xref: /openbmc/linux/fs/buffer.c (revision b35565bb)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 	bh->b_end_io = handler;
59 	bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62 
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 	trace_block_touch_buffer(bh);
66 	mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75 
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 	clear_bit_unlock(BH_Lock, &bh->b_state);
79 	smp_mb__after_atomic();
80 	wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83 
84 /*
85  * Returns if the page has dirty or writeback buffers. If all the buffers
86  * are unlocked and clean then the PageDirty information is stale. If
87  * any of the pages are locked, it is assumed they are locked for IO.
88  */
89 void buffer_check_dirty_writeback(struct page *page,
90 				     bool *dirty, bool *writeback)
91 {
92 	struct buffer_head *head, *bh;
93 	*dirty = false;
94 	*writeback = false;
95 
96 	BUG_ON(!PageLocked(page));
97 
98 	if (!page_has_buffers(page))
99 		return;
100 
101 	if (PageWriteback(page))
102 		*writeback = true;
103 
104 	head = page_buffers(page);
105 	bh = head;
106 	do {
107 		if (buffer_locked(bh))
108 			*writeback = true;
109 
110 		if (buffer_dirty(bh))
111 			*dirty = true;
112 
113 		bh = bh->b_this_page;
114 	} while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117 
118 /*
119  * Block until a buffer comes unlocked.  This doesn't stop it
120  * from becoming locked again - you have to lock it yourself
121  * if you want to preserve its state.
122  */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128 
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 	ClearPagePrivate(page);
133 	set_page_private(page, 0);
134 	put_page(page);
135 }
136 
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 	if (!test_bit(BH_Quiet, &bh->b_state))
140 		printk_ratelimited(KERN_ERR
141 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
142 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144 
145 /*
146  * End-of-IO handler helper function which does not touch the bh after
147  * unlocking it.
148  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149  * a race there is benign: unlock_buffer() only use the bh's address for
150  * hashing after unlocking the buffer, so it doesn't actually touch the bh
151  * itself.
152  */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 	if (uptodate) {
156 		set_buffer_uptodate(bh);
157 	} else {
158 		/* This happens, due to failed read-ahead attempts. */
159 		clear_buffer_uptodate(bh);
160 	}
161 	unlock_buffer(bh);
162 }
163 
164 /*
165  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
166  * unlock the buffer. This is what ll_rw_block uses too.
167  */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 	__end_buffer_read_notouch(bh, uptodate);
171 	put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174 
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 	if (uptodate) {
178 		set_buffer_uptodate(bh);
179 	} else {
180 		buffer_io_error(bh, ", lost sync page write");
181 		mark_buffer_write_io_error(bh);
182 		clear_buffer_uptodate(bh);
183 	}
184 	unlock_buffer(bh);
185 	put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188 
189 /*
190  * Various filesystems appear to want __find_get_block to be non-blocking.
191  * But it's the page lock which protects the buffers.  To get around this,
192  * we get exclusion from try_to_free_buffers with the blockdev mapping's
193  * private_lock.
194  *
195  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196  * may be quite high.  This code could TryLock the page, and if that
197  * succeeds, there is no need to take private_lock. (But if
198  * private_lock is contended then so is mapping->tree_lock).
199  */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 	struct inode *bd_inode = bdev->bd_inode;
204 	struct address_space *bd_mapping = bd_inode->i_mapping;
205 	struct buffer_head *ret = NULL;
206 	pgoff_t index;
207 	struct buffer_head *bh;
208 	struct buffer_head *head;
209 	struct page *page;
210 	int all_mapped = 1;
211 
212 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 	if (!page)
215 		goto out;
216 
217 	spin_lock(&bd_mapping->private_lock);
218 	if (!page_has_buffers(page))
219 		goto out_unlock;
220 	head = page_buffers(page);
221 	bh = head;
222 	do {
223 		if (!buffer_mapped(bh))
224 			all_mapped = 0;
225 		else if (bh->b_blocknr == block) {
226 			ret = bh;
227 			get_bh(bh);
228 			goto out_unlock;
229 		}
230 		bh = bh->b_this_page;
231 	} while (bh != head);
232 
233 	/* we might be here because some of the buffers on this page are
234 	 * not mapped.  This is due to various races between
235 	 * file io on the block device and getblk.  It gets dealt with
236 	 * elsewhere, don't buffer_error if we had some unmapped buffers
237 	 */
238 	if (all_mapped) {
239 		printk("__find_get_block_slow() failed. "
240 			"block=%llu, b_blocknr=%llu\n",
241 			(unsigned long long)block,
242 			(unsigned long long)bh->b_blocknr);
243 		printk("b_state=0x%08lx, b_size=%zu\n",
244 			bh->b_state, bh->b_size);
245 		printk("device %pg blocksize: %d\n", bdev,
246 			1 << bd_inode->i_blkbits);
247 	}
248 out_unlock:
249 	spin_unlock(&bd_mapping->private_lock);
250 	put_page(page);
251 out:
252 	return ret;
253 }
254 
255 /*
256  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257  */
258 static void free_more_memory(void)
259 {
260 	struct zoneref *z;
261 	int nid;
262 
263 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 	yield();
265 
266 	for_each_online_node(nid) {
267 
268 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 						gfp_zone(GFP_NOFS), NULL);
270 		if (z->zone)
271 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 						GFP_NOFS, NULL);
273 	}
274 }
275 
276 /*
277  * I/O completion handler for block_read_full_page() - pages
278  * which come unlocked at the end of I/O.
279  */
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 {
282 	unsigned long flags;
283 	struct buffer_head *first;
284 	struct buffer_head *tmp;
285 	struct page *page;
286 	int page_uptodate = 1;
287 
288 	BUG_ON(!buffer_async_read(bh));
289 
290 	page = bh->b_page;
291 	if (uptodate) {
292 		set_buffer_uptodate(bh);
293 	} else {
294 		clear_buffer_uptodate(bh);
295 		buffer_io_error(bh, ", async page read");
296 		SetPageError(page);
297 	}
298 
299 	/*
300 	 * Be _very_ careful from here on. Bad things can happen if
301 	 * two buffer heads end IO at almost the same time and both
302 	 * decide that the page is now completely done.
303 	 */
304 	first = page_buffers(page);
305 	local_irq_save(flags);
306 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 	clear_buffer_async_read(bh);
308 	unlock_buffer(bh);
309 	tmp = bh;
310 	do {
311 		if (!buffer_uptodate(tmp))
312 			page_uptodate = 0;
313 		if (buffer_async_read(tmp)) {
314 			BUG_ON(!buffer_locked(tmp));
315 			goto still_busy;
316 		}
317 		tmp = tmp->b_this_page;
318 	} while (tmp != bh);
319 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 	local_irq_restore(flags);
321 
322 	/*
323 	 * If none of the buffers had errors and they are all
324 	 * uptodate then we can set the page uptodate.
325 	 */
326 	if (page_uptodate && !PageError(page))
327 		SetPageUptodate(page);
328 	unlock_page(page);
329 	return;
330 
331 still_busy:
332 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 	local_irq_restore(flags);
334 	return;
335 }
336 
337 /*
338  * Completion handler for block_write_full_page() - pages which are unlocked
339  * during I/O, and which have PageWriteback cleared upon I/O completion.
340  */
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 {
343 	unsigned long flags;
344 	struct buffer_head *first;
345 	struct buffer_head *tmp;
346 	struct page *page;
347 
348 	BUG_ON(!buffer_async_write(bh));
349 
350 	page = bh->b_page;
351 	if (uptodate) {
352 		set_buffer_uptodate(bh);
353 	} else {
354 		buffer_io_error(bh, ", lost async page write");
355 		mark_buffer_write_io_error(bh);
356 		clear_buffer_uptodate(bh);
357 		SetPageError(page);
358 	}
359 
360 	first = page_buffers(page);
361 	local_irq_save(flags);
362 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 	local_irq_restore(flags);
376 	end_page_writeback(page);
377 	return;
378 
379 still_busy:
380 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 	local_irq_restore(flags);
382 	return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385 
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 	bh->b_end_io = end_buffer_async_read;
410 	set_buffer_async_read(bh);
411 }
412 
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 					  bh_end_io_t *handler)
415 {
416 	bh->b_end_io = handler;
417 	set_buffer_async_write(bh);
418 }
419 
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425 
426 
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475 
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 	list_del_init(&bh->b_assoc_buffers);
482 	WARN_ON(!bh->b_assoc_map);
483 	bh->b_assoc_map = NULL;
484 }
485 
486 int inode_has_buffers(struct inode *inode)
487 {
488 	return !list_empty(&inode->i_data.private_list);
489 }
490 
491 /*
492  * osync is designed to support O_SYNC io.  It waits synchronously for
493  * all already-submitted IO to complete, but does not queue any new
494  * writes to the disk.
495  *
496  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497  * you dirty the buffers, and then use osync_inode_buffers to wait for
498  * completion.  Any other dirty buffers which are not yet queued for
499  * write will not be flushed to disk by the osync.
500  */
501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502 {
503 	struct buffer_head *bh;
504 	struct list_head *p;
505 	int err = 0;
506 
507 	spin_lock(lock);
508 repeat:
509 	list_for_each_prev(p, list) {
510 		bh = BH_ENTRY(p);
511 		if (buffer_locked(bh)) {
512 			get_bh(bh);
513 			spin_unlock(lock);
514 			wait_on_buffer(bh);
515 			if (!buffer_uptodate(bh))
516 				err = -EIO;
517 			brelse(bh);
518 			spin_lock(lock);
519 			goto repeat;
520 		}
521 	}
522 	spin_unlock(lock);
523 	return err;
524 }
525 
526 static void do_thaw_one(struct super_block *sb, void *unused)
527 {
528 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
530 }
531 
532 static void do_thaw_all(struct work_struct *work)
533 {
534 	iterate_supers(do_thaw_one, NULL);
535 	kfree(work);
536 	printk(KERN_WARNING "Emergency Thaw complete\n");
537 }
538 
539 /**
540  * emergency_thaw_all -- forcibly thaw every frozen filesystem
541  *
542  * Used for emergency unfreeze of all filesystems via SysRq
543  */
544 void emergency_thaw_all(void)
545 {
546 	struct work_struct *work;
547 
548 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 	if (work) {
550 		INIT_WORK(work, do_thaw_all);
551 		schedule_work(work);
552 	}
553 }
554 
555 /**
556  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557  * @mapping: the mapping which wants those buffers written
558  *
559  * Starts I/O against the buffers at mapping->private_list, and waits upon
560  * that I/O.
561  *
562  * Basically, this is a convenience function for fsync().
563  * @mapping is a file or directory which needs those buffers to be written for
564  * a successful fsync().
565  */
566 int sync_mapping_buffers(struct address_space *mapping)
567 {
568 	struct address_space *buffer_mapping = mapping->private_data;
569 
570 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 		return 0;
572 
573 	return fsync_buffers_list(&buffer_mapping->private_lock,
574 					&mapping->private_list);
575 }
576 EXPORT_SYMBOL(sync_mapping_buffers);
577 
578 /*
579  * Called when we've recently written block `bblock', and it is known that
580  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
581  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
582  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
583  */
584 void write_boundary_block(struct block_device *bdev,
585 			sector_t bblock, unsigned blocksize)
586 {
587 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 	if (bh) {
589 		if (buffer_dirty(bh))
590 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
591 		put_bh(bh);
592 	}
593 }
594 
595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596 {
597 	struct address_space *mapping = inode->i_mapping;
598 	struct address_space *buffer_mapping = bh->b_page->mapping;
599 
600 	mark_buffer_dirty(bh);
601 	if (!mapping->private_data) {
602 		mapping->private_data = buffer_mapping;
603 	} else {
604 		BUG_ON(mapping->private_data != buffer_mapping);
605 	}
606 	if (!bh->b_assoc_map) {
607 		spin_lock(&buffer_mapping->private_lock);
608 		list_move_tail(&bh->b_assoc_buffers,
609 				&mapping->private_list);
610 		bh->b_assoc_map = mapping;
611 		spin_unlock(&buffer_mapping->private_lock);
612 	}
613 }
614 EXPORT_SYMBOL(mark_buffer_dirty_inode);
615 
616 /*
617  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618  * dirty.
619  *
620  * If warn is true, then emit a warning if the page is not uptodate and has
621  * not been truncated.
622  *
623  * The caller must hold lock_page_memcg().
624  */
625 static void __set_page_dirty(struct page *page, struct address_space *mapping,
626 			     int warn)
627 {
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&mapping->tree_lock, flags);
631 	if (page->mapping) {	/* Race with truncate? */
632 		WARN_ON_ONCE(warn && !PageUptodate(page));
633 		account_page_dirtied(page, mapping);
634 		radix_tree_tag_set(&mapping->page_tree,
635 				page_index(page), PAGECACHE_TAG_DIRTY);
636 	}
637 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
638 }
639 
640 /*
641  * Add a page to the dirty page list.
642  *
643  * It is a sad fact of life that this function is called from several places
644  * deeply under spinlocking.  It may not sleep.
645  *
646  * If the page has buffers, the uptodate buffers are set dirty, to preserve
647  * dirty-state coherency between the page and the buffers.  It the page does
648  * not have buffers then when they are later attached they will all be set
649  * dirty.
650  *
651  * The buffers are dirtied before the page is dirtied.  There's a small race
652  * window in which a writepage caller may see the page cleanness but not the
653  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
654  * before the buffers, a concurrent writepage caller could clear the page dirty
655  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656  * page on the dirty page list.
657  *
658  * We use private_lock to lock against try_to_free_buffers while using the
659  * page's buffer list.  Also use this to protect against clean buffers being
660  * added to the page after it was set dirty.
661  *
662  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
663  * address_space though.
664  */
665 int __set_page_dirty_buffers(struct page *page)
666 {
667 	int newly_dirty;
668 	struct address_space *mapping = page_mapping(page);
669 
670 	if (unlikely(!mapping))
671 		return !TestSetPageDirty(page);
672 
673 	spin_lock(&mapping->private_lock);
674 	if (page_has_buffers(page)) {
675 		struct buffer_head *head = page_buffers(page);
676 		struct buffer_head *bh = head;
677 
678 		do {
679 			set_buffer_dirty(bh);
680 			bh = bh->b_this_page;
681 		} while (bh != head);
682 	}
683 	/*
684 	 * Lock out page->mem_cgroup migration to keep PageDirty
685 	 * synchronized with per-memcg dirty page counters.
686 	 */
687 	lock_page_memcg(page);
688 	newly_dirty = !TestSetPageDirty(page);
689 	spin_unlock(&mapping->private_lock);
690 
691 	if (newly_dirty)
692 		__set_page_dirty(page, mapping, 1);
693 
694 	unlock_page_memcg(page);
695 
696 	if (newly_dirty)
697 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698 
699 	return newly_dirty;
700 }
701 EXPORT_SYMBOL(__set_page_dirty_buffers);
702 
703 /*
704  * Write out and wait upon a list of buffers.
705  *
706  * We have conflicting pressures: we want to make sure that all
707  * initially dirty buffers get waited on, but that any subsequently
708  * dirtied buffers don't.  After all, we don't want fsync to last
709  * forever if somebody is actively writing to the file.
710  *
711  * Do this in two main stages: first we copy dirty buffers to a
712  * temporary inode list, queueing the writes as we go.  Then we clean
713  * up, waiting for those writes to complete.
714  *
715  * During this second stage, any subsequent updates to the file may end
716  * up refiling the buffer on the original inode's dirty list again, so
717  * there is a chance we will end up with a buffer queued for write but
718  * not yet completed on that list.  So, as a final cleanup we go through
719  * the osync code to catch these locked, dirty buffers without requeuing
720  * any newly dirty buffers for write.
721  */
722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723 {
724 	struct buffer_head *bh;
725 	struct list_head tmp;
726 	struct address_space *mapping;
727 	int err = 0, err2;
728 	struct blk_plug plug;
729 
730 	INIT_LIST_HEAD(&tmp);
731 	blk_start_plug(&plug);
732 
733 	spin_lock(lock);
734 	while (!list_empty(list)) {
735 		bh = BH_ENTRY(list->next);
736 		mapping = bh->b_assoc_map;
737 		__remove_assoc_queue(bh);
738 		/* Avoid race with mark_buffer_dirty_inode() which does
739 		 * a lockless check and we rely on seeing the dirty bit */
740 		smp_mb();
741 		if (buffer_dirty(bh) || buffer_locked(bh)) {
742 			list_add(&bh->b_assoc_buffers, &tmp);
743 			bh->b_assoc_map = mapping;
744 			if (buffer_dirty(bh)) {
745 				get_bh(bh);
746 				spin_unlock(lock);
747 				/*
748 				 * Ensure any pending I/O completes so that
749 				 * write_dirty_buffer() actually writes the
750 				 * current contents - it is a noop if I/O is
751 				 * still in flight on potentially older
752 				 * contents.
753 				 */
754 				write_dirty_buffer(bh, REQ_SYNC);
755 
756 				/*
757 				 * Kick off IO for the previous mapping. Note
758 				 * that we will not run the very last mapping,
759 				 * wait_on_buffer() will do that for us
760 				 * through sync_buffer().
761 				 */
762 				brelse(bh);
763 				spin_lock(lock);
764 			}
765 		}
766 	}
767 
768 	spin_unlock(lock);
769 	blk_finish_plug(&plug);
770 	spin_lock(lock);
771 
772 	while (!list_empty(&tmp)) {
773 		bh = BH_ENTRY(tmp.prev);
774 		get_bh(bh);
775 		mapping = bh->b_assoc_map;
776 		__remove_assoc_queue(bh);
777 		/* Avoid race with mark_buffer_dirty_inode() which does
778 		 * a lockless check and we rely on seeing the dirty bit */
779 		smp_mb();
780 		if (buffer_dirty(bh)) {
781 			list_add(&bh->b_assoc_buffers,
782 				 &mapping->private_list);
783 			bh->b_assoc_map = mapping;
784 		}
785 		spin_unlock(lock);
786 		wait_on_buffer(bh);
787 		if (!buffer_uptodate(bh))
788 			err = -EIO;
789 		brelse(bh);
790 		spin_lock(lock);
791 	}
792 
793 	spin_unlock(lock);
794 	err2 = osync_buffers_list(lock, list);
795 	if (err)
796 		return err;
797 	else
798 		return err2;
799 }
800 
801 /*
802  * Invalidate any and all dirty buffers on a given inode.  We are
803  * probably unmounting the fs, but that doesn't mean we have already
804  * done a sync().  Just drop the buffers from the inode list.
805  *
806  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
807  * assumes that all the buffers are against the blockdev.  Not true
808  * for reiserfs.
809  */
810 void invalidate_inode_buffers(struct inode *inode)
811 {
812 	if (inode_has_buffers(inode)) {
813 		struct address_space *mapping = &inode->i_data;
814 		struct list_head *list = &mapping->private_list;
815 		struct address_space *buffer_mapping = mapping->private_data;
816 
817 		spin_lock(&buffer_mapping->private_lock);
818 		while (!list_empty(list))
819 			__remove_assoc_queue(BH_ENTRY(list->next));
820 		spin_unlock(&buffer_mapping->private_lock);
821 	}
822 }
823 EXPORT_SYMBOL(invalidate_inode_buffers);
824 
825 /*
826  * Remove any clean buffers from the inode's buffer list.  This is called
827  * when we're trying to free the inode itself.  Those buffers can pin it.
828  *
829  * Returns true if all buffers were removed.
830  */
831 int remove_inode_buffers(struct inode *inode)
832 {
833 	int ret = 1;
834 
835 	if (inode_has_buffers(inode)) {
836 		struct address_space *mapping = &inode->i_data;
837 		struct list_head *list = &mapping->private_list;
838 		struct address_space *buffer_mapping = mapping->private_data;
839 
840 		spin_lock(&buffer_mapping->private_lock);
841 		while (!list_empty(list)) {
842 			struct buffer_head *bh = BH_ENTRY(list->next);
843 			if (buffer_dirty(bh)) {
844 				ret = 0;
845 				break;
846 			}
847 			__remove_assoc_queue(bh);
848 		}
849 		spin_unlock(&buffer_mapping->private_lock);
850 	}
851 	return ret;
852 }
853 
854 /*
855  * Create the appropriate buffers when given a page for data area and
856  * the size of each buffer.. Use the bh->b_this_page linked list to
857  * follow the buffers created.  Return NULL if unable to create more
858  * buffers.
859  *
860  * The retry flag is used to differentiate async IO (paging, swapping)
861  * which may not fail from ordinary buffer allocations.
862  */
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 		int retry)
865 {
866 	struct buffer_head *bh, *head;
867 	long offset;
868 
869 try_again:
870 	head = NULL;
871 	offset = PAGE_SIZE;
872 	while ((offset -= size) >= 0) {
873 		bh = alloc_buffer_head(GFP_NOFS);
874 		if (!bh)
875 			goto no_grow;
876 
877 		bh->b_this_page = head;
878 		bh->b_blocknr = -1;
879 		head = bh;
880 
881 		bh->b_size = size;
882 
883 		/* Link the buffer to its page */
884 		set_bh_page(bh, page, offset);
885 	}
886 	return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891 	if (head) {
892 		do {
893 			bh = head;
894 			head = head->b_this_page;
895 			free_buffer_head(bh);
896 		} while (head);
897 	}
898 
899 	/*
900 	 * Return failure for non-async IO requests.  Async IO requests
901 	 * are not allowed to fail, so we have to wait until buffer heads
902 	 * become available.  But we don't want tasks sleeping with
903 	 * partially complete buffers, so all were released above.
904 	 */
905 	if (!retry)
906 		return NULL;
907 
908 	/* We're _really_ low on memory. Now we just
909 	 * wait for old buffer heads to become free due to
910 	 * finishing IO.  Since this is an async request and
911 	 * the reserve list is empty, we're sure there are
912 	 * async buffer heads in use.
913 	 */
914 	free_more_memory();
915 	goto try_again;
916 }
917 EXPORT_SYMBOL_GPL(alloc_page_buffers);
918 
919 static inline void
920 link_dev_buffers(struct page *page, struct buffer_head *head)
921 {
922 	struct buffer_head *bh, *tail;
923 
924 	bh = head;
925 	do {
926 		tail = bh;
927 		bh = bh->b_this_page;
928 	} while (bh);
929 	tail->b_this_page = head;
930 	attach_page_buffers(page, head);
931 }
932 
933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
934 {
935 	sector_t retval = ~((sector_t)0);
936 	loff_t sz = i_size_read(bdev->bd_inode);
937 
938 	if (sz) {
939 		unsigned int sizebits = blksize_bits(size);
940 		retval = (sz >> sizebits);
941 	}
942 	return retval;
943 }
944 
945 /*
946  * Initialise the state of a blockdev page's buffers.
947  */
948 static sector_t
949 init_page_buffers(struct page *page, struct block_device *bdev,
950 			sector_t block, int size)
951 {
952 	struct buffer_head *head = page_buffers(page);
953 	struct buffer_head *bh = head;
954 	int uptodate = PageUptodate(page);
955 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
956 
957 	do {
958 		if (!buffer_mapped(bh)) {
959 			init_buffer(bh, NULL, NULL);
960 			bh->b_bdev = bdev;
961 			bh->b_blocknr = block;
962 			if (uptodate)
963 				set_buffer_uptodate(bh);
964 			if (block < end_block)
965 				set_buffer_mapped(bh);
966 		}
967 		block++;
968 		bh = bh->b_this_page;
969 	} while (bh != head);
970 
971 	/*
972 	 * Caller needs to validate requested block against end of device.
973 	 */
974 	return end_block;
975 }
976 
977 /*
978  * Create the page-cache page that contains the requested block.
979  *
980  * This is used purely for blockdev mappings.
981  */
982 static int
983 grow_dev_page(struct block_device *bdev, sector_t block,
984 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
985 {
986 	struct inode *inode = bdev->bd_inode;
987 	struct page *page;
988 	struct buffer_head *bh;
989 	sector_t end_block;
990 	int ret = 0;		/* Will call free_more_memory() */
991 	gfp_t gfp_mask;
992 
993 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
994 
995 	/*
996 	 * XXX: __getblk_slow() can not really deal with failure and
997 	 * will endlessly loop on improvised global reclaim.  Prefer
998 	 * looping in the allocator rather than here, at least that
999 	 * code knows what it's doing.
1000 	 */
1001 	gfp_mask |= __GFP_NOFAIL;
1002 
1003 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1004 	if (!page)
1005 		return ret;
1006 
1007 	BUG_ON(!PageLocked(page));
1008 
1009 	if (page_has_buffers(page)) {
1010 		bh = page_buffers(page);
1011 		if (bh->b_size == size) {
1012 			end_block = init_page_buffers(page, bdev,
1013 						(sector_t)index << sizebits,
1014 						size);
1015 			goto done;
1016 		}
1017 		if (!try_to_free_buffers(page))
1018 			goto failed;
1019 	}
1020 
1021 	/*
1022 	 * Allocate some buffers for this page
1023 	 */
1024 	bh = alloc_page_buffers(page, size, 0);
1025 	if (!bh)
1026 		goto failed;
1027 
1028 	/*
1029 	 * Link the page to the buffers and initialise them.  Take the
1030 	 * lock to be atomic wrt __find_get_block(), which does not
1031 	 * run under the page lock.
1032 	 */
1033 	spin_lock(&inode->i_mapping->private_lock);
1034 	link_dev_buffers(page, bh);
1035 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036 			size);
1037 	spin_unlock(&inode->i_mapping->private_lock);
1038 done:
1039 	ret = (block < end_block) ? 1 : -ENXIO;
1040 failed:
1041 	unlock_page(page);
1042 	put_page(page);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Create buffers for the specified block device block's page.  If
1048  * that page was dirty, the buffers are set dirty also.
1049  */
1050 static int
1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1052 {
1053 	pgoff_t index;
1054 	int sizebits;
1055 
1056 	sizebits = -1;
1057 	do {
1058 		sizebits++;
1059 	} while ((size << sizebits) < PAGE_SIZE);
1060 
1061 	index = block >> sizebits;
1062 
1063 	/*
1064 	 * Check for a block which wants to lie outside our maximum possible
1065 	 * pagecache index.  (this comparison is done using sector_t types).
1066 	 */
1067 	if (unlikely(index != block >> sizebits)) {
1068 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 			"device %pg\n",
1070 			__func__, (unsigned long long)block,
1071 			bdev);
1072 		return -EIO;
1073 	}
1074 
1075 	/* Create a page with the proper size buffers.. */
1076 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1077 }
1078 
1079 static struct buffer_head *
1080 __getblk_slow(struct block_device *bdev, sector_t block,
1081 	     unsigned size, gfp_t gfp)
1082 {
1083 	/* Size must be multiple of hard sectorsize */
1084 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1085 			(size < 512 || size > PAGE_SIZE))) {
1086 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087 					size);
1088 		printk(KERN_ERR "logical block size: %d\n",
1089 					bdev_logical_block_size(bdev));
1090 
1091 		dump_stack();
1092 		return NULL;
1093 	}
1094 
1095 	for (;;) {
1096 		struct buffer_head *bh;
1097 		int ret;
1098 
1099 		bh = __find_get_block(bdev, block, size);
1100 		if (bh)
1101 			return bh;
1102 
1103 		ret = grow_buffers(bdev, block, size, gfp);
1104 		if (ret < 0)
1105 			return NULL;
1106 		if (ret == 0)
1107 			free_more_memory();
1108 	}
1109 }
1110 
1111 /*
1112  * The relationship between dirty buffers and dirty pages:
1113  *
1114  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115  * the page is tagged dirty in its radix tree.
1116  *
1117  * At all times, the dirtiness of the buffers represents the dirtiness of
1118  * subsections of the page.  If the page has buffers, the page dirty bit is
1119  * merely a hint about the true dirty state.
1120  *
1121  * When a page is set dirty in its entirety, all its buffers are marked dirty
1122  * (if the page has buffers).
1123  *
1124  * When a buffer is marked dirty, its page is dirtied, but the page's other
1125  * buffers are not.
1126  *
1127  * Also.  When blockdev buffers are explicitly read with bread(), they
1128  * individually become uptodate.  But their backing page remains not
1129  * uptodate - even if all of its buffers are uptodate.  A subsequent
1130  * block_read_full_page() against that page will discover all the uptodate
1131  * buffers, will set the page uptodate and will perform no I/O.
1132  */
1133 
1134 /**
1135  * mark_buffer_dirty - mark a buffer_head as needing writeout
1136  * @bh: the buffer_head to mark dirty
1137  *
1138  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139  * backing page dirty, then tag the page as dirty in its address_space's radix
1140  * tree and then attach the address_space's inode to its superblock's dirty
1141  * inode list.
1142  *
1143  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1144  * mapping->tree_lock and mapping->host->i_lock.
1145  */
1146 void mark_buffer_dirty(struct buffer_head *bh)
1147 {
1148 	WARN_ON_ONCE(!buffer_uptodate(bh));
1149 
1150 	trace_block_dirty_buffer(bh);
1151 
1152 	/*
1153 	 * Very *carefully* optimize the it-is-already-dirty case.
1154 	 *
1155 	 * Don't let the final "is it dirty" escape to before we
1156 	 * perhaps modified the buffer.
1157 	 */
1158 	if (buffer_dirty(bh)) {
1159 		smp_mb();
1160 		if (buffer_dirty(bh))
1161 			return;
1162 	}
1163 
1164 	if (!test_set_buffer_dirty(bh)) {
1165 		struct page *page = bh->b_page;
1166 		struct address_space *mapping = NULL;
1167 
1168 		lock_page_memcg(page);
1169 		if (!TestSetPageDirty(page)) {
1170 			mapping = page_mapping(page);
1171 			if (mapping)
1172 				__set_page_dirty(page, mapping, 0);
1173 		}
1174 		unlock_page_memcg(page);
1175 		if (mapping)
1176 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1177 	}
1178 }
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1180 
1181 void mark_buffer_write_io_error(struct buffer_head *bh)
1182 {
1183 	set_buffer_write_io_error(bh);
1184 	/* FIXME: do we need to set this in both places? */
1185 	if (bh->b_page && bh->b_page->mapping)
1186 		mapping_set_error(bh->b_page->mapping, -EIO);
1187 	if (bh->b_assoc_map)
1188 		mapping_set_error(bh->b_assoc_map, -EIO);
1189 }
1190 EXPORT_SYMBOL(mark_buffer_write_io_error);
1191 
1192 /*
1193  * Decrement a buffer_head's reference count.  If all buffers against a page
1194  * have zero reference count, are clean and unlocked, and if the page is clean
1195  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197  * a page but it ends up not being freed, and buffers may later be reattached).
1198  */
1199 void __brelse(struct buffer_head * buf)
1200 {
1201 	if (atomic_read(&buf->b_count)) {
1202 		put_bh(buf);
1203 		return;
1204 	}
1205 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1206 }
1207 EXPORT_SYMBOL(__brelse);
1208 
1209 /*
1210  * bforget() is like brelse(), except it discards any
1211  * potentially dirty data.
1212  */
1213 void __bforget(struct buffer_head *bh)
1214 {
1215 	clear_buffer_dirty(bh);
1216 	if (bh->b_assoc_map) {
1217 		struct address_space *buffer_mapping = bh->b_page->mapping;
1218 
1219 		spin_lock(&buffer_mapping->private_lock);
1220 		list_del_init(&bh->b_assoc_buffers);
1221 		bh->b_assoc_map = NULL;
1222 		spin_unlock(&buffer_mapping->private_lock);
1223 	}
1224 	__brelse(bh);
1225 }
1226 EXPORT_SYMBOL(__bforget);
1227 
1228 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1229 {
1230 	lock_buffer(bh);
1231 	if (buffer_uptodate(bh)) {
1232 		unlock_buffer(bh);
1233 		return bh;
1234 	} else {
1235 		get_bh(bh);
1236 		bh->b_end_io = end_buffer_read_sync;
1237 		submit_bh(REQ_OP_READ, 0, bh);
1238 		wait_on_buffer(bh);
1239 		if (buffer_uptodate(bh))
1240 			return bh;
1241 	}
1242 	brelse(bh);
1243 	return NULL;
1244 }
1245 
1246 /*
1247  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1248  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1249  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1250  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1251  * CPU's LRUs at the same time.
1252  *
1253  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254  * sb_find_get_block().
1255  *
1256  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1257  * a local interrupt disable for that.
1258  */
1259 
1260 #define BH_LRU_SIZE	16
1261 
1262 struct bh_lru {
1263 	struct buffer_head *bhs[BH_LRU_SIZE];
1264 };
1265 
1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1267 
1268 #ifdef CONFIG_SMP
1269 #define bh_lru_lock()	local_irq_disable()
1270 #define bh_lru_unlock()	local_irq_enable()
1271 #else
1272 #define bh_lru_lock()	preempt_disable()
1273 #define bh_lru_unlock()	preempt_enable()
1274 #endif
1275 
1276 static inline void check_irqs_on(void)
1277 {
1278 #ifdef irqs_disabled
1279 	BUG_ON(irqs_disabled());
1280 #endif
1281 }
1282 
1283 /*
1284  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1285  * inserted at the front, and the buffer_head at the back if any is evicted.
1286  * Or, if already in the LRU it is moved to the front.
1287  */
1288 static void bh_lru_install(struct buffer_head *bh)
1289 {
1290 	struct buffer_head *evictee = bh;
1291 	struct bh_lru *b;
1292 	int i;
1293 
1294 	check_irqs_on();
1295 	bh_lru_lock();
1296 
1297 	b = this_cpu_ptr(&bh_lrus);
1298 	for (i = 0; i < BH_LRU_SIZE; i++) {
1299 		swap(evictee, b->bhs[i]);
1300 		if (evictee == bh) {
1301 			bh_lru_unlock();
1302 			return;
1303 		}
1304 	}
1305 
1306 	get_bh(bh);
1307 	bh_lru_unlock();
1308 	brelse(evictee);
1309 }
1310 
1311 /*
1312  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1313  */
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 {
1317 	struct buffer_head *ret = NULL;
1318 	unsigned int i;
1319 
1320 	check_irqs_on();
1321 	bh_lru_lock();
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324 
1325 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 		    bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					__this_cpu_write(bh_lrus.bhs[i],
1330 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1331 					i--;
1332 				}
1333 				__this_cpu_write(bh_lrus.bhs[0], bh);
1334 			}
1335 			get_bh(bh);
1336 			ret = bh;
1337 			break;
1338 		}
1339 	}
1340 	bh_lru_unlock();
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353 
1354 	if (bh == NULL) {
1355 		/* __find_get_block_slow will mark the page accessed */
1356 		bh = __find_get_block_slow(bdev, block);
1357 		if (bh)
1358 			bh_lru_install(bh);
1359 	} else
1360 		touch_buffer(bh);
1361 
1362 	return bh;
1363 }
1364 EXPORT_SYMBOL(__find_get_block);
1365 
1366 /*
1367  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368  * which corresponds to the passed block_device, block and size. The
1369  * returned buffer has its reference count incremented.
1370  *
1371  * __getblk_gfp() will lock up the machine if grow_dev_page's
1372  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376 	     unsigned size, gfp_t gfp)
1377 {
1378 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1379 
1380 	might_sleep();
1381 	if (bh == NULL)
1382 		bh = __getblk_slow(bdev, block, size, gfp);
1383 	return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk_gfp);
1386 
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392 	struct buffer_head *bh = __getblk(bdev, block, size);
1393 	if (likely(bh)) {
1394 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1395 		brelse(bh);
1396 	}
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399 
1400 /**
1401  *  __bread_gfp() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  *  @gfp: page allocation flag
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  The page cache can be allocated from non-movable area
1409  *  not to prevent page migration if you set gfp to zero.
1410  *  It returns NULL if the block was unreadable.
1411  */
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414 		   unsigned size, gfp_t gfp)
1415 {
1416 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1417 
1418 	if (likely(bh) && !buffer_uptodate(bh))
1419 		bh = __bread_slow(bh);
1420 	return bh;
1421 }
1422 EXPORT_SYMBOL(__bread_gfp);
1423 
1424 /*
1425  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426  * This doesn't race because it runs in each cpu either in irq
1427  * or with preempt disabled.
1428  */
1429 static void invalidate_bh_lru(void *arg)
1430 {
1431 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1432 	int i;
1433 
1434 	for (i = 0; i < BH_LRU_SIZE; i++) {
1435 		brelse(b->bhs[i]);
1436 		b->bhs[i] = NULL;
1437 	}
1438 	put_cpu_var(bh_lrus);
1439 }
1440 
1441 static bool has_bh_in_lru(int cpu, void *dummy)
1442 {
1443 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1444 	int i;
1445 
1446 	for (i = 0; i < BH_LRU_SIZE; i++) {
1447 		if (b->bhs[i])
1448 			return 1;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 void invalidate_bh_lrus(void)
1455 {
1456 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1457 }
1458 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1459 
1460 void set_bh_page(struct buffer_head *bh,
1461 		struct page *page, unsigned long offset)
1462 {
1463 	bh->b_page = page;
1464 	BUG_ON(offset >= PAGE_SIZE);
1465 	if (PageHighMem(page))
1466 		/*
1467 		 * This catches illegal uses and preserves the offset:
1468 		 */
1469 		bh->b_data = (char *)(0 + offset);
1470 	else
1471 		bh->b_data = page_address(page) + offset;
1472 }
1473 EXPORT_SYMBOL(set_bh_page);
1474 
1475 /*
1476  * Called when truncating a buffer on a page completely.
1477  */
1478 
1479 /* Bits that are cleared during an invalidate */
1480 #define BUFFER_FLAGS_DISCARD \
1481 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482 	 1 << BH_Delay | 1 << BH_Unwritten)
1483 
1484 static void discard_buffer(struct buffer_head * bh)
1485 {
1486 	unsigned long b_state, b_state_old;
1487 
1488 	lock_buffer(bh);
1489 	clear_buffer_dirty(bh);
1490 	bh->b_bdev = NULL;
1491 	b_state = bh->b_state;
1492 	for (;;) {
1493 		b_state_old = cmpxchg(&bh->b_state, b_state,
1494 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1495 		if (b_state_old == b_state)
1496 			break;
1497 		b_state = b_state_old;
1498 	}
1499 	unlock_buffer(bh);
1500 }
1501 
1502 /**
1503  * block_invalidatepage - invalidate part or all of a buffer-backed page
1504  *
1505  * @page: the page which is affected
1506  * @offset: start of the range to invalidate
1507  * @length: length of the range to invalidate
1508  *
1509  * block_invalidatepage() is called when all or part of the page has become
1510  * invalidated by a truncate operation.
1511  *
1512  * block_invalidatepage() does not have to release all buffers, but it must
1513  * ensure that no dirty buffer is left outside @offset and that no I/O
1514  * is underway against any of the blocks which are outside the truncation
1515  * point.  Because the caller is about to free (and possibly reuse) those
1516  * blocks on-disk.
1517  */
1518 void block_invalidatepage(struct page *page, unsigned int offset,
1519 			  unsigned int length)
1520 {
1521 	struct buffer_head *head, *bh, *next;
1522 	unsigned int curr_off = 0;
1523 	unsigned int stop = length + offset;
1524 
1525 	BUG_ON(!PageLocked(page));
1526 	if (!page_has_buffers(page))
1527 		goto out;
1528 
1529 	/*
1530 	 * Check for overflow
1531 	 */
1532 	BUG_ON(stop > PAGE_SIZE || stop < length);
1533 
1534 	head = page_buffers(page);
1535 	bh = head;
1536 	do {
1537 		unsigned int next_off = curr_off + bh->b_size;
1538 		next = bh->b_this_page;
1539 
1540 		/*
1541 		 * Are we still fully in range ?
1542 		 */
1543 		if (next_off > stop)
1544 			goto out;
1545 
1546 		/*
1547 		 * is this block fully invalidated?
1548 		 */
1549 		if (offset <= curr_off)
1550 			discard_buffer(bh);
1551 		curr_off = next_off;
1552 		bh = next;
1553 	} while (bh != head);
1554 
1555 	/*
1556 	 * We release buffers only if the entire page is being invalidated.
1557 	 * The get_block cached value has been unconditionally invalidated,
1558 	 * so real IO is not possible anymore.
1559 	 */
1560 	if (offset == 0)
1561 		try_to_release_page(page, 0);
1562 out:
1563 	return;
1564 }
1565 EXPORT_SYMBOL(block_invalidatepage);
1566 
1567 
1568 /*
1569  * We attach and possibly dirty the buffers atomically wrt
1570  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1571  * is already excluded via the page lock.
1572  */
1573 void create_empty_buffers(struct page *page,
1574 			unsigned long blocksize, unsigned long b_state)
1575 {
1576 	struct buffer_head *bh, *head, *tail;
1577 
1578 	head = alloc_page_buffers(page, blocksize, 1);
1579 	bh = head;
1580 	do {
1581 		bh->b_state |= b_state;
1582 		tail = bh;
1583 		bh = bh->b_this_page;
1584 	} while (bh);
1585 	tail->b_this_page = head;
1586 
1587 	spin_lock(&page->mapping->private_lock);
1588 	if (PageUptodate(page) || PageDirty(page)) {
1589 		bh = head;
1590 		do {
1591 			if (PageDirty(page))
1592 				set_buffer_dirty(bh);
1593 			if (PageUptodate(page))
1594 				set_buffer_uptodate(bh);
1595 			bh = bh->b_this_page;
1596 		} while (bh != head);
1597 	}
1598 	attach_page_buffers(page, head);
1599 	spin_unlock(&page->mapping->private_lock);
1600 }
1601 EXPORT_SYMBOL(create_empty_buffers);
1602 
1603 /**
1604  * clean_bdev_aliases: clean a range of buffers in block device
1605  * @bdev: Block device to clean buffers in
1606  * @block: Start of a range of blocks to clean
1607  * @len: Number of blocks to clean
1608  *
1609  * We are taking a range of blocks for data and we don't want writeback of any
1610  * buffer-cache aliases starting from return from this function and until the
1611  * moment when something will explicitly mark the buffer dirty (hopefully that
1612  * will not happen until we will free that block ;-) We don't even need to mark
1613  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1614  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1615  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1616  * would confuse anyone who might pick it with bread() afterwards...
1617  *
1618  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1619  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1620  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1621  * need to.  That happens here.
1622  */
1623 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1624 {
1625 	struct inode *bd_inode = bdev->bd_inode;
1626 	struct address_space *bd_mapping = bd_inode->i_mapping;
1627 	struct pagevec pvec;
1628 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1629 	pgoff_t end;
1630 	int i, count;
1631 	struct buffer_head *bh;
1632 	struct buffer_head *head;
1633 
1634 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 	pagevec_init(&pvec, 0);
1636 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1637 		count = pagevec_count(&pvec);
1638 		for (i = 0; i < count; i++) {
1639 			struct page *page = pvec.pages[i];
1640 
1641 			if (!page_has_buffers(page))
1642 				continue;
1643 			/*
1644 			 * We use page lock instead of bd_mapping->private_lock
1645 			 * to pin buffers here since we can afford to sleep and
1646 			 * it scales better than a global spinlock lock.
1647 			 */
1648 			lock_page(page);
1649 			/* Recheck when the page is locked which pins bhs */
1650 			if (!page_has_buffers(page))
1651 				goto unlock_page;
1652 			head = page_buffers(page);
1653 			bh = head;
1654 			do {
1655 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1656 					goto next;
1657 				if (bh->b_blocknr >= block + len)
1658 					break;
1659 				clear_buffer_dirty(bh);
1660 				wait_on_buffer(bh);
1661 				clear_buffer_req(bh);
1662 next:
1663 				bh = bh->b_this_page;
1664 			} while (bh != head);
1665 unlock_page:
1666 			unlock_page(page);
1667 		}
1668 		pagevec_release(&pvec);
1669 		cond_resched();
1670 		/* End of range already reached? */
1671 		if (index > end || !index)
1672 			break;
1673 	}
1674 }
1675 EXPORT_SYMBOL(clean_bdev_aliases);
1676 
1677 /*
1678  * Size is a power-of-two in the range 512..PAGE_SIZE,
1679  * and the case we care about most is PAGE_SIZE.
1680  *
1681  * So this *could* possibly be written with those
1682  * constraints in mind (relevant mostly if some
1683  * architecture has a slow bit-scan instruction)
1684  */
1685 static inline int block_size_bits(unsigned int blocksize)
1686 {
1687 	return ilog2(blocksize);
1688 }
1689 
1690 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1691 {
1692 	BUG_ON(!PageLocked(page));
1693 
1694 	if (!page_has_buffers(page))
1695 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1696 	return page_buffers(page);
1697 }
1698 
1699 /*
1700  * NOTE! All mapped/uptodate combinations are valid:
1701  *
1702  *	Mapped	Uptodate	Meaning
1703  *
1704  *	No	No		"unknown" - must do get_block()
1705  *	No	Yes		"hole" - zero-filled
1706  *	Yes	No		"allocated" - allocated on disk, not read in
1707  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1708  *
1709  * "Dirty" is valid only with the last case (mapped+uptodate).
1710  */
1711 
1712 /*
1713  * While block_write_full_page is writing back the dirty buffers under
1714  * the page lock, whoever dirtied the buffers may decide to clean them
1715  * again at any time.  We handle that by only looking at the buffer
1716  * state inside lock_buffer().
1717  *
1718  * If block_write_full_page() is called for regular writeback
1719  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1720  * locked buffer.   This only can happen if someone has written the buffer
1721  * directly, with submit_bh().  At the address_space level PageWriteback
1722  * prevents this contention from occurring.
1723  *
1724  * If block_write_full_page() is called with wbc->sync_mode ==
1725  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1726  * causes the writes to be flagged as synchronous writes.
1727  */
1728 int __block_write_full_page(struct inode *inode, struct page *page,
1729 			get_block_t *get_block, struct writeback_control *wbc,
1730 			bh_end_io_t *handler)
1731 {
1732 	int err;
1733 	sector_t block;
1734 	sector_t last_block;
1735 	struct buffer_head *bh, *head;
1736 	unsigned int blocksize, bbits;
1737 	int nr_underway = 0;
1738 	int write_flags = wbc_to_write_flags(wbc);
1739 
1740 	head = create_page_buffers(page, inode,
1741 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1742 
1743 	/*
1744 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1745 	 * here, and the (potentially unmapped) buffers may become dirty at
1746 	 * any time.  If a buffer becomes dirty here after we've inspected it
1747 	 * then we just miss that fact, and the page stays dirty.
1748 	 *
1749 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1750 	 * handle that here by just cleaning them.
1751 	 */
1752 
1753 	bh = head;
1754 	blocksize = bh->b_size;
1755 	bbits = block_size_bits(blocksize);
1756 
1757 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1758 	last_block = (i_size_read(inode) - 1) >> bbits;
1759 
1760 	/*
1761 	 * Get all the dirty buffers mapped to disk addresses and
1762 	 * handle any aliases from the underlying blockdev's mapping.
1763 	 */
1764 	do {
1765 		if (block > last_block) {
1766 			/*
1767 			 * mapped buffers outside i_size will occur, because
1768 			 * this page can be outside i_size when there is a
1769 			 * truncate in progress.
1770 			 */
1771 			/*
1772 			 * The buffer was zeroed by block_write_full_page()
1773 			 */
1774 			clear_buffer_dirty(bh);
1775 			set_buffer_uptodate(bh);
1776 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1777 			   buffer_dirty(bh)) {
1778 			WARN_ON(bh->b_size != blocksize);
1779 			err = get_block(inode, block, bh, 1);
1780 			if (err)
1781 				goto recover;
1782 			clear_buffer_delay(bh);
1783 			if (buffer_new(bh)) {
1784 				/* blockdev mappings never come here */
1785 				clear_buffer_new(bh);
1786 				clean_bdev_bh_alias(bh);
1787 			}
1788 		}
1789 		bh = bh->b_this_page;
1790 		block++;
1791 	} while (bh != head);
1792 
1793 	do {
1794 		if (!buffer_mapped(bh))
1795 			continue;
1796 		/*
1797 		 * If it's a fully non-blocking write attempt and we cannot
1798 		 * lock the buffer then redirty the page.  Note that this can
1799 		 * potentially cause a busy-wait loop from writeback threads
1800 		 * and kswapd activity, but those code paths have their own
1801 		 * higher-level throttling.
1802 		 */
1803 		if (wbc->sync_mode != WB_SYNC_NONE) {
1804 			lock_buffer(bh);
1805 		} else if (!trylock_buffer(bh)) {
1806 			redirty_page_for_writepage(wbc, page);
1807 			continue;
1808 		}
1809 		if (test_clear_buffer_dirty(bh)) {
1810 			mark_buffer_async_write_endio(bh, handler);
1811 		} else {
1812 			unlock_buffer(bh);
1813 		}
1814 	} while ((bh = bh->b_this_page) != head);
1815 
1816 	/*
1817 	 * The page and its buffers are protected by PageWriteback(), so we can
1818 	 * drop the bh refcounts early.
1819 	 */
1820 	BUG_ON(PageWriteback(page));
1821 	set_page_writeback(page);
1822 
1823 	do {
1824 		struct buffer_head *next = bh->b_this_page;
1825 		if (buffer_async_write(bh)) {
1826 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1827 					inode->i_write_hint, wbc);
1828 			nr_underway++;
1829 		}
1830 		bh = next;
1831 	} while (bh != head);
1832 	unlock_page(page);
1833 
1834 	err = 0;
1835 done:
1836 	if (nr_underway == 0) {
1837 		/*
1838 		 * The page was marked dirty, but the buffers were
1839 		 * clean.  Someone wrote them back by hand with
1840 		 * ll_rw_block/submit_bh.  A rare case.
1841 		 */
1842 		end_page_writeback(page);
1843 
1844 		/*
1845 		 * The page and buffer_heads can be released at any time from
1846 		 * here on.
1847 		 */
1848 	}
1849 	return err;
1850 
1851 recover:
1852 	/*
1853 	 * ENOSPC, or some other error.  We may already have added some
1854 	 * blocks to the file, so we need to write these out to avoid
1855 	 * exposing stale data.
1856 	 * The page is currently locked and not marked for writeback
1857 	 */
1858 	bh = head;
1859 	/* Recovery: lock and submit the mapped buffers */
1860 	do {
1861 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1862 		    !buffer_delay(bh)) {
1863 			lock_buffer(bh);
1864 			mark_buffer_async_write_endio(bh, handler);
1865 		} else {
1866 			/*
1867 			 * The buffer may have been set dirty during
1868 			 * attachment to a dirty page.
1869 			 */
1870 			clear_buffer_dirty(bh);
1871 		}
1872 	} while ((bh = bh->b_this_page) != head);
1873 	SetPageError(page);
1874 	BUG_ON(PageWriteback(page));
1875 	mapping_set_error(page->mapping, err);
1876 	set_page_writeback(page);
1877 	do {
1878 		struct buffer_head *next = bh->b_this_page;
1879 		if (buffer_async_write(bh)) {
1880 			clear_buffer_dirty(bh);
1881 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1882 					inode->i_write_hint, wbc);
1883 			nr_underway++;
1884 		}
1885 		bh = next;
1886 	} while (bh != head);
1887 	unlock_page(page);
1888 	goto done;
1889 }
1890 EXPORT_SYMBOL(__block_write_full_page);
1891 
1892 /*
1893  * If a page has any new buffers, zero them out here, and mark them uptodate
1894  * and dirty so they'll be written out (in order to prevent uninitialised
1895  * block data from leaking). And clear the new bit.
1896  */
1897 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1898 {
1899 	unsigned int block_start, block_end;
1900 	struct buffer_head *head, *bh;
1901 
1902 	BUG_ON(!PageLocked(page));
1903 	if (!page_has_buffers(page))
1904 		return;
1905 
1906 	bh = head = page_buffers(page);
1907 	block_start = 0;
1908 	do {
1909 		block_end = block_start + bh->b_size;
1910 
1911 		if (buffer_new(bh)) {
1912 			if (block_end > from && block_start < to) {
1913 				if (!PageUptodate(page)) {
1914 					unsigned start, size;
1915 
1916 					start = max(from, block_start);
1917 					size = min(to, block_end) - start;
1918 
1919 					zero_user(page, start, size);
1920 					set_buffer_uptodate(bh);
1921 				}
1922 
1923 				clear_buffer_new(bh);
1924 				mark_buffer_dirty(bh);
1925 			}
1926 		}
1927 
1928 		block_start = block_end;
1929 		bh = bh->b_this_page;
1930 	} while (bh != head);
1931 }
1932 EXPORT_SYMBOL(page_zero_new_buffers);
1933 
1934 static void
1935 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1936 		struct iomap *iomap)
1937 {
1938 	loff_t offset = block << inode->i_blkbits;
1939 
1940 	bh->b_bdev = iomap->bdev;
1941 
1942 	/*
1943 	 * Block points to offset in file we need to map, iomap contains
1944 	 * the offset at which the map starts. If the map ends before the
1945 	 * current block, then do not map the buffer and let the caller
1946 	 * handle it.
1947 	 */
1948 	BUG_ON(offset >= iomap->offset + iomap->length);
1949 
1950 	switch (iomap->type) {
1951 	case IOMAP_HOLE:
1952 		/*
1953 		 * If the buffer is not up to date or beyond the current EOF,
1954 		 * we need to mark it as new to ensure sub-block zeroing is
1955 		 * executed if necessary.
1956 		 */
1957 		if (!buffer_uptodate(bh) ||
1958 		    (offset >= i_size_read(inode)))
1959 			set_buffer_new(bh);
1960 		break;
1961 	case IOMAP_DELALLOC:
1962 		if (!buffer_uptodate(bh) ||
1963 		    (offset >= i_size_read(inode)))
1964 			set_buffer_new(bh);
1965 		set_buffer_uptodate(bh);
1966 		set_buffer_mapped(bh);
1967 		set_buffer_delay(bh);
1968 		break;
1969 	case IOMAP_UNWRITTEN:
1970 		/*
1971 		 * For unwritten regions, we always need to ensure that
1972 		 * sub-block writes cause the regions in the block we are not
1973 		 * writing to are zeroed. Set the buffer as new to ensure this.
1974 		 */
1975 		set_buffer_new(bh);
1976 		set_buffer_unwritten(bh);
1977 		/* FALLTHRU */
1978 	case IOMAP_MAPPED:
1979 		if (offset >= i_size_read(inode))
1980 			set_buffer_new(bh);
1981 		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1982 				((offset - iomap->offset) >> inode->i_blkbits);
1983 		set_buffer_mapped(bh);
1984 		break;
1985 	}
1986 }
1987 
1988 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1989 		get_block_t *get_block, struct iomap *iomap)
1990 {
1991 	unsigned from = pos & (PAGE_SIZE - 1);
1992 	unsigned to = from + len;
1993 	struct inode *inode = page->mapping->host;
1994 	unsigned block_start, block_end;
1995 	sector_t block;
1996 	int err = 0;
1997 	unsigned blocksize, bbits;
1998 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1999 
2000 	BUG_ON(!PageLocked(page));
2001 	BUG_ON(from > PAGE_SIZE);
2002 	BUG_ON(to > PAGE_SIZE);
2003 	BUG_ON(from > to);
2004 
2005 	head = create_page_buffers(page, inode, 0);
2006 	blocksize = head->b_size;
2007 	bbits = block_size_bits(blocksize);
2008 
2009 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2010 
2011 	for(bh = head, block_start = 0; bh != head || !block_start;
2012 	    block++, block_start=block_end, bh = bh->b_this_page) {
2013 		block_end = block_start + blocksize;
2014 		if (block_end <= from || block_start >= to) {
2015 			if (PageUptodate(page)) {
2016 				if (!buffer_uptodate(bh))
2017 					set_buffer_uptodate(bh);
2018 			}
2019 			continue;
2020 		}
2021 		if (buffer_new(bh))
2022 			clear_buffer_new(bh);
2023 		if (!buffer_mapped(bh)) {
2024 			WARN_ON(bh->b_size != blocksize);
2025 			if (get_block) {
2026 				err = get_block(inode, block, bh, 1);
2027 				if (err)
2028 					break;
2029 			} else {
2030 				iomap_to_bh(inode, block, bh, iomap);
2031 			}
2032 
2033 			if (buffer_new(bh)) {
2034 				clean_bdev_bh_alias(bh);
2035 				if (PageUptodate(page)) {
2036 					clear_buffer_new(bh);
2037 					set_buffer_uptodate(bh);
2038 					mark_buffer_dirty(bh);
2039 					continue;
2040 				}
2041 				if (block_end > to || block_start < from)
2042 					zero_user_segments(page,
2043 						to, block_end,
2044 						block_start, from);
2045 				continue;
2046 			}
2047 		}
2048 		if (PageUptodate(page)) {
2049 			if (!buffer_uptodate(bh))
2050 				set_buffer_uptodate(bh);
2051 			continue;
2052 		}
2053 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2054 		    !buffer_unwritten(bh) &&
2055 		     (block_start < from || block_end > to)) {
2056 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2057 			*wait_bh++=bh;
2058 		}
2059 	}
2060 	/*
2061 	 * If we issued read requests - let them complete.
2062 	 */
2063 	while(wait_bh > wait) {
2064 		wait_on_buffer(*--wait_bh);
2065 		if (!buffer_uptodate(*wait_bh))
2066 			err = -EIO;
2067 	}
2068 	if (unlikely(err))
2069 		page_zero_new_buffers(page, from, to);
2070 	return err;
2071 }
2072 
2073 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2074 		get_block_t *get_block)
2075 {
2076 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2077 }
2078 EXPORT_SYMBOL(__block_write_begin);
2079 
2080 static int __block_commit_write(struct inode *inode, struct page *page,
2081 		unsigned from, unsigned to)
2082 {
2083 	unsigned block_start, block_end;
2084 	int partial = 0;
2085 	unsigned blocksize;
2086 	struct buffer_head *bh, *head;
2087 
2088 	bh = head = page_buffers(page);
2089 	blocksize = bh->b_size;
2090 
2091 	block_start = 0;
2092 	do {
2093 		block_end = block_start + blocksize;
2094 		if (block_end <= from || block_start >= to) {
2095 			if (!buffer_uptodate(bh))
2096 				partial = 1;
2097 		} else {
2098 			set_buffer_uptodate(bh);
2099 			mark_buffer_dirty(bh);
2100 		}
2101 		clear_buffer_new(bh);
2102 
2103 		block_start = block_end;
2104 		bh = bh->b_this_page;
2105 	} while (bh != head);
2106 
2107 	/*
2108 	 * If this is a partial write which happened to make all buffers
2109 	 * uptodate then we can optimize away a bogus readpage() for
2110 	 * the next read(). Here we 'discover' whether the page went
2111 	 * uptodate as a result of this (potentially partial) write.
2112 	 */
2113 	if (!partial)
2114 		SetPageUptodate(page);
2115 	return 0;
2116 }
2117 
2118 /*
2119  * block_write_begin takes care of the basic task of block allocation and
2120  * bringing partial write blocks uptodate first.
2121  *
2122  * The filesystem needs to handle block truncation upon failure.
2123  */
2124 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2125 		unsigned flags, struct page **pagep, get_block_t *get_block)
2126 {
2127 	pgoff_t index = pos >> PAGE_SHIFT;
2128 	struct page *page;
2129 	int status;
2130 
2131 	page = grab_cache_page_write_begin(mapping, index, flags);
2132 	if (!page)
2133 		return -ENOMEM;
2134 
2135 	status = __block_write_begin(page, pos, len, get_block);
2136 	if (unlikely(status)) {
2137 		unlock_page(page);
2138 		put_page(page);
2139 		page = NULL;
2140 	}
2141 
2142 	*pagep = page;
2143 	return status;
2144 }
2145 EXPORT_SYMBOL(block_write_begin);
2146 
2147 int block_write_end(struct file *file, struct address_space *mapping,
2148 			loff_t pos, unsigned len, unsigned copied,
2149 			struct page *page, void *fsdata)
2150 {
2151 	struct inode *inode = mapping->host;
2152 	unsigned start;
2153 
2154 	start = pos & (PAGE_SIZE - 1);
2155 
2156 	if (unlikely(copied < len)) {
2157 		/*
2158 		 * The buffers that were written will now be uptodate, so we
2159 		 * don't have to worry about a readpage reading them and
2160 		 * overwriting a partial write. However if we have encountered
2161 		 * a short write and only partially written into a buffer, it
2162 		 * will not be marked uptodate, so a readpage might come in and
2163 		 * destroy our partial write.
2164 		 *
2165 		 * Do the simplest thing, and just treat any short write to a
2166 		 * non uptodate page as a zero-length write, and force the
2167 		 * caller to redo the whole thing.
2168 		 */
2169 		if (!PageUptodate(page))
2170 			copied = 0;
2171 
2172 		page_zero_new_buffers(page, start+copied, start+len);
2173 	}
2174 	flush_dcache_page(page);
2175 
2176 	/* This could be a short (even 0-length) commit */
2177 	__block_commit_write(inode, page, start, start+copied);
2178 
2179 	return copied;
2180 }
2181 EXPORT_SYMBOL(block_write_end);
2182 
2183 int generic_write_end(struct file *file, struct address_space *mapping,
2184 			loff_t pos, unsigned len, unsigned copied,
2185 			struct page *page, void *fsdata)
2186 {
2187 	struct inode *inode = mapping->host;
2188 	loff_t old_size = inode->i_size;
2189 	int i_size_changed = 0;
2190 
2191 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2192 
2193 	/*
2194 	 * No need to use i_size_read() here, the i_size
2195 	 * cannot change under us because we hold i_mutex.
2196 	 *
2197 	 * But it's important to update i_size while still holding page lock:
2198 	 * page writeout could otherwise come in and zero beyond i_size.
2199 	 */
2200 	if (pos+copied > inode->i_size) {
2201 		i_size_write(inode, pos+copied);
2202 		i_size_changed = 1;
2203 	}
2204 
2205 	unlock_page(page);
2206 	put_page(page);
2207 
2208 	if (old_size < pos)
2209 		pagecache_isize_extended(inode, old_size, pos);
2210 	/*
2211 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2212 	 * makes the holding time of page lock longer. Second, it forces lock
2213 	 * ordering of page lock and transaction start for journaling
2214 	 * filesystems.
2215 	 */
2216 	if (i_size_changed)
2217 		mark_inode_dirty(inode);
2218 
2219 	return copied;
2220 }
2221 EXPORT_SYMBOL(generic_write_end);
2222 
2223 /*
2224  * block_is_partially_uptodate checks whether buffers within a page are
2225  * uptodate or not.
2226  *
2227  * Returns true if all buffers which correspond to a file portion
2228  * we want to read are uptodate.
2229  */
2230 int block_is_partially_uptodate(struct page *page, unsigned long from,
2231 					unsigned long count)
2232 {
2233 	unsigned block_start, block_end, blocksize;
2234 	unsigned to;
2235 	struct buffer_head *bh, *head;
2236 	int ret = 1;
2237 
2238 	if (!page_has_buffers(page))
2239 		return 0;
2240 
2241 	head = page_buffers(page);
2242 	blocksize = head->b_size;
2243 	to = min_t(unsigned, PAGE_SIZE - from, count);
2244 	to = from + to;
2245 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2246 		return 0;
2247 
2248 	bh = head;
2249 	block_start = 0;
2250 	do {
2251 		block_end = block_start + blocksize;
2252 		if (block_end > from && block_start < to) {
2253 			if (!buffer_uptodate(bh)) {
2254 				ret = 0;
2255 				break;
2256 			}
2257 			if (block_end >= to)
2258 				break;
2259 		}
2260 		block_start = block_end;
2261 		bh = bh->b_this_page;
2262 	} while (bh != head);
2263 
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL(block_is_partially_uptodate);
2267 
2268 /*
2269  * Generic "read page" function for block devices that have the normal
2270  * get_block functionality. This is most of the block device filesystems.
2271  * Reads the page asynchronously --- the unlock_buffer() and
2272  * set/clear_buffer_uptodate() functions propagate buffer state into the
2273  * page struct once IO has completed.
2274  */
2275 int block_read_full_page(struct page *page, get_block_t *get_block)
2276 {
2277 	struct inode *inode = page->mapping->host;
2278 	sector_t iblock, lblock;
2279 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2280 	unsigned int blocksize, bbits;
2281 	int nr, i;
2282 	int fully_mapped = 1;
2283 
2284 	head = create_page_buffers(page, inode, 0);
2285 	blocksize = head->b_size;
2286 	bbits = block_size_bits(blocksize);
2287 
2288 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2289 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2290 	bh = head;
2291 	nr = 0;
2292 	i = 0;
2293 
2294 	do {
2295 		if (buffer_uptodate(bh))
2296 			continue;
2297 
2298 		if (!buffer_mapped(bh)) {
2299 			int err = 0;
2300 
2301 			fully_mapped = 0;
2302 			if (iblock < lblock) {
2303 				WARN_ON(bh->b_size != blocksize);
2304 				err = get_block(inode, iblock, bh, 0);
2305 				if (err)
2306 					SetPageError(page);
2307 			}
2308 			if (!buffer_mapped(bh)) {
2309 				zero_user(page, i * blocksize, blocksize);
2310 				if (!err)
2311 					set_buffer_uptodate(bh);
2312 				continue;
2313 			}
2314 			/*
2315 			 * get_block() might have updated the buffer
2316 			 * synchronously
2317 			 */
2318 			if (buffer_uptodate(bh))
2319 				continue;
2320 		}
2321 		arr[nr++] = bh;
2322 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2323 
2324 	if (fully_mapped)
2325 		SetPageMappedToDisk(page);
2326 
2327 	if (!nr) {
2328 		/*
2329 		 * All buffers are uptodate - we can set the page uptodate
2330 		 * as well. But not if get_block() returned an error.
2331 		 */
2332 		if (!PageError(page))
2333 			SetPageUptodate(page);
2334 		unlock_page(page);
2335 		return 0;
2336 	}
2337 
2338 	/* Stage two: lock the buffers */
2339 	for (i = 0; i < nr; i++) {
2340 		bh = arr[i];
2341 		lock_buffer(bh);
2342 		mark_buffer_async_read(bh);
2343 	}
2344 
2345 	/*
2346 	 * Stage 3: start the IO.  Check for uptodateness
2347 	 * inside the buffer lock in case another process reading
2348 	 * the underlying blockdev brought it uptodate (the sct fix).
2349 	 */
2350 	for (i = 0; i < nr; i++) {
2351 		bh = arr[i];
2352 		if (buffer_uptodate(bh))
2353 			end_buffer_async_read(bh, 1);
2354 		else
2355 			submit_bh(REQ_OP_READ, 0, bh);
2356 	}
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(block_read_full_page);
2360 
2361 /* utility function for filesystems that need to do work on expanding
2362  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2363  * deal with the hole.
2364  */
2365 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2366 {
2367 	struct address_space *mapping = inode->i_mapping;
2368 	struct page *page;
2369 	void *fsdata;
2370 	int err;
2371 
2372 	err = inode_newsize_ok(inode, size);
2373 	if (err)
2374 		goto out;
2375 
2376 	err = pagecache_write_begin(NULL, mapping, size, 0,
2377 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2378 	if (err)
2379 		goto out;
2380 
2381 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2382 	BUG_ON(err > 0);
2383 
2384 out:
2385 	return err;
2386 }
2387 EXPORT_SYMBOL(generic_cont_expand_simple);
2388 
2389 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2390 			    loff_t pos, loff_t *bytes)
2391 {
2392 	struct inode *inode = mapping->host;
2393 	unsigned int blocksize = i_blocksize(inode);
2394 	struct page *page;
2395 	void *fsdata;
2396 	pgoff_t index, curidx;
2397 	loff_t curpos;
2398 	unsigned zerofrom, offset, len;
2399 	int err = 0;
2400 
2401 	index = pos >> PAGE_SHIFT;
2402 	offset = pos & ~PAGE_MASK;
2403 
2404 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2405 		zerofrom = curpos & ~PAGE_MASK;
2406 		if (zerofrom & (blocksize-1)) {
2407 			*bytes |= (blocksize-1);
2408 			(*bytes)++;
2409 		}
2410 		len = PAGE_SIZE - zerofrom;
2411 
2412 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2413 					    &page, &fsdata);
2414 		if (err)
2415 			goto out;
2416 		zero_user(page, zerofrom, len);
2417 		err = pagecache_write_end(file, mapping, curpos, len, len,
2418 						page, fsdata);
2419 		if (err < 0)
2420 			goto out;
2421 		BUG_ON(err != len);
2422 		err = 0;
2423 
2424 		balance_dirty_pages_ratelimited(mapping);
2425 
2426 		if (unlikely(fatal_signal_pending(current))) {
2427 			err = -EINTR;
2428 			goto out;
2429 		}
2430 	}
2431 
2432 	/* page covers the boundary, find the boundary offset */
2433 	if (index == curidx) {
2434 		zerofrom = curpos & ~PAGE_MASK;
2435 		/* if we will expand the thing last block will be filled */
2436 		if (offset <= zerofrom) {
2437 			goto out;
2438 		}
2439 		if (zerofrom & (blocksize-1)) {
2440 			*bytes |= (blocksize-1);
2441 			(*bytes)++;
2442 		}
2443 		len = offset - zerofrom;
2444 
2445 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2446 					    &page, &fsdata);
2447 		if (err)
2448 			goto out;
2449 		zero_user(page, zerofrom, len);
2450 		err = pagecache_write_end(file, mapping, curpos, len, len,
2451 						page, fsdata);
2452 		if (err < 0)
2453 			goto out;
2454 		BUG_ON(err != len);
2455 		err = 0;
2456 	}
2457 out:
2458 	return err;
2459 }
2460 
2461 /*
2462  * For moronic filesystems that do not allow holes in file.
2463  * We may have to extend the file.
2464  */
2465 int cont_write_begin(struct file *file, struct address_space *mapping,
2466 			loff_t pos, unsigned len, unsigned flags,
2467 			struct page **pagep, void **fsdata,
2468 			get_block_t *get_block, loff_t *bytes)
2469 {
2470 	struct inode *inode = mapping->host;
2471 	unsigned int blocksize = i_blocksize(inode);
2472 	unsigned int zerofrom;
2473 	int err;
2474 
2475 	err = cont_expand_zero(file, mapping, pos, bytes);
2476 	if (err)
2477 		return err;
2478 
2479 	zerofrom = *bytes & ~PAGE_MASK;
2480 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2481 		*bytes |= (blocksize-1);
2482 		(*bytes)++;
2483 	}
2484 
2485 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2486 }
2487 EXPORT_SYMBOL(cont_write_begin);
2488 
2489 int block_commit_write(struct page *page, unsigned from, unsigned to)
2490 {
2491 	struct inode *inode = page->mapping->host;
2492 	__block_commit_write(inode,page,from,to);
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL(block_commit_write);
2496 
2497 /*
2498  * block_page_mkwrite() is not allowed to change the file size as it gets
2499  * called from a page fault handler when a page is first dirtied. Hence we must
2500  * be careful to check for EOF conditions here. We set the page up correctly
2501  * for a written page which means we get ENOSPC checking when writing into
2502  * holes and correct delalloc and unwritten extent mapping on filesystems that
2503  * support these features.
2504  *
2505  * We are not allowed to take the i_mutex here so we have to play games to
2506  * protect against truncate races as the page could now be beyond EOF.  Because
2507  * truncate writes the inode size before removing pages, once we have the
2508  * page lock we can determine safely if the page is beyond EOF. If it is not
2509  * beyond EOF, then the page is guaranteed safe against truncation until we
2510  * unlock the page.
2511  *
2512  * Direct callers of this function should protect against filesystem freezing
2513  * using sb_start_pagefault() - sb_end_pagefault() functions.
2514  */
2515 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2516 			 get_block_t get_block)
2517 {
2518 	struct page *page = vmf->page;
2519 	struct inode *inode = file_inode(vma->vm_file);
2520 	unsigned long end;
2521 	loff_t size;
2522 	int ret;
2523 
2524 	lock_page(page);
2525 	size = i_size_read(inode);
2526 	if ((page->mapping != inode->i_mapping) ||
2527 	    (page_offset(page) > size)) {
2528 		/* We overload EFAULT to mean page got truncated */
2529 		ret = -EFAULT;
2530 		goto out_unlock;
2531 	}
2532 
2533 	/* page is wholly or partially inside EOF */
2534 	if (((page->index + 1) << PAGE_SHIFT) > size)
2535 		end = size & ~PAGE_MASK;
2536 	else
2537 		end = PAGE_SIZE;
2538 
2539 	ret = __block_write_begin(page, 0, end, get_block);
2540 	if (!ret)
2541 		ret = block_commit_write(page, 0, end);
2542 
2543 	if (unlikely(ret < 0))
2544 		goto out_unlock;
2545 	set_page_dirty(page);
2546 	wait_for_stable_page(page);
2547 	return 0;
2548 out_unlock:
2549 	unlock_page(page);
2550 	return ret;
2551 }
2552 EXPORT_SYMBOL(block_page_mkwrite);
2553 
2554 /*
2555  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2556  * immediately, while under the page lock.  So it needs a special end_io
2557  * handler which does not touch the bh after unlocking it.
2558  */
2559 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2560 {
2561 	__end_buffer_read_notouch(bh, uptodate);
2562 }
2563 
2564 /*
2565  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2566  * the page (converting it to circular linked list and taking care of page
2567  * dirty races).
2568  */
2569 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2570 {
2571 	struct buffer_head *bh;
2572 
2573 	BUG_ON(!PageLocked(page));
2574 
2575 	spin_lock(&page->mapping->private_lock);
2576 	bh = head;
2577 	do {
2578 		if (PageDirty(page))
2579 			set_buffer_dirty(bh);
2580 		if (!bh->b_this_page)
2581 			bh->b_this_page = head;
2582 		bh = bh->b_this_page;
2583 	} while (bh != head);
2584 	attach_page_buffers(page, head);
2585 	spin_unlock(&page->mapping->private_lock);
2586 }
2587 
2588 /*
2589  * On entry, the page is fully not uptodate.
2590  * On exit the page is fully uptodate in the areas outside (from,to)
2591  * The filesystem needs to handle block truncation upon failure.
2592  */
2593 int nobh_write_begin(struct address_space *mapping,
2594 			loff_t pos, unsigned len, unsigned flags,
2595 			struct page **pagep, void **fsdata,
2596 			get_block_t *get_block)
2597 {
2598 	struct inode *inode = mapping->host;
2599 	const unsigned blkbits = inode->i_blkbits;
2600 	const unsigned blocksize = 1 << blkbits;
2601 	struct buffer_head *head, *bh;
2602 	struct page *page;
2603 	pgoff_t index;
2604 	unsigned from, to;
2605 	unsigned block_in_page;
2606 	unsigned block_start, block_end;
2607 	sector_t block_in_file;
2608 	int nr_reads = 0;
2609 	int ret = 0;
2610 	int is_mapped_to_disk = 1;
2611 
2612 	index = pos >> PAGE_SHIFT;
2613 	from = pos & (PAGE_SIZE - 1);
2614 	to = from + len;
2615 
2616 	page = grab_cache_page_write_begin(mapping, index, flags);
2617 	if (!page)
2618 		return -ENOMEM;
2619 	*pagep = page;
2620 	*fsdata = NULL;
2621 
2622 	if (page_has_buffers(page)) {
2623 		ret = __block_write_begin(page, pos, len, get_block);
2624 		if (unlikely(ret))
2625 			goto out_release;
2626 		return ret;
2627 	}
2628 
2629 	if (PageMappedToDisk(page))
2630 		return 0;
2631 
2632 	/*
2633 	 * Allocate buffers so that we can keep track of state, and potentially
2634 	 * attach them to the page if an error occurs. In the common case of
2635 	 * no error, they will just be freed again without ever being attached
2636 	 * to the page (which is all OK, because we're under the page lock).
2637 	 *
2638 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2639 	 * than the circular one we're used to.
2640 	 */
2641 	head = alloc_page_buffers(page, blocksize, 0);
2642 	if (!head) {
2643 		ret = -ENOMEM;
2644 		goto out_release;
2645 	}
2646 
2647 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2648 
2649 	/*
2650 	 * We loop across all blocks in the page, whether or not they are
2651 	 * part of the affected region.  This is so we can discover if the
2652 	 * page is fully mapped-to-disk.
2653 	 */
2654 	for (block_start = 0, block_in_page = 0, bh = head;
2655 		  block_start < PAGE_SIZE;
2656 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2657 		int create;
2658 
2659 		block_end = block_start + blocksize;
2660 		bh->b_state = 0;
2661 		create = 1;
2662 		if (block_start >= to)
2663 			create = 0;
2664 		ret = get_block(inode, block_in_file + block_in_page,
2665 					bh, create);
2666 		if (ret)
2667 			goto failed;
2668 		if (!buffer_mapped(bh))
2669 			is_mapped_to_disk = 0;
2670 		if (buffer_new(bh))
2671 			clean_bdev_bh_alias(bh);
2672 		if (PageUptodate(page)) {
2673 			set_buffer_uptodate(bh);
2674 			continue;
2675 		}
2676 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2677 			zero_user_segments(page, block_start, from,
2678 							to, block_end);
2679 			continue;
2680 		}
2681 		if (buffer_uptodate(bh))
2682 			continue;	/* reiserfs does this */
2683 		if (block_start < from || block_end > to) {
2684 			lock_buffer(bh);
2685 			bh->b_end_io = end_buffer_read_nobh;
2686 			submit_bh(REQ_OP_READ, 0, bh);
2687 			nr_reads++;
2688 		}
2689 	}
2690 
2691 	if (nr_reads) {
2692 		/*
2693 		 * The page is locked, so these buffers are protected from
2694 		 * any VM or truncate activity.  Hence we don't need to care
2695 		 * for the buffer_head refcounts.
2696 		 */
2697 		for (bh = head; bh; bh = bh->b_this_page) {
2698 			wait_on_buffer(bh);
2699 			if (!buffer_uptodate(bh))
2700 				ret = -EIO;
2701 		}
2702 		if (ret)
2703 			goto failed;
2704 	}
2705 
2706 	if (is_mapped_to_disk)
2707 		SetPageMappedToDisk(page);
2708 
2709 	*fsdata = head; /* to be released by nobh_write_end */
2710 
2711 	return 0;
2712 
2713 failed:
2714 	BUG_ON(!ret);
2715 	/*
2716 	 * Error recovery is a bit difficult. We need to zero out blocks that
2717 	 * were newly allocated, and dirty them to ensure they get written out.
2718 	 * Buffers need to be attached to the page at this point, otherwise
2719 	 * the handling of potential IO errors during writeout would be hard
2720 	 * (could try doing synchronous writeout, but what if that fails too?)
2721 	 */
2722 	attach_nobh_buffers(page, head);
2723 	page_zero_new_buffers(page, from, to);
2724 
2725 out_release:
2726 	unlock_page(page);
2727 	put_page(page);
2728 	*pagep = NULL;
2729 
2730 	return ret;
2731 }
2732 EXPORT_SYMBOL(nobh_write_begin);
2733 
2734 int nobh_write_end(struct file *file, struct address_space *mapping,
2735 			loff_t pos, unsigned len, unsigned copied,
2736 			struct page *page, void *fsdata)
2737 {
2738 	struct inode *inode = page->mapping->host;
2739 	struct buffer_head *head = fsdata;
2740 	struct buffer_head *bh;
2741 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2742 
2743 	if (unlikely(copied < len) && head)
2744 		attach_nobh_buffers(page, head);
2745 	if (page_has_buffers(page))
2746 		return generic_write_end(file, mapping, pos, len,
2747 					copied, page, fsdata);
2748 
2749 	SetPageUptodate(page);
2750 	set_page_dirty(page);
2751 	if (pos+copied > inode->i_size) {
2752 		i_size_write(inode, pos+copied);
2753 		mark_inode_dirty(inode);
2754 	}
2755 
2756 	unlock_page(page);
2757 	put_page(page);
2758 
2759 	while (head) {
2760 		bh = head;
2761 		head = head->b_this_page;
2762 		free_buffer_head(bh);
2763 	}
2764 
2765 	return copied;
2766 }
2767 EXPORT_SYMBOL(nobh_write_end);
2768 
2769 /*
2770  * nobh_writepage() - based on block_full_write_page() except
2771  * that it tries to operate without attaching bufferheads to
2772  * the page.
2773  */
2774 int nobh_writepage(struct page *page, get_block_t *get_block,
2775 			struct writeback_control *wbc)
2776 {
2777 	struct inode * const inode = page->mapping->host;
2778 	loff_t i_size = i_size_read(inode);
2779 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2780 	unsigned offset;
2781 	int ret;
2782 
2783 	/* Is the page fully inside i_size? */
2784 	if (page->index < end_index)
2785 		goto out;
2786 
2787 	/* Is the page fully outside i_size? (truncate in progress) */
2788 	offset = i_size & (PAGE_SIZE-1);
2789 	if (page->index >= end_index+1 || !offset) {
2790 		/*
2791 		 * The page may have dirty, unmapped buffers.  For example,
2792 		 * they may have been added in ext3_writepage().  Make them
2793 		 * freeable here, so the page does not leak.
2794 		 */
2795 #if 0
2796 		/* Not really sure about this  - do we need this ? */
2797 		if (page->mapping->a_ops->invalidatepage)
2798 			page->mapping->a_ops->invalidatepage(page, offset);
2799 #endif
2800 		unlock_page(page);
2801 		return 0; /* don't care */
2802 	}
2803 
2804 	/*
2805 	 * The page straddles i_size.  It must be zeroed out on each and every
2806 	 * writepage invocation because it may be mmapped.  "A file is mapped
2807 	 * in multiples of the page size.  For a file that is not a multiple of
2808 	 * the  page size, the remaining memory is zeroed when mapped, and
2809 	 * writes to that region are not written out to the file."
2810 	 */
2811 	zero_user_segment(page, offset, PAGE_SIZE);
2812 out:
2813 	ret = mpage_writepage(page, get_block, wbc);
2814 	if (ret == -EAGAIN)
2815 		ret = __block_write_full_page(inode, page, get_block, wbc,
2816 					      end_buffer_async_write);
2817 	return ret;
2818 }
2819 EXPORT_SYMBOL(nobh_writepage);
2820 
2821 int nobh_truncate_page(struct address_space *mapping,
2822 			loff_t from, get_block_t *get_block)
2823 {
2824 	pgoff_t index = from >> PAGE_SHIFT;
2825 	unsigned offset = from & (PAGE_SIZE-1);
2826 	unsigned blocksize;
2827 	sector_t iblock;
2828 	unsigned length, pos;
2829 	struct inode *inode = mapping->host;
2830 	struct page *page;
2831 	struct buffer_head map_bh;
2832 	int err;
2833 
2834 	blocksize = i_blocksize(inode);
2835 	length = offset & (blocksize - 1);
2836 
2837 	/* Block boundary? Nothing to do */
2838 	if (!length)
2839 		return 0;
2840 
2841 	length = blocksize - length;
2842 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2843 
2844 	page = grab_cache_page(mapping, index);
2845 	err = -ENOMEM;
2846 	if (!page)
2847 		goto out;
2848 
2849 	if (page_has_buffers(page)) {
2850 has_buffers:
2851 		unlock_page(page);
2852 		put_page(page);
2853 		return block_truncate_page(mapping, from, get_block);
2854 	}
2855 
2856 	/* Find the buffer that contains "offset" */
2857 	pos = blocksize;
2858 	while (offset >= pos) {
2859 		iblock++;
2860 		pos += blocksize;
2861 	}
2862 
2863 	map_bh.b_size = blocksize;
2864 	map_bh.b_state = 0;
2865 	err = get_block(inode, iblock, &map_bh, 0);
2866 	if (err)
2867 		goto unlock;
2868 	/* unmapped? It's a hole - nothing to do */
2869 	if (!buffer_mapped(&map_bh))
2870 		goto unlock;
2871 
2872 	/* Ok, it's mapped. Make sure it's up-to-date */
2873 	if (!PageUptodate(page)) {
2874 		err = mapping->a_ops->readpage(NULL, page);
2875 		if (err) {
2876 			put_page(page);
2877 			goto out;
2878 		}
2879 		lock_page(page);
2880 		if (!PageUptodate(page)) {
2881 			err = -EIO;
2882 			goto unlock;
2883 		}
2884 		if (page_has_buffers(page))
2885 			goto has_buffers;
2886 	}
2887 	zero_user(page, offset, length);
2888 	set_page_dirty(page);
2889 	err = 0;
2890 
2891 unlock:
2892 	unlock_page(page);
2893 	put_page(page);
2894 out:
2895 	return err;
2896 }
2897 EXPORT_SYMBOL(nobh_truncate_page);
2898 
2899 int block_truncate_page(struct address_space *mapping,
2900 			loff_t from, get_block_t *get_block)
2901 {
2902 	pgoff_t index = from >> PAGE_SHIFT;
2903 	unsigned offset = from & (PAGE_SIZE-1);
2904 	unsigned blocksize;
2905 	sector_t iblock;
2906 	unsigned length, pos;
2907 	struct inode *inode = mapping->host;
2908 	struct page *page;
2909 	struct buffer_head *bh;
2910 	int err;
2911 
2912 	blocksize = i_blocksize(inode);
2913 	length = offset & (blocksize - 1);
2914 
2915 	/* Block boundary? Nothing to do */
2916 	if (!length)
2917 		return 0;
2918 
2919 	length = blocksize - length;
2920 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2921 
2922 	page = grab_cache_page(mapping, index);
2923 	err = -ENOMEM;
2924 	if (!page)
2925 		goto out;
2926 
2927 	if (!page_has_buffers(page))
2928 		create_empty_buffers(page, blocksize, 0);
2929 
2930 	/* Find the buffer that contains "offset" */
2931 	bh = page_buffers(page);
2932 	pos = blocksize;
2933 	while (offset >= pos) {
2934 		bh = bh->b_this_page;
2935 		iblock++;
2936 		pos += blocksize;
2937 	}
2938 
2939 	err = 0;
2940 	if (!buffer_mapped(bh)) {
2941 		WARN_ON(bh->b_size != blocksize);
2942 		err = get_block(inode, iblock, bh, 0);
2943 		if (err)
2944 			goto unlock;
2945 		/* unmapped? It's a hole - nothing to do */
2946 		if (!buffer_mapped(bh))
2947 			goto unlock;
2948 	}
2949 
2950 	/* Ok, it's mapped. Make sure it's up-to-date */
2951 	if (PageUptodate(page))
2952 		set_buffer_uptodate(bh);
2953 
2954 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2955 		err = -EIO;
2956 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2957 		wait_on_buffer(bh);
2958 		/* Uhhuh. Read error. Complain and punt. */
2959 		if (!buffer_uptodate(bh))
2960 			goto unlock;
2961 	}
2962 
2963 	zero_user(page, offset, length);
2964 	mark_buffer_dirty(bh);
2965 	err = 0;
2966 
2967 unlock:
2968 	unlock_page(page);
2969 	put_page(page);
2970 out:
2971 	return err;
2972 }
2973 EXPORT_SYMBOL(block_truncate_page);
2974 
2975 /*
2976  * The generic ->writepage function for buffer-backed address_spaces
2977  */
2978 int block_write_full_page(struct page *page, get_block_t *get_block,
2979 			struct writeback_control *wbc)
2980 {
2981 	struct inode * const inode = page->mapping->host;
2982 	loff_t i_size = i_size_read(inode);
2983 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2984 	unsigned offset;
2985 
2986 	/* Is the page fully inside i_size? */
2987 	if (page->index < end_index)
2988 		return __block_write_full_page(inode, page, get_block, wbc,
2989 					       end_buffer_async_write);
2990 
2991 	/* Is the page fully outside i_size? (truncate in progress) */
2992 	offset = i_size & (PAGE_SIZE-1);
2993 	if (page->index >= end_index+1 || !offset) {
2994 		/*
2995 		 * The page may have dirty, unmapped buffers.  For example,
2996 		 * they may have been added in ext3_writepage().  Make them
2997 		 * freeable here, so the page does not leak.
2998 		 */
2999 		do_invalidatepage(page, 0, PAGE_SIZE);
3000 		unlock_page(page);
3001 		return 0; /* don't care */
3002 	}
3003 
3004 	/*
3005 	 * The page straddles i_size.  It must be zeroed out on each and every
3006 	 * writepage invocation because it may be mmapped.  "A file is mapped
3007 	 * in multiples of the page size.  For a file that is not a multiple of
3008 	 * the  page size, the remaining memory is zeroed when mapped, and
3009 	 * writes to that region are not written out to the file."
3010 	 */
3011 	zero_user_segment(page, offset, PAGE_SIZE);
3012 	return __block_write_full_page(inode, page, get_block, wbc,
3013 							end_buffer_async_write);
3014 }
3015 EXPORT_SYMBOL(block_write_full_page);
3016 
3017 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3018 			    get_block_t *get_block)
3019 {
3020 	struct inode *inode = mapping->host;
3021 	struct buffer_head tmp = {
3022 		.b_size = i_blocksize(inode),
3023 	};
3024 
3025 	get_block(inode, block, &tmp, 0);
3026 	return tmp.b_blocknr;
3027 }
3028 EXPORT_SYMBOL(generic_block_bmap);
3029 
3030 static void end_bio_bh_io_sync(struct bio *bio)
3031 {
3032 	struct buffer_head *bh = bio->bi_private;
3033 
3034 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3035 		set_bit(BH_Quiet, &bh->b_state);
3036 
3037 	bh->b_end_io(bh, !bio->bi_status);
3038 	bio_put(bio);
3039 }
3040 
3041 /*
3042  * This allows us to do IO even on the odd last sectors
3043  * of a device, even if the block size is some multiple
3044  * of the physical sector size.
3045  *
3046  * We'll just truncate the bio to the size of the device,
3047  * and clear the end of the buffer head manually.
3048  *
3049  * Truly out-of-range accesses will turn into actual IO
3050  * errors, this only handles the "we need to be able to
3051  * do IO at the final sector" case.
3052  */
3053 void guard_bio_eod(int op, struct bio *bio)
3054 {
3055 	sector_t maxsector;
3056 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3057 	unsigned truncated_bytes;
3058 
3059 	maxsector = get_capacity(bio->bi_disk);
3060 	if (!maxsector)
3061 		return;
3062 
3063 	/*
3064 	 * If the *whole* IO is past the end of the device,
3065 	 * let it through, and the IO layer will turn it into
3066 	 * an EIO.
3067 	 */
3068 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3069 		return;
3070 
3071 	maxsector -= bio->bi_iter.bi_sector;
3072 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3073 		return;
3074 
3075 	/* Uhhuh. We've got a bio that straddles the device size! */
3076 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3077 
3078 	/* Truncate the bio.. */
3079 	bio->bi_iter.bi_size -= truncated_bytes;
3080 	bvec->bv_len -= truncated_bytes;
3081 
3082 	/* ..and clear the end of the buffer for reads */
3083 	if (op == REQ_OP_READ) {
3084 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3085 				truncated_bytes);
3086 	}
3087 }
3088 
3089 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3090 			 enum rw_hint write_hint, struct writeback_control *wbc)
3091 {
3092 	struct bio *bio;
3093 
3094 	BUG_ON(!buffer_locked(bh));
3095 	BUG_ON(!buffer_mapped(bh));
3096 	BUG_ON(!bh->b_end_io);
3097 	BUG_ON(buffer_delay(bh));
3098 	BUG_ON(buffer_unwritten(bh));
3099 
3100 	/*
3101 	 * Only clear out a write error when rewriting
3102 	 */
3103 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3104 		clear_buffer_write_io_error(bh);
3105 
3106 	/*
3107 	 * from here on down, it's all bio -- do the initial mapping,
3108 	 * submit_bio -> generic_make_request may further map this bio around
3109 	 */
3110 	bio = bio_alloc(GFP_NOIO, 1);
3111 
3112 	if (wbc) {
3113 		wbc_init_bio(wbc, bio);
3114 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3115 	}
3116 
3117 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3118 	bio_set_dev(bio, bh->b_bdev);
3119 	bio->bi_write_hint = write_hint;
3120 
3121 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3122 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3123 
3124 	bio->bi_end_io = end_bio_bh_io_sync;
3125 	bio->bi_private = bh;
3126 
3127 	/* Take care of bh's that straddle the end of the device */
3128 	guard_bio_eod(op, bio);
3129 
3130 	if (buffer_meta(bh))
3131 		op_flags |= REQ_META;
3132 	if (buffer_prio(bh))
3133 		op_flags |= REQ_PRIO;
3134 	bio_set_op_attrs(bio, op, op_flags);
3135 
3136 	submit_bio(bio);
3137 	return 0;
3138 }
3139 
3140 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3141 {
3142 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3143 }
3144 EXPORT_SYMBOL(submit_bh);
3145 
3146 /**
3147  * ll_rw_block: low-level access to block devices (DEPRECATED)
3148  * @op: whether to %READ or %WRITE
3149  * @op_flags: req_flag_bits
3150  * @nr: number of &struct buffer_heads in the array
3151  * @bhs: array of pointers to &struct buffer_head
3152  *
3153  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3154  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3155  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3156  * %REQ_RAHEAD.
3157  *
3158  * This function drops any buffer that it cannot get a lock on (with the
3159  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3160  * request, and any buffer that appears to be up-to-date when doing read
3161  * request.  Further it marks as clean buffers that are processed for
3162  * writing (the buffer cache won't assume that they are actually clean
3163  * until the buffer gets unlocked).
3164  *
3165  * ll_rw_block sets b_end_io to simple completion handler that marks
3166  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3167  * any waiters.
3168  *
3169  * All of the buffers must be for the same device, and must also be a
3170  * multiple of the current approved size for the device.
3171  */
3172 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3173 {
3174 	int i;
3175 
3176 	for (i = 0; i < nr; i++) {
3177 		struct buffer_head *bh = bhs[i];
3178 
3179 		if (!trylock_buffer(bh))
3180 			continue;
3181 		if (op == WRITE) {
3182 			if (test_clear_buffer_dirty(bh)) {
3183 				bh->b_end_io = end_buffer_write_sync;
3184 				get_bh(bh);
3185 				submit_bh(op, op_flags, bh);
3186 				continue;
3187 			}
3188 		} else {
3189 			if (!buffer_uptodate(bh)) {
3190 				bh->b_end_io = end_buffer_read_sync;
3191 				get_bh(bh);
3192 				submit_bh(op, op_flags, bh);
3193 				continue;
3194 			}
3195 		}
3196 		unlock_buffer(bh);
3197 	}
3198 }
3199 EXPORT_SYMBOL(ll_rw_block);
3200 
3201 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3202 {
3203 	lock_buffer(bh);
3204 	if (!test_clear_buffer_dirty(bh)) {
3205 		unlock_buffer(bh);
3206 		return;
3207 	}
3208 	bh->b_end_io = end_buffer_write_sync;
3209 	get_bh(bh);
3210 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3211 }
3212 EXPORT_SYMBOL(write_dirty_buffer);
3213 
3214 /*
3215  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3216  * and then start new I/O and then wait upon it.  The caller must have a ref on
3217  * the buffer_head.
3218  */
3219 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3220 {
3221 	int ret = 0;
3222 
3223 	WARN_ON(atomic_read(&bh->b_count) < 1);
3224 	lock_buffer(bh);
3225 	if (test_clear_buffer_dirty(bh)) {
3226 		get_bh(bh);
3227 		bh->b_end_io = end_buffer_write_sync;
3228 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3229 		wait_on_buffer(bh);
3230 		if (!ret && !buffer_uptodate(bh))
3231 			ret = -EIO;
3232 	} else {
3233 		unlock_buffer(bh);
3234 	}
3235 	return ret;
3236 }
3237 EXPORT_SYMBOL(__sync_dirty_buffer);
3238 
3239 int sync_dirty_buffer(struct buffer_head *bh)
3240 {
3241 	return __sync_dirty_buffer(bh, REQ_SYNC);
3242 }
3243 EXPORT_SYMBOL(sync_dirty_buffer);
3244 
3245 /*
3246  * try_to_free_buffers() checks if all the buffers on this particular page
3247  * are unused, and releases them if so.
3248  *
3249  * Exclusion against try_to_free_buffers may be obtained by either
3250  * locking the page or by holding its mapping's private_lock.
3251  *
3252  * If the page is dirty but all the buffers are clean then we need to
3253  * be sure to mark the page clean as well.  This is because the page
3254  * may be against a block device, and a later reattachment of buffers
3255  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3256  * filesystem data on the same device.
3257  *
3258  * The same applies to regular filesystem pages: if all the buffers are
3259  * clean then we set the page clean and proceed.  To do that, we require
3260  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3261  * private_lock.
3262  *
3263  * try_to_free_buffers() is non-blocking.
3264  */
3265 static inline int buffer_busy(struct buffer_head *bh)
3266 {
3267 	return atomic_read(&bh->b_count) |
3268 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3269 }
3270 
3271 static int
3272 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3273 {
3274 	struct buffer_head *head = page_buffers(page);
3275 	struct buffer_head *bh;
3276 
3277 	bh = head;
3278 	do {
3279 		if (buffer_busy(bh))
3280 			goto failed;
3281 		bh = bh->b_this_page;
3282 	} while (bh != head);
3283 
3284 	do {
3285 		struct buffer_head *next = bh->b_this_page;
3286 
3287 		if (bh->b_assoc_map)
3288 			__remove_assoc_queue(bh);
3289 		bh = next;
3290 	} while (bh != head);
3291 	*buffers_to_free = head;
3292 	__clear_page_buffers(page);
3293 	return 1;
3294 failed:
3295 	return 0;
3296 }
3297 
3298 int try_to_free_buffers(struct page *page)
3299 {
3300 	struct address_space * const mapping = page->mapping;
3301 	struct buffer_head *buffers_to_free = NULL;
3302 	int ret = 0;
3303 
3304 	BUG_ON(!PageLocked(page));
3305 	if (PageWriteback(page))
3306 		return 0;
3307 
3308 	if (mapping == NULL) {		/* can this still happen? */
3309 		ret = drop_buffers(page, &buffers_to_free);
3310 		goto out;
3311 	}
3312 
3313 	spin_lock(&mapping->private_lock);
3314 	ret = drop_buffers(page, &buffers_to_free);
3315 
3316 	/*
3317 	 * If the filesystem writes its buffers by hand (eg ext3)
3318 	 * then we can have clean buffers against a dirty page.  We
3319 	 * clean the page here; otherwise the VM will never notice
3320 	 * that the filesystem did any IO at all.
3321 	 *
3322 	 * Also, during truncate, discard_buffer will have marked all
3323 	 * the page's buffers clean.  We discover that here and clean
3324 	 * the page also.
3325 	 *
3326 	 * private_lock must be held over this entire operation in order
3327 	 * to synchronise against __set_page_dirty_buffers and prevent the
3328 	 * dirty bit from being lost.
3329 	 */
3330 	if (ret)
3331 		cancel_dirty_page(page);
3332 	spin_unlock(&mapping->private_lock);
3333 out:
3334 	if (buffers_to_free) {
3335 		struct buffer_head *bh = buffers_to_free;
3336 
3337 		do {
3338 			struct buffer_head *next = bh->b_this_page;
3339 			free_buffer_head(bh);
3340 			bh = next;
3341 		} while (bh != buffers_to_free);
3342 	}
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(try_to_free_buffers);
3346 
3347 /*
3348  * There are no bdflush tunables left.  But distributions are
3349  * still running obsolete flush daemons, so we terminate them here.
3350  *
3351  * Use of bdflush() is deprecated and will be removed in a future kernel.
3352  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3353  */
3354 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3355 {
3356 	static int msg_count;
3357 
3358 	if (!capable(CAP_SYS_ADMIN))
3359 		return -EPERM;
3360 
3361 	if (msg_count < 5) {
3362 		msg_count++;
3363 		printk(KERN_INFO
3364 			"warning: process `%s' used the obsolete bdflush"
3365 			" system call\n", current->comm);
3366 		printk(KERN_INFO "Fix your initscripts?\n");
3367 	}
3368 
3369 	if (func == 1)
3370 		do_exit(0);
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Buffer-head allocation
3376  */
3377 static struct kmem_cache *bh_cachep __read_mostly;
3378 
3379 /*
3380  * Once the number of bh's in the machine exceeds this level, we start
3381  * stripping them in writeback.
3382  */
3383 static unsigned long max_buffer_heads;
3384 
3385 int buffer_heads_over_limit;
3386 
3387 struct bh_accounting {
3388 	int nr;			/* Number of live bh's */
3389 	int ratelimit;		/* Limit cacheline bouncing */
3390 };
3391 
3392 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3393 
3394 static void recalc_bh_state(void)
3395 {
3396 	int i;
3397 	int tot = 0;
3398 
3399 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3400 		return;
3401 	__this_cpu_write(bh_accounting.ratelimit, 0);
3402 	for_each_online_cpu(i)
3403 		tot += per_cpu(bh_accounting, i).nr;
3404 	buffer_heads_over_limit = (tot > max_buffer_heads);
3405 }
3406 
3407 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3408 {
3409 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3410 	if (ret) {
3411 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3412 		preempt_disable();
3413 		__this_cpu_inc(bh_accounting.nr);
3414 		recalc_bh_state();
3415 		preempt_enable();
3416 	}
3417 	return ret;
3418 }
3419 EXPORT_SYMBOL(alloc_buffer_head);
3420 
3421 void free_buffer_head(struct buffer_head *bh)
3422 {
3423 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3424 	kmem_cache_free(bh_cachep, bh);
3425 	preempt_disable();
3426 	__this_cpu_dec(bh_accounting.nr);
3427 	recalc_bh_state();
3428 	preempt_enable();
3429 }
3430 EXPORT_SYMBOL(free_buffer_head);
3431 
3432 static int buffer_exit_cpu_dead(unsigned int cpu)
3433 {
3434 	int i;
3435 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3436 
3437 	for (i = 0; i < BH_LRU_SIZE; i++) {
3438 		brelse(b->bhs[i]);
3439 		b->bhs[i] = NULL;
3440 	}
3441 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3442 	per_cpu(bh_accounting, cpu).nr = 0;
3443 	return 0;
3444 }
3445 
3446 /**
3447  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3448  * @bh: struct buffer_head
3449  *
3450  * Return true if the buffer is up-to-date and false,
3451  * with the buffer locked, if not.
3452  */
3453 int bh_uptodate_or_lock(struct buffer_head *bh)
3454 {
3455 	if (!buffer_uptodate(bh)) {
3456 		lock_buffer(bh);
3457 		if (!buffer_uptodate(bh))
3458 			return 0;
3459 		unlock_buffer(bh);
3460 	}
3461 	return 1;
3462 }
3463 EXPORT_SYMBOL(bh_uptodate_or_lock);
3464 
3465 /**
3466  * bh_submit_read - Submit a locked buffer for reading
3467  * @bh: struct buffer_head
3468  *
3469  * Returns zero on success and -EIO on error.
3470  */
3471 int bh_submit_read(struct buffer_head *bh)
3472 {
3473 	BUG_ON(!buffer_locked(bh));
3474 
3475 	if (buffer_uptodate(bh)) {
3476 		unlock_buffer(bh);
3477 		return 0;
3478 	}
3479 
3480 	get_bh(bh);
3481 	bh->b_end_io = end_buffer_read_sync;
3482 	submit_bh(REQ_OP_READ, 0, bh);
3483 	wait_on_buffer(bh);
3484 	if (buffer_uptodate(bh))
3485 		return 0;
3486 	return -EIO;
3487 }
3488 EXPORT_SYMBOL(bh_submit_read);
3489 
3490 /*
3491  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3492  *
3493  * Returns the offset within the file on success, and -ENOENT otherwise.
3494  */
3495 static loff_t
3496 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3497 {
3498 	loff_t offset = page_offset(page);
3499 	struct buffer_head *bh, *head;
3500 	bool seek_data = whence == SEEK_DATA;
3501 
3502 	if (lastoff < offset)
3503 		lastoff = offset;
3504 
3505 	bh = head = page_buffers(page);
3506 	do {
3507 		offset += bh->b_size;
3508 		if (lastoff >= offset)
3509 			continue;
3510 
3511 		/*
3512 		 * Unwritten extents that have data in the page cache covering
3513 		 * them can be identified by the BH_Unwritten state flag.
3514 		 * Pages with multiple buffers might have a mix of holes, data
3515 		 * and unwritten extents - any buffer with valid data in it
3516 		 * should have BH_Uptodate flag set on it.
3517 		 */
3518 
3519 		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3520 			return lastoff;
3521 
3522 		lastoff = offset;
3523 	} while ((bh = bh->b_this_page) != head);
3524 	return -ENOENT;
3525 }
3526 
3527 /*
3528  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3529  *
3530  * Within unwritten extents, the page cache determines which parts are holes
3531  * and which are data: unwritten and uptodate buffer heads count as data;
3532  * everything else counts as a hole.
3533  *
3534  * Returns the resulting offset on successs, and -ENOENT otherwise.
3535  */
3536 loff_t
3537 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3538 			  int whence)
3539 {
3540 	pgoff_t index = offset >> PAGE_SHIFT;
3541 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3542 	loff_t lastoff = offset;
3543 	struct pagevec pvec;
3544 
3545 	if (length <= 0)
3546 		return -ENOENT;
3547 
3548 	pagevec_init(&pvec, 0);
3549 
3550 	do {
3551 		unsigned nr_pages, i;
3552 
3553 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3554 						end - 1);
3555 		if (nr_pages == 0)
3556 			break;
3557 
3558 		for (i = 0; i < nr_pages; i++) {
3559 			struct page *page = pvec.pages[i];
3560 
3561 			/*
3562 			 * At this point, the page may be truncated or
3563 			 * invalidated (changing page->mapping to NULL), or
3564 			 * even swizzled back from swapper_space to tmpfs file
3565 			 * mapping.  However, page->index will not change
3566 			 * because we have a reference on the page.
3567                          *
3568 			 * If current page offset is beyond where we've ended,
3569 			 * we've found a hole.
3570                          */
3571 			if (whence == SEEK_HOLE &&
3572 			    lastoff < page_offset(page))
3573 				goto check_range;
3574 
3575 			lock_page(page);
3576 			if (likely(page->mapping == inode->i_mapping) &&
3577 			    page_has_buffers(page)) {
3578 				lastoff = page_seek_hole_data(page, lastoff, whence);
3579 				if (lastoff >= 0) {
3580 					unlock_page(page);
3581 					goto check_range;
3582 				}
3583 			}
3584 			unlock_page(page);
3585 			lastoff = page_offset(page) + PAGE_SIZE;
3586 		}
3587 		pagevec_release(&pvec);
3588 	} while (index < end);
3589 
3590 	/* When no page at lastoff and we are not done, we found a hole. */
3591 	if (whence != SEEK_HOLE)
3592 		goto not_found;
3593 
3594 check_range:
3595 	if (lastoff < offset + length)
3596 		goto out;
3597 not_found:
3598 	lastoff = -ENOENT;
3599 out:
3600 	pagevec_release(&pvec);
3601 	return lastoff;
3602 }
3603 
3604 void __init buffer_init(void)
3605 {
3606 	unsigned long nrpages;
3607 	int ret;
3608 
3609 	bh_cachep = kmem_cache_create("buffer_head",
3610 			sizeof(struct buffer_head), 0,
3611 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3612 				SLAB_MEM_SPREAD),
3613 				NULL);
3614 
3615 	/*
3616 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3617 	 */
3618 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3619 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3620 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3621 					NULL, buffer_exit_cpu_dead);
3622 	WARN_ON(ret < 0);
3623 }
3624