xref: /openbmc/linux/fs/buffer.c (revision b627b4ed)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	set_page_private(page, 0);
99 	page_cache_release(page);
100 }
101 
102 
103 static int quiet_error(struct buffer_head *bh)
104 {
105 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 		return 0;
107 	return 1;
108 }
109 
110 
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113 	char b[BDEVNAME_SIZE];
114 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 			bdevname(bh->b_bdev, b),
116 			(unsigned long long)bh->b_blocknr);
117 }
118 
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129 	if (uptodate) {
130 		set_buffer_uptodate(bh);
131 	} else {
132 		/* This happens, due to failed READA attempts. */
133 		clear_buffer_uptodate(bh);
134 	}
135 	unlock_buffer(bh);
136 }
137 
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144 	__end_buffer_read_notouch(bh, uptodate);
145 	put_bh(bh);
146 }
147 
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150 	char b[BDEVNAME_SIZE];
151 
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 			buffer_io_error(bh);
157 			printk(KERN_WARNING "lost page write due to "
158 					"I/O error on %s\n",
159 				       bdevname(bh->b_bdev, b));
160 		}
161 		set_buffer_write_io_error(bh);
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 	put_bh(bh);
166 }
167 
168 /*
169  * Various filesystems appear to want __find_get_block to be non-blocking.
170  * But it's the page lock which protects the buffers.  To get around this,
171  * we get exclusion from try_to_free_buffers with the blockdev mapping's
172  * private_lock.
173  *
174  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175  * may be quite high.  This code could TryLock the page, and if that
176  * succeeds, there is no need to take private_lock. (But if
177  * private_lock is contended then so is mapping->tree_lock).
178  */
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
181 {
182 	struct inode *bd_inode = bdev->bd_inode;
183 	struct address_space *bd_mapping = bd_inode->i_mapping;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct page *page;
189 	int all_mapped = 1;
190 
191 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 	page = find_get_page(bd_mapping, index);
193 	if (!page)
194 		goto out;
195 
196 	spin_lock(&bd_mapping->private_lock);
197 	if (!page_has_buffers(page))
198 		goto out_unlock;
199 	head = page_buffers(page);
200 	bh = head;
201 	do {
202 		if (!buffer_mapped(bh))
203 			all_mapped = 0;
204 		else if (bh->b_blocknr == block) {
205 			ret = bh;
206 			get_bh(bh);
207 			goto out_unlock;
208 		}
209 		bh = bh->b_this_page;
210 	} while (bh != head);
211 
212 	/* we might be here because some of the buffers on this page are
213 	 * not mapped.  This is due to various races between
214 	 * file io on the block device and getblk.  It gets dealt with
215 	 * elsewhere, don't buffer_error if we had some unmapped buffers
216 	 */
217 	if (all_mapped) {
218 		printk("__find_get_block_slow() failed. "
219 			"block=%llu, b_blocknr=%llu\n",
220 			(unsigned long long)block,
221 			(unsigned long long)bh->b_blocknr);
222 		printk("b_state=0x%08lx, b_size=%zu\n",
223 			bh->b_state, bh->b_size);
224 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234    of fs corruption is going on. Trashing dirty data always imply losing
235    information that was supposed to be just stored on the physical layer
236    by the user.
237 
238    Thus invalidate_buffers in general usage is not allwowed to trash
239    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240    be preserved.  These buffers are simply skipped.
241 
242    We also skip buffers which are still in use.  For example this can
243    happen if a userspace program is reading the block device.
244 
245    NOTE: In the case where the user removed a removable-media-disk even if
246    there's still dirty data not synced on disk (due a bug in the device driver
247    or due an error of the user), by not destroying the dirty buffers we could
248    generate corruption also on the next media inserted, thus a parameter is
249    necessary to handle this case in the most safe way possible (trying
250    to not corrupt also the new disk inserted with the data belonging to
251    the old now corrupted disk). Also for the ramdisk the natural thing
252    to do in order to release the ramdisk memory is to destroy dirty buffers.
253 
254    These are two special cases. Normal usage imply the device driver
255    to issue a sync on the device (without waiting I/O completion) and
256    then an invalidate_buffers call that doesn't trash dirty buffers.
257 
258    For handling cache coherency with the blkdev pagecache the 'update' case
259    is been introduced. It is needed to re-read from disk any pinned
260    buffer. NOTE: re-reading from disk is destructive so we can do it only
261    when we assume nobody is changing the buffercache under our I/O and when
262    we think the disk contains more recent information than the buffercache.
263    The update == 1 pass marks the buffers we need to update, the update == 2
264    pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
266 {
267 	struct address_space *mapping = bdev->bd_inode->i_mapping;
268 
269 	if (mapping->nrpages == 0)
270 		return;
271 
272 	invalidate_bh_lrus();
273 	invalidate_mapping_pages(mapping, 0, -1);
274 }
275 
276 /*
277  * Kick pdflush then try to free up some ZONE_NORMAL memory.
278  */
279 static void free_more_memory(void)
280 {
281 	struct zone *zone;
282 	int nid;
283 
284 	wakeup_pdflush(1024);
285 	yield();
286 
287 	for_each_online_node(nid) {
288 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 						gfp_zone(GFP_NOFS), NULL,
290 						&zone);
291 		if (zone)
292 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 						GFP_NOFS, NULL);
294 	}
295 }
296 
297 /*
298  * I/O completion handler for block_read_full_page() - pages
299  * which come unlocked at the end of I/O.
300  */
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 {
303 	unsigned long flags;
304 	struct buffer_head *first;
305 	struct buffer_head *tmp;
306 	struct page *page;
307 	int page_uptodate = 1;
308 
309 	BUG_ON(!buffer_async_read(bh));
310 
311 	page = bh->b_page;
312 	if (uptodate) {
313 		set_buffer_uptodate(bh);
314 	} else {
315 		clear_buffer_uptodate(bh);
316 		if (!quiet_error(bh))
317 			buffer_io_error(bh);
318 		SetPageError(page);
319 	}
320 
321 	/*
322 	 * Be _very_ careful from here on. Bad things can happen if
323 	 * two buffer heads end IO at almost the same time and both
324 	 * decide that the page is now completely done.
325 	 */
326 	first = page_buffers(page);
327 	local_irq_save(flags);
328 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 	clear_buffer_async_read(bh);
330 	unlock_buffer(bh);
331 	tmp = bh;
332 	do {
333 		if (!buffer_uptodate(tmp))
334 			page_uptodate = 0;
335 		if (buffer_async_read(tmp)) {
336 			BUG_ON(!buffer_locked(tmp));
337 			goto still_busy;
338 		}
339 		tmp = tmp->b_this_page;
340 	} while (tmp != bh);
341 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 	local_irq_restore(flags);
343 
344 	/*
345 	 * If none of the buffers had errors and they are all
346 	 * uptodate then we can set the page uptodate.
347 	 */
348 	if (page_uptodate && !PageError(page))
349 		SetPageUptodate(page);
350 	unlock_page(page);
351 	return;
352 
353 still_busy:
354 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 	local_irq_restore(flags);
356 	return;
357 }
358 
359 /*
360  * Completion handler for block_write_full_page() - pages which are unlocked
361  * during I/O, and which have PageWriteback cleared upon I/O completion.
362  */
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 {
365 	char b[BDEVNAME_SIZE];
366 	unsigned long flags;
367 	struct buffer_head *first;
368 	struct buffer_head *tmp;
369 	struct page *page;
370 
371 	BUG_ON(!buffer_async_write(bh));
372 
373 	page = bh->b_page;
374 	if (uptodate) {
375 		set_buffer_uptodate(bh);
376 	} else {
377 		if (!quiet_error(bh)) {
378 			buffer_io_error(bh);
379 			printk(KERN_WARNING "lost page write due to "
380 					"I/O error on %s\n",
381 			       bdevname(bh->b_bdev, b));
382 		}
383 		set_bit(AS_EIO, &page->mapping->flags);
384 		set_buffer_write_io_error(bh);
385 		clear_buffer_uptodate(bh);
386 		SetPageError(page);
387 	}
388 
389 	first = page_buffers(page);
390 	local_irq_save(flags);
391 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392 
393 	clear_buffer_async_write(bh);
394 	unlock_buffer(bh);
395 	tmp = bh->b_this_page;
396 	while (tmp != bh) {
397 		if (buffer_async_write(tmp)) {
398 			BUG_ON(!buffer_locked(tmp));
399 			goto still_busy;
400 		}
401 		tmp = tmp->b_this_page;
402 	}
403 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 	local_irq_restore(flags);
405 	end_page_writeback(page);
406 	return;
407 
408 still_busy:
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 	return;
412 }
413 
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437 	bh->b_end_io = end_buffer_async_read;
438 	set_buffer_async_read(bh);
439 }
440 
441 void mark_buffer_async_write(struct buffer_head *bh)
442 {
443 	bh->b_end_io = end_buffer_async_write;
444 	set_buffer_async_write(bh);
445 }
446 EXPORT_SYMBOL(mark_buffer_async_write);
447 
448 
449 /*
450  * fs/buffer.c contains helper functions for buffer-backed address space's
451  * fsync functions.  A common requirement for buffer-based filesystems is
452  * that certain data from the backing blockdev needs to be written out for
453  * a successful fsync().  For example, ext2 indirect blocks need to be
454  * written back and waited upon before fsync() returns.
455  *
456  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458  * management of a list of dependent buffers at ->i_mapping->private_list.
459  *
460  * Locking is a little subtle: try_to_free_buffers() will remove buffers
461  * from their controlling inode's queue when they are being freed.  But
462  * try_to_free_buffers() will be operating against the *blockdev* mapping
463  * at the time, not against the S_ISREG file which depends on those buffers.
464  * So the locking for private_list is via the private_lock in the address_space
465  * which backs the buffers.  Which is different from the address_space
466  * against which the buffers are listed.  So for a particular address_space,
467  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
468  * mapping->private_list will always be protected by the backing blockdev's
469  * ->private_lock.
470  *
471  * Which introduces a requirement: all buffers on an address_space's
472  * ->private_list must be from the same address_space: the blockdev's.
473  *
474  * address_spaces which do not place buffers at ->private_list via these
475  * utility functions are free to use private_lock and private_list for
476  * whatever they want.  The only requirement is that list_empty(private_list)
477  * be true at clear_inode() time.
478  *
479  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
480  * filesystems should do that.  invalidate_inode_buffers() should just go
481  * BUG_ON(!list_empty).
482  *
483  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
484  * take an address_space, not an inode.  And it should be called
485  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486  * queued up.
487  *
488  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489  * list if it is already on a list.  Because if the buffer is on a list,
490  * it *must* already be on the right one.  If not, the filesystem is being
491  * silly.  This will save a ton of locking.  But first we have to ensure
492  * that buffers are taken *off* the old inode's list when they are freed
493  * (presumably in truncate).  That requires careful auditing of all
494  * filesystems (do it inside bforget()).  It could also be done by bringing
495  * b_inode back.
496  */
497 
498 /*
499  * The buffer's backing address_space's private_lock must be held
500  */
501 static void __remove_assoc_queue(struct buffer_head *bh)
502 {
503 	list_del_init(&bh->b_assoc_buffers);
504 	WARN_ON(!bh->b_assoc_map);
505 	if (buffer_write_io_error(bh))
506 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 	bh->b_assoc_map = NULL;
508 }
509 
510 int inode_has_buffers(struct inode *inode)
511 {
512 	return !list_empty(&inode->i_data.private_list);
513 }
514 
515 /*
516  * osync is designed to support O_SYNC io.  It waits synchronously for
517  * all already-submitted IO to complete, but does not queue any new
518  * writes to the disk.
519  *
520  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521  * you dirty the buffers, and then use osync_inode_buffers to wait for
522  * completion.  Any other dirty buffers which are not yet queued for
523  * write will not be flushed to disk by the osync.
524  */
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526 {
527 	struct buffer_head *bh;
528 	struct list_head *p;
529 	int err = 0;
530 
531 	spin_lock(lock);
532 repeat:
533 	list_for_each_prev(p, list) {
534 		bh = BH_ENTRY(p);
535 		if (buffer_locked(bh)) {
536 			get_bh(bh);
537 			spin_unlock(lock);
538 			wait_on_buffer(bh);
539 			if (!buffer_uptodate(bh))
540 				err = -EIO;
541 			brelse(bh);
542 			spin_lock(lock);
543 			goto repeat;
544 		}
545 	}
546 	spin_unlock(lock);
547 	return err;
548 }
549 
550 void do_thaw_all(struct work_struct *work)
551 {
552 	struct super_block *sb;
553 	char b[BDEVNAME_SIZE];
554 
555 	spin_lock(&sb_lock);
556 restart:
557 	list_for_each_entry(sb, &super_blocks, s_list) {
558 		sb->s_count++;
559 		spin_unlock(&sb_lock);
560 		down_read(&sb->s_umount);
561 		while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
562 			printk(KERN_WARNING "Emergency Thaw on %s\n",
563 			       bdevname(sb->s_bdev, b));
564 		up_read(&sb->s_umount);
565 		spin_lock(&sb_lock);
566 		if (__put_super_and_need_restart(sb))
567 			goto restart;
568 	}
569 	spin_unlock(&sb_lock);
570 	kfree(work);
571 	printk(KERN_WARNING "Emergency Thaw complete\n");
572 }
573 
574 /**
575  * emergency_thaw_all -- forcibly thaw every frozen filesystem
576  *
577  * Used for emergency unfreeze of all filesystems via SysRq
578  */
579 void emergency_thaw_all(void)
580 {
581 	struct work_struct *work;
582 
583 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
584 	if (work) {
585 		INIT_WORK(work, do_thaw_all);
586 		schedule_work(work);
587 	}
588 }
589 
590 /**
591  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
592  * @mapping: the mapping which wants those buffers written
593  *
594  * Starts I/O against the buffers at mapping->private_list, and waits upon
595  * that I/O.
596  *
597  * Basically, this is a convenience function for fsync().
598  * @mapping is a file or directory which needs those buffers to be written for
599  * a successful fsync().
600  */
601 int sync_mapping_buffers(struct address_space *mapping)
602 {
603 	struct address_space *buffer_mapping = mapping->assoc_mapping;
604 
605 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
606 		return 0;
607 
608 	return fsync_buffers_list(&buffer_mapping->private_lock,
609 					&mapping->private_list);
610 }
611 EXPORT_SYMBOL(sync_mapping_buffers);
612 
613 /*
614  * Called when we've recently written block `bblock', and it is known that
615  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
616  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
617  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
618  */
619 void write_boundary_block(struct block_device *bdev,
620 			sector_t bblock, unsigned blocksize)
621 {
622 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
623 	if (bh) {
624 		if (buffer_dirty(bh))
625 			ll_rw_block(WRITE, 1, &bh);
626 		put_bh(bh);
627 	}
628 }
629 
630 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
631 {
632 	struct address_space *mapping = inode->i_mapping;
633 	struct address_space *buffer_mapping = bh->b_page->mapping;
634 
635 	mark_buffer_dirty(bh);
636 	if (!mapping->assoc_mapping) {
637 		mapping->assoc_mapping = buffer_mapping;
638 	} else {
639 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
640 	}
641 	if (!bh->b_assoc_map) {
642 		spin_lock(&buffer_mapping->private_lock);
643 		list_move_tail(&bh->b_assoc_buffers,
644 				&mapping->private_list);
645 		bh->b_assoc_map = mapping;
646 		spin_unlock(&buffer_mapping->private_lock);
647 	}
648 }
649 EXPORT_SYMBOL(mark_buffer_dirty_inode);
650 
651 /*
652  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
653  * dirty.
654  *
655  * If warn is true, then emit a warning if the page is not uptodate and has
656  * not been truncated.
657  */
658 static void __set_page_dirty(struct page *page,
659 		struct address_space *mapping, int warn)
660 {
661 	spin_lock_irq(&mapping->tree_lock);
662 	if (page->mapping) {	/* Race with truncate? */
663 		WARN_ON_ONCE(warn && !PageUptodate(page));
664 		account_page_dirtied(page, mapping);
665 		radix_tree_tag_set(&mapping->page_tree,
666 				page_index(page), PAGECACHE_TAG_DIRTY);
667 	}
668 	spin_unlock_irq(&mapping->tree_lock);
669 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670 }
671 
672 /*
673  * Add a page to the dirty page list.
674  *
675  * It is a sad fact of life that this function is called from several places
676  * deeply under spinlocking.  It may not sleep.
677  *
678  * If the page has buffers, the uptodate buffers are set dirty, to preserve
679  * dirty-state coherency between the page and the buffers.  It the page does
680  * not have buffers then when they are later attached they will all be set
681  * dirty.
682  *
683  * The buffers are dirtied before the page is dirtied.  There's a small race
684  * window in which a writepage caller may see the page cleanness but not the
685  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
686  * before the buffers, a concurrent writepage caller could clear the page dirty
687  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
688  * page on the dirty page list.
689  *
690  * We use private_lock to lock against try_to_free_buffers while using the
691  * page's buffer list.  Also use this to protect against clean buffers being
692  * added to the page after it was set dirty.
693  *
694  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
695  * address_space though.
696  */
697 int __set_page_dirty_buffers(struct page *page)
698 {
699 	int newly_dirty;
700 	struct address_space *mapping = page_mapping(page);
701 
702 	if (unlikely(!mapping))
703 		return !TestSetPageDirty(page);
704 
705 	spin_lock(&mapping->private_lock);
706 	if (page_has_buffers(page)) {
707 		struct buffer_head *head = page_buffers(page);
708 		struct buffer_head *bh = head;
709 
710 		do {
711 			set_buffer_dirty(bh);
712 			bh = bh->b_this_page;
713 		} while (bh != head);
714 	}
715 	newly_dirty = !TestSetPageDirty(page);
716 	spin_unlock(&mapping->private_lock);
717 
718 	if (newly_dirty)
719 		__set_page_dirty(page, mapping, 1);
720 	return newly_dirty;
721 }
722 EXPORT_SYMBOL(__set_page_dirty_buffers);
723 
724 /*
725  * Write out and wait upon a list of buffers.
726  *
727  * We have conflicting pressures: we want to make sure that all
728  * initially dirty buffers get waited on, but that any subsequently
729  * dirtied buffers don't.  After all, we don't want fsync to last
730  * forever if somebody is actively writing to the file.
731  *
732  * Do this in two main stages: first we copy dirty buffers to a
733  * temporary inode list, queueing the writes as we go.  Then we clean
734  * up, waiting for those writes to complete.
735  *
736  * During this second stage, any subsequent updates to the file may end
737  * up refiling the buffer on the original inode's dirty list again, so
738  * there is a chance we will end up with a buffer queued for write but
739  * not yet completed on that list.  So, as a final cleanup we go through
740  * the osync code to catch these locked, dirty buffers without requeuing
741  * any newly dirty buffers for write.
742  */
743 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
744 {
745 	struct buffer_head *bh;
746 	struct list_head tmp;
747 	struct address_space *mapping, *prev_mapping = NULL;
748 	int err = 0, err2;
749 
750 	INIT_LIST_HEAD(&tmp);
751 
752 	spin_lock(lock);
753 	while (!list_empty(list)) {
754 		bh = BH_ENTRY(list->next);
755 		mapping = bh->b_assoc_map;
756 		__remove_assoc_queue(bh);
757 		/* Avoid race with mark_buffer_dirty_inode() which does
758 		 * a lockless check and we rely on seeing the dirty bit */
759 		smp_mb();
760 		if (buffer_dirty(bh) || buffer_locked(bh)) {
761 			list_add(&bh->b_assoc_buffers, &tmp);
762 			bh->b_assoc_map = mapping;
763 			if (buffer_dirty(bh)) {
764 				get_bh(bh);
765 				spin_unlock(lock);
766 				/*
767 				 * Ensure any pending I/O completes so that
768 				 * ll_rw_block() actually writes the current
769 				 * contents - it is a noop if I/O is still in
770 				 * flight on potentially older contents.
771 				 */
772 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
773 
774 				/*
775 				 * Kick off IO for the previous mapping. Note
776 				 * that we will not run the very last mapping,
777 				 * wait_on_buffer() will do that for us
778 				 * through sync_buffer().
779 				 */
780 				if (prev_mapping && prev_mapping != mapping)
781 					blk_run_address_space(prev_mapping);
782 				prev_mapping = mapping;
783 
784 				brelse(bh);
785 				spin_lock(lock);
786 			}
787 		}
788 	}
789 
790 	while (!list_empty(&tmp)) {
791 		bh = BH_ENTRY(tmp.prev);
792 		get_bh(bh);
793 		mapping = bh->b_assoc_map;
794 		__remove_assoc_queue(bh);
795 		/* Avoid race with mark_buffer_dirty_inode() which does
796 		 * a lockless check and we rely on seeing the dirty bit */
797 		smp_mb();
798 		if (buffer_dirty(bh)) {
799 			list_add(&bh->b_assoc_buffers,
800 				 &mapping->private_list);
801 			bh->b_assoc_map = mapping;
802 		}
803 		spin_unlock(lock);
804 		wait_on_buffer(bh);
805 		if (!buffer_uptodate(bh))
806 			err = -EIO;
807 		brelse(bh);
808 		spin_lock(lock);
809 	}
810 
811 	spin_unlock(lock);
812 	err2 = osync_buffers_list(lock, list);
813 	if (err)
814 		return err;
815 	else
816 		return err2;
817 }
818 
819 /*
820  * Invalidate any and all dirty buffers on a given inode.  We are
821  * probably unmounting the fs, but that doesn't mean we have already
822  * done a sync().  Just drop the buffers from the inode list.
823  *
824  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
825  * assumes that all the buffers are against the blockdev.  Not true
826  * for reiserfs.
827  */
828 void invalidate_inode_buffers(struct inode *inode)
829 {
830 	if (inode_has_buffers(inode)) {
831 		struct address_space *mapping = &inode->i_data;
832 		struct list_head *list = &mapping->private_list;
833 		struct address_space *buffer_mapping = mapping->assoc_mapping;
834 
835 		spin_lock(&buffer_mapping->private_lock);
836 		while (!list_empty(list))
837 			__remove_assoc_queue(BH_ENTRY(list->next));
838 		spin_unlock(&buffer_mapping->private_lock);
839 	}
840 }
841 EXPORT_SYMBOL(invalidate_inode_buffers);
842 
843 /*
844  * Remove any clean buffers from the inode's buffer list.  This is called
845  * when we're trying to free the inode itself.  Those buffers can pin it.
846  *
847  * Returns true if all buffers were removed.
848  */
849 int remove_inode_buffers(struct inode *inode)
850 {
851 	int ret = 1;
852 
853 	if (inode_has_buffers(inode)) {
854 		struct address_space *mapping = &inode->i_data;
855 		struct list_head *list = &mapping->private_list;
856 		struct address_space *buffer_mapping = mapping->assoc_mapping;
857 
858 		spin_lock(&buffer_mapping->private_lock);
859 		while (!list_empty(list)) {
860 			struct buffer_head *bh = BH_ENTRY(list->next);
861 			if (buffer_dirty(bh)) {
862 				ret = 0;
863 				break;
864 			}
865 			__remove_assoc_queue(bh);
866 		}
867 		spin_unlock(&buffer_mapping->private_lock);
868 	}
869 	return ret;
870 }
871 
872 /*
873  * Create the appropriate buffers when given a page for data area and
874  * the size of each buffer.. Use the bh->b_this_page linked list to
875  * follow the buffers created.  Return NULL if unable to create more
876  * buffers.
877  *
878  * The retry flag is used to differentiate async IO (paging, swapping)
879  * which may not fail from ordinary buffer allocations.
880  */
881 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
882 		int retry)
883 {
884 	struct buffer_head *bh, *head;
885 	long offset;
886 
887 try_again:
888 	head = NULL;
889 	offset = PAGE_SIZE;
890 	while ((offset -= size) >= 0) {
891 		bh = alloc_buffer_head(GFP_NOFS);
892 		if (!bh)
893 			goto no_grow;
894 
895 		bh->b_bdev = NULL;
896 		bh->b_this_page = head;
897 		bh->b_blocknr = -1;
898 		head = bh;
899 
900 		bh->b_state = 0;
901 		atomic_set(&bh->b_count, 0);
902 		bh->b_private = NULL;
903 		bh->b_size = size;
904 
905 		/* Link the buffer to its page */
906 		set_bh_page(bh, page, offset);
907 
908 		init_buffer(bh, NULL, NULL);
909 	}
910 	return head;
911 /*
912  * In case anything failed, we just free everything we got.
913  */
914 no_grow:
915 	if (head) {
916 		do {
917 			bh = head;
918 			head = head->b_this_page;
919 			free_buffer_head(bh);
920 		} while (head);
921 	}
922 
923 	/*
924 	 * Return failure for non-async IO requests.  Async IO requests
925 	 * are not allowed to fail, so we have to wait until buffer heads
926 	 * become available.  But we don't want tasks sleeping with
927 	 * partially complete buffers, so all were released above.
928 	 */
929 	if (!retry)
930 		return NULL;
931 
932 	/* We're _really_ low on memory. Now we just
933 	 * wait for old buffer heads to become free due to
934 	 * finishing IO.  Since this is an async request and
935 	 * the reserve list is empty, we're sure there are
936 	 * async buffer heads in use.
937 	 */
938 	free_more_memory();
939 	goto try_again;
940 }
941 EXPORT_SYMBOL_GPL(alloc_page_buffers);
942 
943 static inline void
944 link_dev_buffers(struct page *page, struct buffer_head *head)
945 {
946 	struct buffer_head *bh, *tail;
947 
948 	bh = head;
949 	do {
950 		tail = bh;
951 		bh = bh->b_this_page;
952 	} while (bh);
953 	tail->b_this_page = head;
954 	attach_page_buffers(page, head);
955 }
956 
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */
960 static void
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 			sector_t block, int size)
963 {
964 	struct buffer_head *head = page_buffers(page);
965 	struct buffer_head *bh = head;
966 	int uptodate = PageUptodate(page);
967 
968 	do {
969 		if (!buffer_mapped(bh)) {
970 			init_buffer(bh, NULL, NULL);
971 			bh->b_bdev = bdev;
972 			bh->b_blocknr = block;
973 			if (uptodate)
974 				set_buffer_uptodate(bh);
975 			set_buffer_mapped(bh);
976 		}
977 		block++;
978 		bh = bh->b_this_page;
979 	} while (bh != head);
980 }
981 
982 /*
983  * Create the page-cache page that contains the requested block.
984  *
985  * This is user purely for blockdev mappings.
986  */
987 static struct page *
988 grow_dev_page(struct block_device *bdev, sector_t block,
989 		pgoff_t index, int size)
990 {
991 	struct inode *inode = bdev->bd_inode;
992 	struct page *page;
993 	struct buffer_head *bh;
994 
995 	page = find_or_create_page(inode->i_mapping, index,
996 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
997 	if (!page)
998 		return NULL;
999 
1000 	BUG_ON(!PageLocked(page));
1001 
1002 	if (page_has_buffers(page)) {
1003 		bh = page_buffers(page);
1004 		if (bh->b_size == size) {
1005 			init_page_buffers(page, bdev, block, size);
1006 			return page;
1007 		}
1008 		if (!try_to_free_buffers(page))
1009 			goto failed;
1010 	}
1011 
1012 	/*
1013 	 * Allocate some buffers for this page
1014 	 */
1015 	bh = alloc_page_buffers(page, size, 0);
1016 	if (!bh)
1017 		goto failed;
1018 
1019 	/*
1020 	 * Link the page to the buffers and initialise them.  Take the
1021 	 * lock to be atomic wrt __find_get_block(), which does not
1022 	 * run under the page lock.
1023 	 */
1024 	spin_lock(&inode->i_mapping->private_lock);
1025 	link_dev_buffers(page, bh);
1026 	init_page_buffers(page, bdev, block, size);
1027 	spin_unlock(&inode->i_mapping->private_lock);
1028 	return page;
1029 
1030 failed:
1031 	BUG();
1032 	unlock_page(page);
1033 	page_cache_release(page);
1034 	return NULL;
1035 }
1036 
1037 /*
1038  * Create buffers for the specified block device block's page.  If
1039  * that page was dirty, the buffers are set dirty also.
1040  */
1041 static int
1042 grow_buffers(struct block_device *bdev, sector_t block, int size)
1043 {
1044 	struct page *page;
1045 	pgoff_t index;
1046 	int sizebits;
1047 
1048 	sizebits = -1;
1049 	do {
1050 		sizebits++;
1051 	} while ((size << sizebits) < PAGE_SIZE);
1052 
1053 	index = block >> sizebits;
1054 
1055 	/*
1056 	 * Check for a block which wants to lie outside our maximum possible
1057 	 * pagecache index.  (this comparison is done using sector_t types).
1058 	 */
1059 	if (unlikely(index != block >> sizebits)) {
1060 		char b[BDEVNAME_SIZE];
1061 
1062 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 			"device %s\n",
1064 			__func__, (unsigned long long)block,
1065 			bdevname(bdev, b));
1066 		return -EIO;
1067 	}
1068 	block = index << sizebits;
1069 	/* Create a page with the proper size buffers.. */
1070 	page = grow_dev_page(bdev, block, index, size);
1071 	if (!page)
1072 		return 0;
1073 	unlock_page(page);
1074 	page_cache_release(page);
1075 	return 1;
1076 }
1077 
1078 static struct buffer_head *
1079 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1080 {
1081 	/* Size must be multiple of hard sectorsize */
1082 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1083 			(size < 512 || size > PAGE_SIZE))) {
1084 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085 					size);
1086 		printk(KERN_ERR "hardsect size: %d\n",
1087 					bdev_hardsect_size(bdev));
1088 
1089 		dump_stack();
1090 		return NULL;
1091 	}
1092 
1093 	for (;;) {
1094 		struct buffer_head * bh;
1095 		int ret;
1096 
1097 		bh = __find_get_block(bdev, block, size);
1098 		if (bh)
1099 			return bh;
1100 
1101 		ret = grow_buffers(bdev, block, size);
1102 		if (ret < 0)
1103 			return NULL;
1104 		if (ret == 0)
1105 			free_more_memory();
1106 	}
1107 }
1108 
1109 /*
1110  * The relationship between dirty buffers and dirty pages:
1111  *
1112  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1113  * the page is tagged dirty in its radix tree.
1114  *
1115  * At all times, the dirtiness of the buffers represents the dirtiness of
1116  * subsections of the page.  If the page has buffers, the page dirty bit is
1117  * merely a hint about the true dirty state.
1118  *
1119  * When a page is set dirty in its entirety, all its buffers are marked dirty
1120  * (if the page has buffers).
1121  *
1122  * When a buffer is marked dirty, its page is dirtied, but the page's other
1123  * buffers are not.
1124  *
1125  * Also.  When blockdev buffers are explicitly read with bread(), they
1126  * individually become uptodate.  But their backing page remains not
1127  * uptodate - even if all of its buffers are uptodate.  A subsequent
1128  * block_read_full_page() against that page will discover all the uptodate
1129  * buffers, will set the page uptodate and will perform no I/O.
1130  */
1131 
1132 /**
1133  * mark_buffer_dirty - mark a buffer_head as needing writeout
1134  * @bh: the buffer_head to mark dirty
1135  *
1136  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1137  * backing page dirty, then tag the page as dirty in its address_space's radix
1138  * tree and then attach the address_space's inode to its superblock's dirty
1139  * inode list.
1140  *
1141  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1142  * mapping->tree_lock and the global inode_lock.
1143  */
1144 void mark_buffer_dirty(struct buffer_head *bh)
1145 {
1146 	WARN_ON_ONCE(!buffer_uptodate(bh));
1147 
1148 	/*
1149 	 * Very *carefully* optimize the it-is-already-dirty case.
1150 	 *
1151 	 * Don't let the final "is it dirty" escape to before we
1152 	 * perhaps modified the buffer.
1153 	 */
1154 	if (buffer_dirty(bh)) {
1155 		smp_mb();
1156 		if (buffer_dirty(bh))
1157 			return;
1158 	}
1159 
1160 	if (!test_set_buffer_dirty(bh)) {
1161 		struct page *page = bh->b_page;
1162 		if (!TestSetPageDirty(page))
1163 			__set_page_dirty(page, page_mapping(page), 0);
1164 	}
1165 }
1166 
1167 /*
1168  * Decrement a buffer_head's reference count.  If all buffers against a page
1169  * have zero reference count, are clean and unlocked, and if the page is clean
1170  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1171  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1172  * a page but it ends up not being freed, and buffers may later be reattached).
1173  */
1174 void __brelse(struct buffer_head * buf)
1175 {
1176 	if (atomic_read(&buf->b_count)) {
1177 		put_bh(buf);
1178 		return;
1179 	}
1180 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1181 }
1182 
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189 	clear_buffer_dirty(bh);
1190 	if (bh->b_assoc_map) {
1191 		struct address_space *buffer_mapping = bh->b_page->mapping;
1192 
1193 		spin_lock(&buffer_mapping->private_lock);
1194 		list_del_init(&bh->b_assoc_buffers);
1195 		bh->b_assoc_map = NULL;
1196 		spin_unlock(&buffer_mapping->private_lock);
1197 	}
1198 	__brelse(bh);
1199 }
1200 
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 {
1203 	lock_buffer(bh);
1204 	if (buffer_uptodate(bh)) {
1205 		unlock_buffer(bh);
1206 		return bh;
1207 	} else {
1208 		get_bh(bh);
1209 		bh->b_end_io = end_buffer_read_sync;
1210 		submit_bh(READ, bh);
1211 		wait_on_buffer(bh);
1212 		if (buffer_uptodate(bh))
1213 			return bh;
1214 	}
1215 	brelse(bh);
1216 	return NULL;
1217 }
1218 
1219 /*
1220  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1221  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1222  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1223  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1224  * CPU's LRUs at the same time.
1225  *
1226  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227  * sb_find_get_block().
1228  *
1229  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1230  * a local interrupt disable for that.
1231  */
1232 
1233 #define BH_LRU_SIZE	8
1234 
1235 struct bh_lru {
1236 	struct buffer_head *bhs[BH_LRU_SIZE];
1237 };
1238 
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240 
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock()	local_irq_disable()
1243 #define bh_lru_unlock()	local_irq_enable()
1244 #else
1245 #define bh_lru_lock()	preempt_disable()
1246 #define bh_lru_unlock()	preempt_enable()
1247 #endif
1248 
1249 static inline void check_irqs_on(void)
1250 {
1251 #ifdef irqs_disabled
1252 	BUG_ON(irqs_disabled());
1253 #endif
1254 }
1255 
1256 /*
1257  * The LRU management algorithm is dopey-but-simple.  Sorry.
1258  */
1259 static void bh_lru_install(struct buffer_head *bh)
1260 {
1261 	struct buffer_head *evictee = NULL;
1262 	struct bh_lru *lru;
1263 
1264 	check_irqs_on();
1265 	bh_lru_lock();
1266 	lru = &__get_cpu_var(bh_lrus);
1267 	if (lru->bhs[0] != bh) {
1268 		struct buffer_head *bhs[BH_LRU_SIZE];
1269 		int in;
1270 		int out = 0;
1271 
1272 		get_bh(bh);
1273 		bhs[out++] = bh;
1274 		for (in = 0; in < BH_LRU_SIZE; in++) {
1275 			struct buffer_head *bh2 = lru->bhs[in];
1276 
1277 			if (bh2 == bh) {
1278 				__brelse(bh2);
1279 			} else {
1280 				if (out >= BH_LRU_SIZE) {
1281 					BUG_ON(evictee != NULL);
1282 					evictee = bh2;
1283 				} else {
1284 					bhs[out++] = bh2;
1285 				}
1286 			}
1287 		}
1288 		while (out < BH_LRU_SIZE)
1289 			bhs[out++] = NULL;
1290 		memcpy(lru->bhs, bhs, sizeof(bhs));
1291 	}
1292 	bh_lru_unlock();
1293 
1294 	if (evictee)
1295 		__brelse(evictee);
1296 }
1297 
1298 /*
1299  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1300  */
1301 static struct buffer_head *
1302 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1303 {
1304 	struct buffer_head *ret = NULL;
1305 	struct bh_lru *lru;
1306 	unsigned int i;
1307 
1308 	check_irqs_on();
1309 	bh_lru_lock();
1310 	lru = &__get_cpu_var(bh_lrus);
1311 	for (i = 0; i < BH_LRU_SIZE; i++) {
1312 		struct buffer_head *bh = lru->bhs[i];
1313 
1314 		if (bh && bh->b_bdev == bdev &&
1315 				bh->b_blocknr == block && bh->b_size == size) {
1316 			if (i) {
1317 				while (i) {
1318 					lru->bhs[i] = lru->bhs[i - 1];
1319 					i--;
1320 				}
1321 				lru->bhs[0] = bh;
1322 			}
1323 			get_bh(bh);
1324 			ret = bh;
1325 			break;
1326 		}
1327 	}
1328 	bh_lru_unlock();
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1334  * it in the LRU and mark it as accessed.  If it is not present then return
1335  * NULL
1336  */
1337 struct buffer_head *
1338 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1341 
1342 	if (bh == NULL) {
1343 		bh = __find_get_block_slow(bdev, block);
1344 		if (bh)
1345 			bh_lru_install(bh);
1346 	}
1347 	if (bh)
1348 		touch_buffer(bh);
1349 	return bh;
1350 }
1351 EXPORT_SYMBOL(__find_get_block);
1352 
1353 /*
1354  * __getblk will locate (and, if necessary, create) the buffer_head
1355  * which corresponds to the passed block_device, block and size. The
1356  * returned buffer has its reference count incremented.
1357  *
1358  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1359  * illegal block number, __getblk() will happily return a buffer_head
1360  * which represents the non-existent block.  Very weird.
1361  *
1362  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1363  * attempt is failing.  FIXME, perhaps?
1364  */
1365 struct buffer_head *
1366 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1367 {
1368 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1369 
1370 	might_sleep();
1371 	if (bh == NULL)
1372 		bh = __getblk_slow(bdev, block, size);
1373 	return bh;
1374 }
1375 EXPORT_SYMBOL(__getblk);
1376 
1377 /*
1378  * Do async read-ahead on a buffer..
1379  */
1380 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1381 {
1382 	struct buffer_head *bh = __getblk(bdev, block, size);
1383 	if (likely(bh)) {
1384 		ll_rw_block(READA, 1, &bh);
1385 		brelse(bh);
1386 	}
1387 }
1388 EXPORT_SYMBOL(__breadahead);
1389 
1390 /**
1391  *  __bread() - reads a specified block and returns the bh
1392  *  @bdev: the block_device to read from
1393  *  @block: number of block
1394  *  @size: size (in bytes) to read
1395  *
1396  *  Reads a specified block, and returns buffer head that contains it.
1397  *  It returns NULL if the block was unreadable.
1398  */
1399 struct buffer_head *
1400 __bread(struct block_device *bdev, sector_t block, unsigned size)
1401 {
1402 	struct buffer_head *bh = __getblk(bdev, block, size);
1403 
1404 	if (likely(bh) && !buffer_uptodate(bh))
1405 		bh = __bread_slow(bh);
1406 	return bh;
1407 }
1408 EXPORT_SYMBOL(__bread);
1409 
1410 /*
1411  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1412  * This doesn't race because it runs in each cpu either in irq
1413  * or with preempt disabled.
1414  */
1415 static void invalidate_bh_lru(void *arg)
1416 {
1417 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1418 	int i;
1419 
1420 	for (i = 0; i < BH_LRU_SIZE; i++) {
1421 		brelse(b->bhs[i]);
1422 		b->bhs[i] = NULL;
1423 	}
1424 	put_cpu_var(bh_lrus);
1425 }
1426 
1427 void invalidate_bh_lrus(void)
1428 {
1429 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1430 }
1431 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1432 
1433 void set_bh_page(struct buffer_head *bh,
1434 		struct page *page, unsigned long offset)
1435 {
1436 	bh->b_page = page;
1437 	BUG_ON(offset >= PAGE_SIZE);
1438 	if (PageHighMem(page))
1439 		/*
1440 		 * This catches illegal uses and preserves the offset:
1441 		 */
1442 		bh->b_data = (char *)(0 + offset);
1443 	else
1444 		bh->b_data = page_address(page) + offset;
1445 }
1446 EXPORT_SYMBOL(set_bh_page);
1447 
1448 /*
1449  * Called when truncating a buffer on a page completely.
1450  */
1451 static void discard_buffer(struct buffer_head * bh)
1452 {
1453 	lock_buffer(bh);
1454 	clear_buffer_dirty(bh);
1455 	bh->b_bdev = NULL;
1456 	clear_buffer_mapped(bh);
1457 	clear_buffer_req(bh);
1458 	clear_buffer_new(bh);
1459 	clear_buffer_delay(bh);
1460 	clear_buffer_unwritten(bh);
1461 	unlock_buffer(bh);
1462 }
1463 
1464 /**
1465  * block_invalidatepage - invalidate part of all of a buffer-backed page
1466  *
1467  * @page: the page which is affected
1468  * @offset: the index of the truncation point
1469  *
1470  * block_invalidatepage() is called when all or part of the page has become
1471  * invalidatedby a truncate operation.
1472  *
1473  * block_invalidatepage() does not have to release all buffers, but it must
1474  * ensure that no dirty buffer is left outside @offset and that no I/O
1475  * is underway against any of the blocks which are outside the truncation
1476  * point.  Because the caller is about to free (and possibly reuse) those
1477  * blocks on-disk.
1478  */
1479 void block_invalidatepage(struct page *page, unsigned long offset)
1480 {
1481 	struct buffer_head *head, *bh, *next;
1482 	unsigned int curr_off = 0;
1483 
1484 	BUG_ON(!PageLocked(page));
1485 	if (!page_has_buffers(page))
1486 		goto out;
1487 
1488 	head = page_buffers(page);
1489 	bh = head;
1490 	do {
1491 		unsigned int next_off = curr_off + bh->b_size;
1492 		next = bh->b_this_page;
1493 
1494 		/*
1495 		 * is this block fully invalidated?
1496 		 */
1497 		if (offset <= curr_off)
1498 			discard_buffer(bh);
1499 		curr_off = next_off;
1500 		bh = next;
1501 	} while (bh != head);
1502 
1503 	/*
1504 	 * We release buffers only if the entire page is being invalidated.
1505 	 * The get_block cached value has been unconditionally invalidated,
1506 	 * so real IO is not possible anymore.
1507 	 */
1508 	if (offset == 0)
1509 		try_to_release_page(page, 0);
1510 out:
1511 	return;
1512 }
1513 EXPORT_SYMBOL(block_invalidatepage);
1514 
1515 /*
1516  * We attach and possibly dirty the buffers atomically wrt
1517  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1518  * is already excluded via the page lock.
1519  */
1520 void create_empty_buffers(struct page *page,
1521 			unsigned long blocksize, unsigned long b_state)
1522 {
1523 	struct buffer_head *bh, *head, *tail;
1524 
1525 	head = alloc_page_buffers(page, blocksize, 1);
1526 	bh = head;
1527 	do {
1528 		bh->b_state |= b_state;
1529 		tail = bh;
1530 		bh = bh->b_this_page;
1531 	} while (bh);
1532 	tail->b_this_page = head;
1533 
1534 	spin_lock(&page->mapping->private_lock);
1535 	if (PageUptodate(page) || PageDirty(page)) {
1536 		bh = head;
1537 		do {
1538 			if (PageDirty(page))
1539 				set_buffer_dirty(bh);
1540 			if (PageUptodate(page))
1541 				set_buffer_uptodate(bh);
1542 			bh = bh->b_this_page;
1543 		} while (bh != head);
1544 	}
1545 	attach_page_buffers(page, head);
1546 	spin_unlock(&page->mapping->private_lock);
1547 }
1548 EXPORT_SYMBOL(create_empty_buffers);
1549 
1550 /*
1551  * We are taking a block for data and we don't want any output from any
1552  * buffer-cache aliases starting from return from that function and
1553  * until the moment when something will explicitly mark the buffer
1554  * dirty (hopefully that will not happen until we will free that block ;-)
1555  * We don't even need to mark it not-uptodate - nobody can expect
1556  * anything from a newly allocated buffer anyway. We used to used
1557  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1558  * don't want to mark the alias unmapped, for example - it would confuse
1559  * anyone who might pick it with bread() afterwards...
1560  *
1561  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1562  * be writeout I/O going on against recently-freed buffers.  We don't
1563  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1564  * only if we really need to.  That happens here.
1565  */
1566 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1567 {
1568 	struct buffer_head *old_bh;
1569 
1570 	might_sleep();
1571 
1572 	old_bh = __find_get_block_slow(bdev, block);
1573 	if (old_bh) {
1574 		clear_buffer_dirty(old_bh);
1575 		wait_on_buffer(old_bh);
1576 		clear_buffer_req(old_bh);
1577 		__brelse(old_bh);
1578 	}
1579 }
1580 EXPORT_SYMBOL(unmap_underlying_metadata);
1581 
1582 /*
1583  * NOTE! All mapped/uptodate combinations are valid:
1584  *
1585  *	Mapped	Uptodate	Meaning
1586  *
1587  *	No	No		"unknown" - must do get_block()
1588  *	No	Yes		"hole" - zero-filled
1589  *	Yes	No		"allocated" - allocated on disk, not read in
1590  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1591  *
1592  * "Dirty" is valid only with the last case (mapped+uptodate).
1593  */
1594 
1595 /*
1596  * While block_write_full_page is writing back the dirty buffers under
1597  * the page lock, whoever dirtied the buffers may decide to clean them
1598  * again at any time.  We handle that by only looking at the buffer
1599  * state inside lock_buffer().
1600  *
1601  * If block_write_full_page() is called for regular writeback
1602  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1603  * locked buffer.   This only can happen if someone has written the buffer
1604  * directly, with submit_bh().  At the address_space level PageWriteback
1605  * prevents this contention from occurring.
1606  *
1607  * If block_write_full_page() is called with wbc->sync_mode ==
1608  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1609  * causes the writes to be flagged as synchronous writes, but the
1610  * block device queue will NOT be unplugged, since usually many pages
1611  * will be pushed to the out before the higher-level caller actually
1612  * waits for the writes to be completed.  The various wait functions,
1613  * such as wait_on_writeback_range() will ultimately call sync_page()
1614  * which will ultimately call blk_run_backing_dev(), which will end up
1615  * unplugging the device queue.
1616  */
1617 static int __block_write_full_page(struct inode *inode, struct page *page,
1618 			get_block_t *get_block, struct writeback_control *wbc)
1619 {
1620 	int err;
1621 	sector_t block;
1622 	sector_t last_block;
1623 	struct buffer_head *bh, *head;
1624 	const unsigned blocksize = 1 << inode->i_blkbits;
1625 	int nr_underway = 0;
1626 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1627 			WRITE_SYNC_PLUG : WRITE);
1628 
1629 	BUG_ON(!PageLocked(page));
1630 
1631 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1632 
1633 	if (!page_has_buffers(page)) {
1634 		create_empty_buffers(page, blocksize,
1635 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1636 	}
1637 
1638 	/*
1639 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1640 	 * here, and the (potentially unmapped) buffers may become dirty at
1641 	 * any time.  If a buffer becomes dirty here after we've inspected it
1642 	 * then we just miss that fact, and the page stays dirty.
1643 	 *
1644 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645 	 * handle that here by just cleaning them.
1646 	 */
1647 
1648 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1649 	head = page_buffers(page);
1650 	bh = head;
1651 
1652 	/*
1653 	 * Get all the dirty buffers mapped to disk addresses and
1654 	 * handle any aliases from the underlying blockdev's mapping.
1655 	 */
1656 	do {
1657 		if (block > last_block) {
1658 			/*
1659 			 * mapped buffers outside i_size will occur, because
1660 			 * this page can be outside i_size when there is a
1661 			 * truncate in progress.
1662 			 */
1663 			/*
1664 			 * The buffer was zeroed by block_write_full_page()
1665 			 */
1666 			clear_buffer_dirty(bh);
1667 			set_buffer_uptodate(bh);
1668 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1669 			   buffer_dirty(bh)) {
1670 			WARN_ON(bh->b_size != blocksize);
1671 			err = get_block(inode, block, bh, 1);
1672 			if (err)
1673 				goto recover;
1674 			clear_buffer_delay(bh);
1675 			if (buffer_new(bh)) {
1676 				/* blockdev mappings never come here */
1677 				clear_buffer_new(bh);
1678 				unmap_underlying_metadata(bh->b_bdev,
1679 							bh->b_blocknr);
1680 			}
1681 		}
1682 		bh = bh->b_this_page;
1683 		block++;
1684 	} while (bh != head);
1685 
1686 	do {
1687 		if (!buffer_mapped(bh))
1688 			continue;
1689 		/*
1690 		 * If it's a fully non-blocking write attempt and we cannot
1691 		 * lock the buffer then redirty the page.  Note that this can
1692 		 * potentially cause a busy-wait loop from pdflush and kswapd
1693 		 * activity, but those code paths have their own higher-level
1694 		 * throttling.
1695 		 */
1696 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1697 			lock_buffer(bh);
1698 		} else if (!trylock_buffer(bh)) {
1699 			redirty_page_for_writepage(wbc, page);
1700 			continue;
1701 		}
1702 		if (test_clear_buffer_dirty(bh)) {
1703 			mark_buffer_async_write(bh);
1704 		} else {
1705 			unlock_buffer(bh);
1706 		}
1707 	} while ((bh = bh->b_this_page) != head);
1708 
1709 	/*
1710 	 * The page and its buffers are protected by PageWriteback(), so we can
1711 	 * drop the bh refcounts early.
1712 	 */
1713 	BUG_ON(PageWriteback(page));
1714 	set_page_writeback(page);
1715 
1716 	do {
1717 		struct buffer_head *next = bh->b_this_page;
1718 		if (buffer_async_write(bh)) {
1719 			submit_bh(write_op, bh);
1720 			nr_underway++;
1721 		}
1722 		bh = next;
1723 	} while (bh != head);
1724 	unlock_page(page);
1725 
1726 	err = 0;
1727 done:
1728 	if (nr_underway == 0) {
1729 		/*
1730 		 * The page was marked dirty, but the buffers were
1731 		 * clean.  Someone wrote them back by hand with
1732 		 * ll_rw_block/submit_bh.  A rare case.
1733 		 */
1734 		end_page_writeback(page);
1735 
1736 		/*
1737 		 * The page and buffer_heads can be released at any time from
1738 		 * here on.
1739 		 */
1740 	}
1741 	return err;
1742 
1743 recover:
1744 	/*
1745 	 * ENOSPC, or some other error.  We may already have added some
1746 	 * blocks to the file, so we need to write these out to avoid
1747 	 * exposing stale data.
1748 	 * The page is currently locked and not marked for writeback
1749 	 */
1750 	bh = head;
1751 	/* Recovery: lock and submit the mapped buffers */
1752 	do {
1753 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1754 		    !buffer_delay(bh)) {
1755 			lock_buffer(bh);
1756 			mark_buffer_async_write(bh);
1757 		} else {
1758 			/*
1759 			 * The buffer may have been set dirty during
1760 			 * attachment to a dirty page.
1761 			 */
1762 			clear_buffer_dirty(bh);
1763 		}
1764 	} while ((bh = bh->b_this_page) != head);
1765 	SetPageError(page);
1766 	BUG_ON(PageWriteback(page));
1767 	mapping_set_error(page->mapping, err);
1768 	set_page_writeback(page);
1769 	do {
1770 		struct buffer_head *next = bh->b_this_page;
1771 		if (buffer_async_write(bh)) {
1772 			clear_buffer_dirty(bh);
1773 			submit_bh(write_op, bh);
1774 			nr_underway++;
1775 		}
1776 		bh = next;
1777 	} while (bh != head);
1778 	unlock_page(page);
1779 	goto done;
1780 }
1781 
1782 /*
1783  * If a page has any new buffers, zero them out here, and mark them uptodate
1784  * and dirty so they'll be written out (in order to prevent uninitialised
1785  * block data from leaking). And clear the new bit.
1786  */
1787 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1788 {
1789 	unsigned int block_start, block_end;
1790 	struct buffer_head *head, *bh;
1791 
1792 	BUG_ON(!PageLocked(page));
1793 	if (!page_has_buffers(page))
1794 		return;
1795 
1796 	bh = head = page_buffers(page);
1797 	block_start = 0;
1798 	do {
1799 		block_end = block_start + bh->b_size;
1800 
1801 		if (buffer_new(bh)) {
1802 			if (block_end > from && block_start < to) {
1803 				if (!PageUptodate(page)) {
1804 					unsigned start, size;
1805 
1806 					start = max(from, block_start);
1807 					size = min(to, block_end) - start;
1808 
1809 					zero_user(page, start, size);
1810 					set_buffer_uptodate(bh);
1811 				}
1812 
1813 				clear_buffer_new(bh);
1814 				mark_buffer_dirty(bh);
1815 			}
1816 		}
1817 
1818 		block_start = block_end;
1819 		bh = bh->b_this_page;
1820 	} while (bh != head);
1821 }
1822 EXPORT_SYMBOL(page_zero_new_buffers);
1823 
1824 static int __block_prepare_write(struct inode *inode, struct page *page,
1825 		unsigned from, unsigned to, get_block_t *get_block)
1826 {
1827 	unsigned block_start, block_end;
1828 	sector_t block;
1829 	int err = 0;
1830 	unsigned blocksize, bbits;
1831 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1832 
1833 	BUG_ON(!PageLocked(page));
1834 	BUG_ON(from > PAGE_CACHE_SIZE);
1835 	BUG_ON(to > PAGE_CACHE_SIZE);
1836 	BUG_ON(from > to);
1837 
1838 	blocksize = 1 << inode->i_blkbits;
1839 	if (!page_has_buffers(page))
1840 		create_empty_buffers(page, blocksize, 0);
1841 	head = page_buffers(page);
1842 
1843 	bbits = inode->i_blkbits;
1844 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845 
1846 	for(bh = head, block_start = 0; bh != head || !block_start;
1847 	    block++, block_start=block_end, bh = bh->b_this_page) {
1848 		block_end = block_start + blocksize;
1849 		if (block_end <= from || block_start >= to) {
1850 			if (PageUptodate(page)) {
1851 				if (!buffer_uptodate(bh))
1852 					set_buffer_uptodate(bh);
1853 			}
1854 			continue;
1855 		}
1856 		if (buffer_new(bh))
1857 			clear_buffer_new(bh);
1858 		if (!buffer_mapped(bh)) {
1859 			WARN_ON(bh->b_size != blocksize);
1860 			err = get_block(inode, block, bh, 1);
1861 			if (err)
1862 				break;
1863 			if (buffer_new(bh)) {
1864 				unmap_underlying_metadata(bh->b_bdev,
1865 							bh->b_blocknr);
1866 				if (PageUptodate(page)) {
1867 					clear_buffer_new(bh);
1868 					set_buffer_uptodate(bh);
1869 					mark_buffer_dirty(bh);
1870 					continue;
1871 				}
1872 				if (block_end > to || block_start < from)
1873 					zero_user_segments(page,
1874 						to, block_end,
1875 						block_start, from);
1876 				continue;
1877 			}
1878 		}
1879 		if (PageUptodate(page)) {
1880 			if (!buffer_uptodate(bh))
1881 				set_buffer_uptodate(bh);
1882 			continue;
1883 		}
1884 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 		    !buffer_unwritten(bh) &&
1886 		     (block_start < from || block_end > to)) {
1887 			ll_rw_block(READ, 1, &bh);
1888 			*wait_bh++=bh;
1889 		}
1890 	}
1891 	/*
1892 	 * If we issued read requests - let them complete.
1893 	 */
1894 	while(wait_bh > wait) {
1895 		wait_on_buffer(*--wait_bh);
1896 		if (!buffer_uptodate(*wait_bh))
1897 			err = -EIO;
1898 	}
1899 	if (unlikely(err))
1900 		page_zero_new_buffers(page, from, to);
1901 	return err;
1902 }
1903 
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905 		unsigned from, unsigned to)
1906 {
1907 	unsigned block_start, block_end;
1908 	int partial = 0;
1909 	unsigned blocksize;
1910 	struct buffer_head *bh, *head;
1911 
1912 	blocksize = 1 << inode->i_blkbits;
1913 
1914 	for(bh = head = page_buffers(page), block_start = 0;
1915 	    bh != head || !block_start;
1916 	    block_start=block_end, bh = bh->b_this_page) {
1917 		block_end = block_start + blocksize;
1918 		if (block_end <= from || block_start >= to) {
1919 			if (!buffer_uptodate(bh))
1920 				partial = 1;
1921 		} else {
1922 			set_buffer_uptodate(bh);
1923 			mark_buffer_dirty(bh);
1924 		}
1925 		clear_buffer_new(bh);
1926 	}
1927 
1928 	/*
1929 	 * If this is a partial write which happened to make all buffers
1930 	 * uptodate then we can optimize away a bogus readpage() for
1931 	 * the next read(). Here we 'discover' whether the page went
1932 	 * uptodate as a result of this (potentially partial) write.
1933 	 */
1934 	if (!partial)
1935 		SetPageUptodate(page);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * block_write_begin takes care of the basic task of block allocation and
1941  * bringing partial write blocks uptodate first.
1942  *
1943  * If *pagep is not NULL, then block_write_begin uses the locked page
1944  * at *pagep rather than allocating its own. In this case, the page will
1945  * not be unlocked or deallocated on failure.
1946  */
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948 			loff_t pos, unsigned len, unsigned flags,
1949 			struct page **pagep, void **fsdata,
1950 			get_block_t *get_block)
1951 {
1952 	struct inode *inode = mapping->host;
1953 	int status = 0;
1954 	struct page *page;
1955 	pgoff_t index;
1956 	unsigned start, end;
1957 	int ownpage = 0;
1958 
1959 	index = pos >> PAGE_CACHE_SHIFT;
1960 	start = pos & (PAGE_CACHE_SIZE - 1);
1961 	end = start + len;
1962 
1963 	page = *pagep;
1964 	if (page == NULL) {
1965 		ownpage = 1;
1966 		page = grab_cache_page_write_begin(mapping, index, flags);
1967 		if (!page) {
1968 			status = -ENOMEM;
1969 			goto out;
1970 		}
1971 		*pagep = page;
1972 	} else
1973 		BUG_ON(!PageLocked(page));
1974 
1975 	status = __block_prepare_write(inode, page, start, end, get_block);
1976 	if (unlikely(status)) {
1977 		ClearPageUptodate(page);
1978 
1979 		if (ownpage) {
1980 			unlock_page(page);
1981 			page_cache_release(page);
1982 			*pagep = NULL;
1983 
1984 			/*
1985 			 * prepare_write() may have instantiated a few blocks
1986 			 * outside i_size.  Trim these off again. Don't need
1987 			 * i_size_read because we hold i_mutex.
1988 			 */
1989 			if (pos + len > inode->i_size)
1990 				vmtruncate(inode, inode->i_size);
1991 		}
1992 	}
1993 
1994 out:
1995 	return status;
1996 }
1997 EXPORT_SYMBOL(block_write_begin);
1998 
1999 int block_write_end(struct file *file, struct address_space *mapping,
2000 			loff_t pos, unsigned len, unsigned copied,
2001 			struct page *page, void *fsdata)
2002 {
2003 	struct inode *inode = mapping->host;
2004 	unsigned start;
2005 
2006 	start = pos & (PAGE_CACHE_SIZE - 1);
2007 
2008 	if (unlikely(copied < len)) {
2009 		/*
2010 		 * The buffers that were written will now be uptodate, so we
2011 		 * don't have to worry about a readpage reading them and
2012 		 * overwriting a partial write. However if we have encountered
2013 		 * a short write and only partially written into a buffer, it
2014 		 * will not be marked uptodate, so a readpage might come in and
2015 		 * destroy our partial write.
2016 		 *
2017 		 * Do the simplest thing, and just treat any short write to a
2018 		 * non uptodate page as a zero-length write, and force the
2019 		 * caller to redo the whole thing.
2020 		 */
2021 		if (!PageUptodate(page))
2022 			copied = 0;
2023 
2024 		page_zero_new_buffers(page, start+copied, start+len);
2025 	}
2026 	flush_dcache_page(page);
2027 
2028 	/* This could be a short (even 0-length) commit */
2029 	__block_commit_write(inode, page, start, start+copied);
2030 
2031 	return copied;
2032 }
2033 EXPORT_SYMBOL(block_write_end);
2034 
2035 int generic_write_end(struct file *file, struct address_space *mapping,
2036 			loff_t pos, unsigned len, unsigned copied,
2037 			struct page *page, void *fsdata)
2038 {
2039 	struct inode *inode = mapping->host;
2040 	int i_size_changed = 0;
2041 
2042 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2043 
2044 	/*
2045 	 * No need to use i_size_read() here, the i_size
2046 	 * cannot change under us because we hold i_mutex.
2047 	 *
2048 	 * But it's important to update i_size while still holding page lock:
2049 	 * page writeout could otherwise come in and zero beyond i_size.
2050 	 */
2051 	if (pos+copied > inode->i_size) {
2052 		i_size_write(inode, pos+copied);
2053 		i_size_changed = 1;
2054 	}
2055 
2056 	unlock_page(page);
2057 	page_cache_release(page);
2058 
2059 	/*
2060 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2061 	 * makes the holding time of page lock longer. Second, it forces lock
2062 	 * ordering of page lock and transaction start for journaling
2063 	 * filesystems.
2064 	 */
2065 	if (i_size_changed)
2066 		mark_inode_dirty(inode);
2067 
2068 	return copied;
2069 }
2070 EXPORT_SYMBOL(generic_write_end);
2071 
2072 /*
2073  * block_is_partially_uptodate checks whether buffers within a page are
2074  * uptodate or not.
2075  *
2076  * Returns true if all buffers which correspond to a file portion
2077  * we want to read are uptodate.
2078  */
2079 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2080 					unsigned long from)
2081 {
2082 	struct inode *inode = page->mapping->host;
2083 	unsigned block_start, block_end, blocksize;
2084 	unsigned to;
2085 	struct buffer_head *bh, *head;
2086 	int ret = 1;
2087 
2088 	if (!page_has_buffers(page))
2089 		return 0;
2090 
2091 	blocksize = 1 << inode->i_blkbits;
2092 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2093 	to = from + to;
2094 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2095 		return 0;
2096 
2097 	head = page_buffers(page);
2098 	bh = head;
2099 	block_start = 0;
2100 	do {
2101 		block_end = block_start + blocksize;
2102 		if (block_end > from && block_start < to) {
2103 			if (!buffer_uptodate(bh)) {
2104 				ret = 0;
2105 				break;
2106 			}
2107 			if (block_end >= to)
2108 				break;
2109 		}
2110 		block_start = block_end;
2111 		bh = bh->b_this_page;
2112 	} while (bh != head);
2113 
2114 	return ret;
2115 }
2116 EXPORT_SYMBOL(block_is_partially_uptodate);
2117 
2118 /*
2119  * Generic "read page" function for block devices that have the normal
2120  * get_block functionality. This is most of the block device filesystems.
2121  * Reads the page asynchronously --- the unlock_buffer() and
2122  * set/clear_buffer_uptodate() functions propagate buffer state into the
2123  * page struct once IO has completed.
2124  */
2125 int block_read_full_page(struct page *page, get_block_t *get_block)
2126 {
2127 	struct inode *inode = page->mapping->host;
2128 	sector_t iblock, lblock;
2129 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2130 	unsigned int blocksize;
2131 	int nr, i;
2132 	int fully_mapped = 1;
2133 
2134 	BUG_ON(!PageLocked(page));
2135 	blocksize = 1 << inode->i_blkbits;
2136 	if (!page_has_buffers(page))
2137 		create_empty_buffers(page, blocksize, 0);
2138 	head = page_buffers(page);
2139 
2140 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2141 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2142 	bh = head;
2143 	nr = 0;
2144 	i = 0;
2145 
2146 	do {
2147 		if (buffer_uptodate(bh))
2148 			continue;
2149 
2150 		if (!buffer_mapped(bh)) {
2151 			int err = 0;
2152 
2153 			fully_mapped = 0;
2154 			if (iblock < lblock) {
2155 				WARN_ON(bh->b_size != blocksize);
2156 				err = get_block(inode, iblock, bh, 0);
2157 				if (err)
2158 					SetPageError(page);
2159 			}
2160 			if (!buffer_mapped(bh)) {
2161 				zero_user(page, i * blocksize, blocksize);
2162 				if (!err)
2163 					set_buffer_uptodate(bh);
2164 				continue;
2165 			}
2166 			/*
2167 			 * get_block() might have updated the buffer
2168 			 * synchronously
2169 			 */
2170 			if (buffer_uptodate(bh))
2171 				continue;
2172 		}
2173 		arr[nr++] = bh;
2174 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2175 
2176 	if (fully_mapped)
2177 		SetPageMappedToDisk(page);
2178 
2179 	if (!nr) {
2180 		/*
2181 		 * All buffers are uptodate - we can set the page uptodate
2182 		 * as well. But not if get_block() returned an error.
2183 		 */
2184 		if (!PageError(page))
2185 			SetPageUptodate(page);
2186 		unlock_page(page);
2187 		return 0;
2188 	}
2189 
2190 	/* Stage two: lock the buffers */
2191 	for (i = 0; i < nr; i++) {
2192 		bh = arr[i];
2193 		lock_buffer(bh);
2194 		mark_buffer_async_read(bh);
2195 	}
2196 
2197 	/*
2198 	 * Stage 3: start the IO.  Check for uptodateness
2199 	 * inside the buffer lock in case another process reading
2200 	 * the underlying blockdev brought it uptodate (the sct fix).
2201 	 */
2202 	for (i = 0; i < nr; i++) {
2203 		bh = arr[i];
2204 		if (buffer_uptodate(bh))
2205 			end_buffer_async_read(bh, 1);
2206 		else
2207 			submit_bh(READ, bh);
2208 	}
2209 	return 0;
2210 }
2211 
2212 /* utility function for filesystems that need to do work on expanding
2213  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2214  * deal with the hole.
2215  */
2216 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2217 {
2218 	struct address_space *mapping = inode->i_mapping;
2219 	struct page *page;
2220 	void *fsdata;
2221 	unsigned long limit;
2222 	int err;
2223 
2224 	err = -EFBIG;
2225         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2226 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2227 		send_sig(SIGXFSZ, current, 0);
2228 		goto out;
2229 	}
2230 	if (size > inode->i_sb->s_maxbytes)
2231 		goto out;
2232 
2233 	err = pagecache_write_begin(NULL, mapping, size, 0,
2234 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2235 				&page, &fsdata);
2236 	if (err)
2237 		goto out;
2238 
2239 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2240 	BUG_ON(err > 0);
2241 
2242 out:
2243 	return err;
2244 }
2245 
2246 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2247 			    loff_t pos, loff_t *bytes)
2248 {
2249 	struct inode *inode = mapping->host;
2250 	unsigned blocksize = 1 << inode->i_blkbits;
2251 	struct page *page;
2252 	void *fsdata;
2253 	pgoff_t index, curidx;
2254 	loff_t curpos;
2255 	unsigned zerofrom, offset, len;
2256 	int err = 0;
2257 
2258 	index = pos >> PAGE_CACHE_SHIFT;
2259 	offset = pos & ~PAGE_CACHE_MASK;
2260 
2261 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2262 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2263 		if (zerofrom & (blocksize-1)) {
2264 			*bytes |= (blocksize-1);
2265 			(*bytes)++;
2266 		}
2267 		len = PAGE_CACHE_SIZE - zerofrom;
2268 
2269 		err = pagecache_write_begin(file, mapping, curpos, len,
2270 						AOP_FLAG_UNINTERRUPTIBLE,
2271 						&page, &fsdata);
2272 		if (err)
2273 			goto out;
2274 		zero_user(page, zerofrom, len);
2275 		err = pagecache_write_end(file, mapping, curpos, len, len,
2276 						page, fsdata);
2277 		if (err < 0)
2278 			goto out;
2279 		BUG_ON(err != len);
2280 		err = 0;
2281 
2282 		balance_dirty_pages_ratelimited(mapping);
2283 	}
2284 
2285 	/* page covers the boundary, find the boundary offset */
2286 	if (index == curidx) {
2287 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2288 		/* if we will expand the thing last block will be filled */
2289 		if (offset <= zerofrom) {
2290 			goto out;
2291 		}
2292 		if (zerofrom & (blocksize-1)) {
2293 			*bytes |= (blocksize-1);
2294 			(*bytes)++;
2295 		}
2296 		len = offset - zerofrom;
2297 
2298 		err = pagecache_write_begin(file, mapping, curpos, len,
2299 						AOP_FLAG_UNINTERRUPTIBLE,
2300 						&page, &fsdata);
2301 		if (err)
2302 			goto out;
2303 		zero_user(page, zerofrom, len);
2304 		err = pagecache_write_end(file, mapping, curpos, len, len,
2305 						page, fsdata);
2306 		if (err < 0)
2307 			goto out;
2308 		BUG_ON(err != len);
2309 		err = 0;
2310 	}
2311 out:
2312 	return err;
2313 }
2314 
2315 /*
2316  * For moronic filesystems that do not allow holes in file.
2317  * We may have to extend the file.
2318  */
2319 int cont_write_begin(struct file *file, struct address_space *mapping,
2320 			loff_t pos, unsigned len, unsigned flags,
2321 			struct page **pagep, void **fsdata,
2322 			get_block_t *get_block, loff_t *bytes)
2323 {
2324 	struct inode *inode = mapping->host;
2325 	unsigned blocksize = 1 << inode->i_blkbits;
2326 	unsigned zerofrom;
2327 	int err;
2328 
2329 	err = cont_expand_zero(file, mapping, pos, bytes);
2330 	if (err)
2331 		goto out;
2332 
2333 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2334 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2335 		*bytes |= (blocksize-1);
2336 		(*bytes)++;
2337 	}
2338 
2339 	*pagep = NULL;
2340 	err = block_write_begin(file, mapping, pos, len,
2341 				flags, pagep, fsdata, get_block);
2342 out:
2343 	return err;
2344 }
2345 
2346 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2347 			get_block_t *get_block)
2348 {
2349 	struct inode *inode = page->mapping->host;
2350 	int err = __block_prepare_write(inode, page, from, to, get_block);
2351 	if (err)
2352 		ClearPageUptodate(page);
2353 	return err;
2354 }
2355 
2356 int block_commit_write(struct page *page, unsigned from, unsigned to)
2357 {
2358 	struct inode *inode = page->mapping->host;
2359 	__block_commit_write(inode,page,from,to);
2360 	return 0;
2361 }
2362 
2363 /*
2364  * block_page_mkwrite() is not allowed to change the file size as it gets
2365  * called from a page fault handler when a page is first dirtied. Hence we must
2366  * be careful to check for EOF conditions here. We set the page up correctly
2367  * for a written page which means we get ENOSPC checking when writing into
2368  * holes and correct delalloc and unwritten extent mapping on filesystems that
2369  * support these features.
2370  *
2371  * We are not allowed to take the i_mutex here so we have to play games to
2372  * protect against truncate races as the page could now be beyond EOF.  Because
2373  * vmtruncate() writes the inode size before removing pages, once we have the
2374  * page lock we can determine safely if the page is beyond EOF. If it is not
2375  * beyond EOF, then the page is guaranteed safe against truncation until we
2376  * unlock the page.
2377  */
2378 int
2379 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2380 		   get_block_t get_block)
2381 {
2382 	struct page *page = vmf->page;
2383 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2384 	unsigned long end;
2385 	loff_t size;
2386 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2387 
2388 	lock_page(page);
2389 	size = i_size_read(inode);
2390 	if ((page->mapping != inode->i_mapping) ||
2391 	    (page_offset(page) > size)) {
2392 		/* page got truncated out from underneath us */
2393 		goto out_unlock;
2394 	}
2395 
2396 	/* page is wholly or partially inside EOF */
2397 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2398 		end = size & ~PAGE_CACHE_MASK;
2399 	else
2400 		end = PAGE_CACHE_SIZE;
2401 
2402 	ret = block_prepare_write(page, 0, end, get_block);
2403 	if (!ret)
2404 		ret = block_commit_write(page, 0, end);
2405 
2406 	if (unlikely(ret)) {
2407 		if (ret == -ENOMEM)
2408 			ret = VM_FAULT_OOM;
2409 		else /* -ENOSPC, -EIO, etc */
2410 			ret = VM_FAULT_SIGBUS;
2411 	}
2412 
2413 out_unlock:
2414 	unlock_page(page);
2415 	return ret;
2416 }
2417 
2418 /*
2419  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2420  * immediately, while under the page lock.  So it needs a special end_io
2421  * handler which does not touch the bh after unlocking it.
2422  */
2423 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2424 {
2425 	__end_buffer_read_notouch(bh, uptodate);
2426 }
2427 
2428 /*
2429  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2430  * the page (converting it to circular linked list and taking care of page
2431  * dirty races).
2432  */
2433 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2434 {
2435 	struct buffer_head *bh;
2436 
2437 	BUG_ON(!PageLocked(page));
2438 
2439 	spin_lock(&page->mapping->private_lock);
2440 	bh = head;
2441 	do {
2442 		if (PageDirty(page))
2443 			set_buffer_dirty(bh);
2444 		if (!bh->b_this_page)
2445 			bh->b_this_page = head;
2446 		bh = bh->b_this_page;
2447 	} while (bh != head);
2448 	attach_page_buffers(page, head);
2449 	spin_unlock(&page->mapping->private_lock);
2450 }
2451 
2452 /*
2453  * On entry, the page is fully not uptodate.
2454  * On exit the page is fully uptodate in the areas outside (from,to)
2455  */
2456 int nobh_write_begin(struct file *file, struct address_space *mapping,
2457 			loff_t pos, unsigned len, unsigned flags,
2458 			struct page **pagep, void **fsdata,
2459 			get_block_t *get_block)
2460 {
2461 	struct inode *inode = mapping->host;
2462 	const unsigned blkbits = inode->i_blkbits;
2463 	const unsigned blocksize = 1 << blkbits;
2464 	struct buffer_head *head, *bh;
2465 	struct page *page;
2466 	pgoff_t index;
2467 	unsigned from, to;
2468 	unsigned block_in_page;
2469 	unsigned block_start, block_end;
2470 	sector_t block_in_file;
2471 	int nr_reads = 0;
2472 	int ret = 0;
2473 	int is_mapped_to_disk = 1;
2474 
2475 	index = pos >> PAGE_CACHE_SHIFT;
2476 	from = pos & (PAGE_CACHE_SIZE - 1);
2477 	to = from + len;
2478 
2479 	page = grab_cache_page_write_begin(mapping, index, flags);
2480 	if (!page)
2481 		return -ENOMEM;
2482 	*pagep = page;
2483 	*fsdata = NULL;
2484 
2485 	if (page_has_buffers(page)) {
2486 		unlock_page(page);
2487 		page_cache_release(page);
2488 		*pagep = NULL;
2489 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2490 					fsdata, get_block);
2491 	}
2492 
2493 	if (PageMappedToDisk(page))
2494 		return 0;
2495 
2496 	/*
2497 	 * Allocate buffers so that we can keep track of state, and potentially
2498 	 * attach them to the page if an error occurs. In the common case of
2499 	 * no error, they will just be freed again without ever being attached
2500 	 * to the page (which is all OK, because we're under the page lock).
2501 	 *
2502 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2503 	 * than the circular one we're used to.
2504 	 */
2505 	head = alloc_page_buffers(page, blocksize, 0);
2506 	if (!head) {
2507 		ret = -ENOMEM;
2508 		goto out_release;
2509 	}
2510 
2511 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2512 
2513 	/*
2514 	 * We loop across all blocks in the page, whether or not they are
2515 	 * part of the affected region.  This is so we can discover if the
2516 	 * page is fully mapped-to-disk.
2517 	 */
2518 	for (block_start = 0, block_in_page = 0, bh = head;
2519 		  block_start < PAGE_CACHE_SIZE;
2520 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2521 		int create;
2522 
2523 		block_end = block_start + blocksize;
2524 		bh->b_state = 0;
2525 		create = 1;
2526 		if (block_start >= to)
2527 			create = 0;
2528 		ret = get_block(inode, block_in_file + block_in_page,
2529 					bh, create);
2530 		if (ret)
2531 			goto failed;
2532 		if (!buffer_mapped(bh))
2533 			is_mapped_to_disk = 0;
2534 		if (buffer_new(bh))
2535 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2536 		if (PageUptodate(page)) {
2537 			set_buffer_uptodate(bh);
2538 			continue;
2539 		}
2540 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2541 			zero_user_segments(page, block_start, from,
2542 							to, block_end);
2543 			continue;
2544 		}
2545 		if (buffer_uptodate(bh))
2546 			continue;	/* reiserfs does this */
2547 		if (block_start < from || block_end > to) {
2548 			lock_buffer(bh);
2549 			bh->b_end_io = end_buffer_read_nobh;
2550 			submit_bh(READ, bh);
2551 			nr_reads++;
2552 		}
2553 	}
2554 
2555 	if (nr_reads) {
2556 		/*
2557 		 * The page is locked, so these buffers are protected from
2558 		 * any VM or truncate activity.  Hence we don't need to care
2559 		 * for the buffer_head refcounts.
2560 		 */
2561 		for (bh = head; bh; bh = bh->b_this_page) {
2562 			wait_on_buffer(bh);
2563 			if (!buffer_uptodate(bh))
2564 				ret = -EIO;
2565 		}
2566 		if (ret)
2567 			goto failed;
2568 	}
2569 
2570 	if (is_mapped_to_disk)
2571 		SetPageMappedToDisk(page);
2572 
2573 	*fsdata = head; /* to be released by nobh_write_end */
2574 
2575 	return 0;
2576 
2577 failed:
2578 	BUG_ON(!ret);
2579 	/*
2580 	 * Error recovery is a bit difficult. We need to zero out blocks that
2581 	 * were newly allocated, and dirty them to ensure they get written out.
2582 	 * Buffers need to be attached to the page at this point, otherwise
2583 	 * the handling of potential IO errors during writeout would be hard
2584 	 * (could try doing synchronous writeout, but what if that fails too?)
2585 	 */
2586 	attach_nobh_buffers(page, head);
2587 	page_zero_new_buffers(page, from, to);
2588 
2589 out_release:
2590 	unlock_page(page);
2591 	page_cache_release(page);
2592 	*pagep = NULL;
2593 
2594 	if (pos + len > inode->i_size)
2595 		vmtruncate(inode, inode->i_size);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL(nobh_write_begin);
2600 
2601 int nobh_write_end(struct file *file, struct address_space *mapping,
2602 			loff_t pos, unsigned len, unsigned copied,
2603 			struct page *page, void *fsdata)
2604 {
2605 	struct inode *inode = page->mapping->host;
2606 	struct buffer_head *head = fsdata;
2607 	struct buffer_head *bh;
2608 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2609 
2610 	if (unlikely(copied < len) && head)
2611 		attach_nobh_buffers(page, head);
2612 	if (page_has_buffers(page))
2613 		return generic_write_end(file, mapping, pos, len,
2614 					copied, page, fsdata);
2615 
2616 	SetPageUptodate(page);
2617 	set_page_dirty(page);
2618 	if (pos+copied > inode->i_size) {
2619 		i_size_write(inode, pos+copied);
2620 		mark_inode_dirty(inode);
2621 	}
2622 
2623 	unlock_page(page);
2624 	page_cache_release(page);
2625 
2626 	while (head) {
2627 		bh = head;
2628 		head = head->b_this_page;
2629 		free_buffer_head(bh);
2630 	}
2631 
2632 	return copied;
2633 }
2634 EXPORT_SYMBOL(nobh_write_end);
2635 
2636 /*
2637  * nobh_writepage() - based on block_full_write_page() except
2638  * that it tries to operate without attaching bufferheads to
2639  * the page.
2640  */
2641 int nobh_writepage(struct page *page, get_block_t *get_block,
2642 			struct writeback_control *wbc)
2643 {
2644 	struct inode * const inode = page->mapping->host;
2645 	loff_t i_size = i_size_read(inode);
2646 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2647 	unsigned offset;
2648 	int ret;
2649 
2650 	/* Is the page fully inside i_size? */
2651 	if (page->index < end_index)
2652 		goto out;
2653 
2654 	/* Is the page fully outside i_size? (truncate in progress) */
2655 	offset = i_size & (PAGE_CACHE_SIZE-1);
2656 	if (page->index >= end_index+1 || !offset) {
2657 		/*
2658 		 * The page may have dirty, unmapped buffers.  For example,
2659 		 * they may have been added in ext3_writepage().  Make them
2660 		 * freeable here, so the page does not leak.
2661 		 */
2662 #if 0
2663 		/* Not really sure about this  - do we need this ? */
2664 		if (page->mapping->a_ops->invalidatepage)
2665 			page->mapping->a_ops->invalidatepage(page, offset);
2666 #endif
2667 		unlock_page(page);
2668 		return 0; /* don't care */
2669 	}
2670 
2671 	/*
2672 	 * The page straddles i_size.  It must be zeroed out on each and every
2673 	 * writepage invocation because it may be mmapped.  "A file is mapped
2674 	 * in multiples of the page size.  For a file that is not a multiple of
2675 	 * the  page size, the remaining memory is zeroed when mapped, and
2676 	 * writes to that region are not written out to the file."
2677 	 */
2678 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2679 out:
2680 	ret = mpage_writepage(page, get_block, wbc);
2681 	if (ret == -EAGAIN)
2682 		ret = __block_write_full_page(inode, page, get_block, wbc);
2683 	return ret;
2684 }
2685 EXPORT_SYMBOL(nobh_writepage);
2686 
2687 int nobh_truncate_page(struct address_space *mapping,
2688 			loff_t from, get_block_t *get_block)
2689 {
2690 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2691 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2692 	unsigned blocksize;
2693 	sector_t iblock;
2694 	unsigned length, pos;
2695 	struct inode *inode = mapping->host;
2696 	struct page *page;
2697 	struct buffer_head map_bh;
2698 	int err;
2699 
2700 	blocksize = 1 << inode->i_blkbits;
2701 	length = offset & (blocksize - 1);
2702 
2703 	/* Block boundary? Nothing to do */
2704 	if (!length)
2705 		return 0;
2706 
2707 	length = blocksize - length;
2708 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2709 
2710 	page = grab_cache_page(mapping, index);
2711 	err = -ENOMEM;
2712 	if (!page)
2713 		goto out;
2714 
2715 	if (page_has_buffers(page)) {
2716 has_buffers:
2717 		unlock_page(page);
2718 		page_cache_release(page);
2719 		return block_truncate_page(mapping, from, get_block);
2720 	}
2721 
2722 	/* Find the buffer that contains "offset" */
2723 	pos = blocksize;
2724 	while (offset >= pos) {
2725 		iblock++;
2726 		pos += blocksize;
2727 	}
2728 
2729 	err = get_block(inode, iblock, &map_bh, 0);
2730 	if (err)
2731 		goto unlock;
2732 	/* unmapped? It's a hole - nothing to do */
2733 	if (!buffer_mapped(&map_bh))
2734 		goto unlock;
2735 
2736 	/* Ok, it's mapped. Make sure it's up-to-date */
2737 	if (!PageUptodate(page)) {
2738 		err = mapping->a_ops->readpage(NULL, page);
2739 		if (err) {
2740 			page_cache_release(page);
2741 			goto out;
2742 		}
2743 		lock_page(page);
2744 		if (!PageUptodate(page)) {
2745 			err = -EIO;
2746 			goto unlock;
2747 		}
2748 		if (page_has_buffers(page))
2749 			goto has_buffers;
2750 	}
2751 	zero_user(page, offset, length);
2752 	set_page_dirty(page);
2753 	err = 0;
2754 
2755 unlock:
2756 	unlock_page(page);
2757 	page_cache_release(page);
2758 out:
2759 	return err;
2760 }
2761 EXPORT_SYMBOL(nobh_truncate_page);
2762 
2763 int block_truncate_page(struct address_space *mapping,
2764 			loff_t from, get_block_t *get_block)
2765 {
2766 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2767 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2768 	unsigned blocksize;
2769 	sector_t iblock;
2770 	unsigned length, pos;
2771 	struct inode *inode = mapping->host;
2772 	struct page *page;
2773 	struct buffer_head *bh;
2774 	int err;
2775 
2776 	blocksize = 1 << inode->i_blkbits;
2777 	length = offset & (blocksize - 1);
2778 
2779 	/* Block boundary? Nothing to do */
2780 	if (!length)
2781 		return 0;
2782 
2783 	length = blocksize - length;
2784 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2785 
2786 	page = grab_cache_page(mapping, index);
2787 	err = -ENOMEM;
2788 	if (!page)
2789 		goto out;
2790 
2791 	if (!page_has_buffers(page))
2792 		create_empty_buffers(page, blocksize, 0);
2793 
2794 	/* Find the buffer that contains "offset" */
2795 	bh = page_buffers(page);
2796 	pos = blocksize;
2797 	while (offset >= pos) {
2798 		bh = bh->b_this_page;
2799 		iblock++;
2800 		pos += blocksize;
2801 	}
2802 
2803 	err = 0;
2804 	if (!buffer_mapped(bh)) {
2805 		WARN_ON(bh->b_size != blocksize);
2806 		err = get_block(inode, iblock, bh, 0);
2807 		if (err)
2808 			goto unlock;
2809 		/* unmapped? It's a hole - nothing to do */
2810 		if (!buffer_mapped(bh))
2811 			goto unlock;
2812 	}
2813 
2814 	/* Ok, it's mapped. Make sure it's up-to-date */
2815 	if (PageUptodate(page))
2816 		set_buffer_uptodate(bh);
2817 
2818 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2819 		err = -EIO;
2820 		ll_rw_block(READ, 1, &bh);
2821 		wait_on_buffer(bh);
2822 		/* Uhhuh. Read error. Complain and punt. */
2823 		if (!buffer_uptodate(bh))
2824 			goto unlock;
2825 	}
2826 
2827 	zero_user(page, offset, length);
2828 	mark_buffer_dirty(bh);
2829 	err = 0;
2830 
2831 unlock:
2832 	unlock_page(page);
2833 	page_cache_release(page);
2834 out:
2835 	return err;
2836 }
2837 
2838 /*
2839  * The generic ->writepage function for buffer-backed address_spaces
2840  */
2841 int block_write_full_page(struct page *page, get_block_t *get_block,
2842 			struct writeback_control *wbc)
2843 {
2844 	struct inode * const inode = page->mapping->host;
2845 	loff_t i_size = i_size_read(inode);
2846 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2847 	unsigned offset;
2848 
2849 	/* Is the page fully inside i_size? */
2850 	if (page->index < end_index)
2851 		return __block_write_full_page(inode, page, get_block, wbc);
2852 
2853 	/* Is the page fully outside i_size? (truncate in progress) */
2854 	offset = i_size & (PAGE_CACHE_SIZE-1);
2855 	if (page->index >= end_index+1 || !offset) {
2856 		/*
2857 		 * The page may have dirty, unmapped buffers.  For example,
2858 		 * they may have been added in ext3_writepage().  Make them
2859 		 * freeable here, so the page does not leak.
2860 		 */
2861 		do_invalidatepage(page, 0);
2862 		unlock_page(page);
2863 		return 0; /* don't care */
2864 	}
2865 
2866 	/*
2867 	 * The page straddles i_size.  It must be zeroed out on each and every
2868 	 * writepage invokation because it may be mmapped.  "A file is mapped
2869 	 * in multiples of the page size.  For a file that is not a multiple of
2870 	 * the  page size, the remaining memory is zeroed when mapped, and
2871 	 * writes to that region are not written out to the file."
2872 	 */
2873 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2874 	return __block_write_full_page(inode, page, get_block, wbc);
2875 }
2876 
2877 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2878 			    get_block_t *get_block)
2879 {
2880 	struct buffer_head tmp;
2881 	struct inode *inode = mapping->host;
2882 	tmp.b_state = 0;
2883 	tmp.b_blocknr = 0;
2884 	tmp.b_size = 1 << inode->i_blkbits;
2885 	get_block(inode, block, &tmp, 0);
2886 	return tmp.b_blocknr;
2887 }
2888 
2889 static void end_bio_bh_io_sync(struct bio *bio, int err)
2890 {
2891 	struct buffer_head *bh = bio->bi_private;
2892 
2893 	if (err == -EOPNOTSUPP) {
2894 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2895 		set_bit(BH_Eopnotsupp, &bh->b_state);
2896 	}
2897 
2898 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2899 		set_bit(BH_Quiet, &bh->b_state);
2900 
2901 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2902 	bio_put(bio);
2903 }
2904 
2905 int submit_bh(int rw, struct buffer_head * bh)
2906 {
2907 	struct bio *bio;
2908 	int ret = 0;
2909 
2910 	BUG_ON(!buffer_locked(bh));
2911 	BUG_ON(!buffer_mapped(bh));
2912 	BUG_ON(!bh->b_end_io);
2913 
2914 	/*
2915 	 * Mask in barrier bit for a write (could be either a WRITE or a
2916 	 * WRITE_SYNC
2917 	 */
2918 	if (buffer_ordered(bh) && (rw & WRITE))
2919 		rw |= WRITE_BARRIER;
2920 
2921 	/*
2922 	 * Only clear out a write error when rewriting
2923 	 */
2924 	if (test_set_buffer_req(bh) && (rw & WRITE))
2925 		clear_buffer_write_io_error(bh);
2926 
2927 	/*
2928 	 * from here on down, it's all bio -- do the initial mapping,
2929 	 * submit_bio -> generic_make_request may further map this bio around
2930 	 */
2931 	bio = bio_alloc(GFP_NOIO, 1);
2932 
2933 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2934 	bio->bi_bdev = bh->b_bdev;
2935 	bio->bi_io_vec[0].bv_page = bh->b_page;
2936 	bio->bi_io_vec[0].bv_len = bh->b_size;
2937 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2938 
2939 	bio->bi_vcnt = 1;
2940 	bio->bi_idx = 0;
2941 	bio->bi_size = bh->b_size;
2942 
2943 	bio->bi_end_io = end_bio_bh_io_sync;
2944 	bio->bi_private = bh;
2945 
2946 	bio_get(bio);
2947 	submit_bio(rw, bio);
2948 
2949 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2950 		ret = -EOPNOTSUPP;
2951 
2952 	bio_put(bio);
2953 	return ret;
2954 }
2955 
2956 /**
2957  * ll_rw_block: low-level access to block devices (DEPRECATED)
2958  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2959  * @nr: number of &struct buffer_heads in the array
2960  * @bhs: array of pointers to &struct buffer_head
2961  *
2962  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2963  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2964  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2965  * are sent to disk. The fourth %READA option is described in the documentation
2966  * for generic_make_request() which ll_rw_block() calls.
2967  *
2968  * This function drops any buffer that it cannot get a lock on (with the
2969  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2970  * clean when doing a write request, and any buffer that appears to be
2971  * up-to-date when doing read request.  Further it marks as clean buffers that
2972  * are processed for writing (the buffer cache won't assume that they are
2973  * actually clean until the buffer gets unlocked).
2974  *
2975  * ll_rw_block sets b_end_io to simple completion handler that marks
2976  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2977  * any waiters.
2978  *
2979  * All of the buffers must be for the same device, and must also be a
2980  * multiple of the current approved size for the device.
2981  */
2982 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2983 {
2984 	int i;
2985 
2986 	for (i = 0; i < nr; i++) {
2987 		struct buffer_head *bh = bhs[i];
2988 
2989 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
2990 			lock_buffer(bh);
2991 		else if (!trylock_buffer(bh))
2992 			continue;
2993 
2994 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2995 		    rw == SWRITE_SYNC_PLUG) {
2996 			if (test_clear_buffer_dirty(bh)) {
2997 				bh->b_end_io = end_buffer_write_sync;
2998 				get_bh(bh);
2999 				if (rw == SWRITE_SYNC)
3000 					submit_bh(WRITE_SYNC, bh);
3001 				else
3002 					submit_bh(WRITE, bh);
3003 				continue;
3004 			}
3005 		} else {
3006 			if (!buffer_uptodate(bh)) {
3007 				bh->b_end_io = end_buffer_read_sync;
3008 				get_bh(bh);
3009 				submit_bh(rw, bh);
3010 				continue;
3011 			}
3012 		}
3013 		unlock_buffer(bh);
3014 	}
3015 }
3016 
3017 /*
3018  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3019  * and then start new I/O and then wait upon it.  The caller must have a ref on
3020  * the buffer_head.
3021  */
3022 int sync_dirty_buffer(struct buffer_head *bh)
3023 {
3024 	int ret = 0;
3025 
3026 	WARN_ON(atomic_read(&bh->b_count) < 1);
3027 	lock_buffer(bh);
3028 	if (test_clear_buffer_dirty(bh)) {
3029 		get_bh(bh);
3030 		bh->b_end_io = end_buffer_write_sync;
3031 		ret = submit_bh(WRITE_SYNC, bh);
3032 		wait_on_buffer(bh);
3033 		if (buffer_eopnotsupp(bh)) {
3034 			clear_buffer_eopnotsupp(bh);
3035 			ret = -EOPNOTSUPP;
3036 		}
3037 		if (!ret && !buffer_uptodate(bh))
3038 			ret = -EIO;
3039 	} else {
3040 		unlock_buffer(bh);
3041 	}
3042 	return ret;
3043 }
3044 
3045 /*
3046  * try_to_free_buffers() checks if all the buffers on this particular page
3047  * are unused, and releases them if so.
3048  *
3049  * Exclusion against try_to_free_buffers may be obtained by either
3050  * locking the page or by holding its mapping's private_lock.
3051  *
3052  * If the page is dirty but all the buffers are clean then we need to
3053  * be sure to mark the page clean as well.  This is because the page
3054  * may be against a block device, and a later reattachment of buffers
3055  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3056  * filesystem data on the same device.
3057  *
3058  * The same applies to regular filesystem pages: if all the buffers are
3059  * clean then we set the page clean and proceed.  To do that, we require
3060  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3061  * private_lock.
3062  *
3063  * try_to_free_buffers() is non-blocking.
3064  */
3065 static inline int buffer_busy(struct buffer_head *bh)
3066 {
3067 	return atomic_read(&bh->b_count) |
3068 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3069 }
3070 
3071 static int
3072 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3073 {
3074 	struct buffer_head *head = page_buffers(page);
3075 	struct buffer_head *bh;
3076 
3077 	bh = head;
3078 	do {
3079 		if (buffer_write_io_error(bh) && page->mapping)
3080 			set_bit(AS_EIO, &page->mapping->flags);
3081 		if (buffer_busy(bh))
3082 			goto failed;
3083 		bh = bh->b_this_page;
3084 	} while (bh != head);
3085 
3086 	do {
3087 		struct buffer_head *next = bh->b_this_page;
3088 
3089 		if (bh->b_assoc_map)
3090 			__remove_assoc_queue(bh);
3091 		bh = next;
3092 	} while (bh != head);
3093 	*buffers_to_free = head;
3094 	__clear_page_buffers(page);
3095 	return 1;
3096 failed:
3097 	return 0;
3098 }
3099 
3100 int try_to_free_buffers(struct page *page)
3101 {
3102 	struct address_space * const mapping = page->mapping;
3103 	struct buffer_head *buffers_to_free = NULL;
3104 	int ret = 0;
3105 
3106 	BUG_ON(!PageLocked(page));
3107 	if (PageWriteback(page))
3108 		return 0;
3109 
3110 	if (mapping == NULL) {		/* can this still happen? */
3111 		ret = drop_buffers(page, &buffers_to_free);
3112 		goto out;
3113 	}
3114 
3115 	spin_lock(&mapping->private_lock);
3116 	ret = drop_buffers(page, &buffers_to_free);
3117 
3118 	/*
3119 	 * If the filesystem writes its buffers by hand (eg ext3)
3120 	 * then we can have clean buffers against a dirty page.  We
3121 	 * clean the page here; otherwise the VM will never notice
3122 	 * that the filesystem did any IO at all.
3123 	 *
3124 	 * Also, during truncate, discard_buffer will have marked all
3125 	 * the page's buffers clean.  We discover that here and clean
3126 	 * the page also.
3127 	 *
3128 	 * private_lock must be held over this entire operation in order
3129 	 * to synchronise against __set_page_dirty_buffers and prevent the
3130 	 * dirty bit from being lost.
3131 	 */
3132 	if (ret)
3133 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3134 	spin_unlock(&mapping->private_lock);
3135 out:
3136 	if (buffers_to_free) {
3137 		struct buffer_head *bh = buffers_to_free;
3138 
3139 		do {
3140 			struct buffer_head *next = bh->b_this_page;
3141 			free_buffer_head(bh);
3142 			bh = next;
3143 		} while (bh != buffers_to_free);
3144 	}
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL(try_to_free_buffers);
3148 
3149 void block_sync_page(struct page *page)
3150 {
3151 	struct address_space *mapping;
3152 
3153 	smp_mb();
3154 	mapping = page_mapping(page);
3155 	if (mapping)
3156 		blk_run_backing_dev(mapping->backing_dev_info, page);
3157 }
3158 
3159 /*
3160  * There are no bdflush tunables left.  But distributions are
3161  * still running obsolete flush daemons, so we terminate them here.
3162  *
3163  * Use of bdflush() is deprecated and will be removed in a future kernel.
3164  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3165  */
3166 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3167 {
3168 	static int msg_count;
3169 
3170 	if (!capable(CAP_SYS_ADMIN))
3171 		return -EPERM;
3172 
3173 	if (msg_count < 5) {
3174 		msg_count++;
3175 		printk(KERN_INFO
3176 			"warning: process `%s' used the obsolete bdflush"
3177 			" system call\n", current->comm);
3178 		printk(KERN_INFO "Fix your initscripts?\n");
3179 	}
3180 
3181 	if (func == 1)
3182 		do_exit(0);
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Buffer-head allocation
3188  */
3189 static struct kmem_cache *bh_cachep;
3190 
3191 /*
3192  * Once the number of bh's in the machine exceeds this level, we start
3193  * stripping them in writeback.
3194  */
3195 static int max_buffer_heads;
3196 
3197 int buffer_heads_over_limit;
3198 
3199 struct bh_accounting {
3200 	int nr;			/* Number of live bh's */
3201 	int ratelimit;		/* Limit cacheline bouncing */
3202 };
3203 
3204 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3205 
3206 static void recalc_bh_state(void)
3207 {
3208 	int i;
3209 	int tot = 0;
3210 
3211 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3212 		return;
3213 	__get_cpu_var(bh_accounting).ratelimit = 0;
3214 	for_each_online_cpu(i)
3215 		tot += per_cpu(bh_accounting, i).nr;
3216 	buffer_heads_over_limit = (tot > max_buffer_heads);
3217 }
3218 
3219 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3220 {
3221 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3222 	if (ret) {
3223 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3224 		get_cpu_var(bh_accounting).nr++;
3225 		recalc_bh_state();
3226 		put_cpu_var(bh_accounting);
3227 	}
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL(alloc_buffer_head);
3231 
3232 void free_buffer_head(struct buffer_head *bh)
3233 {
3234 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3235 	kmem_cache_free(bh_cachep, bh);
3236 	get_cpu_var(bh_accounting).nr--;
3237 	recalc_bh_state();
3238 	put_cpu_var(bh_accounting);
3239 }
3240 EXPORT_SYMBOL(free_buffer_head);
3241 
3242 static void buffer_exit_cpu(int cpu)
3243 {
3244 	int i;
3245 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3246 
3247 	for (i = 0; i < BH_LRU_SIZE; i++) {
3248 		brelse(b->bhs[i]);
3249 		b->bhs[i] = NULL;
3250 	}
3251 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3252 	per_cpu(bh_accounting, cpu).nr = 0;
3253 	put_cpu_var(bh_accounting);
3254 }
3255 
3256 static int buffer_cpu_notify(struct notifier_block *self,
3257 			      unsigned long action, void *hcpu)
3258 {
3259 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3260 		buffer_exit_cpu((unsigned long)hcpu);
3261 	return NOTIFY_OK;
3262 }
3263 
3264 /**
3265  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3266  * @bh: struct buffer_head
3267  *
3268  * Return true if the buffer is up-to-date and false,
3269  * with the buffer locked, if not.
3270  */
3271 int bh_uptodate_or_lock(struct buffer_head *bh)
3272 {
3273 	if (!buffer_uptodate(bh)) {
3274 		lock_buffer(bh);
3275 		if (!buffer_uptodate(bh))
3276 			return 0;
3277 		unlock_buffer(bh);
3278 	}
3279 	return 1;
3280 }
3281 EXPORT_SYMBOL(bh_uptodate_or_lock);
3282 
3283 /**
3284  * bh_submit_read - Submit a locked buffer for reading
3285  * @bh: struct buffer_head
3286  *
3287  * Returns zero on success and -EIO on error.
3288  */
3289 int bh_submit_read(struct buffer_head *bh)
3290 {
3291 	BUG_ON(!buffer_locked(bh));
3292 
3293 	if (buffer_uptodate(bh)) {
3294 		unlock_buffer(bh);
3295 		return 0;
3296 	}
3297 
3298 	get_bh(bh);
3299 	bh->b_end_io = end_buffer_read_sync;
3300 	submit_bh(READ, bh);
3301 	wait_on_buffer(bh);
3302 	if (buffer_uptodate(bh))
3303 		return 0;
3304 	return -EIO;
3305 }
3306 EXPORT_SYMBOL(bh_submit_read);
3307 
3308 static void
3309 init_buffer_head(void *data)
3310 {
3311 	struct buffer_head *bh = data;
3312 
3313 	memset(bh, 0, sizeof(*bh));
3314 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3315 }
3316 
3317 void __init buffer_init(void)
3318 {
3319 	int nrpages;
3320 
3321 	bh_cachep = kmem_cache_create("buffer_head",
3322 			sizeof(struct buffer_head), 0,
3323 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3324 				SLAB_MEM_SPREAD),
3325 				init_buffer_head);
3326 
3327 	/*
3328 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3329 	 */
3330 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3331 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3332 	hotcpu_notifier(buffer_cpu_notify, 0);
3333 }
3334 
3335 EXPORT_SYMBOL(__bforget);
3336 EXPORT_SYMBOL(__brelse);
3337 EXPORT_SYMBOL(__wait_on_buffer);
3338 EXPORT_SYMBOL(block_commit_write);
3339 EXPORT_SYMBOL(block_prepare_write);
3340 EXPORT_SYMBOL(block_page_mkwrite);
3341 EXPORT_SYMBOL(block_read_full_page);
3342 EXPORT_SYMBOL(block_sync_page);
3343 EXPORT_SYMBOL(block_truncate_page);
3344 EXPORT_SYMBOL(block_write_full_page);
3345 EXPORT_SYMBOL(cont_write_begin);
3346 EXPORT_SYMBOL(end_buffer_read_sync);
3347 EXPORT_SYMBOL(end_buffer_write_sync);
3348 EXPORT_SYMBOL(file_fsync);
3349 EXPORT_SYMBOL(generic_block_bmap);
3350 EXPORT_SYMBOL(generic_cont_expand_simple);
3351 EXPORT_SYMBOL(init_buffer);
3352 EXPORT_SYMBOL(invalidate_bdev);
3353 EXPORT_SYMBOL(ll_rw_block);
3354 EXPORT_SYMBOL(mark_buffer_dirty);
3355 EXPORT_SYMBOL(submit_bh);
3356 EXPORT_SYMBOL(sync_dirty_buffer);
3357 EXPORT_SYMBOL(unlock_buffer);
3358