync_dirty_buffer);
3253 
3254 int sync_dirty_buffer(struct buffer_head *bh)
3255 {
3256 	return __sync_dirty_buffer(bh, REQ_SYNC);
3257 }
3258 EXPORT_SYMBOL(sync_dirty_buffer);
3259 
3260 /*
3261  * try_to_free_buffers() checks if all the buffers on this particular page
3262  * are unused, and releases them if so.
3263  *
3264  * Exclusion against try_to_free_buffers may be obtained by either
3265  * locking the page or by holding its mapping's private_lock.
3266  *
3267  * If the page is dirty but all the buffers are clean then we need to
3268  * be sure to mark the page clean as well.  This is because the page
3269  * may be against a block device, and a later reattachment of buffers
3270  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3271  * filesystem data on the same device.
3272  *
3273  * The same applies to regular filesystem pages: if all the buffers are
3274  * clean then we set the page clean and proceed.  To do that, we require
3275  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3276  * private_lock.
3277  *
3278  * try_to_free_buffers() is non-blocking.
3279  */
3280 static inline int buffer_busy(struct buffer_head *bh)
3281 {
3282 	return atomic_read(&bh->b_count) |
3283 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3284 }
3285 
3286 static int
3287 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3288 {
3289 	struct buffer_head *head = page_buffers(page);
3290 	struct buffer_head *bh;
3291 
3292 	bh = head;
3293 	do {
3294 		if (buffer_write_io_error(bh) && page->mapping)
3295 			mapping_set_error(page->mapping, -EIO);
3296 		if (buffer_busy(bh))
3297 			goto failed;
3298 		bh = bh->b_this_page;
3299 	} while (bh != head);
3300 
3301 	do {
3302 		struct buffer_head *next = bh->b_this_page;
3303 
3304 		if (bh->b_assoc_map)
3305 			__remove_assoc_queue(bh);
3306 		bh = next;
3307 	} while (bh != head);
3308 	*buffers_to_free = head;
3309 	__clear_page_buffers(page);
3310 	return 1;
3311 failed:
3312 	return 0;
3313 }
3314 
3315 int try_to_free_buffers(struct page *page)
3316 {
3317 	struct address_space * const mapping = page->mapping;
3318 	struct buffer_head *buffers_to_free = NULL;
3319 	int ret = 0;
3320 
3321 	BUG_ON(!PageLocked(page));
3322 	if (PageWriteback(page))
3323 		return 0;
3324 
3325 	if (mapping == NULL) {		/* can this still happen? */
3326 		ret = drop_buffers(page, &buffers_to_free);
3327 		goto out;
3328 	}
3329 
3330 	spin_lock(&mapping->private_lock);
3331 	ret = drop_buffers(page, &buffers_to_free);
3332 
3333 	/*
3334 	 * If the filesystem writes its buffers by hand (eg ext3)
3335 	 * then we can have clean buffers against a dirty page.  We
3336 	 * clean the page here; otherwise the VM will never notice
3337 	 * that the filesystem did any IO at all.
3338 	 *
3339 	 * Also, during truncate, discard_buffer will have marked all
3340 	 * the page's buffers clean.  We discover that here and clean
3341 	 * the page also.
3342 	 *
3343 	 * private_lock must be held over this entire operation in order
3344 	 * to synchronise against __set_page_dirty_buffers and prevent the
3345 	 * dirty bit from being lost.
3346 	 */
3347 	if (ret)
3348 		cancel_dirty_page(page);
3349 	spin_unlock(&mapping->private_lock);
3350 out:
3351 	if (buffers_to_free) {
3352 		struct buffer_head *bh = buffers_to_free;
3353 
3354 		do {
3355 			struct buffer_head *next = bh->b_this_page;
3356 			free_buffer_head(bh);
3357 			bh = next;
3358 		} while (bh != buffers_to_free);
3359 	}
3360 	return ret;
3361 }
3362 EXPORT_SYMBOL(try_to_free_buffers);
3363 
3364 /*
3365  * There are no bdflush tunables left.  But distributions are
3366  * still running obsolete flush daemons, so we terminate them here.
3367  *
3368  * Use of bdflush() is deprecated and will be removed in a future kernel.
3369  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3370  */
3371 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3372 {
3373 	static int msg_count;
3374 
3375 	if (!capable(CAP_SYS_ADMIN))
3376 		return -EPERM;
3377 
3378 	if (msg_count < 5) {
3379 		msg_count++;
3380 		printk(KERN_INFO
3381 			"warning: process `%s' used the obsolete bdflush"
3382 			" system call\n", current->comm);
3383 		printk(KERN_INFO "Fix your initscripts?\n");
3384 	}
3385 
3386 	if (func == 1)
3387 		do_exit(0);
3388 	return 0;
3389 }
3390 
3391 /*
3392  * Buffer-head allocation
3393  */
3394 static struct kmem_cache *bh_cachep __read_mostly;
3395 
3396 /*
3397  * Once the number of bh's in the machine exceeds this level, we start
3398  * stripping them in writeback.
3399  */
3400 static unsigned long max_buffer_heads;
3401 
3402 int buffer_heads_over_limit;
3403 
3404 struct bh_accounting {
3405 	int nr;			/* Number of live bh's */
3406 	int ratelimit;		/* Limit cacheline bouncing */
3407 };
3408 
3409 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3410 
3411 static void recalc_bh_state(void)
3412 {
3413 	int i;
3414 	int tot = 0;
3415 
3416 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3417 		return;
3418 	__this_cpu_write(bh_accounting.ratelimit, 0);
3419 	for_each_online_cpu(i)
3420 		tot += per_cpu(bh_accounting, i).nr;
3421 	buffer_heads_over_limit = (tot > max_buffer_heads);
3422 }
3423 
3424 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3425 {
3426 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3427 	if (ret) {
3428 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3429 		preempt_disable();
3430 		__this_cpu_inc(bh_accounting.nr);
3431 		recalc_bh_state();
3432 		preempt_enable();
3433 	}
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL(alloc_buffer_head);
3437 
3438 void free_buffer_head(struct buffer_head *bh)
3439 {
3440 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3441 	kmem_cache_free(bh_cachep, bh);
3442 	preempt_disable();
3443 	__this_cpu_dec(bh_accounting.nr);
3444 	recalc_bh_state();
3445 	preempt_enable();
3446 }
3447 EXPORT_SYMBOL(free_buffer_head);
3448 
3449 static int buffer_exit_cpu_dead(unsigned int cpu)
3450 {
3451 	int i;
3452 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3453 
3454 	for (i = 0; i < BH_LRU_SIZE; i++) {
3455 		brelse(b->bhs[i]);
3456 		b->bhs[i] = NULL;
3457 	}
3458 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3459 	per_cpu(bh_accounting, cpu).nr = 0;
3460 	return 0;
3461 }
3462 
3463 /**
3464  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3465  * @bh: struct buffer_head
3466  *
3467  * Return true if the buffer is up-to-date and false,
3468  * with the buffer locked, if not.
3469  */
3470 int bh_uptodate_or_lock(struct buffer_head *bh)
3471 {
3472 	if (!buffer_uptodate(bh)) {
3473 		lock_buffer(bh);
3474 		if (!buffer_uptodate(bh))
3475 			return 0;
3476 		unlock_buffer(bh);
3477 	}
3478 	return 1;
3479 }
3480 EXPORT_SYMBOL(bh_uptodate_or_lock);
3481 
3482 /**
3483  * bh_submit_read - Submit a locked buffer for reading
3484  * @bh: struct buffer_head
3485  *
3486  * Returns zero on success and -EIO on error.
3487  */
3488 int bh_submit_read(struct buffer_head *bh)
3489 {
3490 	BUG_ON(!buffer_locked(bh));
3491 
3492 	if (buffer_uptodate(bh)) {
3493 		unlock_buffer(bh);
3494 		return 0;
3495 	}
3496 
3497 	get_bh(bh);
3498 	bh->b_end_io = end_buffer_read_sync;
3499 	submit_bh(REQ_OP_READ, 0, bh);
3500 	wait_on_buffer(bh);
3501 	if (buffer_uptodate(bh))
3502 		return 0;
3503 	return -EIO;
3504 }
3505 EXPORT_SYMBOL(bh_submit_read);
3506 
3507 void __init buffer_init(void)
3508 {
3509 	unsigned long nrpages;
3510 	int ret;
3511 
3512 	bh_cachep = kmem_cache_create("buffer_head",
3513 			sizeof(struct buffer_head), 0,
3514 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3515 				SLAB_MEM_SPREAD),
3516 				NULL);
3517 
3518 	/*
3519 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3520 	 */
3521 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3522 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3523 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3524 					NULL, buffer_exit_cpu_dead);
3525 	WARN_ON(ret < 0);
3526 }
3527