1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 56 static int sync_buffer(void *word) 57 { 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 84 /* 85 * Block until a buffer comes unlocked. This doesn't stop it 86 * from becoming locked again - you have to lock it yourself 87 * if you want to preserve its state. 88 */ 89 void __wait_on_buffer(struct buffer_head * bh) 90 { 91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 92 } 93 94 static void 95 __clear_page_buffers(struct page *page) 96 { 97 ClearPagePrivate(page); 98 set_page_private(page, 0); 99 page_cache_release(page); 100 } 101 102 103 static int quiet_error(struct buffer_head *bh) 104 { 105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 106 return 0; 107 return 1; 108 } 109 110 111 static void buffer_io_error(struct buffer_head *bh) 112 { 113 char b[BDEVNAME_SIZE]; 114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 115 bdevname(bh->b_bdev, b), 116 (unsigned long long)bh->b_blocknr); 117 } 118 119 /* 120 * End-of-IO handler helper function which does not touch the bh after 121 * unlocking it. 122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 123 * a race there is benign: unlock_buffer() only use the bh's address for 124 * hashing after unlocking the buffer, so it doesn't actually touch the bh 125 * itself. 126 */ 127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 128 { 129 if (uptodate) { 130 set_buffer_uptodate(bh); 131 } else { 132 /* This happens, due to failed READA attempts. */ 133 clear_buffer_uptodate(bh); 134 } 135 unlock_buffer(bh); 136 } 137 138 /* 139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 140 * unlock the buffer. This is what ll_rw_block uses too. 141 */ 142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 143 { 144 __end_buffer_read_notouch(bh, uptodate); 145 put_bh(bh); 146 } 147 148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 149 { 150 char b[BDEVNAME_SIZE]; 151 152 if (uptodate) { 153 set_buffer_uptodate(bh); 154 } else { 155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) { 156 buffer_io_error(bh); 157 printk(KERN_WARNING "lost page write due to " 158 "I/O error on %s\n", 159 bdevname(bh->b_bdev, b)); 160 } 161 set_buffer_write_io_error(bh); 162 clear_buffer_uptodate(bh); 163 } 164 unlock_buffer(bh); 165 put_bh(bh); 166 } 167 168 /* 169 * Various filesystems appear to want __find_get_block to be non-blocking. 170 * But it's the page lock which protects the buffers. To get around this, 171 * we get exclusion from try_to_free_buffers with the blockdev mapping's 172 * private_lock. 173 * 174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 175 * may be quite high. This code could TryLock the page, and if that 176 * succeeds, there is no need to take private_lock. (But if 177 * private_lock is contended then so is mapping->tree_lock). 178 */ 179 static struct buffer_head * 180 __find_get_block_slow(struct block_device *bdev, sector_t block) 181 { 182 struct inode *bd_inode = bdev->bd_inode; 183 struct address_space *bd_mapping = bd_inode->i_mapping; 184 struct buffer_head *ret = NULL; 185 pgoff_t index; 186 struct buffer_head *bh; 187 struct buffer_head *head; 188 struct page *page; 189 int all_mapped = 1; 190 191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 192 page = find_get_page(bd_mapping, index); 193 if (!page) 194 goto out; 195 196 spin_lock(&bd_mapping->private_lock); 197 if (!page_has_buffers(page)) 198 goto out_unlock; 199 head = page_buffers(page); 200 bh = head; 201 do { 202 if (!buffer_mapped(bh)) 203 all_mapped = 0; 204 else if (bh->b_blocknr == block) { 205 ret = bh; 206 get_bh(bh); 207 goto out_unlock; 208 } 209 bh = bh->b_this_page; 210 } while (bh != head); 211 212 /* we might be here because some of the buffers on this page are 213 * not mapped. This is due to various races between 214 * file io on the block device and getblk. It gets dealt with 215 * elsewhere, don't buffer_error if we had some unmapped buffers 216 */ 217 if (all_mapped) { 218 printk("__find_get_block_slow() failed. " 219 "block=%llu, b_blocknr=%llu\n", 220 (unsigned long long)block, 221 (unsigned long long)bh->b_blocknr); 222 printk("b_state=0x%08lx, b_size=%zu\n", 223 bh->b_state, bh->b_size); 224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* If invalidate_buffers() will trash dirty buffers, it means some kind 234 of fs corruption is going on. Trashing dirty data always imply losing 235 information that was supposed to be just stored on the physical layer 236 by the user. 237 238 Thus invalidate_buffers in general usage is not allwowed to trash 239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 240 be preserved. These buffers are simply skipped. 241 242 We also skip buffers which are still in use. For example this can 243 happen if a userspace program is reading the block device. 244 245 NOTE: In the case where the user removed a removable-media-disk even if 246 there's still dirty data not synced on disk (due a bug in the device driver 247 or due an error of the user), by not destroying the dirty buffers we could 248 generate corruption also on the next media inserted, thus a parameter is 249 necessary to handle this case in the most safe way possible (trying 250 to not corrupt also the new disk inserted with the data belonging to 251 the old now corrupted disk). Also for the ramdisk the natural thing 252 to do in order to release the ramdisk memory is to destroy dirty buffers. 253 254 These are two special cases. Normal usage imply the device driver 255 to issue a sync on the device (without waiting I/O completion) and 256 then an invalidate_buffers call that doesn't trash dirty buffers. 257 258 For handling cache coherency with the blkdev pagecache the 'update' case 259 is been introduced. It is needed to re-read from disk any pinned 260 buffer. NOTE: re-reading from disk is destructive so we can do it only 261 when we assume nobody is changing the buffercache under our I/O and when 262 we think the disk contains more recent information than the buffercache. 263 The update == 1 pass marks the buffers we need to update, the update == 2 264 pass does the actual I/O. */ 265 void invalidate_bdev(struct block_device *bdev) 266 { 267 struct address_space *mapping = bdev->bd_inode->i_mapping; 268 269 if (mapping->nrpages == 0) 270 return; 271 272 invalidate_bh_lrus(); 273 invalidate_mapping_pages(mapping, 0, -1); 274 } 275 276 /* 277 * Kick pdflush then try to free up some ZONE_NORMAL memory. 278 */ 279 static void free_more_memory(void) 280 { 281 struct zone *zone; 282 int nid; 283 284 wakeup_pdflush(1024); 285 yield(); 286 287 for_each_online_node(nid) { 288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 289 gfp_zone(GFP_NOFS), NULL, 290 &zone); 291 if (zone) 292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 293 GFP_NOFS, NULL); 294 } 295 } 296 297 /* 298 * I/O completion handler for block_read_full_page() - pages 299 * which come unlocked at the end of I/O. 300 */ 301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 302 { 303 unsigned long flags; 304 struct buffer_head *first; 305 struct buffer_head *tmp; 306 struct page *page; 307 int page_uptodate = 1; 308 309 BUG_ON(!buffer_async_read(bh)); 310 311 page = bh->b_page; 312 if (uptodate) { 313 set_buffer_uptodate(bh); 314 } else { 315 clear_buffer_uptodate(bh); 316 if (!quiet_error(bh)) 317 buffer_io_error(bh); 318 SetPageError(page); 319 } 320 321 /* 322 * Be _very_ careful from here on. Bad things can happen if 323 * two buffer heads end IO at almost the same time and both 324 * decide that the page is now completely done. 325 */ 326 first = page_buffers(page); 327 local_irq_save(flags); 328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 329 clear_buffer_async_read(bh); 330 unlock_buffer(bh); 331 tmp = bh; 332 do { 333 if (!buffer_uptodate(tmp)) 334 page_uptodate = 0; 335 if (buffer_async_read(tmp)) { 336 BUG_ON(!buffer_locked(tmp)); 337 goto still_busy; 338 } 339 tmp = tmp->b_this_page; 340 } while (tmp != bh); 341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 342 local_irq_restore(flags); 343 344 /* 345 * If none of the buffers had errors and they are all 346 * uptodate then we can set the page uptodate. 347 */ 348 if (page_uptodate && !PageError(page)) 349 SetPageUptodate(page); 350 unlock_page(page); 351 return; 352 353 still_busy: 354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 355 local_irq_restore(flags); 356 return; 357 } 358 359 /* 360 * Completion handler for block_write_full_page() - pages which are unlocked 361 * during I/O, and which have PageWriteback cleared upon I/O completion. 362 */ 363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 364 { 365 char b[BDEVNAME_SIZE]; 366 unsigned long flags; 367 struct buffer_head *first; 368 struct buffer_head *tmp; 369 struct page *page; 370 371 BUG_ON(!buffer_async_write(bh)); 372 373 page = bh->b_page; 374 if (uptodate) { 375 set_buffer_uptodate(bh); 376 } else { 377 if (!quiet_error(bh)) { 378 buffer_io_error(bh); 379 printk(KERN_WARNING "lost page write due to " 380 "I/O error on %s\n", 381 bdevname(bh->b_bdev, b)); 382 } 383 set_bit(AS_EIO, &page->mapping->flags); 384 set_buffer_write_io_error(bh); 385 clear_buffer_uptodate(bh); 386 SetPageError(page); 387 } 388 389 first = page_buffers(page); 390 local_irq_save(flags); 391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 392 393 clear_buffer_async_write(bh); 394 unlock_buffer(bh); 395 tmp = bh->b_this_page; 396 while (tmp != bh) { 397 if (buffer_async_write(tmp)) { 398 BUG_ON(!buffer_locked(tmp)); 399 goto still_busy; 400 } 401 tmp = tmp->b_this_page; 402 } 403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 404 local_irq_restore(flags); 405 end_page_writeback(page); 406 return; 407 408 still_busy: 409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 410 local_irq_restore(flags); 411 return; 412 } 413 414 /* 415 * If a page's buffers are under async readin (end_buffer_async_read 416 * completion) then there is a possibility that another thread of 417 * control could lock one of the buffers after it has completed 418 * but while some of the other buffers have not completed. This 419 * locked buffer would confuse end_buffer_async_read() into not unlocking 420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 421 * that this buffer is not under async I/O. 422 * 423 * The page comes unlocked when it has no locked buffer_async buffers 424 * left. 425 * 426 * PageLocked prevents anyone starting new async I/O reads any of 427 * the buffers. 428 * 429 * PageWriteback is used to prevent simultaneous writeout of the same 430 * page. 431 * 432 * PageLocked prevents anyone from starting writeback of a page which is 433 * under read I/O (PageWriteback is only ever set against a locked page). 434 */ 435 static void mark_buffer_async_read(struct buffer_head *bh) 436 { 437 bh->b_end_io = end_buffer_async_read; 438 set_buffer_async_read(bh); 439 } 440 441 void mark_buffer_async_write(struct buffer_head *bh) 442 { 443 bh->b_end_io = end_buffer_async_write; 444 set_buffer_async_write(bh); 445 } 446 EXPORT_SYMBOL(mark_buffer_async_write); 447 448 449 /* 450 * fs/buffer.c contains helper functions for buffer-backed address space's 451 * fsync functions. A common requirement for buffer-based filesystems is 452 * that certain data from the backing blockdev needs to be written out for 453 * a successful fsync(). For example, ext2 indirect blocks need to be 454 * written back and waited upon before fsync() returns. 455 * 456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 458 * management of a list of dependent buffers at ->i_mapping->private_list. 459 * 460 * Locking is a little subtle: try_to_free_buffers() will remove buffers 461 * from their controlling inode's queue when they are being freed. But 462 * try_to_free_buffers() will be operating against the *blockdev* mapping 463 * at the time, not against the S_ISREG file which depends on those buffers. 464 * So the locking for private_list is via the private_lock in the address_space 465 * which backs the buffers. Which is different from the address_space 466 * against which the buffers are listed. So for a particular address_space, 467 * mapping->private_lock does *not* protect mapping->private_list! In fact, 468 * mapping->private_list will always be protected by the backing blockdev's 469 * ->private_lock. 470 * 471 * Which introduces a requirement: all buffers on an address_space's 472 * ->private_list must be from the same address_space: the blockdev's. 473 * 474 * address_spaces which do not place buffers at ->private_list via these 475 * utility functions are free to use private_lock and private_list for 476 * whatever they want. The only requirement is that list_empty(private_list) 477 * be true at clear_inode() time. 478 * 479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 480 * filesystems should do that. invalidate_inode_buffers() should just go 481 * BUG_ON(!list_empty). 482 * 483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 484 * take an address_space, not an inode. And it should be called 485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 486 * queued up. 487 * 488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 489 * list if it is already on a list. Because if the buffer is on a list, 490 * it *must* already be on the right one. If not, the filesystem is being 491 * silly. This will save a ton of locking. But first we have to ensure 492 * that buffers are taken *off* the old inode's list when they are freed 493 * (presumably in truncate). That requires careful auditing of all 494 * filesystems (do it inside bforget()). It could also be done by bringing 495 * b_inode back. 496 */ 497 498 /* 499 * The buffer's backing address_space's private_lock must be held 500 */ 501 static void __remove_assoc_queue(struct buffer_head *bh) 502 { 503 list_del_init(&bh->b_assoc_buffers); 504 WARN_ON(!bh->b_assoc_map); 505 if (buffer_write_io_error(bh)) 506 set_bit(AS_EIO, &bh->b_assoc_map->flags); 507 bh->b_assoc_map = NULL; 508 } 509 510 int inode_has_buffers(struct inode *inode) 511 { 512 return !list_empty(&inode->i_data.private_list); 513 } 514 515 /* 516 * osync is designed to support O_SYNC io. It waits synchronously for 517 * all already-submitted IO to complete, but does not queue any new 518 * writes to the disk. 519 * 520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 521 * you dirty the buffers, and then use osync_inode_buffers to wait for 522 * completion. Any other dirty buffers which are not yet queued for 523 * write will not be flushed to disk by the osync. 524 */ 525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 526 { 527 struct buffer_head *bh; 528 struct list_head *p; 529 int err = 0; 530 531 spin_lock(lock); 532 repeat: 533 list_for_each_prev(p, list) { 534 bh = BH_ENTRY(p); 535 if (buffer_locked(bh)) { 536 get_bh(bh); 537 spin_unlock(lock); 538 wait_on_buffer(bh); 539 if (!buffer_uptodate(bh)) 540 err = -EIO; 541 brelse(bh); 542 spin_lock(lock); 543 goto repeat; 544 } 545 } 546 spin_unlock(lock); 547 return err; 548 } 549 550 void do_thaw_all(struct work_struct *work) 551 { 552 struct super_block *sb; 553 char b[BDEVNAME_SIZE]; 554 555 spin_lock(&sb_lock); 556 restart: 557 list_for_each_entry(sb, &super_blocks, s_list) { 558 sb->s_count++; 559 spin_unlock(&sb_lock); 560 down_read(&sb->s_umount); 561 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 562 printk(KERN_WARNING "Emergency Thaw on %s\n", 563 bdevname(sb->s_bdev, b)); 564 up_read(&sb->s_umount); 565 spin_lock(&sb_lock); 566 if (__put_super_and_need_restart(sb)) 567 goto restart; 568 } 569 spin_unlock(&sb_lock); 570 kfree(work); 571 printk(KERN_WARNING "Emergency Thaw complete\n"); 572 } 573 574 /** 575 * emergency_thaw_all -- forcibly thaw every frozen filesystem 576 * 577 * Used for emergency unfreeze of all filesystems via SysRq 578 */ 579 void emergency_thaw_all(void) 580 { 581 struct work_struct *work; 582 583 work = kmalloc(sizeof(*work), GFP_ATOMIC); 584 if (work) { 585 INIT_WORK(work, do_thaw_all); 586 schedule_work(work); 587 } 588 } 589 590 /** 591 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 592 * @mapping: the mapping which wants those buffers written 593 * 594 * Starts I/O against the buffers at mapping->private_list, and waits upon 595 * that I/O. 596 * 597 * Basically, this is a convenience function for fsync(). 598 * @mapping is a file or directory which needs those buffers to be written for 599 * a successful fsync(). 600 */ 601 int sync_mapping_buffers(struct address_space *mapping) 602 { 603 struct address_space *buffer_mapping = mapping->assoc_mapping; 604 605 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 606 return 0; 607 608 return fsync_buffers_list(&buffer_mapping->private_lock, 609 &mapping->private_list); 610 } 611 EXPORT_SYMBOL(sync_mapping_buffers); 612 613 /* 614 * Called when we've recently written block `bblock', and it is known that 615 * `bblock' was for a buffer_boundary() buffer. This means that the block at 616 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 617 * dirty, schedule it for IO. So that indirects merge nicely with their data. 618 */ 619 void write_boundary_block(struct block_device *bdev, 620 sector_t bblock, unsigned blocksize) 621 { 622 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 623 if (bh) { 624 if (buffer_dirty(bh)) 625 ll_rw_block(WRITE, 1, &bh); 626 put_bh(bh); 627 } 628 } 629 630 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 631 { 632 struct address_space *mapping = inode->i_mapping; 633 struct address_space *buffer_mapping = bh->b_page->mapping; 634 635 mark_buffer_dirty(bh); 636 if (!mapping->assoc_mapping) { 637 mapping->assoc_mapping = buffer_mapping; 638 } else { 639 BUG_ON(mapping->assoc_mapping != buffer_mapping); 640 } 641 if (!bh->b_assoc_map) { 642 spin_lock(&buffer_mapping->private_lock); 643 list_move_tail(&bh->b_assoc_buffers, 644 &mapping->private_list); 645 bh->b_assoc_map = mapping; 646 spin_unlock(&buffer_mapping->private_lock); 647 } 648 } 649 EXPORT_SYMBOL(mark_buffer_dirty_inode); 650 651 /* 652 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 653 * dirty. 654 * 655 * If warn is true, then emit a warning if the page is not uptodate and has 656 * not been truncated. 657 */ 658 static void __set_page_dirty(struct page *page, 659 struct address_space *mapping, int warn) 660 { 661 spin_lock_irq(&mapping->tree_lock); 662 if (page->mapping) { /* Race with truncate? */ 663 WARN_ON_ONCE(warn && !PageUptodate(page)); 664 account_page_dirtied(page, mapping); 665 radix_tree_tag_set(&mapping->page_tree, 666 page_index(page), PAGECACHE_TAG_DIRTY); 667 } 668 spin_unlock_irq(&mapping->tree_lock); 669 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 670 } 671 672 /* 673 * Add a page to the dirty page list. 674 * 675 * It is a sad fact of life that this function is called from several places 676 * deeply under spinlocking. It may not sleep. 677 * 678 * If the page has buffers, the uptodate buffers are set dirty, to preserve 679 * dirty-state coherency between the page and the buffers. It the page does 680 * not have buffers then when they are later attached they will all be set 681 * dirty. 682 * 683 * The buffers are dirtied before the page is dirtied. There's a small race 684 * window in which a writepage caller may see the page cleanness but not the 685 * buffer dirtiness. That's fine. If this code were to set the page dirty 686 * before the buffers, a concurrent writepage caller could clear the page dirty 687 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 688 * page on the dirty page list. 689 * 690 * We use private_lock to lock against try_to_free_buffers while using the 691 * page's buffer list. Also use this to protect against clean buffers being 692 * added to the page after it was set dirty. 693 * 694 * FIXME: may need to call ->reservepage here as well. That's rather up to the 695 * address_space though. 696 */ 697 int __set_page_dirty_buffers(struct page *page) 698 { 699 int newly_dirty; 700 struct address_space *mapping = page_mapping(page); 701 702 if (unlikely(!mapping)) 703 return !TestSetPageDirty(page); 704 705 spin_lock(&mapping->private_lock); 706 if (page_has_buffers(page)) { 707 struct buffer_head *head = page_buffers(page); 708 struct buffer_head *bh = head; 709 710 do { 711 set_buffer_dirty(bh); 712 bh = bh->b_this_page; 713 } while (bh != head); 714 } 715 newly_dirty = !TestSetPageDirty(page); 716 spin_unlock(&mapping->private_lock); 717 718 if (newly_dirty) 719 __set_page_dirty(page, mapping, 1); 720 return newly_dirty; 721 } 722 EXPORT_SYMBOL(__set_page_dirty_buffers); 723 724 /* 725 * Write out and wait upon a list of buffers. 726 * 727 * We have conflicting pressures: we want to make sure that all 728 * initially dirty buffers get waited on, but that any subsequently 729 * dirtied buffers don't. After all, we don't want fsync to last 730 * forever if somebody is actively writing to the file. 731 * 732 * Do this in two main stages: first we copy dirty buffers to a 733 * temporary inode list, queueing the writes as we go. Then we clean 734 * up, waiting for those writes to complete. 735 * 736 * During this second stage, any subsequent updates to the file may end 737 * up refiling the buffer on the original inode's dirty list again, so 738 * there is a chance we will end up with a buffer queued for write but 739 * not yet completed on that list. So, as a final cleanup we go through 740 * the osync code to catch these locked, dirty buffers without requeuing 741 * any newly dirty buffers for write. 742 */ 743 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 744 { 745 struct buffer_head *bh; 746 struct list_head tmp; 747 struct address_space *mapping, *prev_mapping = NULL; 748 int err = 0, err2; 749 750 INIT_LIST_HEAD(&tmp); 751 752 spin_lock(lock); 753 while (!list_empty(list)) { 754 bh = BH_ENTRY(list->next); 755 mapping = bh->b_assoc_map; 756 __remove_assoc_queue(bh); 757 /* Avoid race with mark_buffer_dirty_inode() which does 758 * a lockless check and we rely on seeing the dirty bit */ 759 smp_mb(); 760 if (buffer_dirty(bh) || buffer_locked(bh)) { 761 list_add(&bh->b_assoc_buffers, &tmp); 762 bh->b_assoc_map = mapping; 763 if (buffer_dirty(bh)) { 764 get_bh(bh); 765 spin_unlock(lock); 766 /* 767 * Ensure any pending I/O completes so that 768 * ll_rw_block() actually writes the current 769 * contents - it is a noop if I/O is still in 770 * flight on potentially older contents. 771 */ 772 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh); 773 774 /* 775 * Kick off IO for the previous mapping. Note 776 * that we will not run the very last mapping, 777 * wait_on_buffer() will do that for us 778 * through sync_buffer(). 779 */ 780 if (prev_mapping && prev_mapping != mapping) 781 blk_run_address_space(prev_mapping); 782 prev_mapping = mapping; 783 784 brelse(bh); 785 spin_lock(lock); 786 } 787 } 788 } 789 790 while (!list_empty(&tmp)) { 791 bh = BH_ENTRY(tmp.prev); 792 get_bh(bh); 793 mapping = bh->b_assoc_map; 794 __remove_assoc_queue(bh); 795 /* Avoid race with mark_buffer_dirty_inode() which does 796 * a lockless check and we rely on seeing the dirty bit */ 797 smp_mb(); 798 if (buffer_dirty(bh)) { 799 list_add(&bh->b_assoc_buffers, 800 &mapping->private_list); 801 bh->b_assoc_map = mapping; 802 } 803 spin_unlock(lock); 804 wait_on_buffer(bh); 805 if (!buffer_uptodate(bh)) 806 err = -EIO; 807 brelse(bh); 808 spin_lock(lock); 809 } 810 811 spin_unlock(lock); 812 err2 = osync_buffers_list(lock, list); 813 if (err) 814 return err; 815 else 816 return err2; 817 } 818 819 /* 820 * Invalidate any and all dirty buffers on a given inode. We are 821 * probably unmounting the fs, but that doesn't mean we have already 822 * done a sync(). Just drop the buffers from the inode list. 823 * 824 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 825 * assumes that all the buffers are against the blockdev. Not true 826 * for reiserfs. 827 */ 828 void invalidate_inode_buffers(struct inode *inode) 829 { 830 if (inode_has_buffers(inode)) { 831 struct address_space *mapping = &inode->i_data; 832 struct list_head *list = &mapping->private_list; 833 struct address_space *buffer_mapping = mapping->assoc_mapping; 834 835 spin_lock(&buffer_mapping->private_lock); 836 while (!list_empty(list)) 837 __remove_assoc_queue(BH_ENTRY(list->next)); 838 spin_unlock(&buffer_mapping->private_lock); 839 } 840 } 841 EXPORT_SYMBOL(invalidate_inode_buffers); 842 843 /* 844 * Remove any clean buffers from the inode's buffer list. This is called 845 * when we're trying to free the inode itself. Those buffers can pin it. 846 * 847 * Returns true if all buffers were removed. 848 */ 849 int remove_inode_buffers(struct inode *inode) 850 { 851 int ret = 1; 852 853 if (inode_has_buffers(inode)) { 854 struct address_space *mapping = &inode->i_data; 855 struct list_head *list = &mapping->private_list; 856 struct address_space *buffer_mapping = mapping->assoc_mapping; 857 858 spin_lock(&buffer_mapping->private_lock); 859 while (!list_empty(list)) { 860 struct buffer_head *bh = BH_ENTRY(list->next); 861 if (buffer_dirty(bh)) { 862 ret = 0; 863 break; 864 } 865 __remove_assoc_queue(bh); 866 } 867 spin_unlock(&buffer_mapping->private_lock); 868 } 869 return ret; 870 } 871 872 /* 873 * Create the appropriate buffers when given a page for data area and 874 * the size of each buffer.. Use the bh->b_this_page linked list to 875 * follow the buffers created. Return NULL if unable to create more 876 * buffers. 877 * 878 * The retry flag is used to differentiate async IO (paging, swapping) 879 * which may not fail from ordinary buffer allocations. 880 */ 881 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 882 int retry) 883 { 884 struct buffer_head *bh, *head; 885 long offset; 886 887 try_again: 888 head = NULL; 889 offset = PAGE_SIZE; 890 while ((offset -= size) >= 0) { 891 bh = alloc_buffer_head(GFP_NOFS); 892 if (!bh) 893 goto no_grow; 894 895 bh->b_bdev = NULL; 896 bh->b_this_page = head; 897 bh->b_blocknr = -1; 898 head = bh; 899 900 bh->b_state = 0; 901 atomic_set(&bh->b_count, 0); 902 bh->b_private = NULL; 903 bh->b_size = size; 904 905 /* Link the buffer to its page */ 906 set_bh_page(bh, page, offset); 907 908 init_buffer(bh, NULL, NULL); 909 } 910 return head; 911 /* 912 * In case anything failed, we just free everything we got. 913 */ 914 no_grow: 915 if (head) { 916 do { 917 bh = head; 918 head = head->b_this_page; 919 free_buffer_head(bh); 920 } while (head); 921 } 922 923 /* 924 * Return failure for non-async IO requests. Async IO requests 925 * are not allowed to fail, so we have to wait until buffer heads 926 * become available. But we don't want tasks sleeping with 927 * partially complete buffers, so all were released above. 928 */ 929 if (!retry) 930 return NULL; 931 932 /* We're _really_ low on memory. Now we just 933 * wait for old buffer heads to become free due to 934 * finishing IO. Since this is an async request and 935 * the reserve list is empty, we're sure there are 936 * async buffer heads in use. 937 */ 938 free_more_memory(); 939 goto try_again; 940 } 941 EXPORT_SYMBOL_GPL(alloc_page_buffers); 942 943 static inline void 944 link_dev_buffers(struct page *page, struct buffer_head *head) 945 { 946 struct buffer_head *bh, *tail; 947 948 bh = head; 949 do { 950 tail = bh; 951 bh = bh->b_this_page; 952 } while (bh); 953 tail->b_this_page = head; 954 attach_page_buffers(page, head); 955 } 956 957 /* 958 * Initialise the state of a blockdev page's buffers. 959 */ 960 static void 961 init_page_buffers(struct page *page, struct block_device *bdev, 962 sector_t block, int size) 963 { 964 struct buffer_head *head = page_buffers(page); 965 struct buffer_head *bh = head; 966 int uptodate = PageUptodate(page); 967 968 do { 969 if (!buffer_mapped(bh)) { 970 init_buffer(bh, NULL, NULL); 971 bh->b_bdev = bdev; 972 bh->b_blocknr = block; 973 if (uptodate) 974 set_buffer_uptodate(bh); 975 set_buffer_mapped(bh); 976 } 977 block++; 978 bh = bh->b_this_page; 979 } while (bh != head); 980 } 981 982 /* 983 * Create the page-cache page that contains the requested block. 984 * 985 * This is user purely for blockdev mappings. 986 */ 987 static struct page * 988 grow_dev_page(struct block_device *bdev, sector_t block, 989 pgoff_t index, int size) 990 { 991 struct inode *inode = bdev->bd_inode; 992 struct page *page; 993 struct buffer_head *bh; 994 995 page = find_or_create_page(inode->i_mapping, index, 996 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 997 if (!page) 998 return NULL; 999 1000 BUG_ON(!PageLocked(page)); 1001 1002 if (page_has_buffers(page)) { 1003 bh = page_buffers(page); 1004 if (bh->b_size == size) { 1005 init_page_buffers(page, bdev, block, size); 1006 return page; 1007 } 1008 if (!try_to_free_buffers(page)) 1009 goto failed; 1010 } 1011 1012 /* 1013 * Allocate some buffers for this page 1014 */ 1015 bh = alloc_page_buffers(page, size, 0); 1016 if (!bh) 1017 goto failed; 1018 1019 /* 1020 * Link the page to the buffers and initialise them. Take the 1021 * lock to be atomic wrt __find_get_block(), which does not 1022 * run under the page lock. 1023 */ 1024 spin_lock(&inode->i_mapping->private_lock); 1025 link_dev_buffers(page, bh); 1026 init_page_buffers(page, bdev, block, size); 1027 spin_unlock(&inode->i_mapping->private_lock); 1028 return page; 1029 1030 failed: 1031 BUG(); 1032 unlock_page(page); 1033 page_cache_release(page); 1034 return NULL; 1035 } 1036 1037 /* 1038 * Create buffers for the specified block device block's page. If 1039 * that page was dirty, the buffers are set dirty also. 1040 */ 1041 static int 1042 grow_buffers(struct block_device *bdev, sector_t block, int size) 1043 { 1044 struct page *page; 1045 pgoff_t index; 1046 int sizebits; 1047 1048 sizebits = -1; 1049 do { 1050 sizebits++; 1051 } while ((size << sizebits) < PAGE_SIZE); 1052 1053 index = block >> sizebits; 1054 1055 /* 1056 * Check for a block which wants to lie outside our maximum possible 1057 * pagecache index. (this comparison is done using sector_t types). 1058 */ 1059 if (unlikely(index != block >> sizebits)) { 1060 char b[BDEVNAME_SIZE]; 1061 1062 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1063 "device %s\n", 1064 __func__, (unsigned long long)block, 1065 bdevname(bdev, b)); 1066 return -EIO; 1067 } 1068 block = index << sizebits; 1069 /* Create a page with the proper size buffers.. */ 1070 page = grow_dev_page(bdev, block, index, size); 1071 if (!page) 1072 return 0; 1073 unlock_page(page); 1074 page_cache_release(page); 1075 return 1; 1076 } 1077 1078 static struct buffer_head * 1079 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1080 { 1081 /* Size must be multiple of hard sectorsize */ 1082 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1083 (size < 512 || size > PAGE_SIZE))) { 1084 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1085 size); 1086 printk(KERN_ERR "hardsect size: %d\n", 1087 bdev_hardsect_size(bdev)); 1088 1089 dump_stack(); 1090 return NULL; 1091 } 1092 1093 for (;;) { 1094 struct buffer_head * bh; 1095 int ret; 1096 1097 bh = __find_get_block(bdev, block, size); 1098 if (bh) 1099 return bh; 1100 1101 ret = grow_buffers(bdev, block, size); 1102 if (ret < 0) 1103 return NULL; 1104 if (ret == 0) 1105 free_more_memory(); 1106 } 1107 } 1108 1109 /* 1110 * The relationship between dirty buffers and dirty pages: 1111 * 1112 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1113 * the page is tagged dirty in its radix tree. 1114 * 1115 * At all times, the dirtiness of the buffers represents the dirtiness of 1116 * subsections of the page. If the page has buffers, the page dirty bit is 1117 * merely a hint about the true dirty state. 1118 * 1119 * When a page is set dirty in its entirety, all its buffers are marked dirty 1120 * (if the page has buffers). 1121 * 1122 * When a buffer is marked dirty, its page is dirtied, but the page's other 1123 * buffers are not. 1124 * 1125 * Also. When blockdev buffers are explicitly read with bread(), they 1126 * individually become uptodate. But their backing page remains not 1127 * uptodate - even if all of its buffers are uptodate. A subsequent 1128 * block_read_full_page() against that page will discover all the uptodate 1129 * buffers, will set the page uptodate and will perform no I/O. 1130 */ 1131 1132 /** 1133 * mark_buffer_dirty - mark a buffer_head as needing writeout 1134 * @bh: the buffer_head to mark dirty 1135 * 1136 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1137 * backing page dirty, then tag the page as dirty in its address_space's radix 1138 * tree and then attach the address_space's inode to its superblock's dirty 1139 * inode list. 1140 * 1141 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1142 * mapping->tree_lock and the global inode_lock. 1143 */ 1144 void mark_buffer_dirty(struct buffer_head *bh) 1145 { 1146 WARN_ON_ONCE(!buffer_uptodate(bh)); 1147 1148 /* 1149 * Very *carefully* optimize the it-is-already-dirty case. 1150 * 1151 * Don't let the final "is it dirty" escape to before we 1152 * perhaps modified the buffer. 1153 */ 1154 if (buffer_dirty(bh)) { 1155 smp_mb(); 1156 if (buffer_dirty(bh)) 1157 return; 1158 } 1159 1160 if (!test_set_buffer_dirty(bh)) { 1161 struct page *page = bh->b_page; 1162 if (!TestSetPageDirty(page)) 1163 __set_page_dirty(page, page_mapping(page), 0); 1164 } 1165 } 1166 1167 /* 1168 * Decrement a buffer_head's reference count. If all buffers against a page 1169 * have zero reference count, are clean and unlocked, and if the page is clean 1170 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1171 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1172 * a page but it ends up not being freed, and buffers may later be reattached). 1173 */ 1174 void __brelse(struct buffer_head * buf) 1175 { 1176 if (atomic_read(&buf->b_count)) { 1177 put_bh(buf); 1178 return; 1179 } 1180 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1181 } 1182 1183 /* 1184 * bforget() is like brelse(), except it discards any 1185 * potentially dirty data. 1186 */ 1187 void __bforget(struct buffer_head *bh) 1188 { 1189 clear_buffer_dirty(bh); 1190 if (bh->b_assoc_map) { 1191 struct address_space *buffer_mapping = bh->b_page->mapping; 1192 1193 spin_lock(&buffer_mapping->private_lock); 1194 list_del_init(&bh->b_assoc_buffers); 1195 bh->b_assoc_map = NULL; 1196 spin_unlock(&buffer_mapping->private_lock); 1197 } 1198 __brelse(bh); 1199 } 1200 1201 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1202 { 1203 lock_buffer(bh); 1204 if (buffer_uptodate(bh)) { 1205 unlock_buffer(bh); 1206 return bh; 1207 } else { 1208 get_bh(bh); 1209 bh->b_end_io = end_buffer_read_sync; 1210 submit_bh(READ, bh); 1211 wait_on_buffer(bh); 1212 if (buffer_uptodate(bh)) 1213 return bh; 1214 } 1215 brelse(bh); 1216 return NULL; 1217 } 1218 1219 /* 1220 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1221 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1222 * refcount elevated by one when they're in an LRU. A buffer can only appear 1223 * once in a particular CPU's LRU. A single buffer can be present in multiple 1224 * CPU's LRUs at the same time. 1225 * 1226 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1227 * sb_find_get_block(). 1228 * 1229 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1230 * a local interrupt disable for that. 1231 */ 1232 1233 #define BH_LRU_SIZE 8 1234 1235 struct bh_lru { 1236 struct buffer_head *bhs[BH_LRU_SIZE]; 1237 }; 1238 1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1240 1241 #ifdef CONFIG_SMP 1242 #define bh_lru_lock() local_irq_disable() 1243 #define bh_lru_unlock() local_irq_enable() 1244 #else 1245 #define bh_lru_lock() preempt_disable() 1246 #define bh_lru_unlock() preempt_enable() 1247 #endif 1248 1249 static inline void check_irqs_on(void) 1250 { 1251 #ifdef irqs_disabled 1252 BUG_ON(irqs_disabled()); 1253 #endif 1254 } 1255 1256 /* 1257 * The LRU management algorithm is dopey-but-simple. Sorry. 1258 */ 1259 static void bh_lru_install(struct buffer_head *bh) 1260 { 1261 struct buffer_head *evictee = NULL; 1262 struct bh_lru *lru; 1263 1264 check_irqs_on(); 1265 bh_lru_lock(); 1266 lru = &__get_cpu_var(bh_lrus); 1267 if (lru->bhs[0] != bh) { 1268 struct buffer_head *bhs[BH_LRU_SIZE]; 1269 int in; 1270 int out = 0; 1271 1272 get_bh(bh); 1273 bhs[out++] = bh; 1274 for (in = 0; in < BH_LRU_SIZE; in++) { 1275 struct buffer_head *bh2 = lru->bhs[in]; 1276 1277 if (bh2 == bh) { 1278 __brelse(bh2); 1279 } else { 1280 if (out >= BH_LRU_SIZE) { 1281 BUG_ON(evictee != NULL); 1282 evictee = bh2; 1283 } else { 1284 bhs[out++] = bh2; 1285 } 1286 } 1287 } 1288 while (out < BH_LRU_SIZE) 1289 bhs[out++] = NULL; 1290 memcpy(lru->bhs, bhs, sizeof(bhs)); 1291 } 1292 bh_lru_unlock(); 1293 1294 if (evictee) 1295 __brelse(evictee); 1296 } 1297 1298 /* 1299 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1300 */ 1301 static struct buffer_head * 1302 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1303 { 1304 struct buffer_head *ret = NULL; 1305 struct bh_lru *lru; 1306 unsigned int i; 1307 1308 check_irqs_on(); 1309 bh_lru_lock(); 1310 lru = &__get_cpu_var(bh_lrus); 1311 for (i = 0; i < BH_LRU_SIZE; i++) { 1312 struct buffer_head *bh = lru->bhs[i]; 1313 1314 if (bh && bh->b_bdev == bdev && 1315 bh->b_blocknr == block && bh->b_size == size) { 1316 if (i) { 1317 while (i) { 1318 lru->bhs[i] = lru->bhs[i - 1]; 1319 i--; 1320 } 1321 lru->bhs[0] = bh; 1322 } 1323 get_bh(bh); 1324 ret = bh; 1325 break; 1326 } 1327 } 1328 bh_lru_unlock(); 1329 return ret; 1330 } 1331 1332 /* 1333 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1334 * it in the LRU and mark it as accessed. If it is not present then return 1335 * NULL 1336 */ 1337 struct buffer_head * 1338 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1339 { 1340 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1341 1342 if (bh == NULL) { 1343 bh = __find_get_block_slow(bdev, block); 1344 if (bh) 1345 bh_lru_install(bh); 1346 } 1347 if (bh) 1348 touch_buffer(bh); 1349 return bh; 1350 } 1351 EXPORT_SYMBOL(__find_get_block); 1352 1353 /* 1354 * __getblk will locate (and, if necessary, create) the buffer_head 1355 * which corresponds to the passed block_device, block and size. The 1356 * returned buffer has its reference count incremented. 1357 * 1358 * __getblk() cannot fail - it just keeps trying. If you pass it an 1359 * illegal block number, __getblk() will happily return a buffer_head 1360 * which represents the non-existent block. Very weird. 1361 * 1362 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1363 * attempt is failing. FIXME, perhaps? 1364 */ 1365 struct buffer_head * 1366 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1367 { 1368 struct buffer_head *bh = __find_get_block(bdev, block, size); 1369 1370 might_sleep(); 1371 if (bh == NULL) 1372 bh = __getblk_slow(bdev, block, size); 1373 return bh; 1374 } 1375 EXPORT_SYMBOL(__getblk); 1376 1377 /* 1378 * Do async read-ahead on a buffer.. 1379 */ 1380 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1381 { 1382 struct buffer_head *bh = __getblk(bdev, block, size); 1383 if (likely(bh)) { 1384 ll_rw_block(READA, 1, &bh); 1385 brelse(bh); 1386 } 1387 } 1388 EXPORT_SYMBOL(__breadahead); 1389 1390 /** 1391 * __bread() - reads a specified block and returns the bh 1392 * @bdev: the block_device to read from 1393 * @block: number of block 1394 * @size: size (in bytes) to read 1395 * 1396 * Reads a specified block, and returns buffer head that contains it. 1397 * It returns NULL if the block was unreadable. 1398 */ 1399 struct buffer_head * 1400 __bread(struct block_device *bdev, sector_t block, unsigned size) 1401 { 1402 struct buffer_head *bh = __getblk(bdev, block, size); 1403 1404 if (likely(bh) && !buffer_uptodate(bh)) 1405 bh = __bread_slow(bh); 1406 return bh; 1407 } 1408 EXPORT_SYMBOL(__bread); 1409 1410 /* 1411 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1412 * This doesn't race because it runs in each cpu either in irq 1413 * or with preempt disabled. 1414 */ 1415 static void invalidate_bh_lru(void *arg) 1416 { 1417 struct bh_lru *b = &get_cpu_var(bh_lrus); 1418 int i; 1419 1420 for (i = 0; i < BH_LRU_SIZE; i++) { 1421 brelse(b->bhs[i]); 1422 b->bhs[i] = NULL; 1423 } 1424 put_cpu_var(bh_lrus); 1425 } 1426 1427 void invalidate_bh_lrus(void) 1428 { 1429 on_each_cpu(invalidate_bh_lru, NULL, 1); 1430 } 1431 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1432 1433 void set_bh_page(struct buffer_head *bh, 1434 struct page *page, unsigned long offset) 1435 { 1436 bh->b_page = page; 1437 BUG_ON(offset >= PAGE_SIZE); 1438 if (PageHighMem(page)) 1439 /* 1440 * This catches illegal uses and preserves the offset: 1441 */ 1442 bh->b_data = (char *)(0 + offset); 1443 else 1444 bh->b_data = page_address(page) + offset; 1445 } 1446 EXPORT_SYMBOL(set_bh_page); 1447 1448 /* 1449 * Called when truncating a buffer on a page completely. 1450 */ 1451 static void discard_buffer(struct buffer_head * bh) 1452 { 1453 lock_buffer(bh); 1454 clear_buffer_dirty(bh); 1455 bh->b_bdev = NULL; 1456 clear_buffer_mapped(bh); 1457 clear_buffer_req(bh); 1458 clear_buffer_new(bh); 1459 clear_buffer_delay(bh); 1460 clear_buffer_unwritten(bh); 1461 unlock_buffer(bh); 1462 } 1463 1464 /** 1465 * block_invalidatepage - invalidate part of all of a buffer-backed page 1466 * 1467 * @page: the page which is affected 1468 * @offset: the index of the truncation point 1469 * 1470 * block_invalidatepage() is called when all or part of the page has become 1471 * invalidatedby a truncate operation. 1472 * 1473 * block_invalidatepage() does not have to release all buffers, but it must 1474 * ensure that no dirty buffer is left outside @offset and that no I/O 1475 * is underway against any of the blocks which are outside the truncation 1476 * point. Because the caller is about to free (and possibly reuse) those 1477 * blocks on-disk. 1478 */ 1479 void block_invalidatepage(struct page *page, unsigned long offset) 1480 { 1481 struct buffer_head *head, *bh, *next; 1482 unsigned int curr_off = 0; 1483 1484 BUG_ON(!PageLocked(page)); 1485 if (!page_has_buffers(page)) 1486 goto out; 1487 1488 head = page_buffers(page); 1489 bh = head; 1490 do { 1491 unsigned int next_off = curr_off + bh->b_size; 1492 next = bh->b_this_page; 1493 1494 /* 1495 * is this block fully invalidated? 1496 */ 1497 if (offset <= curr_off) 1498 discard_buffer(bh); 1499 curr_off = next_off; 1500 bh = next; 1501 } while (bh != head); 1502 1503 /* 1504 * We release buffers only if the entire page is being invalidated. 1505 * The get_block cached value has been unconditionally invalidated, 1506 * so real IO is not possible anymore. 1507 */ 1508 if (offset == 0) 1509 try_to_release_page(page, 0); 1510 out: 1511 return; 1512 } 1513 EXPORT_SYMBOL(block_invalidatepage); 1514 1515 /* 1516 * We attach and possibly dirty the buffers atomically wrt 1517 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1518 * is already excluded via the page lock. 1519 */ 1520 void create_empty_buffers(struct page *page, 1521 unsigned long blocksize, unsigned long b_state) 1522 { 1523 struct buffer_head *bh, *head, *tail; 1524 1525 head = alloc_page_buffers(page, blocksize, 1); 1526 bh = head; 1527 do { 1528 bh->b_state |= b_state; 1529 tail = bh; 1530 bh = bh->b_this_page; 1531 } while (bh); 1532 tail->b_this_page = head; 1533 1534 spin_lock(&page->mapping->private_lock); 1535 if (PageUptodate(page) || PageDirty(page)) { 1536 bh = head; 1537 do { 1538 if (PageDirty(page)) 1539 set_buffer_dirty(bh); 1540 if (PageUptodate(page)) 1541 set_buffer_uptodate(bh); 1542 bh = bh->b_this_page; 1543 } while (bh != head); 1544 } 1545 attach_page_buffers(page, head); 1546 spin_unlock(&page->mapping->private_lock); 1547 } 1548 EXPORT_SYMBOL(create_empty_buffers); 1549 1550 /* 1551 * We are taking a block for data and we don't want any output from any 1552 * buffer-cache aliases starting from return from that function and 1553 * until the moment when something will explicitly mark the buffer 1554 * dirty (hopefully that will not happen until we will free that block ;-) 1555 * We don't even need to mark it not-uptodate - nobody can expect 1556 * anything from a newly allocated buffer anyway. We used to used 1557 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1558 * don't want to mark the alias unmapped, for example - it would confuse 1559 * anyone who might pick it with bread() afterwards... 1560 * 1561 * Also.. Note that bforget() doesn't lock the buffer. So there can 1562 * be writeout I/O going on against recently-freed buffers. We don't 1563 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1564 * only if we really need to. That happens here. 1565 */ 1566 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1567 { 1568 struct buffer_head *old_bh; 1569 1570 might_sleep(); 1571 1572 old_bh = __find_get_block_slow(bdev, block); 1573 if (old_bh) { 1574 clear_buffer_dirty(old_bh); 1575 wait_on_buffer(old_bh); 1576 clear_buffer_req(old_bh); 1577 __brelse(old_bh); 1578 } 1579 } 1580 EXPORT_SYMBOL(unmap_underlying_metadata); 1581 1582 /* 1583 * NOTE! All mapped/uptodate combinations are valid: 1584 * 1585 * Mapped Uptodate Meaning 1586 * 1587 * No No "unknown" - must do get_block() 1588 * No Yes "hole" - zero-filled 1589 * Yes No "allocated" - allocated on disk, not read in 1590 * Yes Yes "valid" - allocated and up-to-date in memory. 1591 * 1592 * "Dirty" is valid only with the last case (mapped+uptodate). 1593 */ 1594 1595 /* 1596 * While block_write_full_page is writing back the dirty buffers under 1597 * the page lock, whoever dirtied the buffers may decide to clean them 1598 * again at any time. We handle that by only looking at the buffer 1599 * state inside lock_buffer(). 1600 * 1601 * If block_write_full_page() is called for regular writeback 1602 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1603 * locked buffer. This only can happen if someone has written the buffer 1604 * directly, with submit_bh(). At the address_space level PageWriteback 1605 * prevents this contention from occurring. 1606 * 1607 * If block_write_full_page() is called with wbc->sync_mode == 1608 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this 1609 * causes the writes to be flagged as synchronous writes, but the 1610 * block device queue will NOT be unplugged, since usually many pages 1611 * will be pushed to the out before the higher-level caller actually 1612 * waits for the writes to be completed. The various wait functions, 1613 * such as wait_on_writeback_range() will ultimately call sync_page() 1614 * which will ultimately call blk_run_backing_dev(), which will end up 1615 * unplugging the device queue. 1616 */ 1617 static int __block_write_full_page(struct inode *inode, struct page *page, 1618 get_block_t *get_block, struct writeback_control *wbc) 1619 { 1620 int err; 1621 sector_t block; 1622 sector_t last_block; 1623 struct buffer_head *bh, *head; 1624 const unsigned blocksize = 1 << inode->i_blkbits; 1625 int nr_underway = 0; 1626 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1627 WRITE_SYNC_PLUG : WRITE); 1628 1629 BUG_ON(!PageLocked(page)); 1630 1631 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1632 1633 if (!page_has_buffers(page)) { 1634 create_empty_buffers(page, blocksize, 1635 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1636 } 1637 1638 /* 1639 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1640 * here, and the (potentially unmapped) buffers may become dirty at 1641 * any time. If a buffer becomes dirty here after we've inspected it 1642 * then we just miss that fact, and the page stays dirty. 1643 * 1644 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1645 * handle that here by just cleaning them. 1646 */ 1647 1648 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1649 head = page_buffers(page); 1650 bh = head; 1651 1652 /* 1653 * Get all the dirty buffers mapped to disk addresses and 1654 * handle any aliases from the underlying blockdev's mapping. 1655 */ 1656 do { 1657 if (block > last_block) { 1658 /* 1659 * mapped buffers outside i_size will occur, because 1660 * this page can be outside i_size when there is a 1661 * truncate in progress. 1662 */ 1663 /* 1664 * The buffer was zeroed by block_write_full_page() 1665 */ 1666 clear_buffer_dirty(bh); 1667 set_buffer_uptodate(bh); 1668 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1669 buffer_dirty(bh)) { 1670 WARN_ON(bh->b_size != blocksize); 1671 err = get_block(inode, block, bh, 1); 1672 if (err) 1673 goto recover; 1674 clear_buffer_delay(bh); 1675 if (buffer_new(bh)) { 1676 /* blockdev mappings never come here */ 1677 clear_buffer_new(bh); 1678 unmap_underlying_metadata(bh->b_bdev, 1679 bh->b_blocknr); 1680 } 1681 } 1682 bh = bh->b_this_page; 1683 block++; 1684 } while (bh != head); 1685 1686 do { 1687 if (!buffer_mapped(bh)) 1688 continue; 1689 /* 1690 * If it's a fully non-blocking write attempt and we cannot 1691 * lock the buffer then redirty the page. Note that this can 1692 * potentially cause a busy-wait loop from pdflush and kswapd 1693 * activity, but those code paths have their own higher-level 1694 * throttling. 1695 */ 1696 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1697 lock_buffer(bh); 1698 } else if (!trylock_buffer(bh)) { 1699 redirty_page_for_writepage(wbc, page); 1700 continue; 1701 } 1702 if (test_clear_buffer_dirty(bh)) { 1703 mark_buffer_async_write(bh); 1704 } else { 1705 unlock_buffer(bh); 1706 } 1707 } while ((bh = bh->b_this_page) != head); 1708 1709 /* 1710 * The page and its buffers are protected by PageWriteback(), so we can 1711 * drop the bh refcounts early. 1712 */ 1713 BUG_ON(PageWriteback(page)); 1714 set_page_writeback(page); 1715 1716 do { 1717 struct buffer_head *next = bh->b_this_page; 1718 if (buffer_async_write(bh)) { 1719 submit_bh(write_op, bh); 1720 nr_underway++; 1721 } 1722 bh = next; 1723 } while (bh != head); 1724 unlock_page(page); 1725 1726 err = 0; 1727 done: 1728 if (nr_underway == 0) { 1729 /* 1730 * The page was marked dirty, but the buffers were 1731 * clean. Someone wrote them back by hand with 1732 * ll_rw_block/submit_bh. A rare case. 1733 */ 1734 end_page_writeback(page); 1735 1736 /* 1737 * The page and buffer_heads can be released at any time from 1738 * here on. 1739 */ 1740 } 1741 return err; 1742 1743 recover: 1744 /* 1745 * ENOSPC, or some other error. We may already have added some 1746 * blocks to the file, so we need to write these out to avoid 1747 * exposing stale data. 1748 * The page is currently locked and not marked for writeback 1749 */ 1750 bh = head; 1751 /* Recovery: lock and submit the mapped buffers */ 1752 do { 1753 if (buffer_mapped(bh) && buffer_dirty(bh) && 1754 !buffer_delay(bh)) { 1755 lock_buffer(bh); 1756 mark_buffer_async_write(bh); 1757 } else { 1758 /* 1759 * The buffer may have been set dirty during 1760 * attachment to a dirty page. 1761 */ 1762 clear_buffer_dirty(bh); 1763 } 1764 } while ((bh = bh->b_this_page) != head); 1765 SetPageError(page); 1766 BUG_ON(PageWriteback(page)); 1767 mapping_set_error(page->mapping, err); 1768 set_page_writeback(page); 1769 do { 1770 struct buffer_head *next = bh->b_this_page; 1771 if (buffer_async_write(bh)) { 1772 clear_buffer_dirty(bh); 1773 submit_bh(write_op, bh); 1774 nr_underway++; 1775 } 1776 bh = next; 1777 } while (bh != head); 1778 unlock_page(page); 1779 goto done; 1780 } 1781 1782 /* 1783 * If a page has any new buffers, zero them out here, and mark them uptodate 1784 * and dirty so they'll be written out (in order to prevent uninitialised 1785 * block data from leaking). And clear the new bit. 1786 */ 1787 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1788 { 1789 unsigned int block_start, block_end; 1790 struct buffer_head *head, *bh; 1791 1792 BUG_ON(!PageLocked(page)); 1793 if (!page_has_buffers(page)) 1794 return; 1795 1796 bh = head = page_buffers(page); 1797 block_start = 0; 1798 do { 1799 block_end = block_start + bh->b_size; 1800 1801 if (buffer_new(bh)) { 1802 if (block_end > from && block_start < to) { 1803 if (!PageUptodate(page)) { 1804 unsigned start, size; 1805 1806 start = max(from, block_start); 1807 size = min(to, block_end) - start; 1808 1809 zero_user(page, start, size); 1810 set_buffer_uptodate(bh); 1811 } 1812 1813 clear_buffer_new(bh); 1814 mark_buffer_dirty(bh); 1815 } 1816 } 1817 1818 block_start = block_end; 1819 bh = bh->b_this_page; 1820 } while (bh != head); 1821 } 1822 EXPORT_SYMBOL(page_zero_new_buffers); 1823 1824 static int __block_prepare_write(struct inode *inode, struct page *page, 1825 unsigned from, unsigned to, get_block_t *get_block) 1826 { 1827 unsigned block_start, block_end; 1828 sector_t block; 1829 int err = 0; 1830 unsigned blocksize, bbits; 1831 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1832 1833 BUG_ON(!PageLocked(page)); 1834 BUG_ON(from > PAGE_CACHE_SIZE); 1835 BUG_ON(to > PAGE_CACHE_SIZE); 1836 BUG_ON(from > to); 1837 1838 blocksize = 1 << inode->i_blkbits; 1839 if (!page_has_buffers(page)) 1840 create_empty_buffers(page, blocksize, 0); 1841 head = page_buffers(page); 1842 1843 bbits = inode->i_blkbits; 1844 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1845 1846 for(bh = head, block_start = 0; bh != head || !block_start; 1847 block++, block_start=block_end, bh = bh->b_this_page) { 1848 block_end = block_start + blocksize; 1849 if (block_end <= from || block_start >= to) { 1850 if (PageUptodate(page)) { 1851 if (!buffer_uptodate(bh)) 1852 set_buffer_uptodate(bh); 1853 } 1854 continue; 1855 } 1856 if (buffer_new(bh)) 1857 clear_buffer_new(bh); 1858 if (!buffer_mapped(bh)) { 1859 WARN_ON(bh->b_size != blocksize); 1860 err = get_block(inode, block, bh, 1); 1861 if (err) 1862 break; 1863 if (buffer_new(bh)) { 1864 unmap_underlying_metadata(bh->b_bdev, 1865 bh->b_blocknr); 1866 if (PageUptodate(page)) { 1867 clear_buffer_new(bh); 1868 set_buffer_uptodate(bh); 1869 mark_buffer_dirty(bh); 1870 continue; 1871 } 1872 if (block_end > to || block_start < from) 1873 zero_user_segments(page, 1874 to, block_end, 1875 block_start, from); 1876 continue; 1877 } 1878 } 1879 if (PageUptodate(page)) { 1880 if (!buffer_uptodate(bh)) 1881 set_buffer_uptodate(bh); 1882 continue; 1883 } 1884 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1885 !buffer_unwritten(bh) && 1886 (block_start < from || block_end > to)) { 1887 ll_rw_block(READ, 1, &bh); 1888 *wait_bh++=bh; 1889 } 1890 } 1891 /* 1892 * If we issued read requests - let them complete. 1893 */ 1894 while(wait_bh > wait) { 1895 wait_on_buffer(*--wait_bh); 1896 if (!buffer_uptodate(*wait_bh)) 1897 err = -EIO; 1898 } 1899 if (unlikely(err)) 1900 page_zero_new_buffers(page, from, to); 1901 return err; 1902 } 1903 1904 static int __block_commit_write(struct inode *inode, struct page *page, 1905 unsigned from, unsigned to) 1906 { 1907 unsigned block_start, block_end; 1908 int partial = 0; 1909 unsigned blocksize; 1910 struct buffer_head *bh, *head; 1911 1912 blocksize = 1 << inode->i_blkbits; 1913 1914 for(bh = head = page_buffers(page), block_start = 0; 1915 bh != head || !block_start; 1916 block_start=block_end, bh = bh->b_this_page) { 1917 block_end = block_start + blocksize; 1918 if (block_end <= from || block_start >= to) { 1919 if (!buffer_uptodate(bh)) 1920 partial = 1; 1921 } else { 1922 set_buffer_uptodate(bh); 1923 mark_buffer_dirty(bh); 1924 } 1925 clear_buffer_new(bh); 1926 } 1927 1928 /* 1929 * If this is a partial write which happened to make all buffers 1930 * uptodate then we can optimize away a bogus readpage() for 1931 * the next read(). Here we 'discover' whether the page went 1932 * uptodate as a result of this (potentially partial) write. 1933 */ 1934 if (!partial) 1935 SetPageUptodate(page); 1936 return 0; 1937 } 1938 1939 /* 1940 * block_write_begin takes care of the basic task of block allocation and 1941 * bringing partial write blocks uptodate first. 1942 * 1943 * If *pagep is not NULL, then block_write_begin uses the locked page 1944 * at *pagep rather than allocating its own. In this case, the page will 1945 * not be unlocked or deallocated on failure. 1946 */ 1947 int block_write_begin(struct file *file, struct address_space *mapping, 1948 loff_t pos, unsigned len, unsigned flags, 1949 struct page **pagep, void **fsdata, 1950 get_block_t *get_block) 1951 { 1952 struct inode *inode = mapping->host; 1953 int status = 0; 1954 struct page *page; 1955 pgoff_t index; 1956 unsigned start, end; 1957 int ownpage = 0; 1958 1959 index = pos >> PAGE_CACHE_SHIFT; 1960 start = pos & (PAGE_CACHE_SIZE - 1); 1961 end = start + len; 1962 1963 page = *pagep; 1964 if (page == NULL) { 1965 ownpage = 1; 1966 page = grab_cache_page_write_begin(mapping, index, flags); 1967 if (!page) { 1968 status = -ENOMEM; 1969 goto out; 1970 } 1971 *pagep = page; 1972 } else 1973 BUG_ON(!PageLocked(page)); 1974 1975 status = __block_prepare_write(inode, page, start, end, get_block); 1976 if (unlikely(status)) { 1977 ClearPageUptodate(page); 1978 1979 if (ownpage) { 1980 unlock_page(page); 1981 page_cache_release(page); 1982 *pagep = NULL; 1983 1984 /* 1985 * prepare_write() may have instantiated a few blocks 1986 * outside i_size. Trim these off again. Don't need 1987 * i_size_read because we hold i_mutex. 1988 */ 1989 if (pos + len > inode->i_size) 1990 vmtruncate(inode, inode->i_size); 1991 } 1992 } 1993 1994 out: 1995 return status; 1996 } 1997 EXPORT_SYMBOL(block_write_begin); 1998 1999 int block_write_end(struct file *file, struct address_space *mapping, 2000 loff_t pos, unsigned len, unsigned copied, 2001 struct page *page, void *fsdata) 2002 { 2003 struct inode *inode = mapping->host; 2004 unsigned start; 2005 2006 start = pos & (PAGE_CACHE_SIZE - 1); 2007 2008 if (unlikely(copied < len)) { 2009 /* 2010 * The buffers that were written will now be uptodate, so we 2011 * don't have to worry about a readpage reading them and 2012 * overwriting a partial write. However if we have encountered 2013 * a short write and only partially written into a buffer, it 2014 * will not be marked uptodate, so a readpage might come in and 2015 * destroy our partial write. 2016 * 2017 * Do the simplest thing, and just treat any short write to a 2018 * non uptodate page as a zero-length write, and force the 2019 * caller to redo the whole thing. 2020 */ 2021 if (!PageUptodate(page)) 2022 copied = 0; 2023 2024 page_zero_new_buffers(page, start+copied, start+len); 2025 } 2026 flush_dcache_page(page); 2027 2028 /* This could be a short (even 0-length) commit */ 2029 __block_commit_write(inode, page, start, start+copied); 2030 2031 return copied; 2032 } 2033 EXPORT_SYMBOL(block_write_end); 2034 2035 int generic_write_end(struct file *file, struct address_space *mapping, 2036 loff_t pos, unsigned len, unsigned copied, 2037 struct page *page, void *fsdata) 2038 { 2039 struct inode *inode = mapping->host; 2040 int i_size_changed = 0; 2041 2042 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2043 2044 /* 2045 * No need to use i_size_read() here, the i_size 2046 * cannot change under us because we hold i_mutex. 2047 * 2048 * But it's important to update i_size while still holding page lock: 2049 * page writeout could otherwise come in and zero beyond i_size. 2050 */ 2051 if (pos+copied > inode->i_size) { 2052 i_size_write(inode, pos+copied); 2053 i_size_changed = 1; 2054 } 2055 2056 unlock_page(page); 2057 page_cache_release(page); 2058 2059 /* 2060 * Don't mark the inode dirty under page lock. First, it unnecessarily 2061 * makes the holding time of page lock longer. Second, it forces lock 2062 * ordering of page lock and transaction start for journaling 2063 * filesystems. 2064 */ 2065 if (i_size_changed) 2066 mark_inode_dirty(inode); 2067 2068 return copied; 2069 } 2070 EXPORT_SYMBOL(generic_write_end); 2071 2072 /* 2073 * block_is_partially_uptodate checks whether buffers within a page are 2074 * uptodate or not. 2075 * 2076 * Returns true if all buffers which correspond to a file portion 2077 * we want to read are uptodate. 2078 */ 2079 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2080 unsigned long from) 2081 { 2082 struct inode *inode = page->mapping->host; 2083 unsigned block_start, block_end, blocksize; 2084 unsigned to; 2085 struct buffer_head *bh, *head; 2086 int ret = 1; 2087 2088 if (!page_has_buffers(page)) 2089 return 0; 2090 2091 blocksize = 1 << inode->i_blkbits; 2092 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2093 to = from + to; 2094 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2095 return 0; 2096 2097 head = page_buffers(page); 2098 bh = head; 2099 block_start = 0; 2100 do { 2101 block_end = block_start + blocksize; 2102 if (block_end > from && block_start < to) { 2103 if (!buffer_uptodate(bh)) { 2104 ret = 0; 2105 break; 2106 } 2107 if (block_end >= to) 2108 break; 2109 } 2110 block_start = block_end; 2111 bh = bh->b_this_page; 2112 } while (bh != head); 2113 2114 return ret; 2115 } 2116 EXPORT_SYMBOL(block_is_partially_uptodate); 2117 2118 /* 2119 * Generic "read page" function for block devices that have the normal 2120 * get_block functionality. This is most of the block device filesystems. 2121 * Reads the page asynchronously --- the unlock_buffer() and 2122 * set/clear_buffer_uptodate() functions propagate buffer state into the 2123 * page struct once IO has completed. 2124 */ 2125 int block_read_full_page(struct page *page, get_block_t *get_block) 2126 { 2127 struct inode *inode = page->mapping->host; 2128 sector_t iblock, lblock; 2129 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2130 unsigned int blocksize; 2131 int nr, i; 2132 int fully_mapped = 1; 2133 2134 BUG_ON(!PageLocked(page)); 2135 blocksize = 1 << inode->i_blkbits; 2136 if (!page_has_buffers(page)) 2137 create_empty_buffers(page, blocksize, 0); 2138 head = page_buffers(page); 2139 2140 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2141 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2142 bh = head; 2143 nr = 0; 2144 i = 0; 2145 2146 do { 2147 if (buffer_uptodate(bh)) 2148 continue; 2149 2150 if (!buffer_mapped(bh)) { 2151 int err = 0; 2152 2153 fully_mapped = 0; 2154 if (iblock < lblock) { 2155 WARN_ON(bh->b_size != blocksize); 2156 err = get_block(inode, iblock, bh, 0); 2157 if (err) 2158 SetPageError(page); 2159 } 2160 if (!buffer_mapped(bh)) { 2161 zero_user(page, i * blocksize, blocksize); 2162 if (!err) 2163 set_buffer_uptodate(bh); 2164 continue; 2165 } 2166 /* 2167 * get_block() might have updated the buffer 2168 * synchronously 2169 */ 2170 if (buffer_uptodate(bh)) 2171 continue; 2172 } 2173 arr[nr++] = bh; 2174 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2175 2176 if (fully_mapped) 2177 SetPageMappedToDisk(page); 2178 2179 if (!nr) { 2180 /* 2181 * All buffers are uptodate - we can set the page uptodate 2182 * as well. But not if get_block() returned an error. 2183 */ 2184 if (!PageError(page)) 2185 SetPageUptodate(page); 2186 unlock_page(page); 2187 return 0; 2188 } 2189 2190 /* Stage two: lock the buffers */ 2191 for (i = 0; i < nr; i++) { 2192 bh = arr[i]; 2193 lock_buffer(bh); 2194 mark_buffer_async_read(bh); 2195 } 2196 2197 /* 2198 * Stage 3: start the IO. Check for uptodateness 2199 * inside the buffer lock in case another process reading 2200 * the underlying blockdev brought it uptodate (the sct fix). 2201 */ 2202 for (i = 0; i < nr; i++) { 2203 bh = arr[i]; 2204 if (buffer_uptodate(bh)) 2205 end_buffer_async_read(bh, 1); 2206 else 2207 submit_bh(READ, bh); 2208 } 2209 return 0; 2210 } 2211 2212 /* utility function for filesystems that need to do work on expanding 2213 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2214 * deal with the hole. 2215 */ 2216 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2217 { 2218 struct address_space *mapping = inode->i_mapping; 2219 struct page *page; 2220 void *fsdata; 2221 unsigned long limit; 2222 int err; 2223 2224 err = -EFBIG; 2225 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2226 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2227 send_sig(SIGXFSZ, current, 0); 2228 goto out; 2229 } 2230 if (size > inode->i_sb->s_maxbytes) 2231 goto out; 2232 2233 err = pagecache_write_begin(NULL, mapping, size, 0, 2234 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2235 &page, &fsdata); 2236 if (err) 2237 goto out; 2238 2239 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2240 BUG_ON(err > 0); 2241 2242 out: 2243 return err; 2244 } 2245 2246 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2247 loff_t pos, loff_t *bytes) 2248 { 2249 struct inode *inode = mapping->host; 2250 unsigned blocksize = 1 << inode->i_blkbits; 2251 struct page *page; 2252 void *fsdata; 2253 pgoff_t index, curidx; 2254 loff_t curpos; 2255 unsigned zerofrom, offset, len; 2256 int err = 0; 2257 2258 index = pos >> PAGE_CACHE_SHIFT; 2259 offset = pos & ~PAGE_CACHE_MASK; 2260 2261 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2262 zerofrom = curpos & ~PAGE_CACHE_MASK; 2263 if (zerofrom & (blocksize-1)) { 2264 *bytes |= (blocksize-1); 2265 (*bytes)++; 2266 } 2267 len = PAGE_CACHE_SIZE - zerofrom; 2268 2269 err = pagecache_write_begin(file, mapping, curpos, len, 2270 AOP_FLAG_UNINTERRUPTIBLE, 2271 &page, &fsdata); 2272 if (err) 2273 goto out; 2274 zero_user(page, zerofrom, len); 2275 err = pagecache_write_end(file, mapping, curpos, len, len, 2276 page, fsdata); 2277 if (err < 0) 2278 goto out; 2279 BUG_ON(err != len); 2280 err = 0; 2281 2282 balance_dirty_pages_ratelimited(mapping); 2283 } 2284 2285 /* page covers the boundary, find the boundary offset */ 2286 if (index == curidx) { 2287 zerofrom = curpos & ~PAGE_CACHE_MASK; 2288 /* if we will expand the thing last block will be filled */ 2289 if (offset <= zerofrom) { 2290 goto out; 2291 } 2292 if (zerofrom & (blocksize-1)) { 2293 *bytes |= (blocksize-1); 2294 (*bytes)++; 2295 } 2296 len = offset - zerofrom; 2297 2298 err = pagecache_write_begin(file, mapping, curpos, len, 2299 AOP_FLAG_UNINTERRUPTIBLE, 2300 &page, &fsdata); 2301 if (err) 2302 goto out; 2303 zero_user(page, zerofrom, len); 2304 err = pagecache_write_end(file, mapping, curpos, len, len, 2305 page, fsdata); 2306 if (err < 0) 2307 goto out; 2308 BUG_ON(err != len); 2309 err = 0; 2310 } 2311 out: 2312 return err; 2313 } 2314 2315 /* 2316 * For moronic filesystems that do not allow holes in file. 2317 * We may have to extend the file. 2318 */ 2319 int cont_write_begin(struct file *file, struct address_space *mapping, 2320 loff_t pos, unsigned len, unsigned flags, 2321 struct page **pagep, void **fsdata, 2322 get_block_t *get_block, loff_t *bytes) 2323 { 2324 struct inode *inode = mapping->host; 2325 unsigned blocksize = 1 << inode->i_blkbits; 2326 unsigned zerofrom; 2327 int err; 2328 2329 err = cont_expand_zero(file, mapping, pos, bytes); 2330 if (err) 2331 goto out; 2332 2333 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2334 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2335 *bytes |= (blocksize-1); 2336 (*bytes)++; 2337 } 2338 2339 *pagep = NULL; 2340 err = block_write_begin(file, mapping, pos, len, 2341 flags, pagep, fsdata, get_block); 2342 out: 2343 return err; 2344 } 2345 2346 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2347 get_block_t *get_block) 2348 { 2349 struct inode *inode = page->mapping->host; 2350 int err = __block_prepare_write(inode, page, from, to, get_block); 2351 if (err) 2352 ClearPageUptodate(page); 2353 return err; 2354 } 2355 2356 int block_commit_write(struct page *page, unsigned from, unsigned to) 2357 { 2358 struct inode *inode = page->mapping->host; 2359 __block_commit_write(inode,page,from,to); 2360 return 0; 2361 } 2362 2363 /* 2364 * block_page_mkwrite() is not allowed to change the file size as it gets 2365 * called from a page fault handler when a page is first dirtied. Hence we must 2366 * be careful to check for EOF conditions here. We set the page up correctly 2367 * for a written page which means we get ENOSPC checking when writing into 2368 * holes and correct delalloc and unwritten extent mapping on filesystems that 2369 * support these features. 2370 * 2371 * We are not allowed to take the i_mutex here so we have to play games to 2372 * protect against truncate races as the page could now be beyond EOF. Because 2373 * vmtruncate() writes the inode size before removing pages, once we have the 2374 * page lock we can determine safely if the page is beyond EOF. If it is not 2375 * beyond EOF, then the page is guaranteed safe against truncation until we 2376 * unlock the page. 2377 */ 2378 int 2379 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2380 get_block_t get_block) 2381 { 2382 struct page *page = vmf->page; 2383 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2384 unsigned long end; 2385 loff_t size; 2386 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 2387 2388 lock_page(page); 2389 size = i_size_read(inode); 2390 if ((page->mapping != inode->i_mapping) || 2391 (page_offset(page) > size)) { 2392 /* page got truncated out from underneath us */ 2393 goto out_unlock; 2394 } 2395 2396 /* page is wholly or partially inside EOF */ 2397 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2398 end = size & ~PAGE_CACHE_MASK; 2399 else 2400 end = PAGE_CACHE_SIZE; 2401 2402 ret = block_prepare_write(page, 0, end, get_block); 2403 if (!ret) 2404 ret = block_commit_write(page, 0, end); 2405 2406 if (unlikely(ret)) { 2407 if (ret == -ENOMEM) 2408 ret = VM_FAULT_OOM; 2409 else /* -ENOSPC, -EIO, etc */ 2410 ret = VM_FAULT_SIGBUS; 2411 } 2412 2413 out_unlock: 2414 unlock_page(page); 2415 return ret; 2416 } 2417 2418 /* 2419 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2420 * immediately, while under the page lock. So it needs a special end_io 2421 * handler which does not touch the bh after unlocking it. 2422 */ 2423 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2424 { 2425 __end_buffer_read_notouch(bh, uptodate); 2426 } 2427 2428 /* 2429 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2430 * the page (converting it to circular linked list and taking care of page 2431 * dirty races). 2432 */ 2433 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2434 { 2435 struct buffer_head *bh; 2436 2437 BUG_ON(!PageLocked(page)); 2438 2439 spin_lock(&page->mapping->private_lock); 2440 bh = head; 2441 do { 2442 if (PageDirty(page)) 2443 set_buffer_dirty(bh); 2444 if (!bh->b_this_page) 2445 bh->b_this_page = head; 2446 bh = bh->b_this_page; 2447 } while (bh != head); 2448 attach_page_buffers(page, head); 2449 spin_unlock(&page->mapping->private_lock); 2450 } 2451 2452 /* 2453 * On entry, the page is fully not uptodate. 2454 * On exit the page is fully uptodate in the areas outside (from,to) 2455 */ 2456 int nobh_write_begin(struct file *file, struct address_space *mapping, 2457 loff_t pos, unsigned len, unsigned flags, 2458 struct page **pagep, void **fsdata, 2459 get_block_t *get_block) 2460 { 2461 struct inode *inode = mapping->host; 2462 const unsigned blkbits = inode->i_blkbits; 2463 const unsigned blocksize = 1 << blkbits; 2464 struct buffer_head *head, *bh; 2465 struct page *page; 2466 pgoff_t index; 2467 unsigned from, to; 2468 unsigned block_in_page; 2469 unsigned block_start, block_end; 2470 sector_t block_in_file; 2471 int nr_reads = 0; 2472 int ret = 0; 2473 int is_mapped_to_disk = 1; 2474 2475 index = pos >> PAGE_CACHE_SHIFT; 2476 from = pos & (PAGE_CACHE_SIZE - 1); 2477 to = from + len; 2478 2479 page = grab_cache_page_write_begin(mapping, index, flags); 2480 if (!page) 2481 return -ENOMEM; 2482 *pagep = page; 2483 *fsdata = NULL; 2484 2485 if (page_has_buffers(page)) { 2486 unlock_page(page); 2487 page_cache_release(page); 2488 *pagep = NULL; 2489 return block_write_begin(file, mapping, pos, len, flags, pagep, 2490 fsdata, get_block); 2491 } 2492 2493 if (PageMappedToDisk(page)) 2494 return 0; 2495 2496 /* 2497 * Allocate buffers so that we can keep track of state, and potentially 2498 * attach them to the page if an error occurs. In the common case of 2499 * no error, they will just be freed again without ever being attached 2500 * to the page (which is all OK, because we're under the page lock). 2501 * 2502 * Be careful: the buffer linked list is a NULL terminated one, rather 2503 * than the circular one we're used to. 2504 */ 2505 head = alloc_page_buffers(page, blocksize, 0); 2506 if (!head) { 2507 ret = -ENOMEM; 2508 goto out_release; 2509 } 2510 2511 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2512 2513 /* 2514 * We loop across all blocks in the page, whether or not they are 2515 * part of the affected region. This is so we can discover if the 2516 * page is fully mapped-to-disk. 2517 */ 2518 for (block_start = 0, block_in_page = 0, bh = head; 2519 block_start < PAGE_CACHE_SIZE; 2520 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2521 int create; 2522 2523 block_end = block_start + blocksize; 2524 bh->b_state = 0; 2525 create = 1; 2526 if (block_start >= to) 2527 create = 0; 2528 ret = get_block(inode, block_in_file + block_in_page, 2529 bh, create); 2530 if (ret) 2531 goto failed; 2532 if (!buffer_mapped(bh)) 2533 is_mapped_to_disk = 0; 2534 if (buffer_new(bh)) 2535 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2536 if (PageUptodate(page)) { 2537 set_buffer_uptodate(bh); 2538 continue; 2539 } 2540 if (buffer_new(bh) || !buffer_mapped(bh)) { 2541 zero_user_segments(page, block_start, from, 2542 to, block_end); 2543 continue; 2544 } 2545 if (buffer_uptodate(bh)) 2546 continue; /* reiserfs does this */ 2547 if (block_start < from || block_end > to) { 2548 lock_buffer(bh); 2549 bh->b_end_io = end_buffer_read_nobh; 2550 submit_bh(READ, bh); 2551 nr_reads++; 2552 } 2553 } 2554 2555 if (nr_reads) { 2556 /* 2557 * The page is locked, so these buffers are protected from 2558 * any VM or truncate activity. Hence we don't need to care 2559 * for the buffer_head refcounts. 2560 */ 2561 for (bh = head; bh; bh = bh->b_this_page) { 2562 wait_on_buffer(bh); 2563 if (!buffer_uptodate(bh)) 2564 ret = -EIO; 2565 } 2566 if (ret) 2567 goto failed; 2568 } 2569 2570 if (is_mapped_to_disk) 2571 SetPageMappedToDisk(page); 2572 2573 *fsdata = head; /* to be released by nobh_write_end */ 2574 2575 return 0; 2576 2577 failed: 2578 BUG_ON(!ret); 2579 /* 2580 * Error recovery is a bit difficult. We need to zero out blocks that 2581 * were newly allocated, and dirty them to ensure they get written out. 2582 * Buffers need to be attached to the page at this point, otherwise 2583 * the handling of potential IO errors during writeout would be hard 2584 * (could try doing synchronous writeout, but what if that fails too?) 2585 */ 2586 attach_nobh_buffers(page, head); 2587 page_zero_new_buffers(page, from, to); 2588 2589 out_release: 2590 unlock_page(page); 2591 page_cache_release(page); 2592 *pagep = NULL; 2593 2594 if (pos + len > inode->i_size) 2595 vmtruncate(inode, inode->i_size); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL(nobh_write_begin); 2600 2601 int nobh_write_end(struct file *file, struct address_space *mapping, 2602 loff_t pos, unsigned len, unsigned copied, 2603 struct page *page, void *fsdata) 2604 { 2605 struct inode *inode = page->mapping->host; 2606 struct buffer_head *head = fsdata; 2607 struct buffer_head *bh; 2608 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2609 2610 if (unlikely(copied < len) && head) 2611 attach_nobh_buffers(page, head); 2612 if (page_has_buffers(page)) 2613 return generic_write_end(file, mapping, pos, len, 2614 copied, page, fsdata); 2615 2616 SetPageUptodate(page); 2617 set_page_dirty(page); 2618 if (pos+copied > inode->i_size) { 2619 i_size_write(inode, pos+copied); 2620 mark_inode_dirty(inode); 2621 } 2622 2623 unlock_page(page); 2624 page_cache_release(page); 2625 2626 while (head) { 2627 bh = head; 2628 head = head->b_this_page; 2629 free_buffer_head(bh); 2630 } 2631 2632 return copied; 2633 } 2634 EXPORT_SYMBOL(nobh_write_end); 2635 2636 /* 2637 * nobh_writepage() - based on block_full_write_page() except 2638 * that it tries to operate without attaching bufferheads to 2639 * the page. 2640 */ 2641 int nobh_writepage(struct page *page, get_block_t *get_block, 2642 struct writeback_control *wbc) 2643 { 2644 struct inode * const inode = page->mapping->host; 2645 loff_t i_size = i_size_read(inode); 2646 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2647 unsigned offset; 2648 int ret; 2649 2650 /* Is the page fully inside i_size? */ 2651 if (page->index < end_index) 2652 goto out; 2653 2654 /* Is the page fully outside i_size? (truncate in progress) */ 2655 offset = i_size & (PAGE_CACHE_SIZE-1); 2656 if (page->index >= end_index+1 || !offset) { 2657 /* 2658 * The page may have dirty, unmapped buffers. For example, 2659 * they may have been added in ext3_writepage(). Make them 2660 * freeable here, so the page does not leak. 2661 */ 2662 #if 0 2663 /* Not really sure about this - do we need this ? */ 2664 if (page->mapping->a_ops->invalidatepage) 2665 page->mapping->a_ops->invalidatepage(page, offset); 2666 #endif 2667 unlock_page(page); 2668 return 0; /* don't care */ 2669 } 2670 2671 /* 2672 * The page straddles i_size. It must be zeroed out on each and every 2673 * writepage invocation because it may be mmapped. "A file is mapped 2674 * in multiples of the page size. For a file that is not a multiple of 2675 * the page size, the remaining memory is zeroed when mapped, and 2676 * writes to that region are not written out to the file." 2677 */ 2678 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2679 out: 2680 ret = mpage_writepage(page, get_block, wbc); 2681 if (ret == -EAGAIN) 2682 ret = __block_write_full_page(inode, page, get_block, wbc); 2683 return ret; 2684 } 2685 EXPORT_SYMBOL(nobh_writepage); 2686 2687 int nobh_truncate_page(struct address_space *mapping, 2688 loff_t from, get_block_t *get_block) 2689 { 2690 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2691 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2692 unsigned blocksize; 2693 sector_t iblock; 2694 unsigned length, pos; 2695 struct inode *inode = mapping->host; 2696 struct page *page; 2697 struct buffer_head map_bh; 2698 int err; 2699 2700 blocksize = 1 << inode->i_blkbits; 2701 length = offset & (blocksize - 1); 2702 2703 /* Block boundary? Nothing to do */ 2704 if (!length) 2705 return 0; 2706 2707 length = blocksize - length; 2708 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2709 2710 page = grab_cache_page(mapping, index); 2711 err = -ENOMEM; 2712 if (!page) 2713 goto out; 2714 2715 if (page_has_buffers(page)) { 2716 has_buffers: 2717 unlock_page(page); 2718 page_cache_release(page); 2719 return block_truncate_page(mapping, from, get_block); 2720 } 2721 2722 /* Find the buffer that contains "offset" */ 2723 pos = blocksize; 2724 while (offset >= pos) { 2725 iblock++; 2726 pos += blocksize; 2727 } 2728 2729 err = get_block(inode, iblock, &map_bh, 0); 2730 if (err) 2731 goto unlock; 2732 /* unmapped? It's a hole - nothing to do */ 2733 if (!buffer_mapped(&map_bh)) 2734 goto unlock; 2735 2736 /* Ok, it's mapped. Make sure it's up-to-date */ 2737 if (!PageUptodate(page)) { 2738 err = mapping->a_ops->readpage(NULL, page); 2739 if (err) { 2740 page_cache_release(page); 2741 goto out; 2742 } 2743 lock_page(page); 2744 if (!PageUptodate(page)) { 2745 err = -EIO; 2746 goto unlock; 2747 } 2748 if (page_has_buffers(page)) 2749 goto has_buffers; 2750 } 2751 zero_user(page, offset, length); 2752 set_page_dirty(page); 2753 err = 0; 2754 2755 unlock: 2756 unlock_page(page); 2757 page_cache_release(page); 2758 out: 2759 return err; 2760 } 2761 EXPORT_SYMBOL(nobh_truncate_page); 2762 2763 int block_truncate_page(struct address_space *mapping, 2764 loff_t from, get_block_t *get_block) 2765 { 2766 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2767 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2768 unsigned blocksize; 2769 sector_t iblock; 2770 unsigned length, pos; 2771 struct inode *inode = mapping->host; 2772 struct page *page; 2773 struct buffer_head *bh; 2774 int err; 2775 2776 blocksize = 1 << inode->i_blkbits; 2777 length = offset & (blocksize - 1); 2778 2779 /* Block boundary? Nothing to do */ 2780 if (!length) 2781 return 0; 2782 2783 length = blocksize - length; 2784 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2785 2786 page = grab_cache_page(mapping, index); 2787 err = -ENOMEM; 2788 if (!page) 2789 goto out; 2790 2791 if (!page_has_buffers(page)) 2792 create_empty_buffers(page, blocksize, 0); 2793 2794 /* Find the buffer that contains "offset" */ 2795 bh = page_buffers(page); 2796 pos = blocksize; 2797 while (offset >= pos) { 2798 bh = bh->b_this_page; 2799 iblock++; 2800 pos += blocksize; 2801 } 2802 2803 err = 0; 2804 if (!buffer_mapped(bh)) { 2805 WARN_ON(bh->b_size != blocksize); 2806 err = get_block(inode, iblock, bh, 0); 2807 if (err) 2808 goto unlock; 2809 /* unmapped? It's a hole - nothing to do */ 2810 if (!buffer_mapped(bh)) 2811 goto unlock; 2812 } 2813 2814 /* Ok, it's mapped. Make sure it's up-to-date */ 2815 if (PageUptodate(page)) 2816 set_buffer_uptodate(bh); 2817 2818 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2819 err = -EIO; 2820 ll_rw_block(READ, 1, &bh); 2821 wait_on_buffer(bh); 2822 /* Uhhuh. Read error. Complain and punt. */ 2823 if (!buffer_uptodate(bh)) 2824 goto unlock; 2825 } 2826 2827 zero_user(page, offset, length); 2828 mark_buffer_dirty(bh); 2829 err = 0; 2830 2831 unlock: 2832 unlock_page(page); 2833 page_cache_release(page); 2834 out: 2835 return err; 2836 } 2837 2838 /* 2839 * The generic ->writepage function for buffer-backed address_spaces 2840 */ 2841 int block_write_full_page(struct page *page, get_block_t *get_block, 2842 struct writeback_control *wbc) 2843 { 2844 struct inode * const inode = page->mapping->host; 2845 loff_t i_size = i_size_read(inode); 2846 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2847 unsigned offset; 2848 2849 /* Is the page fully inside i_size? */ 2850 if (page->index < end_index) 2851 return __block_write_full_page(inode, page, get_block, wbc); 2852 2853 /* Is the page fully outside i_size? (truncate in progress) */ 2854 offset = i_size & (PAGE_CACHE_SIZE-1); 2855 if (page->index >= end_index+1 || !offset) { 2856 /* 2857 * The page may have dirty, unmapped buffers. For example, 2858 * they may have been added in ext3_writepage(). Make them 2859 * freeable here, so the page does not leak. 2860 */ 2861 do_invalidatepage(page, 0); 2862 unlock_page(page); 2863 return 0; /* don't care */ 2864 } 2865 2866 /* 2867 * The page straddles i_size. It must be zeroed out on each and every 2868 * writepage invokation because it may be mmapped. "A file is mapped 2869 * in multiples of the page size. For a file that is not a multiple of 2870 * the page size, the remaining memory is zeroed when mapped, and 2871 * writes to that region are not written out to the file." 2872 */ 2873 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2874 return __block_write_full_page(inode, page, get_block, wbc); 2875 } 2876 2877 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2878 get_block_t *get_block) 2879 { 2880 struct buffer_head tmp; 2881 struct inode *inode = mapping->host; 2882 tmp.b_state = 0; 2883 tmp.b_blocknr = 0; 2884 tmp.b_size = 1 << inode->i_blkbits; 2885 get_block(inode, block, &tmp, 0); 2886 return tmp.b_blocknr; 2887 } 2888 2889 static void end_bio_bh_io_sync(struct bio *bio, int err) 2890 { 2891 struct buffer_head *bh = bio->bi_private; 2892 2893 if (err == -EOPNOTSUPP) { 2894 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2895 set_bit(BH_Eopnotsupp, &bh->b_state); 2896 } 2897 2898 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2899 set_bit(BH_Quiet, &bh->b_state); 2900 2901 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2902 bio_put(bio); 2903 } 2904 2905 int submit_bh(int rw, struct buffer_head * bh) 2906 { 2907 struct bio *bio; 2908 int ret = 0; 2909 2910 BUG_ON(!buffer_locked(bh)); 2911 BUG_ON(!buffer_mapped(bh)); 2912 BUG_ON(!bh->b_end_io); 2913 2914 /* 2915 * Mask in barrier bit for a write (could be either a WRITE or a 2916 * WRITE_SYNC 2917 */ 2918 if (buffer_ordered(bh) && (rw & WRITE)) 2919 rw |= WRITE_BARRIER; 2920 2921 /* 2922 * Only clear out a write error when rewriting 2923 */ 2924 if (test_set_buffer_req(bh) && (rw & WRITE)) 2925 clear_buffer_write_io_error(bh); 2926 2927 /* 2928 * from here on down, it's all bio -- do the initial mapping, 2929 * submit_bio -> generic_make_request may further map this bio around 2930 */ 2931 bio = bio_alloc(GFP_NOIO, 1); 2932 2933 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2934 bio->bi_bdev = bh->b_bdev; 2935 bio->bi_io_vec[0].bv_page = bh->b_page; 2936 bio->bi_io_vec[0].bv_len = bh->b_size; 2937 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2938 2939 bio->bi_vcnt = 1; 2940 bio->bi_idx = 0; 2941 bio->bi_size = bh->b_size; 2942 2943 bio->bi_end_io = end_bio_bh_io_sync; 2944 bio->bi_private = bh; 2945 2946 bio_get(bio); 2947 submit_bio(rw, bio); 2948 2949 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2950 ret = -EOPNOTSUPP; 2951 2952 bio_put(bio); 2953 return ret; 2954 } 2955 2956 /** 2957 * ll_rw_block: low-level access to block devices (DEPRECATED) 2958 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2959 * @nr: number of &struct buffer_heads in the array 2960 * @bhs: array of pointers to &struct buffer_head 2961 * 2962 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2963 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2964 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2965 * are sent to disk. The fourth %READA option is described in the documentation 2966 * for generic_make_request() which ll_rw_block() calls. 2967 * 2968 * This function drops any buffer that it cannot get a lock on (with the 2969 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2970 * clean when doing a write request, and any buffer that appears to be 2971 * up-to-date when doing read request. Further it marks as clean buffers that 2972 * are processed for writing (the buffer cache won't assume that they are 2973 * actually clean until the buffer gets unlocked). 2974 * 2975 * ll_rw_block sets b_end_io to simple completion handler that marks 2976 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2977 * any waiters. 2978 * 2979 * All of the buffers must be for the same device, and must also be a 2980 * multiple of the current approved size for the device. 2981 */ 2982 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2983 { 2984 int i; 2985 2986 for (i = 0; i < nr; i++) { 2987 struct buffer_head *bh = bhs[i]; 2988 2989 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG) 2990 lock_buffer(bh); 2991 else if (!trylock_buffer(bh)) 2992 continue; 2993 2994 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC || 2995 rw == SWRITE_SYNC_PLUG) { 2996 if (test_clear_buffer_dirty(bh)) { 2997 bh->b_end_io = end_buffer_write_sync; 2998 get_bh(bh); 2999 if (rw == SWRITE_SYNC) 3000 submit_bh(WRITE_SYNC, bh); 3001 else 3002 submit_bh(WRITE, bh); 3003 continue; 3004 } 3005 } else { 3006 if (!buffer_uptodate(bh)) { 3007 bh->b_end_io = end_buffer_read_sync; 3008 get_bh(bh); 3009 submit_bh(rw, bh); 3010 continue; 3011 } 3012 } 3013 unlock_buffer(bh); 3014 } 3015 } 3016 3017 /* 3018 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3019 * and then start new I/O and then wait upon it. The caller must have a ref on 3020 * the buffer_head. 3021 */ 3022 int sync_dirty_buffer(struct buffer_head *bh) 3023 { 3024 int ret = 0; 3025 3026 WARN_ON(atomic_read(&bh->b_count) < 1); 3027 lock_buffer(bh); 3028 if (test_clear_buffer_dirty(bh)) { 3029 get_bh(bh); 3030 bh->b_end_io = end_buffer_write_sync; 3031 ret = submit_bh(WRITE_SYNC, bh); 3032 wait_on_buffer(bh); 3033 if (buffer_eopnotsupp(bh)) { 3034 clear_buffer_eopnotsupp(bh); 3035 ret = -EOPNOTSUPP; 3036 } 3037 if (!ret && !buffer_uptodate(bh)) 3038 ret = -EIO; 3039 } else { 3040 unlock_buffer(bh); 3041 } 3042 return ret; 3043 } 3044 3045 /* 3046 * try_to_free_buffers() checks if all the buffers on this particular page 3047 * are unused, and releases them if so. 3048 * 3049 * Exclusion against try_to_free_buffers may be obtained by either 3050 * locking the page or by holding its mapping's private_lock. 3051 * 3052 * If the page is dirty but all the buffers are clean then we need to 3053 * be sure to mark the page clean as well. This is because the page 3054 * may be against a block device, and a later reattachment of buffers 3055 * to a dirty page will set *all* buffers dirty. Which would corrupt 3056 * filesystem data on the same device. 3057 * 3058 * The same applies to regular filesystem pages: if all the buffers are 3059 * clean then we set the page clean and proceed. To do that, we require 3060 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3061 * private_lock. 3062 * 3063 * try_to_free_buffers() is non-blocking. 3064 */ 3065 static inline int buffer_busy(struct buffer_head *bh) 3066 { 3067 return atomic_read(&bh->b_count) | 3068 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3069 } 3070 3071 static int 3072 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3073 { 3074 struct buffer_head *head = page_buffers(page); 3075 struct buffer_head *bh; 3076 3077 bh = head; 3078 do { 3079 if (buffer_write_io_error(bh) && page->mapping) 3080 set_bit(AS_EIO, &page->mapping->flags); 3081 if (buffer_busy(bh)) 3082 goto failed; 3083 bh = bh->b_this_page; 3084 } while (bh != head); 3085 3086 do { 3087 struct buffer_head *next = bh->b_this_page; 3088 3089 if (bh->b_assoc_map) 3090 __remove_assoc_queue(bh); 3091 bh = next; 3092 } while (bh != head); 3093 *buffers_to_free = head; 3094 __clear_page_buffers(page); 3095 return 1; 3096 failed: 3097 return 0; 3098 } 3099 3100 int try_to_free_buffers(struct page *page) 3101 { 3102 struct address_space * const mapping = page->mapping; 3103 struct buffer_head *buffers_to_free = NULL; 3104 int ret = 0; 3105 3106 BUG_ON(!PageLocked(page)); 3107 if (PageWriteback(page)) 3108 return 0; 3109 3110 if (mapping == NULL) { /* can this still happen? */ 3111 ret = drop_buffers(page, &buffers_to_free); 3112 goto out; 3113 } 3114 3115 spin_lock(&mapping->private_lock); 3116 ret = drop_buffers(page, &buffers_to_free); 3117 3118 /* 3119 * If the filesystem writes its buffers by hand (eg ext3) 3120 * then we can have clean buffers against a dirty page. We 3121 * clean the page here; otherwise the VM will never notice 3122 * that the filesystem did any IO at all. 3123 * 3124 * Also, during truncate, discard_buffer will have marked all 3125 * the page's buffers clean. We discover that here and clean 3126 * the page also. 3127 * 3128 * private_lock must be held over this entire operation in order 3129 * to synchronise against __set_page_dirty_buffers and prevent the 3130 * dirty bit from being lost. 3131 */ 3132 if (ret) 3133 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3134 spin_unlock(&mapping->private_lock); 3135 out: 3136 if (buffers_to_free) { 3137 struct buffer_head *bh = buffers_to_free; 3138 3139 do { 3140 struct buffer_head *next = bh->b_this_page; 3141 free_buffer_head(bh); 3142 bh = next; 3143 } while (bh != buffers_to_free); 3144 } 3145 return ret; 3146 } 3147 EXPORT_SYMBOL(try_to_free_buffers); 3148 3149 void block_sync_page(struct page *page) 3150 { 3151 struct address_space *mapping; 3152 3153 smp_mb(); 3154 mapping = page_mapping(page); 3155 if (mapping) 3156 blk_run_backing_dev(mapping->backing_dev_info, page); 3157 } 3158 3159 /* 3160 * There are no bdflush tunables left. But distributions are 3161 * still running obsolete flush daemons, so we terminate them here. 3162 * 3163 * Use of bdflush() is deprecated and will be removed in a future kernel. 3164 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3165 */ 3166 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3167 { 3168 static int msg_count; 3169 3170 if (!capable(CAP_SYS_ADMIN)) 3171 return -EPERM; 3172 3173 if (msg_count < 5) { 3174 msg_count++; 3175 printk(KERN_INFO 3176 "warning: process `%s' used the obsolete bdflush" 3177 " system call\n", current->comm); 3178 printk(KERN_INFO "Fix your initscripts?\n"); 3179 } 3180 3181 if (func == 1) 3182 do_exit(0); 3183 return 0; 3184 } 3185 3186 /* 3187 * Buffer-head allocation 3188 */ 3189 static struct kmem_cache *bh_cachep; 3190 3191 /* 3192 * Once the number of bh's in the machine exceeds this level, we start 3193 * stripping them in writeback. 3194 */ 3195 static int max_buffer_heads; 3196 3197 int buffer_heads_over_limit; 3198 3199 struct bh_accounting { 3200 int nr; /* Number of live bh's */ 3201 int ratelimit; /* Limit cacheline bouncing */ 3202 }; 3203 3204 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3205 3206 static void recalc_bh_state(void) 3207 { 3208 int i; 3209 int tot = 0; 3210 3211 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3212 return; 3213 __get_cpu_var(bh_accounting).ratelimit = 0; 3214 for_each_online_cpu(i) 3215 tot += per_cpu(bh_accounting, i).nr; 3216 buffer_heads_over_limit = (tot > max_buffer_heads); 3217 } 3218 3219 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3220 { 3221 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3222 if (ret) { 3223 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3224 get_cpu_var(bh_accounting).nr++; 3225 recalc_bh_state(); 3226 put_cpu_var(bh_accounting); 3227 } 3228 return ret; 3229 } 3230 EXPORT_SYMBOL(alloc_buffer_head); 3231 3232 void free_buffer_head(struct buffer_head *bh) 3233 { 3234 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3235 kmem_cache_free(bh_cachep, bh); 3236 get_cpu_var(bh_accounting).nr--; 3237 recalc_bh_state(); 3238 put_cpu_var(bh_accounting); 3239 } 3240 EXPORT_SYMBOL(free_buffer_head); 3241 3242 static void buffer_exit_cpu(int cpu) 3243 { 3244 int i; 3245 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3246 3247 for (i = 0; i < BH_LRU_SIZE; i++) { 3248 brelse(b->bhs[i]); 3249 b->bhs[i] = NULL; 3250 } 3251 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3252 per_cpu(bh_accounting, cpu).nr = 0; 3253 put_cpu_var(bh_accounting); 3254 } 3255 3256 static int buffer_cpu_notify(struct notifier_block *self, 3257 unsigned long action, void *hcpu) 3258 { 3259 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3260 buffer_exit_cpu((unsigned long)hcpu); 3261 return NOTIFY_OK; 3262 } 3263 3264 /** 3265 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3266 * @bh: struct buffer_head 3267 * 3268 * Return true if the buffer is up-to-date and false, 3269 * with the buffer locked, if not. 3270 */ 3271 int bh_uptodate_or_lock(struct buffer_head *bh) 3272 { 3273 if (!buffer_uptodate(bh)) { 3274 lock_buffer(bh); 3275 if (!buffer_uptodate(bh)) 3276 return 0; 3277 unlock_buffer(bh); 3278 } 3279 return 1; 3280 } 3281 EXPORT_SYMBOL(bh_uptodate_or_lock); 3282 3283 /** 3284 * bh_submit_read - Submit a locked buffer for reading 3285 * @bh: struct buffer_head 3286 * 3287 * Returns zero on success and -EIO on error. 3288 */ 3289 int bh_submit_read(struct buffer_head *bh) 3290 { 3291 BUG_ON(!buffer_locked(bh)); 3292 3293 if (buffer_uptodate(bh)) { 3294 unlock_buffer(bh); 3295 return 0; 3296 } 3297 3298 get_bh(bh); 3299 bh->b_end_io = end_buffer_read_sync; 3300 submit_bh(READ, bh); 3301 wait_on_buffer(bh); 3302 if (buffer_uptodate(bh)) 3303 return 0; 3304 return -EIO; 3305 } 3306 EXPORT_SYMBOL(bh_submit_read); 3307 3308 static void 3309 init_buffer_head(void *data) 3310 { 3311 struct buffer_head *bh = data; 3312 3313 memset(bh, 0, sizeof(*bh)); 3314 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3315 } 3316 3317 void __init buffer_init(void) 3318 { 3319 int nrpages; 3320 3321 bh_cachep = kmem_cache_create("buffer_head", 3322 sizeof(struct buffer_head), 0, 3323 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3324 SLAB_MEM_SPREAD), 3325 init_buffer_head); 3326 3327 /* 3328 * Limit the bh occupancy to 10% of ZONE_NORMAL 3329 */ 3330 nrpages = (nr_free_buffer_pages() * 10) / 100; 3331 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3332 hotcpu_notifier(buffer_cpu_notify, 0); 3333 } 3334 3335 EXPORT_SYMBOL(__bforget); 3336 EXPORT_SYMBOL(__brelse); 3337 EXPORT_SYMBOL(__wait_on_buffer); 3338 EXPORT_SYMBOL(block_commit_write); 3339 EXPORT_SYMBOL(block_prepare_write); 3340 EXPORT_SYMBOL(block_page_mkwrite); 3341 EXPORT_SYMBOL(block_read_full_page); 3342 EXPORT_SYMBOL(block_sync_page); 3343 EXPORT_SYMBOL(block_truncate_page); 3344 EXPORT_SYMBOL(block_write_full_page); 3345 EXPORT_SYMBOL(cont_write_begin); 3346 EXPORT_SYMBOL(end_buffer_read_sync); 3347 EXPORT_SYMBOL(end_buffer_write_sync); 3348 EXPORT_SYMBOL(file_fsync); 3349 EXPORT_SYMBOL(generic_block_bmap); 3350 EXPORT_SYMBOL(generic_cont_expand_simple); 3351 EXPORT_SYMBOL(init_buffer); 3352 EXPORT_SYMBOL(invalidate_bdev); 3353 EXPORT_SYMBOL(ll_rw_block); 3354 EXPORT_SYMBOL(mark_buffer_dirty); 3355 EXPORT_SYMBOL(submit_bh); 3356 EXPORT_SYMBOL(sync_dirty_buffer); 3357 EXPORT_SYMBOL(unlock_buffer); 3358